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ABSTRACT 

 

 Around the 1960s, barley was grown on nearly 170,372 hectares (ha) throughout 

Texas.  Today, it is planted on less than 12,000 ha and is mainly used as a feed and 

forage source for livestock.  In recent years, interest in craft breweries, local malt 

ingredients and feed barley for a growing dairy industry in the Texas High Plains has 

increased the popularity of barley.  Testing is required to find barley lines adapted to 

Texas climates that can withstand drought, disease and pest pressure.   

The purpose of this study was to evaluate and identify adapted barley lines for 

feed and malting purposes under multiple environments across different growing regions 

of Texas.  The specific objectives of this study were to 1) Evaluate and identify superior 

TCAP (Triticae Coordinated Agricultural Project) barley lines for yield and malt quality 

in Texas environments, 2) Determine desirable phenotypic characteristics for barley 

grown in Texas and 3) Evaluate the economic feasibility of barley production in Texas.  

Winter, facultative, spring two- and spring six-row barley was evaluated over Harvest 

Years 2014, 2015 and 2016.   

In-field and lab evaluations were taken over the growing and harvest seasons.  

Statistical analysis using PROC CORR in SAS and bi-plot analysis of data was 

conducted to determine relationships among measured field, yield and grain quality 

parameters across environments.  Each barley type performed differently at each 

location throughout Texas, however, similarities in performance were found at locations 

across harvest years.  Insect pressure was not major limiting factors to TCAP barley 
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performance at all locations used.  However, bird damage and rust (Harvest Year 2014 

only) was evident and did affect yield of spring six-row barley in McGregor, TX. 

 By testing various TCAP barley breeding lines and comparing them to 

commercially available varieties, the project will contribute new information on barley 

germplasm from breeding programs within the US and identify lines adapted to varying 

Texas environments.  Compared to other small grains, barley is more drought and salt 

tolerant and may be a desirable option for high-salinity soils and drought-prone regions 

of the state.  Barley is a useful crop, with current and developing markets in Texas for 

feed and malting.  By identifying adapted lines that can be released as commercial 

varieties in Texas, this research may increase yield potential and profitability of barley 

versus other crops.  Increasing barley acres could potentially improve food security by 

increasing food production under stressful environments.  Cropping systems would also 

diversify and could provide locally sourced, more sustainable food ingredients for 

consumers. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

History of Barley 

 Barley (Hordeum vulgare L.), is a short-season, early maturing grain crop from 

the parent species Hordeum spontaneum.  The family Hordeum is an ancient species, 

splitting from wheat (Triticum aesstivum L.) nearly 13 million years ago.  There are 32 

recognized species of Hordeum, originating in Southwest Asia 12 million years ago and 

in North America 4 million years ago.  Barley belongs to the group Triticeae, a subgroup 

of the grass family Poaceae.  Wheat, rye (Secale cereale L.) and triticale (Triticosecale) 

are part of this family (Von Bothmer and Komatsuda, 2011).  Barley was one of the 

world’s first crop to be domesticated, dating back approximately 10,000 years to the 

Fertile Crescent (Badr et al., 2000).  Historians have found writings about barley as early 

as 1700 BC.  Egyptians used barley as both a feed and food crop and are credited for 

developing brewing (Atkins, 1980).  Soon after its establishment in the Fertile Crescent, 

growing barley became popular in North Africa, the Far East, Asia and Europe (Von 

Bothmer and Komatsuda, 2011). 

 Barley is the fourth most important cereal crop in the world behind wheat, maize 

(Zea mays L.) and rice (Oryza sativa L.) (Brown et al., 2001).  It comes in various forms, 

which differ in growth habit and seedhead type.  Six-row barley has three kernels 

developed from each node, giving it a “six-rowed” look.  Two-row barley has a smaller, 

slender seedhead versus six-row and fewer, but larger seeds per head.  Winter barley 
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types are short-day sensitive and need to undergo vernalization.  Vernalization requires 

exposure to cold temperatures (0-7 oC) for approximately 30 days for a plant to flower in 

the spring and produce grain without negative impacts on yield (Schmuetz, 1978).  

Spring barley cannot grow in climates with cold temperatures.  Lastly, facultative barley 

can act as either a spring or winter type.  Facultative barley does not require a 

vernalization period, but can overwinter (Atkins, 1980).   

 Barley has remained an important cereal crop worldwide for several reasons 

including its ability to adapt to a wide variety of climates and multipurpose use as a 

livestock feed and human food and malt product (Brown et al., 2001).  Compared to 

other cereal grains, barley can grow in latitudes as far as 65oN in countries like Norway 

and elevations as high as 4500 meters (m) in countries like Peru (Ulrich, 2011).  When 

compared to wheat, barley performs better under drought conditions and high salinity 

soils.  Barley is however, subject to most of the same pests, disease and weather hazards 

as wheat and is not well-adapted to high humidity and water-logged environments 

(Harman et al., 1988; Ulrich, 2011). 

Barley from a Global Perspective 

 A significant amount of barley is grown on almost every continent in the world 

and it plays an important role in many people’s lives.  Since the 1990s, global worldwide 

production of barley has decreased from 178 million metric tons (MMT) to 144 MMT in 

2014.  Over 78% of the world’s barley is grown in Europe and Asia combined.  In 2014, 

Russia (20,444,258 metric tons), France (11,770,682 metric tons) and Germany 
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(11,562,800 metric tons) were the top 3 barley-producing countries in the world.  North 

America contributes approximately 11% (FAOSTAT, 2016).  

The Food and Agriculture Organization (FAO) indicates from 2000 to 2005, 

world trade of barley grain was worth $3 billion US dollars per year (USD yr-1) and 

world trade of barley for malt purposes was $2 billion USD yr-1.  Germany, United 

Kingdom, France and Belgium use barley mainly for malt production.  Ulrich (2011) 

stated 94% of barley from the countries previously mentioned is used for beer, 4% for 

distillation for whiskey and 2% for food use.  An increase in consumption of beer has 

increased the use and production of barley as a malt product over the past few years. 

 Barley is the fifth most popular crop produced worldwide and the fourth most 

produced cereal grain on a dry weight basis.  At one point in the 1980s, barley 

production was twice as much as soybean (Glycine max) production, but has since 

declined by 12% (Ulrich, 2011).  Technological limits, government regulations, higher-

profiting crops and climate are some factors having affected barley production over the 

years. 

Barley in the United States 

 Barley is believed to have entered the United States (US) in two ways: to New 

England and the Atlantic coast with colonists from Europe and to the southwest with the 

Spaniards (Atkins, 1980).  After the 1800s, settlers began to move west and barley 

traveled with them.  It was soon discovered barley grew better in fertile Midwest soils 

versus sandy coastal-type areas. 
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 While the epicenter of barley production in the US is based in five states, it can 

be found growing in the Eastern and Southwestern parts of the country as well (Figure 

1.1).  Each region in the US varies in production and type(s) of barley grown.  Idaho, 

Minnesota, Montana, North Dakota and Washington are the top barley-producing states 

in the US, planting approximately 82% of the total barley acreage in the 2015 planting 

season (WASDE, 2016). 

 In the US, 23% of barley is used for animal feed and 77% is used for food, seed 

and industrial purposes.  In contrast, 83% of wheat produced is used for human 

consumption and 17% is used for animal feed (WASDE, 2016).  Table 1.1 describes the 

land use and production trend for both barley and wheat between the years 2014 and 

2016.  In 2000, the country’s demand for malt was 14.97 MMT (Brown, Hill and 

Velasco, 2001).  Figure 1.2 shows the price trends compiled by USDA of barley grain, 

malt barley, wheat and corn grain on a $ metric ton-1 (Mt) from 2000-2016.  Overall, 

price trends of each commodity have fluctuated similarly over the years.  Within the last 

four years, corn grain prices have not declined as much compared to the other 

commodities. 
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Figure 1.1: 2015 barley production in the United States.  Shaded counties on map denote barley 

production; the darker the color, the more barley is produced.  Map taken from USDA National 

Agriculture Statistics Service (2016). 

 

 

 

 

Table 1.1: Land use and production of barley and wheat as feed grain, 2014-2017.  Data compiled from 

the USDA World Agricultural Supply and Demand Estimates (WASDE, 2016). 

 

 

 

 

 

 

 

 Barley Wheat 

Weight of 1 bushel (kg) 21.7 27.2 

 2014/15 2015/16 2016/17 2014/15 2015/16 2016/17 

Area harvested (million ha) 1.0 1.3 1.1 18.8 19.1 17.3 

Average bushel ha-1 179.5 170.2 175.4 108.0 107.7 120.0 

Total million bushels harvested 182 214 193 2,026.3 2,051.8 2,077 
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Figure 1.2: Price trends ($ Mt-1) of barley feed, barley malt, wheat and corn grain in the United States 

(2000-2016).  Data compiled from USDA National Agricultural Statistics Service (2016). 

 

 

 

Barley in Texas 

 Since the late 1500s, barley has been an important crop in Texas.  Barley arrived 

in the state through El Paso from Mexico between 1598-1685 and through south and east 

Texas with the establishment of missions in the 1700s (Atkins, 1980).  As the numbers 

of settlers and missionaries increased, the cultivation of barley slowly spread across the 

state. 

 Varieties grown in Texas depended on their path of entry.  Coast-type barley, 

originating from northern Africa, traveled to Texas with missionaries.  This spring type 

variety grew well in central and western areas of the state, but not in south Texas.  

Barley originating from Europe were mainly two-row spring types and came to Texas 

with settlers from northern and eastern states.  Producers found winter barley was more 
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successful versus spring due to its ability to withstand cooler temperatures, drought and 

disease (Atkins, 1980).  The Texas Agriculture Census of 1887 showed that barley 

production covered 4,682 ha.  Cotton (1,319,263 ha), corn (1,185,431 ha) and wheat 

(210,525 ha) were the top three field crops produced (Foster, 2001).  Introduced barley 

lines from Tennessee increased planted acres to 36,017 ha in the 1920s and by 1961, 

harvested barley acres peaked at 170,372 ha (Atkins, 1980).  After the 1960s, barley 

production began to decrease.  The 1987 Texas Agriculture Census report showed that 

5,434 ha of barley were harvested, in comparison to 1,476,739 ha of wheat harvested the 

same year.  Today, barley is planted on less than 12,000 ha across the state and is mainly 

used as a dual-purpose grazing and grain source for cattle (~4,700 ha) (FSA, 2015). 

 Texas Agricultural Experiment stations played an important role in producing 

barley types that performed well across the state’s different environments.  Researchers 

found winter barley with prostrate growth habits (grow low to the ground) and high cold 

tolerance was well-adapted to the High Plains.  Intermediate types of winter barley with 

upright growth habits, moderate cold tolerance and no vernalization requirement were 

best for pastureland in the Rolling Plains and East Texas.  Some of the first barley 

varieties adapted to Texas were, ‘Finley’, ‘Wintex’ and ‘Texan’.  Over the years, more 

varieties were released including, ‘Cordova’ in 1938—a more disease-resistant and high 

quality grain and forage variety.  ‘Goliad’ and ‘Tunis’, two varieties with good disease 

resistance and forage characteristics were also released (Atkins, 1980).  More recently, 

Texas A&M Agriculture Experiment Station released two winter barley varieties for 

commercial use.  The first, ‘TAMbar 500’, was released in 1991 and is ideal for 
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production in the High Plains.  It is a medium to late-maturing variety that has some 

resistance to Barley Yellow Dwarf Virus and complete resistance to powdery mildew 

and the leaf rust pathogen Puccina hordei (Marshall et al., 1993).  The second, ‘TAMbar 

501’, was released in 2001 and is commonly used as a feed-type barley in central, east 

and south Texas.  This variety is early-maturing, has good winter hardiness and 

resistance to Barley Yellow Dwarf Virus (Marshall et al., 2003). 

Common Barley Diseases in Texas 

 Barley is susceptible to many of the same diseases and viruses as wheat, 

including rust and barley yellow dwarf virus.  The following subsections will discuss 

each further. 

Rust 

 Historically, rust has been a problem in cereal crops since the time of the Romans 

and today can affect cereal crops grown across the US (Paulitz and Steffenson, 2011).  

Three types of rust found on barley in Texas are: stripe, stem and leaf rust.  The first 

documented case of stripe rust in the state occurred on barley research plots at the Texas 

A&M AgriLife Small Grain Breeding nursery in Uvalde, TX in April 1991 (Marshall 

and Sutton, 1995).  Although barley is planted on a small amount of land in Texas, rust 

is still present and can potentially impact crop performance and yield if not controlled. 

 All rust types are caused by a fungus, belonging to the genus Puccina (Paulitz 

and Steffenson, 2011).  Stripe rust in barley is due to infection by Puccina striiformis sp. 

hordei while wheat stripe rust is due to infection by Puccina strifformis sp. tritici (Yan 

and Chen, 2006; Line, 2002).  Puccina graminia sp. tritici causes stem rust in wheat and 
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barley and Puccina recondita sp. tritici causes leaf rust in wheat and barley.  Formation 

of rust pustules on the leaf blades, sheath or stem of the plant can occur in either warm 

or cool environments, depending on the type of rust causing the infection (Paulitz and 

Steffenson, 2011; DeWolf et al., 2010).  Stripe rust prefers cooler temperatures, while 

stem and leaf rust prefer warmer temperatures.  The color of the pustules varies from a 

light orange or yellow hue for stripe rust, to a brick red or brown color for stem and leaf 

rust.  The pattern also varies, depending on the specific type of rust—stripe rust forms 

stripes on the leaf blades, leaf rust forms small oval pustules scattered randomly across 

infected leaf tissue and stem rust forms oval pustules that erupt in clusters on both sides 

of infected stem tissue (DeWolf et al., 2010). 

 All-stage (AS) and high-temperature adult-plant resistance (HTAP) have been 

identified in both wheat and barley breeding programs.  All-stage resistance begins at 

seedling stage and protects the wheat from a rust infection during all growth stages.  The 

second resistance type, HTAP, protects adult plants against Puccina at high or low 

temperatures only (Chen, 2007).  One disadvantage to AS resistance is that it is race 

specific, meaning it only protects the plant against certain strains of Puccina.  In 

addition, AS is not considered “durable” because new races of Puccina can form and 

overcome the AS resistance.  In contrast, HTAP resistance is both durable and not race 

specific (Yan and Chen, 2006). 

Having both AS and HTAP resistance would be an ideal combination for 

protection against rust, but it is genetically difficult to do.  The exact location of genes 

on the chromosome is still unknown (Yan and Chen, 2006).  For example, through 
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genetic testing, Chen and Line (2003) identified approximately 26 different genes in 18 

barley genotypes for stripe rust resistance.  They found that Grannenlose Zweizeillige, a 

two-row barley variety originating from Ethiopia, showed resistance to all races of 

barley stripe rust found in the US (Yan and Chen, 2006).  Although this would be a good 

variety to incorporate into US barley breeding programs, identifying the resistance gene 

on the chromosome has been unsuccessful.   

 In addition to growing resistant and/or tolerant varieties, rust control with 

fungicides is also possible.  In Texas, foliar application of fungicides increased barley 

grain yield by 41% and increased 1000-kernel weight by 33% when compared to fields 

without foliar applications (Chen, 2007).  There are numerous registered fungicides 

available for rust control in barley.  Some examples include: Quadris® (ai: 

azoxystrobin), Stratego® (ai: propiconazole, trifloxystrobin), Tilt® (ai: propiconazole), 

Headline® (ai: strobilurin) and Quilt® (ai: azoxystrobin, propiconazole). 

Barley Yellow Dwarf Virus 

 Barley yellow dwarf virus (BYDV) can be found on most cereal grains in 

addition to barley.  This virus is caused by the genus Luteoviridae (Ingwell and Bosque-

Pérez, 2015).  This virus is primarily transmitted by the bird cherry-oat aphid 

(Rhopalosiphum padi L.).  The virus enters the phloem of barley causing a range of 

problems such as dwarfing of the plant, failure to head and reduced grain yield (Ulrich, 

2011; Ingwell and Bosque-Pérez, 2015; Bynum et al., 2012). 

 Unmanaged native grasses surrounding fertile cropland can host BYDV-infected 

aphids (Ingwell and Bosque-Pérez, 2015).  Once a barley plant is infected, yellowing 
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and stiffness of the leaves occur and the plant gradually ceases production.  Yield losses 

can be a significant issue for producers.  In the US, average yield losses in barley from 

this virus can range between 11 and 37%.  Once case in the US in 1989, barley crop loss 

from BYDV was valued at $48.5 million USD (Miller and Rasochová, 1997).  Cooler 

temperatures (15-18 oC) and a high light intensity are favorable conditions for 

continuing the BYDV cycle once it is established in the plant (D’Arcy and Domier, 

2005). 

 Proper management and control measures are vital to prevent crop loss.  Jones et 

al. (1970) found that most barley varieties originating from Ethiopia have higher 

tolerance to BYDV compared to other varieties.  Proper planting dates are also important 

to reduce aphid infestations.  Early fall plantings are less desirable because aphids are 

highly active during this time (Marshall and Rashed, 2014).  If planting barley in the 

springtime, an earlier planting date is desirable because seedlings will have a chance to 

establish before aphid numbers increase.  Lastly, insecticides, specifically seed 

treatments, can slow field infestations.  Insecticides containing active ingredients 

imidacloprid or thiamethoxam protect seedlings during the first 4-6 weeks post-planting 

(Marshall and Rashed, 2014).  A producer can monitor aphid populations throughout the 

growing season and a foliar applied insecticide can be used, however, it is often not 

practical due to high costs (Marshall and Rashed, 2014).  Insecticides have the potential 

to significantly reduce aphid numbers, thus lowering the risk of crop loss due to BYDV 

(D’Arcy et al., 2000). 
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Common Barley Pests in Texas 

 Barley is subject to much of the same pests as wheat and other small grains.  The 

following subsections will discuss aphids and Hessian fly as two possible pests of barley 

across the state. 

Aphids 

 Aphids (Aphidoidea), are soft-bodied insects that feed on small grains, 

ornamentals, trees and shrubs.  Using their mouth, they pierce through a stem or leaf and 

feed primarily in the phloem of the plant.  Aphid feeding results in leaf discoloration, 

stunting of plant growth, yield loss and in severe cases, death of plants.  Aphids produce 

a sticky sap known as “honeydew”.  Honeydew is a favorable food source and 

environment for the fungus Capnodium to establish.  This fungus produces a substance 

on leaves called “sooty mold” (Townsend, 2000).  Sooty mold can block sunlight from 

reaching plant cells, thus reducing photosynthesis and overall productivity of the plant 

(Townsend, 2000; Drees, 1996).  The three most common aphid types that affect barley 

in Texas are, Russian wheat aphid (Diruaphis noxia), greenbug (Schizaphis graminum), 

and bird cherry-oat aphid (Bynum et al., 2012).  All three aphid types secrete toxins that 

affect plants; the role of the bird cherry oat aphid as a vector of BYDV is discussed 

above. 

 Early detection is important when controlling aphids, as they have an incredibly 

fast reproduction rate (Townsend, 2000).  Seed treatments, as discussed earlier, can 

control aphids for 4-6 weeks post planting.  However, they are expensive and must be 

applied at planting time, before it is known that an aphid infestation will develop.  Foliar 
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applied insecticides, if needed, can be used in place of seed treatments and can be 

applied later in the season.  The barley varieties ‘Post 90’ and ‘STARS 1501B’ are 

resistant to greenbug (Armstrong et al., 2016).  Research conducted by the USDA 

Agriculture Research Service in Stillwater, Oklahoma has found that barley lines 

originating from Pakistan, Turkmenistan and Oklahoma have resistance against 14 

known greenbug biotypes.  Two genes, Rsg1 and Rsg2 are the only greenbug-resistance 

genes in barley.  All known barley varieties resistant to greenbug carry the gene Rsg1 

(Armstrong et al., 2016).  Research is still on-going to find more barley lines and 

varieties that carry the Rsg2 gene for greenbug resistance. 

Hessian Fly 

 Hessian fly (HF) (Mayetiola destructor), was first discovered in Russia, but 

traveled to the northeastern US in 1779 with Hessian troops fighting in the 

Revolutionary War.  Over the next hundred years, HF spread across the US, reaching 

Texas around the 1880s.  By 2005, HF was reported in 67 Texas counties (Morgan et al., 

2005). 

 Although HF prefers to infest wheat, barley can also be a host.  During summer, 

HF remains inactive in a larval state on residual wheat/barley stubble in fields (Morgan 

et al., 2005).  Adults emerge in late summer and early fall when temperatures cool and 

precipitation increases.  One or more broods of larvae develop during the fall and 

reproduction then slows during the winter.  As temperatures increase in late winter, 

adults become active once again and one or more broods of larvae will develop in the 
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spring.  Adults live for 2 days, during which they mate and lay eggs.  Eggs hatch within 

10 days and larvae begin to feed on the host plant (Morgan et al., 2005). 

 Hessian fly can drastically affect the productivity and yield capabilities of the 

plant.  In seedlings and tillering stages, HF can stunt growth and even kill the plant, 

while in mature plants, stem breakage can occur due to HF feeding.  This leads to 

harvest losses from lodging and low grain yield because of poor nutrient delivery to the 

seedhead during kernel formation (Harris et al., 1996). 

 Once a field is infested with HF, there is no remedial control.  Producers can 

prevent infestations with management practices such as, planting resistant varieties, 

delaying fall plant date and using seed treatments to suppress fall infestations.  A study 

by Harris et al (1996) showed that in 1989, producers who planted HF-resistant barley 

cultivars in the US resulted in approximately 95% reduction in HF population—a 

savings of over $200 million USD.  Another HF study conducted by Hill et al (1952) 

discovered that most of the HF-resistant barley varieties tested had origins tracing back 

to Egypt and northern Africa.  Plant breeders may be able to take advantage of this 

information to continue to find highly HF-resistant barley cultivars. 

Malting and Craft Breweries in Texas 

 Beer is one beverage that has stood the test of time and has played an important 

role in Egyptian, Medieval and American Western eras.  As defined by Helweg (2013), 

beer is “a beverage brewed, primarily from malted barley, hops, yeast and water”.  

Barley has remained a staple for beer production because it contains almost every 

ingredient required to make a high-quality beverage.   
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The Brewing Process 

 Four ingredients are typically needed when brewing: barley, hops, water and 

yeast.  The first step, malting, allows enzymes to breakdown complex sugars in the 

kernel into simple sugars such as maltose and proteins into amino acids.  The process of 

malting begins by soaking the barley kernels to induce germination (Helweg, 2013).  

Once the grain begins to sprout, the grain is heated to stop germination. 

 When malting is complete, the kernels are crushed, exposing the starch and 

soaked again.  This process reactivates the enzymes which convert the newly exposed 

starch into sugar, producing the sugary liquid “wort”.  Hops are incorporated into the 

wort to add bitterness to the beer.  After this process, yeast is added and fermentation 

begins.  The yeast consumes the sugars and through various cellular processes, ethanol 

and carbon dioxide is produced, giving the beer its alcohol content and carbonation 

(Helweg, 2013).   

There are two main types of fermentation processes which influence the final 

beer produced.  “Top fermenting yeast producers” are used to make ale.  Ale is 

fermented at a higher temperature and has a higher alcohol content compared to lager.  A 

lager is produced by “bottom fermenting yeast producers” at a cooler temperature for a 

longer period.  The lager style beer is the most common beer consumed in the world 

(Helweg, 2013).  The amount of barley needed to produce one barrel of beer varies 

depending on the type of beer being produced. 
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Desired Characteristics for Malt Barley 

 Malt analysis is an important aspect for maltsters and brewers, as it helps 

determine the type of barley they need to use.  Analysis of barley is broken down into 

three main categories: physical analysis, wort analysis and chemical analysis (Bies and 

Roberts, 2012).  Parameters tested in each category will be discussed further in this 

section.  

 Physical analysis is the physical make-up of the barley grain and includes 

assortment, bushel weight and moisture.  Assortment, also known as “plumpness”, can 

help a brewer determine the amount of endosperm in the seed; a plumper seed has more 

endosperm.  The plumper the seed, the lighter the color and higher yielding malt is to be 

expected.  Ideally, barley being used for malt should contain 80% or greater of plump 

seeds.  The second parameter in physical analysis is bushel weight.  Although bushel 

weight is not as important for brewers when brewing beer, it is an important parameter 

to determine storage of barley.  The last parameter, moisture, is important for brewing 

beer.  A low moisture barley can result in breakage during the brewing process, while a 

high moisture barley can shorten the shelf life of the beer and affect the brewing process.  

The ideal moisture range for malt barley is 3-6%, but this can vary depending on the 

type of brew being produced (Bies and Roberts, 2012). 

 The second category, wort analysis, consists of color, malt extract, wort 

viscosity, soluble/total protein ration (S/T ratio) and free amino nitrogen (FAN).  Malt 

extract measures the amount of fermentable sugars in a kernel.  A higher malt extract 

increases the alcohol that can be produced.  This parameter is measured by malting the 
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grain and measuring the amount of soluble sugars in the wort, the liquid extracted during 

the mashing process (Trainor, 2016).  The third parameter, wort viscosity, is the measure 

of the liquid’s ability to resist flow through a capillary column (Bies and Roberts, 2012).  

Too high or too low viscosity malt can cause production issues in the brewhouse.  An 

ideal range of viscosity for malt is between 1.45 and 1.60 centipose (Bies and Roberts, 

2012).  Wort contains sugars used by yeast during the fermentation process.  Kernels 

with low viscosity will germinate more uniformly and will contain less cell wall 

material, while a high viscosity kernel contains more cell wall material, slowing down 

the germination process and affecting overall fermentation (Trainor, 2016).  The S/T 

ratio is the ratio of the soluble protein and total protein in the malt.  An S/T ratio of 30 is 

ideal; too high of protein can decrease the amount of extract and increase color.  The last 

parameter in wort analysis is FAN, which measures how many free aminos are available 

to yeast during the fermentation process.  Free amino nitrogen should ideally be ≥180 

parts per million (ppm) (Bies and Roberts, 2012).   

 Chemical analysis, the last category of malt analysis, consists of alpha amylase 

and diastatic power.  Alpha amylase indicates the ability of the malt to convert to mash 

properly (Bies and Roberts, 2012).  Alpha amylase is an enzyme that breaks down starch 

into sugar for yeast to use during the fermentation process.  An all barley mash needs an 

α-amylase level of at least 30, while a malt with other cereal grains needs a higher level 

(Bies and Roberts, 2012).  Lastly, diastatic power measures the amount of α-amylase, β-

amylase and limit-dextrinase in the kernel.  These enzymes are critical to convert starch 

to sugar.  Enzymatic activity is observed in the malt to measure this parameter—the 
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lower the activity, the less potential for a high-quality malt extract, ultimately resulting 

in a lower quality beer (Trainor, 2006).  For an all barley mash, a level of ≥50 is needed 

(Bies and Roberts, 2012).  

 In addition to these parameters, brewers also look for certain seed characteristics.  

This includes a 97% germination rate after 2-3 days, seed protein content between 9 and 

11.5% and a water content of less than 13%.  Aflatoxin and pesticide residues must also 

meet the national standards (Agribusiness Handbook, 2009). 

The Texas Craft Beer Movement 

 A craft brewery is defined as a small privately-owned brewery that produces less 

than 6 million barrels of beer annually.  In the United States, craft brewers tend to use 

spring type barleys for malting more than winter and/or facultative.  Two-row spring 

barley is preferred for malting, as it is higher in extract and low in protein—ideal for 

producing lager.  Two-row is grown in central MT, ID, WA and CO.  Six-row spring 

barley can also be used for malting, but contains more enzymes which is not ideal for 

lager production.  Six-row can be found growing in MN, ND and eastern MT (Bouckaer 

et al., 2016).  There are currently 189 craft breweries in Texas, ranking 7th in the US.  A 

“beer barrel” is defined as containing 117.3 liters (L) (31 gallons).  Texas craft breweries 

produced 1,135,043 barrels of beer in 2015, which is the equivalent of 35,186.333 

gallons (133,140,543.9 L) of beer.  In 2014, craft brewery production in the state had a 

$3,770,000 impact on the economy (Craft Beer Sales by State, 2016).  

 Craft breweries need local malthouses to utilize locally grown barley.  In general, 

malt dealers prefer to contract with brewers producing greater than 20,000 barrels of 
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beer each year (Bouckaer et al., 2016).  Since Texas currently has one micro-malthouse, 

production is limited to the malthouse’s capacity.  From personal communication, malt 

production is expected to increase to 200 tons of barley consumed in 2017 and more 

malthouses are planning to be built across the state.   

Statistical Approach of TCAP Yield and Quality Evaluations, Bi-plot Analysis

 Bi-plot analysis is a statistical tool used to graphically show relationships 

between different factors at the same time.  Figures 1.3-1.5 were taken from Yan and 

Tinker (2006) and serves as a representation of what bi-plot analysis looks like.  Figure 

1.3 shows the relationship between oat varieties and yield parameters including: yield, 

groat, oil and protein.  As an example, the angle between yield and groat is less than 90o 

and therefore they are positively correlated—an oat variety can have both a high yield 

and high groat.  In contrast, the angle between oil and yield is greater than 90o meaning 

that they are more negatively correlated—an oat variety cannot have a high yield and a 

high oil content.  The closer the proximity of two lines, the greater the strength of the 

correlation.  Parameters that make either a 90o or 180o angle means that there is no 

correlation.  Since the oat variety ‘Ac Goslin’ is closer to the parameters yield and groat, 

it would have both higher yield and groat, but a lower oil content because it is further 

from that parameter.  The variety, ‘Ac Rigodon’ would have the opposite characteristics 

because it is closer to the oil parameter and further from both yield and groat.  
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Figure 1.3: Yan and Tinker (2006), genotype by trait bi-plot.  Bold text denotes parameters measured, 

lighter text denotes oat varieties analyzed.   
 

 

 

Figure 1.4 is the environmental vector view in bi-plot that shows the relationship 

between genotype and environment noted by letters “G” and “E”, respectively.  

Following the same trend as the parameters in Figure 1.3 did, angles between the 

environments have a negative, positive or no correlation.  In this case, all environments 

are positively correlated, except for a negative correlation between “E7” and “E8” and 

no correlation between “E5” and “E8”.  The circles featured on the bi-plot represent the 

standard deviation of the environments—the further an environment is from the center of 

the circle, the higher the standard deviation (more variation in that environment).  The 

environments “E7” and “E5” are the furthest from the center of the graph and therefore 

have the most variation.  The remaining environments are closer towards the center of 

the graph, showing that there was less variation in those environments.  The information 
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located in the top left-hand corner of the figure discusses the experimental variation 

explained by the bi-plot; in this case, 78% of the experimental variation is explained.  In 

their paper, Yan and Tinker (2006) suggest that environments with higher variation, such 

as “E7” and “E5”, should not be considered as test environments for further research, as 

they provide “little information on the genotypes”. 

 

 

 

 

 

 

 

 

 
 

Figure 1.4: Yan and Tinker (2006), environment vector view in bi-plot.  Concentric circles represent the 

standard deviation between environments.  “G” denotes genotypes, “E” denotes environments.   
 

 

 

 The final bi-plot, Figure 1.5, shows the “which won where” analysis view.  This 

type of analysis in bi-plot helps show how genotypes (G) performed across environment 

(E).  Genotypes located on lines in the polygons either performed poorly or the best for a 

certain environment, with the genotypes in the corner either being the top performer or 

the worst.  The genotype “G18” performed the best in environments “E5” and “E7”, 
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while genotype “G8” performed best in all other environments.  In addition, “G18” 

performed better at all locations than “G7”.   

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1.5: Yan and Tinker (2006), “which won where” view in bi-plot.  This view shows which genotype 

(G) performed best in each environment (E).  
 

 

 

Future of Barley Production in Texas 

 As the climate continues to change, more frequent and extreme drought events 

are expected to occur.  In addition, temperatures will rise, causing less winter freeze 

injury and more heat stress, directly affecting crop growth habits and heading dates.  

With these changes, it will be important to update and improve current barley production 

practices and varieties.  This may increase the adoption of drought-tolerant crops, such 

as barley, into cropping systems where it currently does not exist. 
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CHAPTER II 

 EVALUATION OF TCAP BARLEY LINES FOR YIELD AND QUALITY  

IN TEXAS ENVIRONMENTS 

 

Introduction 

Barley in Texas 

Since the late 1500s, barley has been an important crop in Texas.  Barley arrived 

in the state through El Paso from Mexico between 1598-1685 and through south and east 

Texas with the establishment of missions in the 1700s (Atkins, 1980).  As the numbers 

of settlers and missionaries increased, the cultivation of barley slowly spread across the 

state. 

 Varieties grown in Texas depended on their path of entry.  Coast-type barley, 

originating from northern Africa, traveled to Texas with missionaries.  This spring type 

variety grew well in central and western areas of the state, but not in south Texas.  

Barley originating from Europe were mainly two-row spring types and came to Texas 

with settlers from northern and eastern states.  Producers found winter barley was more 

successful versus spring due to its ability to withstand cooler temperatures, drought and 

disease (Atkins, 1980).  The Texas Agriculture Census of 1887 showed that barley 

production covered 4,682 ha.  Cotton (1,319,263 ha), corn (1,185,431 ha) and wheat 

(210,525 ha) were the top three field crops produced (Foster, 2001).  Introduced barley 

lines from Tennessee increased planted acres to 36,017 ha in the 1920s and by 1961, 

harvested barley acres peaked at 170,372 ha (Atkins, 1980).  After the 1960s, barley 
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production began to decrease.  The 1987 Texas Agriculture Census report showed that 

5,434 ha of barley were harvested, in comparison to 1,476,739 ha of wheat harvested the 

same year.  Today, barley is planted on less than 12,000 ha across the state and is mainly 

used as a dual-purpose grazing and grain source for cattle (~4,700 ha) (FSA, 2015). 

 Texas Agricultural Experiment stations played an important role in producing 

barley types that performed well across the state’s different environments.  Researchers 

found winter barley with prostrate growth habits (grow low to the ground) and high cold 

tolerance was well-adapted to the High Plains.  Intermediate types of winter barley with 

upright growth habits, moderate cold tolerance and no vernalization requirement were 

best for pastureland in the Rolling Plains and East Texas.  Some of the first barley 

varieties adapted to Texas were, ‘Finley’, ‘Wintex’ and ‘Texan’.  Over the years, more 

varieties were released including, ‘Cordova’ in 1938—a more disease-resistant and high 

quality grain and forage variety.  ‘Goliad’ and ‘Tunis’, two varieties with good disease 

resistance and forage characteristics were also released (Atkins, 1980).  More recently, 

Texas A&M Agriculture Experiment Station released two winter barley varieties for 

commercial use.  The first, ‘TAMbar 500’, was released in 1991 and is ideal for 

production in the High Plains.  It is a medium to late-maturing variety that has some 

resistance to Barley Yellow Dwarf Virus and complete resistance to powdery mildew 

and the leaf rust pathogen Puccina hordei (Marshall et al., 1993).  The second, ‘TAMbar 

501’, was released in 2001 and is commonly used as a feed-type barley in central, east 

and south Texas.  This variety is early-maturing, has good winter hardiness and 

resistance to Barley Yellow Dwarf Virus (Marshall et al., 2003). 
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Malting and Craft Breweries in Texas 

 Beer is one beverage that has stood the test of time and has played an important 

role in Egyptian, Medieval and American Western eras.  As defined by Helweg (2013), 

beer is “a beverage brewed, primarily from malted barley, hops, yeast and water”.  

Barley has remained a staple for beer production because it contains almost every 

ingredient required to make a high-quality beverage.   

The Brewing Process 

 Four ingredients are typically needed when brewing: barley, hops, water and 

yeast.  The first step, malting, allows enzymes to breakdown complex sugars in the 

kernel into simple sugars such as maltose and amino acids.  The process of malting 

begins by soaking the barley kernels to induce germination (Helweg, 2013).  Once the 

grain begins to sprout, the grain is heated to stop germination. 

 When malting is complete, the kernels are crushed, exposing the starch and 

soaked again.  This process reactivates the enzymes which convert the newly exposed 

starch into sugar, producing the sugary liquid “wort”.  Hops are incorporated into the 

wort to add bitterness to the beer.  After this process, yeast is added and fermentation 

begins.  The yeast consumes the sugars and through various cellular processes, ethanol 

and carbon dioxide is produced, giving the beer its alcohol content and carbonation 

(Helweg, 2013).   

There are two main types of fermentation processes which influence the final 

beer produced.  “Top fermenting yeast producers” are used to make ale.  Ale is 

fermented at a higher temperature and has a higher alcohol content compared to lager.  A 
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lager is produced by “bottom fermenting yeast producers” at a cooler temperature for a 

longer period.  The lager style beer is the most common beer consumed in the world 

(Helweg, 2013).  The amount of barley needed to produce one barrel of beer varies 

depending on the type of beer being produced. 

Desired Characteristics for Malt Barley 

Malt analysis is an important aspect for maltsters and brewers, as it helps 

determine the type of barley they need to use.  Analysis of barley is broken down into 

three main categories: physical analysis, wort analysis and chemical analysis (Bies and 

Roberts, 2012).  Parameters tested in each category will be discussed further in this 

section.  

 Physical analysis is the physical make-up of the barley grain and includes 

assortment, bushel weight and moisture.  Assortment, also known as “plumpness”, can 

help a brewer determine the amount of endosperm in the seed; a plumper seed has more 

endosperm.  The plumper the seed, the lighter the color and higher yielding malt is to be 

expected.  Ideally, barley being used for malt should contain 80% or greater of plump 

seeds.  The second parameter in physical analysis is bushel weight.  Although bushel 

weight is not as important for brewers when brewing beer, it is an important parameter 

to determine storage of barley.  The last parameter, moisture, is important for brewing 

beer.  A low moisture barley can result in breakage during the brewing process, while a 

high moisture barley can shorten the shelf life of the beer and affect the brewing process.  

The ideal moisture range for malt barley is 3-6%, but this can vary depending on the 

type of brew being produced (Bies and Roberts, 2012). 
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 The second category, wort analysis, consists of color, malt extract, wort 

viscosity, soluble/total protein ration (S/T ratio) and free amino nitrogen (FAN).  Malt 

extract measures the amount of fermentable sugars in a kernel.  A higher malt extract 

increases the alcohol that can be produced.  This parameter is measured by malting the 

grain and measuring the amount of soluble sugars in the wort, the liquid extracted during 

the mashing process (Trainor, 2016).  The third parameter, wort viscosity, is the measure 

of the liquid’s ability to resist flow through a capillary column (Bies and Roberts, 2012).  

Too high or too low viscosity malt can cause production issues in the brewhouse.  An 

ideal range of viscosity for malt is between 1.45 and 1.60 centipose (Bies and Roberts, 

2012).  Wort contains sugars used by yeast during the fermentation process.  Kernels 

with low viscosity will germinate more uniformly and will contain less cell wall 

material, while a high viscosity kernel contains more cell wall material, slowing down 

the germination process and affecting overall fermentation (Trainor, 2016).  The S/T 

ratio is the ratio of the soluble protein and total protein in the malt.  An S/T ratio of 30 is 

ideal; too high of protein can decrease the amount of extract and increase color.  The last 

parameter in wort analysis is FAN, which measures how many free aminos are available 

to yeast during the fermentation process.  Free amino nitrogen should ideally be ≥180 

parts per million (ppm) (Bies and Roberts, 2012).   

 Chemical analysis, the last category of malt analysis, consists of alpha amylase 

and diastatic power.  Alpha amylase indicates the ability of the malt to convert to mash 

properly (Bies and Roberts, 2012).  Alpha amylase is an enzyme that breaks down starch 

into sugar for yeast to use during the fermentation process.  An all barley mash needs an 



 

28 

 

α-amylase level of at least 30, while a malt with other cereal grains needs a higher level 

(Bies and Roberts, 2012).  Lastly, diastatic power measures the amount of α-amylase, β-

amylase and limit-dextrinase in the kernel.  These enzymes are critical to convert starch 

to sugar.  Enzymatic activity is observed in the malt to measure this parameter—the 

lower the activity, the less potential for a high-quality malt extract, ultimately resulting 

in a lower quality beer (Trainor, 2006).  For an all barley mash, a level of ≥50 is needed 

(Bies and Roberts, 2012).  

 In addition to these parameters, brewers also look for certain seed characteristics.  

This includes a 97% germination rate after 2-3 days, seed protein content between 9 and 

11.5% and a water content of less than 13%.  Aflatoxin and pesticide residues must also 

meet the national standards (Agribusiness Handbook, 2009). 

The Texas Craft Beer Movement 

A craft brewery is defined as a small privately-owned brewery that produces less 

than 6 million barrels of beer annually.  In the United States, craft brewers tend to use 

spring type barleys for malting more than winter and/or facultative.  Two-row spring 

barley is preferred for malting, as it is higher in extract and low in protein—ideal for 

producing lager.  Two-row is grown in central MT, ID, WA and CO.  Six-row spring 

barley can also be used for malting, but contains more enzymes which is not ideal for 

lager production.  Six-row can be found growing in MN, ND and eastern MT (Bouckaer 

et al., 2016).  There are currently 189 craft breweries in Texas, ranking 7th in the US.  A 

“beer barrel” is defined as containing 117.3 liters (L) (31 gallons).  Texas craft breweries 

produced 1,135,043 barrels of beer in 2015, which is the equivalent of 35,186.333 
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gallons (133,140,543.9 L) of beer.  In 2014, craft brewery production in the state had a 

$3,770,000 impact on the economy (Craft Beer Sales by State, 2016).  

 For craft breweries to utilize locally grown barley, local malthouses are needed.  

In general, malt dealers prefer to contract with brewers producing greater than 20,000 

barrels of beer each year (Bouckaer et al., 2016).  Since Texas currently has one micro-

malthouse, production is limited to the malthouse’s capacity.  From personal 

communication, malt production is expected to increase to 200 tons of barley consumed 

in 2017 and more malthouses are planning to be built across the state.   

