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ABSTRACT

The superior uranium utilization efficiency of fast spectrum reactors relative to

thermal spectrum reactors was recognized shortly after commercial reactor develop-

ment started. The sodium fast reactor design, a type of liquid metal fast breeder

reactor, was progressed the furthest during the 1960s and 1970s. However in the

late 1970s, 1980s, and early 1990s, the expansion of known uranium reserves, decline

in nuclear power demand in the USA, and cancellation of the Integral Fast Reactor

program slowed the technology development until recently.

With modern computational tools for fluid dynamics, the understanding of exte-

rior and interior subchannel coolant flow behavior can be improved. This improve-

ment will allow existing conservatisms in thermal-hydraulic fuel assembly analysis

to be minimized. This will lead to more profitable and safer fuel designs. In the

past, thermal-hydraulic experiments were performed on sodium fast reactor fuel as-

semblies. Unfortunately, the data collected is not suitable for computational fluid

dynamics simulation validation due to measurements performed with intrusive probes

or poor spatial and temporal resolution.

Therefore, a need exists for validation reference data for Reynolds-averaged Navier-

Stokes and large-eddy simulation turbulence modeling. Completion of this thesis

partially met that demand by designing, procuring, constructing, and collecting PIV

shakedown data on an experimental flow loop containing a 61 rod hexagonal fuel as-

sembly with helically wrapped wire spacers. The facility was designed for laser-based

optical measurement techniques using the matched index of refraction technique.

The experimental setup will provide isothermal high spatial and temporal resolution

velocity and pressure data for computational fluid dynamics validation.
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NOMENCLATURE

ABS acrylonitrile butadiene styrene

AEC Atomic Energy Commission

ANL Argonne National Laboratory

BWR boiling water reactor

CCD charge-coupled device

CFD computational fluid dynamics

DAS data acquisition system

DI deionzed

DOE U.S. Department of Energy

DP differential pressure

DWO Discrete Window Offset

ECA ethyl-2-cyanoacrylate

FEP fluorinated ethylene propylene

FFT fast Fourier transform

FTF flat-to-flat

INL Idaho National Laboratory

LDV laser Doppler velocimetry
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LES large-eddy simulation

LMFBR liquid metal fast breeder reactor

LWR light water reactor

MIR matched-index-of-refraction

NaI sodium iodide

OSHA Occupational Safety and Health Administration

P/D pitch-to-diameter ratio

PID piping and instrument diagram

PIV particle image velocimetry

PMMA Poly(methyl methacrylate)

PSA project safety assessment

PTFE Polytetrafluoroethylene

PVC polyvinyl chloride

PWR pressurized water reactor

RAM random access memory

RANS Reynolds-averaged Navier Stokes

Re Reynolds

RFQ request for quote

RMS root-mean-square
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ROI region of interest

RPC robust phase correlation

RTD resistance temperature detector

SFR sodium fast reactor

SLA stereolithography

SPIV stereoscopic particle image velocimetry

SLS selective layer sintering

SNR signal-to-noise ratio

SS stainless steel

TAMU Texas A&M University

UHMWPE ultra-high-molecular-weight polyethylene

UOD universal outlier detection

USB University Services Building

VFD variable frequency drive
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1. INTRODUCTION

The superior resource utilization efficiency of fast spectrum reactors relative to

thermal spectrum reactors was recognized shortly after the beginning of commercial

reactor development. In the 1950s, when known uranium reserves were small and

rapid nuclear growth was anticipated, the estimated uranium reserves were expected

to last until 2000 to 2020. Therefore, fast spectrum breeder reactors were viewed

as the solution to maximize the uranium resource utilization. In 1967, the Atomic

Energy Commission (AEC) recommended that research be focused on the liquid

metal fast breeder reactor (LMFBR) over other fast and thermal breeding systems.

The sodium fast reactor (SFR) design, a type of LMFBR, progressed the furthest

during the time period when breeder reactors were in demand. However in the late

1970s, 1980s, and early 1990s, the expansion of known uranium reserves, decline in

nuclear power demand in the USA, and cancellation of the Integral Fast Reactor

program slowed the SFR technology development until recently.

The typical LMFBR fuel assembly contains fuel rods placed in a triangular lattice.

Each fuel rod is helically wrapped with a wire spacer. This complex geometry makes

analytical thermal-hydraulic analysis difficult. Therefore, empirical analysis, along

with computational fluid dynamics (CFD), need to be utilized to understand the

coolant flow behavior in this assembly type. CFD analysts wish to perform Reynolds-

averaged Navier Stokes (RANS) and large-eddy simulation (LES) on liquid metal

fast reactor fuel assemblies to reduce the existing conservatisms in thermal hydraulic

codes. Experiments on the thermal-hydraulic behavior were performed in the past on

LMFBR fuel assemblies. Unfortunately, the data collected in the past is not suitable

for RANS or LES validation of the flow behavior in the exterior, corner, and edge

1



subchannels due to existing measurements being performed with intrusive probes or

poor spatial and temporal resolution.

Experimental flow loops containing LMFBR fuel assemblies utilizing particle im-

age velocimetry (PIV) and laser Doppler velocimetry (LDV) have been previously

built and studied to attempt to quantify the flow behavior. However, these fuel

assemblies only contained 7 or 19 rod. Such small assemblies have non-negligible

wall effects on the interior subchannels. Therefore, a demand exists for PIV and

LDV experimental data on fuel assemblies containing a larger number of rods. The

demand exists because larger experimental assemblies are expected to behave more

hydraulically similar to the 217-rod fuel assemblies used in practice.

The completion of this thesis met that demand by designing, procuring, construct-

ing, and collecting data on an experimental flow loop containing a 61-rod hexagonal

fuel assembly with helically wrapped wire spacers. The facility was designed for

PIV and LDV measurements using the matched-index-of-refraction (MIR) technique.

The experimental setup provided valuable isothermal velocity and pressure data for

RANS and LES simulation validation.

A joint project was funded by the U.S. Department of Energy (DOE) to generate

CFD validation reference data with the ultimate objective of extending the lifetime

of hexagonal fuel assemblies. Project team members were Areva, Argonne National

Laboratory (ANL), TerraPower, and Texas A&M University (TAMU), Figure 1.1.

Areva performed temperature and pressure measurements on a 61-rod heated as-

sembly [1, 2]. TAMU performed velocity and pressure measurements on a 61-rod

isothermal assembly. The pitch-to-diameter ratio (P/D) of both facilities was very

similar but total lengths were different. ANL [3, 4] and TerraPower [5] performed

LES and RANS simulations on both experimental bundles.

Figure 1.2 contains the TAMU scope of the project. This thesis covers a partial

2



Figure 1.1: DOE joint project team members

scope of the DOE joint project. Specifically, it covers the literature review, material

testing, facility design, construction, shakedown testing using DI water as the working

fluid, and DI water PIV results in the set of exterior subchannels near the hexagonal

duct wall. The hydraulic shakedown testing was necessary to confirm the integrity

of the experimental flow loop by eliminating leaks and vibrations before switching

to the MIR fluid of p-Cymene. The instrument shakedown testing was necessary to

debug all imaging, pressure, temperature, and flow rate hardware. It also minimized

the immersion time of PMMA in p-Cymene during the debugging process.

Figure 1.2: Texas A&M scope of the DOE joint project

3



2. OBJECTIVES, REQUIREMENTS, AND SPECIFICATIONS

Critical project requirements and specifications were initially outlined in a test

specification provided by TerraPower. After several iterations, the test specification

defined the fuel assembly P/D, turbulent flow regime, and preferred velocity and

pressure measurement locations. Objectives, requirements, and specifications are

provided below.

2.1 Objectives

The two primary objectives of this research were:

1. Design, procure, and construct an appropriate isothermal experimental facility.

2. Collect velocity and pressure measurements to characterize the flow in a ex-

perimental 61-rod fuel assembly in the fully turbulent flow regime.

2.2 Requirements and Specifications

Requirements were defined as what the experimental flow loop must do. Specifi-

cations were defined as how the requirements would be met. Table 2.1 provides the

primary requirements of the experimental facility.

4



Table 2.1: Requirements and specifications for the isothermal flow loop

Requirement Specification
Velocity measurements in edge, corner, and interior sub-
channels shall be possible.

Edge, corner, and interior subchannel measurements will
be made possible via MIR materials selection.

Pressure measurements must capture both the axial and
azimuthal pressure differences in the fuel assembly.

Axial pressures will be measured at various axial positions
along the same azimuthal position. Azimuthal pressures
will be measured at various azimuthal positions along the
same axial position.

All wetted surfaces shall be chemically compatible with
the test fluid.

All materials will be submerged in the test fluid and pos-
sible chemical interactions investigated.

The Reynolds number shall be at least 20,000.
The selection of long radius elbows, non-restricting valves,
large piping, low viscosity, and appropriate pump sizing
will ensure a Reynolds number of at least 20,000.

The flow loop shall be volumetrically flow rate controlled
and measured.

Flow rate will be controlled and measured via centrifugal
pump, variable frequency drive (VFD), and flow meter

The flow loop shall be temperature controlled and mea-
sured.

Temperature will be controlled and measured via an resis-
tance temperature detector (RTD) and air-cooled chiller.

Flow-induced vibrations shall be minimized in the fuel
assembly and support structure.

Rubber isolation, flexible hosing, and steel framing will be
utilized to dampen flow-induced vibrations.

The flow loop shall be protected from over-pressurization
to prevent inlet plenum failure.

Overpressure protection will be provided via a pressure re-
lief valve at the location of highest expected pressure.

All temperature, pressure, and flow rate measurements
shall be made such repeatability is possible.

A data acquisition system will be used to record simul-
taneous measurements of temperature, pressure, and flow
rate.

Sufficient length shall be provided to ensure that the flow
is fully developed in the visualization region.

At least 2.5 pitches will be provided in the inlet plenum
and hexagonal duct to allow the flow to fully develop.

Sufficient length shall be provided to minimize the down-
stream effects on measurement locations.

At least 0.25 pitches will be provided in the hexagonal duct
and outlet plenum to minimize downstream effects.
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3. LITERATURE REVIEW

A literature review was performed to understand the current state of velocity field

and pressure measurements on LMFBR fuel assemblies, along with lessons learned

from prior MIR experimental facilities. The review covers prior measurement tech-

niques, the motivation for non-intrusive optical measurements, existing MIR facili-

ties, and conclusions about the feasibility of various solid/fluid pairs to achieve MIR

conditions.

3.1 LMFBR Fuel Assembly Flow Characterization

Collingham et al. [6] were first to present coolant mixing experimental results in

a full-scale model of a wire wrapped LMFBR assembly with 217 rods. The technique

of salt injection and conductivity monitoring with over 400 probes was employed on

the assembly. They also proposed two models for turbulent mixing and cross flow.

Lorenz and Ginberg [7] recognized that prior work primarily focused on interior

subchannel characterization. Therefore, their work focused on the edge subchannels

near the hexagonal duct wall. Electrolytic tracers and isokinetic sampling techniques

were applied on a 91-rod assembly. These techniques were also used to reduce the

uncertainty in the measurements performed by Collingham et al.

With advances in charge-coupled device (CCD) cameras and computational per-

formance, optical techniques of flow visualization have gained popularity due to their

non-intrusive nature. LDV came first, which can quantify the velocity vector in a

very small volume around a single point in space using photon fringe interference

patterns. PIV followed and is capable of producing two and three-dimensional vec-

tor fields. Interest in LMFBRs has resurged after the development of these modern

visualization techniques.
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In 2008, Idaho National Laboratory (INL) [8] designed a 7-rod wire-wrapped

hexagonal assembly to place inside their test section. This was the first experiment

capable of measuring velocity fields in interior subchannels of a LMFBR fuel assem-

bly. The target Reynolds (Re) number was 22,000, which limited the assembly size

to 7 rods, due to lack of sufficient pumping power and heat rejection required to

reach such an inlet velocity using mineral oil with a relatively high viscosity. Quartz

tubes of 85 mm diameter simulated the fuel rods, while 25 mm diameter quartz rods

simulated the helical wire spacer. The inlet end of the tubes were closed. The bundle

length was 2.13 m. The helical wire spacers were formed by increasing the quartz

temperature until it softened, and then wrapping it around the fuel rod. The wire

spacer was attached at the two ends, similar to existing LMFBR fuel fabrication.

Nishimura et al. [9] performed PIV on a 3-rod bundle to quantify interior sub-

channel behavior. Sato et al. [10] used both PIV and LDV to investigate the flow

in interior subchannels around the central rod of a 7-rod bundle. The study also

investigating the impact of a deformed assembly by bowing the central rod.

With a full size LMFBR assembly containing 217 rods, the scalability of assem-

blies with a smaller number of rods is a concern due to the influence the hexagonal

duct wall may have on interior subchannels. Brockmeyer et al. [11] performed a

study on the dependency of inter-subchannel exchange on assembly size. They per-

formed CFD simulations using RANS turbulence models on 19-, 37-, 61-, and 91-rod

assemblies and concluded that the 91-rod assembly was not yet large enough to iso-

late the inner subchannels from the impact of the wall effect from the hexagonal

duct.

Nevertheless, a 61-rod assembly was selected in this project based on the feasi-

bility of construction, expense, and PIV measurement capability. The experimental

results will be used for CFD validation, but larger bundles will need to be investigated
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using PIV and LDV.

3.2 Matched-Index-of-Refraction Facilities

A review of prior MIR facilities was important to understand the advantages,

disadvantages, and operational complexities associated with different approaches to

achieve MIR conditions. Key parameters from several MIR facilities will now be

discussed.

INL [12] has the largest MIR facility in the world with test section dimensions

of 0.6 m × 0.6 m × 2.5 m. The solid structures are formed from quartz, while the

fluid is Drakeol 5 light mineral oil. The facility was designed to accommodate any

solid structure capable of fitting inside the test section physical envelope, giving the

versatility to support multiple projects without major facility overhaul. This facility

contains an auxiliary loop for temperature control via a 20-ton glycol chiller and 8.5

kW heater, which gives the ability to control the inlet fluid temperature to ± 0.05 ◦C.

PIV and LDV imaging hardware is mounted on a three-dimensional traverse system

that spans the entire test section. Laser sources are double-pulsed, neodymium-

doped yttrium aluminum garnet lasers that produced laser sheets of 1-3 mm thick.

Disadvantages of the facility are the price of the quartz solids for complex geometries,

large pumping requirements to achieve the target Re number, and minimizing the

leakage of the mineral oil.

Dominguez and Hassan [13] constructed an experimental MIR facility to perform

PIV and LDV on a prototypical Westinghouse 5×5 pressurized water reactor (PWR)

assembly. Water was the working fluid, fuel rods were made of polycarbonate and

a visualization region was created by using fluorinated ethylene propylene (FEP)

tubing near the inlet and outlet of the spacer grids. FEP has a similar refractive

index of water, approximately 1.33 at room temperature [14]. Disadvantages of these
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techniques for our application are the complexity of using flexible tubing to fabricate

the helical wire spacers, along with the inability to perform optical measurements at

any axial location in the assembly because the majority of the measurement locations

required feasibility testing in the 61-rod assembly.

