
FRACTIONAL SNOW COVER MAPPING THROUGH POLYTOPIC VECTOR 

ANALYSIS OF MODIS SPECTRAL REFLECTANCE 

A Thesis 

by 

YANG JU 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Chair of Committee,  Andrew Klein 
Committee Members, Michael Bishop 

Sorin Popescu 
Head of Department, David Cairns 

May 2017 

Major Subject: Geography 

Copyright 2017 Yang Ju



 

 ii 

ABSTRACT 

 

Snow cover plays an important role in the Earth’s climate systems. Accurately 

estimating snow cover is beneficial for predicting the runoff from snowmelt. Fractional 

Snow Cover (FSC) mapping computes the fraction of snow within a pixel of a remote 

sensing imager and provides a more precise snow cover extent estimate compared to 

binary comparing to binary identification of a pixel as snow or not. Linear mixture 

analysis has been commonly adopted to map FSC and multiple algorithms have been 

developed using this method. Polytopic Vector Analysis (PVA) is performed as an 

alternative to linear mixture analysis. PVA  has some inherent advantageous over the 

standard linear unmixing method, which include that the generic PVA approach 

guarantees each endmember fraction falls within a physically realistic range (0 to 1 or 0 

to 100%) and PVA automatically selects endmembers in an objective manner.  

This study investigates the feasibility that applying PVA in mapping FSC. The 

PVA algorithm was developed in python, and was tested by using MODIS 

atmospherically-corrected spectral reflectance to determine snow-cover fraction. 

Reference fractional snow cover maps created from 30m-resolution Landsat images 

were used to assess the proposed method’s performance. The PVA method showed a 		R2  

of 0.63 and RMSE of 0.12. This result is comparable with the MOD10 binary FSC 

product, but not as good as the MOD10 FSC product and Artificial Neural Network. 

However, as a parsimonious approach, PVA showed its potential for FSC mapping. 
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1. INTRODUCTION

1.1. Importance of Snow Cover Research 

The presence of snow on the Earth plays a significant role over a wide range of 

spatial and temporal scales. It interacts with the natural environments and human both 

locally and regionally (Rees et al. 2005). Annual and interannual variations in snow 

cover are an important feedback mechanism to the Earth’s climate and hydrology 

systems. 

Snow cover is an important variable for climate as it can control the earth surface 

albedo (Nolin et al., 1997). The high albedo of snow in the visible and near infrared 

region of the electromagnetic spectrum makes the incoming solar radiation a high 

reflectance, which can influence the energy exchanged between ground and atmosphere 

(Arnfield, 2006). Snow cover provides the thermal insulation that can reduce the heat 

exchange between the ground and atmosphere (Rees et al. 2005). 

Snow cover is also a key factor to the Earth’s hydrology system. As frozen water, 

snow holds precipitation within the snowpack until released during snowmelt. Snowmelt 

runoff can lead to a flood when it releases rapidly in spring (Rango et al., 1998). 

Moreover, snow is also significant for its potential in water storage for drinking and 

irrigation (Rango, 1993). In fact, thirty percent of the Earth’s land surface is covered by 

seasonally by snow (Dozier, 1989). Snow is essential for the supply of more than one 

sixth of the world’s population that relies on the melt of snow and glacier for fresh water 

(Barnett et al., 2005).  
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Snow cover information can be included in hydrological models when predicting the 

runoff from snowmelt and the weather forecasting models (Dobreva et al., 2011). The 

quality of snow cover extent maps greatly influences the accuracy of climate modeling 

(Chokmani et al., 2013). Currently, ground observation networks remains the standard 

source for snow cover information. However, it is both labor intensive and financial 

consuming to use ground observations to obtain large scales snow cover extent 

information. Satellite images makes it possible to monitor snow cover at global scales.   

There are various snow cover products available from different satellite data 

(Landsat, SPOT, MODIS, etc.). For climate modeling, snow cover extent should be 

produced at spatial resolutions of a few kilometers (Romanov et al., 2000). Difficulties 

may arise when the incorporated snow cover extent into climate models is inaccurate 

(Niu et al., 2007). Thus, accurate monitoring of spatial extent of snow cover by satellite 

data is imperative. 

1.2. Study Purpose and Objectives 

This study investigated the applicability of Polytopic Vector Analysis (PVA) of 

MODIS spectral reflectance to fractional snow cover mapping. To accomplish this goal, 

PVA code was originally developed in the Python Programming Languague (add 

citation for Python) and tested against existing PVA software using known mixtures of 

Polychlorinated Biphenyls (PCBs) from Murphy et al. (2014) to ensure it correct 

operation. Once, its performance was deemed acceptable The PVA code was then 

applied to analyze MODIS (Moderate Resolution Imaging Spectoradiomer) reflectance 

to map fractional snow cover for selected scenes over North America 



PVA is a mixture analysis method first developed in the field of geological science. 

It is a multivariate technique based on a linear mixing model, involving resolution of 

oblique vectors as source composition, thus the term vector analysis was used employed 

in naming the technique instead of factor analysis, the more commonly used term in 

geology.. PVA has advantages over the standard linear unmixing method in that 1) it 

calculates the fractions in a realistic range (0-1 or 0 to 100%), and 2) it determines the 

endmembers in a more objective way. 

Although PVA has been used extensively in multivariate mixture analysis in the filed 

of earth and environmental science, it is a relative new tool in remote sensing application 

(Nash et al., 2002). Its only prior known use in remote sensing was a vegetation study 

for analysis of Dixie Valley AVIRIS data within a small subset of study area (Johnson et 

al., 1998). However, to our knowledge PVA has not been applied to determination of 

fractional snow cover. Considering the similarity between mixed pixels of remote 

sensing imagery and multivariate mixture of environmental science, more exploration of 

the applicability of PVA in study is needed for remote sensing, especially in study of 

fractional snow cover. 

This study used surface reflectance from seven MODIS bands. MOD09 is the 

MODIS atmospherically-corrected surface reflectance product that computed from the 

MODIS Level 1B land bands 1 – 7. The seven estimated land surface reflectance bands 

at 500 m spatial resolution were used in the study as inputs to produce the fractional 

snow cover. Landsat derived snow cover fractions were used as reference (Dobreva and 

Klein, 2011) to estimate mapping accuracy of PVA. Snow fractions calculated by 
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Artificial Neural Network (ANN) and MOD10 (Dobreva and Klein, 2011) were also 

compared with those computed from PVA to evaluate the performance of PVA. 

 



2. LITERATURE REVIEW

2.1. Snow Cover Extent Mapping 

     Snow cover extent is a key factor in the Earth’s climate and hydrology systems, as 

well as is of important for its economic and hazards effects (Rango, 1996, Roesch et al., 

2001). In the past decades, progress has been made in snow cover extent mapping as 

remote sensing technology has developed. However, descriptive observations of snow 

can be dated back to early 18th century in Switzerland which was to underline 

stratigraphy snowpacks (Pielmeier and Schneebeli, 2003). In situ measurement was 

utilized to collect snow information through manual collections of snowpack 

information in the early year (Derksen and LeDreww, 2000). However, the practice of 

manual snow course survey was gradually replaced in the 1980s by networks of 

automated snow telemetry (SNOTEL) stations, which is capable of providing snow 

information in nearly real-time (Brown, 2009).  