Statistical Approach of TCAP Yield and Quality Evaluations, Bi-plot Analysis 

 Bi-plot analysis is a statistical tool used to graphically show relationships 

between different factors at the same time.  Figure 1.3, taken from Yan and Tinker 

(2006), is a representation of what bi-plot analysis looks like.  This bi-plot shows the 

relationship between oat varieties and yield parameters including: yield, groat, oil and 

protein.  The two parameters, yield and groat, are within proximity of each other.  Since 

the angle between these two parameters is less than 90o, they are positively correlated—

an oat variety can have both a high yield and high groat.  In contrast, the parameters oil 

and yield are not within proximity of each other.  The angle between these two 

parameters is greater than 90o meaning that they are more negatively correlated—an oat 

variety cannot have a high yield and a high oil content.  Parameters that make a 90o 

angle means that there is no correlation between them.  Since the oat variety ‘Ac Goslin’ 

is closer to the parameters yield and groat, it would have both higher yield and groat, but 

a lower oil content because it is further from that parameter.  The variety, ‘Ac Rigodon’ 
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would have the opposite characteristics because it is closer to the oil parameter and 

further from both yield and groat. 

Figure 1.4 is the environmental vector view in bi-plot.  The letters “G” and “E” 

stand for genotype and environment, respectively.  Following the same trend as the 

parameters in Figure 1.3 did, angles between the environments have a negative, positive 

or no correlation.  In this case, all environments are positively correlated, except for a 

negative correlation between “E7” and “E8” and no correlation between “E5” and “E8”.  

The circles featured on the bi-plot represent the standard deviation of the 

environments—the further an environment is from the center of the circle, the higher the 

standard deviation (more variation in that environment).  The environments “E7” and 

“E5” are the furthest from the center of the graph and therefore have the most variation.  

The remaining environments are closer towards the center of the graph, showing that 

there was less variation in those environments.  The information located in the top left-

hand corner of the figure discusses the variation explained by the bi-plot; in this case, 

78% of the variation is explained.  In their paper, Yan and Tinker (2006) suggest that 

environments with higher variation, such as “E7” and “E5”, should not be considered as 

test environments for further research, as they provide “little information on the 

genotypes”. 

The final bi-plot, Figure 1.5, shows the “which won where” analysis view.  This 

type of analysis in bi-plot helps show how genotypes (G) performed across environment 

(E).  Genotypes located on the polygon either performed poorly or the best for a certain 

environment, with the genotypes in the corner either being the top performer or the 
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worst.  The genotype “G18” performed the best in environments “E5” and “E7”, while 

genotype “G8” performed best in all other environments.  In addition, “G18” performed 

better at all locations than “G7”.   

Conclusion 

 Although barley is a minor aspect of Texas agriculture, there are possibilities to 

use it as a feed and forage source for livestock and malting for local craft breweries.  

Acreage for barley has declined since the 1960s, but is currently planted on ~12,000 ha 

across the state.  The release of ‘TAMbar 500’ in 1991 and ‘TAMbar 501’ in 2001 are 

two commercial barley varieties that have benefited livestock and grain producers across 

the state.  More recently, the number of craft breweries and interest in local “Texas 

Beer” has had a significant impact on the state’s economy—contributing approximately 

$3,700,000 in 2014.  

 As climate continues to change, more frequent and extreme drought events are 

expected to occur.  In addition, temperatures will rise, causing less winter freeze injury 

and more heat stress, directly affecting crop growth habits and heading dates.  With 

these changes, it will be important to update and improve current barley production 

practices and varieties.  This may increase the adoption of more drought-tolerant crops, 

such as barley, into cropping systems where it currently does not exist. 

Materials and Methods 

 For this project, barley lines were obtained from the Triticeae Coordinated 

Agricultural Project (TCAP) to screen advanced breeding material from barley breeding 

programs from Oregon State University, University of Minnesota and Oklahoma State 
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University.  The TCAP consists of wheat and barley breeders from across the US with 

the goal of preserving and developing new varieties of wheat and barley (Director, Jorge 

Dubcovsky, jdubcovsky@ucdavis.edu).  The first objective of this study was to evaluate 

and identify superior TCAP barley lines for yield and malt quality in Texas 

environments. 

Harvest Year 2014 

 Headrows (HR) (1 m long, 0.4 m apart) of 463 spring (248 2-row, 215 6-row), 

119 winter and 182 facultative TCAP lines (Appendix A-3 and A-4) were grown in two 

locations in central and south Texas, Castroville (CAS) and McGregor (MCG) in 

Harvest Year 2014.  Table 2.1 and Figures 2.1 and 2.2 describe each location’s 

environmental conditions, average monthly rainfall and temperature.  Untreated barley 

seed was planted in a single replicated design (SRD) with repeated checks placed 

throughout.  Checks were commercially available varieties and provided a yield 

comparison among TCAP breeding lines and commercial variety performance.  Spring 

checks placed in the spring trial were: ‘AC Metcalf’, ‘Conlon’ and ‘CDC Copeland’.  

Winter checks placed in the winter trial were: ‘Alba’, ‘Maja’ and ‘Full Pint’.  A Hege 

1000 HR plot drill (76 cm long HD on a 38 cm row spacing), complete with automatic 

trip was used to plant.  The CAS location had access to overhead irrigation and MCG 

was a dryland location.   

Fertilizer was applied based on soil test recommendations.  In CAS, no fertilizers 

of pesticides were applied.  On February 14, 2014, 35.3 kg N ha-1 (UAN 32-0-0), 2.34 L 

ha-1 Dimethoate (ai: dimethoate) and a mixture of 1.75 L ha-1 Weedmaster (Nufarm, ai: 
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3,6-dichloro-o-anisic acid, 2,4-dichlorophenoxyacetic acid) and 0.0000025 L ml-1 of the 

surfactant LI 700 (Nufarm) was topdressed to the HRs at MCG.  

 In-field observations were taken during the growing season, as described in 

Table 2.4.  Final field observations and plant height (cm) and plot quality were taken at 

harvest.  In-field notes were taken on overall plant health and uniformity of each test plot 

before harvesting.  If a plot had a great deal of lodging, bird damage, poor growth, etc. a 

rating of 1 would be given.  A rating of 5 was given to plots that had uniform growth and 

no lodging or bird damage.  All viable seedheads were hand harvested and placed into 

their respective sample bag for later processing. 

 In the lab, seedheads were counted, threshed (Model BT14E thresher, Almaco, 

Nevada, IA) to collect seed and cleaned (Model ABSO aspirator, Almaco, Nevada, IA) 

to remove foreign material.  Table 2.4 describes the lab data that was collected after 

harvest.  A double-screened method was used to determine kernel plumpness, a 

parameter used for malting characteristics.  A 24 mm screen placed on a 20 mm screen 

all placed on a catch pan was shaken fifteen times clockwise and counterclockwise.  

Seed remaining on each screen was weighed (g) and divided into “plump” (>24 mm), 

“medium” (<24 mm and >20 mm) and “thin” (< 20 mm). 

 All field and lab data of TCAP lines and checks were compiled and statistically 

analyzed using the PROC CORR procedure in SAS (SAS Institute, 2009) to measure the 

association between yield and yield parameters (Appendix A-1).  Prior to correlation 

analysis, yields of all entries were adjusted with repeating checks using the software 

program Agrobase (Agronomix Inc.).  For this year, lines were not tested for malt 
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quality and therefore the top yielding ~20% of winter, facultative and spring lines were 

replanted in small plots (1.5m x 4.5m) for Harvest Year 2015. 

 

Table 2.1: Harvest year 2014 TCAP barley headrow location data. 

Location McGregor, TX Castroville, TX 

 

Date Planted 

 

Winter: 11/14/13 

Spring: 12/18/13 

 

Winter: 11/12/13 

Spring: 12/17/13 

 

Coordinates 

 

31oN 

-97.5oW 

 

29.4oN 

-98.8oW 

 

Irrigation Type &  

Amount Applied 

 

Dryland 

0 mm 

 

Overhead 

127 mm 

 

Soil Type 
 

Crawford Silty Clay 

 

Lewisville Silty 

Clay 

 

Date Harvested 

 

06/05/14 

206 Winter 

169 Spring 

 

05/15/14 

184 Winter 

149 Spring 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Monthly precipitation (mm) in Castroville, TX from January 2013 to December 2016. 
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Figure 2.2: Average monthly temperature (oC) in Castroville, TX from January 2013 to December 2016. 

 

 

 

Harvest Year 2015 

 The top ~20% yielding lines from Harvest Year 2014 in larger test plots were 

further evaluated in Harvest Year 2015.  128 spring (64 2-row, 64 6-row), 23 winter and 

45 facultative lines were planted in three locations in Texas: Dimmitt (DIM), CAS and 

MCG (Table 2.2, Figures 2.1-2.6).  Dimmitt was planted with winter and facultative 

lines only, as fall planted spring barley reliability is limited in northern parts of Texas 

due to freeze injury from cold winter temperatures.  The remaining locations, CAS and 

MCG were planted with winter, facultative and spring lines. 

 In this year, seed was treated with CruiserMaxx® Vibrance for Cereals 

(Syngenta, ai: Thiamethoxam, Mefenozam, Difenoconazole) and Cruiser® 5FS 

(Syngenta, ai: Thiamethoxam) to prevent fall insect infestation.  60 g (68 kg ha-1) of each 

line were packaged in small envelopes for each location.  If seed was limited (< 30 g, < 
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34 kg ha-1), it was replaced with an alternative variety, ‘P-919’ or ‘TAMbar 501’ for 

winter and ‘AC Metcalf’, ‘Conlon’, ‘CDC Copeland’ or ‘SY-Goliad’ (wheat) for spring 

barley.  Lines used this year were placed in a SRD with repeating checks placed 

throughout, same as Harvest Year 2014. 

 Small plots (1.5m x 4.5m) were planted using an eight-row (18 cm row spacing) 

planter.  Two locations (DIM and CAS) had access to overhead irrigation while MCG 

was a dryland location.  The same in-field observations were taken as Harvest Year 2014 

(Table 2.4). 

On January 29, 2015, in MCG, 50.4 kg N ha-1 (UAN 32-0-0) and a mixture of 1.55 L ha-

1 MCPA Ester (Agri Star, ai: 2-ethylhexyl ester of 2-methyl-4-chlorophenoxyacetic acid) 

and recommended rate of the surfactant LI 700 was topdressed on all plots.  In DIM, 

70.6 kg N ha-1 (46-0-0) was applied on November 2, 2014 prior to planting.  One week 

before planting, volunteer corn in the field was sprayed with Gramoxone (Syngenta, ai: 

paraquat dichloride) at a rate of 3.50 L ha-1.  Between late February and late March 

2015, 3 applications of N (32-0-0) at the rate of 41.5 kg ha-1 was applied via fertigation. 

 During harvest, a Wintersteiger (Wintersteiger Ag, Ried, Austria) nursery 

combine (1.5 m header) was used.  Due to the unseasonable amount of rain during May 

(harvest season), CAS was selectively hand harvested for seed increase only and was not 

included for statistical analysis.  Harvested samples were processed in the lab and 

evaluated for yield components, same as Year 1 (Table 2.5).  Subsamples of each line 

were packaged and sent to USDA Cereal Quality Testing Lab (Madison, WI) for malt 

quality testing including: kernel weight, color, malt extract, wort color and clarity, barley 
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protein, wort protein and enzymes.  All field and lab data of TCAP lines and checks 

were compiled and statistically analyzed using the PROC CORR and PROC GLM 

procedure in SAS (SAS Institute, 2009) to measure the association between yield, yield 

parameters and malt quality (Appendix A-1 and A-2).  Values were designated 

significant at p-values less than or equal to 0.05 (*), 0.01 (**) and 0.001 (***), 

respectively.  Any value greater than 0.05 was considered not significant (NS).  Prior to 

correlation analysis, yields of all entries were adjusted with repeating checks using the 

software program Agrobase (Agronomix Inc.).  Due to an unusually wet spring, barley 

yields were affected and therefore no lines were eliminated for Harvest Year 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Monthly precipitation (mm) in McGregor, TX from January 2013 to December 2016. 
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Figure 2.4: Average monthly temperature (oC) in McGregor, TX from January 2013 to December 2016. 

 

Table 2.2: Harvest year 2015 TCAP barley small plot location data. 

Location McGregor, TX Castroville, TX Dimmitt, TX 

 

Date Planted 

 

Winter: 11/12/14 

Spring: 12/09/14 

 

Winter: 11/18/14 

Spring: 12/17/14 

 

Winter: 11/07/14 

 

Coordinates 

 

31oN 

-97.5oW 

 

29.4oN 

-98.8oW 

 

34.5oN 

-102.3oW 

 

Irrigation Type &  

Amount Applied 

 

Dryland 

0 mm 

 

Overhead 

0 mm 

 

Overhead 

457 mm 

 

Soil Type 
 

Crawford Silty Clay 

 

Lewisville Silty 

Clay 

 

Pullman Clay Loam 

 

Date Harvested 

 

05/22/15 

81 Winter 

161 Spring 

 

05/19/15 

4 Winter 

0 Spring 

 

06/24/15 

148 Winter 
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Figure 2.5: Monthly precipitation (mm) in Dimmitt, TX from January 2013 to December 2016. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Average monthly temperature (oC) in Dimmitt, TX from January 2013 to December 2016. 
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Harvest Year 2016 

 In Harvest Year 2016, the same lines were used as the previous year in CAS, 

MCG and DIM (Table 2.3, Figures 2.1-2.6).  55 g (63 kg ha-1) of each line was packaged 

for each location.  Any seed envelope with less than 30 g (34 kg ha-1) of barley was 

replaced with an alternative commercial variety, ‘P-919’, ‘TAMbar 501’ or ‘TAM 304’ 

(wheat) for winter trials and ‘AC Metcalf’, ‘Conlon’, ‘CDC Copeland’ or ‘Expresso’ 

(wheat) for spring trials.  An alpha-lattice design containing two incomplete blocks was 

used with commercial checks placed within the trial.  Checks were the same as the 

previous year, with the addition of ‘TAM 304’ (winter wheat) in the winter trial and 

‘Expresso’ (spring wheat) in the spring trial.  Wheat checks provided a direct 

comparison of barley yield in relation to a known crop with extensive yield history 

throughout the state.  Barley was planted in small plots, using the same dimensions and 

equipment as in Harvest Year 2015.  All locations, except for MCG had access to 

overhead irrigation.   

 In DIM, no herbicide or insecticide was applied to the field.  On March 5, 2016, 

plots were topdressed via fertigation with 32.5 kg N ha-1 (32-0-0).  In CAS, 599 kg ha-1 

of fertilizer in the form of 12-8-5-2 was applied prior to planting on October 29, 2015.  

On March 3, 2016, a mixture of 0.87 L ha-1 of Dimethoate (ai: dimethoate) and 0.116 L 

ha-1 of Induce (Helena Chemical, ai: alkyl aryl polyozylkane ethers and free fatty acids) 

was topdressed to the plots.  In MCG, a topdress application of 39 kg N ha-1 (32-0-0) 

was applied on January 27, 2016.  On that same day, a mixture of 2.34 L ha-1 of MCPA 
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Ester (Agri Star, ai: 2-ethylhexyl ester of 2-methyl-4-chlorophenoxyacetic acid) and 36.5 

mL ha-1 of the herbicide Amber (Syngenta, ai: triasulfuron) was applied.   

Field maintenance, physiological notes, harvesting and yield component analysis 

procedures, including malt barley analysis/sampling were the same as Harvest Year 

2015 (Table 2.4).  Castroville was hand harvested for seedheads only due to wet field 

conditions prohibiting combine harvest.  In addition to statistical analyses comparing 

yield and yield components of TCAP lines over years and locations, an economic 

analysis was completed to compare the profitability of barley and wheat.  Bi-plot 

analysis was used to indicate similarities between lines grown, environment, yield 

components and malt quality (Appendix A-3).  Data from all locations and years were 

analyzed based on yield (Mt ha-1) test weight and malt quality score (Received from 

USDA Cereal Quality Testing Lab, Madison, WI).  Winter, spring two-row and spring 

six-row were analyzed individually. 
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Table 2.3: Harvest year 2016 TCAP barley small plot location data. 

Location McGregor, TX Castroville, TX Dimmitt, TX 

 

Date Planted 

 

Winter: 11/24/15 

Spring: 12/10/15 

 

Winter: 11/11/15 

Spring: 12/15/15 

 

Winter: 12/22/15 

 

Coordinates 

 

31oN 

-97.5oW 

 

29.4oN 

-98.8oW 

 

34.5oN 

-102.3oW 

 

Irrigation Type & 

Amount Applied 

 

Dryland 

0 mm 

 

Overhead 

0 mm 

 

Overhead 

178 mm 

 

Soil Type 

 

Crawford Silty 

Clay 

 

Lewisville Silty 

Clay 

 

Pullman Clay Loam 

 

Date Harvested 05/24/16 

280 Winter 

312 Spring 

 

05/17/16 

280 Winter 

312 Spring 

(Seedheads only) 

 

06/28/16 

280 Winter 

    

 

 

Table 2.4: Field observations and lab evaluation data collected during this research. 

In-Field Observations In-Lab Evaluations 

Stand Quality (0-5 scale, 0 = poor, 5 = excellent) Seed yield (kg ha-1) 

Growth/Maturity (Days to Heading) Seed spike-1 (# seeds counted) 

Lodging (% plot affected) Test weight (lbs bu-1) 

Bird damage (0-5 scale, 0 = none, 5 = very damaged) Moisture (%) 

Insect/Disease (0-5 scale, 0 = low pressure, 5 = heavy pressure) Single seed weight (g) 

Cold damage (0-5 scale, 0 = none, 5 = very damaged) Kernel plumpness (%) 

Average height of plot at harvest (cm)  

 

 

Results 

Environmental Effect on Trial Locations 

During the second and third year of the research study, unusual amounts of rainfall 

caused significant lodging, seedhead sprouting and damage to certain locations.  In 
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Harvest Year 2015, specific winter and spring lines in CAS were hand harvested for a 

seed increase only and were not evaluated.  In Harvest Year 2016, CAS was hand 

harvested for seedheads, but was unharvestable by combine due to wet field conditions. 

Facultative Barley 

Figure 2.7 shows correlations of TCAP facultative barley grown in CAS, DIM 

and MCG from all harvest years (2014-2016).  Parameters tested are shown in red, while 

TCAP facultative lines are shown in blue.  Malt quality testing was not complete for 

DIM 2016 samples at the time of writing and therefore not included in analyses.  

Looking at each location individually, both negative and positive correlations were 

observed.  In DIM, data was recorded for harvest years 2015 and 2016.  A positive 

correlation between all parameters—yield (DIM_15_Y), test weight (DIM_15_TSTWT) 

and malt quality (DIM_15_MQ) was observed in 2015, while a highly negative 

correlation between yield (DIM_16_Y) and test weight (DIM_16_TSTWT) was 

observed in 2016.  At MCG, data was recorded for harvest years 2014, 2015 and 2016.  

Yield in 2015 and 2016 (MCG_15_Y and MCG_16_Y) was positively correlated, but 

had little to no correlation with yield in 2014 (MCG_14_Y).  Test weight 

(MCG_15_TSTWT and MCG_16_TSTWT) and malt quality (MCG_15_MQ and 

MCG_16_MQ) were positively correlated with each other and with yield within each 

respective year.  A positive correlation between these two parameters could suggest that 

choosing TCAP barley lines with a high test weight could also select for high malt 

quality barley at this location.  Yield in CAS was recorded for harvest year 2014 only 

(CAS_14_Y).  A positive correlation between yield in CAS and yield in MCG 2015 and 
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2016 shows that TCAP facultative lines performed similarly at both locations.  Yield at 

DIM in 2015 and yield in 2016 had a moderate negative correlated with yield in CAS.  

When comparing DIM and MCG locations, only DIM_16_Y and MCG_14_Y were 

positively correlated.  All other site years were either negatively correlated or showed no 

correlation at all between the two locations, suggesting that TCAP facultative lines did 

not perform similarly for yield at both locations.  One factor affecting yield performance 

could be the difference in irrigated (DIM) versus dryland (MCG) systems at each site.  

Similarly, MQ and TSTWT did not correlate well between the two sites, except for 

TSTWT in 2016.  The standard deviation can be seen by looking at the circles located on 

the bi-plot.  Test weight and yield in MCG in 2016 and malt quality and test weight in 

DIM in 2015 are the furthest from the center of the circle, showing that they are highly 

variable.  The least variation was seen for yield in DIM in 2016.  This analysis explained 

only 41.4% of the variation between these parameters.  TCAP facultative lines, varied in 

their performance at all locations, as most of the lines are spread across the bi-plot.  

Lines located closer to the center of the bi-plot had less variation over  

environments, while lines further from the center had more variation. 
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Figure 2.7: Relationship among yield parameters tested and malt quality (in red) and TCAP facultative 

barley lines (in blue) at all locations (CAS, DIM and MCG) from all harvest years (2014, 2015 and 2016). 
 

 

 

Figure 2.8 is the “which won where” analysis of facultative lines and their 

performance at each location (CAS, DIM and MCG) over the course of the research.  

The TCAP line ‘07or_4’ performed best at DIM in 2015 for yield, malt quality and test 

weight compared to any other line tested.  The line ‘06or_9’ performed the best at DIM 

for yield in 2016.  TCAP line ‘Oba11_29’ was the highest yielding line at MCG in 2014.  

The TCAP line ‘Mw116_4’ was the superior line at MCG in 2015 and 2016 for test 

weight, malt quality and in DIM for test weight in 2016 and yield at CAS in 2014. 
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Figure 2.8: “Which won where” analysis of TCAP facultative barley lines (in blue) compared to yield 

parameters tested (in red) at all locations (CAS, DIM and MCG) from all harvest years (2014, 2015 and 

2016).  
 

 

 

Winter Barley 

 Figures 2.9 and 2.10 show bi-plot analysis between all locations where winter 

barley was grown (CAS, MCG and DIM) over all harvest years (2014-2016).  When 

looking at DIM specifically, yield (DIM_16_Y and DIM_15_Y) were not correlated 

between years, while a positive correlation was seen between test weight over years 

(DIM_16_TSTWT and DIM_15_TSTWT).  A positive correlation was seen between 

2016 yield (DIM_16_Y) and DIM_16_TSTWT.  In addition, test weight over years at 

DIM had a positive correlation with yield in 2015.  There was no correlation between 
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malt quality at DIM in 2015 (DIM_15_MQ) and 2016 yield and between DIM_15_MQ 

and DIM_16_TSTWT.  A weak positive correlation existed between DIM_15_MQ and 

both DIM_15_TSTWT and DIM_15_Y.  Negative correlations of TCAP winter barley 

performance at DIM may suggest that differences in cultural practices (fertilizer, 

irrigation, etc.) over years could have affected performance of lines.  When comparing 

DIM yields to MCG, an extremely weak positive correlation was seen between 2016 

DIM yield and yield at MCG across all years (MCG_14_Y, MCG_15_Y and 

MCG_16_Y).  No correlation was found between 2015 DIM yield and MCG 2015 yield 

and a negative correlation between 2015 DIM yield and MCG 2014 and 2016 yields 

were seen.  Yield of TCAP winter barley lines at MCG across all years were positively 

correlated, showing that performance of lines were fairly consistent; which was different 

from the performance of facultative barley at MCG.  Malt quality, test weight and yield 

at MCG in 2015 were all positively correlated (MCG_15_MQ, MCG_15_TSTWT and 

MCG_15_Y).  In contrast, the same parameters at MCG in 2016 were both positively 

and negatively correlated.  Malt quality (MCG_16_MQ) and test weight 

(MCG_16_TSTWT) in at MCG in 2016 were positively correlated, however, each 

parameter was negatively correlated with yield (MCG_16_Y).  When comparing yields 

at DIM and MCG over years with yield at CAS in 2014, MCG yield across all years was 

positively correlated.  Both 2015 and 2016 yields at DIM were negatively correlated 

with CAS 2014 yield.  Bi-plot analysis of winter TCAP lines at all locations only 

explained 45.6% of the variation seen.  Dimmitt yield in 2016 and MCG yield in 2014 

had the least variation, as they are closer to the center of the bi-plot. 



 

48 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.9: Relationship among yield parameters tested and malt quality (in red) and TCAP winter barley 

lines (in blue) at all locations (CAS, DIM and MCG) from all harvest years (2014, 2015 and 2016).   
 

 

Figure 2.10, shows the “which won where” bi-plot analysis of winter TCAP lines 

tested at all locations (CAS, DIM and MCG) over all years (2014-2016).  The TCAP 

winter line ‘F532_1’ performed best for yield, malt quality and test weight at MCG 

2015, yield at MCG 2014, 2015 and 2016, yield in CAS 2014 and malt quality at DIM 

2015.  The winter line ‘F527_1’ performed best for yield in DIM 2015, test weight at 

DIM in 2015 and 2016 and test weight in 2016 at MCG.  The best performing line for 

malt quality at MCG in 2016 and yield at DIM in 2016 was ‘F5129_1’.  Lastly, the 
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TCAP line ‘F560_2’ did not perform well in any location, as there are no tested 

parameters located in that polygon.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.10: “Which won where” analysis of TCAP winter barley lines (in blue) compared to yield 

parameters tested (in red) at all locations (CAS, DIM and MCG) from all harvest years (2014, 2015 and 

2016).  
 

 

 

Spring Two-Row Barley 

Spring two-row barley was grow in CAS (2014) and MCG (2014-2016).  From 

the first bi-plot analysis shown in Figure 2.11, there was a positive correlation between 

yield at MCG in 2014, 2015 and 2016 (MCG_14_Y, MCG_15_Y and MCG_16_Y).  A 

positive correlation between yield parameters in MCG over all three years suggests 
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TCAP spring two-row lines performed similarly across all variable environments.  Test 

weight at MCG was positively correlated between 2015 (MCG_15_TSTWT) and 2016 

(MCG_16_TSTWT) as well as a positive correlation between malt quality during those 

years (MCG_15_MQ and MCG_16_MQ).  A positive correlation between these two 

parameters could show the potential for growing high-yielding and high malt quality 

TCAP spring 2-row barley in that location.  Malt quality in 2016 had a strong positive 

correlation with MCG yield in 2016.  Most of the spring two-row TCAP lines tested 

over the course of this study performed similarly in all locations, as shown by the blue 

cluster centrally located within the parameters in Figure 2.11.  This bi-plot accounts for 

56.3% of the variability in the test and the parameter MCG_15_MQ has the least 

variability compared to the others, as it is located closer to the center of the graph. 
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Figure 2.11: Relationship among yield parameters tested and malt quality TCAP spring two-row barley 

lines (in blue) at all locations (CAS and MCG) from all harvest years (2014, 2015 and 2016).   
 

 

 

The “which won where” bi-plot analysis (Figure 2.12) shows that there are two 

main TCAP spring two-row lines that performed the best for certain locations and years.  

The TCAP line ‘08n2_80 performed best for malt quality at MCG 2015 and 2016, yield 

at MCG in 2015 and test weight at MCG in 2015.  Lastly, the TCAP line ‘07ab_77’ 

performed best for yield in CAS 2014, MCG 2014 and MCG 2016 as well as test weight 

at MCG in 2016.  Four other lines, ‘07n2_31’, ‘09ba_89’, ‘08ba_30’ and ‘06wa_77’ are 

not located in a polygon with parameters, indicating that they were not top-performing 

lines at any location over years.   
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Figure 2.12: “Which won where” analysis of TCAP spring two-row barley lines (in blue) compared to 

yield parameters tested (in red) at all locations (CAS and MCG) from all harvest years (2014, 2015 and 

2016).  
 

 

 

Spring Six-Row Barley 

 Like spring two-row barley, six-row spring barley was grown in the same 

locations and same years.  Six-row barley performed like two-row barley at all locations 

(Figure 2.13).  Yield for all locations and years had a positive correlation.  In addition, 

test weight at MCG in 2015 (MCG_15_TSTWT) and 2016 (MCG_16_TSTWT) had a 

positive correlation with yield at MCG in 2015 (MCG_15_Y) and 2016 (MCG_16_Y), 

respectively.  Like the spring-two row, most of the TCAP barley lines performed 

similarly (clustered in the middle of the bi-plot), but there were some outliers.  Outliers 

performed differently at each location and included ‘Stoneham’ (Stone), ‘Sidney’, 
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‘08n6_96’ and ‘07ab_10’.  This bi-plot analysis accounted for 54.1% of the variation in 

the data, with 2016 malt quality at MCG having the least variation (MCG_16_MQ).  

 

Figure 2.13: Relationship among yield parameters tested and malt quality TCAP spring six-row

 barley lines (in blue) at all locations (CAS and MCG) from all harvest years (2014, 2015 and

 2016). 

 

 

Figure 2.14, describing the “which won where” analysis of spring six-row barley 

at all locations over years, shows that TCAP line ‘09ba_37’ was the top performing line 

for yield in CAS 2014 and MCG 2016, while ‘08n6_96’ was the top performing line for 

yield in MCG 2014.  The top line for malt quality at MCG in 2015 and 2016 was 
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‘08n6_94’.  Lastly, the top TCAP line for test weight in MCG 2015 and 2016 was 

‘09mn_50’.  There was no top-performing TCAP line for yield in MCG 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: “Which won where” analysis of TCAP spring six-row barley lines compared to yield 

parameters tested at all locations (CAS and MCG) from all harvest years (2014, 2015 and 2016).  
 

 

 

Superior TCAP Winter and Facultative Barley Lines, Dimmitt, TX 

In 2015 and 2016, TCAP winter and facultative barley lines were tested in 

Dimmitt, TX.  Dimmitt is in the High Plains, positioned 106 km south of Amarillo, TX 

and 136 km north of Lubbock, TX.  Spring TCAP barley lines were not grown in DIM, 

as they are not as tolerant to cooler winter temperatures.  Table 2.5 shows the ANOVA 
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output for the statistical analysis completed.   Table 2.6 shows an average yield (t ha-1) 

of all TCAP winter and facultative barley lines tested in Dimmitt for years 2015 and 

2016.  Commercial checks in the table are denoted in bold (‘P919’, ‘Alba’, ‘Full Pint’ 

and ‘Maja’) and data is organized by yield (Mt ha-1), from greatest to least.  The column 

labeled “type” shows if the line is facultative (F) or winter (W).  From the analysis, there 

are numerous TCAP lines that out-yielded the commercial varieties included in the 

study.  There were no apparent differences in whether winter or facultative TCAP lines 

out-performed the other.   

The CV for the analysis in Dimmitt, TX was 18.3%, which was higher than the 

desirable range for a trial such as this (6-8%).  Because of the unexplained variability 

within the trial is higher than desired, results are less reliable compared to a data set with 

a lower CV.  The trial LSD was 1.6 (5% confidence interval) indicating that the top 50 

entries were statistically not different from each other and no different than the ‘Maja’ 

commercial check. 

Superior TCAP Winter and Facultative Barley Lines Grown in Dimmitt and 

McGregor, TX 

 Table 2.5 and 2.6 describe the ANOVA output and superior yielding winter and 

facultative barley lines commonly grown in DIM and MCG during harvest years 2015 

and 2016.   
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Table 2.5: ANOVA output from average yield (Mt ha-1) of TCAP winter and facultative barley lines 

grown in Dimmitt, TX during harvest years 2015 and 2016. 

Source DF Type III SS Mean Square F Value Pr > F 

Entry 120 106.01 0.88 1.39 0.03* 

Year 1 154.99 154.99 244.16 <.0001 

 

 

 

 

Table 2.6: Yield (Mt ha-1) of TCAP winter (W) and facultative (F) barley lines in Dimmitt, TX averaged 

across harvest years 2015 and 2016.  Commercial checks are highlighted in red. 
TCAP Line Type Yield (t ha-1) TCAP Line Type Yield (t ha-1) TCAP Line Type Yield 

F555_1 W 6.1 F523_1 W 4.6 F5108_1 F 4.0 
F552_2 W 5.8 F566_3 W 4.6 OR91 F 4.0 

F527_1 W 5.7 F583_1 W 4.6 F591_1 W 3.9 

07OR_3 F 5.6 08OR_53 F 4.6 F560_2 W 3.9 
F556_1 W 5.5 F5121_3 F 4.6 F5132_1 F 3.9 

F537_1 W 5.5 F5109_1 W 4.6 08OR_81 F 3.8 

F536_2 W 5.4 F5109_3 W 4.6 OBA11_2 F 3.8 
F5120_3 F 5.4 F590_5 F 4.5 06OR_43 F 3.8 

F522_3 F 5.3 F5105_1 F 4.5 F5112_1 F 3.8 

F532_1 W 5.3 06OR_91 F 4.5 F547_1 W 3.8 
07OR_4 F 5.2 MW122_5 F 4.5 F5134_3 F 3.8 

F559_2 F 5.2 F5135_4 W 4.4 MW120_8 F 3.8 

Short12 F 5.2 P919 W 4.4 PO71_104 F 3.8 
F535_2 W 5.1 F537_3 W 4.4 F5136_1 W 3.7 

F548_1 W 5.1 07OR_8 F 4.4 F5121_1 F 3.7 

Maja F 5.1 F5126_2 W 4.4 PO71_87 W 3.6 
F550_1 W 5.0 MW116_4 F 4.4 OR813 W 3.6 

Short16 F 5.0 F564_1 W 4.3 Full Pint S 2R 3.6 

F5131_1 W 5.0 07OR_6 F 4.3 06OR_10 F 3.6 
07OR_59 F 5.0 F556_3 W 4.3 MW122_1 F 3.6 

Short8 F 4.9 OBA11_13 F 4.3 08OR_30 F 3.5 

F55_1 F 4.9 OR106 F 4.2 Alba W 3.5 
F5106_1 W 4.9 OBA11_29 F 4.2 OR103 F 3.5 

F572_3 W 4.9 OR101 F 4.2 F5119_1 F 3.5 

08OR_48 F 4.9 OR108 F 4.2 F576_1 W 3.4 
08OR_73 F 4.9 MW076_2 F 4.2 06OR_41 F 3.4 

MW118_3 F 4.9 08OR_44 F 4.2 MW116_3 F 3.4 

F5113_2 F 4.8 F59_2 W 4.2 F591_2 W 3.3 

F559_1 F 4.8 MW118_1 F 4.2 06OR_59 F 3.3 

OBA11_31 F 4.8 MW118_4 F 4.1 06OR_52 F 3.3 

Short13 F 4.8 F5126_1 W 4.1 OR910 F 3.3 
F595_1 F 4.8 F5121_5 F 4.1 06OR_44 F 3.2 

F5121_4 F 4.8 F557_2 F 4.1 06OR_37 F 3.1 

OR818 F 4.7 F588_3 W 4.1 06OR_62 F 3.1 
F576_4 F 4.7 F596_2 F 4.0 06OR_42 F 2.9 

F54_2 W 4.7 OR815 W 4.0 06OR_45 F 2.8 

PY211_6 F 4.7 F5121_2 F 4.0 06OR_78 F 2.7 
F5105_3 W 4.7 F547_3 W 4.0 - - - 

F5112_3 F 4.6 OR76 W 4.0 - - - 

CV (%) 18.3 LSD (0. 05) 1.6  
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Evaluation of TCAP Lines for Malt Barley Performance 

Statistical Procedure and Analysis 

 The PROC CORR procedure in SAS was used to analyze and see if malt traits 

were correlated, either positive or negative, with yield evaluations (Appendix A-1).  

Values were designated significant at p-values greater or equal to 0.05 (*), 0.01 (**) and 

0.001 (***), respectively.  Any value greater than 0.05 was considered not significant 

(NS). 

Winter and Facultative Barley Performance in Dimmitt, TX 

Statistical analysis of winter and facultative barley lines for malt quality can be 

found in Table 2.7.  A negative correlation was found between yield and kernel weight (-

0.33***), while plumpness and kernel weight was positively correlated (0.53***).  This 

means that kernel weight affects barley plumpness more than yield in this location.  

Barley protein had a slight negative correlation with yield (-0.14*), kernel weight (-

0.14*) and plumpness (-0.26***) indicating that if a brewer desired a high-protein barley, 

choosing the highest yielding barley may not mean it is also a higher protein barley.  

Lastly, there was no significance between malt quality score and yield (0.01NS).  
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Table 2.7: Pearson correlation analysis between malt analysis and yield data for winter and facultative 

barley averaged in Dimmitt, TX across harvest years 2015 and 2016. 
 

 

 

 

Winter and Facultative Barley Performance in McGregor, TX 

   Winter and facultative barley analysis at MCG shows that there is a positive 

correlation between kernel weight and yield (0.36***) (Table 2.8). Like DIM, barley 

protein at MCG had a negative correlation with yield (-0.16NS), kernel weight (-0.28*) 

and plumpness (-0.26*).  Malt extract had a strong positive correlation with plumpness 

(0.46***), showing that plump barley has a higher malt extract and therefore could 

produce a higher quality brew.  Malt quality score had a strong positive correlation with 

yield (0.26***), kernel weight (0.43***) and plumpness (0.37***), but a strong negative 

correlation with barley protein (-0.61***).  In many brewing cases, an ideal barley is low 

 

Yield 

(Mt 

ha-1) 

Kernel 

Weight 

(g) 

Plumpness 

(6/64” 

screen) 

Color Malt 

Extract 

Barley 

Protein 

Wort 

Protein 

S/T 

Ratio 

Diastatic 

Power 

Alpha 

Amylase 

FAN 

Kernel 

Weight (g) 

-0.33*** 

269           

Plumpness 

(6/64” 

screen) 

0.03NS 

269 

0.53*** 

274          

Color 
-0.57*** 

269 

0.54*** 

274 

0.08NS 

274         

Malt 

Extract 

-0.32*** 

269 

0.40*** 

274 

0.27*** 

274 

0.56*** 

274        

Barley 

Protein 

-0.14* 

269 

-0.14* 

274 

-0.26*** 

274 

-0.13* 

274 

-0.35*** 

274       

Wort 

Protein 

0.15** 

269 
-0.39*** 

274 
-0.14* 

274 

-

0.39*** 

274 

0.04NS 

274 
0.22** 

274      

S/T Ratio 
0.26*** 

269 
-0.29*** 

274 
0.04NS 

274 

-

0.31*** 

274 

0.26*** 

274 
-0.31*** 

274 
0.83*** 

274     

Diastatic 

Power 

0.03NS 

269 

-0.34*** 

274 

-0.16** 

274 

-0.13* 

274 

0.01NS 

274 

0.24*** 

274 

0.59*** 

274 

0.45*** 

274    

Alpha 

Amylase 

-0.07NS 

269 
-0.06NS 

274 
0.05NS 

274 
0.06NS 

274 
0.51*** 

274 
-0.17** 

274 
0.66*** 

274 
0.75*** 

274 
0.46*** 

274   

FAN 
0.00NS 

269 

-0.23** 

274 

-0.09NS 

274 

-0.10NS 

274 

0.35*** 

274 

-0.02NS 

274 

0.76*** 

274 

0.75*** 

274 

0.47*** 

274 

0.83*** 

274  

Quality 

Score 

0.01NS 

269 

0.10NS 

274 

0.28*** 

274 

0.11NS 

274 

0.61*** 

274 

-0.48*** 

274 

0.46*** 

274 

0.73*** 

274 

0.35*** 

274 

0.79*** 

274 

0.64*** 

274 
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in protein, therefore, further research on relationships between quality and protein 

content would be beneficial.  

 

 

Table 2.8: Pearson correlation analysis between malt analysis and yield data for winter and facultative 

barley averaged in McGregor, TX across harvest years 2015 and 2016. 

 

 

 

Spring Barley Performance in McGregor, TX 

 Spring two- and six-row barley was grown and evaluated in McGregor, TX 

during Harvest Year 2016.  Tables 2.9 and 2.10 shows the correlation analysis for spring 

two-row and six-row barley, respectively, 

 Spring two-row barley (Table 2.9) had a strong positive correlation between 

yield and kernel weight (0.74***), while six-row (Table 2.10) had a strong negative 

correlation between the two parameters (-0.65***).  A negative correlation in the six-row 

 Yield 

(Mt 

ha-1) 

Kernel 

Weight 

(g) 

Plumpness 

(6/64” 

screen) 

Color 
Malt 

Extract 

 

Barley 

Protein 

Wort 

Protein 

S/T 

Ratio 

Diastatic 

Power 

Alpha 

Amylase 

 

FAN 

Kernel 

Weight (g) 

0.36*** 

111           

Plumpness 

(6/64” 

screen) 

0.36*** 

111 

0.75*** 

117          

Color 
0.00NS 

111 
0.01NS 
117 

-0.09NS 

117         

Malt 

Extract 

0.31** 

111 

0.50*** 

117 

0.46*** 

117 

0.22** 

117        

Barley 

Protein 

-0.16NS 

111 

-0.28* 

117 

-0.26* 

117 

-0.22* 

117 

-0.71*** 

117       

Wort 

Protein 

-0.16NS 

111 
-0.31* 

117 
-0.27* 

117 
-0.09NS 

117 
-0.28** 

117 
0.58*** 

117      

S/T Ratio 
-0.01NS 

111 

-0.02NS 

117 

-0.02NS 

117 

0.14NS 

117 

0.49*** 

117 

-0.48*** 

117 

0.42*** 

117     

Diastatic 

Power 

0.02NS 

111 
-0.09NS 

117 
-0.09NS 

117 
-0.23** 

117 
-0.28** 

117 
0.62*** 

117 
0.49*** 

117 

-

0.16NS 

117 
   

Alpha 

Amylase 

0.06NS 

111 

-0.13NS 

117 

-0.24** 

117 

0.15NS 

117 

0.33** 

117 
-0.21 0.36 0.61 0.01 

  

FAN 
-0.08NS 

111 
-0.10NS 

117 
-0.02NS 

117 
-0.04NS 

117 
0.25** 

117 
0.07NS 

117 
0.64*** 

117 
0.58*** 

117 
0.31** 

117 
0.61*** 

117  

Quality 

Score 

0.26** 

111 

0.43*** 

117 

0.37*** 

117 

0.11NS 

117 

0.70*** 

117 

-0.61*** 

117 

-0.12NS 

117 

0.56*** 

117 

-0.10NS 

117 

0.46*** 

117 

0.33** 

117 
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barley could potentially be due to the large amount of bird damage seen compared to the 

two-row.  Plumpness in the six-row barley was also negatively correlated with yield (-

0.47***), thus supporting the bird damage.  Similar to winter and facultative barley in 

DIM and MCG, a negative correlation was found between barley protein and malt 

quality score for both spring barley types.   