3.3 Matched-Index-of-Refraction Materials

After reviewing prior LMFBR flow characterization studies and investigating

other MIR experimental facilities, the search began for plausible solid/fluid pairs

for the 61-rod assembly and test section of this experimental facility. In an effort to

use water as the working fluid, fluorinated resins were of primary interest. Prior work

performed in Japan [10] [9] utilized a fluorinated resin, Mexflon-DC ™, to cast rods

and wires. Unfortunately, this product is no longer commercially available. Flexible

FEP tubes were considered, but concerns about vibration, tolerances, and how to

fabricate helical wire spacers eliminated the option. Several other fluoropolymers

exist, but none existed with sufficient shear moduli to withstand 2 m spans.

A review of several promising solids and fluids was performed by Hassan et al.

[15]. The three most promising solids for their pebble bed application were PMMA

(1.4873), soda-lime glass (1.504), and FEP (1.33). MIR fluids were p-Cymene (1.49),

60% volume aqueous sodium iodide (1.49), and water (1.33). After optical testing,

they selected PMMA and p-Cymene.

For a prior experimental facility at the TAMU Thermal-Hydraulic Research Lab-

oratory, the use of quartz and mineral oil had been considered and request for

quote (RFQ)s sent out. Based on those quotes (for simple geometries), it was cost

prohibitive to further investigate fabricating a LMFBR assembly from quartz. Also,

the MIR fluid, Drakeol 5 light mineral oil, has a higher viscosity than water [16],

which would require substantially larger pumping and cooling equipment.
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Song et al. [17] studied multiple 3D printed transparent resins and attempted

to find refractive index matching fluids. They utilized three fabrication techniques,

selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. They

found these resins had indices between 1.46 and 1.55. The most promising sample

was produced by vacuum casting SLA from a silicon mold of a cylindrical rod and

accompanying helical wire spacer. The final refractive index was 1.51 and a suitable

working fluid mixture was determined to be anise oil and light mineral oil. Unfor-

tunately, the kinematic viscosity of the oil mixture is roughly 10 times greater than

water. If selected for this project, this would have required an axial velocity 10 times

greater to achieve the same Re number.

Scholz et al.[18] investigated PIV measurements using 3D printed transparent

materials, specifically Somos WaterClear® Ultra 10122 and RenShape® SL 7870.

These materials required a sprayable transparent coating, because the printed prod-

ucts were initially opaque. The disadvantage is the coating reduces the fine detail of

the printed parts. They also had trouble finding a fluid with a similar refractive in-

dex (1.51 - 1.56) and low viscosity. One option, a zinc iodine aqueous solution could

match the refractive index, but only at high zinc iodine concentration. The high con-

centration yielded a red-colored solution with a lowered optical transparency. Their

fluid choice was a 62.5% weight sodium iodide aqueous solution. Discoloration was

noted as the fluid yellowed when exposed to air. Their experimental facility kept a

nitrogen overpressure blanket to minimized the solution oxidation and were able to

extend the solution life to over one year. Ouzo et AL also had success with PMMA

and 64% weight sodium iodide aqueous solution. Discoloration/oxidation of sodium

iodide was investigated in this thesis, see Section 4.2.1.
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4. FACILITY DESIGN

An experimental facility containing a mock 61-rod hexagonal fuel assembly with

helically wrapped wire spacers has been designed, procured, and constructed to con-

duct isothermal flow tests, Figures 4.1 and 4.2. The facility has produced high spatial

and temporal resolution data of the flow velocity and pressure at different locations

in the experimental fuel assembly. Brief facility descriptions have been provided in

[19–23]. This section provides a detailed description of the materials testing and final

design configuration.

The experimental facility consists of three loops, which are described in Sections

4.4, 4.5, and 4.6.

4.1 Matched-Index-of-Refraction

To meet the objectives defined in Section 2.1, a facility utilizing the MIR tech-

nique was required. The MIR technique involves matching the refractive index of

the fluid and solid structures in the experimental facility. The primary objective of

utilizing the MIR technique in combination with PIV and LDV laser-based measure-

ment techniques is to measure the fluid velocity without disturbance via intrusive

probes. The components of the facility with the MIR requirement were the fuel rods,

wire spacers, and hexagonal test section.

The material selection of the test section and 61-rod assembly were primarily

driven by Table 2.1, Requirement 1. It states that velocity measurements must be

possible in edge, corner, and interior subchannels. The test section is where PIV

and LDV measurement techniques were applied and will be discussed later in Sec-

tion 4.3. Variables under consideration when selecting materials were cost, density,

toxicity, flammability, and reactivity, and viscosity. Also, the refractive index is a
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Figure 4.1: Isometric view of a CAD rendering of the experimental facility

function of incident photon wavelength and temperature of the medium. Therefore,

the laser source’s wavelength must be carefully selected. Temperature control is a

design requirement to hold the fluid density and viscosity constant throughout all

experimental runs. But with a MIR facility, constant temperature also guarantees

that the refractive index of the fluid and solid structures are constant.

4.2 Materials Testing

Extensive material testing for the test section and experimental fuel assembly

was required to ensure that all requirements could be met. Materials testing can be

segregated into two distinct areas: optical and chemical testing.
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Figure 4.2: The experimental facility with major components highlighted.

4.2.1 Optical Testing

Optical testing was required to confirm refractive index matching and sufficient

transparency of potential materials. As a result of the literature review, the number

of solid/fluid pairs for optical testing was narrowed significantly. Tests that resulted

in insufficient refractive index matching eliminated potential pairs of solid materials

and fluids. Sufficient transparency was confirmed by illuminating solids and fluids

with the 527 nm photon source, which is defined in further detail in Section 4.8. A

lack of transparency could result in insufficient illumination of the seeding particles,

thus decreasing the quality of the PIV measurements.

Optical tests presented in this thesis include cover two solids and fluids. The

solids were PMMA and 3-D printed plastics. The fluids were p-Cymene and sodium

iodide (NaI). In January 2015, the most promising 3-D printed transparent materials
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were:

• VeroClear-RGD810 by Stratasys

• Accura 60 by 3D Systems

At that time, very little literature existed involving optical measurements on

transparent 3-D printed materials. Therefore, samples of VeroClear-RGD810 and

Accura 60 were acquired from respective companies, Figure 4.3. 3-D printed trans-

parent materials were not pursued further due to the following reasons:

• TAMU does not have the capability to quantify the refractive index of solids.

• 3-D printers capable of printing lengths over 1 meter were not readily available.

A bonding method would be required to fabricate the rods and enclosure.

• Stratsys was not confident that either material had sufficient strength to be

used in the desired fuel rod geometry (large axial dimension with small radial

dimension).

• Note the build lines that formed during the printing process. The build lines can

be removed via sufficient surface polishing and transparent coating. However,

The manual labor associated with surface polished was regarded as impractical

to meet the time and fabrication tolerances required by the schedule and test

specifications.

• RFQs were obtained from Stratasys for individual rods and the hexagonal

enclosure. The final cost of the 3-D printed components were not significantly

less than other options with lower risk.

• Tolerances of printed components were significantly poorer that achievable by

casting or machining fabrication techniques
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Figure 4.3: VeroClear-RGD810 and Accura 60 samples

With transparent 3-D printed materials no longer an option, PMMA was inves-

tigated. PMMA has been used in previous MIR facilities, as mentioned in Section

3. Qualitative optical tests on PMMA included:

• Confirmation of MIR conditions in p-Cymene and NaI

• Optical degradation of cast and extruded PMMA as a function of immersion

time in p-Cymene

• Wire attachment methods and their optical disturbances

• Surface imperfections (cracks and scratches)

It is important to note refractive index is a temperature-dependent property.

Bardet et al. [24] has quantified temperature dependence of the refractive index for

p-Cymene and PMMA, Figure 4.4.

Refraction of light in PMMA and p-Cymene was investigated for the expected

range of facility operating temperatures between 18-24◦C. The first qualitative ob-
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Figure 4.4: P-cymene and PMMA refractive indices as a function of temperature
[24]

servation, Figure 4.5, was performed on a 0.5 inch diameter cylinder of PMMA. This

was considered to be a successful optical test.

Next, the cut and unpolished edge of a PMMA cylinder was exposed to p-Cymene,

Figure 4.6. The cut and unpolished edge did not have the same transparency and

refractive index as the polished rod surface. It was later determined that excessive

heating due to drilling or cutting PMMA has the ability to modify the refractive

index, even after surface polishing. Therefore, this was considered to be an unsuc-

cessful optical test.

Further optical tests involved using a liquid refractometer (to measure the re-

fractive index of samples of p-Cymene) and the test shown in Figure 4.7. A ruler

was placed behind the PMMA cylinder to observe the refraction through water and
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Figure 4.5: 0.5 inch diameter cylinder of PMMA immersed in p-Cymene at 22◦C

p-Cymene. Note that the 1 inch lines are not impacted in p-Cymene. Also, the text

is nearly unaltered when compared to the text in water.

After confirming that PMMA and p-Cymene passed qualitative optical tests, NaI

aqueous solutions were investigated. Because the fluid is a solution of deionzed (DI)

water and NaI, the concentration of NaI can vary based on the mass added to create

the mixture. The refractive index of various concentrations was measured using an

in-house liquid refractometer, Table 4.1. The solubility limit at 23◦C is approximately

65% [25], so the maximum tested concentration was 62% . The temperature of each

solution was kept at 22 ±1 ◦C. The measurements taken with the liquid refractometer

proved to be nearly identical when compared to the quadratic least squares model

and experimental measurements performed by [25], [26], and [27].

The refractive index was monitored for a period of 92 hours to quantify the change

in refractive index that occurred during the oxidation period in which NaI aqueous

solutions discolor and develop a yellow tint, Figure 4.8. Even though the refractive

index remained relatively constant, concerns were raised about the discoloration’s
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Figure 4.6: Unpolished edge of PMMA cylinder immersed in p-Cymene at 22◦C

Table 4.1: Refractive index measurements of NaI aqueous solutions at 22◦C

NaI Weight % NaI (g) DI Water (g) RI (t=0) RI (t=5hr) RI (t=92hr)

0.5 38 38 1.443 N/A N/A
0.6 57 38 1.475 N/A N/A
0.62 62 38 1.484 1.484 1.482

affect on the fluid transparency and potential seeding particle illumination issues.

Figure 4.9 shows a PMMA rod (refractive index of 1.491 [24]) immersed in a NaI

aqueous solution left to oxidize for 1 month. The refractive index of the fluid was

measured to be 1.475. The perimeter of the PMMA rod is slightly visible. Note that

the bubbles on the rod are from a wire attachment method being tested. This will

be discussed later. Refraction of the background is clearly visible at the interface

between the wood and black background, which is insufficient for laser-based optical

measurement techniques.
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Figure 4.7: 0.625 inch PMMA cylinder immersed in water (left) and p-Cymene (right)
at 22◦C

Figure 4.8: NaI solution (62 W%) after 0 hr, 5 hr, and 92 hr of exposure to air

MIR conditions could be achieved by approaching the solubility limit, [25]. How-

ever, operational concerns arose about cooling and precipitation when the facility

was not in use, along with reheating above the solubility limit, mixing, and ensuring

MIR conditions were met before performing an experimental run. Therefore, NaI

was not investigated further.

Degradation of cast and extruded PMMA as a function of immersion time in p-

Cymene will be discussed in more detail in Section 4.2.2. After 1 month of immersion
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Figure 4.9: PMMA rod and NaI aqueous solution (62 W%) after 1 month of exposure
to air at 22◦C

time, the cast sample had minor surface etching that was only visible when the

sample was removed from the fluid and dried. However, the refractive index was

not qualitatively affected. The extruded sample experienced significant pitting and

began to melt after 1 month. Again, the refractive index was not observed to be

affected.

The next open item that involved optical testing was how to attach the helical

wire spacer to the rod. Chemical compatibility tests of adhesives will be discussed

later. The chemical tests resulted in two plausible adhesives that required optical

testing.

The first adhesive, an acrylic solvent-based cement made by SCIPGRIP®, re-

sulted in the production of gas bubbles during the curing process along the interface

between rod and wire. These volumes cannot be filled by p-Cymene, as they are

internal to the solid. They did not have the correct refractive index, Figures 4.9 and

4.10. This type of adhesive was considered applicable, so long as the solvent was
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not applied to regions where laser-based optical measurement techniques were to be

applied.

Figure 4.10: PMMA rod in p-Cymene showing the gas bubbles formed during the
solvent curing process

The second adhesive, ethyl-2-cyanoacrylate (ECA), did not cause the PMMA to

dissolve and re-solidify. This is because it is an adhesive commonly referred to as

Super Glue®. Ethyl-2-cyanoacrylate was attractive because the adhesive base in an

acrylic resin, which implied that MIR conditions could be possible in glued regions.

Optical testing proved this to be true. Therefore, ECA could be used in regions

where laser-based optical measurement techniques were to be applied.

The important conclusion of these optical tests was ECA could allow for the

helical wire spacer to be attached to the rod along the entire length, while the

acrylic solvent-based cement was limited to non-measurement regions. At the time

of this testing, the measurement regions were not well defined.
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One final note as a result of PMMA and p-Cymene optical testing was that any

small scratches to the PMMA surface as a result of improper care or handling were

not an issue. This is because once the PMMA was immersed in p-Cymene, the fluid

would fill the small imperfection and MIR conditions were still achieved.

4.2.2 Chemical Testing

Chemical compatibility testing was required to ensure that wetted materials could

survive facility operation while immersed in p-Cymene or water, the fluid used in

the initial shakedown tests. Shakedown tests with water were performed to confirm

piping integrity and hardware functionality before using p-Cymene. Chemical testing

included:

• Surface degradation of cast and extruded PMMA as a function of immersion

time in p-Cymene

• Wire attachment methods and adhesive performance in p-Cymene

• Performance of SCIGRIP acrylic solvent-based cement in p-Cymene to deter-

mine the feasibility of fabricating the test section hexagonal duct

Surface degradation of cast and extruded PMMA as a function of immersion time

in p-Cymene was first tested. Observations took place over 36 days. Half of each

sample was immersed in p-Cymene. Fresh samples are presented in Figure 4.11.

There was no qualitative optical difference.

Surface degradation was not visible until the elapsed time reached 6 days. At

that time, pitting was detected around the cut edges of the extruded sample. The

cast sample appeared to be experiencing a slight etching, making it slightly less

transparent, Figure 4.12.
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Figure 4.11: Elapsed time of 0 days; Top: cast PMMA, Bottom: extruded PMMA

Figure 4.12: Elapsed time of 6 days; Top: cast PMMA, Bottom: extruded PMMA

After 16 days, significant pitting of the cut edges on the extruded sample were

occurring. It was also tacky where the sample had been in contact with the glass

beaker holding the p-Cymene and samples. There was no further visible pitting or

etching of the cast sample, Figure 4.13.