In situ measurements of snow cover, however, are criticized for being biased toward 

populated areas and for providing only localized data (Brown and Braaten, 1997). It is 

also difficult to manually collect consistent snow cover information under adverse 

weather conditions (Derksen and LeDrew, 2000). On the other hand, remote areas often 

lack meteorological observations or are not included in SNOTEL or similar automated 

networks that makes stationary measurements of regional snowfall characteristics 

inaccurate or incomplete as well (Koskinen et al., 1999). As technology advanced, 

satellite and airborne began to be utilized to measure snowfall with unprecedented 

5 



accuracy to the end of the 20th century (Brown, 2009; Robinson et al., 1993). The 

combination of ground-based observations and remote sensing products such as aerial 

photography, satellite and radar imagery are being increasingly used to measure snowfall 

characteristics (Cherry et al., 2007). 

The high albedo of snow in visible and near infrared region of the electromagnetic 

spectrum coupled with its low reflectance in the short-wave infrared makes it readily 

distinguishable from other surface features in remote sensing images and hence make 

remote sensing a suitable and powerful tool to monitor snow cover area globally (Rees, 

2005). In addition, as a convenient tool, remote sensing allows snow detection over 

remote and inaccessible areas for the snow cover is often prevalent in these regions 

(Nolin, 2010). Currently, there are two main methods for snow cover mapping from 

satellite data. One is binary classification of snow cover. This approach aims to 

distinguish each pixel in an image is snow or not typically by comparing the Normalized 

Differential Snow Index (NDSI) to a threshold which is set empirically (Dozier, 1989). 

Increasingly fractional snow cover mapping has been undertaken. This approach is an 

enhancement from the binary classification, which computes the fraction of snow within 

each pixel of a remote sensing image (Nolin, 2010).   

2.2. Binary Classification 

      Binary (i.e., snow or not-snow) classification on snow cover mapping typically aims 

to determine if a pixel is snow or not based on Normalize Difference Snow Index 

(NDSI), which was originally developed for Landsat (Dozier, 1989). Snow reflects 

nearly 90% of the incoming solar radiation in the visible region of the electromagnetic 
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spectrum and is easily to be observed in true-color image (Dobreva, 2009). Remote 

sensing investigation uses the contrast that snow has the high albedo in the visible 

spectrum and a low albedo in the shortwave infrared range of the electromagnetic 

spectrum which while characteristic for snow is not typical for most land covers. NDSI 

applies this contrast to discriminate snow from other ground features (Dozier, 1989; Hall 

et al., 1995). This index is computed by constructing a normalized ratio between the 

reflectance in the visible and shortwave infrared (SWIR) rages of the electromagnetic 

spectrum: 

 (1) 

where R represents planetary reflectance in a visible band and a shortwave infrared 

band. For MODIS snow product, these are Terra MODIS band 4 (0.545 – 0.565 ) 

and band 6 (1.628 – 1.652 ). However, due to the failure of band 6 on Aqua, band 7 

(2.105 – 2.155 ) is often used as a replacement. NDSI ranges from -1 to 1. 

Historically, a pixel is identified as snow when the NDSI is above 0.4 in areas where 

forest canopy does not obscure the surface (Dozier, 1989; Hall et al, 1995). This NDSI 

greater than 0.4 threshold generally maps a pixel as snow cover when its snow fractions 

exceeds 50% (Hall et al., 2002). For snow in forests, Normalized Difference Vegetation 

Index (NDVI) is utilized in addition to NDSI. NDVI normalizes between the near 

infrared reflectance and visible reflectance.  

	
NDSI =

RVIS −RSWIR
RVIS +RSWIR

	µm

	µm

	µm
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(2) 

Klein et al. (1998) combined a snow reflectance model with a canopy reflectance model 

with a canopy reflectance model to identify snow covered forested areas when NDSI is 

below 0.4 but NDVI is above 0.1. 

       However, challenges arise when applying remote sensing on snow cover mapping. 

One of the most important obstacles is the tradeoff between the temporal and spatial 

resolution of satellite imageries. On one hand, when the spatial resolution is high, 

images are often not available on a daily basis for all of the Earth. For example, the 

Landsat ETM+ has a 30m resolution but its temporal repeat is 16 days, which is 

inadequate for monitoring to changes in snow cover and calculating snowmelt runoff.. 

On the other hand, when the temporal resolution is acceptable, the spatial resolution is 

often a limitation in mapping the snow cover as pixel sizes become large often on the 

order of hundreds of meters or more. The precision of snow cover maps produced using 

these imageries may not be very reliable. Therefore, an idea of sub-pixel classification of 

low or moderate resolution images has been proposed.  

2.3. Fractional Snow Cover Mapping 

Fractional snow covered area (FSC) is the fraction of snow cover in a pixel of a 

remote sensing image. FSC values are ranging from 0 to 1 or 0 to 100% of a pixel. For 

NDVI =
RNIR −RVIS
RNIR +RVIS
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areas that have patchy snow, such as near the snow line and in wind-scoured areas, the 

fractional area is often preferred as it can be more accurate over the binary classification 

in estimating total snow cover area for an area (Nolin, 2010)  

      2.3.1. Fractional Snow Cover Mapping based on NDSI 

      Salomonson and Appel (2002) developed an algorithm that estimating the subpixel 

snow fraction from MODIS using a linear relationship between FSC and NDSI. They 

employed 30m Landsat imagery as “ground truth” data to calculate the fraction of snow 

within each 500m MODIS imagery. Then the relationship between NDSI and MODIS 

snow fraction was developed over three different snow covered regions, including a 

snow-covered region in Alaska, a relatively flat region in Canada and a taiga region in 

Russia. The regression relationship created by these three regions were then tested over 

other areas and the overall results indicates that this developed relationship between 

fractional snow cover and NDSI is reasonably robust when applying locally and over 

large areas. This method can provide a mean absolute error less than 0.1 over the range 

from 0 to 1 in fractional snow cover.  

      The MOD10A1 (Terra) and MYD10A1 (Aqua) fractional products utilize an 

empirical relationship between fractional snow cover and the NDSI as well (Salomonson 

and Appel, 2002). The models have the form that: 

MOD10A1 

, where (3) 	fSCA = −0.01+1.45NDSI NDSI =
R4 −R6
R4 +R6



MYD10A1 

, where  (4) 

The coefficients were determined by comparing MODIS scenes with Landsat ETM+ 

imagery using the method mentioned above. Although it is a well-constrained 

relationship between the NDSI and the fractional snow cover, the estimated fraction of 

snow can be erroneously low when applying on areas of forest canopy, as the approach 

measures only viewable snow cover. 

      2.3.2. Fractional Snow Cover Mapping based on Spectral Mixing 

      The other commonly used approach to compute the fraction of snow within pixel is 

spectral mixture analysis. The earliest study on mapping fractional snow-covered area 

utilized linear spectral mixture analysis method applied on hyperspectral imaging 

spectrometer data (Nolin et al., 1993; Nolin, 2010). Spectral mixture analysis requires 

that the sensor must be able to detect differences between different spectral reflectance 

characteristics of the various land-cover elements within a remote sensing imagery, such 

as snow, vegetation, soil and water. Each of these land-cover elements is also referred as 

endmember. The endmember is an ideal and pure spectral signature of each ground type 

(Schowengerdt, 1997). For spectral mixture analysis, the sensor should have at least as 

many channels as endmembers in the image, and the recorded reflectance information 

should have non-redundant spectral reflectance values of each land-cover type (Sabol et 

al., 1992). 

10 

fSCA = −0.64+1.91NDSI NDSI =
R4 −R7
R4 +R7



      The spectral mixture analysis assumes that the reflectance of a pixel, which 

containing multiple endmembers is a linear combination of the reflectance values of 

each surface component weighted by its fraction in that pixel (Jensen, 2005). 