 

 

 

Table 2.9: Pearson correlation analysis between malt analysis and yield data for spring two-row barley 

averaged in McGregor, TX across harvest years 2015 and 2016.. 
 

  Yield 

(Mt 

ha-1) 

Kernel 

Weight 

(g) 

Plumpness 

(6/64” 

screen) 

Color Malt 

Extract 

Barley 

Protein 

Wort 

Protein 

S/T 

Ratio 

Diastatic 

Power 

Alpha 

Amylase 

 

FAN 

Kernel 

Weight (g) 

0.74*** 

119 

          

Plumpness 

(6/64” 

screen) 

-0.50*** 

119 
0.03NS 

124 
         

Color 
0.65*** 

119 
0.75*** 

124 
0.09NS 

124 
        

Malt 

Extract 

-0.91*** 

119 

-0.53*** 

124 

0.70*** 

124 

-0.42*** 

124 

       

Barley 

Protein 

-0.40*** 

119 

-0.64*** 

124 

-0.34*** 

124 

-0.65*** 

124 

0.10NS 

124 

      

Wort 

Protein 

0.92*** 

119 
0.63*** 

124 
-0.62*** 

124 
0.52*** 

124 
-0.97*** 

124 
-0.20* 

124 
     

S/T Ratio 
0.54*** 

119 

0.40*** 

124 

-0.30** 

124 

0.37*** 

124 

-0.59*** 

124 

-0.30** 

124 

0.71*** 

124 

    

Diastatic 

Power 

-0.13NS 

119 

-0.03NS 

124 

0.21NS 

124 

0.11NS 

124 

0.18* 

124 

0.04NS 

124 

-0.17NS 

124 

-0.19* 

124 

   

Alpha 

Amylase 

0.02NS 

119 
0.27* 

124 
0.20* 

124 
0.30** 

124 
0.07NS 

124 
-0.35*** 

124 
0.02NS 

124 
0.22* 

124 
0.41*** 

124 
  

FAN 
-0.39*** 

119 

-0.40*** 

124 

-0.03NS 

124 

-0.34*** 

124 

0.16NS 

124 

0.47*** 

124 

-0.11NS 

124 

0.32** 

124 

0.06NS 

124 

0.16NS 

124 

 

Quality 

Score 

0.97*** 

119 

0.77*** 

124 

-0.50*** 

124 

0.66*** 

124 

-0.93*** 

124 

-0.40*** 

124 

0.96*** 

124 

0.60*** 

124 

-0.11NS 

124 

0.10NS 

124 

-0.33** 

124 
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Table 2.10: Pearson correlation analysis between malt analysis and yield data for spring six-row barley 

averaged in McGregor, TX across harvest years 2015 and 2016. 
 

  Yield 

(Mt 

ha-1) 

Kernel 

Weight 

(g) 

Plumpness 

(6/64” 

screen) 

Color Malt 

Extract 

Barley 

Protein 

Wort 

Protein 

S/T 

Ratio 

Diastatic 

Power 

Alpha 

Amylase 

FAN 

Kernel 

Weight (g) 

-0.65*** 

131 

          

Plumpness 

(6/64” 

screen) 

-0.47*** 

131 

0.82*** 

133 

         

Color 
-0.08NS 

131 

0.12NS 

133 

0.31** 

133 

        

Malt 

Extract 

-0.20* 

131 
0.43*** 

133 
0.58*** 

133 
0.53*** 

133 
       

Barley 

Protein 

0.08NS 

131 

-0.28* 

133 

-0.42*** 

133 

-0.25* 

133 

-0.70*** 

133 

      

Wort 

Protein 

0.13NS 

131 

-0.25* 

133 

-0.30** 

133 

-0.08NS 

133 

-0.33*** 

133 

0.57*** 

133 

     

S/T Ratio 
0.11NS 

131 
  -0.01NS 

133 
0.16NS 

133 
0.22* 

133 
-0.15NS 

133 
0.71*** 

133 
    

Diastatic 

Power 

0.17NS 

131 

-0.11NS 

133 

0.03NS 

133 

0.30** 

133 

0.16NS 

133 

0.14NS 

133 

0.06NS 

133 

-0.01NS 

133 

   

Alpha 

Amylase 

-0.24* 

131 

0.30** 

133 

0.38*** 

133 

0.47*** 

133 

0.65*** 

133 

-0.45*** 

133 

-0.15NS 

133 

0.25* 

133 

0.30** 

133 

  

FAN 
-0.14NS 

131 

0.16NS 

133 

0.21* 

133 

0.24* 

133 

0.28*** 

133 

0.06NS 

133 

0.61*** 

133 

0.70*** 

133 

0.07NS 

133 

0.43*** 

133 

 

Quality 

Score 

-0.18* 

131 
0.48*** 

133 
0.64*** 

133 
0.42*** 

133 
0.78*** 

133 
-0.61*** 

133 
-0.38*** 

133 
0.07NS 

133 
0.22* 

133 
0.63*** 

133 
0.22* 

133 

 

 

 

Discussion and Conclusions 

 Environment had a large impact on performance of TCAP barley lines.  

Correlations among yield and quality parameters differed not only between locations, 

but also among years within each location.  Much of the variation that occurred can be 

explained by variations in weather (temperature and precipitation), in addition to cultural 

and soil differences at each site.  Castroville, TX is located 772 km southeast of 

Dimmitt, TX and 321 km southwest of McGregor, TX.  Each location is in a different 

ecoregion as well.  Castroville is in the South Texas Plains, where rainfall is low during 

the winter months and highest during the spring and fall.  Dimmitt is in the High Plains, 

approximately 1000-1200 m above sea level.  Rainfall in this region follows a similar 

pattern to rainfall in CAS, however, snow can commonly be seen in the winter months.  
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The last region, the Blackland Prairie, is where McGregor is located.  The Blackland 

Prairie has fertile soils and high amounts of rainfall typically seen in the spring months.  

Each trial was located in a different ecoregion and therefore differences in performance 

of TCAP barley was likely and was evident in the bi-plot analysis.  Figures 2.7 and 2.8 

describe facultative barley parameter relationships and correlations with lines tested.  

Both bi-plots show positive and negative correlations between locations and across 

years.  Slight positive correlations were found between most parameters at all locations 

across years, suggesting that TCAP facultative lines performed similarly across 

environments.  Figures 2.9 and 2.10 describe winter barley parameter correlations and 

shows that there are some positive and negative correlations between locations.  Like 

TCAP facultative barley performance, most parameters across years and locations have a 

slight positive correlation, despite differences in cultural practices.   

From a spring barley perspective, MCG was the only location that had more than 

two years of data.  Due to poor weather conditions in CAS in 2015 and 2016, plots were 

unharvestable.  Both spring two- and six-row barley parameters were all positively 

correlated (Figures 2.11-2.14), a promising sign for producers, as it shows that yield of 

these barley types are more stable across a range of environments compared with winter 

and facultative barley types.  From a breeding perspective, it may be easier to select a 

spring two-row line that performs well in all environments.  A varietal release could 

potentially have adaptation in multiple regions across the state.  2015 and 2016 were 

unseasonably wet for Texas and drought occurs frequently, so a continuation of research 

considering environmental correlations over time is needed.   
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 From a malt quality standpoint, both negative and positive correlations were 

found in all barley types in relation to yield.  A negative correlation between malt quality 

and protein at DIM and MCG for all barley types (Tables 2.7-2.10) shows that selecting 

a high-quality barley does not automatically select for a high low protein type as well.  

While there are “ideal” parameters for malt barley, specialty brews vary from these ideal 

parameters.  A barley producer could potentially find a barley line to grow that had 

moderate yield performance and good malt quality.  While many producers’ goal is for 

high yields, private malting contracts with malthouses and/or brewers are significantly 

higher priced compared to feed grain ($ bushel-1) and may offset lower yields.  Malt 

contract pricing varies and therefore a producer would have to research and talk with 

local malthouses/breweries to negotiate pricing on a case-by-case basis. 

 Performance of some winter and facultative TCAP barley lines in DIM, did out-

yield the commercial barley varieties used as checks in the field trials (Table 2.6).  To 

have breeder lines out-perform commercially-available varieties is promising for 

producers, as a varietal release(s) could potentially improve barley yield potential in the 

High Plains.  Therefore, barley could become more competitive with wheat production 

in that area.  Both winter and facultative barley lines performed similarly with one 

another at this location.  

 Bi-plot analysis provided a visual description of the environmental similarities 

and differences of all TCAP trial locations evaluated.  In this case, a visual description of 

the environmental similarities and differences of all TCAP trial locations was presented.  

Both negative and positive correlation were seen from analysis, between site years and 



 

64 

 

locations.  Differences between TCAP barley performance created negative correlations 

in yield, especially winter/facultative barley.  This suggests that environmental 

conditions, cultural practices and soil type all had an impact in the performance of each 

location.  Spring barley performed more consistently over years compared to 

winter/facultative barley at MCG and CAS.  One main reason for this difference is the 

difference in distance between TCAP trial locations.  Spring barley was grown in CAS 

and MCG only 321 km apart.  While both temperature and precipitation may vary, there 

was a more consistent pattern of performance over years between the two.  In contrast, 

the addition of a location in the Texas High Plains (DIM), created more variance in the 

performance of TCAP winter/facultative lines tested, ultimately changing correlations 

among locations.  Weather in the Texas High Plains is much different than both central 

(MCG) and southern (CAS) regions of Texas.  Despite this, more research should be 

continued to see how environment effects TCAP barley spring and winter yield and malt 

quality performance in those over the long term. 
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CHAPTER III 

DETERMINING DESIRABLE CHARACTERISTICS OF  

BARLEY GROWN IN TEXAS ENVIRONMENTS 

Introduction 

Barley in Texas 

Since the late 1500s, barley has been an important crop in Texas.  Barley arrived 

in the state through El Paso from Mexico between 1598-1685 and through south and east 

Texas with the establishment of missions in the 1700s (Atkins, 1980).  As the numbers 

of settlers and missionaries increased, the cultivation of barley slowly spread across the 

state. 

 Varieties grown in Texas depended on their path of entry.  Coast-type barley, 

originating from northern Africa, traveled to Texas with missionaries.  This spring type 

variety grew well in central and western areas of the state, but not in south Texas.  

Barley originating from Europe were mainly two-row spring types and came to Texas 

with settlers from northern and eastern states.  Producers found winter barley was more 

successful versus spring due to its ability to withstand cooler temperatures, drought and 

disease (Atkins, 1980).  The Texas Agriculture Census of 1887 showed that barley 

production covered 4,682 ha.  Cotton (1,319,263 ha), corn (1,185,431 ha) and wheat 

(210,525 ha) were the top three field crops produced (Foster, 2001).  Introduced barley 

lines from Tennessee increased planted acres to 36,017 ha in the 1920s and by 1961, 

harvested barley acres peaked at 170,372 ha (Atkins, 1980).  After the 1960s, barley 

production began to decrease.  The 1987 Texas Agriculture Census report showed that 
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5,434 ha of barley were harvested, in comparison to 1,476,739 ha of wheat harvested the 

same year.  Today, barley is planted on less than 12,000 ha across the state and is mainly 

used as a dual-purpose grazing and grain source for cattle (~4,700 ha) (FSA, 2015). 

 Texas Agricultural Experiment stations played an important role in producing 

barley types that performed well across the state’s different environments.  Researchers 

found winter barley with prostrate growth habits (grow low to the ground) and high cold 

tolerance was well-adapted to the High Plains.  Intermediate types of winter barley with 

upright growth habits, moderate cold tolerance and no vernalization requirement were 

best for pastureland in the Rolling Plains and East Texas.  Some of the first barley 

varieties adapted to Texas were, ‘Finley’, ‘Wintex’ and ‘Texan’.  Over the years, more 

varieties were released including, ‘Cordova’ in 1938—a more disease-resistant and high 

quality grain and forage variety.  ‘Goliad’ and ‘Tunis’, two varieties with good disease 

resistance and forage characteristics were also released (Atkins, 1980).  More recently, 

Texas A&M Agriculture Experiment Station released two winter barley varieties for 

commercial use.  The first, ‘TAMbar 500’, was released in 1991 and is ideal for 

production in the High Plains.  It is a medium to late-maturing variety that has some 

resistance to Barley Yellow Dwarf Virus and complete resistance to powdery mildew 

and the leaf rust pathogen Puccina hordei (Marshall et al., 1993).  The second, ‘TAMbar 

501’, was released in 2001 and is commonly used as a feed-type barley in central, east 

and south Texas.  This variety is early-maturing, has good winter hardiness and 

resistance to Barley Yellow Dwarf Virus (Marshall et al., 2003). 
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Common Barley Diseases in Texas 

Barley is susceptible to many of the same diseases and viruses as wheat, 

including rust and barley yellow dwarf virus.  The following subsections will discuss 

each further. 

Rust 

 Historically, rust has been a problem in cereal crops since the time of the Romans 

and today can affect cereal crops grown across the US (Paulitz and Steffenson, 2011).  

Three types of rust commonly found on barley in Texas are: stripe, stem and leaf rust.  

The first documented case of stripe rust in the state occurred on barley research plots at 

the Texas A&M AgriLife Small Grain Breeding nursery in Uvalde, TX in April 1991 

(Marshall and Sutton, 1995).  Although barley is planted on a small amount of land in 

Texas, rust is still present and can potentially impact crop performance and yield if not 

controlled. 

 All rust types are caused by a fungus, belonging to the genus Puccina (Paulitz 

and Steffenson, 2011).  With stripe rust specifically, the fungus Puccina striiformis sp. 

hordei affects barley, while Puccina strifformis sp. tritici affects wheat (Yan and Chen, 

2006; Line, 2002).  Puccina graminia sp. tritici causes stem rust and Puccina recondita 

sp. tritici causes leaf rust.  Formation of rust pustules on the leaf blades, sheath or stem 

of the plant can occur in either warm or cool environments, depending on the type of rust 

causing the infection (Paulitz and Steffenson, 2011; DeWolf et al., 2010).  Stripe rust 

prefers cooler temperatures, while stem and leaf rust prefer warmer temperatures.  The 

color of the pustules varies from a light orange or yellow hue for stripe rust, to a brick 
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red or brown color for stem and leaf rust.  The pattern also varies, depending on the 

specific type of rust—stripe rust forms stripes on the leaf blades, leaf rust forms small 

oval pustules scattered randomly across infected leaf tissue and stem rust forms oval 

pustules that erupt in clusters on both sides of infected tissue (DeWolf et al., 2010). 

 In wheat breeding programs, all-stage (AS) and high-temperature adult-plant 

resistance (HTAP) have been researched.  All-stage resistance begins at seedling stage 

and protects the wheat from a rust infection during all growth stages.  The second 

resistance type, HTAP, protects adult plants against Puccina at high or low temperatures 

only (Chen, 2007). 

 Whether it is wheat or barley, growing resistant types of small grains is the best 

method of control for rust.  In barley and wheat, all-stage (AS) and high-temperature 

adult-plant resistance (HTAP) have been researched.  All-stage resistance begins at 

seedling stage and protects the wheat from a rust infection during all growth stages.  The 

second resistance type, HTAP, protects adult plants against Puccina at high or low 

temperatures only (Chen, 2007).  One disadvantage to AS resistance is that it is race 

specific, meaning it only protects the plant against certain strains of Puccina.  In 

addition, AS is not considered “durable” because new races of Puccina can form and 

overcome the AS resistance.  In contrast, HTAP resistance is both durable and not race 

specific (Yan and Chen, 2006). 

 Having both AS and HTAP resistance would be an ideal combination for 

protection against rust, but it is genetically difficult to do.  The exact location of genes 

on the chromosome is still unknown (Yan and Chen, 2006).  For example, through 
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genetic testing, Chen and Line (2003) identified approximately 26 different genes in 18 

barley genotypes for stripe rust resistance.  They found that Grannenlose Zweizeillige, a 

two-row barley variety originating from Ethiopia, showed resistance to all races of 

barley stripe rust found in the US (Yan and Chen, 2006).  Although this would be a good 

variety to incorporate into US barley breeding programs, identifying the resistance gene 

on the chromosome has been unsuccessful.   

 In addition to growing resistant and/or tolerant varieties, rust control with 

fungicides is also possible.  In Texas, foliar application of fungicides increased barley 

grain yield by 41% and increased 1000-kernel weight by 33% when compared to fields 

without foliar applications (Chen, 2007).  There are numerous registered fungicides 

available for rust control in barley.  Some examples include: Quadris® (ai: 

azoxystrobin), Stratego® (ai: propiconazole, trifloxystrobin), Tilt® (ai: propiconazole), 

Headline® (ai: strobilurin) and Quilt® (ai: azoxystrobin, propiconazole). 

Barley Yellow Dwarf Virus 

 Barley yellow dwarf virus (BYDV) can be found on most cereal grains in 

addition to barley.  This disease is caused by viruses belonging to the genus Luteoviridae 

(Ingwell and Bosque-Pérez, 2015).  Primarily transmitted by the vector, bird cherry-oat 

aphid (Rhopalosiphum padi L.), this virus enters the phloem of barley causing a range of 

problems such as dwarfing of the plant, failure to head and reduced grain yield (Ulrich, 

2011; Ingwell and Bosque-Pérez, 2015; Bynum et al., 2012). 

 Unmanaged native grasses surrounding fertile cropland can host BYDV-infected 

aphids (Ingwell and Bosque-Pérez, 2015).  Once a barley plant is infected, yellowing 
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and stiffness of the leaves occur and the plant gradually ceases production.  Yield losses 

can be a significant issue for producers.  In the US, average yield losses in barley from 

this virus can range between 11 and 37%.  In 1989, the US barley crop loss was valued 

at $48.5 million USD (Miller and Rashed, 1997).  Cooler temperatures (15-18 oC) and a 

high light intensity are favorable conditions for continuing the BYDV cycle once it is 

established in the plant (D’Arcy and Domier, 2005). 

 Proper management and control measures are vital to prevent crop loss.  Jones et 

al. (1970) found that most barley varieties originating from Ethiopia have higher 

tolerance to BYDV compared to other varieties.  Proper planting dates are also important 

to reduce aphid infestations.  Early fall plantings are less desirable because aphids are 

highly active during this time (Marshall and Rashed, 2014).  If planting barley in the 

springtime, an earlier planting date is desirable because seedlings will have a chance to 

establish before aphid numbers increase.  Lastly, insecticides, specifically seed 

treatments, can slow field infestations.  Insecticides containing active ingredients 

imidaclopric or thiamethoxam are the best choices for protecting seedlings during the 

first 4-6 weeks post-planting.  A producer can monitor aphid populations throughout the 

growing season and a foliar applied insecticide can be used, however, it is often not 

practical due to high costs (Marshall and Rashed, 2014).  Insecticides are not 100% 

effective in clearing out an aphid population, but do have the potential to significantly 

reduce the infestations, thus lowering the risk of crop loss due to BYDV (D’Arcy and 

Domier, 2005). 
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Common Barley Pests in Texas 

 Like wheat and other small grains, barley is subject to much of the same pests.  

The following subsections will discuss aphids and Hessian fly as two possible pests of 

barley across the state.  

Aphids 

 Aphids (Aphidoidea), are soft-bodied insects that affect small grains, 

ornamentals, trees and shrubs.  Using their mouth, they pierce through a stem or leaf 

feeding on the plant’s sugars located in the phloem.  Aphids produce a sticky sap known 

as “honeydew”.  Honeydew is a favorable food source and environment for the fungus 

Capnodium to establish.  This fungus produces a substance on leaves called “sooty 

mold” (Townsend, 2000).  Sooty mold can block sunlight from reaching plant cells, thus 

reducing photosynthesis and overall productivity of the plant (Townsend, 2000; Drees, 

1996).  The three most common aphid types that affect barley in Texas are, Russian 

wheat aphid (Diruaphis noxia), greenbug (Schizaphis graminum) and bird cherry-oat 

aphid (Bynum et al., 2012).   

 One of the biggest concerns with aphids are the viruses they can potentially 

vector, especially BYDV, as described in the previous section.  Early detection is 

important when controlling aphids, as they have an incredibly fast reproduction rate 

(Townsend, 2000).  Insecticides can be used to control aphid populations; however, it is 

important to control infestations via seed treatments before populations have a chance to 

fully establish.  There are some barley varieties that have resistance to aphids, 

specifically greenbug including ‘Post 90’ and ‘STARS 1501B’ (Armstrong et al., 2016).  
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Research conducted by the USDA Agriculture Research Service in Stillwater, Oklahoma 

have tested barley lines originating from Pakistan, Turkmenistan and Oklahoma for 

resistance against 14 known and unknown greenbug biotypes.  Two genes, Rsg1 and 

Rsg2 are the only greenbug-resistance genes in barley.  It has been found that all known 

barley varieties resistant to greenbug carry the gene Rsg1 (Armstrong et al., 2016).  

Research is still on-going to find more barley lines and varieties that carry the Rsg2 gene 

for greenbug resistance. 

Hessian Fly 

Hessian Fly (HF) (Mayetiola destructor), was first discovered in Russia, but 

traveled to the northeastern US in 1779 with Hessian troops fighting in the 

Revolutionary War.  Over the next hundred years, HF spread across the US, reaching 

Texas around the 1880s.  By 2005, more than 67 counties in Texas were dealing with HF 

infestations in their fields (Morgan et al., 2005). 

 Although HF prefers to infest wheat, barley can also be a host.  During summer, 

HF remains inactive in a larval state on residual wheat/barley stubble in fields (Morgan 

et al., 2005).  Adults emerge in late summer and early fall when temperatures cool and 

precipitation increases.  One or more broods of larvae develop during the fall and 

reproduction then slows during the winter.  As temperatures increase in late winter, 

adults become active once again and one or more broods of larvae will develop in the 

spring.  Adults emerge for 2 days, during which they mate and lay eggs.  Eggs hatch 

within 10 days and larvae begin to feed on barley (Morgan et al., 2005). 
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 Hessian Fly can drastically affect the productivity and yield capabilities of the 

plant.  In seedlings and tillering stages, HF can stunt growth and even kill the plant, 

while in mature plants, stem breakage can occur due to HF feeding.  This leads to 

harvest losses from lodging and low grain yield because of poor nutrient delivery to the 

seedhead during kernel formation (Harris et al., 1996). 

 Once a field is infested with HF, there is no remedial control.  Producers can 

prevent infestations with management practices such as, planting resistant varieties, 

delaying fall plant date and using seed treatments to suppress fall infestations.  A study 

by Harris et al (1996) showed that in 1989, producers who planted HF-resistant barley 

cultivars in the US resulted in approximately 95% reduction in HF population—a 

savings of over $200 million USD.  Another HF study conducted by Hill et al (1952) 

discovered that most of the HF-resistant barley varieties tested had origins tracing back 

to Egypt and northern Africa.  Plant breeders may be able to take advantage of this 

information to continue to find highly HF-resistant barley cultivars. 

Conclusion 

 Although barley is currently a minor crop in Texas, there are developing market 

opportunities for use as a livestock feed and forage source and malting for local craft 

breweries and distilling for whiskey production.  Acreage for barley has declined since 

the 1960s and is currently planted on ~12,000 ha across the state.  Barley is susceptible 

to some of the same diseases and pests as other small grains, including wheat, but most 

can be managed with appropriate farming practices.  Rust can negatively impact yield 

and overall performance of barley, but research with AS and HTAP resistance is being 
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conducted to find genomes in barley that can be used to create more tolerant and/or rust-

resistant varieties.  In addition to rust-resistance, research is on-going to find more 

aphid-resistant barley varieties.  Aphids are vectors for various diseases, including 

BYDV, which can also have a negative impact on yield and overall performance of the 

barley plant.  The last pest, Hessian fly, is more difficult to control, as there are no 

remedial methods, but seed treatments, tillage, crop rotation and resistant cultivars can 

all be used to suppress infestations.  

 Future climate models predict changes to local weather patterns and more 

frequent and extreme weather events, such as drought and flooding, are expected to 

occur.  In addition, temperatures will rise, causing less winter freeze injury and more 

heat stress, directly affecting crop growth habits and heading dates.  With these changes, 

it will be important to update and improve current barley production practices and 

varieties.  This may increase the adoption of more drought-tolerant crops, such as barley, 

into cropping systems. 

Materials and Methods 

For this project, barley lines were obtained from the Triticeae Coordinated 

Agricultural Project (TCAP) to screen advanced breeding material from barley breeding 

programs within the US.  This project identified suitable lines adapted for Texas 

climates that outperform current commercially available varieties for malting and feed 

grade purposes.  The TCAP consists of wheat and barley breeders from across the US 

with the goal of preserving and developing new varieties of wheat and barley.  The 
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second objective of this research was to determine desirable phenotypic characteristics 

for barley grown in Texas.  

Harvest Year 2014 

 Headrows (HR) (1 m long, 0.4 m apart) of 463 spring (248 2-row, 215 6-row), 

119 winter and 182 facultative TCAP lines were grown in two locations in central and 

south Texas, Castroville (CAS) and McGregor (MCG) in Harvest Year 2014.  Table 2.1 

and Figures 2.1, 2.2, 2.3 and 2.4 describe each location’s environmental conditions, 

average monthly rainfall and temperature.  Untreated barley seed was planted in a single 

replicated design (SRD) with repeated checks placed throughout.  Checks are 

commercially available varieties and provide a yield comparison among TCAP breeding 

lines and commercial variety performance.  Spring checks placed in the spring trial 

were: ‘AC Metcalf’, ‘Conlon’ and ‘CDC Copeland’.  Winter checks placed in the winter 

trial were: ‘Alba’, ‘Maja’ and ‘Full Pint’.  A Hege 1000 HR plot drill (76 cm long HD 

on a 38 cm row spacing), complete with automatic trip was used to plant.  The CAS 

location had access to overhead irrigation and MCG was a dryland location.   

Fertilizer was applied based on soil test recommendations.  In CAS, no chemicals 

were applied.  On February 14, 2014, 35.3 kg N ha-1 (UAN 32-0-0), 2.34 L ha-1 

Dimethoate (ai: dimethoate) and a mixture of 1.75 L ha-1 Weedmaster (Nufarm, ai: 3,6-

dichloro-o-anisic acid, 2,4-dichlorophenoxyacetic acid) and 0.0000025 L ml-1 of the 

surfactant LI 700 (Nufarm) was topdressed to the HRs at MCG.  

 In-field observations were taken during the growing season, as described in 

Table 2.4.  Final field observations and plant height (cm) and plot quality were taken at 
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harvest.  In-field notes taken on plot quality, rated plots based on the overall plant health 

and uniformity of each test plot before harvesting.  If a plot had a great deal of lodging, 

bird damage, poor growth, etc. a rating of 1 would be given.  A rating of 5 was given to 

plots that had uniform growth and no lodging or bird damage.  Viable seedheads were 

hand harvested and placed into their respective sample bag for later processing. 

 In the lab, seedheads were counted, threshed (Model BT14E thresher, Almaco, 

Nevada, IA) to collect seed and cleaned (Model ABSO aspirator, Almaco, Nevada, IA) 

to remove foreign material.  Table 2.5 describes the lab data that was collected after 

harvest.  A double-screened method was used to determine kernel plumpness, a 

parameter used for malting characteristics.  A 24 mm screen placed on a 20 mm screen 

all placed on a catch pan was shaken fifteen times clockwise and counterclockwise.  

Seed remaining on each screen was weighed (g) and divided into “plump” (>24 mm), 

“medium” (<24 mm and >20 mm) and “thin” (< 20 mm). 

 All field and lab data of TCAP lines and checks were compiled and statistically 

analyzed using the PROC CORR procedure in SAS (SAS Institute, 2009) to measure the 

association between yield and yield parameters (Appendix A-1).  Prior to correlation 

analysis, yields of all entries were adjusted with repeating checks using the software 

program Agrobase (Agronomix Inc.).  The top yielding 20% of winter and spring lines 

were replanted in small plots (1.5m x 4.5m) for Harvest Year 2015. 

Harvest Year 2015 

 The top 20% yielding lines from Harvest Year 2014 in larger test plots were 

further evaluated in Harvest Year 2015.  128 spring (64 2-row, 64 6-row), 23 winter and 
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45 facultative lines were planted in three locations in Texas: Dimmitt (DIM), CAS and 

MCG (Table 2.2, Figures 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6).  Dimmitt was planted with 

winter and facultative lines only, as fall planted spring barley reliability is limited in 

northern parts of Texas due to freeze injury from cold winter temperatures.  The 

remaining locations, CAS and MCG were planted with winter and spring lines. 

 In this year, seed was treated with CruiserMaxx® Vibrance for Cereals 

(Syngenta, ai: Thiamethozam, Mefenozam, Difenoconazole) and Cruiser® 5FS 

(Syngenta, ai: Thiamethozam) to prevent fall insect infestation.  60 g (68 kg ha-1) of each 

line were packaged in small envelopes for each location.  If seed was limited (< 30 g, < 

34 kg ha-1), it was replaced with an alternative variety, ‘P-919’ or ‘TAMbar 501’ for 

winter and ‘AC Metcalf’, ‘Conlon’, ‘CDC Copeland’ or ‘SY-Goliad’ (wheat) for spring 

barley.  Lines used this year were placed in a SRD with repeating checks placed 

throughout, same as Harvest Year 2014. 

 Small plots (1.5m x 4.5m) were planted using an eight-row (18 cm row spacing) 

planter.  Two locations (DIM and CAS) had access to overhead irrigation while MCG 

was a dryland location.  The same in-field observations were taken as Harvest Year 2014 

(Table 2.4). 

 On January 29, 2015, in MCG, 50.4 kg N ha-1 (UAN 32-0-0) and a mixture of 

1.55 L ha-1 MCPA Ester (Agri Star, ai: 2-ethylhexyl ester of 2-methyl-4-

chlorophenoxyacetic acid) and recommended rate of the surfactant LI 700 was 

topdressed on all plots.  In DIM, 70.6 kg N ha-1 (46-0-0) was applied on November 2, 

2014 prior to planting.  One week before planting, volunteer corn in the field was 



 

78 

 

sprayed with Gramoxone (Syngenta, ai: paraquat dichloride) at a rate of 3.50 L ha-1.  

Between late February and late March 2015, 3 applications of N (32-0-0) at the rate of 

41.5 kg ha-1 was applied via fertigation. 

 During harvest, a Wintersteiger (Wintersteiger Ag, Ried, Austria) nursery 

combine (1.5 m header) was used.  Due to the unseasonable amount of rain during May 

(harvest season), CAS was selectively hand harvested for seed increase only and was not 

included for statistical analysis.  Harvested samples were processed in the lab and 

evaluated for yield components, same as Year 1 (Table 2.5).  Subsamples of each line 

were packaged and sent to USDA Cereal Quality Testing Lab (Madison, WI) for malt 

quality testing including: kernel weight, color, malt extract, wort color and clarity, barley 

protein, wort protein and enzymes.  All field and lab data of TCAP lines and checks 

were compiled and statistically analyzed using the PROC CORR and PROC GLM 

procedures in SAS (SAS Institute, 2009) to measure the association between yield, yield 

parameters and malt quality (Appendix A-1 and A-2).  Values were designated 

significant at p-values greater than or equal to 0.05 (*), 0.01 (**) and 0.001 (***), 

respectively.  Any value greater than 0.05 was considered not significant (NS).  Prior to 

correlation analysis, yields of all entries were adjusted with repeating checks using the 

software program Agrobase (Agronomix Inc.).   

Harvest Year 2016 

 In Harvest Year 2016, the same lines were used the previous year in CAS, MCG 

and DIM (Table 2.3, Figures 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6).  55 g (63 kg ha-1) of each 

line was packaged for each location.  Any seed envelope with less than 30 g (34 kg ha-1) 
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of barley was replaced with an alternative commercial variety, ‘P-919’, ‘TAMbar 501’ 

or ‘TAM 304’ (wheat) for winter trials and ‘AC Metcalf’, ‘Conlon’, ‘CDC Copeland’ or 

‘Expresso’ (wheat) for spring trials.  An alpha-lattice design containing two incomplete 

blocks was used with commercial checks placed within the trial.  Checks were the same 

as the previous year, with the addition of ‘TAM 304’ (winter wheat) in the winter trial 

and ‘Expresso’ (spring wheat) in the spring trial.  Wheat checks provided a direct 

comparison of barley yield in relation to a known crop with extensive yield history 

throughout the state.  Barley was planted in small plots, using the same dimensions and 

equipment as in Harvest Year 2015.  All locations, except for MCG had access to 

overhead irrigation.   

 In DIM, no herbicide or insecticide was applied to the field.  On March 5, 2016, 

plots were topdressed via fertigation with 32.5 kg N ha-1 (32-0-0).  In CAS, 599 kg ha-1 

of fertilizer in the form of 12-8-5-2 was applied prior to planting on October 29, 2015.  

On March 3, 2016, a mixture of 0.87 L ha-1 of Dimethoate (ai: dimethoate) and 0.116 L 

ha-1 of Induce (Helena Chemical, ai: alkyl aryl polyozylkane ethers and free fatty acids) 

was topdressed to the plots.  In MCG, a topdress application of 39 kg N ha-1 (32-0-0) 

was applied on January 27, 2016.  On that same day, a mixture of 2.34 L ha-1 of MCPA 

Ester (Agri Star, ai: 2-ethylhexyl ester of 2-methyl-4-chlorophenoxyacetic acid) and 36.5 

mL ha-1 of the herbicide Amber (Syngenta, ai: triasulfuron) was applied.   

 Field maintenance, physiological notes, harvesting and yield component analysis 

procedures, including malt barley analysis/sampling were the same as Harvest Year 

2015 (Tables 2.4 and 2.5).  Castroville was hand harvested for seedheads only due to wet 
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field conditions a combine could not handle.  In addition to statistical analyses 

comparing yield and yield components of TCAP lines over years and locations, an 

economic analysis was completed to compare the profitability of barley and wheat.  Bi-

plot analysis was also used to indicate similarities between lines grown, environment, 

yield components and malt quality (Appendix A-3). 

Results 

Environmental Effect on Trial Locations 

 During the second and third year of the study, unusual amounts of rainfall caused 

significant lodging, seedhead sprouting and damage to certain locations.  In Harvest 

Year 2015, specific winter and spring lines in CAS were hand harvested for a seed 

increase only and were not evaluated.  In Harvest Year 2016, CAS was hand harvested 

for seedheads, but was unharvestable by combine due to wet field conditions. 

Statistical Procedure and Analysis 

 The PROC CORR procedure in SAS was used to analyze correlations among 

phenotypic traits observed in the field and in-lab evaluations (Appendix A-1).  Values 

were designated significant at p-values greater or equal to 0.05 (*), 0.01 (**) and 0.001 

(***), respectively.  Any value greater than 0.05 was considered not significant (NS). 

TCAP Barley Performance and Location Effect 

All Locations 

 Table 3.1 shows the Pearson correlation analysis from the TCAP barley trial of 

winter, facultative, spring two- and spring six-row types grown in CAS, DIM and MCG 

across all years of the study.  In general, biotic and abiotic environmental factors had a 
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negative correlation with yield.  Yield loss from bird damage (-0.32***) was observed as 

seeds began to emerge from the seedhead.  An above normal rainfall at all locations 

during harvest years 2015 and 2016 in comparison to 2013 and 2014, caused a great deal 

of lodging in the field plots.  Lodging resulted in barley seedheads laying on the ground, 

rendering them unharvestable.  In addition, aphid pressure, found only in Harvest Year 

2014, was negatively correlated with yield (-0.20***).  As previously mentioned in the 

introduction, aphids are vectors for various viruses (barley yellow dwarf virus) and they 

can negatively affect yield.  When aphids produce honeydew, the fungus Capnodium 

establishes causing sooty mold to form.  Sooty mold can block photosynthetic processes 

in the plant, ultimately interrupting production and yield (Townsend, 2000; Drees, 

1996).  Freeze damage was negatively correlated to yield (-0.57***) and was found in 

both CAS and MCG in Harvest Year 2014 only.  The cold snap occurred after barley 

was planted, in November and December 2013 at only CAS and MCG.  In CAS, 

temperatures dropped to an average of 10oC in December, after an unusually warm 

November (~22oC).  In MCG, temperatures dropped to an average of 10oC.  Barley that 

was affected from freeze injury had brown, shriveled tillers.  From analysis, plot quality 

was negatively correlated with yield (-0.30***).  A negative correlation between yield 

and plot quality emphasizes the impact that environmental factors such as insect/disease 

pressure, lodging and bird damage all have on barley performance.  Each of these 

environmental factors negatively impacted the test plot, resulting in a poor plot quality 

rating.  The other parameters: heading (0.38***), height (0.57***), seedhead weight 

(0.53***) and test weight (0.40***) were positively correlated with yield.  The malt quality 
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parameter was negatively correlated with yield (-0.16***), but positively correlated with 

stand quality (0.37***).  Looking at malt quality, heading date had a negative correlation 

(-0.50***).  Malt quality was also negatively correlated with height (-0.29***), bird 

damage (-0.20***) and seed moisture (-0.20***).  Plumpness had a strong positive 

correlation with malt quality (0.50***).  

Castroville, TX 

 Winter, facultative, spring two- and spring six-row barley data was collected 

from Castroville, TX from 2014-2016.  In 2015, field plots were not harvested due to 

poor field conditions, however, in-field data was collected throughout the growing 

season and was included in analysis.  In 2016, poor field conditions prevented plots from 

being mechanically harvested, however, seedheads from all plots were collected and 

evaluated in-lab. 

 Table 3.2 shows the correlations between in-field and lab-data collected at this 

location.  Similar to the trend with yield at all locations (Table 3.1), environmental 

conditions had a negative impact.  Lodging (-0.32**), leaf rust (-0.09**) and bird damage 

(-0.14***) were all negatively correlated with yield, however, aphid pressure (-0.04) was 

not significant.  Height (0.27***) was positively correlated with yield.  Unlike the 

correlation including all locations, heading was negatively correlated with yield (-

0.26***).  A negative correlation with heading suggests that a later heading date has a 

negative effect on yield production.  Grain fill could occur too early and yield loss from 

bird damage or lodging could affect those TCAP lines sooner and for a longer duration 

of time compared to TCAP lines that headed later in the growing season. 



 

83 

 

 While malt quality was not assessed on barley TCAP lines in CAS, plumpness, 

another malting characteristic, was evaluated.  When brewing beer, maltsters prefer a 

plumper seed.  From data collected, yield was positively correlated with plump seed 

(0.09*) and negatively correlated with medium (-0.28***) and thin (-0.17***) seed.  In 

MCG, plump seed was positively correlated with malt quality and thus may serve as a 

surrogate for malt quality evaluation (Table 3.3).   

McGregor, TX 

 Winter, facultative, spring two- and spring six-row barley data was collected 

from McGregor, TX from 2014-2016.  Table 3.3 describes the correlations between in-

field and lab data collected.  Trends for correlations between yield and other data 

collected were like CAS.  Environmental conditions including freeze (-0.19***), bird 

damage (-0.10*) and aphid pressure (-0.29***) had a significant negative correlation to 

yield performance.  Plot quality was negatively correlated to yield (-0.35***) and height 

(-0.30***).  A poor stand, that had significant lodging or bird damage would be tougher 

to harvest and therefore lead to a poor yield.  When looking at height, some TCAP 

barley types may have not handled wetter conditions in 2015 and 2016 and grew poorly, 

resulting in lower yields.  In wet conditions, taller barley could have potentially been 

affected more by rainfall and had high lodging.  In contrast, there was a positive 

correlation (0.37***) between plot and malt quality.  A higher quality plot, with little to 

no environmental damage (lodging, bird and/or insect damage) would be able to produce 

a higher-quality barley stand compared to a lower quality plot.  There was no 

significance between malt quality and yield at MCG, unlike DIM.  There was a negative 
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correlation between yield and medium (-0.32***) and thin (-0.28***) seed.  This trend was 

similar for correlations between malt quality and medium (-0.57***) and thin (-0.53***) 

seed. 

Dimmitt, TX 

 Only winter TCAP barley lines were grown in Dimmitt, TX between 2015 and 

2016.  Table 3.4 shows the correlations between in-field observations and lab 

evaluations. Disease, insect pressure and bird damage at DIM each year was below 

detectable levels, as the Texas High Plains commonly do not encounter those disease 

and insect pressures as much as central and southern regions of the state.  Lodging had a 

negative correlation with yield (-0.33***), mainly because as lodging increases, it 

becomes more difficult to mechanically harvest the crop.  

When observing malt quality, there was a positive correlation between malt 

quality and yield (0.21*).  A high-yielding and good malt quality barley could potentially 

be grown in the High Plains.  Like the malt quality trend in MCG, a positive correlation 

between malt quality and plump seed was found (0.17*).  There was no significance in 

the correlation between malt quality and medium or thin seed, respectively.  There was a 

negative correlation between height and plump seed (-0.25***).  A negative correlation 

between height and plump seed shows that as a barley plant grows taller, less of its 

nutrients and energy are going to seed production, which ultimately causes more 

medium and thin-sized seeds on the seedhead.  Lastly, stand quality had a positive 

correlation (0.50***) with height.  A positive correlation between these two parameters 
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could be due to the lack of lodging seen at this location, thus reducing the amount of 

poor stands found in the field. 

Discussion and Conclusions 

Variations in climate, precipitation and temperature across different growing 

regions have both negative and positive effects on barley production.  Environmental 

conditions such as aphid, freeze and bird damage had negative impacts in relation to 

yield production (Tables 3.2 and 3.3).  In Harvest Year 2015 and 2016, conditions were 

wetter than ideal during harvest season.  Because barley does not tolerate wet conditions 

well, excessive rainfall and constant soil saturation caused damage to the crop.  In 

locations such as MCG and CAS, that are higher rainfall regions in Texas, standability is 

an important trait for selecting lines to be produced in those areas.  A barley line that has 

good standability would be able to withstand rainfall and still be able to produce a good 

yielding crop. 