The immersion test concluded after 36 days. The extruded sample was initially

stuck to the glass beaker. Also, the wetted surface experienced severe pitting, melt-

ing, deformation, and was spongy when squeezed. The cast sample had minor etching

with a slightly rougher surface. The loss of transparency is visible on the right side

of the sample, where the grid lines of the paper are blurred, Figure 4.14. A closeup

of the cut end of the extruded sample is visible in Figure 4.15.
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Figure 4.13: Elapsed time of 16 days; Top: cast PMMA, Bottom: extruded PMMA

Figure 4.14: Elapsed time of 36 days; Top: cast PMMA, Bottom: extruded PMMA

Conclusions from this testing were:

• Structural integrity of cast PMMA is vastly superior to extruded

• Optical transparency of both cast and extruded PMMA is sufficient after 36

days

• Some interaction between the cast sample, extruded sample, air, and p-Cymene

caused the P-Cymene to discolor slightly, Figure 4.16
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Figure 4.15: Elapsed time of 36 days; Extruded sample highlighting the physical
deformation

Figure 4.16: LEFT: Discolored p-Cymene after exposure to air, cast PMMA, and
extruded PMMA for 36 days; RIGHT: fresh p-Cymene

The second chemical test involved evaluating the performance of different adhe-

sives when used to attach PMMA helical wire spacers to PMMA rods. There are

very few materials that are chemically stable in p-Cymene [28], [29]. Therefore, if

an adhesive could withstand the mechanical stress of the helical wrap, the rod was

immersed in p-Cymene and the impact observed.

The following adhesives were tested:

• SCIGRIP® acrylic solvent-based cement

• Ethyl-2-cyanoacrylate (Super Glue®)
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• Silicon caulk for waterproofing

• Polyurethane-based waterproof glue (Gorilla Glue®)

• UV curable resin

• Waterproofing tape for ductwork

The silicon caulk and waterproofing tape for ductwork were unable to meet the

mechanical requirement of maintaining the wire tension. The Gorilla Glue® had

such a high viscosity that application of a fine bead, such as to not disturb the flow,

proved difficult. The UV curable resin had a relatively long set time which made

fabrication difficult.

Before immersion in p-Cymene, the acrylic solvent-based cement and ECA were

the most promising because they had sufficiently low viscosities and quick set times.

However, the acrylic solvent-based cement was only able to maintain integrity for 5

minutes before failing and unraveling the wire. It appears that p-Cymene was able

to fill the small surface imperfections caused by the acrylic solvent and dissolve the

interface. Ethyl-2-cyanoacrylate maintained integrity for the entire immersion time

of two weeks with no observable cracking, pitting, or loss of strength.

4.2.3 Mechanical Testing

Mechanical testing was performed to determined the desired method of establish-

ing the triangular lattice, along with investigating the rigidity of the PMMA rods

and flexibility of the PMMA wires. The preferred method of establishing the trian-

gular lattice was by using lower and upper grid plates, Figure 4.17. The grid plates

contain the rod triangular lattice, along with a specific clocking angle for the helical

wire spacer. The specific clocking angle in the grid plates ensures all fuel rods are
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installed similarly. The plates were printing using an in-house MakerBot Replicator

2X.

Figure 4.17: Lower and upper grid plates

A 19-rod test assembly of one wire pitch was installed in the 3D printed grid

plates. Installation confirmed the feasibility of constructing the 61-rod assembly.

The flexibility of various wire sizes was confirmed during the test rod fabrication

process.

In order to allow the flow to fully develop, rod lengths were required to be greater

than 72 inches. Samples of 0.5 inch and 0.625 inch diameter cast PMMA rods of

various lengths were investigated for their rigidity after concerns of flow-induced

vibrations arose from handling the 24 inch rods with 0.5 inch diameter used in the

19-rod test assembly. Rigidity testing concluded with the selection of 0.625 inch

diameter rods.
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Figure 4.18: 19-rod test assembly Figure 4.19: Closeup of the lower plate
and test assembly

4.2.4 Final Material Selection

With the completion of optical and chemical testing, along with a thorough liter-

ature review of chemical compatibility, the set of final materials were selected, Table

4.2. After selecting p-Cymene as the fluid, the chemical compatibility of all wetted

surfaces needed to be checked, including pump shaft seals, flange gaskets, and flexible

hosing. p-Cymene has a density of 857 kg m−3 and a dynamic viscosity of 8.33e−4

Pa sec.

Figure 4.20 displays the results of a sufficiently matched refractive index for

PMMA at room temperature. The exterior surface of the PMMA rod is clearly

visible in the lower and upper regions, while very difficult to see in the middle region.

Three fluids are inside the beaker. The lower region is water with a refractive index

of 1.330 [14]. The middle region is p-Cymene with a refractive index of 1.491 [30].

The upper region is air with a refractive index of 1.000277 [14].
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Table 4.2: Final materials used in the experimental facility

PMMA ECA SS316 Viton UHMWPE p-Cymene

Test Fluid X
Rod X
Wire X
Wire Attachment X
Test Section X
Flexible Hosing X
Piping X
Pumps X X
Gaskets X

The components that comprise the experimental facility will be discussed in the

following sections. Figure 4.21 displays the test section filled with water for shake-

down testing. After completing the shakedown testing, Figure 4.22 displays the MIR

condition inside the test section when the facility was first filled with p-Cymene.

The PMMA rods are visible above the fluid level, and the background of the room

is visible below. Small amounts of florescent particles remain embedded from the

water shakedown tests.
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Figure 4.20: PMMA rod immersed in three fluids to display the result of matching
the index of refraction

4.3 Test Section

The test section includes the following components:

• 61-rod wire-wrapped assembly

• Lower guide plate

• Inlet plenum

• Hexagonal duct

• Outlet plenum

• Upper guide plate

• Top cap

All components of the test section are made from PMMA to achieve MIR condi-

tions in the test section, fuel assembly, and test fluid. This allows for velocity field
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Figure 4.21: Test section filled with water Figure 4.22: Test section filled with p-
Cymene to demonstrate the MIR condi-
tion

measurements to be performed in both the developing and fully-developed regions

of the assembly.

Figure 4.23 contains the 61-rod wire-wrapped assembly, hexagonal duct, inlet and

outlet plena, and guide plates

4.3.1 61-Rod Wire-Wrapped Assembly

LMFBR fuel assemblies typically utilize a triangular lattice of fuel rods, helically

wrapped wire spacers, and a hexagonal duct, Figure 4.24. Similar to modern light

water reactor (LWR) fuel rods, LMFBR fuel rods are cylindrical in shape but typ-

ically 66% of the LWR fuel rod diameter [31]. Both LWR and LMFBR fuel rods

utilize a cladding tube. The cladding encases the fuel and serves as the first barrier

to the release of fission products by containing fission gases and mitigating against
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Figure 4.23: PMMA test section of the experimental facility

chemical interactions with the coolant. In this experimental case, the solid PMMA

rods simulate the exterior surface of the fuel cladding.

The primary function of the helically wrapped wire spacers is to ensure sufficient

lateral spacing between adjacent fuel rods. This spacing creates subchannels for

coolant flow. Other functions are to enhance subchannel mixing to increase convec-

tive heat transfer and mitigate vortex-induced vibration.

The hexagonal duct of an LMFBR assembly has a similar function as the boiling

water reactor (BWR) channel. It provides structural strength and a well-defined

coolant flow path through the assembly.

The experimental fuel assembly consisted of 61 wire-wrapped rods arranged in a

tightly packed triangular lattice. The tightly packed lattice indicates the wire spacer
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Figure 4.24: Typical LMFBR fuel assembly [31]

diameter is equal to the distance between adjacent rods with no additional gap.

Dimensions of the experimental fuel assembly and hexagonal duct are identified in

Figure 4.25.

The final dimensions of the experimental 61-rod fuel assembly are defined in Table

4.3. The P/D was chosen to be the constant scaling variable of the experimental

design. The SFR fuel rod P/D typically ranges from 1.06 to 1.29 [31]. The target

P/D was 1.18. After several iterations between off-the-shelf commercial availability
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Figure 4.25: 61-rod hexagonal fuel assembly primary dimensions

and engineering specification, the final P/D for the experimental fuel assembly was

converged to 1.189. Based on typical SFR fuel rod dimensions, the experimental

assembly is scaled up approximately by a factor of 2.5.

4.3.1.1 Rod Fabrication Process

The rod fabrication process involved characterizing the diameter of the rods and

wires, along with attaching the wires to the rods. Cast PMMA rods produced by

PolyOne were selected for the experimental fuel rods, Figure 4.26. The specified

cast diameter and fabrication tolerance were 0.0159 m ± 0.000254 m, respectively.

Extruded PMMA rods were procured from Wuxi YanYang International Trading Co.

Ltd for the wire spacers. The specified extruded diameter and fabrication tolerance

were 0.003 m ± 0.00015 m, respectively.
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Table 4.3: Dimensions of the rods and wire spacers in the experimental facility

Symbol Parameter Value (m)

Drod Rod Diameter 0.0159
P Rod Pitch 0.0189
Dwire Wire Diameter 0.0030
H Wire Pitch 0.4763
W Edge Pitch 0.0195
Gapwall Wall Gap Size 6.71e−4
FTF Flat-to-Flat 6.0560
CTC Corner-to-Corner 0.1778
P/D Rod Pitch to Rod Diameter 1.1890
H/D Wire Pitch to Rod Diameter 30.000
L Assembly Total Length 1.8570
Lts Assembly Length in Test Section 1.6670

The diameter of each rod and wire was quantified at three different axial locations

(bottom, middle, and top). Rods and wires with the smallest standard deviation

about the nominal value were selected. 100 rods and 100 wires were characterized

to generate the final set of 61 rod/wire pairs. The rod mean diameter and standard

deviation were 15.918e−3m and 1.524e−5 m, respectively. The wire mean diame-

ter and standard deviation were 2.97e−3 m and 3.00e−5 m, respectively. A more

detailed characterization process is summarized in Appendix A.

LMFBR fuel assemblies typically only attach the helical wire spacers via tack-

ing to the bottom and top of the rods. This technique was mirrored for the first

experimental assembly. Consideration was made to fully adhere the wire along the

length of the rod. However, the risk of disturbing the flow, along with the extra

labor expense, was deemed greater than the reward.

As discussed in Section 4.2.1, the adhesive used in the fabrication of the rods and

wires was ECA with a water-thin viscosity. Two guide blocks were used to assist in

the rod fabrication. An aluminum guide was fabricated from a rectangular prism of
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Figure 4.26: Cast PMMA rods produced by PolyOne with attached wire spacers

aluminum by milling a pair of rod and wire holes with the appropriate offset, Figure

4.27. This aluminum guide simulated a single rod position found on the lower plate.

This avoided using the lower plate during the fabrication process, where cracking,

scratching, or inadvertent gluing could occur. The aluminum guide ensured the rod

and wire axes were parallel before the helical wrap. This was required for the rods

to fit into the lower plate. Another guide was created using a Makerbot Replicator

2X 3-D printer, Figure 4.28. This 3D printed guide also ensured the rod and wire

axes were parallel, so the upper plate could be installed on the 61-rod assembly. It

also provided the desired azimuthal wire position at the top to achieved the desired

helical pitch length.

The fabrication process required two people and took approximately one hour
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Figure 4.27: Aluminum guide block to set
the bottom of the rod and wire parallel
axes

Figure 4.28: 3-D printed guide block to
set parallel axes and wire azimuthal po-
sition at the top of the rod.

per rod. A closeup of a single completed rod is shown in Figure 4.29. The process

will now be described:

1. The wires were attached to the bottom of the rods with the assistance of an

aluminum guide block, Figure 4.27.

2. While laying horizontally on the fabrication table, the bottoms of the rod and

wire were inserted into the aluminum guide.

3. The tops of the rod and wire were secured with a rubber band.

4. The slack in the wire was then removed.

5. The rod and wire were then stood vertical, with the aluminum guide forming

the base.

6. A single drop of adhesive was placed on both sides of the joint formed by the

adjacent faces of the rod and wire. The drops were applied approximately 38

mm above the bottom of the rod.
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7. After allowing 10 seconds to cure, the rod was laid horizontally and remained

in the aluminum guide.

8. The rubber band was then removed from the top and a 3-D printed guide block

was slid into place, Figure 4.28.

9. The 3D printed guide block was revolved four times (in a clockwise manner

when viewed from the bottom of the rod) to create the desired wire wrap.

10. Tension was applied to the wire to remove slack.

11. A single drop of adhesive was placed on both sides of the joint formed by the

adjacent faces of the rod and wire. The drops were applied approximately 15

mm below the top of the rod.

12. The aluminum and 3-D printed guides were removed.

13. A quality check was performed to verify the wire clocking position at each

pitch along the rod. The check involved a visual inspection that the wire was

at the 12 o’clock position for 0.514 m, 0.991 m, and 1.467 m distances from

the bottom of the rod.

14. The top of each rod was ground into a cone to assist in placing the upper

guide plate simultaneously over the 61-rod assembly during the final stage of

construction, Figure 4.30.

4.3.2 Hexagonal Duct

The hexagonal duct was fabricated by Moore Fabrication, a custom PMMA fab-

rication shop that specializes in solving unique CNC machining and fabrication chal-

lenges. The hexagonal duct was formed by gluing six cast PMMA sheets together.
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Figure 4.29: Closeup showing the wire attachment

Figure 4.30: Closeup showing the top of a rod after the coning process

The desired wall thickness was 0.5 inches. Moore Fabrication characterized sheets

from PolyOne and found the sheets to vary in thickness by an unacceptable amount.

Therefore, each sheet was milled to 0.5 ± 0.001 inches and polished to avoid the MIR

issues associated with unpolished surfaces, Figure 4.6. The hexagonal duct flat-to-

flat (FTF) was set by forming the walls around three hexagonal guides at the top,

middle, and bottom of the duct. After gluing the walls, the guides were removed and

the duct was formed. 0.125 inch holes were drilled and tapped to create pressure taps

at various axial and azimuthal locations. Circular flanges, with 0.5 inch thickness,

were attached after the duct was formed. Engineering drawings and as-built dimen-
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sions can be found in Appendix D and A, respectively. The length of the hexagonal

duct was chosen so that the total length was 3.5 wire pitches. This created for a

development region of 2.25 wire pitches to allow flow development, a visualization

section of 1 wire pitch where the velocity field measurements were performed, and

an exit section of 0.25 wire pitches to minimize exit effects.

Figures 4.31 and 4.32 show the hexagonal duct before and after installation in

the experimental facility.

Figure 4.31: Before installation Figure 4.32: After installation

4.3.3 Plena

The inlet and outlet plena were also fabricated by Moore Fabrication. The hexag-

onal shape of two plena were cut from the single piece formed by the process for the

hexagonal duct. 2 inch diameter holes were cut in opposite faces of the hexagon to
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form the inlet and outlet passages. Threaded circular blocks were then glued to the

faces to create a connection for piping. 0.125 inch holes were drilled and tapped

to create pressure taps and a drain port in the plena. Circular flanges, with 0.5

inch thickness, were attached after the plena were formed. Figure 4.33 shows the

lower plenum with one circular flange attached. Engineering drawings and as-built

dimensions are can be found in Appendix D and A, respectively.

Figure 4.33: Plenum before the upper circular flange was attached

Figures 4.34 and 4.35 show the lower and upper plenum installed in the experi-

mental facility.

4.3.4 Guide Plates

Lower and upper guide plates were utilized to establish the triangular lattice

with the desired P/D of 1.189. Both plates contain holes for the rods and wires

to guarantee the helical wire spacer azimuthal position of each rod is identical at a

given axial location. The depth of the holes in the lower plate are 1.5 and 1.25 inch

for the rod and wire, respectively. The holes in the upper plate are through holes.
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Figure 4.34: Lower plenum Figure 4.35: Upper plenum

Engineering drawings can be found in Appendix D.