 (5) 

Where  is the pixel reflectance in spectral band ,  is the fraction of the th 

endmember in the mixed pixel, is the number of endmembers,  is the reflectance of 

 in spectral band 

ρi = f j
j=1

n

∑ ρij +Ei

	ρi 	i 	f 	j

	n 	
ρij

j 	iendmember 	 , and 	Ei is the error of the fit of the leaner model to the 

data. 

      The performance of spectral unmixing depends on the availability of accurate and 

complete endmembers. Extensive studies of snow cover mapping have used this method 

(Painter et al., 1997; Painter et al., 2003; Painter et al., 2009; Simpson et al., 1998; 

Simpson et al., 2001). These studies differ in the methods used to collect endmembers 

and the endmembers selected to map the fractional snow cover by the different 

algorithms. 

      Painter et al. (1997) used mixture analysis to estimate sub-pixel snow-covered area 

and snow grain size from the AVIRIS data. They presented a technique that estimated 

snow-cover area and snow grain size simultaneously by optimization of mixture 

analysis with multiple snow endmembers. Mixture models with vegetation, rock and 

shade endmembers were applied with each snow endmember. The snow fraction for 

11 
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each pixel was then estimated by the model with least mixing error. Results in this study 

demonstrated that the technique is accurate at estimating sub-pixel snow covered area. 

Painter at al. (1997) tested this method on a 5 April 1994 AVIRIS scene of Mammoth 

Mountain, California. Their results indicated that the technique of multiple snow 

endmembers gives snow covered area results equivalent to those from high spatial 

resolution aerial photographs with a well modeled linear regression relationship (

; ). Painter el at. (2003, 2009)  

developed another model for retrieval sub-pixel snow covered area and grain size from 

imaging spectrometer data. This model is called MEMSCAG (multiple endmember 

snow covered area and grain size), which can map snow and its grain size 

simultaneously using spectral mixture analysis coupled with a radiative transfer model. 

Multiple-end-member choices are also allowed for rock and vegetation to accommodate 

spatial heterogeneity of these land-cover types within an image. There is a spectral 

library that stores the end-member spectral reflectance curves, which are used in the 

optimization scheme by the spectral mixture model. The spectral mixture selects the best 

fit for each and computing the varying fractions of each end-member for each pixel 

model by analyzing the multiple end-members. In addition to the estimated viewable 

fraction of snow-covered area, the model also reports the best-fit snow grain size, which 

is then used to estimate snow albedo. The MEMSCAG approach has been extended to 

MODIS with MODSCAG (Painter et al. 2009). Assessment of the MODSCAG snow-

cover mapping method claims a root-mean-square (RMS) error of 5%.  

		photographic =0.0242+0.962AVIRIS 		r2 =0.981



      Simpson et al. (1998) proposed a procedure to accurately separate snow and clouds 

from clear land in a terrestrial scene, identify mixed pixel class and assign percentage 

composition (snow, cloud, and land) for pixels in this class using a linear mixing 

model. This proposed method was applied on AVHRR (Advanced Very High 

Resolution Radiometer) data and the results showed accuracy about 97% when 

evaluating the classification skills based on a statistical comparison with SNOTEL 

observations. In the year 2001, Simpson and McIntire developed another method for 

retrievals of areal extent of snow cover. They used a feed-forward neural network 

(FFNN) to classify individual images and a recurrent neural network to classify 

sequences of images. Mixed-pixel classification was supported by the continuous 

outputs of the NN, which was also combined with a linear mixing model. Results 

applied on AVHRR data showed classification accuracy of 94% for feed-forward NN 

and 97% for recurrent NN respectively when validation with independent in-situ data.   

Dobreva et al. (2011) developed an algorithm for fractional snow cover mapping from 

MODIS reflectance using Artificial Neural Network (ANN). This machine learning 

method was developed and tested using MODIS and Landsat data on scenes obtained 

over North America, with comprehensive land cover types. A multilayer feed-forward 

ANN was trained in this study through back propagation to estimate FSC using 

MODIS surface reflectance, NDSI, NDVI and land cover as inputs.  The developed 

method presented a RMSE of 12% of training scenes, and 14% of independently test 

scenes, which are both comparable favorably with the standard MODIS FSC snow 

product of Salomonson and Appel (2004). 

13 



2.4. Polytopic Vector Analysis 

      Polytopic Vector Analysis (PVA) was first developed for mixture analysis in 

geological sciences. It is a multivariate technique based on a linear mixing model and 

has a long established use, but has rarely been applied in remote sensing. The name PVA 

follows directly from the terminology of Imbrie (1963) and Full et al. (1981, 1982). The 

eigenvector decomposition model was referred as factor analysis when it resolved in 

terms of orthogonal axes, and was referred as vector analysis when it resolved in terms 

of oblique vectors, according to Imbrie (1963). PVA utilizes oblique vectors to resolve 

source composition, thus the term vector analysis was used instead of factor analysis. 

The roots of PVA are in principal components analysis, pattern recognition, linear 

algebra, and mathematical geology. Its development in mathematical geology can be 

dated back to the early 1960s (Murphy et al., 2014). A series of software were then 

developed (Manson and Imbrie, 1964; Klovan and Imbrie, 1971). Klovan and Imbrie 

(1971) developed a FORTRAN-IV program for large-scale Q-mode factor analysis and 

factor scores calculation. The Q-mode factor analysis is a multivariate procedure for 

studying relationships among items. The program they designed was called CABFAC, 

Calgary and Brown Factor Analysis, and at the time could handle up to 1500 items on a 

moderate-sized computer. This was then quickly became the most commonly used 

multivariate analysis algorithm in geoscience (Murphy et al., 2014). William Full 

subsequently made crucial contribution to the PVA algorithm (Full et al., 1981, 1982). 

      Miesch built on Imbrie’s oblique vector rotation methods and developed the 

variable-by-variable goodness-of-fit criteria. Miesch (1976) demonstrated the 

14 



application of the extended Q-mode method, which was originally developed by Klovan 

and Imbrie (1971) to four problems in igneous petrology. Instead using the the Kolvan 

and Imbrie method, Miesch (1976)  modified the approach to include  a data 

transformation that transformed the original data into constant row-sum data. This 

assures that the composition scores (end-member compositions) are unity for each 

sample and the composition loadings (mixing or unmixing proportions) sum to unity for 

each sample. Miesch also demonstrated that the resultant model was in reasonable 

accord with geologic observations. Full et al. (1981, 1982) developed the DENEG 

approach to PVA, which stands for DElete NEGatives, to allow endmembers to be 

resolved without a priori knowledge of their composition and without need fora training 

data set. They introduced a modification of the Q-Mode unmixing algorithm (Klovan 

and Miesch, 1976) wherein an iterative procedure was developed to locate feasible end 

members not captured within a dataset. The algorithm that locates the endmembers was 

called the DENEG procedure. It does so by making an “edge-adjustment” of the mixing 

polytope based on negative mixing proportions, followed by a “vertex adjustment” based 

on negative composition scores. 

      2.4.1. Advantages of Polytopic Vector Analysis 

      PVA has some advantages over the standard linear unmixing method when applied 

to determining fractional snow cover. First, the standard linear spectral unmixing 

determines the snow cover percentages of individual endmembers may be physically 

unrealistic (e.g. endmember fractions that are negative or exceed 1 or 100%) while the 

PVA calculated fractions of the individual endmembers are constrained to sum to unity. 
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According to Miesch (1976), the Q-mode factor analysis is more easily to be interpreted 

because that the endmember composition loadings sum to unity.  