When statistically analyzed, plot quality played a significant role in yield 

performance, a high-quality plot was positively associated with a higher yield.  This 

trend was similar for malt quality as well.  Despite excessive rainfall during the growing 

season, most the barley plots achieved an “excellent” plot rating.  While it may seem 

practical to select top-performing lines visually, a high-quality plot during the growing 

season does not necessarily mean it will be a high-yielding plot during harvest.  From a 

personal standpoint, some barley lines that had excellent vegetative growth, matured too 

early and either lodged or lost seed from bird damage. 
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 Malt quality is an important parameter when looking at barley for beer 

production.  Table 3.1 shows that malt quality is negatively correlated with yield 

performance, but when looking at each location individually, it is not significant at MCG 

(Table 3.3) and positively correlated at DIM (Table 3.4).  Due to the differences in 

correlations between yield and malt at the two locations, more research is needed to 

determine if these parameters seem to be more negatively or positively correlated.   

 From PROC CORR analysis, regional differences were evident when comparing 

in-field data to yield evaluations in-lab.  Insect and disease pressure is more evident in 

central and southern regions of Texas and have a negative impact on the quality and 

performance of barley throughout the growing season.  Little insect and disease pressure 

is found in the Texas High Plains and therefore no negative impacts were seen and 

recorded during the growing season.  Dimmitt, TX is one of the more ideal locations for 

barley production compared to other areas of the state, MCG and CAS included.  The 

main reason for this is that with a lower monthly precipitation and cooler temperatures, 

barley can grow more efficiently—with less heat stress, insect/disease and excessive 

precipitation.  Pivot irrigation systems are common in the High Plains and regulated 

water applications are applied to crops when needed.  Barley, under irrigation, would be 

able to grow and produce grain, even if a dry-spell were to affect precipitation. 

 While three years of research in different regions across the state has been 

beneficial, more research is needed to discover trends in production over a longer time.  

More data, especially about the relationship between high yield and malt quality, is 
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needed as well.  A high-yielding and high malt quality barley may be an ideal 

combination for a producer looking to supply to both the feed grain and malt industries. 

 



 

88 

 

 

Table 3.1: Pearson correlation analysis between in-field and lab data collected from all locations (CAS, DIM and MCG) and all barley types from 

2014-2016. 

 

 

 

 

 

 

 

 

 

 

Single seed  

weight (g) 

Number of 

Seeds 

Plump 

Seed 

Medium 

Seed 

Thin 

Seed 

Yield 

(kg ha-1) 

Seed 

Moisture 

Test Weight 

(lbs bu-1) 

Seedhead  

Weight (g) 

Heading 

(Julian Day) 

Height 

(cm) 
Lodging 

Bird 

Damage 

Freeze 

(03/10/14) 

Plot 

Quality 

Plump  

Seed 

0.33*** 

2676 

-0.03NS 

2675              

Medium  

Seed 

-0.42*** 

2680 

-0.02NS 

2680 

0.42*** 

2936             

Thin  

Seed 

-0.47*** 

2680 

0.02NS 

2680 

-0.13*** 

2936 

0.53*** 

2941            

Yield  

(kg ha-1) 

0.26*** 

2659 

-0.20*** 

2659 

0.02NS 

2915 

-0.22*** 

2919 

-0.15*** 

2919           

Moisture 
-0.01NS 

1001 

-0.23*** 

1001 

-0.16*** 

1245 

0.11*** 

1245 

0.20*** 

1245 

-0.13*** 

1245          

Test Weight 

(lbs bu-1) 

0.30*** 

942 

0.46*** 

942 

0.30*** 

1185 

-0.35*** 

1185 

-0.12*** 

1185 

0.40*** 

1185 

-0.09** 

1184         

Seedhead  

Weight (g) 

0.04NS 

1561 

0.98*** 

1561 

0.29*** 

1009 

-0.35*** 

1009 

-0.09* 

1009 

0.53*** 

1009 

-0.25*** 

1001 

0.53*** 

942        

Heading 

(Julian Day) 

-0.12*** 

2236 

-0.59*** 

2233 

-0.04NS 

2483 

0.17*** 

2487 

0.13*** 

2487 

0.38*** 

2466 

0.83*** 

817 

0.11** 

757 

-0.29*** 

587       

Height (cm) 
0.17*** 

3123 

0.02NS 

3131 

0.03NS 

2818 

-0.27*** 

2823 

-0.18*** 

2823 

0.57*** 

2802 

0.28*** 

1245 

0.12*** 

1185 

0.08*** 

1564 

-0.21*** 

2393      

Lodging 
-0.05* 

1455 
-0.33*** 

1460 
-0.15*** 

1127 
0.13*** 

1127 
0.08** 

1127 
-0.01NS 

1126 
0.20*** 

940 
-0.20*** 

880 
-0.37*** 

1281 
0.19*** 

985 
0.02NS 

1681     

Bird 

Damage 

0.06* 

1559 

-0.36*** 

1555 
- 

-0.01NS 

1073 

-0.01NS 

1073 

-0.32*** 

1073 

-0.10* 

533 

-0.12** 

485 

-0.42*** 

1030 

-0.31*** 

1086 

0.26*** 

1531 

0.50*** 

1079    

Freeze  

(03/10/14) 

-0.07** 

1673 

-0.56*** 

1669 

0.01NS 

1679 

0.13*** 

1684 

0.09*** 

1684 

-0.57*** 

1663 
- - - 

0.84*** 

1679 

-0.75*** 

1585 

-0.40*** 

182 

-0.08* 

543   

Plot  

Quality 

-0.13*** 

3094 
0.53*** 

3086 
- 

0.08*** 

2550 
0.12*** 

2550 
-0.30*** 

2529 
-0.16*** 

854 
0.43*** 

794 
0.50*** 

1413 
-0.28*** 

2271 
-0.29*** 

3003 
-0.71*** 

1317 
-0.53*** 

1573 
-0.37*** 

1711  

Aphid  

Pressure 

0.15*** 

618 

-0.27*** 

620 

0.09* 

626 

-0.11** 

629 

-0.08* 

629 

-0.20*** 

628 
- - - 

0.20*** 

611 

-0.22*** 

595 

-0.15NS 

95 

- 

 

0.36*** 

635 

0.04NS 

635 

Malt  

Quality 

0.33*** 

408 

-0.20*** 

408 

0.50*** 

640 

-0.51*** 

640 

-0.47*** 

640 

-0.16*** 

640 

-0.20*** 

640 

0.08* 

626 

-0.13* 

408 

-0.50*** 

493 

-0.29*** 

642 

-0.27*** 

618 

-0.20** 

236 

- 

 

0.37*** 

261 
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Table 3.2: Pearson correlation analysis between in-field and lab data collected from all barley types in Castroville, TX, 2014-2016.  

 

 
Single Seed 

Weight (g) 

Number of 

Seeds 

Plump 

Seed 

Medium 

Seed 

Thin 

Seed 

Yield 

(kg ha-

1) 

Heading 

(Julian 

Day) 

Height 

(cm) 
Lodging 

Leaf 

Rust 

Bird 

Damage 

Stand 

Quality 

Number of 

Seeds 

-0.14*** 

1371 
           

Plump Seed 
0.39*** 

832 

0.05NS 

837 
          

Medium Seed 
-0.64*** 

834 

-0.14*** 

840 

-0.39*** 

848 
         

Thin Seed 
-0.52*** 

834 

-0.05NS 

840 

-0.51*** 

848 

0.69*** 

851 
        

Yield (kg ha-

1) 

0.13*** 

833 
0.81*** 

839 
0.09* 

847 
-0.28*** 

850 
-0.17*** 

850 
       

Heading 

(Julian Day) 

-0.21*** 

816 

-0.30*** 

818 

-0.37*** 

827 

0.42*** 

829 

0.26*** 

829 

-0.26*** 

828 
      

Height (cm) 
0.15*** 

1326 

-0.19*** 

1333 

0.49*** 

786 

-0.53*** 

789 

-0.36*** 

789 

0.27*** 

788 

-0.47*** 

780 
     

Lodging 
-0.04NS 

646 
-0.33*** 

651 
-0.09NS 

105 
0.12NS 

105 
0.06NS 

105 
-0.32** 

104 
-0.08NS 

106 
0.01NS 

653 
    

Leaf Rust 
-0.20*** 

835 

-0.04NS 

840 

-0.16*** 

848 

0.17*** 

851 

0.12*** 

851 

-0.09** 

850 

-0.02NS 

843 

-0.11** 

802 

0.06NS 

107 
   

Bird Damage 
0.08* 

1014 

-0.67*** 

1010 

0.05NS 

533 

-0.11** 

533 

-0.12** 

533 

-0.14*** 

533 

0.06NS 

543 

0.15*** 

986 

0.20*** 

535 

0.11* 

543 
  

Stand 

Quality 

-0.12*** 

1381 
0.67*** 

1386 
-0.08* 

848 
-0.01NS 

851 
0.04NS 

851 
0.09* 

850 
-0.07* 

843 

-

0.33*** 

1348 

-0.46*** 

653 
0.01NS 

865 
-0.68*** 

1028 
 

Aphid 

Pressure 

-0.05NS 

300 

-0.03NS 

308 

-0.04NS 

308 

0.05NS 

311 

0.03NS 

311 

-0.04NS 

310 

0.05NS 

293 

-0.14* 

297 

0.13NS 

57 
- - 

0.09NS 

315 

Stripe Rust 
0.08NS 

302 
0.14* 

310 
-0.03NS 

310 
-0.07NS 

313 
0.01NS 

313 
0.19*** 

312 
0.05NS 

295 
0.02NS 

299 
0.11NS 

57 
-0.15** 

317 
- 

0.05NS 

317 
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Table 3.3: Pearson correlation analysis between in-field and lab data collected from all barley types in McGregor, TX, 2014-2016.  

 

 

Single Seed  

Weight (g) 

Number  

of Seeds 

Plump  

Seed 

Medium  

Seed 

Thin  

Seed 

 Yield  

(kg ha-1) 

Test Weight  

(lbs bu-1) 
Head m-2 Seeds hd-1 

Heading 

(Julian Day) 

Height 

(cm) 
Lodging 

Freeze 

(3/10/14) 

Plot 

Quality 

Number  

of Seeds 

-0.45*** 

1420              

Plump  

Seed 

0.37*** 

1418 

-0.10*** 

1412             

Medium  

Seed 

-0.36*** 

1420 

0.27*** 

1414 

0.50*** 

1661            

Thin  

Seed 

-0.47*** 

1420 
0.25*** 

1414 
-0.12*** 

1661 
0.48*** 

1663           

Yield  

(kg ha-1) 

0.35*** 

1400 

-0.35*** 

1394 

0.03NS 

1641 

-0.32*** 

1642 

-0.28*** 

1642          

Test Weight 

(lbs bu=1) 

0.51*** 

516 

0.16*** 

516 

0.42*** 

758 

-0.47*** 

758 

-0.34*** 

758 

0.07* 

758         

Head m-2 
0.04NS 

1415 
-0.21*** 

1410 
-0.02NS 

1412 
0.03NS 

1414 
-0.02NS 

1414 
0.37*** 

1394 
-0.30*** 

516        

Seeds hd-1 -0.29*** 

1414 

0.62*** 

1415 

-0.07** 

1406 
- 

0.08** 

1408 

-0.11*** 

1388 

0.15*** 

516 

-0.49*** 

1410       

Heading  

(Julian Day) 

-0.22*** 

1420 

0.21*** 

1415 

-0.03NS 

1656 

0.04NS 

1658 

0.05* 

1658 

0.17*** 

1638 

0.11** 

757 

-0.10*** 

1414 

0.02NS 

1409      

Height (cm) 
0.33*** 

1370 
-0.34*** 

1371 
0.03NS 

1605 
-0.29*** 

1607 
-0.29*** 

1607 
0.75*** 

1587 
-0.08* 

758 
0.27*** 

1363 
-0.12*** 

1365 
0.20*** 

1613     

Lodging 
-0.19*** 

662 
-0.20*** 

662 
-0.15*** 

874 
0.13*** 

874 
0.08* 

874 
0.10** 

874 
-0.21*** 

732 
0.17*** 

658 
-0.20*** 

662 
0.26*** 

879 
0.11** 

880    

Bird Damage 
-0.13** 

544 

-0.15*** 

544 

-0.38*** 

539 

0.39*** 

539 

0.40*** 

539 

-0.10* 

539 

-0.16*** 

484 

0.06NS 

539 

-0.16*** 

544 

0.28*** 

543 

-0.09* 

544 

0.15*** 

544   

Freeze  

(03/10/14) 

0.43*** 

838 

-0.33*** 

829 

0.09** 

831 

-0.41*** 

833 

-0.37*** 

833 

-0.19*** 

813 
- 

-0.28*** 

833 

-0.10** 

823 

0.01NS 

836 

0.24*** 

783 

0.33** 

75   

Plot  

Quality 

-0.17*** 

1434 
0.44*** 

1421 
-0.01NS 

1419 
0.18*** 

1421 
0.19*** 

1421 
-0.35*** 

1401 
0.38*** 

516 
-0.17*** 

1420 
0.26*** 

1415 
0.20*** 

1428 
-0.30*** 

1376 
-0.90*** 

664 
-0.24*** 

846  

Aphid  

Pressure 

0.44*** 

318 

-0.34*** 

312 

0.40*** 

318 

-0.42*** 

318 

-0.19*** 

318 

-0.29*** 

318 
- 

-0.34*** 

319 

-0.04NS 

311 

-0.09NS 

318 

0.06NS 

298 

-0.18NS 

38 

0.30*** 

320 

0.04NS 

320 

Malt  

Quality 

0.35*** 

261 

0.30*** 

261 

0.56*** 

492 

-0.57*** 

492 

-0.53*** 

492 

0.01NS 

492 

0.20*** 

478 

-0.33*** 

259 

0.30*** 

261 

-0.50*** 

493 

-0.24*** 

494 

-0.34*** 

470 
- 

0.37*** 

261 
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Table 3.4: Pearson correlation analysis between in-field and lab data collected from winter and facultative barley in Dimmitt, TX, 2015-2016.  

 

 

Single 

Seed  

Weight (g) 

Plump  

Seed 

Medium  

Seed 

Thin  

Seed 

Yield  

(kg ha-1) 
Moisture 

Test 

Weight  

(lbs bu-1) 

Head 

m-2 

Seeds 

hd-1 

Height 

(cm) 

Number  

of Seeds 

-0.17*** 

427          

Plump  

Seed 

0.29*** 

426          

Medium  

Seed 

-0.37*** 

426 

-0.71*** 

427         

Thin  

Seed 

-0.38*** 

426 

-0.58*** 

427 

0.67*** 

427        

Yield  

(kg ha-1) 

-0.29*** 

426 
-0.08NS 

427 
0.06NS 

427 
0.30*** 

427       

Moisture 
-0.26*** 

426 

-0.16*** 

427 

0.18*** 

427 

0.58*** 

427 

0.58*** 

427      

Test 

Weight  

(lbs bu-1) 

-0.01NS 

426 
0.17*** 

427 
-0.19*** 

427 

-

0.15** 

427 

0.23*** 

427 
0.08NS 

427     

Head m-2 
-0.41*** 

426 

-0.19*** 

426 

0.19*** 

426 

0.28*** 

426 

0.73*** 

426 

0.40*** 

426 

0.02NS 

426    

Seeds 

hd-1 

-0.17*** 

427 
0.05NS 

426 
-0.06NS 

426 
0.08NS 

426 
0.30*** 

426 
0.20*** 

426 
0.23*** 

426 
-0.34*** 

426   

Height 

(cm) 

-0.32*** 

427 
-0.25*** 

427 
0.29*** 

427 
0.68*** 

427 
0.67*** 

427 
0.86*** 

427 
0.13** 

427 
0.44*** 

426 
0.29*** 

427  

Lodging 
-0.06NS 

147 

-0.25** 

148 

0.24** 

148 

0.25** 

148 

-0.33*** 

148 

0.10NS 

148 

-0.15NS 

148 

-0.17* 

147 

-

0.22** 

147 

-0.08NS 

148 

Stand  

Quality 

0.07NS 

279 

-0.03NS 

278 

-0.22*** 

278 

0.11* 

278 

0.30*** 

278 

0.06NS 

278 

-0.08NS 

278 

0.20** 

278 

-

0.06NS 

279 

0.50*** 

279 

Malt  

Quality 

0.03NS 

147 

0.17* 

148 

-0.16NS 

148 

-

0.16NS 

148 

0.21* 

148 

-0.09 NS 

148 

0.38*** 

148 

0.06NS 

147 

0.14NS 

147 

0.10NS 

148 
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CHAPTER IV 

AN EVALUATION OF ECONOMIC FEASIBILITY OF  

BARLEY IN TEXAS 

 

Introduction 

Barley from a Global Perspective 

 A significant amount of barley is grown on almost every continent in the world 

and it plays an important role in many people’s lives.  Since the 1990s, annual 

worldwide production of barley has decreased from 178 million metric tons (MMT) to 

144 MMT in 2014.  Over 78% of the world’s barley is grown in Europe and Asia 

combined.  In 2014, Russia (20,444,258 metric tons), France (11,770,682 metric tons) 

and Germany (11,562,800 metric tons) were the top 3 barley-producing countries in the 

world.  North America contributed approximately 11% (FAOSTAT, 2016)  

 The Food and Agriculture Organization (FAO) indicates that from 2000 to 2005, 

world trade of barley grain was worth $3 billion US dollars per year (USD yr-1) and 

world trade of barley for malt purposes was $2 billion USD yr-1.  Germany, United 

Kingdom, France and Belgium use barley mainly for malt production.  Ulrich (2011) 

stated 94% of barley from the countries previously mentioned is used for beer, 4% for 

distillation for whiskey and 2% for food use.  An increase in consumption of beer has 

increased the use and production of barley as a malt product over the past few years. 

 Barley is the fifth most popular crop produced worldwide and the fourth most 

produced cereal grain on a dry weight basis.  At one point in the 1980s, barley 



 

93 

 

 

production was twice as much as soybean (Glycine max) production, but has since 

declined by 12% (Ulrich, 2011).  Technological limits, government regulations, higher-

profiting crops and climate are some factors having affected barley production over the 

years. 

Barley in the United States 

Barley is believed to have entered the United States (US) in two ways: to New 

England and the Atlantic coast with colonists from Europe and to the southwest with the 

Spaniards (Atkins, 1980).  After the 1800s, settlers began to move west and barley 

traveled with them.  It was soon discovered barley grew better in fertile Midwest soils 

versus sandy coastal-type areas. 

 While the epicenter of barley production in the US is based in five states, it can 

be found growing in the Eastern and Southwestern parts of the country as well (Figure 

1.1).  Each region in the US varies in production and type(s) of barley grown.  Idaho, 

Minnesota, Montana, North Dakota and Washington are the top barley-producing states 

in the US, planting approximately 82% of the total barley acreage in the 2015 planting 

season (WASDE, 2016). 

 In the US, 23% of barley is used for animal feed and 77% is used for food, seed 

and industrial purposes.  In contrast, 83% of wheat produced is used for animal feed and 

17% is used for food and seed (WASDE, 2016).  Table 1 describes the land use and 

production trend for both barley and wheat between the years 2014 and 2016.  In 2000, 

the country’s demand for malt was 14.97 MMT (Brown et al., 2001).  Figure 1.2 shows 
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the price trends compiled by USDA of barley grain, malt barley, wheat and corn grain on 

a $ metric ton-1 ($ Mt-1) from 2000-2016. 

Barley in Texas 

 Since the late 1500s, barley has been an important crop in Texas.  Barley arrived 

in the state through El Paso from Mexico between 1598-1685 and through south and east 

Texas with the establishment of missions in the 1700s (Atkins, 1980).  As the numbers 

of settlers and missionaries increased, the cultivation of barley slowly spread across the 

state. 

 Varieties grown in Texas depended on their path of entry.  Coast-type barley, 

originating from northern Africa, traveled to Texas with missionaries.  This spring type 

variety grew well in central and western areas of the state, but not in south Texas.  

Barley originating from Europe were mainly two-row spring types and came to Texas 

with settlers from northern and eastern states.  Producers found winter barley was more 

successful versus spring due to its ability to withstand cooler temperatures, drought and 

disease (Atkins, 1980).  The Texas Agriculture Census of 1887 showed that barley 

production covered 4,682 ha.  Cotton (1,319,263 ha), corn (1,185,431 ha) and wheat 

(210,525 ha) were the top three field crops produced (Foster, 2001).  Introduced barley 

lines from Tennessee increased planted acres to 36,017 ha in the 1920s and by 1961, 

harvested barley acres peaked at 170,372 ha (Atkins, 1980).  After the 1960s, barley 

production began to decrease.  The 1987 Texas Agriculture Census report showed that 

5,434 ha of barley were harvested, in comparison to 1,476,739 ha of wheat harvested the 

same year.  Today, barley is planted on less than 12,000 ha across the state and is mainly 
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used as a dual-purpose grazing and grain source for cattle (~4,700 ha).  Table 4.1 shows 

the breakdown of 2015 barley production in the state (FSA, 2015). 

 Texas Agricultural Experiment stations played an important role in producing 

barley types that performed well across the state’s different environments.  Researchers 

found winter barley with prostrate growth habits (grow low to the ground) and high cold 

tolerance was well-adapted to the High Plains.  Intermediate types of winter barley with 

upright growth habits, moderate cold tolerance and no vernalization requirement were 

best for pastureland in the Rolling Plains and East Texas.  Some of the first barley 

varieties adapted to Texas were, ‘Finley’, ‘Wintex’ and ‘Texan’.  Over the years, more 

varieties were released including, ‘Cordova’ in 1938—a more disease-resistant and high 

quality grain and forage variety.  ‘Goliad’ and ‘Tunis’, two varieties with good disease 

resistance and forage characteristics were also released (Atkins, 1980).  More recently, 

Texas A&M Agriculture Experiment Station released two winter barley varieties for 

commercial use.  The first, ‘TAMbar 500’, was released in 1991 and is ideal for 

production in the High Plains.  It is a medium to late-maturing variety that has some 

resistance to Barley Yellow Dwarf Virus and complete resistance to powdery mildew 

and the leaf rust pathogen Puccina hordei (Marshall et al., 1993).  The second, ‘TAMbar 

501’, was released in 2001 and is commonly used as a feed-type barley in central, east 

and south Texas.  This variety is early-maturing, has good winter hardiness and 

resistance to Barley Yellow Dwarf Virus (Marshall et al., 2003). 
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Table 4.1: 2015 Farm Service Agency; barley use breakdown in Texas.   

Use Land Area (ha) 

Grazing & Grain 4,653 

Grain only 3,503 

Grazing only 1,424 

Forage only 1,176 

Cover crop only 338 

Seed only 49.4 

Left standing 0.81 

Total (2015) 11,144.21 

 

 

 

Texas Dairy Industry 

Texas is home to over 400 dairy farms located mainly in the Central and High 

Plains of the state.  On average, a Texas dairy raises 1,076 head of milking cattle, 

producing over 9.9 million kg of milk year-1.  Annually, the Texas dairy industry 

contributes $9.5 million to the state’s economy (Economics, 2014).  

Dairy cattle are commonly fed corn silage, as it is palatable and contains a proper 

ratio of nutrients and energy requirements that are needed by a lactating cow.  Small 

grains, such as wheat and grasses such as annual ryegrass can also be utilized.  Forage 

crops are harvested at a higher moisture when being used for silage versus dry hay. The 

ensiling process has two main steps—an aerobic (with oxygen) and an anaerobic 

(without oxygen) process.  In the first step, aerobic bacteria release carbon dioxide (CO2) 

and heat and consume the oxygen in the silo where the silage is stored.  The temperature 

of the forage increases to 26-37oC.  Once oxygen has been depleted, anaerobic bacteria 

take over and begin to produce both lactic and acetic acid (Ball, Hoveland and Lacefield, 
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2007).  The final product has a pH between 3.5-4.5.  Silage is a desirable feed for 

livestock, including dairy cattle, because it is palatable and if ensiled and stored 

correctly, it has a good “shelf life”.  In recent years, barley has been an increasingly 

popular crop grown by dairy producers in the Texas High Plains for use as both a silage 

and grain for cattle (personal communication).   

The National Research Council (NRC), helps to evaluate nutrient content of 

various feedstuff that livestock consume.  Table 4.2 describes the nutrient content of 

barley silage (headed), corn silage (normal heading) and wheat silage (early headed).  

Data was taken from the NRC computer program.  Total digestible nutrients (TDN, % 

dry matter) a measure of energy and considers the amount of digestible fiber, 

carbohydrates, protein and fats in a feedstuff.  The higher the percentage of TDN in a 

feedstuff, the more energy can be utilized by the animal consuming it.  The second 

parameter, digestible energy (DE, Mcal kg-1) is directly related to TDN.  This parameter 

describes the amount of energy that is digested by the animal.  Dry Matter (DM, % as 

fed), refers to the feed that is remaining once moisture is removed during analysis.  

Neutral detergent fiber (NDF, % DM), measures the hemicellulose, cellulose and lignin 

content.  This parameter is associated with DM intake; the higher the NDF percentage, 

the lower the animal’s intake of feed.  Acid detergent fiber (ADF, % DM) is associated 

with DM digestibility and measures the indigestible content of the feedstuff—cellulose 

and lignin.  Acid detergent fiber is negatively correlated with digestibility; as it 

increases, the less digestible the feedstuff is (Ball, Hoveland and Lacefield, 2007).  

Crude protein (CP, % DM) is derived from the nitrogen content, both true protein 
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(amino acids) and non-protein nitrogen sources (urea).  For a high-producing lactating 

dairy cow (30-39 kg milk day-1), rations should contain ~16% CP.  The last parameter, 

fat, is considered an energy source and is measured as a percent of the dry matter 

content. 

When looking at table 4.2, TDN is the highest in corn silage, in addition to 

having the highest DE.  Barley silage has the highest digestible energy, which is 

beneficial for lactating dairy cattle, as they need energy to produce milk.  For NDF, it is 

the highest in wheat silage, which indicates that the animal’s intake would be lower 

compared to feeding both barley and corn silage.  Acid detergent fiber is also the highest 

for wheat silage, indicating that it is a less digestible feedstuff compared to barley and 

corn silage.  Crude protein content is consistent between barley and wheat silage (12.00 

% DM) and lower in corn silage (8.80 % DM).  Silage with a higher CP would be more 

beneficial for lactating dairy cattle.  The last parameter, fat, is consistent between barley, 

corn and wheat silage.   

 

 

Table 4.2: National Research Council (NRC) nutrient content of barley silage (headed), corn silage 

(normal) and wheat silage (early headed).  

 Barley Silage, Headed Corn Silage, Normal Wheat Silage, Early Headed 

TDN (% DM) 60.16 68.79 57.40 

DE (Mcal kg-1) 2.67 2.99 2.56 

DM (% As Fed) 35.50 35.10 33.30 

NDF (% DM) 56.30 45.00 59.90 

ADF (% DM) 34.50 28.10 37.60 

CP (% DM) 12.00 8.80 12.00 

Fat (% DM) 3.50 3.20 3.20 
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The Texas Craft Beer Movement 

 A craft brewery is defined as a small privately-owned brewery that produces less 

than 6 million barrels of beer annually.  In the United States, craft brewers tend to use 

spring type barleys for malting more than winter and/or facultative.  Two-row spring 

barley is preferred for malting, as it is higher in extract and low in protein—ideal for 

producing lager.  Two-row is grown in central MT, ID, WA and CO.  Six-row spring 

barley can also be used for malting, but contains more enzymes which is not ideal for 

lager production.  Six-row can be found growing in MN, ND and eastern MT (Bouckaer 

et al., 2016).  There are currently 189 craft breweries in Texas, ranking 7th in the US.  A 

“beer barrel” is defined as containing 117.3 liters (L) (31 gallons).  Texas craft breweries 

produced 1,135,043 barrels of beer in 2015, which is the equivalent of 35,186.333 

gallons (133,140,543.9 L) of beer.  In 2014, craft brewery production in the state had a 

$3,770,000 impact on the economy (Craft Beer Sales by State, 2016).  

 For craft breweries to utilize locally grown barley, local malthouses are needed.  

In general, malt dealers prefer to contract with brewers producing greater than 20,000 

barrels of beer each year (Bouckaer et al., 2016).  Since Texas currently has one micro-

malthouse, production is limited to the malthouse’s capacity.  From personal 

communication, malt production is expected to increase to 200 tons of barley consumed 

in 2017 and more malthouses are planning to be built across the state.   

Materials and Methods 

For this project, barley lines were obtained from the Triticeae Coordinated 

Agricultural Project (TCAP) to screen advanced breeding material from barley breeding 
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programs within the US.  This project identified suitable lines adapted for Texas 

climates that outperform current commercially available varieties for malting and feed 

grade purposes.  The TCAP consists of wheat and barley breeders from across the US 

with the goal of preserving and developing new varieties of wheat and barley.  The third 

objective of this study was to evaluate the economic feasibility of barley production in 

Texas.  An evaluation of wheat grown within the same plots and/or in the same field as 

the barley trials was used to help make a comparison between wheat and barley grown 

under similar field conditions, treatments, etc. between all harvest years (2014-2016) at 

MCG and DIM only.   

Harvest Year 2014 

 Headrows (HR) (1 m long, 0.4 m apart) of 463 spring (248 2-row, 215 6-row), 

119 winter and 182 facultative TCAP lines were grown in two locations in central and 

south Texas, Castroville (CAS) and McGregor (MCG) in Harvest Year 2014.  Table 2.1 

and Figures 2.1 and 2.2 describe each location’s environmental conditions, average 

monthly rainfall and temperature.  Untreated barley seed was planted in a single 

replicated design (SRD) with repeated checks placed throughout.  Checks are 

commercially available varieties and provide a yield comparison among TCAP breeding 

lines and commercial variety performance.  Spring checks placed in the spring trial 

were: ‘AC Metcalf’, ‘Conlon’ and ‘CDC Copeland’.  Winter checks placed in the winter 

trial were: ‘Alba’, ‘Maja’ and ‘Full Pint’.  A Hege 1000 HR plot drill (76 cm long HD 

on a 38 cm row spacing), complete with automatic trip was used to plant.  The CAS 

location had access to overhead irrigation and MCG was a dryland location.   
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Fertilizer was applied based on soil test recommendations.  In CAS, no chemicals 

were applied.  On February 14, 2014, 35.3 kg N ha-1 (UAN 32-0-0), 2.34 L ha-1 

Dimethoate (ai: dimethoate) and a mixture of 1.75 L ha-1 Weedmaster (Nufarm, ai: 3,6-

dichloro-o-anisic acid, 2,4-dichlorophenoxyacetic acid) and 0.0000025 L ml-1 of the 

surfactant LI 700 (Nufarm) was topdressed to the HRs at MCG.  

 In-field observations were taken during the growing season, as described in 

Table 2.4.  Final field observations and plant height (cm) and plot quality were taken at 

harvest.  In-field notes taken on plot quality, rated plots based on the overall plant health 

and uniformity of each test plot before harvesting.  If a plot had a great deal of lodging, 

bird damage, poor growth, etc. a rating of 1 would be given.  A rating of 5 was given to 

plots that had uniform growth and no lodging or bird damage.  Viable seedheads were 

hand harvested and placed into their respective sample bag for later processing. 

 In the lab, seedheads were counted, threshed (Model BT14E thresher, Almaco, 

Nevada, IA) to collect seed and cleaned (Model ABSO aspirator, Almaco, Nevada, IA) 

to remove foreign material.  Table 2.4 describes the lab data that was collected after 

harvest.  A double-screened method was used to determine kernel plumpness, a 

parameter used for malting characteristics.  A 24 mm screen placed on a 20 mm screen 

all placed on a catch pan was shaken fifteen times clockwise and counterclockwise.  

Seed remaining on each screen was weighed (g) and divided into “plump” (>24 mm), 

“medium” (<24 mm and >20 mm) and “thin” (< 20 mm). 

 All field and lab data of TCAP lines and checks were compiled and statistically 

analyzed using the PROC CORR procedure in SAS (SAS Institute, 2009) to measure the 
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association between yield and yield parameters (Appendix A-1).  Prior to correlation 

analysis, yields of all entries were adjusted with repeating checks using the software 

program Agrobase (Agronomix Inc.).  The top yielding 20% of winter and spring lines 

were replanted in small plots (1.5m x 4.5m) for Harvest Year 2015. 

Harvest Year 2015 

 The top 20% yielding lines from Harvest Year 2014 were further evaluated in 

larger test plots in Harvest Year 2015.  128 spring (64 2-row, 64 6-row), 23 winter and 

45 facultative lines were planted in three locations in Texas: Dimmitt (DIM), CAS and 

MCG (Table 2.2, Figures 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6).  Dimmitt was planted with 

winter and facultative lines only, as fall planted spring barley reliability is limited in 

northern parts of Texas due to freeze injury from cold winter temperatures.  The 

remaining locations, CAS and MCG were planted with winter and spring lines. 

 In this year, seed was treated with CruiserMaxx® Vibrance for Cereals 

(Syngenta, ai: Thiamethozam, Mefenozam, Difenoconazole) and Cruiser® 5FS 

(Syngenta, ai: Thiamethozam) to prevent fall insect infestation.  60 g (68 kg ha-1) of each 

line were packaged in small envelopes for each location.  If seed was limited (< 30 g, < 

34 kg ha-1), it was replaced with an alternative variety, ‘P-919’ or ‘TAMbar 501’ for 

winter and ‘AC Metcalf’, ‘Conlon’, ‘CDC Copeland’ or ‘SY-Goliad’ (wheat) for spring 

barley.  Lines used this year were placed in a SRD with repeating checks placed 

throughout. 

 Small plots (1.5m x 4.5m) were planted using an eight-row (18 cm row spacing) 

planter.  Two locations (DIM and CAS) had access to overhead irrigation while MCG 
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was a dryland location.  The same in-field observations were taken as Harvest Year 2014 

(Table 2.5). 

 On January 29, 2015, in MCG, 50.4 kg N ha-1 (UAN 32-0-0) and a mixture of 

1.55 L ha-1 MCPA Ester (Agri Star, ai: 2-ethylhexyl ester of 2-methyl-4-

chlorophenoxyacetic acid) and a recommended rate of the surfactant LI 700 was 

topdressed on all plots.  In DIM, 70.6 kg N ha-1 (46-0-0) was applied on November 2, 

2014 prior to planting.  One week before planting, volunteer corn in the field was 

sprayed with Gramoxone (Syngenta, ai: paraquat dichloride) at a rate of 3.50 L ha-1.  

Between late February and late March 2015, three applications of N (32-0-0) at the rate 

of 41.5 kg ha-1 was applied via fertigation. 

 During harvest, a Wintersteiger (Wintersteiger Ag, Ried, Austria) nursery 

combine (1.5 m header) was used.  Due to the unseasonable amount of rain during May 

(harvest season), CAS was selectively hand harvested for seed increase only and was not 

included for statistical analysis.  Harvested samples were processed in the lab and 

evaluated for yield components (Table 2.7).  Subsamples of each line were packaged and 

sent to USDA Cereal Quality Testing Lab (Madison, WI) for malt quality testing 

including: kernel weight, color, malt extract, wort color and clarity, barley protein, wort 

protein and enzymes.   

Harvest Year 2016 

 In 2015-2016, the same lines were used as the previous year in CAS, MCG and 

DIM (Table 2.3, Figures 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6).  55 g (63 kg ha-1) of each line 

was packaged for each location.  Any seed envelope with less than 30 g (34 kg ha-1) of 
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barley was replaced with an alternative commercial variety, ‘P-919’, ‘TAMbar 501’ or 

‘TAM 304’ (wheat) for winter trials and ‘AC Metcalf’, ‘Conlon’, ‘CDC Copeland’ or 

‘Expresso’ (wheat) for spring trials.  An alpha-lattice design containing two incomplete 

blocks was used with commercial checks placed within the trial.  Checks were the same 

as the previous year, with the addition of ‘TAM 304’ (winter wheat) in the winter trial 

and ‘Expresso’ (spring wheat) in the spring trial.  Wheat checks provided a direct 

comparison of barley yield in relation to a known crop with extensive yield history 

throughout the state.  Barley was planted in small plots, using the same dimensions and 

equipment as in Harvest Year 2015.  All locations, except for MCG had access to 

overhead irrigation.   

 In DIM, no herbicide or insecticide was applied to the field.  On March 5, 2016, 

plots were topdressed via fertigation with 32.5 kg N ha-1 (32-0-0).  In CAS, 599 kg ha-1 

of fertilizer in the form of 12-8-5-2 was applied prior to planting on October 29, 2015.  

On March 3, 2016, a mixture of 0.87 L ha-1 of Dimethoate (ai: dimethoate) and 0.116 L 

ha-1 of Induce (Helena Chemical, ai: alkyl aryl polyozylkane ethers and free fatty acids) 

was topdressed to the plots.  In MCG, a topdress application of 39 kg N ha-1 (32-0-0) 

was applied on January 27, 2016.  On that same day, a mixture of 2.34 L ha-1 of MCPA 

Ester (Agri Star, ai: 2-ethylhexyl ester of 2-methyl-4-chlorophenoxyacetic acid) and 36.5 

mL ha-1 of the herbicide Amber (Syngenta, ai: triasulfuron) was applied. 
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Results 

Winter TCAP Barley Lines 

 Winter barley was harvested at MCG 2014, 2015 and 2016 and in DIM 2015 and 

2016.  Despite an unusual amount of rainfall during springtime of both years, the yield 

of both barley and wheat were near average for each respective region.  Table 4.3 shows 

the yield data and averages, in metric ton ha-1 (Mt ha-1) from DIM and MCG winter 

barley trials for all harvest years.   

In DIM, yields were lower in 2016 compared to 2015, largely due to a later 

planting date in 2015.  There were no common top-performing TCAP winter lines at 

DIM during both years.  The top five performing TCAP tested lines in 2015 yielded 

approximately 2-3 Mt ha-1 more than the commercial barley checks in 2015.  The top 

five TCAP lines tested in 2015 averaged 7.50 Mt ha-1 compared to the top five hard red 

winter wheat (HRWW) varieties (7.11 Mt ha-1) grown in another field located in DIM 

under similar environmental growing conditions.  In 2016, the addition of a wheat 

commercial check (‘TAM 304’) allowed for a more accurate comparison of performance 

between the two small grains under the same field conditions and environment.  The 

average yield of the top five TCAP barley lines tested in DIM (4.38 Mt ha-1) was greater 

than the top five average HRWW yield (3.63 Mt ha-1) at a trial in Hereford, TX, 

approximately 34 km from the barley trial site.  The TCAP line ‘F532_1’ was a top-

performing line at DIM and MCG in 2015.  Yields of winter barley at DIM were higher 

over both years (2015 and 2016) compared to yields at MCG.  Cultural practices 
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including irrigation, coupled with a drier environment (less disease and pest pressure) 

are some contributors to these yield differences. 

Data from winter barley grown at MCG was collected during harvest years 2014, 

2015 and 2016 (Table 4.3).  Yields in 2014 were much lower compared to harvest years 

2015 and 2016 due to plot size (headrows vs. small plots).  In 2014, yields of the top five 

TCAP lines (0.39 Mt ha-1) out-yielded all three commercial checks.  At MCG in 2015, 

the top five winter barley TCAP lines outperformed the commercial checks by 

approximately 1.50 Mt ha-1.  The top five TCAP lines yielded higher (3.52 Mt ha-1) than 

the average of the top five HRWW at a variety trial in Hillsboro, TX which is 77 km 

away (2.38 Mt ha-1).  Winter TCAP barley line ‘F523_1’ was the top-yielding line at 

MCG across all years.  This TCAP line was also a top-performing line in DIM 2016.  At 

MCG in 2016, the average yield for the top five TCAP lines (3.32 Mt ha-1) was superior 

to all barley commercial checks for yield.  In addition, the top five performing TCAP 

lines out-performed the wheat check ‘TAM 304’ (2.81 Mt ha-1), which was the number 

one HRWW planted in the region in 2015 (NASS, 2015).  The top five TCAP lines in 

2016 also outperformed the HRWW (3.70 Mt ha-1) grown in a trial adjacent to the barley 

trial site in McGregor, TX.  There were no TCAP lines that made the top five ranking 

more than a single year at MCG.  
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Table 4.3: Winter barley yield results from Dimmitt and McGregor, TX (2014-2016). 

 Harvest Year 2014 Harvest Year 2015 Harvest Year 2016 

Location & 

Type 
Entry 

Yield  

(Mt ha-1) 
Entry 

Yield  

(Mt ha-1) 
Entry 

Yield  

(Mt ha-1) 

Dimmitt, 

TX 

Winter 

Barley 

Commercial Checks Commercial Checks Commercial Checks 

- - Maja 5.42 Full Pint 3.59 

- - 
TAMbar 

501 
4.89 Alba 3.49 

- - P919 4.35 Maja 3.32 

- - - - 
TAM 304 

(wheat) 
2.63 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

- - F527_1 8.01 OK216 4.49 

- - F555_1 7.88 OK248 4.43 

- - F537_1 7.59 F523_1 4.34 

- - F552_2 7.31 F552_2 4.33 

  F532_1 6.98 F535_2 4.33 

McGregor, 

TX 

Winter 

Barley 

Commercial Checks Commercial Checks Commercial Checks 

Alba 0.26 Alba 2.31 Full Pint 2.97 

Maja 0.22 Maja 2.26 Alba 2.06 

Full Pint 0.05 Full Pint 1.56 Maja 1.43 

- - - - 
TAM 304 

(wheat) 
2.81 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

PO71_87 0.56 F532_1 3.78 F523_1 3.72 

F555_1 0.42 F523_1 3.68 F55_1 3.51 

F5126_1 0.37 F583_1 3.62 F591_1 3.20 

F523_1 0.32 F548_1 3.46 F547_3 3.19 

F537_3 0.32 F588_3 3.07 F54_2 3.02 

 

 

 

Facultative TCAP Barley Lines 

 Facultative barley was grown at MCG during harvest years 2014, 2015 and 2016 

and was grown in DIM during harvest years 2015 and 2016.  Like the yield differences 

of the winter barley at DIM in 2015 vs. 2016, yield of facultative barley was also lower 

in 2016 due to a later planting date (Table 4.4).   