Figure 4.36: Lower and upper guide plates

4.4 Primary Loop

The primary loop circulates p-Cymene to the test section, where velocity field

and pressure measurements are performed. Calculations of the pressure drop through
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the flow loop were made and used to select the appropriate size of the piping, pri-

mary pump, and primary reservoir to hit the target Re of 20,000. The piping and

instrument diagram (PID) in Appendix B displays the layout of the primary loop.

Appendix E contains the manufacturer, model number, and serial number of the

main components. A list of components is provided below:

• Primary pump

• Primary VFD

• Primary reservoir with 80 gallon capacity

• Test section

• Nine axial pressure transducers

• Two sets of 4 azimuthal differential pressure transducers

• Seeding particle injection port

• RTD

• Inline turbine flow meter

• 2 and 3 inch stainless steel (SS) diameter piping and valving

• 2 inch flexible hosing for vibrational dampening

• Framing for test section isolate and imaging hardware mounting points

Figure 4.37 displays a flow regime map proposed by Cheng and Todreas [32].

With an experimental assembly P/D of 1.189, the minimum Re number for fully

turbulent flow is approximately 14,000. The target Re number was 20,000 to in-

crease the certainty that measurements would be performed in the turbulent regime.
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Measurements in the turbulent regime are required for RANS turbulence model val-

idation.

Figure 4.37: Laminar/turbulent flow transition [32]

This requirement was significant, because it required a robust flow loop with suffi-

cient vibrational dampening of the test section to avoid movement of the test section

or rod assembly during the PIV image capture process. Vibration was mitigated by

utilizing support structures, pipe stands, and flexible hoses. Also, the PIV imaging

hardware was mounted to the support structure which stabilized the test section.

By doing this, the test section and PIV imaging hardware became coupled so that

vibrations of the test section and imaging hardware would be approximately equal.

Two support structures were built. The former structure was from iron tubing, which
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was used to dampen the vibration in the piping and flexible hosing. Strut rails were

also welded to this structure to provide mounting points. The later structure was

from aluminum t-slotted framing, which is the common interface for lasers, cameras,

and traversing systems. The structures were designed to minimize the interference

with various PIV hardware setups, by minimizing support thicknesses and ensuring

adequate spacing for even stereoscopic and tomographic PIV.

To secure the primary piping, pipe stands were anchored to the concrete floor.

Neoprene inserts were also added between the piping and pipe stands. Chemical

resistant ultra-high-molecular-weight polyethylene (UHMWPE) flexible hoses with

quick disconnecting cam and groove fittings were utilized to connect the piping to

the test section. The hoses were anchored to the iron frame to offload the tension

caused by bending the hoses from the PMMA outlet plenum, Figure 4.38.

Figure 4.38: UHMWPE flexible hoses anchored to support structure

Seeding particles were initially prepared and mixed into the primary reservoir.

However at low Re number, settling and accumulation was apparent by the decreasing

particle density in the PIV images over a span of 10-30 minutes. Therefore, particle

45



injection was moved immediately downstream the primary pump. By using two

valves and a syringe, Figure 4.39, injection could be performed while the facility

was full and also running at any given flowrate. Also, the primary reservoir was

recirculated by the secondary loop through the heat exchanger.

Figure 4.39: Seeding particle injection was performed by manipulating two valves
and a 50 mL syringe

4.4.1 Leak Testing

The primary loop was leak tested multiple times with water before using p-

Cymene. Figure 4.40 shows the configuration for the first leak test of the primary

piping structure, with a flexible hose to close the loop. The primary pump was in-

creased until a flowrate of 68 m3 hr−1 (300 GPM) was achieved. The test proved that

Polytetrafluoroethylene (PTFE), commonly known as Teflon™, would be insufficient

at several of the threaded connections.

To avoid welding the piping, a chemically resistant thread sealant, Loctite® 554,

was employed. Figure 4.41 shows the final leak test configuration before installation
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of the PMMA test section. A PVC pipe with similar inlet and outlet configuration to

the test section was fabricated to close the loop to test the remaining piping structure,

along with the quick disconnecting cam and groove fittings. It was realized here that

supports would be needed to offload the flexible hose tension from the PMMA inlet

connections.

Figure 4.40: Initial leak testing configuration

4.5 Secondary Loop

The secondary loop provides temperature and inventory control, along with par-

ticulate filtration. The PID in Appendix B displays the layout of the secondary

loop. Appendix E contains the manufacturer, model number, and serial number of

the main components. A list of components is provided below:

• Secondary pump

• Secondary VFD

• Secondary reservoir with 20 gallon capacity
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Figure 4.41: Final leak testing configuration

• Brazed-plate heat exchanger

• Particulate filter, 1 micron removal capability

• Copper piping and gate valves, 0.75 inch diameter

Temperature control is important for MIR experiments, because the refractive

index is a temperature dependent property. Temperature control is achieved by

constantly circulating the primary fluid to and from the primary reservoir by the

secondary pump into the heat exchanger. Chilled water is fed to the other side of

the heat exchanger by the tertiary loop, Section 4.6. Pressure drop and heat rejection
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calculations were performed to size the secondary pump and heat exchanger such that

a constant temperature could be maintained in the primary loop. p-Cymene has a

specific heat approximately 10 times less than water, so even short experimental

runs could result in a relatively quick increase in fluid temperature without adequate

cooling.

Minimizing the time duration of p-Cymene in the test section was important to

extend the life of the hexagonal duct and experimental fuel assembly. Therefore

when the facility was not in use, the test section was isolated from the primary loop

and the p-Cymene inventory in the test section was transferred to the secondary

reservoir.

Figure 4.42: Secondary loop is copper, while the tertiary loop is PVC
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Filtration is achieved by circulating p-Cymene to and from the primary reservoir

by the secondary pump into the particulate filter. This operation was necessary to

minimize dust and remove the seeding particles used in the PIV imaging technique,

Section 4.8. Also, the filter can be bypassed, allowing for the recirculation of the

primary reservoir. This was necessary to minimize settling of the seeding particles

when operating the facility at low flow rates.

Figure 4.43: Secondary reservoir is visible and p-Cymene returns to the top of the
primary reservoir

4.6 Tertiary Loop

The tertiary loop provides chilled water to the experimental facility so that the

primary loop temperature can be maintained, Figure 4.44. It interfaces with the

secondary loop at the heat exchanger. The loop consists of the following components:
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• Tertiary pump, 1 HP, constant speed

• Insulated tertiary reservoir with 500 gallon capacity and level indication

• Air-cooled portable chiller to cool the tertiary reservoir

• 2 inch polyvinyl chloride (PVC) piping and valving

• Quick disconnect hose fitting for easy draining

Figure 4.44: Tertiary reservoir, air-cooled chiller, and chilled water lines into the
facility room

4.7 Facility Room

Before construction began on the experimental facility, a project safety assess-

ment (PSA) was performed by Texas A&M University to determine the occupational

risks and requirements. The PSA is located in Appendix C. A portion (22 ft x 28 ft)
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of the Texas A&M Nuclear Engineering Department’s Thermal-Hydraulic Research

Laboratory was enclosure to meet these requirements. The primary functions of the

room include:

• Personnel control for laser safety

• Dedicated exhaust system

• Dedicated air conditioning system

Figure 4.45: Aluminum framing of the facility room

Personnel control was achieved by a set of locked doors and ”LASER ON” warning

indicators outside of the facility room. Personnel control was necessary to adhere to

Class IV laser safety protocol. Direct and indirect light from these lasers can cause

severe and permanent damage to the eye of individuals without personal protective

equipment.

The dedicated exhaust system was necessary to meet respiratory requirements

inside the facility room. Air inlet is achieved through a set of louvers. Exhaust is
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directed out the ceiling of the facility room and driven out of the University Services

Building (USB) with a blower and ductwork.

The dedicated air conditioning system helped maintain a constant temperature in

the facility room. This assisted in achieving MIR conditions, as well as meeting per-

sonnel habitability requirements in an enclosed space with multiple heat generating

components.

Figure 4.46: Drywall preparation

4.8 Imaging Hardware

The PIV system consisted of a 10 W continuous laser at a wavelength of 527 nm

and one digital CMOS high-speed Memrecam GX-3 camera. See Figures 5.2 and

5.3 in Section 5 for a top-down view of the PIV hardware configuration used for the

results presented in this thesis. The laser beam was adjusted by beam combination

optics to form a 1.5 mm thick laser sheet. The laser and camera position was adjusted

with three motorized linear translation stages. Laser alignment for the vertical plane

discussed in this thesis is provided in Section 5. The high-speed Memrecam GX-3

camera has a full resolution of 1280 x 1024 pixels, maximum frames per second (at
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full resolution) of 2,068, and 12-bit image depth. Figure 4.47 displays the imaging

hardware setup for a typical PIV measurement.

Figure 4.47: PIV setup containing test section, laser, camera, and traverse system

Seeding particles were fluorescent particles (UVPMS-BO Cospheric) with a mean

diameter of 50 µm, a density of 1.0 g cm−3, and an emission wavelength of 600 nm.

Figure 4.48 displays the fluorescent particles as viewed through laser safety goggles

that attenuate the majority of the 527 nm light. The seeding particles were selected

based on an parametric optimization of the reflectivity, diameter, and density. The

density of the particle must approximately equal the fluid density under investiga-

tion to best match the movement of a fluid element. Reflectivity and diameter are

inversely proportional, so testing must be done with the laser source to determine if

sufficient particle illumination can be achieved with the smallest diameter particle.

Also, the particle-image should be approximately 3-5 pixels on the PIV images.

A Quantum Composers digital delay pulse generator with 1 ns resolution was
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Figure 4.48: 600 nm fluorescent particles illuminated through an optical prism in the
near-wall region of the 61-rod assembly

utilized to synchronize the recording start time of the PIV and pressure hardware.

When possible, sampling frequency of both systems was set to be equal. By doing

this, time-synchronized data was collected.

Hollow, 30-60-90 triangular prisms were constructed from PMMA sheets of 0.25

inch thickness. The optical prisms were mated to the exterior wall of the hexagonal

duct in the visualization region to achieve a perpendicular orientation between cam-

era and laser. The prisms were filled with p-Cymene to minimize refraction of the

laser sheet as it passed through various media before reaching the near-wall region

of the 61-rod assembly. Figures 4.49, 5.2, and 5.3 show an optical prism mounted

adjacent to the hexagonal duct. Figures 4.49 and 4.50 display the test section il-

luminated by the laser source. Figure 4.50 displays a horizontal laser sheet across

the 61-rod assembly. The triangular lattice of the rods is clearly visible inside the

hexagonal duct.
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Figure 4.49: Vertical laser sheet and op-
tical prism without MIR conditions

Figure 4.50: Horizontal laser sheet with
MIR conditions

4.9 Pressure Hardware

High accuracy pressure transducers were procured from Omega®. The transduc-

ers have stainless steel wetted parts to be chemically compatible with p-Cymene.

Initial testing showed no signs of hysteresis. Pressure taps were drilled and tapped

in the inlet plenum, hexagonal duct, and outlet plenum so that pressure transducers

could be installed. The inlet plenum transducer measures the maximum gauge pres-

sure in the test section at the lowest axial location The outlet plenum transducer

measures the minimum gauge pressure in the test section at the highest axial loca-

tion. The difference between these measurements is pressure drop across the entire

bundle. The outlet plenum tap is also used to degas the facility during the filling

process. The location of all pressure taps was carefully considered to not obstruct

potential PIV viewing windows.

The hexagonal duct contains 7 axial pressure transducers and 2 sets of azimuthal
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pressure transducers. The axial transducers measure the gauge pressure at various

axial locations, while the azimuthal taps allow for the differential pressure (DP) to

be measured between 2 different faces at the same axial locations. Figure 4.51 shows

the experimental facility with the installed pressure hardware. Appendix A contains

the axial and azimuthal pressure tap locations. Table 4.4 contains the hardware used

in the experimental facility.

Figure 4.51: Pressure hardware location

4.10 Operating Procedures

A set of operating procedures were developed as part of the quality assurance plan.

The procedures ensured that the experimental facility was returned to the same initial

state so measurements could be repeated with confidence. Operating procedures for
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Table 4.4: Pressure hardware used in the experimental test

Position Model Number Description Accuracy

0F PX309-030G5V 30 psi Gauge < 4.0% FS
1F PX309-030G5V 30 psi Gauge < 4.0% FS
2F PX419-030G5V 30 psi Gauge < 0.1% FS
3F PX419-030G5V 30 psi Gauge < 0.1% FS
4F PX419-030G5V 30 psi Gauge < 0.1% FS
5F MMG015V5P1D0T4A6CEPS 15 psi Gauge < 0.1% FS
6F PX419-030G5V 30 psi Gauge < 0.1% FS
7F MMG015V5P1D0T4A6CEPS 15 psi Gauge < 0.1% FS
8A PX309-015G5V 15 psi Gauge < 1.0% FS
5 D/E/F/A P55D-4-N-20-S-5-A 5 inch H2O DP < 4.3% FS
6 D/E/F/A MMDWB10WBIV5P2D0T2A2CE 10 inch H2O DP < 0.1% FS

p-Cymene as the working fluid are located in Appendix B The operating procedures

include:

• Filling the facility by transferring p-Cymene from the secondary reservoir into

the test section

• Degasification of the primary loop

• Instrument startup testing

• Draining the facility by transferring p-Cymene from the test section into the

secondary reservoir
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5. PARTICLE IMAGE VELOCIMETRY METHODOLOGY

PIV is a non-intrusive, laser-based, optical measurement technique to quantify

velocity vector fields of a fluid. The velocity of a fluid element is defined as its dis-

placement over a given time interval. To capture the displacement of fluid elements,

highly reflective micro seeding particles of a similar density can be added to the fluid

without impacting the flow characteristics. A laser sheet is used to illuminate the

particles. The reflected light from the particles is captured by a CCD digital camera

to create an image. A series of images is then collected at a suitable frequency. The

suitable sampling rate is based on the requirement to capture an individual particle

multiple times before it leaves the viewing window, along with the particle-image

displacement equaling approximately 5-15 pixels. Other assumptions regarding the

seeding particles include:

• Homogeneous distribution

• Perfectly match the behavior of a fluid element

Various camera and laser sheet configurations are possible to measure either 2D

or 3D velocity fields/volumes. The simplest PIV setup involves a single camera

viewing normal to a laser sheet. This configuration produces 2D2C vector fields

(2 dimension, 2 component). Figures 5.2 and 5.3 displays the 2D2C setup, which

was used to quantify the velocity vector fields presented in this thesis. Additional

cameras may be added to increase the viewing window. Stereoscopic PIV utilizes 2

cameras with an off-normal viewing angle from the laser sheet and produces 2D3C

vector fields. Tomographic PIV requires 4 cameras but is able to produce 3D3C

vector fields.
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The statistical cross-correlation between consecutive images is the method used

to estimate particle-image displacement. This is necessary because it is computa-

tionally expensive, or sometimes impossible, to uniquely identify the same particle

in consecutive images. Consecutive images are defined as image pairs. For a given

image pair, the first image is discretized into multiple interrogation windows. The

maximum particle displacement should be 25% of this interrogation window. The

search window in the second image of the pair is larger than the interrogation win-

dow. The movement of the interrogation window is defined by the specified grid. A

finer grid will produce a vector field with a larger number of vectors. The number

and shape of the particle-images inside the interrogation window for an image is

unique to that image. Therefore, to determine the particle-image displacement, the

most similar interrogation window in the second image must be located by compar-

ing the interrogation window to areas within the search space and calculating the

correlation value at each position. This is performed after converting the image pairs

into the spectral domain using fast Fourier transform (FFT). The average intensity

of a given interrogation window is calculated by Equation 5.1. The figure of merit

for the cross-correlation is determined by Equation 5.2.