      Second, PVA can be used to directly determine the endmembers in a more objective 

way than the linear spectral unmixing in that it can determine the endmembers during 

the computing process automatically while the latter method typically selects the 

endmembers beforehand by user input. Full et al. (1982) demonstrated that the 

QMODEL method could determine the endmember without a priori knowledge.  

      2.4.2. Polytopic Vector Analysis in Remote Sensing Study 

      As described above, PVA was a method developed in geological science. 

Although PVA has been used extensively in multivariate mixture analysis in the earth 

and environmental science, it is a relative new tool in remote sensing application (Nash 

et al., 2002). It has been used in a vegetation study for analysis of Dixie Valley AVIRIS 

data within a small subset of study area (Johnson et al., 1998). This paper presents am 

initial result of spectral unmixing experiments, which was taken in the place of Dixie 

Valley, Nevada. PVA was used in this study to resolve parameters including the 

number of endmembers contributing to the mixture, the spectral composition of each 

endmember, and the relative proportion of each endmember in each sample.  

      The study of Johnson et al. (1998) was the first application of PVA to hyperspectral 

data, and it shows a potential to apply PVA onto remote sensing study. However, while 

it has been occasionally used in remote sensing afterwards, it has not been applied to 

snow remote sensingstudy before. From Johnson’s study, it can be seen that the 
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PVA is capable of differentiating endmembers from remote sensing spectral data and 

thus it is possible to be applied on unmixing snow cover extent from other ground 

features. Therefore, as a potential tool in remote sensing, PVA needs more exploration 

of its applicability of remote sensing, and also in studies of fractional snow cover. 



3. METHODOLOGY

3.1. Polytopic Vector Analysis (PVA) 

      As described in the previous section, Polytopic Vector Analysis (PVA) is one 

unmixing approaches that was originally developed for analysis of mixtures in the 

geological sciences. It aims to analyze the source compositions and their corresponding 

proportions in a mixture. The situation of a pixel in remote sensing image is akin to that 

of a mixture. For moderate resolution remote sensing data such as from MODIS, a pixel 

typically contains more than a single type of ground features. However, it is hard to 

determine the specific kind and corresponding percentage of each land cover on a sub-

pixel level. Since PVA is designated to solve a similar problem, it is possible to apply 

the technique on analyzing the mixed pixel problem in remote sensing data and 

determine the proportion of the snow cover within each pixel. 

The general principle of PVA is to apply a set of mathematic procedures on the 

mixture dataset to determine: (1) the composition of the end-members and (2) the 

relative proportions of each end-member in each pixel. The first task of PVA is to reduce 

the dimensionality of the dataset to extract the data which has the most useful 

information and make the computation easier than working on the whole dataset. Then 

endmembers are searched in the reduced dimension space by an iterative process. When 

the endmembers are determined, the proportions can also be determined. The detailed 

steps of PVA are detailed below: 
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      3.1.1. Data Transformation 

      The equal vector length transform is often used in multivariate analysis of chemical 

data. It can force each of the sample vectors to have equal Euclidean length. 

Considering MODIS spectral reflectance data, this transformation can ensure the 

resultant proportion of each endmember within a pixel sums to unity. If all vectors have 

equal length, the differences between samples can be a function only of the angles 

between samples. The similarity and differences between samples can be expressed as a 

similarity matrix of cosines. The cosine between two identical samples is 1.0 while that 

between two completely different samples is 0.0. The procedure to conduct equal vector 

length transformation is documented in equations 6 – 8. 

 (6) 

 (7) 

(8) 

!!x 'ij = (xij − xmin )/(xmax j − xmin j )

!!

yi =
1

( x 'ij2)1/2
j=1

n

∑

!!X "=YX '

      Equation 6 is a range transform for the input data, also known as minimum 

/maximum transform. In equation 6, 	x is the input MODIS spectral reflectance data, a 		

pixel *band matrix,  i is the number of row, and  j is the number of column. The Range 

transform results in matrix where the maximum value in a column to be 1.0 and the 

minimum to be 0.0. In remote sensing images, the reflectance values of pixels can be of 

great variability from one to another, especially from between different columns in this 

19 
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case. The range transformation eliminates this large difference among reflectance values 

of different MODIS bands, but still captures the variability within each band. The 

advantages of range transform are that: (1) there is no implication of a standard normal 

distribution; and (2) all the values are nonnegative as they fall in range 0.0 – 1.0. 

Equation 7 and 8 are the steps of equal vector length transformation. is the 

range transform matrix.  is a matrix whose diagonal elements  are defined by 

equation 7,  equal to the inverse of the square root of the sum-of-square along rows of 

, and off-diagonal elements are zero. For MODIS imagery in this study, each pixel 

has seven reflectance values for each pixel, which is also termed a vector in this study. 

When performing the equal vector length transformation, the difference among samples 

can be represented by the 	cosθ value between one sample and another. 

      3.1.2. Eigenvector Decomposition 

      Eigenvector decomposition is a mathematical procedure for reducing 

dimensionality of a data set. It is also the core mathematical operation in principle 

component analysis (PCA), which is most often accomplished by singular value 

decomposition (SVD) of the transformed matrix . Given a transformed matrix 

composed of  rows and  columns, PCA can be completed through SVD of : 

  (9) 

Where  is the eigenvector matrix ( ) obtaining from a decomposition of 

,  is the eigenvector matrix ( ) resulting from a decomposition of 

		X '

	Y 	yi

	yi

		X '

X '' 	X ''

	m 	n 		X ''

	X ''=UΛ1/2V '

	U 	m×k

		[X ''][X '']
t 	V 	n×k
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, and  is the diagonal matrix of eigenvalues. is a diagonal matrix of the 

square root of the eigenvalues, which is referred as matrix . For PCA, equation 9 is 

always expressed as the terms of principle components scores and loadings: 

 (10) 

  (11) 

Where  is termed as the loadings and is the scores.  In terms of fractional snow 

cover mapping,  is the fraction matrix for different land cover types, and  is the 

source composition matrix, which is the reflectance of different land cover at each 

MODIS band. A model resulted from reduced number of principle components can be 

represented as follow: 

 (12) 

Where is the error or residual term. Given an error-free, noise-free matrix with , 

resulting from  sources, only eigenvectors and eigenvalues will be extracted. In 

our experience, if , the first eigenvector will account for a high percentage of the 

total variance of a an image. The second eigenvector is constrained to be mutually 

orthogonal to the first, and the third eigenvector is mutually orthogonal to the first two. 

The data set may be equivalently in this three-dimensional reference space without loss 

of information. In this study, the choice of number m  is made by calculation of the 

cumulative percentage variance. The reduced dimensional model should be able to 

		[X '']
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explain a large portion of information in the original dataset. So here 95% is used as the 

cutoff in determining the number of eigenvectors retained. 

      The process called polytope resolution is then conducted following the determination 

. Because , can be determined by matrix regression equation as 

follows: 

 (13) 

 

matrices  and in terms of their scientific context. The transformation is helpful for 

matrices calculation while the original measurement metric is more suitable for 

evaluation and interpretation. Miesch (1976a) proposed a method that can translate the 

equation  back to , where double prime, as , indicates that a 

matrix has been equal length transformed. The mathematics is discussed as follows. The 

first step of back-calculation, as Miesch described, is definition of scale factor: . 

of number 	k . The first 	k columns of 		A'' was selected to form the reduced matrix 		A'' of size 

	m×k 	X ''
∧

= A''F '' 		F ''

		F ''= (A''
T A'')−1A''T X ''

	A''Matrix 		A'' may be irreversible so this equation is required to compute 		F '' . Matrices 

and 		F '' can then be transformed back to the original metric using the scaling 

functions described below in section 3.1.3. 