At DIM, there were no similarities between top-performing lines across years, 

however, the top-performing TCAP line ‘F591_2’ in DIM 2016, was a top-performing 
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line at MCG in 2015.  Yield of the top-performing TCAP lines out-performed the 

commercial checks over both years.  In 2016, the top TCAP lines also out-performed the 

wheat check ‘TAM 304’ (2.63 Mt ha-1).  In 2015, the average of the top 5 lines (6.87 Mt 

ha-1) did not out-yield the average of the top five average HRWW grown in Hereford, 

TX (7.11 Mt ha-1), but was still competitive.  In contrast, the average of the top five 

facultative TCAP barley grown in 2016 (4.54 Mt ha-1) did out-yield the top five average 

HRWW (3.63 Mt ha-1).  There was varied performance between winter and facultative 

lines, as neither was consistently higher yielding than the other.  Facultative barley 

performance was higher at DIM compared to MCG in 2015 and 2016.  Cooler climate, 

less humidity, disease and pest pressure are contributing factors to DIM having better 

yields. 

 In MCG, TCAP facultative line ‘MW76_2’ was a top-yielding line across all 

years (Table 4.4).  In 2014, the average of the top-performing facultative lines (0.45 Mt 

ha-1) out-performed all the commercial checks.  A similar trend between top-performing 

TCAP lines out-yielding commercial checks in 2015 and 2016 was also seen.  In 2015, 

the average of the top TCAP lines (3.37 Mt ha-1) was higher than the average of the top 

five HRWW lines (2.38 Mt ha-1) grown in the variety trial at Hillsboro, TX.  Lastly, in 

2016, the average of the top TCAP lines (4.07 Mt ha-1) was also higher than the average 

of the top five HRWW lines (3.70 Mt ha-1) grown in the variety trial at McGregor, TX.   
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Table 4.4: Facultative barley yield results from Dimmitt and McGregor, TX (2014-2016). 

 Harvest Year 2014 Harvest Year 2015 Harvest Year 2016 

Location & 

Type 
Entry 

Yield  

(Mt ha-1) 
Entry 

Yield  

(Mt ha-1) 
Entry 

Yield  

(Mt ha-1) 

Dimmitt, 

TX 

Facultative 

Barley 

Commercial Checks Commercial Checks Commercial Checks 

- - Maja 5.42 Full Pint 3.59 

- - 
TAMbar 

501 
4.89 Alba 3.49 

- - P919 4.35 Maja 3.32 

- - - - 
TAM 304 

(wheat) 
2.63 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

- - 07OR_3 7.40 F5112_3 4.64 

- - 07OR_4 6.86 F5131_1 4.56 

- - Short16 6.83 F595_1 4.37 

- - Short12 6.64 F591_2 4.35 

  MW118_3 6.62 F5120_3 4.25 

McGregor, 

TX 

Facultative 

Barley 

Commercial Checks Commercial Checks Commercial Checks 

Alba 0.26 Alba 2.31 Full Pint 2.97 

Maja 0.22 Maja 2.26 Alba 2.06 

Full Pint 0.05 Full Pint 1.56 Maja 1.43 

- - - - 
TAM 304 

(wheat) 
2.81 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

F557_2 0.52 OBA11_31 3.77 MW80_1 4.38 

F5121_5 0.47 OBA11_13 3.44 MW118_4 4.21 

MW76_2 0.44 F591_2 3.29 MW118_1 4.18 

OBA11_29 0.42 MW76_2 3.23 MW76_2 4.08 

F5121_1 0.41 F5121_3 3.14 F596_2 3.51 

 

 

 

Spring Six-Row TCAP Barley Lines 

Spring six-row barley was grown in MCG 2014, 2015 and 2016.  Yield 

evaluations from all years and comparisons to commercial checks can be found in Tables 

4.5.  Like the winter barley trials, top-performing spring six-row TCAP lines out-yielded 

the commercial checks across years.  In 2014, barley was planted in headrows and 

therefore yields are much lower compared to small plot data from 2015 and 2016.  The 

average of the top five TCAP lines in 2014 (0.31 Mt ha-1) out-yielded the commercial 
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checks by double.  In 2015, the average yield of the top five TCAP lines (3.92 Mt ha-1) 

out-performed HRWW (2.38 Mt ha-1) in Hillsboro, TX.  In 2016, the addition of a spring 

wheat commercial variety ‘Expresso’ was incorporated into the barley trial to serve as a 

wheat check within the trial, similar to the purpose of ‘TAM 304’ in the winter trials.  

The top five performing TCAP lines (2.50 Mt ha-1) and the trial average (1.78 Mt ha-1) 

were lower than the top five HRWW varieties (3.70 Mt ha-1).  The TCAP line 

‘08N6_94’ was a top yielding line in 2015 and 2016.   

 

Table 4.5: Spring six-row barley yield results from McGregor, TX (2014-2016). 

 Harvest Year 2014 Harvest Year 2015 Harvest Year 2016 

Location & 

Type 
Entry 

Yield  

(Mt ha-1) 
Entry 

Yield  

(Mt ha-1) 
Entry 

Yield  

(Mt ha-1) 

McGregor, 

TX 

Spring 6-

Row 

Commercial Checks Commercial Checks Commercial Checks 

Conlon 0.18 
CDC 

Copeland 
2.04 Conlon 1.81 

AC Metcalf 0.13 Conlon 1.93 AC Metcalf 1.74 

CDC 

Copeland 
0.12 

AC 

Metcalf 
1.83 

CDC 

Copeland 
1.50 

- - - - 
Expresso 

(wheat) 
1.29 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

08N6_35 0.35 07N6_80 4.14 08N6_94 2.63 

08N6_96 0.34 08N6_94 4.09 08N6_52 2.60 

08N6_90 0.33 08N6_91 3.92 09MN_04 2.50 

08BA_60 0.33 06AB_84 3.82 08N6_77 2.44 

08BA_44 0.30 06N6_66 3.76 08BA_41 2.33 

 

 

 

Spring Two-Row TCAP Barley Lines 

Spring two-row barley was harvested at MCG in 2014, 2015 and 2016.  Yield 

evaluations across years can be found in Table 4.5.  The top spring two-row barley lines 

grown in 2014 were not similar to lines grown in years 2015 and 2016.  The TCAP line 
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‘09N2_21’ was a top-yielding line in both 2015 and 2016.  Across all years, the average 

yield of TCAP lines (2014, 0.31 Mt ha-1; 2015, 4.31 Mt ha-1; 2016, 3.17 Mt ha-1) out-

performed their respective commercial checks.  In 2015, TCAP top five performing lines 

(4.30 Mt ha-1) out-performed the average of the top five HRWW yield (2.38 Mt ha-1) in 

Hillsboro, TX.  In 2016, yields were less than the previous year, however, the top five 

TCAP lines (3.17 Mt ha-1) still out-yielded the commercial barley and wheat checks.  

The spring two-row barley did not out-yield the average of the top five HRWW (3.70 Mt 

ha-1) grown in McGregor, TX in 2016.   

When comparing six-row versus two-row barley performance at MCG, 

performance was nearly identical in 2014.  In years 2015 and 2016 however, two-row 

barley out-yielded the six-row.  A possible contributing factor could be from a higher 

amount of bird damage in the six-row barley.  More in-depth field observations are 

needed to determine if birds affect six-row barley more than two-row. 
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Table 4.6: Spring two-row barley yield results from McGregor, TX (2014-2016). 

 Harvest Year 2014 Harvest Year 2015 Harvest Year 2016 

Location & 

Type 
Entry 

Yield  

(Mt ha-1) 
Entry 

Yield  

(Mt ha-1) 
Entry 

Yield  

(Mt ha-1) 

McGregor, 

TX 

Spring 2-

Row 

Commercial Checks Commercial Checks Commercial Checks 

CDC 

Copeland 
0.14 

CDC 

Copeland 
2.37 Conlon 2.33 

Conlon 0.14 Conlon 1.97 AC Metcalf 2.00 

AC Metcalf 0.13 
AC 

Metcalf 
1.77 

CDC 

Copeland 
1.84 

- - - - 
Expresso 

(wheat) 
1.78 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

Top 5 Performing TCAP 

Lines 

09N2_39 0.33 06MT_49 4.52 06MT_59 3.57 

07AB_77 0.33 07N2_13 4.46 07MT_40 3.19 

09N2_29 0.31 06MT_67 4.35 06MT_82 3.15 

09N2_04 0.30 09N2_21 4.12 09N2_21 2.98 

09MT_16 0.29 08N2_62 4.09 07N2_38 2.97 

 

 

 

Economic Feasibility 

 One of the most important decisions a producer must make for their enterprise is 

determining whether a risk is worth the reward.  Budget analysis can help determine how 

certain decisions could positively or negatively affect an operation.  The Texas A&M 

AgriLife Extension creates yearly budgets for different commodities for each district 

across the state (Districts 1-12).  The following tables in this section are a compilation of 

yield data from this research project, variable and fixed costs from Extension Budgets 

District 8 for MCG (Johnson, 2015) and 10 for DIM (Hogan, 2016) and malt and feed 

prices from the National Ag Statistics Service.  Each table describes budget breakdowns 

for winter, facultative, spring two- and six-row barley grown in DIM and MCG in 

Harvest Year 2016. 
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Budget Estimations for Dimmitt, TX 

Table 4.7 shows the winter barley feed and malt budget for DIM 2016.  Looking 

specifically at the average of the top five TCAP winter lines, more revenue was gained 

for selling as malt ($217.36) versus feed (-$194.41).  TCAP winter lines not only out-

yielded the commercial checks, they also created more total revenue for malt purposes 

($217.36 TCAP lines, $7.99 commercial checks).  Both TCAP winter lines (-$194.41) 

and commercial checks (-$318.44) for feed purposes did not generate any total revenue 

in this budget analysis.  Compared to dryland barley grown in MCG, irrigation costs 

(energy, repairs, depreciation and equipment investment) were all costs associated with 

this location, which increased both total and variable costs.   
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Table 4.7: Malt and feed barley budget estimations for 2016 winter barley produced in Dimmitt, TX.  

Yield data is compiled from research project, prices compiled from National Ag Statistics Service and 

costs are compiled from Texas A&M Extension Budgets (District 10). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Quantity $ unit-1 Avg. Top 5  

TCAP (WIN)  

Malt 

Avg.  

Commercial 

Checks, Malt 

Avg. Top 5  

TCAP (WIN) 

Feed 

Avg.  

Commercial 

Checks, Feed 

Yield (Mt ha-1)   4.38 3.47 4.38 3.47 

Malt Price ($ Mt-1)   $230.36 $230.36 - - 

Feed Price ($ Mt-1)   - - $136.29 $136.29 

Total Revenue   $1,008.98 $799.35 $596.95 $472.93 

Seed 61.7 kg ha-1 $1.76 $108.59 $108.59 $108.59 $108.59 

Fertilizer       

32-0-0 0.0325 Mt ha-1 $262.00 $8.52 $8.52 $8.52 $8.52 

Crop Insurance 1 ha $66.67 $66.67 $66.67 $66.67 $66.67 

Barley Overhead 1 ha $9.88 $9.88 $9.88 $9.88 $9.88 

Irrigation       

Energy Costs 390 kWh $0.17 $66.30 $66.30 $66.30 $66.30 

Labor 0.02 hr $11.00 $0.22 $0.22 $0.22 $0.22 

Machinery Labor 0.62 hr $12.00 $7.44 $7.44 $7.44 $7.44 

Diesel Fuel 1.45 L $0.57 $0.83 $0.83 $8.03 $0.83 

Gasoline 1 ha $72.69 $72.69 $72.69 $72.69 $72.69 

Repairs       

Pick-up 1 ha $16.59 $16.59 $16.59 $16.59 $16.59 

Irrigation 1 ha $10.22 $10.22 $10.22 $10.22 $10.22 

Tractors 1 ha $7.56 $7.56 $7.56 $7.56 $7.56 

Implements 1 ha $8.27 $8.27 $8.27 $8.27 $8.27 

Total Variable Costs   $383.77 $383.77 $383.77 $383.77 

Machinery Depreciation       

Pick-up 1 ha $62.22 $62.22 $62.22 $62.22 $62.22 

Irrigation 1 ha $119.83 $119.83 $119.83 $119.83 $119.83 

Tractors 1 ha $24.37 $24.37 $24.37 $24.37 $24.37 

Implements 1 ha $10.02 $10.02 $10.02 $10.02 $10.02 

Equipment Investment       

Pick-up 6.50% $168.02 $10.92 $10.92 $10.92 $10.92 

Irrigation 6.50% $727.97 $47.32 $47.32 $47.32 $47.32 

Tractors 6.50% $112.13 $7.29 $7.29 $7.29 $7.29 

Implements 6.50% $33.28 $2.16 $2.16 $2.16 $2.16 

Irrigated Land Rent 1 ha $123.46 $123.46 $123.46 $123.46 $123.46 

Total Fixed Costs   $407.59 $407.59 $407.59 $407.59 

Total Specified Costs   $791.36 $791.36 $791.36 $791.36 

Returns Above Specified Costs   $217.36 $7.99 ($194.41) ($318.44) 

Breakeven Price (Mt-1)   $180.68 $228.06 $180.68 $228.06 
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 Yields for facultative and winter barley grown in DIM for Harvest Year 2016 

were comparable and so was total revenue generated.  Budget estimations for facultative 

barley grown in DIM can be found in Table 4.8.  The same variable costs, fixed costs 

and malt and feed barley prices were used and were taken from the Texas A&M 

AgriLife Extension budget for District 10 (irrigatied conditions).  Similar to the trend as 

in the winter barley budget (Table 4.7), TCAP barley for malt purposes generated the 

highest total revenue ($208.40), while commercial checks for feed purposes generated 

the least (-$318.14).  From the budget estimations for DIM for both winter and 

facultative barley, it shows that growing barley for malt purposes could potentially be 

more cost effective compared to growing for feed use. 
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Table 4.8: Malt and feed barley budget estimations for 2016 facultative barley produced in Dimmitt, TX.  

Yield data is compiled from research project, prices compiled from National Ag Statistics Service and 

costs are compiled from Texas A&M Extension Budgets (District 10). 

 

 

 

 

Budget Estimations for McGregor, TX 

Facultative and winter barley grown in DIM 2016 out-yielded winter and 

facultative barley grow in MCG, however, did not generate as much income.  Table 4.9 

 Quantity $ unit-1 Avg. Top 5 

TCAP 

(FAC), Malt 

Avg. 

Commercial 

Checks, Malt 

Avg. Top 5 

TCAP 

(FAC), Feed 

Avg. 

Commercial 

Checks, Feed 

Yield (Mt ha-1)   4.34 3.47 4.34 3.47 

Malt Price ($ Mt-1)   $230.36 $230.36  -  - 

Feed Price ($ Mt-1)    -   -  $136.29  $136.29 

Total Revenue   $999.76 $799.35 $591.50 $472.93 

Seed 61.7 kg 

ha-1 

$1.73 $108.59 $108.59 $108.59 $108.59 

Fertilizer       

32-0-0 0.0325 

Mt ha-1 

 $262.00  $8.52 $8.52 $8.52 $8.52 

Crop Insurance 1 ha $66.67 $66.67 $66.67 $66.67 $66.67 

Barley Overhead 1 ha $9.88 $9.88 $9.88 $9.88 $9.88 

Irrigation       

Energy Costs 390 kWh $0.17 $66.30 $66.30 $66.30 $66.30 

Labor 0.02 hr $11.00 $0.22 $0.22 $0.22 $0.22 

Machinery Labor 0.62 hr $12.00 $7.44 $7.44 $7.44 $7.44 

Diesel Fuel 1.45 L $0.57 $0.83 $0.83 $0.83 $0.83 

Gasoline 1 ha $72.69 $72.69 $72.69 $72.69 $72.69 

Repairs        

Pick-up 1 ha $16.59 $16.59 $16.59 $16.59 $16.59 

Irrigation 1 ha $10.22 $10.22 $10.22 $10.22 $10.22 

Tractors 1 ha $7.56 $7.56 $7.56 $7.56 $7.56 

Implements 1 ha $8.27 $8.27 $8.27 $8.27 $8.27 

Total Variable Costs   $383.77 $383.77 $383.77 $383.77 

Machinery Depreciation        

Pick-up 1 ha $62.22  $62.22 $62.22 $62.22 $62.22 

Irrigation 1 ha $119.83 $119.83 $119.83 $119.83 $119.83 

Tractors 1 ha $24.37 $24.37 $24.37 $24.37 $24.37 

Implements 1 ha $10.02 $10.02 $10.02 $10.02 $10.02 

Equipment Investment       

Pick-up 6.50% $168.02 $10.92 $10.92 $10.92 $10.92 

Irrigation 6.50% $727.97 $47.32 $47.32 $47.32 $47.32 

Tractors 6.50% $112.13 $7.29 $7.29 $7.29 $7.29 

Implements 6.50% $33.28 $2.16 $2.16 $2.16 $2.16 

Irrigated Land Rent 1 ha $123.46 $123.46 $123.46 $123.46 $123.46 

Total Fixed Costs   $407.59 $407.59 $407.59 $407.59 

Total Specified Costs   $791.36 $791.36 $791.36 $791.36 

Returns Above Specified Costs   $208.40 $7.99 ($199.86) ($318.14) 

Breakeven Price (Mt-1)    $182.34  $228.06 $182.34 $228.06 
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describes the malt and feed barley budget estimations for barley produced in MCG.  

Variable and total costs for this location were taken from the Texas A&M AgriLife 

Budget for District 8.  Yield for winter TCAP barley lines versus commercial checks 

was higher and therefore generated a higher total revenue than commercial checks for 

both malt and feed purposes ($340.20 and $26.95, respectively).  Winter TCAP lines in 

MCG ($26.95) for feed purposes generated a higher total revenue than winter barley in 

DIM (-$194.41). 
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Table 4.9: Malt and feed barley budget estimations for 2016 winter barley produced in McGregor, TX.  

Yield data is compiled from research project, prices compiled from National Ag Statistics Service and 

costs are compiled from Texas A&M Extension Budgets (District 8). 

 
 Qty. $ unit-1 Avg. Top 5  

TCAP (WIN), 

Malt 

Avg. 

Commercial  

Checks, Malt 

Avg. Top 5 

TCAP  

(WIN), Feed 

Avg. 

Commercial  

Checks, Feed 

Yield (Mt ha-1)   3.33 2.15 3.33 2.15 

Malt Price ($ Mt-1)   $230.36 $230.36  -  - 

Feed Price ($ Mt-1)    -   -  $136.29 $136.29 

Total Revenue   $767.10  $495.27 $453.85 $293.02 

Seed 61.7  

kg ha-1 

$1.76 $108.59 $108.59 $108.59 $108.59 

Fertilizer       

32-0-0 0.039 

Mt ha-1 

$262.00 $10.22 $10.22 $10.22 $10.22 

MCPA 2.34  

L ha-1 

$0.01 $0.02 $0.02 $0.02 $0.02 

Amber 36.5 

mL ha-1 

$0.34 $12.41 $12.41 $12.41 $12.41 

Crop Insurance 1 ha $66.67 $66.67 $66.67 $66.67 $66.67 

Barley Overhead 1 ha $9.88 $9.88 $9.88 $9.88 $9.88 

Machinery Labor 0.91 hr $10.00 $6.20 $6.20 $6.20 $6.20 

Diesel Fuel 22.6 L $0.70 $15.82 $15.82 $15.82 $15.82 

Repairs        

Tractors 1 ha $23.56 $23.56 $23.56 $23.56 $23.56 

Implements 1 ha $30.59 $30.59 $30.59 $30.59 $30.59 

Total Variable Costs   $283.96 $283.96 $283.96 $283.96 

Machinery 

Depreciation  

      

Tractors 1 ha $24.35 $24.35 $24.35 $24.35 $24.35 

Implements 1 ha $35.90 $35.90 $35.90 $35.90 $35.90 

Equipment Investment       

Tractors 6.00% $76.78 $4.61 $4.61 $4.61 $4.61 

Implements 6.00% $66.80 $4.01 $4.01 $4.01 $4.01 

Dryland Rent 1 ha $74.07  $74.07 $74.07 $74.07 $74.07 

Total Fixed Costs   $142.94 $142.94 $142.94 $142.94 

Total Specified Costs   $426.90 $426.90 $426.90 $426.90 

Returns Above 

Specified Costs 

  $340.20 $68.38 $26.95 ($133.87) 

Breakeven Price (Mt-1)   $128.19 $198.56 $128.19 $198.56 

 

 

 

Facultative barley grown in MCG generated a much higher total revenue than 

winter barley at the same location (Table 4.10).  The average of the top five TCAP lines 

generated $510.67, approximately $170.00 more than winter barley found in Table 4.9) 

In addition, approximately $100.00 more in total revenue was produced with facultative 

TCAP lines for feed ($127.80) compared to winter TCAP lines ($26.95).  Commercial 
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checks did not generate a higher total revenue than TCAP lines, showing that lines tested 

from this research project could potentially be more cost effective to produce than 

varieties currently available to producers.  

 

 

 
Table 4.10: Malt and feed barley budget estimations for 2016 facultative barley produced in McGregor, 

TX.  Yield data is compiled from research project, prices compiled from National Ag Statistics Service 

and costs are compiled from Texas A&M Extension Budgets (District 8). 
 
 Qty. $ unit-1 Avg. Top 5 

TCAP  

(FAC), Malt 

Avg. 

Commercial  

Checks, Malt 

Avg. Top 5 

TCAP  

(FAC), Feed 

Avg. 

Commercial  

Checks, Feed 

Yield (Mt ha-1)   4.07 2.15 4.07 2.15 

Malt Price ($ Mt-1)   $230.36  $230.36  -  - 

Feed Price ($ Mt-1)    -   -  $136.29 $136.29 

Total Revenue   $937.57 $495.27 $554.70 $293.02 

Seed 61.7  

kg ha-1 

$1.76 $108.59 $108.59 $108.59 $108.59 

Fertilizer       

32-0-0 0.039 

Mt ha-1 

$262.00 $10.22 $10.22 $10.22 $10.22 

MCPA 2.34  

L ha-1 

$0.01 $0.02 $0.02 $0.02 $0.02 

Amber 36.5  

mL ha-1 

$0.34 $12.41 $12.41 $12.41 $12.41 

Crop Insurance 1 ha $66.67 $66.67 $66.67 $66.67 $66.67 

Barley Overhead 1 ha $9.88 $9.88 $9.88 $9.88 $9.88 

Machinery Labor 0.91 hr $10.00 $6.20 $6.20 $6.20 $6.20 

Diesel Fuel 22.6 L $0.70 $15.82 $15.82 $15.82 $15.82 

Repairs        

            Tractors 1 ha $23.56 $23.56 $23.56 $23.56 $23.56 

             Implements 1 ha $30.59 $30.59 $30.59 $30.59 $30.59 

Total Variable 

Costs 

  $283.96 $283.96 $283.96 $283.96 

Machinery 

Depreciation  

      

             Tractors 1 ha $24.35 $24.35 $24.35 $24.35 $24.35 

             Implements 1 ha $35.90 $35.90 $35.90 $35.90 $35.90 

Equipment 

Investment 

      

            Tractors 6.00% $76.78 $4.61 $4.61 $4.61 $4.61 

             Implements 6.00% $66.80 $4.01 $4.01 $4.01 $4.01 

Dryland Rent 1 ha $74.07 $74.07 $74.07 $74.07 $74.07 

Total Fixed Costs   $142.94 $142.94 $142.94 $142.94 

Total Specified 

Costs 

  $426.90 $426.90 $426.90 $426.90 

Returns Above  

Specified Costs 

  $510.67 $68.38 $127.80 ($133.87) 

Breakeven Price 

(Mt-1) 

  $104.89 $198.56 $104.89 $198.56 
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 Spring two- and six-row barley was grown in MCG only for Harvest Year 2016.  

Table 4.11 and 4.12 are budget estimations for spring two- and six-row barley, 

respectively.  Both malt and feed prices are budgeted, like previous tables.  Spring two-

row yields were higher than six-row, mainly due to a higher amount of bird damage 

found in six-row plots.  In Table 4.11, spring TCAP two-row lines for malt, generated 

$303.34 in total revenue, compared to the commercial checks which generated $47.65.  

Yields for spring two-row barley were less than MCG facultative and winter barley, 

thus, less revenue was generated.  Comparing spring two-row barley to both winter and 

facultative barley production in DIM, spring barely yields were comparable, but 

generated more income for both malt and feed purposes.   
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Table 4.11: Malt and feed barley budget estimations for 2016 spring two-row barley produced in 

McGregor, TX.  Yield data is compiled from research project, prices compiled from National Ag Statistics 

Service and costs are compiled from Texas A&M Extension Budgets (District 8). 
 
 Qty. $ unit-1 Avg. Top 5 

TCAP  

(2R), Malt 

Avg. 

Commercial  

Checks, Malt 

Avg. Top 5 

TCAP  

(2R), Feed 

Avg. 

Commercial  

Checks, Feed 

Yield (Mt ha-1)   3.17 2.06 3.17 2.06 

Malt Price ($ Mt-1)   $230.36 $230.36  -  - 

Feed Price ($ Mt-1)    -   -   $136.29  $136.29 

Total Revenue   $730.24 $474.54 $432.04 $280.76 

Seed 61.7  

kg ha-1 

$1.76 $108.59 $108.59 $108.59 $108.59 

Fertilizer       

32-0-0 0.039 

Mt ha-1 

$262.00 $10.22 $10.22 $10.22 $10.22 

MCPA 2.34  

L ha-1 

$0.01 $0.02 $0.02 $0.02 $0.02 

Amber 36.5  

mL ha-1 

$0.34 $12.41 $12.41 $12.41 $12.41 

Crop Insurance 1 ha $66.67 $66.67 $66.67 $66.67 $66.67 

Barley Overhead 1 ha $9.88 $9.88 $9.88 $9.88 $9.88 

Machinery Labor 0.91 hr $10.00 $6.20 $6.20 $6.20 $6.20 

Diesel Fuel 22.6 L $0.70 $15.82 $15.82 $15.82 $15.82 

Repairs        

             Tractors 1 ha $23.56 $23.56 $23.56 $23.56 $23.56 

             Implements 1 ha $30.59 $30.59 $30.59 $30.59 $30.59 

Total Variable 

Costs 

  $283.96 $283.96 $283.96 $283.96 

Machinery 

Depreciation  

      

             Tractors 1 ha $24.35 $24.35 $24.35 $24.35 $24.35 

             Implements 1 ha $35.90 $35.90 $35.90 $35.90 $35.90 

Equipment 

Investment 

      

             Tractors 6.00% $76.78 $4.61 $4.61 $4.61 $4.61 

             Implements 6.00% $66.80 $4.01 $4.01 $4.01 $4.01 

Dryland Rent 1 ha $74.07 $74.07 $74.07 $74.07 $74.07 

Total Fixed Costs   $142.94 $142.94 $142.94 $142.94 

Total Specified 

Costs 

  $426.90 $426.90 $426.90 $426.90 

Returns Above  

Specified Costs 

  $303.34 $47.65 $5.14 ($146.14) 

Breakeven Price 

(Mt-1) 

  $134.67 $207.23 $134.67 $207.23 

 

 

 

Spring barley budget six-row estimations in Table 4.12 show that two-row barley 

generated more total revenue for both malt and feed purposes. Total revenue generated 

by TCAP lines for feed (-$86.17) is much lower compared to malt ($149.00).  The 
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average of the top five TCAP two-row barley generated a higher income ($303.34) 

compared to the average of the top five TCAP six-row barley ($149.00).  Like the other 

budgets, TCAP lines tested generated more income than commercial checks evaluated 

for the same purposes.  

 

 

Table 4.12: Malt and feed barley budget estimations for 2016 spring six-row barley produced in 

McGregor, TX.  Yield data is compiled from research project, prices compiled from National Ag Statistics 

Service and costs are compiled from Texas A&M Extension Budgets (District 8). 

 

 

 

 

 

 

 Quantity $ unit-1 Avg. Top  

5 TCAP  

(6R), Malt 

Avg.  

Commercial  

Checks, Malt 

Avg. Top 5  

TCAP 

(6R), Feed 

Avg.  

Commercial  

Checks, Feed 

Yield (Mt ha-1)   2.50 1.68 2.50 1.68 

Malt Price ($ Mt-1)   $230.36 $230.36  -  - 

Feed Price ($ Mt-1)    -   -   $136.29  $136.29 

Total Revenue   $575.90 $387.00 $340.73 $228.97 

Seed 61.7 kg ha-1 $1.76 $108.59 $108.59 $108.59 $108.59 

Fertilizer       

32-0-0 0.039 Mt ha-1 $262.00 $10.22 $10.22 $10.22 $10.22 

MCPA 2.34 L ha-1 $0.01 $0.02 $0.02 $0.02 $0.02 

Amber 36.5 mL ha-1 $0.34 $12.41 $12.41 $12.41 $12.41 

Crop Insurance 1 ha $66.67 $66.67 $66.67 $66.67 $66.67 

Barley Overhead 1 ha $9.88 $9.88 $9.88 $9.88 $9.88 

Machinery Labor 0.91 hr  $10.00  $6.20 $6.20 $6.20 $6.20 

Diesel Fuel 22.6 L $0.70 $15.82 $15.82 $15.82 $15.82 

Repairs        

Tractors 1 ha $23.56 $23.56 $23.56 $23.56 $23.56 

Implements 1 ha $30.59 $30.59 $30.59 $30.59 $30.59 

Total Variable Costs   $283.96 $283.96 $283.96 $283.96 

Machinery Depreciation        

Tractors 1 ha $24.35 $24.35 $24.35 $24.35 $24.35 

Implements 1 ha $35.90 $35.90 $35.90 $35.90 $35.90 

Equipment Investment       

Tractors 6.00% $76.78 $4.61 $4.61 $4.61 $4.61 

Implements 6.00% $66.80 $4.01 $4.01 $4.01 $4.01 

Dryland Rent 1 ha $74.07 $74.07 $74.07 $74.07 $74.07 

Total Fixed Costs   $142.94 $142.94 $142.94 $142.94 

Total Specified Costs   $426.90 $426.90 $426.90 $426.90 

Returns Above  

Specified Costs 

  $149.00 ($39.89) ($86.17) ($197.93) 

Breakeven Price (Mt-1)   $170.76  $254.10 $170.76 $254.10 
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The Use of Barley 

Figure 4.1 shows the change in use of barley from 1980 to 2016/17 in the US.  

While food, seed and industrial use of barley is declining, it is not declining as rapidly as 

barley for feed and residual use is.  The decline in feed and residual use of barley is 

directly related to the current surplus of feed grain in the markets.  This surplus has been 

and still is decreasing the price ($ bushel-1).  As production costs to grow feed grain 

(fuel, fertilizer, seed, etc.) continue to increase, while grain prices decrease, growing 

barley and other small grains for feed use is becoming less attractive.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: US barley disappearance chart (USDA FAS, September 2016). 
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Discussion and Conclusions 

Based on two years of results comparing wheat and barley performance under 

similar environments, barley appears to have a yield advantage over wheat in both 

locations.  Winter and facultative barley grown in DIM yielded higher than winter and 

facultative barley in MCG as well as spring six- and two-row grown in MCG.  Producers 

in the High Plains more commonly use irrigated conditions when growing their crops.  

That, coupled with lower disease and pest pressure, means that environmental and 

cultural practices are more desirable for barley production in that region of the state.  In 

addition, a high population of dairy cattle near DIM may encourage producers to grow 

winter and/or facultative barley lines for forage, grain and/or for silage purposes and 

market it to dairy farms in the surrounding area.  From personal communication, grain 

elevators in the High Plains are equipped to handle and store harvested barley grain.  

From a budgeting perspective, producing and selling barley for malt has a greater 

advantage over selling barley for feed purposes.  At DIM and MCG during Harvest Year 

2016, barley grown for malt purposes had a higher revenue compared to feed barley 

(Tables 4.7-4.12).  A trend at all locations and years shows that the average of the top 

five TCAP barley lines have an additional advantage in price for both malt and feed 

purposes when compared to average of the commercial checks.  A varietal release of a 

TCAP line(s) could enhance yield potential and generate additional income compared to 

commercially available barley varieties already on the market that are not bred and 

adapted for Texas environments.   
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Producers could begin to take advantage of the malt barley market and create private 

malt contracts directly with breweries and/or maltsters, which could prove beneficial for 

producers in the long-run by offering contracts for a high value crop and diversifying 

cropping systems.  In general, prices for malt barley are significantly higher than feed 

barley.  Malt prices do vary from brewery to brewery and therefore determining a 

general baseline price for malt is difficult.  Potential malt barley producers would need 

to explore contract options on a case-by-case basis with the malthouse.   

While growing barley for malt may seem advantageous over feed barley, producers 

need to consider potential higher prices for transportation costs of malt to malthouses 

located in the state.  In addition, there are not many malthouses located across Texas 

currently and so the market for malt barley is still small, creating challenges to producers 

wanting to grow and contract their barley.  A promising sign is that the number of craft 

breweries in the state continues to increase, ultimately increasing the demand of barley 

malt to meet the public’s consumption needs. 

Although barley has become a less popular crop in the state, there are some 

economic advantages to produce it.  With an overflow of grain in the market, prices are 

decreasing, making it hard for producers to breakeven on their input costs accrued 

during the growing season.  Niche markets, such as craft breweries, could be ideal for 

producers to explore as feed prices decline.  Private contracts with malt and/or brewing 

companies would have more lucrative incentives over feed barley.  Since each producer 

has different incomes, abilities and factors affecting their budget, individual research by 

the producer himself is needed before making operational changes.   
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CHAPTER V` 

SUMMARY AND CONCLUSIONS 

 

As the climate continues to change, more frequent and extreme drought events 

are expected to occur.  In addition, temperatures will rise, causing less winter freeze 

injury and more heat stress, directly affecting crop growth habits and heading dates.  

With these changes, it will be important to update and improve current barley production 

practices and varieties.  This may increase the adoption of drought-tolerant crops, such 

as barley, into cropping systems where it currently does not exist. 

Barley has the potential to be a profitable crop in Texas.  It has and still is being 

grown in a commercial setting by producers across the state (~12,000 ha).  Locations for 

this TCAP barley research stretched from the High Plains, to southern and central 

locations in the state of Texas.  Despite environmental hardships and occasional field 

losses, barley was successfully grown at each trial location.  Although environmental 

conditions differed each year, similarities between yield parameters and malt quality 

were seen.  In addition, statistical analysis showed that winter and facultative TCAP 

lines tested in DIM could out-perform commercial checks—indicating the potential for a 

new variety release. 

While environment did alter the performance and productivity of barley in some 

locations, overall, barley could produce average yield and malt quality.  Negative 

correlations between bird damage and freeze damage with yield shows that more 

research is needed to find ways to remedy these issues—either through resistance for 
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insect and freeze damage or budget-friendly ways to prevent excessive bird damage.  

resistance to some of these issues.  

From an economic standpoint, TCAP winter, spring two- and six-row barley 

lines out-yielded commercial barley and wheat checks and nearby HRWW trials in some 

locations (Hillsboro and Dimmitt locations).  When comparing gross income ($ Mt-1), 

the top TCAP lines were more desirable compared to the commercial checks, wheat 

checks and HRWW for both malt and feed purposes.  As prices decline with and 

overabundance in the feed grain market, producers may begin to look to alternative, 

niche markets to sell their grain.  With an increase in local craft breweries across the 

state, producers may find that growing barley and privately contracting it to these 

breweries/malthouses may be more desirable than producing for the feed grain market.  

However, producers must analyze their budgets and decide if the risk of trying a new 

crop is worth the potential income advantage.  

While each location tested over the three years of research could grow barley, the 

High Plains of Texas seem to be the most desirable location to produce barley.  

Compared to other locations (CAS and MCG), DIM has a lower humidity and cooler 

night as well as lower insect and pest pressure.  In addition, most farmed acres in that 

region are under pivot irrigation and so water can be applied to the plants as needed, 

reducing the risk of field loss from possible drought(s).  Lastly, with a large population 

of dairy cattle in the area, barley is in high demand for use as a feedstuff, which provides 

another market option.  With a high CP%, feed barley is an ideal grain to be 

incorporated in a lactating cow’s ration.  It is difficult to feed cattle malt barley, as it 
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typically contains a low protein content and therefore, dairy producers would have to 

supplement more protein into a ration.  This may ultimately cost more money and be less 

practical. 

More research is needed to help fine tune best management practices for barley 

in Texas to promote acreage increases.  Adding research locations across more eco-

regions of the state would help to improve the current evaluations of barley performance 

in the state.  Barley is known to be more salt and drought-tolerant compared to wheat 

and other small grains.  High-salinity soils located in far West Texas may provide one 

area where barely could be readily adopted in Texas, since many other crops cannot be 

successfully grown there.  Barley may be a minor crop in Texas agriculture currently, 

but with its ability to be used as a feed, forage and malting source, opportunity for 

acreage expansion is expected in the future.   
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APPENDIX 

 

A-1: PROC CORR procedure for statistical analysis.  This code was used in SAS, data 

was copied from excel and pasted into the code. 

 

ods html close; 

DM log "OUT;CLEAR;LOG;CLEAR;" log continue; 

DM log 'next results; clear; cancel;' whostedit continue; 

ods html newfile=none; 

data TCAP; 

input  

(parameters inserted here); 

cards; 

(Data inserted here) 

; 

proc print; 

proc corr pearson; 

(parameters inserted here); 

run; 

proc sort; by Type; 

proc corr pearson; by Type; 

(parameters inserted here); 

run; 

proc sort; by LOC; 

proc corr pearson; by LOC; 

(parameters inserted here); 

run; 

 

A-2: PROC GLM procedure for statistical analysis.  This code was used in SAS, data 

was copied from excel and pasted into the code. 

 

ods html close; 

DM log "OUT;CLEAR;LOG;CLEAR;" log continue; 

DM log ' next results; clear; cancel;' whostedit continue; 

ods html newfile=none; 

data TCAP; 

input  

 Year Loc$ Type$ Entry$ Yield; 

cards; 

(Data inserted here) 

; 

proc glm; 
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class Year Entry; 

model Yield = Entry Year; 

means Entry /lsd lines; 

run; 

 

A-3: Bi-plot procedure for statistical analysis.  This code was used in SAS, data was 

copied from excel and pasted into the code.  Input varied between comparisons (spring 

2-row, spring 6-row, winter/facultative). 

 

ods html close; 

DM log "OUT;CLEAR;LOG;CLEAR;" log continue; 

DM log ' next results; clear; cancel;' whostedit continue; 

ods html newfile=none; 

data TCAP; 

input  

(parameters inserted here); 

cards; 

(Data inserted here) 

; 

proc print data=TCAP; 

proc prinqual data=TCAP mdpref; 

id name; 

transform monotone (parameters inserted here); 

run; 
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A-3: TCAP Barley lines and commercial check pedigrees and yield evaluations (F= facultative, W= winter, S2= spring two-row, S6= spring six-row). 

 

   Yield (Mt ha-1) Test Weight (kg bu-1) Malt Quality 

   2016 2015 2014 2016 2015 2016 2015 

Line/Variety Type Pedigree DIM MCG DIM MCG MCG CAS DIM MCG DIM MCG MCG DIM MCG 

P919 F . 3.3 2.4 4.1 3.3 5.6 6.8 21.32 16.05 21.66 19.75 . 21 17 

06OR_10 F Maja/Kab 50 3.3 2.2 3.7 . 1.7 3.7 20.48 16.16 21.61 . . 26 . 

06OR_37 F Stab 47/Kab 51 3.2 1.9 2.8 . 2.3 2.3 20.48 16.30 21.47 . 36 26 . 

06OR_41 F StabBC 42 2.6 1.8 4.2 1.8 2.5 3.8 20.61 16.89 21.61 19.34 34 38 23 

06OR_42 F Stab 7/Kab 41 2.7 2.0 2.9 . 1.7 4.9 20.82 15.89 21.29 . . 31 . 

06OR_43 F Stab 47/Kab 51 3.8 2.0 3.7 2.1 2.5 1.5 20.38 . 21.16 18.21 33 30 21 

06OR_44 F StabBC 42 3.7 2.6 2.5 . 2.3 3.7 19.84 . 18.98 . . 32 . 

06OR_45 F Stab 47/Kab 51 2.6 1.5 3.3 2.1 3 3.0 19.82 16.12 20.75 18.16 . 30 21 

06OR_52 F Stab 47/Excel//Stab 47 3.3 3.1 3.6 . 3.1 7.3 20.61 17.16 21.97 . . 32 . 

06OR_59 F Kab51/Excel//Stab 47/Excel 3.3 3.1 3.5 . 1 4.7 21.47 19.25 21.61 . 34 38 . 

06OR_62 F Kold/88Ab536 3.2 1.2 3.2 1.8 3.2 1.4 20.57 16.75 20.88 18.89 . 26 26 

06OR_75 F Stab 47/Excel//Stab 47 3.3 2.7 3.3 . 2.3 6.9 20.68 17.82 22.11 . . 38 . 

06OR_78 F Stab 47/Excel//Stab 47 2.8 2.4 2.4 . 2.4 6.3 20.34 . 21.47 . . 38 . 

06OR_9 F Stab 47/Kab 51 4.0 . . 0.6 2.2 1.4 . . . 17.84 . . . 

06OR_91 F Stab 47/Excel//Stab 47 3.4 1.7 5.6 . 1.7 4.4 19.70 17.23 20.61 . 24 35 . 