Īa =
1

BxBy

Bx∑
k=1

By∑
l=1

Ia(k, l) (5.1)

R(i, j) =

∑Bx

k=1

∑By

l=1(Ia(k, l) − Īa)(Ib(k + i, l + j) − Īb)[∑Bx

k=1

∑By

l=1(Ia(k, l) − Īa)2
∑Bx

k=1

∑By

l=1(Ib(k + i, l + j) − Īb)2

] 1
2

(5.2)

The assumption that shear between nearby fluid elements can be ignored re-

quires the interrogation window to be small. The assumption is necessary because

the resulting displacement from the cross-correlation is an average of the group of
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particle-images inside the interrogation window.

Three types of subchannels (corner, edge, and interior) are formed by the hexag-

onal duct and 61-rod assembly. These unique flow areas are the primary locations

of interest for PIV measurements. Both vertical and horizontal laser sheets can be

projected into these flow areas. This thesis contains PIV results from velocity mea-

surements on the set of exterior subchannels near the hexagonal duct wall of Face

E. Measurements were performed at two axial locations, Figure 5.1. The technical

motivation behind the location of the shakedown measurement windows was to de-

termine the lowest and highest feasible measurements that could be performed in

the visualization region of 1 wire pitch. The challenge existed due to the pressure

hardware mounted at various locations on the hexagonal duct. The bottom of the

lower window, Axial 1, is approximately 80 mm above pressure tap 5 and spans

71 mm, which corresponds to measurements between 2.418 and 2.565 wire pitches

downstream the zero wire pitch location defined in Appendix A. The bottom of the

upper window, Axial 2, is approximately 370 mm above pressure tap 5 and spans

71 mm, which corresponds to measurements between 3.027 and 3.174 wire pitches

downstream the zero wire pitch location, which is formed by the interface between

the lower plenum and hexagonal duct.

Horizontal cross-sections of the PIV setups for each measurement location are

provided in Figures 5.2 and 5.3. The vertical laser sheet used to illuminate particles

for the PIV measurements is represented by the green line. The PIV measurement

windows are represented by the green rectangles. An X-Y coordinate system was

assigned to represent horizontal and vertical directions in the laser sheet. The origin

of the X-Y coordinate system is shown. The origin is selected as follow:

• X = 0 at the inner corner made by faces D and E
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Figure 5.1: Side view of the PIV setup for the lower and upper windows

• Y = 0 at centerline of PT5 (corresponding to the axial location of 2.25 pitches,

as defined in A

• Z = 0 at the inner side of face E

The minimum and maximum X-Y coordinates of each measurement region are

provided in Table 5.1.

A three-dimensional traversing system was utilized to perform fine spatial adjust-

ments of the laser sheet within the edge subchannels. The laser alignment process

started by adjusting the base of the laser until the laser sheet was parallel with the

inner surface of the wall forming Face E. A parallel orientation was confirmed by
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Table 5.1: X-Y coordinate system for both PIV measurement windows

Location Xmin (mm) Xmax (mm) Ymin (mm) Ymax (mm)

Axial 1 0.6 89.5 79.9 150.8
Axial 2 0.6 89.5 368.7 439.6

Figure 5.2: Top view of the PIV setup for the lower window, Axial 1

visual inspection. The relative intensity of the laser sheet in the two corners of Face

E was monitored until equal. Next, the laser sheet was laterally traversed until it

intersected the exterior row of rods. Again, by visual inspection, the laser sheet was

confirmed to simultaneous intersect rods 1-5 in the plane parallel to face E. The laser

sheet had a thickness of 1.5 mm ±0.5 mm. The distance of the laser sheet from the

tangent plane along the exterior rods was 1.88 mm ±0.5 mm.

A calibration process was necessary to establish a map between the image pixel
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Figure 5.3: Top view of the PIV setup for the upper window, Axial 2

spacing and physical dimensions in the PIV measurement window. A calibration

plate manufactured by LaVision assisted in this process, Figure 5.4. The plate con-

tains an array of dots with a high precision pattern on two levels. Tolerances of the

plate include [33]:

• plate thickness of ±0.02 mm

• dot spacing of ±0.02 mm

• level separation of ±0.01 mm

For statistical sampling, four sets of images were recorded at various volumetric

flow rates for each location. The number of images in each set was limited by the

internal random access memory (RAM) of the digital camera. Sequences of 3087

images were taken per set for a total of 12348 images per flow rate per location. The

images have a resolution of 1280 × 1024 pixels. The desired camera frame rate to
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Figure 5.4: LaVision calibration plate [34]

achieve the 5-15 pixel displacement was estimated using the mean axial velocity (v)

derived from dividing the volumetric flow rate (Q) by the cross-sectional flow area

(Aflow). Then the camera frame rate was set to the values in Table 5.2 based on the

∆t required for the 5-15 pixel displacement. The bulk Re number was also calculated

using Equation 5.3 using the hydraulic diameter (Dh) and kinematic viscosity (ν) of

water at 22◦C. Table 5.2 contains information for three different Re number, because

PIV results at those values are discussed in this thesis.

Re =
vDh

ν
(5.3)

Table 5.2: Camera frame rate for 5-15 pixel seeding particle displacement

Q Aflow v ν Dh Re ∆t Frame rate
(m3hr−1) (m2) (m sec−1) (m2 sec−1) (m) (sec) (sec−1)

11.4 8.03e−3 0.39 9.56e−7 7.73e−3 3200 2.5e−3 400
22.7 8.03e−3 0.78 9.56e−7 7.73e−3 6400 1.1e−3 900
34.1 8.03e−3 1.17 9.56e−7 7.73e−3 9600 0.7e−3 1400
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After collecting sets of images, post-processing began by first calculating the

mean background intensity from all images of a given set. Next, the mean back-

ground intensity was subtracted from each image. This step increases the contrast

between the particle-images and extraneous scattered laser light. Cross-correlation

PIV algorithms from PRANA were utilized. PRANA is an open-source, GUI-based,

MATLAB program for calculating 2D velocity fields developed by Virginia Tech [35].

Figure 5.5: Raw PIV image

A static mask was utilized to define a region of interest (ROI) for the post-

processing. This is very useful to decrease the computational expense of interior

subchannel post-processing, where the majority of the PIV window is not relevant.

For the exterior subchannels, the mask simply removed the left and right borders of

the PIV window, where hexagonal duct corners were in view.

Post-processing involved two passes of decreasing grid size using the Multigrid

- Discrete Window Offset (DWO) and robust phase correlation (RPC) algorithms.
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Figure 5.6: Mean background of image set

Two passes were deemed sufficient for the preliminary analysis using water as the

working fluid. More passes will be used when MIR conditions are achieved and

p-Cymene is used as the working fluid. DWO can increase the cross-correlation

accuracy by offsetting the interrogating window between subsequent passes by an

amount equal to the integer-pixel-displacement [36]. The increased accuracy allows

for the initial pass to be quite coarse relative to the final pass, which greatly re-

duces the computational cost. The interrogation window size for the final pass was

determined to achieve a particle-image density of 5-10 per window.

Pass 1 resulted in a coarse vector field and Pass 2 refined the initial field. The

coarse vector field produced by Pass 1 was operated on by a velocity interpolation

function to form the initial guess of the Pass 2 refined vector field. The selected

function was bi-cubic interpolation. This function requires a uniform grid, uses three

points per polynomial, and produces the smoothest result of all built-in velocity

interpolation functions. A smooth interpolation is important to establish for the
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Figure 5.7: Background subtracted image

Multigrid - DWO method.

The RPC algorithm is summarized below [37]:

1. Each image is spatially discretized into multiple interrogation windows

2. A FFT is applied to each interrogation window to transform to the spectral

domain

3. Image pairs are cross-correlated

4. A phase transform filter is applied to increase the amplitude of the correlation

peak

5. The product is operated on by a weighted signal-to-noise ratio (SNR) term to

reduce the amplitude of the noise

6. An inverse FFT is applied to each interrogation window
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7. The correlation peak is operated on by a 3 Pt. Gaussian estimator to increase

the probability of peak identification [38]

Once the correlation peak has been identified, the displacement is known only

to the integer pixel value. The subpixel displacement can be estimated by several

methods. The method chosen in this analysis is the most commonly used Three-

Point Gaussian Estimator. The correlation peak maximum is determined by passing

a Gaussian curve through three points in both the X and Y directions.

Table 5.3 contains the primary parameters of the post-processing analysis.

Table 5.3: PIV post-processing parameters

Parameter Pass 1 Pass 2

Multigrid method Bi-cubic Bi-cubic
Searching window size (pixel) 256 × 256 128 × 128
Interrogation window size (pixel) 64 × 64 pixels 32 × 32
Interrogation window overlap 50% 50%
Grid buffer 8 × 8 8 × 8
Correlation type RPC RPC
Subpixel correlation peak location 3 Pt. Gaussian 3 Pt. Gaussian
Particle diameter (pixel) 2.8 × 2.8 2.8 × 2.8

After each pass, a validation check was performed to eliminate spurious vectors.

Spurious vectors can be caused by in-plane and out-of-plane loss of particle-image

pairs, along with steep velocity gradients. The validation check is called universal

outlier detection, where the magnitude of neighboring vectors of a selected vector are

compared to the magnitude of said selected vector. The number of neighbor vectors

was a 3 × 3 grid around the selected vector. The location parameter used in the

comparison is the median value of neighboring vectors. This process is repeated for
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each vector in the grid.
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6. PIV RESULTS

Before filling the experimental facility with p-Cymene, shakedown testing with

DI water was performed to minimize the immersion time of PMMA in p-Cymene

during the initial setup and debug process of the imaging, pressure, flowrate, and

temperature hardware. Specifically, shakedown testing was performed by sequen-

tially increasing the bulk Re number by 600 between 3200 and 9600. Figure 6.1

displays three Re numbers of 3200, 6400, and 9600. These are the Re numbers

for which post-processing and data analysis have been performed on the shakedown

measurements. These are the results presented in this thesis. The variables pre-

sented in this section include the ensemble-averaged vertical and horizontal velocity

components, vmean and umean, the root-mean-square (RMS) vertical and horizontal

velocity components, vRMS and uRMS, and the Re shear stress, u′v′.

6.1 Ensemble-Averaged Vertical Velocity Component

The ensemble-averaged vertical velocity component vector field for Re number of

3200, 6400, and 9600 are presented in Figure 6.2 in ascending order by Re number.

In each row, Axial 1 is the left column, while Axial 2 is the right column. The fields

have been normalized by the bulk velocity for each Re number as defined in Table

5.2.

First, the effect of the Re number will be discussed. As the Re number increases,

the observed trend for both locations results in a decrease in the magnitude of the

normalized vertical component. This implies that as turbulence inside the assembly

increases, the amount of bypass flow in the exterior subchannels decreases which

could increase interior subchannel mixing where convective heat transfer limits are

typically reached first. Also, the velocity profile may be flattening out, similar to
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Figure 6.1: Flow regime map for hexagonal fuel assemblies [32]

turbulent pipe flow. However, interior subchannel measurements utilizing MIR con-

ditions are required to further investigate this phenomena. For a given Re number,

the normalized vertical velocity component is always greater than the bulk velocity.

This is expected due to the larger flow area and smaller expected pressure drop in

the exterior subchannel.

Second, a comparison between the different measurement locations will be made.

In Axial 1, the wire clocking position is such that the wire is not intersecting the

set of exterior subchannels. In fact, this measurement location contains the region

least impacted by the wire spacer due to the wire being approximately 180° from

the bisecting the set of exterior subchannels. Therefore, the velocity field is similar

to an arrangement with no wire spacers, where velocity maxima occur where the

flow area decreases and velocity minima occur where the flow area is largest and the

flow has the ability to enter the interior subchannels. However in Axial 2, the wire
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clocking position is such that the wire is intersecting the set of exterior subchannels.

The well-defined minima and maxima observed at Axial 1 is no longer visible at

Axial 2. Over the measurement region, the vertical velocity component magnitude

is larger for Axial 2 than Axial 1 at lower Re number. This difference reverses as the

Re number increases, where the vertical velocity component magnitude is larger for

Axial 1 than Axial 2. This implies that bypass flow velocity is minimized in regions

where the wire spacer is intersecting the set of exterior subchannels near the wall.

6.2 RMS Vertical Velocity Component

The RMS vertical velocity component vector field for Re number of 3200, 6400,

and 9600 are presented in Figure 6.3 in ascending order by Re number. Again,

Axial 1 is the left column, while Axial 2 is the right column. The fields have been

normalized by the bulk velocity for each Re number as defined in Table 5.2.

First, the effect of the Re number will be discussed. For both measurement

locations, the RMS vertical velocity component decreases in magnitude as Re number

increases. Specifically, the decrease in fluctuation is most prominent when the rods

and wall are close. Also, a left-to-right gradient of the RMS vertical component

becomes more apparent as Re number increases, implying that the swirl induced by

the helical wire spacer becomes greater as Re number increases.

Second, a comparison between the different measurement locations will be made.

At lower Re numbers, the RMS component is larger for Axial 1. However, the

difference becomes much smaller as the Re number increases.

6.3 Ensemble-Averaged Horizontal Velocity Component

The ensemble-averaged horizontal velocity component vector field for Re number

of 3200, 6400, and 9600 are presented in Figure 6.4 in ascending order by Re number.

In each row, Axial 1 is the left column, while Axial 2 is the right column. The fields
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have been normalized by the bulk velocity for each Re number as defined in Table

5.2. The effect of increasing Re number on the vector field is not visually apparent for

either measurement location, indicating the magnitude of swirling phenomena in the

horizontal direction in exterior subchannels does not increase after Re reaches 3200.

When comparing Axial 1 and 2, substantial differences exist. Although the swirling

phenomena is apparent in both measurement locations, the beginning or bottom of

the phenomena is apparent in Axial 1, while the end or top of the phenomena is

apparent in Axial 2.

6.4 RMS Horizontal Velocity Component

The RMS horizontal velocity component vector field for Re number of 3200, 6400,

and 9600 are presented in Figure 6.5 in ascending order by Re number. In each row,

Axial 1 is the left column, while Axial 2 is the right column. The fields have been

normalized by the bulk velocity for each Re number as defined in Table 5.2.

The effect of increasing the Re number is very similar to the effect for the RMS

vertical velocity component, where the fluctuations decrease in magnitude and the

vector field becomes more uniform. The left-to-right gradient is not visible. When

comparing the different measurement locations, the RMS horizontal velocity magni-

tude is less when the wire intersects the set of exterior subchannels in Axial 2 relative

to Axial 1.