      3.1.3. Scaling Functions: Back- Calculation to Original Matric 

      The transformations used in section 3.1.1 allow for the optimization of the 

eigenvector decomposition, but it make it difficult for interpretation or evaluation of 

		A'' 		F ''

	X ''
∧

= A''F '' 	X
∧

= AF 		X ''

	sk
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Given  retained eigenvectors, a  row vector of scale factors  is defined 

as: 

(14) 

 is a constant that usually equals to100, the sum of each row. is the element of 

scores matrix.  is the maximum value in the th column of the original data matrix 

, and 		xmin j  is the minimum value in the th column of the original data matrix . 

The elements in loadings matrices  and  are calculated as: 

(15) 

  (16) 

The elements of the back-calculated loadings matrices  and   are calculated as: 

(17) 

 (18) 

Where  is the column vector of the m row-sums of . 
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3.1.4. Selection of Initial Polytope 

The extended method of Full et.al. (1981) is employed to establish the initial 

polytope. The  most mutually extreme samples in the dataset are selected as vertices 

(the EXRAWC subroutine, Klovan and Miesch, 1976). For each of the first factors of 

, EXRAWC selects the  samples with maximum loadings to form a good candidate 

set. The loading matrix  is first varimax rotated, and then loadings with the maximum 

absolute value in each row of  are identified. The rows corresponding to the 

maximum loadings are then put into a new  matrix . Duplication is not allowed, 

which means there are no two identical rows in . These samples that make up 

matrix  are the most mutually extreme samples. The PVA algorithm uses the 

vectors as oblique reference axes for all samples. The resultant oblique loading matrix 

 and score matrix  are calculated as follows: 

  (19) 

(20) 

Matrices  and  are then scaled back to measurement space using the scaling 

functions described last section to yield  and . 

Matrix  is then inspected to determine if the  samples in  are indeed the 

most mutually extreme. If the maximum loading values in equals 1 and correspond to 
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the samples taken from matrix , then this  is accepted as the final . If the 

maximum loading values in  are greater than 1, then the  corresponding sample in  

is then taken to substitute that one was placed in  before. If there is no matrix  that 

can make the maximum loading values in  less than or equal to 1, the initial  is 

taken to do the following calculations. 

3.1.5. DElete NEGatives (DENEG) 

After determination of the initial polytope, the next step is to adjust the polytope 

so that both the fractions and the endmembers fall in a realistic value range. The 

DENEG subroutine first scans loading matrix  and score matrix  for adjustable 

negative values. There are three user-defined numerical criteria to distinguish between 

adjustable and nonadjustable negative values. First, the cutoff criterion for mixing 

proportions, . Typically the default is -0.05, which means that a -5% mixing 

proportion in any sample is allowed. The second criterion  is -0.25, referred as the 

DENEG value. The adjustable negative values of mixing proportions should be fall in 

the range between  and . The effect of  is to prevent the algorithm iterating in an 

attempt to fit outlier into the model. Finally, the third criterion  is the endmember 

composition cutoff criterion for the score matrix . The value of is -0.05, and its 

purpose is to allow some noise in the model. If there are no adjustable negative values 

		O0 		O0 		O0

		A0 	A''

		O0 		O0

		A0 		O0

		A0 		F0

		t1 		t1

		t2

		t1 		t2 		t2
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both in  and , the DENEG subroutine stops.  and  are taken as the mixing 

proportion matrix and endmember composition matrix separately. 

If there is adjustable negatives in  and , the DENEG procedure starts. 

DENEG is a process that alternates between solving  according by a nonnegative 

and solving  according by a nonnegative . This procedure iterates until both the 

mixing proportions and the endmember compositions have no adjustable negative 

values, or the algorithm meets the maximum iteration number set by the user.  

Geometrically, the DENEG approach is a procedure of alternate polytope 

expansion and rotation. It begins by constructing an initial polytope in principle 

component space. As it mentioned above, the initial polytope is defined by selecting the 

most mutually extreme samples in the dataset as the initial vertices. If pure endmembers 

occur in the dataset, then DENEG’s nonnegative criteria will be met on the first 

iteration. Otherwise, if there are negative adjustable values in the loading matrix , the 

DENEG subroutine will begin a series of iterations to adjust  and  until neither 

matrix contains negative values. 

DENEG first defines a  row vector , in which elements  ( ) 

are the absolute value of lowest adjustable values in columns  of matrix .  A 

scalar  is then defined as: 

 (21) 

		A0 		F0 		A0 		F0

		A0 		F0
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Matrix  can be then calculated as: 

  (22) 

The resultant matrix  is the endmember mixing proportions matrix without adjustable 

negative values. Geometrically, the effect of equation 22 is to move the edge of the 

polytope out in an edge parallel direction, and stop at the outermost sample from that 

edge. The corresponding loading matrix  can be then calculated by matrix regression 

as: 

  (23) 

Matrix  represents the endmember compositions matrix. DENEG then scans  for 

adjustable negative values using the criterion . If there are no elements in  less than 

, DENEG stops iterating.  is taken as the final mixing fractions and 
 
is taken as 

the final source compositions. However, if there are adjustable negatives in , the 

algorithm continues to conduct the polytope rotation. 

If there are adjustable negative values in , the algorithm substitutes all the 

negatives with zeros. A new matrix  is then defined by renormalizing each row in 

nonnegative 
 
to be sum to 100%. Then the previous described transformation is used 

to transfer 
 
into . can be determined by matrix regression, and a new 
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oblique matrix  can be extracted from using the method mentioned in section 3.1.4. 

Oblique scores and loadings matrices are then calculated as: 

  (24) 

  (25) 

Matrix is then scaled back to  in the measurement space using the scaling 

function introduced in section 3.1.3. Matrix  is then inspected for adjustable negative 

values. If no adjustable negative values are encountered in , DENEG stops iteration. 

 can be accepted as the final fraction matrix and as the final endmember 

composition matrix. However, if there is adjustable negative value in , the program 

continue iterates. The algorithm redefines  and  as  and , and DENEG iterates 

from the beginning. A maximum iteration number is set in case of the iterations do not 

converge. Iterations will continue until there are no adjustable values in both matrices or 

the maximum iteration number is achieved. 

3.2. PVA Applied on MODIS Reflectance 

Dobreva et al. (2011) developed a method to map the snow fractions using Artificial 

Neural Network (ANN). This newly developed machine-learning model was trained, 

tested and validated using both Landsat and MODIS data. The data used in Dobreva et 

al. (2001) was also utilized in this study to develop the proposed PVA algorithm, and to 

		O2
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ensure the comparability when evaluating the its performance on fractional snow cover 

mapping with ANN and MODIS snow products. 

3.2.1. MODIS Preprocessing 

MODIS is a global environmental monitoring instrument aboard NASA’s Terra 

and Aqua satellites. MODIS acquires images from every location on Earth once every 1 

or 2 days in 36 discrete spectral bands (Barnes et al., 1998). A variety of standard 

products of MODIS data have been developed and are distributed free of charge. 

MOD09 is the MODIS surface reflectance product that computed from the MODIS 

Level 1B land bands 1 – 7 (modis.gsfc.nasa.gov). The seven estimated land surface 

reflectance bands at 500 m spatial resolution were used in the study and it can be 

downloaded at the Land Processes Distributed Active Archive Center: 

https://lpdaac.usgs.gov. Table 1 shows the 7 input bands to the PVA algorithm. 