07OR_21 F Stab 47/Kab 51 3.6 1.8 4.9 2.9 4 4.1 20.59 16.50 21.02 18.66 . 32 26 

07OR_3 F Bu 27/Stab 47/3/Maja/Stab 47 4.4 2.6 7.4 . 1.9 5.1 20.82 16.64 21.20 . 45 47 . 

07OR_4 F Bu 27/Stab 47/3/Maja/Stab 47 3.4 1.6 6.9 1.3 2.5 3.0 20.48 . 23.74 19.07 . 63 24 

07OR_59 F CC99A 3.5 1.1 6.4 . 2.6 3.1 19.64 . 22.97 . 38 42 . 

07OR_6 F Bu 27/Stab 47/3/Maja/StabBC 42 3.7 1.7 4.9 1.9 2.5 2.7 20.48 . 21.75 19.02 31 59 21 

07OR_63 F CC99A 2.9 2.3 5.7 . 1.8 1.8 19.84 18.07 22.25 . 30 36 . 

07OR_8 F Bu 27/Stab 47/3/Maja/StabBC 3.0 1.1 5.9 1.8 2.7 2.9 20.70 . 23.20 18.52 . 53 19 

08OR_30 F StabBC 42/Stab 7 2.9 2.9 4.1 1.7 2.8 5.1 19.70 17.03 17.80 19.70 40 35 18 

08OR_44 F StabBC 42/3/Kab 51/Legacy//Kab 51 2.9 2.4 5.4 . 2.3 6.2 20.95 17.21 22.70 . . 31 . 

08OR_48 F StabBC 50/Maja 4.0 2.2 5.9 . 2.2 5.1 21.07 15.89 22.02 . . 27 . 

08OR_53 F StabBC 50/Maja 4.2 0.6 5.1 . 2.1 3.5 20.16 . 20.34 . . 19 . 

08OR_73 F Kab 51/Excel//Maja/3/J2 3.9 1.8 5.8 . 2.3 5.5 20.57 . 20.48 . . 39 . 

08OR_81 F Maja/L//Maja/3/Stab 47/Kab 51 3.1 1.0 4.6 0.6 1.6 3.4 19.75 16.12 18.48 19.48 . 33 . 

F5105_1 F Stab 47/Kab 51//StabBC 42 . . . . . . 22.79 . . . . . . 

F5108_1 F Stab 47/Kab 51//StabBC 42 3.6 1.2 6.5 1.6 2.1 2.9 20.95 . 21.79 16.84 . 35 21 

F5112_1 F Stab 47/Kab 51//StabBC 42-14 3.9 2.6 5.3 . 2 2.8 20.07 . 21.70 . 40 19 . 

F5112_3 F Stab 47/Kab 51//StabBC 42 3.7 2.5 4.1 2.7 2.9 5.5 20.02 15.98 20.02 18.34 36 31 24 

F5113_2 F Stab 47/Kab 51//StabBC 50 4.4 2.0 4.6 . 2.2 3.4 20.20 . 19.98 . 28 28 . 

F5119_1 F Stab 47/Kab 51//StabBC 42 3.9 1.9 5.8 . 2.3 2.9 19.66 . 22.06 . 46 41 . 

F5120_3 F Stab 47/Kab 51//StabBC 42 3.1 1.7 4.0 . 2.6 4.1 20.13 16.39 19.43 . . 23 . 

F5121_1 F Stab 47/Kab 51//StabBC 42 4.1 1.6 6.5 . 2.2 5.8 20.34 . 20.88 . 36 20 . 

F5121_2 F Stab 47/Kab 51//StabBC 3.3 2.5 4.4 3.1 4.1 3.0 20.54 16.78 21.34 18.34 . 23 28 

F5121_3 F Stab 47/Kab 51//StabBC 42 2.8 3.1 5.1 . 1.5 4.3 20.07 16.82 21.70 . 44 23 . 

F5121_4 F Stab 47/Kab 51//StabBC 3.8 1.7 5.2 3.1 2 2.8 20.43 16.93 21.25 18.61 . 18 26 

F5121_5 F Stab 47/Kab 51//StabBC 42 4.1 2.6 5.3 . 2.5 5.6 20.36 . 21.79 . 37 25 . 

F5124_1 F Stab 47/Kab 51//J1 4.0 1.6 4.1 2.8 4.7 4.0 20.18 16.25 22.11 18.80 . 28 28 

F5131_1 F Stab 47/Kab 51//StabBC 42 4.2 1.1 4.4 . 2.3 1.7 20.25 . 18.80 . . 21 . 

F5132_1 F StabBC 42//Bu 37/Maja 4.3 2.6 5.4 . 8 8.0 20.66 16.00 20.52 . . 31 . 

F5134_3 F J2///Kab 51/Excel//Kab 51 3.2 2.0 4.5 2.0 2.9 2.3 20.61 16.80 19.70 16.71 42 32 26 

F522_3 F StabBC 42//Bu 37/Maja 3.8 2.4 5.4 2.9 2.5 2.5 20.61 17.46 21.61 18.84 . 30 25 

F557_2 F Stab 47/Kab 51//StabBC 42 4.0 1.3 6.9 3.0 2.1 1.7 20.04 16.03 20.84 18.61 34 36 28 

F559_1 F Stab 47/Kab 51//StabBC 3.4 1.8 5.3 . 2.5 3.8 20.36 16.84 20.34 . 40 37 . 

F559_2 F Stab 47/Kab 51//StabBC 42 3.9 2.1 4.3 2.8 5.2 2.9 20.11 16.57 19.16 20.84 . 22 26 

F576_4 F Stab 47/Kab 51//StabBC 42 3.8 1.8 5.8 2.2 2.4 2.9 21.63 18.25 22.20 17.71 . 22 22 

F590_5 F StabBC 182///K47/Excel//Stab 47/Excel 3.7 2.8 4.4 3.1 1.6 1.8 19.30 16.25 20.84 18.84 37 30 26 

F591_2 F StabBC ///Kab 47/Excel//Stab 47/Excel 3.8 2.6 5.0 2.1 2.1 1.8 19.95 16.53 20.38 18.75 46 33 26 

F595_1 F J1///Stab 47/Excel//StabBC 42 3.8 3.2 4.3 3.3 1.4 4.6 20.70 16.91 19.48 . 29 31 . 
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F596_2 F J2///Stab 47/Excel//Stab 47 4.3 1.5 2.3 . 1.8 1.1 20.82 15.94 21.16 18.89 . 28 . 

F596_4 F J1///Stab 47/Excel//StabBC 42 4.1 2.9 5.2 2.6 2.5 1.3 20.66 17.07 19.66 19.20 41 28 . 

Short11 F Bu 27/Stab 47//Maja/Stab 47                                                                                                                                                    3.5 3.5 4.3 . 2.3 8.9 20.27 16.84 19.34 . . 17 . 

Short12 F Bu 27/Stab 47//Maja/Stab 47                                                                                                                                                                3.5 2.7 5.4 . 1.5 5.4 20.13 16.21 20.79 . 25 20 . 

Short13 F Bu 27/Stab 47/3/Maja/Stab 47                                                                                                                                                                2.6 2.7 4.1 . 3.1 4.4 20.59 17.39 21.93 18.61 . 42 10 

Short16 F Bu 27/Stab 47/3/Maja/Stab 47                                                                                                                                                             3.6 2.1 6.6 . 2.5 5.8 20.75 16.96 22.52 . 47 46 . 

Short8 F Bu 27/Stab 47/3/Maja/Stab 47                                                                                                                                                       3.0 2.2 6.5 0.8 3.2 3.2 20.84 16.03 21.57 18.11 . 53 . 

Maja F Strider/88Ab536 3.7 3.0 . 2.0 0.5 2.1 21.12 16.68 . 18.57 41 . 23 

MW76_1 F TAMBAR 501 / FEG188-02 (MW08-03) 3.6 1.1 5.5 2.3 2.2 3.8 20.77 16.28 22.06 19.70 . 37 23 

MW76_2 F TAMBAR 501 / FEG188-02 (MW08-04) 3.3 1.0 . . . . 20.52 16.03 . . . . . 

MW80_1 F 88ab536 / Rasmusson (MW08-10) 3.2 2.3 4.1 . 3.4 7.4 21.36 18.68 21.29 . . 38 . 

MW116_3 F TAMBAR 501 / *2 M115 3.4 3.5 3.8 3.2 4.4 3.8 21.04 18.59 19.20 20.43 45 38 31 

MW116_4 F TAMBAR 501 / *2 M115 3.3 3.9 4.7 . 1.3 5.2 19.79 18.11 22.70 . 51 38 . 

MW118_1 F NB99845 / *2 M115 3.2 3.1 3.7 . 1.1 3.3 20.91 17.59 21.57 . . 36 . 

MW118_3 F NB99845 / *2 M115 3.5 3.0 5.3 . 0.8 7 21.61 19.52 21.25 . . 36 . 

MW118_4 F NB99845 / *2 M115 2.6 4.3 5.6 . 1.1 4.2 21.34 18.09 22.52 . . 32 . 

MW120_8 F 88ab536 / *2 Rasmusson 3.2 3.0 6.6 . 1.3 7.3 21.27 18.21 22.16 . 37 38 . 

MW122_1 F 88ab536 / *2 M115 3.7 3.7 4.7 1.6 1.9 4.4 20.29 17.91 22.43 19.11 . 36 30 

MW122_5 F 88ab536 / *2 M115 3.0 3.5 4.8 . 1.4 2.5 21.32 18.30 19.93 . 37 36 . 

OBA11_13 F NB3437f/OR76                                                                                                                                                                              3.3 3.0 3.7 . 1.3 7.1 20.32 17.80 21.43 . 28 36 . 

OBA11_2 F NB3437f/OR71                                                                                                                                                                                            3.6 2.8 5.5 . 1.2 6.9 21.47 18.25 20.20 . 40 34 . 

OBA11_29 F NB3437f/OR71                                                                                                                                                                                            3.2 2.8 5.3 3.4 3 7.9 21.43 16.34 20.02 . 43 32 25 

OBA11_31 F NB3437f/OR71                                                                                                                                                                                            3.7 2.3 . 2.2 . 3.5 20.63 16.91 . . 29 . 23 

OR101 F StabBC 42///Kab 51/Legacy//Kab 51 4.2 2.7 4.4 2.3 4.3 4.5 20.45 16.12 18.93 . . 15 15 

OR103 F StabBC 42/3/Kab51/Legacy//Kab51 4.3 2.8 5.3 3.8 2.1 2.6 20.93 16.55 18.70 . 31 7 8 

OR104 F StabBC 50/Maja 4.1 1.0 4.7 . 2.2 2.9 20.32 16.48 20.61 . . 26 23 

OR106 F StabBC 50/Maja 2.5 3.0 4.7 . 1.6 8.4 20.52 15.87 21.11 . . 27 21 

OR108 F J2/Maja 2.8 1.4 5.8 2.8 2.4 2.5 21.86 16.00 20.84 19.66 34 32 22 

OR818 F J2/Maja 3.0 2.9 4.3 . 1.7 5.5 20.84 16.57 22.52 . 32 42 . 

OR91 F Bu27/Stab 47/3/Maja/Stab 47 2.7 1.9 5.0 2.7 2.7 3.2 20.34 16.07 20.43 19.84 . 35 30 

OR910 F Bu27/Stab 47/3/Maja/Stab 47 3.8 2.0 5.7 . 1.2 5.6 20.18 16.75 20.34 . 47 56 . 

PO71_104 F P713/OR71 3.2 1.9 4.8 . 2.4 4.3 20.45 . 20.20 . 31 41 . 

PY211_6 F Maja/Legacy//Maja/3/Kab 47                                                                                                                                                                                   3.1 2.4 4.2 . 2.1 2.5 22.54 17.77 21.70 . . 22 . 

F5105_3 W Stab 47/Kab 51//StabBC 42 3.6 2.1 5.4 2.1 2.4 2.2 20.4 16.4 22.3 21.4 45 27 21 

F5106_1 W Stab 47/Kab 51//StabBC 42 3.8 2.2 5.4 . 2.1 1.8 19.7 16.5 21.4 . . 30 . 

F5109_1 W Stab 47/Kab 51//StabBC 42 3.0 2.5 5.1 . 1.8 6.1 20.8 17.0 21.2 . . 29 . 

F5109_3 W Stab 47/Kab 51//StabBC 42 3.4 2.9 5.7 2.0 2.8 5.9 20.0 . 22.7 19.2 . 37 26 

F5126_1 W StabBC 182//Stab 47/Kab 51 3.2 2.4 5.3 . 2.5 4.4 20.3 16.5 21.6 . . 20 . 

F5126_2 W StabBC 182//Stab 47/Kab 51 3.4 1.2 4.9 2.1 3.7 1.6 20.4 17.1 21.6 17.7 . 28 24 

F5129_1 W StabBC 182///K47/Excel//Stab 47/Excel 4.5 2.1 4.4 . 1.6 3.5 20.1 16.5 20.8 . . 26 . 

F5135_4 W J1///Stab 47/Excel//StabBC 42 1.8 1.9 5.7 . 1.5 5.9 19.3 . 19.9 . . 26 . 

F5136_1 W UTWB940119/J1 4.4 2.6 4.5 . 1.3 4.6 20.1 15.9 20.5 . . 24 . 

F523_1 W StabBC 42//Bu 37/Maja 3.9 3.3 6.4 . 1.9 7.8 21.0 17.8 22.2 . . 35 . 

F527_1 W StabBC 42//Bu 37/Maja 4.1 3.7 4.9 3.7 3.2 3.9 20.6 17.3 20.3 20.7 . 41 29 

F532_1 W StabBC 50//Bu 37/Maja 3.4 1.6 8.0 2.8 2.7 2.8 22.4 16.9 22.2 21.2 42 25 30 

F535_2 W UTWB940119/StabBC 50 3.6 2.8 7.0 3.8 2.6 5.8 20.3 16.3 22.6 21.2 . 58 34 

F536_2 W UTWB940119/J1 4.7 1.9 6.0 . 2.5 1.4 21.7 18.0 21.8 . 33 28 . 

F537_1 W UTWB940119/J1 4.2 1.8 6.7 . 2 0.9 20.3 17.7 21.5 . . 26 . 

F537_3 W UTWB940119/J1 3.6 2.3 7.6 2.4 2.1 2.2 21.0 18.2 22.7 20.8 38 33 21 

F54_2 W StabBC 42//Bu 37/Maja 3.3 2.4 5.7 . 3.2 1.7 21.7 17.0 20.3 . . 20 . 

F547_1 W StabBC 42//Bu 37/Maja 3.7 3.0 5.8 . 1.3 3.7 21.2 18.2 21.7 . 34 32 . 

F547_3 W StabBC 42//Bu 37/Maja 3.1 2.9 4.2 . 1.2 8.0 20.6 17.4 18.8 . 34 33 . 

F548_1 W StabBC 42/Bu 37//Maja 3.4 3.2 4.3 . 1.2 4.9 20.0 17.7 19.2 . 40 30 . 

F55_1 W StabBC 42//Bu 37/Maja 4.2 2.1 6.2 3.5 2.6 2.9 21.1 17.4 21.3 20.0 38 23 24 

F550_1 W StabBC 42/Bu 37//Maja 3.6 3.5 6.2 . 1.5 2.2 20.7 16.7 22.6 . . 31 . 

F552_2 W StabBC 50/Maja 3.8 1.8 6.2 . 1.5 2.6 21.3 18.0 22.6 . . 27 . 

F555_1 W UTWB940119/J1 4.2 1.8 7.3 2.2 1.5 2.5 21.8 17.7 20.4 18.6 38 35 24 

F556_1 W Stab 47/Kab 51//StabBC 42 . 1.8 . . 1.2 2.4 . 16.6 . . . . . 

F556_3 W Stab 47/Kab 51//StabBC 42 4.1 1.4 7.9 2.6 4.2 1.5 19.6 17.4 21.6 20.7 41 35 28 
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F560_2 W StabBC 182//Stab 47/Kab 51 3.7 2.4 5.8 2.2 2.4 4.4 20.1 16.8 20.4 17.2 . 25 22 

F564_1 W StabBC 42//Bu 37/Maja 3.8 1.8 6.3 . 2.2 2.8 19.2 17.1 20.9 . . 28 . 

F566_3 W Kab 51/Excel//Maja/3/Stab 7/Maja 3.6 2.2 4.2 2.6 2.9 2.8 20.4 16.2 17.7 18.2 . 31 28 

F572_3 W UTWB940119/StabBC 50 3.8 3.0 5.2 0.8 2.7 4.2 20.6 17.3 19.3 17.7 . 24 . 

F576_1 W Stab 47/Kab 51//StabBC 42 3.8 2.2 5.5 . 1.4 3.2 20.1 17.2 21.1 . 40 38 . 

F583_1 W StabBC 42//Stab 47/Kab 51 3.5 2.3 5.6 . 2.2 6.4 20.5 16.5 21.3 . 44 23 . 

F588_3 W StabBC 182//Stab 47/Kab 51 3.3 2.1 5.9 . 1.6 3.2 19.6 16.1 22.4 . . 23 . 

F59_2 W StabBC 50//Bu 37/Maja 3.7 1.9 5.6 3.6 2.1 1.1 20.4 16.7 20.2 20.4 . 23 21 

F591_1 W StabBC 182///K47/Excel//Stab 47/Excel 3.4 2.5 4.9 3.0 2.5 3.6 21.5 17.6 23.2 21.6 33 38 22 

Alba W Strider/Orca 3.4 2.3 6.4 1.1 2.8 5.7 20.0 16.7 21.7 17.9 47 36.5 21 

OK216 W Post 90*4 / R036 3.5 2.1 . 2.4 2.6 2.2 20.9 17.5 . 18.3 . . 25 

OK249 W Post 90*4 / R019 3.5 2.0 . . . . 20.7 17.6 . . 44 . . 

OK248 W Post 90*4 / R019 4.2 0.9 5.0 0.9 . . 21.9 16.7 21.3 18.2 . 11 . 

OK242 W Post 90*4 / R012 3.5 1.5 4.5 0.8 . . 23.0 19.0 18.8 19.6 . 11 23 

OK452 W Post 90*4 / R011 2.0 1.9 6.3 1.2 . . 21.8 19.2 20.4 19.1 . 9 24 

OK474 W Post 90*4 / R001 4.0 1.6 4.9 1.3 . . 21.3 18.9 19.2 17.2 . 14 21 

OR76 W STAB 47/KAB 51 3.1 1.7 5.5 . 1.9 1.4 19.9 . 22.0 . . 35 . 

OR813 W Stab 47/Kab51 3.7 2.7 4.7 2.6 2.5 3.6 21.3 16.7 21.4 20.8 . 24 23 

OR815 W CC99B 2.9 3.0 5.1 2.3 2.7 4.7 20.4 . 23.1 19.7 . 42 24 

PO71_87 W P713/OR71 3.1 1.3 . 2.1 2.8 4.3 21.6 16.0 . 16.6 . . . 

06AB_24 S2 93AB859/BZ594-19 . 2.5 . 1.6 1.7 2.5 . 20.3 . 19.7 43 . . 

06AB_44 S2 96AB8309/Steffi . 2.6 . 2.6 2.5 2.0 . 20.4 . 20.8 29 . . 

06BA_81 S2 Scarlett/Z037C005G//Z051B038C/Z006C018G . 1.7 . 2.0 2.6 4.9 . 20.7 . 20.3 37 . . 

06MT_26 S2 GS1750/MT050051 . 2.6 . 2.4 2.4 4.0 . 20.9 . 20.1 49 . . 

06MT_59 S2 MT970110/MTLB5 . 2.5 . 4.6 2.7 2.8 . 21.1 . 22.4 43 . 43 

06MT_67 S2 Haxby/Craft . 2.6 . 4.4 2.0 3.7 . 21.0 . 21.3 55 . 61 

06MT_82 S2 MTLB5/MT960222 . 3.2 . 3.4 2.0 3.9 . 21.9 . 22.4 56 . 56 

06N2_06 S2 ND19088//ND17291/ND19098 . 2.1 . 3.5 2.2 3.9 . 20.8 . 21.4 42 . 42 

06N2_17 S2 Logan/ND19119-5 . 2.2 . 3.7 1.2 2.5 . 20.8 . 21.6 50 . 50 

06N2_37 S2 ND19872/ND19854 . 2.6 . . 1.7 8.2 . 21.3 . . . . . 

06N2_39 S2 ND20794//Lacey/ND19922 . 2.0 . 3.3 2.4 2.0 . 20.1 . 20.8 55 . . 

06N2_70 S2 Shenmai 3/ND19119-1//ND21117 . 2.6 . 4.0 2.0 5.4 . 20.3 . 21.7 45 . 42 

06WA_38 S2 Farmington/Jersey . 1.9 . 2.1 2.1 2.9 . 20.5 . 20.2 54 . 54 

06WA_77 S2 Bob/Xena . 2.8 . 2.0 2.2 5.6 . 20.5 . 19.0 37 . 37 

07AB_53 S2 97Ab7804/Garnet . 2.2 . 4.0 1.6 1.4 . 20.1 . 20.0 57 . . 

07AB_77 S2 91Ab2303/96Ab8289 . 2.7 . 3.1 3.3 8.5 . 21.2 . 22.1 55 . 55 

07BA_80 S2 2B99-2657/2B99-2123 . 1.7 . 3.0 1.1 3.6 . 20.6 . 20.1 . . . 

07MT_40 S2 MT010178/MT970116 . 3.2 . 2.6 1.6 5.0 . 20.3 . 21.4 51 . 51 

07MT_67 S2 MT990173/Bearpaw . 2.1 . 1.5 2.0 3.6 . 20.8 . 21.2 . . . 

07MT_94 S2 LK644///Craft F5 . 1.6 . 3.3 1.2 4.2 . 21.2 . 19.9 56 . 62 

07N2_02 S2 ND229966//Mildew 25/Rawson . 2.3 . 2.8 1.2 2.8 . 20.9 . 20.4 54 . 58 

07N2_13 S2 ND21957-2/ND23024 . 1.8 . 4.5 1.3 4.3 . 20.2 . 20.8 54 . 51 

07N2_31 S2 ND22089-2/Rawson . 1.9 . 3.4 1.2 3.6 . 19.3 . 20.3 61 . 59 

07N2_38 S2 C2-00-303-18/ND21089-3 . 3.0 . . . 5.2 . 21.2 . 22.1 55 . 55 

07N2_61 S2 ND22974/ND22947 . 2.5 . 0.7 1.3 3.4 . 18.9 . 19.7 46 . 46 

07N2_73 S2 ND23013/ND21865-6 . 1.5 . 3.0 1.2 3.5 . 21.3 . 20.3 49 . 49 

07WA_03 S2 Bob/Merit//CDC Select . 2.9 . 1.9 1.1 4.2 . 20.5 . 18.3 49 . . 

07WA_13 S2 Radiant/2B98-5416 . 1.7 . 2.2 1.1 6.0 . 20.8 . 18.3 48 . . 

08AB_17 S2 93Ab835/01Ab10072 . 2.3 . 1.2 1.0 3.1 . 20.9 . 20.0 48 . 48 

08AB_24 S2 94GH86-5/Acuario . 2.2 . 2.1 1.1 4.5 . 20.7 . 20.1 49 . . 

08AB_45 S2 B1202/98Ab12210 . 1.7 . 1.7 1.1 3.3 . 20.0 . 18.8 41 . 53 

08BA_02 S2 Z010C020E/Z011L088L . 2.2 . 1.5 1.1 6.9 . 20.8 . 15.9 47 . 46 

08BA_11 S2 Z005J004J/Cork//B1215/Z078H050i . 1.3 . 1.1 1.1 2.8 . 19.7 . 17.8 50 . 52 

08BA_25 S2 Z017L114L/Z020C014E . 2.1 . 1.6 1.1 2.1 . 19.7 . . . . . 

08BA_30 S2 Z180i017M//B1215/Z001C011F . 0.5 . . . 5.8 . 19.8 . . . . . 

08BA_76 S2 2B01-1961/2B01-1703 . 2.2 . 2.3 1.2 5.4 . 20.4 . 21.5 41 . . 

08MT_04 S2 Amulet/MT960101 . 2.0 . 2.6 1.0 5.0 . 20.7 . 20.0 57 . . 

08MT_41 S2 MT10105/Eslick . . . . 1.0 7.1 . . . . 45 . . 

08MT_63 S2 MT96010/MT981210 . 2.5 . 2.0 1.2 1.7 . 21.1 . 19.0 29 . . 
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08MT_68 S2 MT970026/Eslick . 2.3 . . 1.0 5.2 . 21.0 . . 42 . . 

08N2_12 S2 ND24289/ND229966//Conlon . 2.9 . . . 4.5 . 20.6 . . 60 . 60 

08N2_37 S2 ND22895/ND24490//ND24365 . 1.8 . . . 4.2 . 20.9 . . 51 . . 

08N2_62 S2 ND24519/ND24260 . 2.5 . 4.1 2.4 1.7 . 20.4 . 20.2 60 . . 

08N2_66 S2 ND24519/Conlon . 2.3 . . 2.5 4.4 . 20.8 . . 53 . 53 

08N2_73 S2 ND24383/ND24260 . 2.3 . 3.6 1.8 3.2 . 20.5 . 20.6 60 . 60 

08N2_80 S2 ND24365/ND24519 . 2.9 . . . 5.5 . 21.0 . . 59 . 62 

08WA_11 S2 WA10701-99/WA10429-00 . 1.8 . 1.3 1.5 2.0 . 19.8 . 16.9 47 . 47 

08WA_27 S2 Bob/Baronesse//85Ab2323/3/NZDK00-131 . 2.0 . 1.6 2.1 5.7 . 21.0 . 19.3 45 . . 

08WA_40 S2 Bob/Baronesse//Xena/3/WA10497-97 . 2.9 . 1.8 2.9 4.3 . 21.5 . 19.9 44 . . 

08WA_64 S2 WA8601-97/CDC Select/90M5194/Baronesse*2 . 1.7 . 1.4 2.2 5.6 . 20.3 . 15.9 59 . . 

09AB_10 S2 . . 2.1 . 1.1 2.0 0.9 . 20.8 . 17.8 39 . . 

09AB_15 S2 . . . . . 1.6 2.7 . . . 20.5 51 . . 

09AB_43 S2 . . 1.3 . 1.7 1.3 2.4 . 21.8 . 20.7 46 . 44 

09AB_48 S2 . . 1.7 . 2.3 1.8 1.5 . 20.7 . 20.8 58 . 58 

09AB_82 S2 . . 2.9 . 2.2 2.4 2.9 . 21.1 . 20.3 47 . . 

09BA_03 S2 B1215/Z077G026i//B1215/Z167i004M . 2.3 . 3.7 1.8 4.8 . 19.3 . 18.8 38 . 38 

09BA_10 S2 Z020L037L/Metcalfe . 1.9 . 2.2 2.1 3.4 . 20.3 . . 40 . 39 

09BA_68 S2 2B01-1707/2B99-2316 . 2.7 . 2.5 1.5 3.3 . 20.9 . 18.5 . . . 

09BA_89 S2 2B99-2763//2B00-0719/2B00-0794 . 1.0 . 1.8 2.4 3.5 . 19.0 . 16.6 52 . 56 

09BA_94 S2 Merit/98NZ-015 . 0.5 . . 2.0 5.6 . 19.7 . . . . . 

09MT_16 S2 LK6-44/Conlon (75-35) . 2.4 . 1.9 2.9 5.0 . 20.8 . 19.1 45 . . 

09MT_78 S2 MT910189/MT910189/Lk644/Eslick BC3F3 7-I . 2.6 . 2.6 2.3 3.6 . 21.1 . 20.1 49 . 49 

09MT_94 S2 MT910189/MT910189/Lk644/Eslick BC3F3 3-G . 2.3 . 1.5 1.8 4.1 . 19.8 . 17.9 48 . 45 

09N2_04 S2 ND24519/ND24383 . 1.9 . 2.9 3.0 6.8 . 20.4 . 20.3 . . . 

09N2_12 S2 ND24253/ND24519 . 1.8 . 4.0 2.3 4.4 . 21.0 . 20.4 60 . . 

09N2_16 S2 ND24190/ND2895 . 1.9 . . 1.5 5.5 . 20.7 . . 54 . . 

09N2_21 S2 ND19922//ND19974/ND19119/3/ND23146 . 3.0 . 4.2 2.2 2.7 . 20.2 . 20.4 46 . 40 

09N2_29 S2 ND23146/ND24519 . 2.6 . 2.6 3.1 4.5 . 21.1 . 20.9 52 . 52 

09N2_39 S2 ND24519/ND24379 . 2.7 . 2.4 3.3 5.2 . 20.5 . 21.2 53 . 57 

09N2_55 S2 2ND24253/TR05286 . 1.8 . 3.0 1.7 2.8 . 20.8 . 19.7 54 . . 

09N2_73 S2 2ND24266/TR05285 . 2.5 . 2.4 2.6 3.0 . 20.7 . 19.7 70 . . 

09WA_15 S2 WA10701-99/Baronesse . . . 1.5 2.4 2.3 . 20.6 . 18.7 51 . . 

09WA_19 S2 NZDK00-146/Baronesse//Farmington/Baronesse . 2.3 . 1.7 2.4 3.9 . 20.2 . 19.9 40 . 40 

09WA_52 S2 Farmington/CDC Select//Baronesse/Samish 23/3/YU 597-432 . 2.6 . 2.4 1.6 2.6 . 20.3 . 21.2 49 . 52 

09WA_64 S2 Radiant/Baronesse . 2.3 . 1.3 2.0 5.5 . 21.2 . 20.3 45 . . 

AC_Met S2 TR226/Manley . 2.0 . 1.8 1.3 4.0 . 20.8 . 18.7 51 . 50 

CDC S2 WM861-5/TR118 . 1.8 . 2.0 1.4 3.2 . 20.5 . 18.7 27 . . 

CON S2 Bowman*2/DWS1008//ND10232 . 1.8 . 2.4 1.4 4.3 . 20.7 . 20.7 50 . . 

S_622B S2 B1201*4/R034 . 45.7 . 2.1 . . . 19.2 . 13.2 1.4 . . 

SIDNEY S2 Otis*4/STARS 9301B . 45.4 . 0.8 33 . . 20.3 . 12.7 1.0 . . 

STONE S2 Otis*4/STARS 9577B . 39.8 . 0.5 33 . . 17.7 . . 1.0 . . 

F_Pint2 S2 Strider/Harrington . 3.4 . 44.7 37.3 0.6 . 21.6 . 3.2 4.0 . 2 

06AB_55 S6 92Ab5189/M83//Foster . 1.5 . 3.5 1.8 6.1 . 18.4 . 18.5 52 . 27 

06AB_62 S6 92Ab5697/95Ab15156//92Ab5180 . 2.1 . 2.6 1.9 4.4 . 19.5 . 20.2 49 . 58 

06AB_84 S6 86Ab599/B2912 . 2.2 . 3.9 2.4 5.1 . 19.2 . 19.6 51 . 39 

06BA_06 S6 6B94-7378//B22027/M84 . 1.9 . 3.1 2.2 6.2 . 19.7 . 20.0 56 . 43 

06BA_30 S6 Tradition//6B94-8253/Drummond . 1.5 . 3.4 2.3 4.9 . 20.3 . 20.1 . . 46 

06MN_10 S6 ND20407/M118 FHB (F3:4) . 2.0 . 2.9 2.2 4.0 . 19.1 . 20.3 . . 42 

06MN_18 S6 MN99-52/FEG66-08 . 1.5 . 3.5 2.2 3.5 . 19.1 . 19.8 53 . 43 

06MN_51 S6 FEG67-32/M117 . 1.8 . 2.9 1.5 5.6 . 19.4 . 21.3 . . 36 

06MN_62 S6 M115/M119 . 1.2 . 2.6 1.9 4.6 . 18.8 . 17.7 54 . 23 

06N6_66 S6 Drummond/ND19651 . 1.7 . 3.8 2.6 3.9 . 18.9 . 20.6 . . 39 

06N6_71 S6 Drummond/ND17643 . 2.0 . 3.4 1.8 5.0 . 19.8 . 21.7 58 . 46 

06N6_88 S6 ND18546/ND19655 . 1.9 . 1.8 1.9 4.1 . 19.1 . 20.0 53 . 42 

07AB_10 S6 93Ab355/3/92Ab5187//88Y394/M75 . 1.9 . 2.8 2.7 4.8 . 17.8 . 17.7 . . 36 

07AB_16 S6 Colter/98Ab12399 . 1.9 . 1.9 1.8 7.1 . 18.1 . 18.9 44 . 29 

07BA_09 S6 Tradition/3/6B97-2063//6B94-8253/6B97-2245 . 2.1 . 3.4 2.5 3.1 . 19.3 . 20.1 61 . 45 

07BA_18 S6 6B97-2063//6B94-8253/6B97-2245/3/Tradition . 2.1 . 2.5 2.5 4.7 . 20.2 . 19.3 . . 33 
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07BA_24 S6 6B98-9555/Lacey . 1.7 . 3.2 2.2 7.3 . 19.3 . 20.2 . . 58 

07BA_28 S6 6B98-9920/6B98-9058 . 2.0 . 2.9 2.7 4.8 . 18.5 . 19.7 62 . 54 

07MN_42 S6 M00-51/M123 MAS . 1.5 . 2.5 1.9 3.2 . 19.6 . 20.9 54 . 55 

07MN_52 S6 Quest/M123 . 1.2 . 2.9 1.6 5.6 . 19.2 . 20.7 . . 53 

07MN_85 S6 M01-65/M121 NB . 1.3 . 3.5 1.5 5.2 . 19.0 . 20.3 54 . 53 

07MN_90 S6 Sep2-01/M116 Se . 1.8 . 3.3 2.3 5.4 . 20.3 . 19.1 59 . 54 

07MN_94 S6 Sep2-01/M99-106 Se NB . 1.6 . 1.7 1.5 2.5 . 18.8 . 18.9 . . 41 

07N6_51 S6 Stellar-ND/ND20481 . 1.7 . 3.1 2.7 3.4 . 18.8 . 19.6 . . 26 

07N6_80 S6 ND19474/ND20477 . 1.9 . 4.2 1.9 2.1 . 18.3 . 20.6 48 . 29 

07UT_18 S6 UT95B1216-4087/Baronesse . 1.9 . 1.2 2.2 2.6 . 19.5 . 17.1 . . 27 

07UT_36 S6 UT5344/Baronesse . 1.6 . 2.1 2.7 3.6 . 19.7 . 18.8 39 . 39 

07UT_71 S6 SDB1-1009/M72-395/3/Short2//ID633019/Woodvale/4/Steptoe/M27//Gusto/5/WA11825-95/6//Baronesse . 1.8 . 0.4 1.8 4.2 . 19.5 . 17.8 48 . . 

07UT_83 S6 SDB1-1009/M72-395/3/Short2//ID633019/Woodvale/4/Steptoe/M27//Gusto/5/WA11825-95/6//Harrington . 2.0 . 2.0 2.5 8.1 . 19.7 . 20.7 . . 20 

07UT_88 S6 Harrington/UT4392 . 1.4 . 1.9 2.5 2.7 . 19.5 . 19.2 . . 24 

07UT_93 S6 Harrington/UT95B1216-4087 . 1.8 . 1.9 1.9 5.6 . 20.4 . 20.6 . . 21 

07UT_96 S6 PB 17090/6/SDB1-1009/M72-395/3/Short2//ID633019/Woodvale/4/Steptoe/M27//Gusto/5/WA11825-95 . 2.1 . 2.0 2.2 4.0 . 20.2 . 21.6 53 . 47 

08AB_54 S6 92Ab5180/Lacey . 1.9 . 2.0 2.5 3.1 . 19.0 . 19.1 58 . 28 

08AB_80 S6 98Ab12399/94-Ab13449 . 1.4 . 2.7 2.0 4.4 . 19.2 . 19.4 . . 38 

08BA_41 S6 6B00-0906/6B99-6557 . 2.4 . 2.5 2.9 2.9 . 20.1 . 18.4 . . 35 

08BA_44 S6 6B98-9339/C01-6761 . 1.9 . 3.6 3.2 7.3 . 18.8 . 19.7 53 . 44 

08BA_54 S6 6B00-0906/6B98-9558 . 2.2 . 2.1 2.6 4.8 . 20.4 . 19.7 . . 38 

08BA_60 S6 6B01-2600/Tradition . 2.1 . 3.2 3.3 6.9 . 19.5 . 20.0 . . 37 

08BA_64 S6 FEG26-93/6B98-9022 . 0.8 . 2.1 2.7 4.3 . 19.1 . 18.9 58 . 17 

08MN_34 S6 FEG109-44/FEG100-41 . 1.6 . 1.8 2.2 3.0 . 18.8 . 19.1 56 . 38 

08MN_49 S6 FEG116-05/FEG99-10 . 1.7 . 1.4 2.3 1.0 . 18.8 . 20.1 57 . 21 

08MN_56 S6 FEG148-56/Rasmusson . 1.7 . 2.7 2.2 3.5 . 19.2 . 20.0 . . 35 

08MN_67 S6 FEG150-49/M122 . 1.8 . 2.8 1.9 2.2 . 19.0 . 20.7 . . 33 

08MN_78 S6 M118/MN01-05 . 1.7 . 2.8 2.3 4.7 . 20.0 . 20.2 62 . 42 

08N6_09 S6 ND19557/ND19491 . 2.1 . 3.5 3.0 5.1 . 18.9 . 20.0 . . 46 

08N6_21 S6 ND19474/ND20614 . 1.8 . 3.1 1.9 2.0 . 19.4 . 19.9 50 . 26 

08N6_35 S6 ND19655/ND20542 . 1.8 . 2.5 3.5 6.2 . 18.8 . 18.4 51 . 21 

08N6_52 S6 ND20364/ND20477 . 2.6 . 3.7 2.8 5.8 . 19.2 . 20.2 54 . 38 

08N6_77 S6 ND20508/ND20666 . 2.5 . 2.2 1.9 6.6 . 19.4 . 19.6 62 . 35 

08N6_91 S6 ND19552/ND19655 . 2.1 . 4.0 1.0 3.7 . 19.4 . 20.2 . . 48 

08N6_94 S6 ND19620/ND20281 . 2.6 . 4.1 1.8 3.6 . 20.0 . 20.4 . . 49 

08N6_96 S6 ND19655/ND20314 . 2.1 . 3.4 3.4 6.3 . 19.3 . 17.7 49 . 26 

08UT_10 S6 Morex*Goldeneye . 1.6 . 1.8 1.4 3.6 . 19.0 . 18.2 39 . 31 

08UT_80 S6 AB11469*Aquila . 1.9 . . 2.2 5.7 . 18.6 . . . . . 

09BA_37 S6 6B00-1166/ND18578 . 1.9 . 3.7 3.7 7.2 . 19.2 . 20.1 46 . 44 

09BA_50 S6 6B98-9558/M99-2 . 1.8 . 3.0 2.3 6.3 . 18.3 . 20.2 55 . 44 

09MN_04 S6 MN02-04/ND23657 . 2.5 . 3.2 2.8 5.3 . 19.5 . 20.4 57 . 33 

09MN_30 S6 ND23657/M132 . 1.5 . 1.9 1.6 2.3 . 18.2 . 20.2 54 . 35 

09MN_50 S6 M137/FEG148-26 . 1.9 . 3.7 1.8 3.9 . 19.7 . 22.2 . . 44 

09MN_70 S6 MN03-12/FEG168-19 . 1.6 . 2.2 1.7 5.7 . 20.1 . 19.2 52 . 29 

09N6_36 S6 ND21376/ND21609 . 1.8 . 3.0 1.7 3.6 . 18.3 . 19.4 63 . 36 

09N6_59 S6 Stellar-ND/ND23672 . 1.7 . 1.8 2.1 6.1 . 19.0 . 20.7 66 . 34 

09N6_63 S6 M122/ND23497 . 1.9 . 2.2 1.7 2.5 . 19.7 . 20.3 54 . 39 

09N6_69 S6 Tradition/ND20448 . 1.5 . 2.9 2.4 . . 19.7 . 20.9 59 . 44 

09UT_13 S6 Stander/Aquila . 1.7 . 1.8 1.5 4.3 . 18.6 . 17.8 . . 34 

AC_Met S6 TR226/Manley . 1.8 . 1.8 1.3 2.9 . 20.1 . 19.2 62 . 30 

CDC S6 WM861-5/TR118 . 1.6 . 2.1 1.2 3.4 . 19.9 . 19.1 . . 27 

CON S6 Bowman*2/DWS1008//ND10232 . 1.8 . 2.0 1.8 3.6 . 20.7 . 20.9 51 . 43 

S_610B S6 Morex*4/R019 . 1.4 . 2.3 . . . 19.4 . 18.6 . . 26 
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A-4: TCAP Barley lines and commercial check malt quality and environmental evaluations (F= facultative, W= winter, S2= spring two-row, S6= spring six-row). 

  Malt Quality Lodging (%) Bird Damage (0-5 scale) Leaf Rust (0-5 scale) Aphid (0-5 scale) 

  2016 2015 2016 2015 2014 2016 2014 2014 2014 

Line/Variety Type MCG DIM MCG MCG CAS DIM MCG MCG CAS MCG CAS CAS CAS MCG CAS MCG 

P919 F . 21 17 53 . 30 . . . 0 . . . . . . 