6.5 Reynolds Shear Stress

The Reynolds shear stress, u′v′, for Re number of 3200, 6400, and 9600 are

presented in Figure 6.6 in ascending order by Re number. In each row, Axial 1 is

the left column, while Axial 2 is the right column. The fields have been normalized

by the square of the bulk velocity for each Re number as defined in Table 5.2. For

both locations, the momentum transfer is primarily in the positive direction and
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approximately doubles between a Re number of 3200 and 9600.

Similar to the swirl phenomena noted in Figure 6.4, the beginning or bottom of

the phenomena is apparent in Axial 1, while the end or top of the phenomena is

apparent in Axial 2. However, the Reynolds shear stress is larger near the middle of

Face E and approximately zero close to the corners.

75



Figure 6.2: Ensemble-averaged vertical velocity component for Re = 3200, 6400, and
9600. Axial 1 (left) and Axial 2 (right)
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Figure 6.3: RMS vertical velocity component for Re = 3200, 6400, and 9600. Axial
1 (left) and Axial 2 (right)
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Figure 6.4: Ensemble-averaged horizontal velocity component for Re = 3200, 6400,
and 9600. Axial 1 (left) and Axial 2 (right)
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Figure 6.5: RMS horizontal velocity component for Re = 3200, 6400, and 9600. Axial
1 (left) and Axial 2 (right)
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.

Figure 6.6: Reynolds shear stress, u′v′, for Re = 3200, 6400, and 9600. Axial 1 (left)
and Axial 2 (right)
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7. CONCLUSIONS AND LESSONS LEARNED

A literature review, materials testing, facility design, and PIV methodology were

presented, along with results of 2D2C PIV shakedown measurements at two axial

locations in the test section. This work is beneficial because the validation of CFD

turbulence models on beginning-of-life hexagonal fuel assemblies is necessary to min-

imize thermal-hydraulic design uncertainties, which lead to increased reactor safety

and profitability.

The design of the experimental facility has been described in detail. The selection

of cast PMMA and p-Cymene achieved room temperature MIR conditions and will

enable measurements of exterior and interior subchannel velocity fields.

All requirements defined in Section 2.2 were met with one exception. The ex-

ception being the target Re number of 20000. Utilizing the rod fabrication method

described in Section 4.3.1.1, the maximum achievable bulk Re number was approxi-

mately 9600. However, an improved fabrication method was later developed, utilized,

and the target Re number of 20000 was eventually reached for the MIR flow experi-

ments not described in this thesis. Other lessons learned include:

• A 3D printed assembly was not yet cost-effective and did not possess the me-

chanical rigidity of an assembly built using cast PMMA.

• The failure rate of PMMA helically wrapped wires depended highly on the

mechanical stress added during the fabrication process. Insufficient tension

resulted in a wire that did not adhere to the rod, while too much tension

resulted in cracking and failure when paired with flow-induced vibration.

• The adhesive, ECA, proved key in the rod fabrication process by possessing a
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quick curing time and high chemical resistance to p-Cymene.

• Flexible hosing and isolating the piping support structure from the imaging

hardware support structure resulted in sufficient vibrational dampening.

• Although no failures occurred, inlet and outlet plena should be made from

stainless steel instead of PMMA to increase the durability of these components

where frequent connections and disconnections were made during the facility

operation.

• Particle agitation was required in the primary reservoir by means of circula-

tion from the secondary loop to minimize particle accumulation during low Re

number experimental tests.

• Thread sealant, specifically Loctite554 and LoctitePrimer7649, was required

to stop all leaks of the threaded stainless steel piping.

PIV shakedown measurements using DI water were performed and post-processed

utilizing the open-source PRANA algorithms. The presented variables included the

ensemble-averaged vertical and horizontal velocity components, vmean and umean,

the RMS vertical and horizontal velocity components, vRMS and uRMS, and the Re

shear stress, u′v′. The ensemble-averaged vertical components were roughly 1.0 to

1.4 times the bulk velocity, while the ensemble-averaged horizontal components were

roughly 0.15 to 0.4 times the bulk velocity. For both measurement locations, the RMS

components, normalized by the bulk velocity, decreased as the Re number increased.

The Re shear stress contour plots exhibited an increasing momentum transfer as the

Re increased. Also, the regions of maximum momentum transfer occurred in the

larger flow area region of the exterior subchannels, where the fluid is able to traverse

into the interior of the assembly.
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With this thesis defining the results of the shakedown testing, further experi-

mental work will generate a database of CFD reference data suitable for RANS and

LES validation of the flow behavior in the exterior, corner, and edge subchannels of

undeformed (beginning-of-life) and deformed (end-of-life) hexagonal fuel assemblies

with helical wire spacers.
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APPENDIX A

AS-BUILT GEOMETRY

This appendix includes the As-Built Geometry report developed in partial ful-

fillment of the quality assurance program plan for this project. It includes rod and

wire characterization, along with pressure tap locations on the test section.
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 INTRODUCTION AND SCOPE 

To support the validation of computation fluid dynamics (CFD) calculations, high quality characterization 

of flow in the same flow regime as those encountered in wire wrapped fuel assemblies prototypic of liquid 

metal fast reactors is needed. TAMU performs experimental tests focusing on investigating and measuring 

flow and pressure drop behavior of two geometries (non-deformed and deformed) of a mock 61-rod 

hexagonal fuel assembly for purposes of generating CFD validation grade data.  

This document defines the as-built geometry of the experimental non-deformed test section that will be 

used gather data from the experimental tests. The dimensions and manufacturing tolerances are provided 

in this document. Engineering drawings of the test section are also attached to this document.  

 TEST SECTION AS-BUILT GEOMETRY 

The dimensions reported in this section represent the as-built configuration of the non-deformed 

geometry. The components of the test section included are: 

 The acrylic test section enclosure (Section 2.0) 

 The first non-deformed bundle (Section 2.7) 

 The second non-deformed bundle (Section 2.8) 

2.1 Axial Coordinate System 

This section defines the relationship between the two notations used to denote various axial positions. 

The first notation is described in TWRP-31-TSPEC-00100 Rev. 1 [1], where various axial positions are 

denoted by the pitch number (I.E. visualization region between P = 2.25 and P = 3.25).  The second 

notation is the z-axis, which measures the vertical height in inches. The origin of the z-axis (z = 0) is 

equivalent to a pitch number of zero (P = 0). This origin is at the interface between the upper flange of 

the lower plenum and lower flange of the test section. Figure 1 displays a side view of the test section 

denoting major axial positions using the second notation method. 
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Figure 1. Side-view of the test section with major axial positions 
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2.2 Test Section Enclosure 

The hexagonal test section enclosure was designed following the specifications provided in TWRP-31-

TSPEC-0010 Rev. 1 [1]. Table 2.2.1 displays the inner flat-to-flat (FTF) distance of the sides of the 

enclosure for the test specification and design values.  

Table 2.2.1 – Specified and designed inner FTF of the test section enclosure (units of inches) 

Test Spec FTF (in) Design FTF (in) 

6.070 6.056 

 

The FTF measurements below are of (1) the outer FTF of the hexagonal guide plate used to manually 

fabricate the enclosure, and of (2) the inner FTF of the entrance and exit of the test section enclosure. 

Table 2.2.2 displays the three outer FTF distances of the hexagonal guide plate.1 These measurements 

were taken at the midpoint between corners. 

Table 2.2.2 - As-built inner FTF distances of the hexagonal guide plate (units of inches) 

Measurement # FTF 1 (in) FTF 2 (in) FTF 3 (in) FTF Average (in) 

1 6.065 6.061 6.063 - 

2 6.063 6.063 6.063 - 

3 6.064 6.062 6.065 - 

Average 6.064 6.062 6.064 6.063 

Std. Dev. 0.000816 0.000816 0.000943 0.000859 

 

Using the same caliper, the inner FTF of the entrance and exit of the test section enclosure were also 

measured. Measurements were repeated at different locations along each face. Due to the higher difficultly 

in performing these measurements on the inner FTF of the enclosure, the standard deviation of the 

measurement was significantly higher than the standard deviation of the measurements taken on the guide 

plate.   

Average FTF (Test Section Entrance) = 6.082 in with a standard deviation of 0.03175 in 

Average FTF (Test Section Exit)        = 6.088 in with a standard deviation of 0.02758 in 

                                                

 

1 Three measurements of the FTF distance were taken for each of the three two-side sets. The measurements were 

performed using a caliper (Starrett No.180, accuracy 0.001”) 
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2.3 Total Rod Length 

The total rod length exposed to the working fluid is 73.125 inches. This accounts for the following sections: 

 Lower plenum rod length = 4 inches 

 Test section rod length = 65.625 inches 

 Upper plenum rod length = 3.5 inches 

The length of the section within the upper plenum is less than the one within lower plenum by 0.5 inches 

due to the presence of the upper guide plate (thickness = 0.5 inches) utilized to maintain the triangular 

lattice. 

2.4 Wire-Clocking Angle 

The wire-clocking angle at the bottom of the rod was chosen such that the wire would be positioned in 

the corner of the hexagonal enclosure formed by Face F and A. The following images are top-view cross-

sections of the fuel bundle. The wire-clocking angles are relative to the corner of the hexagonal enclosure 

Faces C and D. The starting wire-clocking angle was chosen such that the angle would be 180˚ at an axial 

location of z = 42.1875 inches (P=2.25), as defined in [1]. Figure 2 displays the hexagonal enclosure face 

labeling scheme. 

 

Figure 2. Face labeling scheme showing a wire-clocking angle of 180˚ 

Figure 3 displays the starting wire-clocking angle when it emerges from the lower plate and begins its 

helical sweep. The axial location is z = -4 inches (P = -0.213).  The angle is 13.19˚ from a line that passes 

through the corners formed by Faces C and D.  
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Figure 3. Wire-clocking angle at z = -4 inches (P= -0.213) 

Figure 4 displays the wire-clocking angle at an axial location of z = 0 inches (P=0). The angle is 89.83˚ from 

a line that passes through the corners formed by Faces C and D. 

 

Figure 4. Wire-clocking angle at z = 0 inches (P=0) 

 

Face C Face D 

Face D Face C 
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2.5 Wire-Wrap Direction 

The direction of the wire wrap follows the requirement reported in the test specs [1]. The wire is wrapped 

clockwise around the rod in the direction of the flow (looking from the bottom of the assembly). 

2.6 Flow Inlet and Outlet Ports 

The flow inlet/outlet ports were located on Faces B and E. The ports were circular in shape with a inner 

diameter of 2 inches. The inlet ports had a centerline axial location of z = -2 inches. The outlet ports had 

a centerline axial location of z = 67.625 inches. 

2.7 First Non-Deformed Bundle 

2.7.1 Rods 

Cast acrylic rods were produced by PolyOne. The target rod diameter was specified in the TWRP-31-

TSPEC-0010 Rev. 1 [1]. The selected diameter and casting tolerance was 0.625 in ± 0.010 in.  In-house 

characterization consisted of measuring each rod diameter in three different axial locations. This was 

performed using a Mitutoyo digital caliper with an accuracy of ±0.001 in. Axial locations 1, 2, and 3 were 

defined to be distances from the bottom of the rod. These distances were approximately 4 in, 37 in, and 

70 in.  A total of 94 rods were characterized using this process. The average of the three axial location 

measurements was calculated for all 94 rods. The final 61 rods that were closest to the mean value were 

then selected. Table 2.7.1.1 shows the dimensions of the final 61 rods selected with the method described. 

The average rod diameter was 0.6267 inches with a standard deviation of 0.0006 inches. 

Table 2.7.1.1 – First Bundle Fuel Rod Characterization (diameter in inches) 2 

Rod # Location 1 Location 2 Location 3 Average Std. Dev. 

1 0.6255 0.6260 0.6285 0.6267 0.0013 

2 0.6265 0.6250 0.6265 0.6260 0.0007 

4 0.6260 0.6260 0.6280 0.6267 0.0009 

7 0.6260 0.6270 0.6270 0.6267 0.0005 

9 0.6275 0.6270 0.6275 0.6273 0.0002 

10 0.6270 0.6265 0.6270 0.6268 0.0002 

11 0.6270 0.6270 0.6280 0.6273 0.0005 

                                                

 

2 The rod # label is with respect to the total number of rods investigated and may not be sequential 
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12 0.6265 0.6260 0.6280 0.6268 0.0008 

13 0.6275 0.6275 0.6270 0.6273 0.0002 

16 0.6260 0.6265 0.6275 0.6267 0.0006 

18 0.6255 0.6260 0.6275 0.6263 0.0008 

19 0.6265 0.6270 0.6260 0.6265 0.0004 

20 0.6275 0.6275 0.6270 0.6273 0.0002 

21 0.6270 0.6270 0.6275 0.6272 0.0002 

22 0.6255 0.6260 0.6260 0.6258 0.0002 

23 0.6275 0.6280 0.6275 0.6277 0.0002 

24 0.6250 0.6255 0.6265 0.6257 0.0006 

26 0.6270 0.6280 0.6290 0.6280 0.0008 

28 0.6270 0.6260 0.6270 0.6267 0.0005 

31 0.6260 0.6255 0.6275 0.6263 0.0008 

32 0.6255 0.6260 0.6275 0.6263 0.0008 

33 0.6265 0.6265 0.6270 0.6267 0.0002 

34 0.6270 0.6265 0.6275 0.6270 0.0004 

35 0.6255 0.6260 0.6270 0.6262 0.0006 

36 0.6270 0.6270 0.6265 0.6268 0.0002 

37 0.6275 0.6280 0.6275 0.6277 0.0002 

38 0.6270 0.6270 0.6270 0.6270 0.0000 

39 0.6250 0.6250 0.6265 0.6255 0.0007 

41 0.6250 0.6255 0.6260 0.6255 0.0004 

42 0.6255 0.6250 0.6265 0.6257 0.0006 

44 0.6255 0.6265 0.6255 0.6258 0.0005 

46 0.6260 0.6260 0.6270 0.6263 0.0005 

47 0.6270 0.6265 0.6265 0.6267 0.0002 

48 0.6260 0.6255 0.6255 0.6257 0.0002 

49 0.6260 0.6280 0.6275 0.6272 0.0008 

50 0.6270 0.6265 0.6285 0.6273 0.0008 

53 0.6265 0.6265 0.6280 0.6270 0.0007 

54 0.6280 0.6265 0.6270 0.6272 0.0006 

55 0.6270 0.6265 0.6270 0.6268 0.0002 

56 0.6255 0.6265 0.6275 0.6265 0.0008 

57 0.6270 0.6270 0.6270 0.6270 0.0000 

58 0.6255 0.6250 0.6285 0.6263 0.0015 

59 0.6265 0.6255 0.6255 0.6258 0.0005 

60 0.6260 0.6265 0.6265 0.6263 0.0002 

61 0.6285 0.6275 0.6285 0.6282 0.0005 

101



 

 

 

TAMU Wire-Wrapped As-Built Geometry (Non-Deformed Bundle) 

Document No:     TAMU-WW-AS Rev: 2 Page 13 of 21 

62 0.6265 0.6265 0.6275 0.6268 0.0005 

63 0.6275 0.6275 0.6280 0.6277 0.0002 

65 0.6270 0.6265 0.6265 0.6267 0.0002 

66 0.6265 0.6260 0.6260 0.6262 0.0002 

67 0.6255 0.6250 0.6250 0.6252 0.0002 

69 0.6255 0.6255 0.6260 0.6257 0.0002 

70 0.6270 0.6270 0.6270 0.6270 0.0000 

71 0.6260 0.6265 0.6270 0.6265 0.0004 

72 0.6270 0.6255 0.6275 0.6267 0.0008 

75 0.6265 0.6275 0.6270 0.6270 0.0004 

76 0.6270 0.6265 0.6255 0.6263 0.0006 

81 0.6270 0.6265 0.6275 0.6270 0.0004 

40 0.6260 0.6255 0.6265 0.6260 0.0004 

84 0.6275 0.6265 0.6285 0.6275 0.0008 

89 0.6255 0.6260 0.6275 0.6263 0.0008 

92 0.6265 0.6260 0.6280 0.6268 0.0008 

 

2.7.2 Wire Spacers 

Extruded acrylic wire spacers were procured from Wuxi YanYang International Trading Co., Ltd. The 

target wire spacer diameter was specified in the TWRP-31-TSPEC-0010 Rev. 1 [1]. The selected diameter 

and extrusion tolerance was 0.003 m ± 0.00015 m. In-house characterization consisted of measuring each 

wire spacer diameter in three different axial locations. This was performed using the same Mitutoyo caliper 

used for the rod characterization. Axial locations 1, 2, and 3 were defined to be distances from the bottom 

of the wire spacer. These distances were 4 in, 37 in, and 70 in. A total of 73 wire spacers were 

characterized using this process. The average of the three axial location measurements was calculated for 

all 73 wire spacers. The final 61 wire spacers that were closest to the mean value were then selected. 