The datasets in the MOD09 product are provided in the MODIS sinusoidal 

projection. In this study, it was re-projected to a UTM projection with a WGS84 datum 

to match the reference snow maps.  
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Table 1. Input MODIS bands to PVA 
Input MODIS Bands Description 

MOD09 Band 1 Reflectance in the red portion of the electromagnetic spectrum (620-670 
nm) 

MOD09 Band 2 Reflectance in the near infrared portion of the electromagnetic spectrum 
(841-876 nm) 

MOD09 Band 3 Reflectance in the blue portion of the electromagnetic spectrum (459-479 
nm) 

MOD09 Band 4 Reflectance in the green portion of the electromagnetic spectrum (545-565 
nm) 

MOD09 Band 5 Reflectance in the shortwave infrared portion of the electromagnetic 
spectrum (1230-1250 nm) 

MOD09 Band 6 Reflectance in the shortwave infrared portion of the electromagnetic 
spectrum (1628-1652 nm) 

MOD09 Band 7 Reflectance in the shortwave infrared portion of the electromagnetic 
spectrum (2105-2155 nm) 

 

3.2.2. Landsat Processing 

Landsat ETM+ scenes were used for selecting random sample points as reference 

fractional snow cover. The images was obtained free of charge from the United States 

Geological Survey (USGS) Earth Resources and Observation and Science (EROS) data 

center. The Landsat images were classified into eight classes by combining the 

seventeen IGBP classes (Figure 2). Each of the Landsat ETM+ images was used as input 

to a snow cover mapping algorithm (Hall et al., 1995). This method identifies each pixel 

is snow or not and it was used for creating the MOD 10 product. The 30-m resolution 

binary snow maps were than used to calculate the corresponding fractions for each 

MODIS pixel, which was then used as a reference snow cover fraction in the following 

study. 
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Table 2. Land-cover classes used in this research 
IGBP Land-cover Classes Reclassified for Sampling 

Evergreen needleleaf forest Evergreen forests 

Evergreen broadleaf forest 

Deciduous needleleaf forest Deciduous forests 

Deciduous broadleaf forest 

Mixed forests Mixed forests 

Croplands Mixed agriculture 

Urban and built-up 

Cropland/natural vegetation mosaic 

Barren/sparsely vegetated Barren/sparsely vegetated 

Woody savannas Savannas 

Savannas 

Closed shrublands Grasslands/shrublands 

Open shrublands 

Grasslands 

Permanent wetlands Wetlands 

Permanent snow and ice N/A 

Water N/A 
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4. RESULTS 

 

The Python PVA code was first tested against existing PVA code using known 

mixtures of Polychlorinated Biphenyls (PCBs) from Murphy and Morrison (2007) to 

ensure its correct operation. Then the PVA code was applied on MODIS spectral 

reflectance. In this analysis 25,467 random points from eight scenes with a wide range of 

snow fractions (0 - 1) and over different land cover types were selected to evaluate the 

performance of PVA. This observations are the same that were used in the Dobreva and 

Klein (2011) study. The snow fractions, calculated from corresponding Landsat imagery, 

were used as references to examine the precision of PVA computed FSC. 

4.1. PVA Code Accuracy Applied on PCB Data 

The Python PVA code was developed and tested against the existing code applied on 

known mixtures of PCBs. The results were presented in Figures 1 and 2. Figure 1 shows 

the estimated fractions both from Python PVA (red) and existing code (green). The 

overall difference between Python developed PVA code and existing code is 

, which indicates that the developed Python code yield a quite similar estimate of 

fractions for the PCB data, compared to the existing code. Figures 2(a) through 2(c) 

illustrate the source compositions derived from the developed Python PVA code (red) 

and the existing code (green), respectively. Endmember 2 shows an exactly same pattern 

of source composition from developed Python code with the existing one, while the 

endmember 1 and 3 reveal a nearly same pattern between existing code and this 

implementation providing confidence of the success of our Python version of PVA 

	1.29×10−4
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Figure 1. Comparison between fractions estimated from Python PVA code and the 
existing code 
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(a). Endmember 1 

 

(b). Endmember 2 

 

(c). Endmember 3 

Figure 2. Endmembers derived from PCB data 
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4.2. Fractional Snow Cover Mapping  

After testing the Python developed PVA codes’ correctness using PCBs data, the 

Python codes were then applied on MODIS reflectances, as described in section 3.6. The 

MODIS, and corresponding Landsat images were collected from North America and are 

illustrated in Figure 3. 

 

Figure 3. Scenes collected in this study. The basemap illustrates landcover classes 
for the scenes used in the study (Dobreva and Klein, 2011) 

 

The Landsat data and corresponding MODIS data collected for this study is 

showed in Table 1 (produced by Dobreva). Nine Landsat scenes, and corresponding 
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MODIS scenes from the year 2000 to the year 2003 were selected with the geographical 

locations as Figure 3 presents.  

Table 3. MODIS/Landsat scenes collected (Dobreva and Klein, 2011) 
Scene  Path Row UTM Year Day_Number MODIS_h_v 

1 24 23 16 2000 115 1203 
2 24 28 16 2002 344 1104 
3 26 29 15 2002 38 1104 
4 26 30 15 2002 38 1104 
5 38 22 13 2003 77 1103 
6 39 22 13 2002 305 1103 
7 39 24 12 2002 305 1103 
8 65 17 7 2001 132 1102 
9 73 11 6 2002 143 1202 

 
The utility of applying PVA to map fractional snow cover was investigated in the 

most generalized way possible. All MODIS/Landsat pairs from the Dobreva and Klein 

(2011) study from were analyzed simultaneously to determine endmember composition 

and fraction with the exception of Landsat scene 5, which was deemed problematic. 

Thus, this study should be viewed as perhaps the most difficult test of PVA applied to 

snow cover mapping. It would be expected that refining PVA to operate in on smaller 

geographic regions or tailored to individual land cover types would result in improved 

mapping. However, this research examines PVA as a parsimonious global snow 

mapping approach requiring no prior training. 

As described in section 3.1.2, 95% was used as a threshold to select the 

appropriate number of eigenvalues to retain while employing PCA to reduce the overall 

dimensionality of the dataset. Figure 4 shows the cumulative percentage variance along 

principle components. The first three components explain 95.7049% of the overall 

variance of the dataset which. Therefore these three components were retained to in 

performing the PVA 
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Figure 4. Cumulative percentage variance along principle components 
 

The PVA derived endmembers for all samples from North America is illustrated 

in Figure 5. Through comparing the reflectance pattern over wavelength with the 

standard reflectance pattern of different land cover, the land cover type of each 

endmember can be inferred. Endmember one is snow, while endmember two is 

vegetation while endmember three appears to represent perhaps bare soil.  

The fractions of endmember one were taken to represent the fraction of snow in each 

pixel. These were then was compared with the reference FSC calculated from Landsat 

(Figure 5) to determine overall snow mapping accuracy. The 		R2  is 0.6294, indicates a 

reasonable good agreement between the MODIS FSC and Landsat reference. To better 

illustrate the comparison, the mean MODIS FSC was computed for five percent snow 

fraction bins and the mean and one standard deviation was plotted. Snow fractions were 

binned in intervals of five percent and plotted in Figure 6. It can be seen from the figure 

that PVA over-estimated the FSC for the pixels with low FSC value, while it under-
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estimated the pixels with high FSC value. The maps showed from Figure 6(a) to Figure 

6(c) show the spatial variability of PVA-derived FSC, Landsat FSC and the difference 

between them, for one of the eight selected Landsat scenes (path 24/row 23), mixed 

agriculture, barren/sparsely vegetated, and savannas. 