06OR_10 F . 26 . 65 95 50 . . . 1 3 . 0 . 0 0 

06OR_37 F 36 26 . 30 95 70 . . . 1 5 . 0 . 0 0 

06OR_41 F 34 38 23 33 13 90 10 . . 1 5 . 5 . 0 0 

06OR_42 F . 31 . 90 95 80 . . . 0 5 . 10 . 0 0 

06OR_43 F 33 30 21 48 53 80 15 5 . 0 5 . 0 . 0 0 

06OR_44 F . 32 . 33 100 60 . 5 . 4 5 . 0 . 0 0 

06OR_45 F . 30 21 40 100 90 15 . . 0 5 . 10 . 0 0 

06OR_52 F . 32 . 8 95 90 . . . 0 5 . 30 . 0 0 

06OR_59 F 34 38 . 50 18 50 . . . 0 5 . 5 . 0 20 

06OR_62 F . 26 26 85 48 0 80 . . . . . 40 . 0 20 

06OR_75 F . 38 . . 100 50 . 10 . 0 . . 20 . 0 0 

06OR_78 F . 38 . . 90 10 . 10 . . 5 . 10 . 0 0 

06OR_9 F . . . 35 100 . . . 80 . . . 0 . 9 0 

06OR_91 F 24 35 . 23 60 30 . 10 . . . . 20 . 0 5 

07OR_21 F . 32 26 85 65 60 10 . . 0 3 . 0 . 0 10 

07OR_3 F 45 47 . 53 48 60 . . . 0 5 . 5 . 7 0 

07OR_4 F . 63 24 45 80 10 80 . . 0 5 . 5 . 0 10 

07OR_59 F 38 42 . 48 80 0 . . . 0 5 . 0 . 7 0 

07OR_6 F 31 59 21 48 100 40 . . . 0 5 . 5 . 0 0 

07OR_63 F 30 36 . 20 33 5 . 5 . 1 5 . 0 . 0 10 

07OR_8 F . 53 19 90 100 20 15 . . 1 5 . 0 . 0 0 

08OR_30 F 40 35 18 45 100 0 60 . . 1 0 . 0 . 0 0 

08OR_44 F . 31 . 75 100 40 . . . 1 . . 0 . 0 5 

08OR_48 F . 27 . 90 75 30 . . . 0 5 . 30 . 0 10 

08OR_53 F . 19 . 45 100 40 . . . 0 5 . 50 . 0 10 

08OR_73 F . 39 . 35 80 20 . . . 2 5 . 5 . 0 5 

08OR_81 F . 33 . 5 100 10 70 . . 0 5 . 5 . 0 40 

F5105_1 F . . . 20 65 40 5 . . 0 4 . 0 . 0 0 

F5108_1 F . 35 21 40 100 0 . 5 . 0 . . 0 . 0 0 

F5112_1 F 40 19 . 23 100 5 . 5 . 0 5 . 0 . 0 0 

F5112_3 F 36 31 24 85 95 60 . 5 . 0 5 . 0 . 0 5 

F5113_2 F 28 28 . 48 100 70 . 5 . 1 5 . 5 . 0 3 

F5119_1 F 46 41 . 5 70 20 . 5 . 0 4 . 5 . 7 10 

F5120_3 F . 23 . 48 95 50 . . . 0 5 . 0 . 0 5 

F5121_1 F 36 20 . 23 100 40 40 . . 0 3 . 0 . 0 10 

F5121_2 F . 23 28 43 100 30 . . . 0 5 . 0 . 0 5 

F5121_3 F 44 23 . 43 100 10 10 . . 0 5 . 0 . 0 0 

F5121_4 F . 18 26 65 100 30 . 5 . 0 . . 0 . 0 5 

F5121_5 F 37 25 . 20 5 40 50 . . 3 5 . 20 . 0 5 

F5124_1 F . 28 28 50 93 30 . . . 1 5 . 10 . 0 0 

F5131_1 F . 21 . 55 90 60 . . . 0 5 . 10 . 0 0 

F5132_1 F . 31 . 5 90 50 90 . . 0 5 . 0 . 0 3 

F5134_3 F 42 32 26 48 100 20 . . . 1 5 . 0 . 0 0 

F522_3 F . 30 25 3 95 30 . . . 1 5 . 0 . 0 0 

F557_2 F 34 36 28 48 5 50 . . 30 0 5 . 20 . 0 0 

F559_1 F 40 37 . 20 95 30 5 . . 2 5 . 10 . 9 0 

F559_2 F . 22 26 5 80 30 . . 40 0 . . 0 . 0 0 

F576_4 F . 22 22 3 100 40 . . . 0 5 . 0 . 0 0 

F590_5 F 37 30 26 33 100 10 60 . . 0 . . 10 . 0 3 

F591_2 F 46 33 26 10 100 90 40 . 100 1 5 . 0 . 0 0 

F595_1 F 29 31 . 75 100 90 10 . . 1 5 . 20 . 0 0 

F596_2 F . 28 . 50 45 90 . . . 0 5 . 5 . 0 0 
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F596_4 F 41 28 . 28 95 90 . . . 0 5 . 5 . 0 0 

Short11 F . 17 . 48 60 5 . . . 0 5 . 5 . 0 0 

Short12 F 25 20 . 30 55 0 . . . 0 5 . 5 . 0 0 

Short13 F . 42 10 90 75 0 50 . . 0 5 . 70 . 0 0 

Short16 F 47 46 . 75 20 0 . . 10 0 3 . 5 . 0 0 

Short8 F . 53 . 90 100 0 10 . . 0 3 . 10 . 0 50 

Maja F 41 . 23 65 100 . 19 . . 0 5 . 0 . 0 0 

MW76_1 F . 37 23 5 5 80 . . . 1 5 . 5 . 0 0 

MW76_2 F . . . 75 70 5 5 . . 0 5 . 40 . 0 0 

MW80_1 F . 38 . 48 100 5 . . 40 . 5 . 30 . 0 30 

MW116_3 F 45 38 31 30 10 5 . . 10 2 5 . 5 . 0 0 

MW116_4 F 51 38 . 60 53 15 . . . 1 5 . 5 . 0 0 

MW118_1 F . 36 . 48 18 0 . . . 0 . . 0 . 0 40 

MW118_3 F . 36 . 10 40 0 . . . 1 5 . 20 . 0 40 

MW118_4 F . 32 . 48 95 0 10 . . 0 5 . 40 . 0 40 

MW120_8 F 37 38 . 60 5 60 . . . 0 5 . 10 . 0 40 

MW122_1 F . 36 30 50 53 10 . . . 0 5 . 10 . 0 20 

MW122_5 F 37 36 . 48 3 10 . . . 1 5 . 10 . 0 40 

OBA11_13 F 28 36 . 90 100 10 60 . . 0 4 . 5 . 0 20 

OBA11_2 F 40 34 . 48 100 . 40 . . 1 5 . 10 . 0 0 

OBA11_29 F 43 32 25 5 88 40 30 . . 0 5 . 5 . 7 0 

OBA11_31 F 29 . 23 35 100 60 50 . . 0 5 . 0 . 7 0 

OR101 F . 15 15 60 90 70 . . 40 0 5 . 30 . 0 0 

OR103 F 31 7 8 90 33 70 . . . 0 . . 20 . 0 0 

OR104 F . 26 23 65 . 50 70 . . 0 . . 60 . 0 0 

OR106 F . 27 21 50 100 40 . . 50 0 5 . 30 . 7 0 

OR108 F 34 32 22 3 98 30 40 . 10 0 5 . 10 . 7 0 

OR818 F 32 42 . 85 100 40 . . . 0 5 . 5 . 7 25 

OR91 F . 35 30 85 100 40 40 . . . 5 . 0 . 0 0 

OR910 F 47 56 . 43 90 . . . . 0 5 . 20 . 0 0 

PO71_104 F 31 41 . 45 90 40 . . . 0 . . 5 . 0 0 

PY211_6 F . 22 . . 55 20 . . . 0 5 . 0 . 0 0 

F5105_3 W 45 27 21 45 100 10 . . . 0 5 . 0 . 0 3 

F5106_1 W . 30 . 53 53 15 5 . . 0 5 . 0 . 0 3 

F5109_1 W . 29 . . . 20 5 . . 0 . . 0 . 0 0 

F5109_3 W . 37 26 45 90 10 . . . 0 . . 0 . 0 0 

F5126_1 W . 20 . 20 100 5 50 . 20 0 . . 0 . 0 0 

F5126_2 W . 28 24 48 100 40 . . . 0 . . 0 . 0 3 

F5129_1 W . 26 . 48 100 80 . . . 0 5 . 0 . 0 0 

F5135_4 W . 26 . 95 95 10 . . . 0 4 . 0 . 0 0 

F5136_1 W . 24 . 3 90 10 40 . . 0 5 . 0 . 0 0 

F523_1 W . 35 . 80 100 30 70 . . 0 5 . 0 . 0 0 

F527_1 W . 41 29 5 90 40 50 . . 0 . . 5 . 0 0 

F532_1 W 42 25 30 85 95 60 20 . . 0 5 . 0 . 0 0 

F535_2 W . 58 34 3 100 5 . . 40 0 5 . 0 . 0 0 

F536_2 W 33 28 . 5 50 5 . . . 0 2 . 5 . 0 0 

F537_1 W . 26 . 3 100 5 . . . 0 5 . 0 . 0 0 

F537_3 W 38 33 21 48 100 5 . . . 0 5 . 0 . 0 0 

F54_2 W . 20 . 30 43 5 . . . 1 3 . 0 . 0 25 

F547_1 W 34 32 . 48 95 5 . . . 0 5 . 0 . 0 40 

F547_3 W 34 33 . 80 95 5 . . . 1 5 . 5 . 7 0 

F548_1 W 40 30 . 80 95 5 90 . . 0 1 . 0 . 0 0 

F55_1 W 38 23 24 85 100 30 . . . 0 3 . 0 . 0 0 

F550_1 W . 31 . 48 90 40 . . . 0 5 . 5 . 7 0 

F552_2 W . 27 . 80 100 5 10 . 30 0 5 . 0 . 0 0 

F555_1 W 38 35 24 70 100 20 . . . 2 5 . 60 . 0 0 

F556_1 W . . . 90 100 0 . . 30 0 5 . 20 . 0 0 

F556_3 W 41 35 28 5 5 0 . 5 . 0 . . 5 . 0 0 

F560_2 W . 25 22 5 95 15 5 . . 0 5 . 0 . 7 0 



 

142 

 

 

F564_1 W . 28 . 8 100 90 5 . . 0 5 . 0 . 0 0 

F566_3 W . 31 28 3 65 10 . . . 1 5 . 0 . 0 0 

F572_3 W . 24 . 0 100 10 . . . 0 5 . 20 . 0 5 

F576_1 W 40 38 . 45 95 40 . . . 1 5 . 0 . 0 0 

F583_1 W 44 23 . 43 90 50 . . 20 0 5 . 0 . 7 0 

F588_3 W . 23 . 53 95 10 70 . . 1 5 . 30 . 0 0 

F59_2 W . 23 21 65 100 10 90 . . 0 4 . 0 . 0 3 

F591_1 W 33 38 22 48 53 90 . . . 1 5 . 0 . 7 3 

Alba W 47 36.5 21 51.3 55 . 21 . . 0.5 5 . 0 . 0 0 

OK216 W . . 25 30 100 50 70 . . 1 . . . . . . 

OK249 W 44 . . 48 100 15 100 . . 0 . . . . . . 

OK248 W . 11 . 15 100 15 90 . . 0 3 . . . . . 

OK242 W . 11 23 75 10 10 100 . . 0 5 . . . . . 

OK452 W . 9 24 75 80 10 100 . . 1 4 . . . . . 

OK474 W . 14 21 55 95 60 100 . . 0 2 . . . . . 

OR76 W . 35 . . . 50 . . . 0 . . 0 . 0 0 

OR813 W . 24 23 48 65 40 . . . 0 5 . 0 . 0 0 

OR815 W . 42 24 48 90 30 20 . . 0 5 . 0 . 0 50 

PO71_87 W . . . 48 98 70 80 50 20 0 5 . 0 . 0 0 

06AB_24 S2 43 . . 10 100  95 . . 0 5 0 10 . . . 

06AB_44 S2 29 . . 5 100  95 . . 0 4 2 5 . . . 

06BA_81 S2 37 . . 28 100  81 . . 0 4 1 0 . . . 

06MT_26 S2 49 . . 3 100  100 . . 0 5 1 5 . . . 

06MT_59 S2 43 . 43 5 100  80 . . 0 4 3 5 . . . 

06MT_67 S2 55 . 61 13 100  90 . . 0 5 2 10 . . . 

06MT_82 S2 56 . 56 0 100  90 . . 0 5 2 0 . . . 

06N2_06 S2 42 . 42 3 52.5  0 . . 0 3 1 5 . . . 

06N2_17 S2 50 . 50 3 55  10 . 10 0 5 4 5 . . . 

06N2_37 S2 . . . 3 50  . . . 0 4 1 5 . . . 

06N2_39 S2 55 . . 10 50  60 . . 0 2 1 5 . . . 

06N2_70 S2 45 . 42 3 20  5 . . 0 3 3 10 . . . 

06WA_38 S2 54 . 54 15 100  40 . . 0 5 1 10 . . . 

06WA_77 S2 37 . 37 20 100  60 . . 0 5 0 0 . . . 

07AB_53 S2 57 . . 5 5  10 . . 0 5 1 0 . . . 

07AB_77 S2 55 . 55 20 95  15 . . 0 1 0 5 . . . 

07BA_80 S2 . . . 3 7.5  20 . . 0 5 1 0 . . . 

07MT_40 S2 51 . 51 23 100  60 . . 0 5 3 0 . . . 

07MT_67 S2 . . . 50 100  85 . . 0 3 5 5 . . . 

07MT_94 S2 56 . 62 20 100  80 . . 0 3 1 5 . . . 

07N2_02 S2 54 . 58 0 7.5  20 . . 0 5 1 0 . . . 

07N2_13 S2 54 . 51 3 70  10 . . 0 3 1 10 . . . 

07N2_31 S2 61 . 59 33 35  5 . . 0 5 1 5 . . . 

07N2_38 S2 55 . 55 3 52.5  . . . 0 5 1 5 . . . 

07N2_61 S2 46 . 46 5 32.5  . . . 0 5 2 0 . . . 

07N2_73 S2 49 . 49 10 2.5  5 . . 0 5 3 10 . . . 

07WA_03 S2 49 . . 8 55  90 60 . 0 3 1 0 . . . 

07WA_13 S2 48 . . 0 65  90 . . 0 3 0 0 . . . 

08AB_17 S2 48 . 48 13 70  95 . . 0 4 0 20 . . . 

08AB_24 S2 49 . . 3 57.5  90 . . 0 4 1 10 . . . 

08AB_45 S2 41 . 53 45 85  90 . . 0 5 0 5 . . . 

08BA_02 S2 47 . 46 10 100  90 . . 0 5 1 10 . . . 

08BA_11 S2 50 . 52 45 100  80 . . 0 5 0 10 . . . 

08BA_25 S2 . . . 3 65  90 . 40 0 4 0 5 . . . 

08BA_30 S2 . . . 3 22.5  . . . 0 5 3 5 . . . 

08BA_76 S2 41 . . 5 55  70 . . 0 5 1 10 . . . 

08MT_04 S2 57 . . 23 80  90 . . 0 3 2 0 . . . 

08MT_41 S2 45 . . 3 100  . . . 0 5 0 0 . . . 

08MT_63 S2 29 . . 33 50  60 . 40 0 3 0 0 . . . 

08MT_68 S2 42 . . 5 47.5  . . . 0 5 0 0 . . . 
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08N2_12 S2 60 . 60 30 95  . . . 0 5 1 30 . . . 

08N2_37 S2 51 . . 5 55  . . . 0 5 2 10 . . . 

08N2_62 S2 60 . . 45 17.5  30 . . 0 5 1 10 . . . 

08N2_66 S2 53 . 53 5 100  . . . 0 5 3 30 . . . 

08N2_73 S2 60 . 60 0 75  40 . . 0 5 3 20 . . . 

08N2_80 S2 59 . 62 3 7.5  . . . 0 5 1 10 . . . 

08WA_11 S2 47 . 47 0 100  50 . . 0 3 0 5 . . . 

08WA_27 S2 45 . . 0 100  90 . . 0 5 1 5 . . . 

08WA_40 S2 44 . . 25 100  100 . . 0 5 0 0 . . . 

08WA_64 S2 59 . . 13 7.5  100 . . 0 4 0 0 . . . 

09AB_10 S2 39 . . 18 55  100 . . 0 5 4 0 . . . 

09AB_15 S2 51 . . 8 32.5  . . . 0 3 1 10 . . . 

09AB_43 S2 46 . 44 85 60  90 . . 0 5 2 5 . . . 

09AB_48 S2 58 . 58 8 22.5  90 . . 0 1 5 20 . . . 

09AB_82 S2 47 . . 5 100  80 . . 0 5 0 0 . . . 

09BA_03 S2 38 . 38 3 55  60 . . 0 3 1 0 . . . 

09BA_10 S2 40 . 39 40 85  90 . . 0 5 2 5 . . . 

09BA_68 S2 . . . 5 100  70 . . 0 5 0 0 . . . 

09BA_89 S2 52 . 56 20 95  80 . . 0 5 0 0 . . . 

09BA_94 S2 . . . 0 50  . . . 0 5 1 0 . . . 

09MT_16 S2 45 . . 0 100  90 . . 0 5 2 5 . . . 

09MT_78 S2 49 . 49 0 50  70 . . 0 5 2 0 . . . 

09MT_94 S2 48 . 45 3 95  60 . . 0 5 0 0 . . . 

09N2_04 S2 . . . 0 85  70 . . 0 5 0 0 . . . 

09N2_12 S2 60 . . 0 32.5  50 . . 0 5 3 5 . . . 

09N2_16 S2 54 . . 0 5  . . . 0 5 1 5 . . . 

09N2_21 S2 46 . 40 5 32.5  70 . 30 0 3 1 0 . . . 

09N2_29 S2 52 . 52 5 55  70 . . 0 5 2 0 . . . 

09N2_39 S2 53 . 57 8 50  80 . . 0 5 1 0 . . . 

09N2_55 S2 54 . . 3 100  30 . . 0 5 1 0 . . . 

09N2_73 S2 70 . . 5 100  50 5 . 0 5 1 0 . . . 

09WA_15 S2 51 . . 45 95  95 . 10 0 3 2 0 . . . 

09WA_19 S2 40 . 40 20 100  95 . . 0 3 0 0 . . . 

09WA_52 S2 49 . 52 28 100  95 . . 0 5 0 0 . . . 

09WA_64 S2 45 . . 40 100  95 . . 0 4 0 0 . . . 

AC_Met S2 51 . 50 5 80  65 . . 0 5 0 0 . . . 

CDC S2 27 . . 5 100  70 . . 0 5 0 0 . . . 

CON S2 50 . . 48 75  70 . . 0 3 0 0 . . . 

S_622B S2 1.4 . . 3.5 .  100 70 . 50 . . . . . . 

SIDNEY S2 1.0 . . 5 .  93 5 . 47.5 . . . . . . 

STONE S2 1.0 . . 4.5 .  100 5 . 47.5 . . . . . . 

F_Pint2 S2 4.0 . 2 . .  . 0 40 . . . 23 . . . 

06AB_55 S6 52 . 27 43 93  50 . . 0 3 0 20 0 . . 

06AB_62 S6 49 . 58 5 100  . . . 0 3 0 0 0 . . 

06AB_84 S6 51 . 39 0 85  50 . . 0 5 0 0 0 . . 

06BA_06 S6 56 . 43 5 100  5 . . 0 0 0 0 0 . . 

06BA_30 S6 . . 46 35 98  10 . . 0 1 1 0 0 . . 

06MN_10 S6 . . 42 3 100  5 . . 0 5 0 5 0 . . 

06MN_18 S6 53 . 43 45 55  10 10 . 0 5 1 0 0 . . 

06MN_51 S6 . . 36 30 95  5 . . 0 5 1 0 0 . . 

06MN_62 S6 54 . 23 43 95  5 . . 0 4.5 0 5 0 . . 

06N6_66 S6 . . 39 45 80  5 . . 0 5 0 0 0 . . 

06N6_71 S6 58 . 46 0 50  50 . . 0 3 . 0 0 . . 

06N6_88 S6 53 . 42 3 45  50 . . 0 5 4 0 0 . . 

07AB_10 S6 . . 36 0 95  . . . 0 3 0 0 40 . . 

07AB_16 S6 44 . 29 8 95  90 . . 0 3 2 0 40 . . 

07BA_09 S6 61 . 45 5 80  70 . . 0 4 0 5 40 . . 

07BA_18 S6 . . 33 35 100  40 20 . 0 3 2 0 30 . . 

07BA_24 S6 . . 58 15 100  50 . . 0 5 0 0 20 . . 
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07BA_28 S6 62 . 54 0 90  90 . . 0 5 0 10 50 . . 

07MN_42 S6 54 . 55 5 33  . 20 . 0 3 1 10 20 . . 

07MN_52 S6 . . 53 48 53  5 20 . 0 5 0 5 10 . . 

07MN_85 S6 54 . 53 30 90  5 . . 0 5 0 0 30 . . 

07MN_90 S6 59 . 54 20 48  . 5 . 0 5 0 4 10 . . 

07MN_94 S6 . . 41 0 100  5 . . 0 3 8 6 20 . . 

07N6_51 S6 . . 26 40 100  . . . 0 5 0 7 20 . . 

07N6_80 S6 48 . 29 10 95  90 . . 0 5 0 3 20 . . 

07UT_18 S6 . . 27 3 30  90 . 20 0 3.5 0 8 0 . . 

07UT_36 S6 39 . 39 90 50  90 . . 0 2.5 0 3 0 . . 

07UT_71 S6 48 . . 23 100  15 40 . 0 5 0 8 0 . . 

07UT_83 S6 . . 20 30 95  5 . . 0 3 0 4 0 . . 

07UT_88 S6 . . 24 5 98  30 . . 0 2.5 4 4 0 . . 

07UT_93 S6 . . 21 45 53  80 . . 0 3.5 0 6 20 . . 

07UT_96 S6 53 . 47 5 95  5 . . 0 2.5 0 5 10 . . 

08AB_54 S6 58 . 28 0 53  90 . . 0 2.5 0 4 0 . . 

08AB_80 S6 . . 38 3 48  . . . 0 5 0 3 0 . . 

08BA_41 S6 . . 35 3 65  90 . . 0 3 0 3 0 . . 

08BA_44 S6 53 . 44 3 93  10 . . 0 5 0 5 0 . . 

08BA_54 S6 . . 38 75 75  60 . . 0 5 0 4 0 . . 

08BA_60 S6 . . 37 30 100  70 5 . 0 2.5 0 6 0 . . 

08BA_64 S6 58 . 17 0 90  95 . . 0 3 0 4 0 . . 

08MN_34 S6 56 . 38 20 95  30 . 50 0 4 0 7 0 . . 

08MN_49 S6 57 . 21 48 100  40 5 . 0 5 0 5 0 . . 

08MN_56 S6 . . 35 3 60  90 . . 0 2.5 0 8 0 . . 

08MN_67 S6 . . 33 3 100  5 . 80 0 5 3 8 0 . . 

08MN_78 S6 62 . 42 0 80  5 . . 0 5 0 7 0 . . 

08N6_09 S6 . . 46 0 5  . . . 0 3.5 0 3 0 . . 

08N6_21 S6 50 . 26 75 48  . . . 0 5 0 5 10 . . 

08N6_35 S6 51 . 21 5 100  90 . . 0 5 0 4 0 . . 

08N6_52 S6 54 . 38 0 8  90 . . 0 5 0 7 0 . . 

08N6_77 S6 62 . 35 3 100  50 . . 0 2.5 0 3 0 . . 

08N6_91 S6 . . 48 5 90  30 . . 0 3.5 0 3 10 . . 

08N6_94 S6 . . 49 0 55  80 . . 0 5 7 4 0 . . 

08N6_96 S6 49 . 26 25 80  80 . . 0 5 0 8 10 . . 

08UT_10 S6 39 . 31 3 5  5 . . 0 2 0 7 10 . . 

08UT_80 S6 . . . 5 45  . . 40 0 3 0 5 0 . . 

09BA_37 S6 46 . 44 25 95  5 . . 0 3 0 3 0 . . 

09BA_50 S6 55 . 44 3 60  90 . . 0 5 0 4 10 . . 

09MN_04 S6 57 . 33 3 53  . . . 0 5 3 3 0 . . 

09MN_30 S6 54 . 35 5 80  60 . 100 0 5 0 7 0 . . 

09MN_50 S6 . . 44 0 75  60 . . 0 5 1 8 0 . . 

09MN_70 S6 52 . 29 48 35  5 . . 0 5 0 8 0 . . 

09N6_36 S6 63 . 36 3 5  . . . 0 5 0 5 0 . . 

09N6_59 S6 66 . 34 3 50  . . 20 0 1 0 6 10 . . 

09N6_63 S6 54 . 39 45 70  . . . 0 3.5 0 7 0 . . 

09N6_69 S6 59 . 44 0 100  60 . . 0 5 0 7 0 . . 

09UT_13 S6 . . 34 45 100  30 . . 0 5 0 7 0 . . 

AC_Met S6 62 . 30 36 83  40 . . 0 3 2 0 0 . . 

CDC S6 . . 27 30 55  45 . . 0 2.8 . . . . . 

CON S6 51 . 43 30 50  34 . . 0 2.5 1 1 0 . . 

S_610B S6 . . 26 43 93  70 . . 0 3.5 . . . . . 
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A-5: TCAP winter/facultative barley lines and commercial check malt quality evaluations (Bold indicate lines that met criteria). 

     Kernel Plump Barley Malt   Barley Wort   Alpha- Beta-    

     Weight 6/64" Color Extract Wort Wort Protein Protein S/T DP amylase glucan FAN Quality Overall 

Year LOC Type SAS_Name Yield (mg) (%) (Agtron) (%) Color Clarity (%) (%) (%) (°ASBC) (20°DU) (ppm) (ppm) Score Rank 

2015 DIM W 06OR_10 3.68 28 56.4 34.0 75.5 2.9 1 15.3 5.0 34.6 184.7 61.2 379.0 209.7 26 97 

2015 DIM W 06OR_37 2.83 29 70.3 28.0 74.1 2.8 1 15.8 5.0 31.9 182.8 59.9 703.4 215.9 26 97 

2015 DIM W 06OR_41 4.17 32 82.3 32.0 76.7 3.0 1 15.0 5.7 39.7 185.4 65.3 369.8 244.5 38 21 

2015 DIM W 06OR_42 2.90 30 75.6 31.0 76.5 3.7 1 15.4 6.0 40.2 176.5 70.4 182.6 274.3 31 65 

2015 DIM W 06OR_43 3.72 29 63.5 39.0 74.3 3.1 1 16.9 5.2 32.1 162.5 58.4 434.3 221.8 30 72 

2015 DIM W 06OR_44 2.53 31 72.2 35.0 74.2 3.6 1 15.8 5.4 34.5 183.6 65.0 415.6 228.9 32 57 

2015 DIM W 06OR_45 3.26 29 68.5 33.0 76.1 3.5 1 14.2 5.3 38.4 165.0 70.1 293.4 243.8 30 72 

2015 DIM W 06OR_52 3.55 32 70.8 33.0 74.6 3.0 1 15.7 5.5 37.2 186.3 64.0 391.3 245.1 32 57 

2015 DIM W 06OR_59 3.52 34 85.5 34.0 75.1 3.2 1 16.0 5.4 35.5 150.7 54.0 346.3 217.5 38 21 

2015 DIM W 06OR_62 3.17 29 70.5 34.0 75.2 3.7 1 16.6 5.7 36.1 221.5 74.3 207.3 254.8 26 97 

2015 DIM W 06OR_75 3.26 33 81.5 29.0 75.6 2.6 1 14.0 5.6 41.4 214.8 72.4 448.5 246.8 38 21 

2015 DIM W 06OR_78 2.42 33 80.0 33.0 74.7 2.8 1 15.5 5.6 36.2 192.0 66.1 383.2 244.9 38 21 

2015 DIM W 06OR_91 5.65 31 76.2 31.0 75.4 2.6 1 14.9 5.5 39.0 203.3 60.6 451.9 239.5 35 41 

2015 DIM W 07OR_21 4.95 31 72.8 34.0 76.7 3.0 1 14.5 5.4 39.4 177.6 65.7 407.5 254.2 32 57 

2015 DIM W 07OR_3 7.40 30 85.5 20.0 76.1 3.2 1 13.4 5.3 40.9 166.3 75.7 260.8 246.0 47 10 

2015 DIM W 07OR_4 6.86 32 86.2 20.0 80.4 3.0 1 12.3 5.4 44.9 159.7 96.0 276.3 258.7 63 1 

2015 DIM W 07OR_59 6.43 31 79.6 30.0 78.7 3.1 1 12.1 4.5 38.6 133.2 58.6 272.4 227.0 42 12 

2015 DIM W 07OR_6 4.86 31 85.7 26.0 78.8 3.4 1 12.7 5.5 45.9 173.6 98.0 311.0 323.2 59 2 

2015 DIM W 07OR_63 5.67 32 80.4 40.0 76.7 3.6 1 13.9 4.8 36.2 147.1 63.1 289.5 226.6 36 34 

2015 DIM W 07OR_8 5.92 29 81.9 25.0 78.8 3.8 1 12.3 5.2 44.3 144.4 86.1 341.1 304.7 53 5 

2015 DIM W 08OR_30 4.07 31 79.7 27.0 75.1 3.4 1 12.9 4.6 36.6 123.1 60.5 485.1 219.7 35 41 

2015 DIM W 08OR_44 5.38 33 82.7 30.0 77.6 3.4 1 14.1 5.0 36.8 137.7 59.9 759.8 241.7 31 65 

2015 DIM W 08OR_48 5.85 30 68.9 30.0 75.1 3.8 2 15.7 5.0 33.5 161.0 61.0 405.3 262.8 27 90 

2015 DIM W 08OR_53 5.11 29 71.4 32.0 75.9 4.4 2 15.6 4.8 32.7 133.3 51.9 343.6 262.6 19 130 

2015 DIM W 08OR_73 5.75 29 73.7 30.0 76.9 4.1 1 13.4 5.2 39.2 146.7 79.1 379.3 261.1 39 20 

2015 DIM W 08OR_81 4.60 26 65.9 32.0 76.5 3.9 1 13.8 5.4 41.1 156.0 70.1 390.1 325.7 33 52 

2015 DIM W F5105_1 5.40 31 81.0 37.0 76.3 3.1 1 13.5 4.5 35.2 123.4 54.0 379.8 188.9 27 90 

2015 DIM W F5105_3 5.38 28 61.5 40.0 75.0 2.9 1 13.4 4.4 33.6 129.7 54.6 316.2 201.7 30 72 

2015 DIM W F5106_1 6.51 34 86.9 33.0 76.4 3.0 1 13.1 4.3 34.3 121.9 48.1 549.6 206.5 35 41 

2015 DIM W F5108_1 5.08 33 77.8 36.0 74.9 3.0 1 14.3 4.6 32.3 141.6 52.0 652.0 223.1 29 79 

2015 DIM W F5109_1 5.67 33 80.1 38.0 77.4 2.8 2 12.5 4.1 33.2 120.2 50.9 613.9 202.8 37 31 

2015 DIM W F5109_3 5.27 32 81.4 40.0 74.7 3.2 1 15.0 4.6 31.8 126.8 50.0 586.5 184.2 19 130 

2015 DIM W F5112_1 4.06 31 77.4 40.0 74.0 3.4 1 15.7 5.1 33.9 157.7 59.9 630.5 218.4 31 65 

2015 DIM W F5112_3 4.62 31 76.4 37.0 73.3 3.1 1 14.6 4.8 32.8 157.2 56.7 601.0 203.6 28 82 

2015 DIM W F5113_2 5.84 31 77.5 42.0 77.3 2.8 1 13.4 4.9 37.4 159.1 65.3 207.0 210.3 41 16 

2015 DIM W F5119_1 4.04 34 80.0 41.0 75.1 3.1 1 14.0 4.6 34.3 127.1 52.1 576.7 186.0 23 110 

2015 DIM W F5120_3 6.46 33 82.1 37.0 74.9 3.1 1 14.8 4.4 31.9 128.6 47.5 666.6 179.9 20 123 

2015 DIM W F5121_1 4.38 33 81.9 37.0 74.2 3.1 1 14.5 4.6 31.8 140.1 49.4 610.4 187.1 23 110 

2015 DIM W F5121_2 5.06 32 80.3 35.0 74.7 2.7 1 14.7 4.2 29.0 142.5 48.6 678.8 163.8 23 110 

2015 DIM W F5121_3 5.23 33 79.4 33.0 75.1 2.8 1 14.4 4.5 31.5 136.9 47.8 643.2 180.7 18 133 

2015 DIM W F5124_1 5.25 33 81.9 36.0 74.9 3.3 1 13.8 4.7 34.7 132.6 48.1 518.8 187.4 25 104 

2015 DIM W F5124_1 . 33 84.6 41.0 75.4 3.4 1 14.0 4.4 32.2 126.0 46.7 642.0 173.8 20 123 

2015 DIM W F5126_1 4.44 31 75.8 35.0 75.3 3.2 1 14.7 4.9 34.6 153.6 57.0 590.9 202.4 28 82 

2015 DIM W F5126_2 . 33 83.5 38.0 75.5 3.0 1 14.6 4.7 33.0 144.7 57.5 701.4 188.2 26 97 

2015 DIM W F5129_1 4.40 29 79.5 33.0 75.2 2.8 1 15.0 6.1 41.4 193.6 58.0 608.1 189.5 21 120 

2015 DIM W F5131_1 5.36 34 68.2 43.0 76.1 2.3 1 13.4 4.9 36.8 130.2 55.2 687.0 189.9 31 65 

2015 DIM W F5134_3 5.70 32 75.0 35.0 73.6 2.6 1 16.4 5.1 32.6 143.3 51.4 748.1 181.5 26 97 

2015 DIM W F5135_4 4.53 29 74.2 36.0 72.8 2.9 1 15.4 5.0 33.3 146.4 54.6 569.3 181.4 24 107 

2015 DIM W F5136_1 5.36 34 74.0 24.0 74.2 2.9 2 14.9 5.2 37.1 179.5 58.1 584.0 172.4 30 72 
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2015 DIM W F522_3 6.45 31 82.7 33.0 76.6 2.3 1 13.4 4.9 38.3 135.6 58.8 714.4 187.3 35 41 

2015 DIM W F523_1 4.90 31 91.7 31.0 77.2 3.0 1 13.9 5.7 43.5 155.6 68.7 402.7 196.7 41 16 

2015 DIM W F527_1 8.01 31 73.1 32.0 75.7 2.0 1 13.7 4.5 34.5 151.9 49.8 1014.0 169.9 25 104 

2015 DIM W F532_1 6.98 34 88.4 30.0 78.8 2.7 1 11.8 4.9 42.4 148.7 72.0 97.0 186.8 58 3 

2015 DIM W F535_2 5.95 30 86.7 33.0 75.7 . 3 13.6 4.9 37.2 138.7 53.1 650.8 165.3 28 82 

2015 DIM W F536_2 6.72 33 66.6 23.0 74.8 . 3 13.4 4.5 36.4 144.1 48.0 856.6 131.8 26 97 

2015 DIM W F537_1 7.59 32 86.3 27.0 75.3 3.1 2 13.9 5.0 38.0 149.2 57.4 1010.2 142.1 33 52 

2015 DIM W F537_3 5.69 29 75.0 32.0 73.8 2.9 2 14.4 4.7 34.8 176.0 58.3 674.4 161.7 20 123 

2015 DIM W F54_2 5.83 32 71.8 35.0 76.4 2.9 1 14.5 5.2 36.8 177.3 59.9 433.8 230.6 32 57 

2015 DIM W F547_1 4.24 30 87.9 35.0 75.3 3.0 1 14.0 4.9 35.0 174.3 57.9 559.3 167.2 33 52 

2015 DIM W F547_3 4.31 31 80.9 32.0 74.8 3.0 1 13.6 4.8 36.2 157.8 53.2 636.9 161.9 30 72 

2015 DIM W F548_1 6.20 32 61.0 31.0 75.4 2.6 1 14.0 4.7 33.6 138.5 56.1 829.2 200.4 23 110 

2015 DIM W F55_1 6.18 32 86.7 30.0 75.9 2.4 1 13.8 4.5 34.6 145.6 55.4 520.9 179.4 31 65 

2015 DIM W F550_1 6.16 32 85.1 32.0 76.4 2.2 1 14.0 4.4 32.6 140.0 46.2 651.4 174.1 27 90 

2015 DIM W F552_2 7.31 31 80.2 33.0 76.5 2.6 1 13.8 4.6 33.8 145.7 55.1 550.0 203.1 35 41 

2015 DIM W F555_1 7.88 32 88.9 20.0 75.7 3.6 2 12.0 4.0 36.5 163.1 51.7 1007.3 169.2 35 41 

2015 DIM W F556_1 6.87 33 80.0 38.0 76.0 2.5 1 13.5 4.7 36.8 136.0 58.3 609.0 192.6 36 34 

2015 DIM W F556_3 5.25 33 81.6 39.0 77.9 2.1 1 12.6 4.3 37.2 134.1 56.4 598.0 170.2 37 31 

2015 DIM W F557_2 4.3 32 80.5 31.0 75.2 2.2 1 15.2 4.7 31.4 135.7 58.8 640.2 184.8 22 117 

2015 DIM W F559_1 5.77 32 81.5 36.0 75.7 2.3 1 14.8 4.4 31.8 146.3 53.4 811.8 169.3 25 104 

2015 DIM W F559_2 6.33 32 76.8 39.0 76.0 2.2 1 13.7 4.5 33.3 148.5 53.4 850.5 177.6 28 82 

2015 DIM W F560_2 4.21 32 78.2 34.0 75.2 2.4 1 14.9 5.0 34.9 150.0 63.5 715.2 204.2 31 65 

2015 DIM W F564_1 5.18 33 74.8 40.0 74.9 2.2 1 14.7 4.6 31.5 184.3 59.0 608.9 188.8 24 107 

2015 DIM W F566_3 5.53 34 81.5 31.0 76.3 2.3 1 14.9 5.3 36.1 170.1 63.2 676.3 226.6 38 21 

2015 DIM W F572_3 5.77 33 91.2 20.0 75.0 3.5 2 14.3 4.2 31.2 140.1 45.4 1040.8 153.2 22 117 

2015 DIM W F576_1 5.58 31 74.1 32.0 73.3 2.2 1 15.2 4.6 30.1 153.3 55.0 838.8 171.1 23 110 

2015 DIM W F576_4 5.89 32 80.5 28.0 75.9 2.1 1 14.5 4.4 31.2 128.5 50.4 926.2 168.5 23 110 

2015 DIM W F583_1 5.55 32 84.4 26.0 75.7 2.3 1 14.1 4.5 32.8 127.3 52.5 920.1 173.9 23 110 

2015 DIM W F588_3 4.41 33 74.4 38.0 76.0 2.5 1 15.1 5.1 35.6 151.5 60.8 634.6 197.5 30 72 

2015 DIM W F59_2 4.86 31 85.7 26.0 78.3 2.3 1 13.0 4.8 37.9 111.7 58.4 476.4 197.2 38 21 

2015 DIM W F590_5 5.01 29 73.6 31.0 76.5 2.4 1 14.1 5.4 39.9 141.6 65.0 625.5 224.2 33 52 

2015 DIM W F591_1 4.29 28 55.5 34.0 77.8 3.4 2 14.2 5.2 37.8 171.5 52.4 658.5 191.7 31 65 

2015 DIM W F591_2 2.33 27 53.4 37.0 74.9 2.4 1 16.7 5.6 34.6 203.7 57.9 678.5 206.9 28 82 

2015 DIM W F595_1 5.20 25 31.5 32.0 73.9 2.5 1 15.2 5.2 35.0 144.5 64.7 599.6 210.4 28 82 

2015 DIM W F596_2 4.3 31 68.4 30.0 74.7 2.2 1 15.9 4.5 30.3 149.7 50.0 800.3 177.2 17 134 

2015 DIM W F596_4 5.44 32 77.5 37.0 74.0 2.2 1 15.6 4.5 29.2 163.8 48.0 867.6 169.5 20 123 

2015 DIM W MAJA 4.78 28 66.8 32.0 76.9 3.2 1 14.1 5.0 37.3 221.2 69.8 157.0 244.7 27 90 

2015 DIM W MAJA 6.74 31 87.2 35.0 79.5 3.5 2 10.9 4.2 40.8 145.7 63.0 118.3 196.4 49 9 

2015 DIM W MAJA 4.91 29 70.7 31.0 77.3 3.4 1 15.0 5.5 38.9 216.6 73.5 181.0 285.5 30 72 

2015 DIM W MAJA 6.79 27 77.7 34.0 77.6 2.7 1 13.2 5.1 41.6 190.5 67.2 150.3 233.0 40 19 

2015 DIM W MAJA 5.30 28 79.3 24.0 77.0 2.9 1 14.7 5.1 37.0 197.4 64.8 172.0 218.0 29 79 

2015 DIM W MAJA 5.45 30 80.6 37.0 78.7 2.3 1 12.8 5.0 39.9 179.2 66.0 289.2 239.3 50 8 

2015 DIM W MAJA 4.63 29 77.7 32.0 78.0 2.6 1 14.2 5.4 38.9 192.9 69.7 312.8 247.8 37 31 

2015 DIM W MAJA 5.34 29 75.6 39.0 77.6 2.7 1 13.8 5.1 39.3 195.0 64.9 263.0 238.8 34 49 

2015 DIM W MW116_3 3.70 34 85.0 34.0 77.6 3.0 1 14.9 5.3 36.0 186.0 66.7 565.0 192.1 36 34 

2015 DIM W MW116_4 5.34 34 77.8 32.0 76.6 2.6 1 14.9 5.5 37.4 142.0 75.8 479.8 221.5 36 34 

2015 DIM W MW118_1 5.63 37 90.4 33.0 77.1 2.2 1 14.4 4.9 35.0 193.4 59.2 704.2 198.1 32 57 

2015 DIM W MW118_3 6.62 35 84.3 30.0 77.1 2.4 1 14.2 5.4 39.5 198.0 64.6 532.7 228.3 38 21 

2015 DIM W MW118_4 4.69 33 78.0 32.0 76.5 2.4 1 15.2 5.3 36.7 194.3 63.9 707.5 228.1 36 34 

2015 DIM W MW120_8 4.83 33 85.7 30.0 76.1 2.7 1 15.1 6.2 44.3 233.1 77.1 503.1 288.5 36 34 

2015 DIM W MW122_1 3.75 34 80.4 35.0 77.1 2.9 1 15.6 6.7 44.4 214.5 81.8 382.1 314.5 36 34 

2015 DIM W MW122_5 5.50 33 86.7 32.0 76.9 2.4 1 15.4 5.8 39.9 226.2 65.7 463.7 234.7 34 49 

2015 DIM W MW76_1 4.13 32 88.4 21.0 74.9 2.3 1 14.7 5.5 40.0 197.4 70.6 867.9 241.5 38 21 

2015 DIM W MW76_2 3.76 32 85.2 10.0 75.2 2.9 1 14.7 5.6 40.7 182.1 64.0 600.8 244.6 38 21 
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2015 DIM W MW80_1 4.72 33 83.6 23.0 77.5 2.1 1 14.9 5.6 39.0 237.3 73.4 352.0 252.0 38 21 