Table 2.7.2.1 shows the dimensions of the final 61 wire spacers selected with the method described. The 

average wire diameter was 0.00297 m with a standard deviation of 0.00003 m. 

Table 2.7.2.1 - Wire Spacer Characterization (diameter in m) 3 

Wire # Location 1 Location 2 Location 3 Average Std. Dev. 

1 0.00298 0.00296 0.00302 0.00299 0.00002 

                                                

 

3 The wire # label is with respect to the total number of wires investigated and may not be sequential 
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2 0.00301 0.00296 0.00295 0.00297 0.00003 

4 0.00294 0.00291 0.00297 0.00294 0.00002 

5 0.00299 0.00298 0.00295 0.00297 0.00002 

8 0.00293 0.00296 0.00295 0.00295 0.00001 

9 0.00299 0.00297 0.00298 0.00298 0.00001 

10 0.00303 0.00304 0.00301 0.00303 0.00001 

11 0.00298 0.00298 0.00301 0.00299 0.00001 

12 0.00302 0.00297 0.00296 0.00298 0.00003 

14 0.00303 0.00294 0.00300 0.00299 0.00004 

15 0.00298 0.00295 0.00303 0.00299 0.00003 

18 0.00304 0.00302 0.00299 0.00302 0.00002 

19 0.00301 0.00300 0.00303 0.00301 0.00001 

21 0.00297 0.00302 0.00296 0.00298 0.00003 

22 0.00295 0.00300 0.00298 0.00298 0.00002 

23 0.00303 0.00302 0.00296 0.00300 0.00003 

24 0.00301 0.00299 0.00298 0.00299 0.00001 

25 0.00297 0.00301 0.00303 0.00300 0.00002 

26 0.00294 0.00299 0.00298 0.00297 0.00002 

27 0.00298 0.00301 0.00299 0.00299 0.00001 

28 0.00294 0.00294 0.00293 0.00294 0.00000 

29 0.00295 0.00296 0.00297 0.00296 0.00001 

30 0.00300 0.00295 0.00303 0.00299 0.00003 

31 0.00297 0.00292 0.00295 0.00295 0.00002 

33 0.00295 0.00297 0.00303 0.00298 0.00003 

34 0.00298 0.00298 0.00300 0.00299 0.00001 

35 0.00300 0.00299 0.00296 0.00298 0.00002 

36 0.00300 0.00296 0.00294 0.00297 0.00002 

37 0.00294 0.00297 0.00296 0.00296 0.00001 

38 0.00296 0.00301 0.00303 0.00300 0.00003 

39 0.00295 0.00296 0.00298 0.00296 0.00001 

41 0.00296 0.00293 0.00297 0.00295 0.00002 

42 0.00297 0.00295 0.00294 0.00295 0.00001 

43 0.00302 0.00297 0.00298 0.00299 0.00002 

44 0.00298 0.00305 0.00299 0.00301 0.00003 

45 0.00297 0.00296 0.00300 0.00298 0.00002 

46 0.00293 0.00294 0.00295 0.00294 0.00001 

47 0.00298 0.00296 0.00291 0.00295 0.00003 

48 0.00302 0.00299 0.00303 0.00301 0.00002 
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49 0.00300 0.00297 0.00299 0.00299 0.00001 

50 0.00294 0.00300 0.00294 0.00296 0.00003 

51 0.00297 0.00296 0.00294 0.00296 0.00001 

52 0.00297 0.00294 0.00296 0.00296 0.00001 

53 0.00298 0.00293 0.00295 0.00295 0.00002 

54 0.00296 0.00294 0.00293 0.00294 0.00001 

55 0.00292 0.00295 0.00300 0.00296 0.00003 

56 0.00296 0.00296 0.00290 0.00294 0.00003 

57 0.00298 0.00300 0.00300 0.00299 0.00001 

58 0.00298 0.00291 0.00292 0.00294 0.00003 

59 0.00296 0.00296 0.00295 0.00296 0.00000 

60 0.00294 0.00293 0.00294 0.00294 0.00000 

62 0.00298 0.00296 0.00295 0.00296 0.00001 

63 0.00297 0.00294 0.00293 0.00295 0.00002 

64 0.00302 0.00298 0.00296 0.00299 0.00002 

65 0.00299 0.00301 0.00298 0.00299 0.00001 

66 0.00290 0.00298 0.00293 0.00294 0.00003 

68 0.00297 0.00294 0.00299 0.00297 0.00002 

69 0.00295 0.00296 0.00297 0.00296 0.00001 

71 0.00297 0.00295 0.00296 0.00296 0.00001 

72 0.00296 0.00300 0.00296 0.00297 0.00002 

73 0.00297 0.00299 0.00296 0.00297 0.00001 

2.7.3 Fabrication Process 

A low viscosity version of ethyl-2-cyanoacrylate was the adhesive used in the fabrication process. The 

wire was first adhered to the lower 1.5 inches of the rod. For this lower attachment section, the axis of 

the rod and wire were set parallel with assistance from an aluminum guide block containing milled rod/wire 

holes. The wire was then helically wrapped around the rod and adhered to the upper 0.5 inches of the 

rod. Before attaching the wire to the top, tension was applied to the wire to remove slack and mate the 

rod and wire surfaces. A 3D printed guide block was utilized to set the appropriate wire-clocking angle at 

the top of the rod. 
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2.8 Second Non-Deformed Bundle 

2.8.1 Rods 

Cast acrylic rods were procured from Boedeker. The target rod diameter was identical to the first bundle, 

as defined in Section 2.7.1. The same In-house characterization process was repeated for 58 new rods. 

Table 2.8.1.1 shows the dimensions of the 58 new rods. A portion of the 58 new rods, along with several 

salvaged rods from the first non-deformed bundle, were selected to be used in the second non-deformed 

bundle. The average rod diameter was 0.6251 inches with a standard deviation of 0.0014 inches. 

Table 2.8.1.1 – Second Bundle Fuel Rod Characterization (diameter in inches) 

Rod # Location 1 Location 2 Location 3 Average Std. Dev. 

1 0.6245 0.6265 0.6250 0.6253 0.0008 

2 0.6255 0.6250 0.6245 0.6250 0.0004 

3 0.6260 0.6260 0.6260 0.6260 0.0000 

4 0.6255 0.6255 0.6255 0.6255 0.0000 

5 0.6250 0.6250 0.6275 0.6258 0.0012 

6 0.6255 0.6255 0.6255 0.6255 0.0000 

7 0.6255 0.6255 0.6255 0.6255 0.0000 

8 0.6255 0.6255 0.6255 0.6255 0.0000 

9 0.6280 0.6240 0.6220 0.6247 0.0025 

10 0.6260 0.6260 0.6245 0.6255 0.0007 

11 0.6225 0.6240 0.6220 0.6228 0.0008 

12 0.6240 0.6265 0.6230 0.6245 0.0015 

13 0.6260 0.6450 0.6300 0.6337 0.0082 

14 0.6290 0.6255 0.6255 0.6267 0.0016 

15 0.6260 0.6250 0.6250 0.6253 0.0005 

16 0.6235 0.6235 0.6210 0.6227 0.0012 

17 0.6225 0.6260 0.6235 0.6240 0.0015 

18 0.6230 0.6235 0.6235 0.6233 0.0002 

19 0.6250 0.6230 0.6270 0.6250 0.0016 

20 0.6300 0.6270 0.6270 0.6280 0.0014 

21 0.6350 0.6230 0.6250 0.6277 0.0052 

22 0.6280 0.6300 0.6260 0.6280 0.0016 

23 0.6245 0.6245 0.6305 0.6265 0.0028 

24 0.6245 0.6250 0.6245 0.6247 0.0002 

25 0.6245 0.6240 0.6270 0.6252 0.0013 

26 0.6240 0.6255 0.6230 0.6242 0.0010 
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27 0.6270 0.6235 0.6235 0.6247 0.0016 

28 0.6295 0.6250 0.6250 0.6265 0.0021 

29 0.6280 0.6260 0.6240 0.6260 0.0016 

30 0.6250 0.6240 0.6240 0.6243 0.0005 

31 0.6240 0.6240 0.6245 0.6242 0.0002 

32 0.6315 0.6250 0.6270 0.6278 0.0027 

33 0.6245 0.6245 0.6210 0.6233 0.0016 

34 0.6245 0.6225 0.6230 0.6233 0.0008 

35 0.6235 0.6225 0.6220 0.6227 0.0006 

36 0.6245 0.6265 0.6250 0.6253 0.0008 

37 0.6275 0.6240 0.6250 0.6255 0.0015 

38 0.6225 0.6235 0.6200 0.6220 0.0015 

39 0.6260 0.6235 0.6230 0.6242 0.0013 

40 0.6340 0.6240 0.6245 0.6275 0.0046 

41 0.6250 0.6230 0.6235 0.6238 0.0008 

42 0.6230 0.6250 0.6250 0.6243 0.0009 

43 0.6255 0.6245 0.6225 0.6242 0.0012 

44 0.6250 0.6230 0.6250 0.6243 0.0009 

45 0.6245 0.6245 0.6230 0.6240 0.0007 

46 0.6255 0.6220 0.6250 0.6242 0.0015 

47 0.6250 0.6245 0.6245 0.6247 0.0002 

48 0.6230 0.6250 0.6250 0.6243 0.0009 

49 0.6260 0.6245 0.6230 0.6245 0.0012 

50 0.6250 0.6200 0.6250 0.6233 0.0024 

51 0.6240 0.6240 0.6220 0.6233 0.0009 

52 0.6240 0.6250 0.6250 0.6247 0.0005 

53 0.6250 0.6250 0.6250 0.6250 0.0000 

54 0.6250 0.6255 0.6250 0.6252 0.0002 

55 0.6245 0.6250 0.6250 0.6248 0.0002 

56 0.6250 0.6240 0.6245 0.6245 0.0004 

57 0.6245 0.6250 0.6260 0.6252 0.0006 

58 0.6250 0.6250 0.6250 0.6250 0.0000 

2.8.2 Wire Spacer 

Extruded acrylic wire spacers were procured from Wuxi YanYang International Trading Co., Ltd. The 

target wire spacer diameter was identical to the first bundle, as defined in Section 2.7.2. The same In-

house characterization process was repeated for 200 new wire spacers. The final 61 wire spacers that 

were closest to the mean value were then selected. Table 2.8.2.1 shows the dimensions of the selected 
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61 wire spacers used in the second non-deformed bundle. The average wire spacer diameter was 0.00300 

m with a standard deviation of 0.00003 m. 

Table 2.8.2.1 – Second Bundle Wire Spacer Characterization (diameter in m)4 

Wire # Location 1 Location 2 Location 3 Average Std. Dev. 

6 0.00297 0.00299 0.00290 0.00295 0.00004 

7 0.00300 0.00301 0.00300 0.00300 0.00000 

8 0.00294 0.00293 0.00291 0.00293 0.00001 

9 0.00300 0.00300 0.00300 0.00300 0.00000 

13 0.00299 0.00298 0.00297 0.00298 0.00001 

14 0.00299 0.00295 0.00302 0.00299 0.00003 

15 0.00290 0.00295 0.00300 0.00295 0.00004 

16 0.00300 0.00300 0.00300 0.00300 0.00000 

17 0.00303 0.00300 0.00300 0.00301 0.00001 

18 0.00297 0.00300 0.00295 0.00297 0.00002 

19 0.00300 0.00302 0.00290 0.00297 0.00005 

20 0.00296 0.00290 0.00296 0.00294 0.00003 

21 0.00290 0.00293 0.00300 0.00294 0.00004 

23 0.00300 0.00305 0.00301 0.00302 0.00002 

24 0.00302 0.00303 0.00305 0.00303 0.00001 

25 0.00301 0.00301 0.00301 0.00301 0.00000 

26 0.00304 0.00301 0.00300 0.00302 0.00002 

27 0.00295 0.00300 0.00300 0.00298 0.00002 

28 0.00304 0.00302 0.00301 0.00302 0.00001 

29 0.00301 0.00301 0.00301 0.00301 0.00000 

30 0.00300 0.00300 0.00301 0.00300 0.00000 

31 0.00300 0.00309 0.00305 0.00305 0.00004 

32 0.00297 0.00302 0.00302 0.00300 0.00002 

33 0.00295 0.00300 0.00303 0.00299 0.00003 

34 0.00300 0.00301 0.00300 0.00300 0.00000 

35 0.00301 0.00304 0.00300 0.00302 0.00002 

36 0.00301 0.00300 0.00300 0.00300 0.00000 

37 0.00306 0.00300 0.00305 0.00304 0.00003 

38 0.00300 0.00301 0.00300 0.00300 0.00000 

                                                

 

4 The wire # label is with respect to the total number of wires investigated and may not be sequential 
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39 0.00301 0.00299 0.00301 0.00300 0.00001 

40 0.00305 0.00300 0.00309 0.00305 0.00004 

41 0.00305 0.00304 0.00302 0.00304 0.00001 

42 0.00301 0.00301 0.00305 0.00302 0.00002 

43 0.00303 0.00288 0.00306 0.00299 0.00008 

44 0.00305 0.00302 0.00307 0.00305 0.00002 

45 0.00303 0.00308 0.00301 0.00304 0.00003 

48 0.00303 0.00303 0.00301 0.00302 0.00001 

49 0.00305 0.00304 0.00301 0.00303 0.00002 

51 0.00302 0.00301 0.00300 0.00301 0.00001 

52 0.00305 0.00301 0.00303 0.00303 0.00002 

53 0.00300 0.00303 0.00297 0.00300 0.00002 

55 0.00306 0.00303 0.00307 0.00305 0.00002 

60 0.00305 0.00285 0.00303 0.00298 0.00009 

61 0.00296 0.00297 0.00293 0.00295 0.00002 

65 0.00302 0.00298 0.00303 0.00301 0.00002 

70 0.00296 0.00299 0.00300 0.00298 0.00002 

72 0.00298 0.00294 0.00297 0.00296 0.00002 

74 0.00302 0.00301 0.00300 0.00301 0.00001 

75 0.00304 0.00295 0.00302 0.00300 0.00004 

78 0.00297 0.00299 0.00293 0.00296 0.00002 

82 0.00301 0.00305 0.00303 0.00303 0.00002 

83 0.00292 0.00291 0.00293 0.00292 0.00001 

88 0.00301 0.00303 0.00300 0.00301 0.00001 

89 0.00302 0.00301 0.00301 0.00301 0.00000 

91 0.00300 0.00304 0.00296 0.00300 0.00003 

92 0.00301 0.00294 0.00297 0.00297 0.00003 

93 0.00303 0.00304 0.00301 0.00303 0.00001 

94 0.00300 0.00300 0.00305 0.00302 0.00002 

96 0.00300 0.00298 0.00302 0.00300 0.00002 

97 0.00300 0.00305 0.00303 0.00303 0.00002 

99 0.00300 0.00301 0.00295 0.00299 0.00003 

2.8.3 Fabrication Process 

The fabrication process defined in Section 2.7.3 was repeated for the second non-deformed bundle. A 

series of additional steps was then performed to fully adhere the wire along the entire length of the rod. 