  

Figure 5. PVA derived source composition from MODIS reflectance 
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Figure 6. Scatter plot of test 8 scenes 
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Figure 7. Error bar of PVA derived FSC vs. reference FSC 
 

The Root Mean Square Error (RMSE) was also calculated to examine the mapping 

accuracy of PVA. RMSE was computed as 

		
RMSE = 1

1−n * (x '− x)2
i=1

n

∑    (26) 

where 	n  is the number of samples, 		x '  is the estimated FSC from PVA and 	x is the 

reference FSC from Landsat. The RMSE for the eight Landsat scenes is 0.1286.  
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(a). Snow map derived from PVA Landsat scene path 24/row 23 on 4/24/2000 

Figure 8. Snow maps for Landsat scene path 24/row 23 on 4/24/2000 
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 (b). Snow map derived from Landsat image for Landsat scene path 24/row 23 on 

4/24/2000 

Figure 8. Continued 
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 (c). Difference between snow fractions estimated from PVA and Landsat for Landsat 

scene path 24/row 23 on 4/24/2000 

Figure 8. Continued 

 

4.3. Mapping Accuracy by Land Cover 

The mapping accuracy of PVA was also examined by land cover. Both 		R2  and 

RMSE were calculated to evaluate the PVA performance on different land cover type. 

Figure 7 illustrates the scatter plots of PVA estimated FSC versus the reference Landsat 

FSC over different land covers. Table 3 lists the 		R2  and RMSE value for each land 

cover category. The barren/sparsely vegetated class has the largest 		R2  of 0.75, but has a 
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relatively small RMSE of 0.08. The wetland class has the smallest RMSE of 0.05 but a 

relatively small 		R2  of 0.54 indicates a poor fit. 

 

(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 9. Scatter plot by land-cover: (a). Evergreen forests, (b). Deciduous forests, 
(c). Mixed agriculture, (d). Mixed forests, (e). Barren/sparsely vegetated, (f). 

Savannas, (g). Grasslands/shrublands, (h). Wetlands 
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(e)                                                                   (f) 

 

(g)                                                                   (h) 

Figure 9. Continued 
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5. DISCUSSION

5.1. Overall Performance of PVA 

Given that this research took the most parsimonious approach by developing a single 

PVA model for all the MODIS observations acquired from across North America used in 

Dobreva and Klein (2011), the overall performance of PVA was considered to be good. 

PVA successfully identified three major endmembers and was able to estimate the snow 

fraction in each pixel based on a single identified snow endmember from the reflectance 

of seven MODIS bands as inputs.  

Agreement between the PVA derived FSC and the reference Landsat FSC with 		R2  

of 0.6294 and RMSE of 0.1286 is illustrated in Figure 4. This is an acceptable result 

given that all the heterogeneity in the North American landscape was modelled by three 

oblique endmembers. In addition, the PVA method has never been applied in the field of 

snow mapping before. 

As can be seen in Figures 4 -7, there is a strong non-linearity in the relationship 

between the MODIS PVA estimated and the Landsat reference FSC f.  PVA tends to 

estimate FSC for pixels with low snow fractions and underestimates FSC for pixels with 

high snow fractions. As it can been seen from the scatter plot and error bar plot (Figure 4 

and 5), snow fractions less than 0.6 tend to be overestimated and the standard deviation 

is larger in this range, while the snow fractions larger then 0.6 tend to be underestimated 

but have a smaller deviation in the estimated snow cover fractions.. It appears for most 

landcovers (Figure 7) the PVA estimated FSC increases linearly compared to the 
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Landsat reference, though not necessarily along the 1:1 line at lower snow fractions 

while the PVA estimates tend to level off at approximately 80% while Landsat reference 

snow cover fractions continue to increase. This behavior can also be seen in the Dobreva 

and Klein (2011) artificial neural network (ANN) estimates of snow cover fractions from 

MODIS.  

The computed source composition shown in Figure 3 illustrates that the PVA method 

can decompose the general endmember pattern for samples collected across all of North 

America fairly reasonably, even when limiting the analysis to three eigenvalues It can be 

seen from Figure 3 that the pattern of endmember 1 is similar as snow, as it dramatically 

decreases at the near infrared region of the electromagnetic spectrum, and endmember 2 

is vegetation, as its reflectance increases dramatically in the near infrared spectrum. 

However, the reflectance s differ between from the standard spectral reflectance for the 

snow. The standard reflectance of snow can be up to 100% at the visible portion region 

of the electromagnetic spectrum while the PVA computed values appear to have 

maximum reflectances in the visible of  only 30%. The reason for this is related to the 

data transformation process. The original mixed spectral data was transformed to 

constant row-sum data, but is no effective way to transfer the constant row-sum data 

back to the original scalar. 

5.2. Comparison to the Standard MODIS Snow-Cover Product 

The PVA derived FSC was also compared with the MOD10 product (Riggs et al, 

2006). The MOD10A1 product provides both the fractional snow cover and binary snow 

cover products. Dobreva and Klein (2011) conducted experiments on Artificial Neural 
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Network (ANN) for fractional snow cover mapping and evaluated its performance by 

comparison with MOD10 snow product. The results are shown in Tables 4 and 5. 

Although the number of samples differs between this study and the Dobreva and Klein 

(2011) study as the ANN required considerable number of samples for training the study 

areas and Landsat scenes used are the same. The		R2 of MOD10 FSC is 0.87, and the 		R2

of MOD10 binary is 0.53, while the 		R2  of PVA is 0.63. The performance of PVA is 

comparable with both the MOD10 FSC and binary product based on the correlation 

between the estimated and reference snow fractions. However, the performance of 

MOD10 FSC is a better than PVA, while PVA performs better than MOD10 binary 

product. In terms of RMSE, MOD10 FSC has a 0.13 RMSE, and MOD10 binary has 

0.33, while PVA has 0.13, identical to MOD10 FSC. It appears that the PVA method can 

achieve similar FSC accuracy as measured by RMSE when compared to the reference 

Landsat snow maps and did not require development of an empirical linear relationship 

between FSC and NDSI 

Table 4 shows the work done by Dobreva and Klein (2011), they compared the 

performance of ANN with MOD10 FSC and MOD binary product per land cover as 

well. Based on their work, the PVA accuracy by land cover was also examined. By 

comparing Table 3 to Table 4, it can be seen that the magnitude of RMSE from PVA is 

comparable to that of MOD10 FSC, while the RMSE from MOD10 binary is much 

different. The comparable RMSE between PVA and MOD10 FSC demonstrates the 

similar measurement accuracy between both methods. For the 		R2 , MOD10 FSC has the 

largest 		R2  of all the land cover type, while PVA has the second largest value over 
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MOD10 Binary, except for the barren/sparsely vegetated and grasslands/shrublands land 

covers. This result reveals that the MOD10 FSC has the best agreement with reference, 

following the PVA, which is identical with the overall accuracy evaluation. For each 

different land cover, all of the three products have the smallest 		R2  in the class of 

evergreen forests and the largest 		R2  in the class of barren/sparsely vegetated. The 

similar trend in 		R2  of these three methods to some extent demonstrates the difficulty in 

unmixing snow from evergreen forest. 

5.3. Comparison to ANN   

The FSC derived from PVA was also compared with that computed from ANN 

(Dovreva and Klein, 2011) to evaluate the performance of PVA. In this research, ANN 

was operated twice using land cover as different inputs for each time. When land cover 

was input as a single categorical variable, the 		R2 is 0.90 and RMSE is 0.12. When land 

cover was input as 16 binary variables, the 		R2 is 0.89 and RMSE is 0.13. Only slightly 

difference was existed between these two methods. Comparing with PVA’s 		R2  of 0.63 

and RMSE of 0.13, ANN presents a better agreement with the reference Landsat data. 

However, PVA has a nearly same RMSE with ANN, which shows the similar measure 

accuracy with ANN. The advantage of PVA is that it performance required no extensive 

training dataset as was required by the ANN approach. 

Table 4 presents the 		R2  and RMSE of ANN applied on different land covers 

(Dobreva and Klein, 2011). Two methods as illustrated before were used to run ANN. 

Similar as the overall accuracy; the accuracy difference per land cover between these 

two methods was found to be small. ANN has the largest 		R2  in the class of 
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grasslands/shrublands while PVA has its largest value in barren/sparsely vegetated, 

while they both have smallest 		R2  in the class of evergreen forests, which indicates the 

difficulties in  accurately mapping fractional snow cover in forests. The 		R2  of ANN in 

each land cover is larger than that of PVA, which shows a better performance of 

estimation of snow fraction, but PVA shows a similar RMSE with ANN, which 

demonstrated a comparable measure accuracy. 

Although PVA has lower 		R2 than both the MOD10 FSC product and ANN when 

comparing with the reference Landsat data, the comparable RMSE demonstrated the 

ability and potential in application of PVA in fractional snow mapping. Unlike ANN, the 

PVA was not trained in any way. In this study, only three endmembers were retained 

after conducting the dimensionality deduction. Comparing the inputs used in ANN, 

including 7 MODIS bands, NDVI, NDSI and land cover types, PVA has a much smaller 

input dataset but achieved the comparable results. This high generalization of PVA may 

be the reason why its agreement with reference is not as good as the other methods, but 

the comparable 		R2  and RMSE demonstrated its potential in application in fractional 

snow cover mapping. 

5.4. Mapping Accuracy by Land Cover 

The accuracy of PVA derived snow fractions were also examined by land cover. The 

FSC estimated from these eight land cover types, including evergreen forests, deciduous 

forests, mixed agriculture, mixed forests, barren/sparsely vegetated, savannas, 

grasslands/shrublands and wetlands were compared with the reference Landsat FSC 
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separately. 		R2  and RMSE were calculated to evaluate the performance of PVA over 

different land covers.  

As Table 4 presents, evergreen forests have the lowest 		R2  of 0.5 and the largest 

RMSE of 0.15, following by the wetlands with 		R2  of 0.54 and RMSE of 0.05. The 

reason that the wetlands have the smallest RMSE may because there are many fewer 

observations in this class type than in the others. The evergreen forests with lowest 		R2  

and largest RMSE indicating the performance of PVA applied on to evergreen forests is 

not as good as on the others. However, it is accordant with the results from some other 

snow mapping research (Klein et al., 1998). It is because the forests create complicated 

shading on the forest floor and can obscure snow-covered ground from the sensor 

especially at high sensor zenith angles. Therefore, the reflectance MODIS collected from 

that specific area may not detect all the snow present on the ground. On the other hand, 

the barren/sparsely vegetated land cover has the highest 		R2  of 0.75 and a relatively 

small RMSE of 0.08, which indicates a quite good performance of PVA on for areas 

with sparse vegetation. 

 In summary, PVA estimated the snow fractions successfully given the high level 

of simplification on the input data set. In this study, the PVA retained only three 

principal components while the input data set has seven dimensionalities, which 

generalized all the land cover types over North America into three categories. However, 

as the above sections described, both the overall mapping accuracy and the accuracy by 

land cover showed a consistent trend between PVA and ANN, as well as MOD10 

product when estimating the fractional snow cover. Spatially (Figure 8), PVA can 
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capture the pattern of distribution of snow fractions although not as much as variability 

as the reference, which is also evidenced by the low 		R2 . This low 		R2  couldn’t 

demonstrated that the PVA has a poor performance on estimating snow fractions, since it 

utilized only limited information from the input data set, yet it presented the consistency 

both statistically and spatially with other methods (ANN and MOD10) that use more 

information than PVA does, in estimating the snow fractions.  Therefore, PVA did 

achieve its success in deriving snow fractions with simplification of input data. 
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6. CONCLUSIONS AND FUTURE DIRECTIONS 

 

In this study, a Polytopic Vector Analysis (PVA) algorithm was first 

implemented in Python and tested against the existing code by using the known PCBs 

data. The developed Python code showed a good performance on the PCBs data and the 

correctness of the PVA algorithm was approved. Then the PVA algorithm was applied 

on the MODIS reflectance to unmix the source composition and fraction of snow 

covered pixels from North America. Seven MODIS bands were used as input and the 

output snow fractions were compared with the Landsat reference snow fractions, both 

over the whole testing data and over the different land covers separately. 

The PVA algorithm showed a good performance on snow fractions mapping and 

a potential to be applied on other types of land cover mapping. It shows a good 

agreement of the estimated snow fractions comparing with the reference derived from 

Landsat imagery. Although its accuracy is not as good as other fractional snow cover 

mapping method, such as ANN, the PVA still showed the potential to be applied not 

only on snow mapping, but also other land cover mapping. It can decompose a pixel into 

different land cover, and the lancover type can be determined by comparing the 

computed source composition reflectance pattern with the standard land cover 

reflectance.  

This is the first study to apply the PVA method to mapping snow-covered 

fractional snow mapping study. It illustrates the feasibility of PVA algorithm in dealing 

with mixing reflectance of satellite imagery. Future efforts will be put into the aspects 
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that include: 1) improving the PVA algorithm by adjusting the procedure for MODIS 

reflectance analysis, and by developing a larger dataset; 2�developing a more 

sophisticated algorithm in addition to PVA algorithm, for example, including the NDSI 

or NDVI indices as input to the PVA procedure. 3) applying the PVA algorithm on 

specific land cover types, and 4) evaluating its performance by comparing the results to 

other fractional snow cover mapping approaches. 
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APPENDIX 

Terminology and Abbreviations: 

Artificial Neural Network (ANN): A machine learning method used by Dobreva and 

Klein (2011) for fractional snow cover mapping. 

Fractional Snow Cover (FSC): The fraction of snow cover within one pixel of remote 

sensing imagery.  

Normalized Difference Snow Index (NDSI): An index calculated between the visible 

reflectance and shortwave infrared reflectance to detect the presence of snow. 

Normalized Difference Vegetation Index (NDVI): An index that normalizes between 

the near infrared reflectance and visible reflectance to detect the presence of vegetation. 

Transformed loading (		A" ): Fractions of different land cover type obtained after 

principal component analysis of transformed MODIS reflectance (		X " ). 

Loading (	A ): Fractions of different ground land cover type in measurement space, 

which is computed by the scaling function described in section 3.1.3. 

Reflectance (	X ): Original reflectance data extracted from MOD09. 

Reflectance after data transformation (		X " ): Reflectance transformed by equal vector 

length transformation. 

Transformed score (		F " ): Source composition obtained after principle component 

analysis of transformed MODIS reflectance (		X " ). 

Score (	F ): The source composition, which is reflectance of different land cover type at 

each MODIS band in this case.  

 