After attaching the wire to the rod bottom/top, the wire was tacked at eight different axial locations. After 

curing, inspection was performed on the wire position at the eight tacked locations and at midpoints 
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between the tacked located. After passing this inspection, the wire was then fully adhered to the rod by 

applying adhesive to both sides of the wire along its entire length.  

 PRESSURE TRANSDUCER FINAL LOCATION 

Holes were drilled and tapped into the acrylic hexagonal test section enclosure to accommodate pressure 

transducer hardware. Table 3.1 lists the final locations of the holes that will accommodate the pressure 

transducers. Measurements have been performed using a straight-edged ruler with a 0.0625 in accuracy. 

Holes are located at the midpoint of the width of each face, corresponding to 2.0625 ± 0.0625 in from 

the external corners of the hexagonal enclosure.  

Table 3.1 – Final axial location of all pressure taps 

Pressure Tap ID 

Final Axial Location 

 (z-coordinate) (in)5,6 

Final Axial Location  

(pitch number) 

PT #0 -2.0000 -0.11 

PT #1f 3.0000 0.16 

PT #2f 18.7500 1.00 

PT #3f 32.8125 1.75 

PT #4f 37.5000 2.00 

PT #5d 42.1875 2.25 

PT #5e 42.1875 2.25 

PT #5f 42.1875 2.25 

PT #5a 42.1875 2.25 

PT #6d 56.2500 3.00 

PT #6e 56.2500 3.00 

PT #6f 56.2500 3.00 

PT #6a 56.2500 3.00 

PT #7f 60.9375 3.25 

PT #8 67.6250 3.61 

 

                                                

 

5 The axial uncertainty of all pressure transducer final locations is ± 0.0625 in. 

 
6 The axial position z = 0.0 reference is located at the interface between the upper flange of the lower plenum and 

the lower flange of the test section. 
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APPENDIX B

FACILITY OPERATING PROCEDURES

This appendix includes the filling, starting, stopping, and draining procedures for

operating the experimental facility.
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1.0 PURPOSE 

The purpose of this document is to provide instructions to operate the test loop including: 

 Fill the test section 

 Start the facility 

 Shutdown the facility 

 Drain the facility 

2.0 EXPERIMENTAL FACILITY 

Figure 2 shows the process flow diagram of the Wire-Wrapped Experimental Facility.  Figure 2 located at 

the end of this procedure. 

3.0   OPERATING PROCEDURES 

Put initials when step is completed 

3.1 FILL THE TEST SECTION 

1. ______ Open the primary tank snorkel valve. 

2. ______ Verify that the drain hose from PTV-08 is connected to a plastic bottle and that the bottle 

is empty. 

3. ______ Check that the waste bottles fluid level is sufficiently low (if not empty the bottles). 

4. ______ Open LabView and load file Wire_Wrapped_Data_Acquisition.vi. 

5. ______ Verify that the checkboxes marked in red  in Figure 1 are switched to “F” (False) 
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Figure 1. LabView Snapshot 

6. ______ Power on the DAQ power supply with the front ON/OFF switch 

7. ______ Set the constant voltage DC power supply for the pressure transducers to 24 V. 

8. ______ Set the constant voltage DC power supply for the flowmeter and thermometer to 18 V. 

9. ______ Power on both constant voltage DC power supplies with the front ON/OFF switch 

10. ______ Open the following test section valves 

 PTV-05D 

 PTV-05E 

 PTV-05F 

 PTV-05A 

 PTV-06D 

 PTV-06E 

 PTV-06F 

 PTV-06A 

 PTV-08 

11. ______ Lock all cam and groove fittings for the green flex hoses 

12. ______ Close the primary tank drain valve below the primary tank  

 SV-01 

13. ______ Close the test section drain valve in the lower plenum  

 PV-05 

14. ______ Open the following primary loop valves 

 PV-01 

 PV-02 

 PV-03  
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15. ______ Watch for the fluid level in the test section to increase. It should equalize with the fluid 

level in the snorkel. 

 

16. ______ Confirm that all secondary loop valves are closed 

 SV-01 

 SV-02 

 SV-03 

 SV-04 

 SV-05 

 SV-06 

 SV-07 

 SV-08 

 SV-09 

17. ______ Power on the secondary pump VFD at the 240 V B-3 safety switch by moving the lever 

up 

18. ______ IMPORTANT: On the secondary pump VFD, make sure that the frequency is reduced 

to the minimum value. To do this, click on PROG button twice until 0.0 is displayed. Then press 

the down arrow until the frequency displayed is 3.0. 

19. ______ Press the impeller reversal button until the impeller direction indicator LED is red. 

20. ______ Press the green button to start the secondary pump (SP-01)  

21. ______ Confirm via visual inspection that the secondary pump (SP-01) impeller is rotating in the 

counterclockwise direction 

22. ______ Open the secondary tank outlet valve (SV-06) and the heat exchanger inlet valve (SV-03) 

23. ______ While Operator 1 opens slowly the heat exchanger outlet valve (SV-04), Operator 2 

increases the frequency of the secondary VFD by pressing the up arrow. This operation should 

be conducted slowly until the fluid level reaches the elevation of PTV-08. This can be done by 

continuously checking the fluid level in the test section and the level in the snorkel sight glass. The 

secondary VFD should read approximately 20.60 Hz. 

24. ______ Purge all pressure transducer tubing of air by modulating the following valves. 

 PTV-05D 

 PTV-05E 

 PTV-05F 

 PTV-05A 

 PTV-06D 

 PTV-06E 

 PTV-06F 

 PTV-06A 

25. ______ When the fluid level reaches the elevation of PTV-08, Operator 1 shall close the heat 

exchanger outlet valve (SV-04), and Operator 2 shall shut off the secondary pump (SP-02) by 

pressing the red button. 

26. ______ Check that the fluid draining from PTV-08 is entering the waste bottle 

27. ______ Close the primary loop valves to isolate the test section 

 PV-03 

 PV-04 
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28. ______ IMPORTANT: Pressure check. This step verifies that pressure transducers are reading 

correctly. Confirm that PTV-08 is open. Read the pressure for each pressure transducer PT#0-8 

and write the value in the table below. Compare the value with the target and mark as “P” (Pass) 

is the measured value is within approximately ±0.1 of the target. If not, mark as “F” (Fail) and 

contact the supervisor before continuing the test. 

Table 3-1. Pressure Check #1 

Pressure Transducer 
Target Pressure 

(psi)1 

Measured Pressure 

(psi) 

Difference 

(psi) 

Pass (P) 

Fail (F) 

PT#0 2.14 ±0.1    

PT#1 2.00 ±0.1    

PT#2 1.49 ±0.1    

PT#3 1.05 ±0.1    

PT#4 0.89 ±0.1    

PT#5 0.77 ±0.1    

PT#6 0.34 ±0.1    

PT#7 0.18 ±0.1    

PT#8 0.00 ±0.1    

 

29. ______ Close PTV-08 

3.2 START THE FACILITY 

1. ______ Power on the primary pump VFD at the 480 V A-10 safety switch by moving the lever 

up 

2. ______ IMPORTANT: Set frequency in the VFD to zero Hz before turning on the pump 

a. use the “Shift” button select the digit to change 

b. use the arrow keys to set the digit to 0 

c. repeat a) and b) until ALL digits are 0 (the screen MUST display 00.00) 

3. ______ Press the green FWD 

4. ______ IMPORTANT: To start the pump, always press first the “shift” bottom to select the tenth 

place to increase the frequency by 1/10 Hz at the time 

5. ______ Use the arrow key to increase the frequency up to 3 Hz 

6. ______ Increase the frequency of the VFD up to approximately 10 Hz in 1 Hz increments until 

the flow meter display shows 50 GPM. Refer to steps 2a and 2b 

7. ______ Bubbles may be visible in the test section 

8. ______ Increase the primary pump VFD to approximately 20 Hz until reaching approximately 

110 GPM. 

                                                

 

1 These values are calculated by multiplying the target values for H2O by 0.86 (specifc gravity of pcymene at room 

temperature) 
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9. ______ Maintain the same flow rate for 2 to 5 minutes to complete the degasification 

10. ______ Reduce the flow rate to 50 GPM. 

11. ______ Check that the fluid level in the primary tank snorkel is at the full line. (if level is low add 

more fluid) 

12. ______ IMPORTANT: Pressure check. Record the pressure from LabView and verify that values 

are approximately ±0.2 psi from the values listed in the table below.  

Table 3-2. Pressure Check #2 

Pressure Transducer Target Pressure  

(psi) 

Measured Pressure 

(psi) 

Difference 

(psi) 

Pass (P) 

Fail (F) 

PT#0 2.92 ±0.2    

PT#1 2.58 ±0.2    

PT#2 2.06 ±0.2    

PT#3 1.81 ±0.2    

PT#4 1.63 ±0.2    

PT#5 1.55 ±0.2    

PT#6 0.86 ±0.2    

PT#7 0.69 ±0.2    

PT#8 0.60 ±0.2    

 

13. ______ IMPORTANT. Flow mater check. Compare the reading of the flow meter display with 

the one displayed on LabView and write the values in the table below. Mark the comparison as 

“P” (Pass) if the values are within 2 GPM. 

Table 3-3 Flow Meter Check 

Flow Meter Display 

(GPM) 

Flow Meter 

LabView 

(GPM) 

Pass(P) / Fail(F) 

   

 

14. ______ Continue adding fluid to maintain the level in the primary tank snorkel at the full line 

15. ______ Startup is complete. Adjust pressure transducer valves accordingly based on the planned 

pressure measurements  

16. ______ Proceed to the desired flow rate for measurement by adjusting the VFD. Refer to steps 

8a and 8b 
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3.3 STOP THE FACILITY 

1. ______ Decrease the frequency of the primary pump VFD down to 0 Hz in 10 Hz increments. 

a. Use the “Shift” button select the digit to change 

b. Use the arrow keys to decrease the frequency 

2. ______ Power off the primary pump VFD at the 480 V A-10 safety switch by moving the lever 

down 

 

3.4 DRAIN THE FACILITY 

1. ______ Close primary valves (SV-03) and (SV-04), which are upstream and downstream of the 

test section. 

2. ______ Open the test section drain valve (SV-05) 

3. ______ Open the following valves to align the secondary tank (SR-01) to the test section drain 

 SV-10 

 SV-03 

 SV-04 

4. ______ Power on the secondary pump VFD at the 240 V B-3 safety switch by moving the lever 

up 

5. ______ IMPORTANT: On the secondary pump VFD, make sure that the frequency is reduced 

to the minimum value. To do this, click on PROG button twice until 0.0 is displayed. Then press 

the down arrow until the frequency displayed is 3.0. 

6. ______ Press the impeller reversal button until the impeller direction indicator LED is red. 

7. ______ Press the green button to start the secondary pump (SP-01)  

8. ______ Confirm via visual inspection that the secondary pump (SP-01) impeller is rotating in the 

counterclockwise direction 

9. ______ Increase the secondary pump VFD to 10 Hz to assist draining 

10. ______ After the fluid level is below PT#8, open PTV-08 to allow air ingress 

11. ______ Continue draining until the fluid level has reached the elevation of PT#0 

12. ______ Disconnect one 2” flex hose from the T-junction upstream of the test section 

13. ______ Drain contents from the flex hose to the disposal container 

14. ______ Disconnect the other end of the flex hose 

15. ______ Use a large syringe and flexible tube to remove the remaining fluid from the lower plenum 

16. ______ IMPORTANT: Never leave fluid into the test section after completing a test. 

17. ______ Close the primary tank snorkel valve. 
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Figure 1. Process flow diagram of the Wire-Wrapped Experimental Facility 
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APPENDIX C

PROJECT SAFETY ANALYSIS

This appendix includes the project safety analysis performed by the Texas A&M

University prior to the construction of the facility room.
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APPENDIX D

TEST SECTION DRAWINGS

This appendix includes the engineering drawings developed in SolidWorks. These

drawings, and their respective 3D CAD part files, were sent to Moore Fabrication,

the primary PMMA fabricator.
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APPENDIX E

HARDWARE INVENTORY

This appendix includes the set of tables that contain relevant model information

for all hardware installed in the experimental facility.
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Table 1-2. Pumps 

 

 

Table 1-3. Other Hardware 

 

 

 

Inventory No. Device Description Manufacturer Model No. Serial No. Pump Output

WW-PP-001 Primary Pump AMT 4251-98 V 08 7598585-0053 M 0012
15 Horsepower

WW-SP-001 Secondary Pump Chemflo 30708 12J1199
3 Horsepower

WW-SP-002 Chilled Water Pump Utilitech PPLSP100-SS 0434281 1 Horsepower

Pumps
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Inventory No. Device Description Manufacturer Model No. Serial No.

WW-LAP-001 Laptop DELL LATITUDE 3550 4LZ4042

WW-VFD-001 Primary VFD FUJI ELECTRIC FRN020G1S T45A284A0034PK

WW-VFD-002 Secondary VFD WEG CFW-08 1026972922

WW-DCP-001 DC Power Supply KORAD TECHNOLOGY CO. KA3005D 008250059007

WW-DCP-002 DC Power Supply KORAD TECHNOLOGY CO. KA3005D 008250059005

WW-HXE-001 HEAT EXCHANGER XYLEM BP411-20 1370301

WW-DAQ-001  Data Acquisition Chassis National Instruments SCXI-1000 19A3A93

WW-DAQ-002 32 Channel Terminal Block National Instruments SCXI-1303 1828E98

WW-DAQ-003 32 Channel +/- 10V Analog input Module National Instruments SCXI-1100 1450023

WW-DAQ-004 32 Channel Thermocouple/Voltage Input Module National Instruments SCXI-1102 1A21E55

WW-DAQ-005 32 Channel Terminal Block National Instruments SCXI-1303 1A902C0

WW-DAQ-006 USB Data Acquisition and Control Module National Instruments SCXI-1600 01A837F3

Generic devices
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