2015 DIM W OBA11_13 5.31 32 73.0 33.0 74.6 2.8 1 16.3 5.2 33.6 162.4 44.8 646.8 205.3 32 57 

2015 DIM W OBA11_29 4.38 29 68.1 32.0 74.2 3.1 1 15.0 4.8 32.4 154.1 43.1 781.0 178.4 15 137 

2015 DIM W OBA11_31 5.33 28 78.0 24.0 74.8 4.2 2 14.6 4.9 33.5 111.4 39.0 509.4 182.8 7 147 

2015 DIM W OK216 5.02 27 78.8 15.0 69.8 . 3 14.1 4.1 29.9 132.2 44.4 1147.5 154.0 11 141 

2015 DIM W OK242 4.88 27 77.3 11.0 70.9 . 3 15.6 4.6 31.2 238.0 41.4 826.3 173.7 14 138 

2015 DIM W OK246 . 23 56.8 16.0 71.1 . 3 16.4 4.5 28.7 203.5 48.9 935.4 154.2 11 141 

2015 DIM W OK248 6.30 26 81.4 12.0 71.0 . 3 14.0 3.7 27.6 120.9 35.0 1475.0 119.5 9 146 

2015 DIM W OK452 4.50 29 78.4 14.0 68.9 . 3 14.6 3.9 28.1 184.8 41.0 1092.5 112.8 16 136 

2015 DIM W OK474 6.00 25 62.0 16.0 76.5 . 3 16.3 4.4 28.5 161.1 36.7 1103.6 140.9 7 147 

2015 DIM W OR101 3.98 29 65.7 33.0 77.0 3.4 1 15.8 6.0 38.1 220.8 65.5 336.8 251.1 26 97 

2015 DIM W OR103 4.70 32 76.4 36.0 76.6 2.8 1 15.6 5.2 35.6 165.4 61.3 745.8 174.2 27 90 

2015 DIM W OR104 4.65 30 81.7 26.0 77.9 3.0 1 14.2 5.1 36.2 164.6 64.6 480.4 181.7 32 57 

2015 DIM W OR106 5.78 32 81.0 36.0 77.2 3.0 2 13.1 4.6 35.5 158.8 56.8 672.5 163.7 35 41 

2015 DIM W OR108 5.54 33 77.4 39.0 76.1 2.5 1 14.1 4.5 33.0 140.5 54.2 799.7 159.2 24 107 

2015 DIM W OR76 4.71 34 85.5 38.0 78.1 2.7 1 14.3 5.3 38.6 142.7 67.4 408.7 227.9 42 12 

2015 DIM W OR813 5.06 35 88.4 42.0 78.1 2.7 1 14.4 5.5 41.0 145.8 77.5 342.8 216.7 42 12 

2015 DIM W OR815 4.30 32 74.0 41.0 76.2 2.6 1 15.5 5.4 37.5 164.8 67.0 492.8 218.0 35 41 

2015 DIM W OR818 4.97 30 85.9 24.0 79.1 3.0 1 13.3 5.9 45.7 166.6 93.3 459.5 264.4 56 4 

2015 DIM W OR91 5.68 28 73.9 22.0 79.1 3.6 1 13.9 6.4 49.5 172.5 96.9 402.4 309.1 41 16 

2015 DIM W P919 4.79 28 42.4 10.0 73.8 3.4 1 15.0 5.3 36.0 138.2 61.4 329.6 229.8 27 90 

2015 DIM W P919 3.34 30 63.7 14.0 75.8 4.2 2 12.7 4.7 37.2 99.1 57.5 364.6 200.2 27 90 

2015 DIM W P919 4.69 31 63.7 14.0 75.2 3.8 1 14.1 5.0 36.5 102.6 52.6 339.2 230.4 21 120 

2015 DIM W P919 4.59 30 93.0 13.0 76.2 3.8 2 13.1 5.3 41.2 105.3 54.7 394.4 169.9 34 49 

2015 DIM W P919 4.05 29 84.9 6.0 74.5 3.2 1 15.3 5.9 40.3 123.0 54.9 324.1 214.5 28 82 

2015 DIM W P919 4.54 29 55.4 8.0 74.8 3.0 1 14.4 5.0 36.2 99.3 50.9 426.2 206.8 19 130 

2015 DIM W P919 4.73 29 60.6 15.0 75.4 . 3 14.5 5.1 37.6 109.9 52.8 546.2 214.4 17 134 

2015 DIM W P919 4.62 30 62.5 15.0 75.9 3.0 1 14.4 5.5 38.6 123.4 59.9 443.4 245.7 29 79 

2015 DIM W PO71_104 4.16 29 80.0 27.0 75.6 3.5 2 14.9 5.0 36.3 139.9 60.1 429.1 169.2 22 117 

2015 DIM W PO71_87 4.08 34 87.4 21.0 77.1 . 3 14.4 4.5 32.5 128.3 59.0 563.0 169.7 21 120 

2015 DIM W PY211_6 5.54 29 76.3 28.0 76.0 2.9 1 14.3 5.4 39.2 160.0 77.0 290.9 239.3 33 52 

2015 DIM W Short_11 4.11 31 81.3 30.0 77.7 2.7 1 13.9 5.2 38.6 184.3 77.4 250.0 220.2 42 12 

2015 DIM W Short_12 6.64 34 86.2 30.0 78.3 3.0 1 14.1 5.8 42.7 194.8 85.4 271.3 268.7 46 11 

2015 DIM W Short_13 6.49 34 82.2 34.0 71.5 3.1 1 13.0 5.5 45.6 197.9 84.7 226.3 243.6 53 5 

2015 DIM W Short_16 6.83 33 85.7 33.0 74.1 2.8 1 13.0 5.3 43.0 188.2 76.2 403.0 239.6 53 5 

2015 DIM W Short_8 5.99 31 72.7 35.0 70.9 2.5 1 15.0 4.7 32.1 159.3 56.3 926.4 163.1 20 123 

2015 DIM W TBAR501 5.11 34 82.2 6.0 70.7 . 3 15.2 4.0 28.2 80.4 38.3 941.0 138.8 10 143 

2015 DIM W TBAR501 3.21 36 92.3 14.0 73.3 . 3 12.4 3.6 29.6 60.7 36.8 1260.3 124.8 20 123 

2015 DIM W TBAR501 4.58 35 85.4 14.0 72.3 . 3 14.0 4.0 29.2 78.0 42.4 1197.0 150.7 14 138 

2015 DIM W TBAR501 5.25 36 64.6 10.0 72.6 . 3 13.8 3.9 29.8 72.8 38.8 1240.0 128.2 10 143 

2015 DIM W TBAR501 5.59 34 84.5 4.0 71.9 . 3 14.4 3.8 28.2 76.2 39.8 1139.4 137.0 10 143 

2015 DIM W TBAR501 5.15 35 88.1 5.0 73.0 4.3 2 13.9 4.1 31.3 75.7 40.5 1225.3 148.0 20 123 

2015 DIM W TBAR501 6.02 33 74.1 15.0 71.1 . 3 14.6 4.4 30.6 107.4 49.8 985.8 158.3 12 140 

2015 MCG W 06OR_41 1.8 29 57.9 32.0 73.3 2.8 1 17.6 6.5 38.0 197.4 65.9 1004.9 257.1 23 63 

2015 MCG W 06OR_43 2 27 50.2 30.0 72.0 2.9 1 16.9 6.4 39.9 176.7 86.1 574.2 267.0 21 74 

2015 MCG W 07OR_59 1.1 33 88.8 20.0 71.5 . 3 14.1 3.9 28.7 64.4 33.9 1631.0 140.0 10 104 

2015 MCG W 07OR_6 1.7 26 72.1 23.0 75.8 5.2 1 15.1 8.1 54.6 174.0 70.9 424.4 323.3 21 74 

2015 MCG W 08OR_30 2.9 26 71.1 29.0 75.5 2.6 1 14.0 4.8 35.2 135.4 72.8 676.3 164.6 18 100 

2015 MCG W Alba . 27 58.7 29.4 73.1 4.1 1 15.5 5.7 38.3 161.3 80.9 753.9 238.3 25 47 

2015 MCG W F_Pint . 29 65.0 23.0 73.7 3.4 1 15.8 5.8 38.0 164.3 62.3 821.3 233.5 24 53 

2015 MCG W F5105_1 2.1 25 56.3 18.0 70.7 4.2 1 17.2 6.6 39.1 197.6 88.0 643.9 268.7 21 74 

2015 MCG W F5112_1 2.5 27 63.7 35.0 73.4 3.5 1 14.4 5.8 41.9 153.2 87.7 693.9 236.9 24 49 

2015 MCG W F5121_1 2.5 27 65.9 40.0 73.9 3.4 1 14.3 5.3 37.9 144.3 85.1 596.8 215.6 28 21 

2015 MCG W F5121_5 1.6 27 65.2 38.0 73.2 3.2 1 14.4 5.4 39.6 142.9 82.0 623.5 213.3 28 21 
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2015 MCG W F5132_1 2 25 48.5 36.0 71.2 4.6 1 16.1 7.1 44.0 186.1 95.1 649.8 279.7 26 33 

2015 MCG W F523_1 3.7 29 77.0 35.0 77.1 3.4 1 14.6 5.0 35.3 168.0 78.2 466.6 267.4 29 14 

2015 MCG W F527_1 1.6 28 82.9 34.0 75.0 3.4 2 16.8 5.8 34.4 204.2 61.0 828.8 349.4 30 9 

2015 MCG W F537_1 2.3 27 61.8 20.0 72.3 . 3 18.0 5.5 30.8 198.8 54.4 1154.9 158.9 21 74 

2015 MCG W F537_3 2.4 27 46.7 7.0 75.0 3.3 1 13.9 4.9 36.8 123.6 65.3 487.8 175.0 21 74 

2015 MCG W F548_1 2.1 29 75.2 32.0 74.7 3.5 1 15.4 5.1 34.4 153.1 72.5 757.0 158.8 24 49 

2015 MCG W F552_2 1.8 29 84.5 27.0 75.2 6.9 2 16.5 6.7 41.3 176.3 49.1 394.8 305.8 24 49 

2015 MCG W F555_1 1.4 29 65.9 18.0 74.0 . 3 15.5 5.6 38.1 210.7 67.8 770.8 242.5 28 21 

2015 MCG W F556_1 1.3 26 63.5 31.0 73.1 4.1 1 14.6 5.3 36.6 159.9 86.6 495.0 220.0 28 21 

2015 MCG W F559_1 2.4 24 39.4 26.0 68.5 4.9 2 17.2 5.5 32.0 165.2 76.4 835.2 174.6 22 70 

2015 MCG W F588_3 2.8 26 53.0 31.0 73.7 3.9 1 14.8 6.4 45.8 211.7 97.1 371.5 268.4 26 33 

2015 MCG W F59_2 2.5 26 68.6 32.0 75.9 2.8 1 14.8 5.2 35.6 146.3 68.3 541.6 191.8 22 70 

2015 MCG W F590_5 2.6 25 54.6 27.0 73.0 4.0 1 16.6 7.0 43.1 219.8 96.8 626.2 312.2 26 33 

2015 MCG W F595_1 2.9 25 46.6 25.0 72.3 3.4 1 16.4 6.0 36.9 185.3 82.7 756.5 240.4 21 74 

2015 MCG W Maja . 27 64.1 28.4 74.4 3.3 1 16.1 6.0 38.4 250.6 80.5 472.5 267.9 23 56 

2015 MCG W MW118_4 3.7 33 80.5 20.0 75.0 4.7 2 18.3 7.2 40.8 320.4 62.8 391.0 306.3 30 9 

2015 MCG W MW76_2 3.5 30 77.2 28.0 73.4 2.9 1 14.2 5.2 37.6 237.2 65.6 1016.7 216.2 31 5 

2015 MCG W OBA11_13 2.8 31 72.3 34.0 75.3 2.9 1 14.9 4.6 32.1 166.8 58.3 689.8 201.1 25 46 

2015 MCG W OBA11_2 2.3 26 71.9 31.0 74.8 3.3 1 13.5 4.6 34.1 126.0 72.0 530.4 204.3 23 63 

2015 MCG W OBA11_31 2.8 23 64.9 27.0 73.4 3.9 2 14.0 4.4 32.8 111.6 45.7 480.6 196.7 8 108 

2015 MCG W OK242 1.6 27 62.8 19.0 73.0 4.0 1 18.1 6.0 34.3 276.1 55.3 966.6 210.2 21 74 

2015 MCG W OK248 1.9 23 60.7 13.0 70.4 5.1 1 15.4 4.9 32.4 197.3 55.1 1242.6 208.8 24 49 

2015 MCG W OK249 1.5 23 56.7 19.0 69.7 4.9 1 15.8 5.5 35.3 212.8 60.3 1106.0 173.5 23 63 

2015 MCG W OK452 1.3 27 66.8 24.0 71.7 . 3 18.2 6.8 37.8 295.8 61.0 826.5 292.6 19 93 

2015 MCG W OK474 2 25 70.9 15.0 70.9 4.1 1 15.2 5.2 34.7 190.4 50.9 982.0 181.1 23 63 

2015 MCG W OR104 1.4 26 62.7 26.0 74.2 3.8 1 16.0 4.9 32.2 216.7 71.9 536.9 193.8 22 70 

2015 MCG W OR108 2.7 30 64.0 37.0 75.4 3.1 1 13.9 4.6 35.2 168.8 74.8 609.6 182.4 23 63 

2015 MCG W PO71_87 2.4 28 75.7 26.0 76.5 4.4 2 14.2 4.8 35.5 127.0 64.9 521.4 173.3 17 101 

2015 MCG W Short_11 . 33 87.0 20.0 70.6 . 3 14.2 3.9 29.0 74.5 39.5 1614.3 132.6 10 104 

2016 DIM W 06OR_10 3.3 34 78.5 60.0 79.0 2.5 2 13.5 4.1 32 127 61 409.4 188.8 32 56 

2016 DIM W 06OR_37 3.2 35 82.6 53.0 77.6 2.1 1 14.6 4.2 28 176 57 596.8 166.1 26 88 

2016 DIM W 06OR_41 2.6 33 67.0 67.0 78.2 2.3 2 14.0 4.6 34 172 68 398.4 220.4 29 67 

2016 DIM W 06OR_42 2.7 34 79.8 60.0 78.6 2.8 2 13.6 4.5 34 136 68 334.3 211.4 37 38 

2016 DIM W 06OR_43 3.8 33 80.1 62.0 78.1 1.9 1 13.0 4.2 33 104 58 452.1 181.1 33 50 

2016 DIM W 06OR_44 3.7 33 72.5 50.0 77.7 2.1 1 14.8 4.3 30 139 61 348.7 200.9 27 83 

2016 DIM W 06OR_45 2.6 32 71.0 62.0 78.1 . 3 13.0 4.7 37 137 67 402.6 252.3 35 40 

2016 DIM W 06OR_52 3.3 32 64.4 66.0 76.7 2.0 1 14.3 4.7 33 160 66 402.6 233.0 26 88 

2016 DIM W 06OR_59 3.3 34 88.1 45.5 77.3 2.2 2 15.6 4.7 31 140 60 337.3 222.6 29 71 

2016 DIM W 06OR_62 3.2 32 80.3 60.0 77.9 . 3 13.8 4.7 35 170 68 307.2 223.9 38 32 

2016 DIM W 06OR_75 3.3 31 63.7 67.0 77.2 2.2 1 13.7 5.1 38 181 75 372.8 290.8 33 50 

2016 DIM W 06OR_78 2.8 33 64.5 63.0 76.6 2.1 1 14.9 5.2 36 193 75 250.0 263.4 29 67 

2016 DIM W 06OR_91 3.4 29 40.5 52.0 75.7 2.2 1 14.4 4.5 33 219 69 213.4 220.4 23 102 

2016 DIM W 07OR_21 3.6 34 62.5 58.0 78.1 2.4 2 13.7 4.6 34 164 64 405.1 221.6 34 44 

2016 DIM W 07OR_3 4.4 32 83.2 52.0 77.6 3.0 1 13.9 5.0 36 148 90 190.1 265.9 38 32 

2016 DIM W 07OR_4 3.4 34 89.8 42.0 80.7 3.1 1 14.1 5.4 41 179 98 269.8 303.4 48 10 

2016 DIM W 07OR_59 3.5 33 80.3 52.0 80.8 2.1 1 13.7 4.3 33 117 65 331.2 188.9 34 44 

2016 DIM W 07OR_6 3.7 32 80.2 51.0 79.4 2.9 1 13.4 5.1 40 160 99 259.8 294.7 54 2 

2016 DIM W 07OR_63 2.9 36 84.8 52.0 80.2 2.3 1 14.6 4.6 33 126 66 235.7 230.2 38 32 

2016 DIM W 07OR_8 3.0 34 89.4 51.0 79.8 2.5 1 12.9 5.4 45 154 89 238.2 258.1 63 1 

2016 DIM W 08OR_30 2.9 33 78.6 59.0 77.4 2.2 1 12.9 4.0 32 145 62 329.3 151.3 34 44 

2016 DIM W 08OR_44 2.9 37 87.7 53.0 79.8 . 3 14.1 4.2 31 110 59 596.4 196.3 30 62 

2016 DIM W 08OR_48 4.0 35 86.4 52.0 78.0 2.6 2 13.6 4.4 33 136 59 421.0 186.9 35 49 

2016 DIM W 08OR_53 4.2 34 85.0 43.0 78.4 2.9 2 14.8 4.3 30 136 57 332.3 187.1 29 67 

2016 DIM W 08OR_73 3.9 35 89.0 52.0 79.7 2.1 1 14.4 4.9 35 182 82 404.7 272.2 44 16 
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2016 DIM W 08OR_81 3.1 30 49.0 74.0 77.4 2.2 1 14.7 4.4 32 178 62 453.3 207.6 23 102 

2016 DIM W 08OR_9 . 32 82.5 38.0 74.8 . 3 13.7 4.1 31 215 44 485.6 126.0 25 97 

2016 DIM W ALBA 3.5 37 85.6 58.0 78.5 1.9 1 14.7 4.0 28 121 51 626.6 161.8 25 92.5 

2016 DIM W F_Pint 3.7 33 78.6 49.0 75.9 2.3 1 14.3 4.3 31 140 56 507.3 179.8 25 91 

2016 DIM W F106_1 3.6 35 85.4 55.0 78.6 2.1 1 13.6 3.9 29 132 49 627.5 176.3 32 56 

2016 DIM W F5105_1 3.6 32 77.2 62.0 76.1 1.8 1 14.2 4.4 31 134 61 286.7 150.5 21 115 

2016 DIM W F5105_3 3.8 35 80.0 61.0 78.6 1.9 1 14.5 4.0 29 119 52 346.7 175.7 26 88 

2016 DIM W F5108_1 3.0 36 77.6 55.0 75.4 2.6 1 14.8 4.0 26 128 47 613.7 153.8 18 135 

2016 DIM W F5109_1 3.4 36 83.9 53.0 77.6 2.0 1 14.8 3.7 27 110 49 532.5 153.0 16 143 

2016 DIM W F5109_3 3.9 36 80.8 62.0 77.0 2.1 1 14.7 4.1 28 124 49 556.9 165.6 19 126.5 

2016 DIM W F5112_1 3.7 34 79.3 65.0 75.3 1.7 1 14.9 4.4 30 121 50 575.8 175.4 21 115 

2016 DIM W F5112_3 4.4 35 82.1 51.0 77.1 2.2 1 15.5 4.2 28 129 48 584.4 166.8 20 125 

2016 DIM W F5113_2 3.9 34 75.6 56.0 76.6 2.2 1 15.1 4.4 29 132 63 275.2 180.8 21 115 

2016 DIM W F5119_1 3.1 35 80.1 59.0 76.2 2.0 1 14.4 4.0 28 120 47 492.5 167.8 20 125 

2016 DIM W F5120_3 4.1 35 76.9 41.0 76.1 2.1 1 16.0 3.9 26 130 46 542.6 152.9 18 135 

2016 DIM W F5121_1 3.3 34 69.6 65.0 75.8 1.7 1 14.7 4.3 30 117 53 527.0 136.3 14 146 

2016 DIM W F5121_2 2.8 34 82.3 57.0 76.1 2.3 1 16.3 4.2 28 145 52 558.1 167.8 26 88 

2016 DIM W F5121_3 3.8 33 76.3 57.0 76.3 2.1 1 14.8 3.9 27 126 48 553.9 144.5 18 135 

2016 DIM W F5121_4 4.1 34 81.8 57.0 76.1 1.9 1 15.2 4.0 27 125 47 558.6 140.7 20 125 

2016 DIM W F5121_5 4.0 34 76.4 70.0 77.0 2.2 2 13.2 3.8 29 114 49 463.0 169.5 23 102 

2016 DIM W F5124_1 3.2 35 80.9 61.0 77.0 2.1 2 14.8 4.0 28 129 47 518.2 145.5 22 108.5 

2016 DIM W F5126_1 3.4 35 85.0 54.0 77.7 2.0 1 14.6 4.2 29 118 54 587.4 156.5 19 131 

2016 DIM W F5126_2 4.5 33 85.8 53.0 77.6 1.9 1 14.8 4.1 29 115 55 456.1 184.0 19 131 

2016 DIM W F5129_1 4.2 34 71.4 62.0 79.3 2.5 2 13.2 4.3 34 145 51 527.8 156.7 40 26 

2016 DIM W F5131_1 4.3 35 76.8 73.0 78.1 1.7 1 14.1 4.2 31 123 56 478.9 191.2 28 78 

2016 DIM W F5132_1 3.2 35 84.2 69.0 77.4 1.7 1 13.4 4.2 32 127 57 547.4 168.5 34.5 46.5 

2016 DIM W F5134_3 1.8 36 83.9 55.0 76.9 2.0 1 14.3 4.4 32 116 49 553.2 168.2 18 134 

2016 DIM W F5135_4 4.4 35 81.7 66.0 76.3 1.9 1 14.0 4.2 31 134 54 516.8 181.7 25 93 

2016 DIM W F5136_1 3.8 35 65.0 63.0 75.9 2.5 2 13.9 4.5 33 132 59 478.4 163.2 22 110 

2016 DIM W F522_3 3.9 34 78.7 54.0 77.0 2.2 1 15.2 4.3 30 133 58 578.7 181.9 21 115 

2016 DIM W F523_1 4.1 35 78.8 55.0 77.6 2.2 1 15.6 4.4 30 173 64 504.6 186.8 24 98 

2016 DIM W F527_1 3.4 34 85.2 60.0 78.6 1.8 1 14.0 4.0 30 135 48 625.3 167.2 27 83 

2016 DIM W F532_1 3.6 34 82.7 62.0 76.8 1.9 1 12.9 4.2 33 150 67 119.0 167.7 43 19 

2016 DIM W F535_2 4.7 33 77.0 60.5 76.9 2.4 3 13.2 4.0 31 115 48 643.6 137.5 24 99 

2016 DIM W F536_2 4.2 33 77.0 56.0 75.8 . 3 12.7 4.4 36 138 53 526.2 152.0 29 67 

2016 DIM W F537_1 3.6 32 79.6 64.0 76.9 . 3 12.4 4.3 35 132 56 553.0 190.9 32 56 

2016 DIM W F537_3 3.3 34 78.8 61.0 76.8 . 3 12.2 4.3 36 131 55 566.2 171.9 29 67 

2016 DIM W F54_2 3.7 34 86.7 63.0 77.2 1.9 1 14.9 4.6 32 151 60 435.5 188.3 27.5 77.5 

2016 DIM W F547_1 3.1 34 79.0 55.0 79.0 2.5 2 14.1 4.4 33 150 59 606.0 188.7 33 50 

2016 DIM W F547_3 3.4 35 82.6 42.0 78.7 2.5 1 14.6 4.3 30 151 54 641.4 168.5 33 50 

2016 DIM W F548_1 4.2 35 79.3 50.0 75.6 2.0 1 15.9 4.4 29 147 58 576.0 174.3 24 98 

2016 DIM W F55_1 3.6 34 82.6 65.0 78.4 1.8 1 13.8 3.9 30 151 55 448.5 163.5 38 32 

2016 DIM W F550_1 3.8 35 88.4 53.0 77.7 2.5 2 14.2 4.1 31 126 45 649.7 160.8 19 131 

2016 DIM W F550_2 . 35 89.9 51.0 78.2 1.9 1 14.4 4.2 30 143 57 543.9 208.9 35 40 

2016 DIM W F555_1 4.1 33 66.2 46.0 75.4 2.8 2 14.9 4.4 30 163 56 536.2 173.6 20 125 

2016 DIM W F556_1 4.0 35 82.8 53.0 76.8 2.0 1 15.8 4.4 29 128 52 431.8 161.2 23 102 

2016 DIM W F556_3 3.4 35 85.7 62.0 78.2 2.1 2 13.0 4.0 31 119 58 419.0 172.0 35 40 

2016 DIM W F557_2 3.9 35 83.1 59.0 78.7 1.8 1 14.7 4.0 28 128 57 460.7 165.1 30 62 

2016 DIM W F559_1 3.7 34 79.0 61.0 77.3 2.2 2 14.2 4.0 29 123 48 601.6 159.8 17 141 

2016 DIM W F559_2 3.8 35 75.0 59.0 76.6 2.4 1 15.4 4.0 27 138 47 633.9 162.2 18 135 

2016 DIM W F560_2 3.6 35 85.7 67.0 77.3 1.6 1 14.3 4.3 31 122 57 519.2 137.2 23 102 

2016 DIM W F564_1 3.8 37 80.6 55.0 76.3 2.0 1 14.1 4.3 31 151 60 373.4 205.7 31 59 

2016 DIM W F566_3 3.8 34 67.0 54.0 77.5 1.8 1 13.5 4.8 37 153 64 396.9 188.2 29 76.5 

2016 DIM W F572_3 3.8 34 80.1 50.0 76.3 2.5 2 14.1 4.0 30 126 48 549.7 139.3 19 131 



 

150 

 

 

2016 DIM W F576_1 3.5 36 84.0 56.0 76.7 2.1 1 13.2 4.1 31 114 52 566.3 176.9 29 67 

2016 DIM W F576_4 3.3 35 82.3 65.0 77.8 2.1 1 14.0 3.9 29 115 54 516.8 174.0 23 102 

2016 DIM W F583_1 3.7 35 83.8 61.0 78.4 1.9 2 13.5 4.2 33 115 55 538.7 137.6 30 62 

2016 DIM W F588_3 3.7 35 78.3 70.0 80.2 1.9 1 12.9 3.8 31 129 59 364.3 176.6 41 24 

2016 DIM W F59_2 3.4 31 80.5 52.0 78.5 2.0 1 12.5 4.0 33 115 59 377.3 175.3 35 40 

2016 DIM W F590_5 3.8 34 81.2 58.0 77.4 2.2 1 15.2 4.3 30 156 62 503.3 192.6 29 67 

2016 DIM W F591_1 3.8 33 68.7 50.0 78.8 . 3 13.4 4.5 35 165 50 500.3 170.7 33 50 

2016 DIM W F591_2 4.3 34 74.6 59.0 78.0 2.1 1 14.6 4.3 31 159 52 591.5 177.2 28 78 

2016 DIM W F595_1 4.1 34 74.5 54.0 78.4 2.3 1 14.0 4.1 31 116 49 524.6 166.6 26 88 

2016 DIM W F596_2 3.5 33 68.6 56.0 77.6 2.0 1 14.6 3.8 27 129 50 529.6 154.9 18 135 

2016 DIM W F596_4 3.5 35 73.8 62.0 77.6 1.9 1 13.8 4.4 33 120 51 567.3 145.7 26 88 

2016 DIM W MAJA 3.5 33 83.5 50.0 79.2 2.4 2 13.1 4.7 37 178 69 243.2 219.2 47 14 

2016 DIM W MW116_3 3.2 36 87.6 55.0 80.4 . 3 13.7 4.4 34 129 65 422.4 197.7 39 31 

2016 DIM W MW116_4 3.5 36 87.8 52.0 78.6 2.5 2 13.4 4.5 35 117 69 306.1 198.1 38 32 

2016 DIM W MW118_1 2.6 37 87.1 48.0 77.3 1.8 1 14.9 5.0 35 173 62 446.0 188.0 29 67 

2016 DIM W MW118_3 3.2 34 81.3 56.0 78.3 2.2 1 12.8 4.9 40 202 72 269.6 252.2 51 6 

2016 DIM W MW118_4 3.7 35 82.4 64.0 78.5 2.0 2 13.9 4.3 33 165 59 384.1 203.4 42 20 

2016 DIM W MW120_8 3.0 33 86.7 57.0 79.0 2.0 1 14.6 5.2 38 197 70 417.2 267.2 44 16 

2016 DIM W MW122_1 3.3 33 76.4 45.0 77.9 2.3 1 15.2 5.5 37 183 77 223.7 270.2 40 26 

2016 DIM W MW122_5 3.6 35 75.0 47.0 78.5 1.6 1 14.8 5.3 38 211 70 339.8 196.6 41 24 

2016 DIM W MW80_1 3.3 32 76.9 56.0 78.5 1.8 1 13.7 4.9 37 215 73 200.5 197.6 42 20 

2016 DIM W OBA11_13 3.2 36 76.8 59.0 76.7 2.1 2 13.7 4.5 33 144 49 393.9 160.3 25 94 

2016 DIM W OBA11_2 3.7 36 90.8 57.0 77.6 2.7 2 13.6 4.1 30 104 44 585.6 160.8 20 125 

2016 DIM W OBA11_29 4.2 33 76.9 66.0 76.0 2.2 1 14.2 4.2 31 126 44 527.5 160.2 21 116.5 

2016 DIM W OBA11_31 4.3 32 85.8 54.0 75.7 . 3 14.9 3.9 26 99 37 444.1 118.1 9 147 

2016 DIM W OK242 4.2 33 82.8 33.0 75.1 . 3 14.6 4.1 29 225 42 451.9 126.2 21 115 

2016 DIM W OK248 3.5 30 78.0 41.0 74.3 . 3 13.0 3.8 29 145 42 582.4 125.4 28 78 

2016 DIM W OK249 2.0 30 74.9 32.0 73.8 2.7 2 13.0 3.8 29 180 45 624.1 113.9 27 83 

2016 DIM W OK452 4.0 32 82.6 46.0 74.7 . 3 12.2 3.8 31 147 41 519.0 150.0 31 59 

2016 DIM W OK474 3.7 32 86.5 43.0 75.0 2.8 2 14.1 4.0 29 175 42 615.1 163.6 21 115 

2016 DIM W OR101 3.4 34 85.2 58.0 79.7 . 3 13.2 4.5 37 160 65 275.7 206.7 49 8 

2016 DIM W OR103 2.5 37 89.2 57.0 81.0 2.7 2 13.3 4.1 31 125 61 578.4 203.6 47 13 

2016 DIM W OR104 2.8 35 85.8 44.0 79.3 3.2 2 13.3 4.4 35 146 59 424.2 179.0 45 15 

2016 DIM W OR106 3.1 34 87.0 47.0 76.7 2.6 2 13.7 4.6 35 174 64 293.3 186.2 30 62 

2016 DIM W OR108 3.7 36 78.2 68.0 78.5 1.7 1 12.6 4.2 35 126 58 469.1 160.5 38 32 

2016 DIM W OR76 2.9 34 80.7 68.0 79.3 2.9 1 14.3 4.6 34 110 73 257.8 234.1 34 44 

2016 DIM W OR813 3.0 34 85.0 75.0 79.9 2.6 1 12.6 5.0 40 120 78 286.6 242.1 47 13 

2016 DIM W OR815 2.7 36 86.3 56.0 79.6 2.3 1 14.2 4.5 32 114 62 383.0 203.5 34 44 

2016 DIM W OR818 3.8 34 82.5 43.0 79.4 3.0 1 14.1 5.4 40 167 93 274.3 280.4 48 10 

2016 DIM W OR91 3.2 34 85.4 50.0 80.1 3.0 1 13.4 5.0 39 146 85 340.3 280.9 54 2 

2016 DIM W OR910 3.1 34 87.2 51.0 79.6 3.0 1 13.6 5.0 39 157 90 253.7 263.2 49 8 

2016 DIM W PO71_104 3.1 36 85.4 54.0 76.6 3.3 2 14.5 4.6 33 121 53 289.7 187.4 22 110 

2016 DIM W PO71_87 3.3 36 90.2 47.0 78.8 . 3 13.6 4.3 32 125 56 470.4 173.1 33 50 

2016 DIM W PY211_6 4.0 32 82.0 60.0 79.2 2.6 1 12.2 4.7 42 155 71 218.1 230.3 50 7 

2016 DIM W Short_11 2.6 32 78.4 51.0 80.3 2.2 1 13.9 4.5 34 171 80 283.0 219.4 44 16 

2016 DIM W Short_12 3.6 33 76.2 54.0 79.5 2.2 1 14.2 4.9 35 177 85 230.8 252.4 42 20 

2016 DIM W Short_13 3.0 33 76.8 56.0 80.4 2.6 1 13.5 5.0 40 168 83 202.6 288.2 52 5 

2016 DIM W Short_16 3.0 33 77.7 54.0 77.8 2.3 1 14.3 5.3 38 141 67 429.5 255.1 40 26 

2016 DIM W Short_8 3.8 34 75.2 53.0 76.2 1.7 1 14.4 4.2 30 125 50 547.9 147.9 21 115 

2016 MCG W 06OR_10 2.2 27 54.3 27.0 77.4 3.4 1 13.0 5.3 44.0 162.5 90.6 168.6 282.3 46 10 

2016 MCG W 06OR_37 1.9 28 75.8 32.0 76.3 3.5 1 12.2 4.7 41.1 196.4 70.6 411.0 257.7 36 40 

2016 MCG W 06OR_41 1.8 27 61.7 34.0 76.5 3.4 1 11.9 4.8 41.1 169.1 77.5 267.3 265.0 34 46 

2016 MCG W 06OR_43 2.0 28 57.9 37.0 75.7 2.9 1 11.7 4.6 41.0 159.2 78.3 253.4 217.4 33 49 

2016 MCG W 06OR_44 2.6 28 66.3 32.0 76.9 3.9 1 12.2 5.2 44.6 159.3 91.1 211.0 253.6 43 15 
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2016 MCG W 06OR_59 3.1 31 88.7 28.0 77.6 3.0 2 11.8 4.5 40.1 118.7 69.7 295.4 212.7 34 43 

2016 MCG W 06OR_91 1.7 25 33.8 28.0 73.7 3.9 1 15.6 5.8 38.1 220.6 103.4 213.3 305.5 24 69 

2016 MCG W 07OR_3 2.6 26 79.5 20.5 75.6 5.5 1 12.3 5.9 45.7 135.4 92.6 76.5 302.9 45 22 

2016 MCG W 07OR_59 1.1 27 66.8 30.0 77.9 4.4 1 12.3 5.1 40.6 159.7 90.0 178.9 280.8 38 31 

2016 MCG W 07OR_6 1.7 23 50.8 23.0 76.6 7.3 1 12.1 6.9 60.2 115.2 107.3 53.0 342.7 31 52 

2016 MCG W 07OR_63 2.3 29 72.7 41.0 77.5 3.9 1 14.6 5.7 40.6 189.5 71.2 359.0 237.9 30 56 

2016 MCG W 08BA_54 . 33 88.2 43.0 80.1 3.1 2 14.0 5.5 42.3 147.7 85.5 47.0 280.2 64 1 

2016 MCG W 08OR_30 2.9 28 70.5 26.0 75.6 4.0 1 12.8 5.3 41.3 163.8 86.4 261.6 265.3 40 27 

2016 MCG W Alba . 33 77.7 22.0 78.3 4.0 1 13.1 5.5 44.1 128.9 89.4 203.6 258.0 42 17.5 

2016 MCG W F_Pint 3 28 65.3 24.0 75.6 3.9 1 13.0 5.2 40.8 152.6 76.0 263.9 230.1 39 27 

2016 MCG W F5105_1 2.1 29 69.8 37.0 77.3 3.4 1 12.1 5.2 45.7 173.4 76.3 171.1 250.0 45 13 

2016 MCG W F5105_3 2.2 27 57.9 31.0 76.6 5.1 1 12.8 5.4 43.7 157.0 105.7 141.3 265.2 46 10 

2016 MCG W F5108_1 2.5 32 81.0 26.0 77.9 4.2 1 12.5 5.1 42.3 145.2 86.6 452.5 240.8 53 4 

2016 MCG W F5109_3 2.6 30 65.0 24.0 75.8 4.0 1 12.7 5.3 43.7 121.1 71.2 328.3 227.2 41 23.5 

2016 MCG W F5112_1 2.5 28 65.3 30.0 76.2 4.4 1 11.9 5.1 45.0 135.8 86.9 300.2 238.4 37 31.5 

2016 MCG W F5112_3 2 27 62.0 30.0 74.9 4.8 1 13.8 5.4 39.8 167.6 93.9 260.9 283.6 36.5 35.5 

2016 MCG W F5113_2 1.9 26 51.7 33.0 75.5 5.5 1 13.0 5.9 46.6 150.9 107.1 77.7 297.5 42 17 

2016 MCG W F5120_3 1.6 28 56.8 36.0 74.4 5.8 1 13.4 5.7 45.3 135.0 79.8 228.4 242.6 36 40 

2016 MCG W F5121_1 2.5 31 68.3 28.0 76.5 4.1 1 12.0 4.9 42.5 137.4 76.0 377.5 222.0 40 19 

2016 MCG W F5121_2 3.1 31 84.8 26.0 78.0 3.0 1 11.6 4.3 39.7 147.5 74.8 410.8 217.9 44 16 

2016 MCG W F5121_4 2.6 27 63.1 36.0 74.8 4.9 1 12.3 5.9 49.3 150.3 88.4 142.8 251.9 37 38 

2016 MCG W F5121_5 1.6 29 69.7 35.0 76.1 3.5 1 11.5 4.9 43.0 124.0 79.9 326.0 233.8 38 23 

2016 MCG W F5124_1 2.4 29 66.2 36.0 76.5 3.7 1 12.2 4.9 41.0 117.9 83.3 266.0 225.8 29 37 

2016 MCG W F5126_2 2.1 29 75.5 31.0 77.4 3.7 1 11.7 5.0 43.3 143.5 85.3 338.3 238.2 43 15 

2016 MCG W F5132_1 2 30 72.7 34.0 76.2 5.2 1 12.4 5.5 44.6 132.7 90.6 365.3 240.8 42 22 

2016 MCG W F5135_4 2.6 28 59.5 15.0 76.3 3.2 1 11.6 4.9 44.8 107.2 72.9 132.5 241.3 37 27 

2016 MCG W F522_3 3.3 31 83.6 34.0 78.6 3.0 1 12.0 4.9 43.1 132.5 82.0 270.4 239.3 52 5 

2016 MCG W F523_1 3.7 27 64.8 31.0 76.9 3.2 1 12.6 5.0 40.3 149.4 90.1 226.0 232.1 34 31 

2016 MCG W F527_1 1.6 27 73.8 28.0 76.6 4.1 1 12.1 5.0 44.4 153.3 61.5 407.7 236.7 42 22 

2016 MCG W F535_2 1.9 29 69.6 19.0 77.0 4.2 1 12.2 4.6 40.0 157.9 74.6 458.2 247.9 33 49 

2016 MCG W F536_2 1.8 32 80.5 17.0 76.0 3.7 1 12.0 5.0 43.8 179.4 75.1 431.6 208.5 48 8 

2016 MCG W F537_1 2.3 30 75.3 17.0 76.4 3.9 1 12.3 4.7 39.6 167.2 75.8 502.1 252.3 38 31 

2016 MCG W F537_3 2.4 30 71.4 18.5 76.6 4.2 1 12.8 5.2 43.0 170.3 81.8 393.6 245.1 42.5 17.5 

2016 MCG W F54_2 3 30 78.9 15.5 77.3 4.9 1 14.3 5.5 38.7 191.5 98.6 333.8 304.0 34 43.5 

2016 MCG W F547_1 2.9 30 79.2 15.0 76.2 2.8 2 14.0 5.0 35.9 160.1 66.7 309.1 254.2 34 43 

2016 MCG W F547_3 3.2 30 77.6 31.5 76.3 3.4 1 12.8 4.7 37.7 167.8 62.9 436.6 202.3 40 26.5 

2016 MCG W F548_1 2.1 31 75.3 25.0 77.5 4.3 1 12.0 4.5 40.9 153.3 85.0 319.9 244.6 38 31 

2016 MCG W F55_1 3.5 30 83.1 40.0 78.4 2.9 1 11.0 4.7 45.8 139.7 75.8 330.0 235.7 44 14 

2016 MCG W F552_2 1.8 29 74.4 20.5 76.7 3.6 1 13.8 5.2 40.0 184.6 65.7 360.4 249.2 34.5 32.5 

2016 MCG W F555_1 1.4 29 66.3 16.0 75.4 4.0 1 12.1 5.0 42.0 169.9 78.7 340.7 259.3 41 25 

2016 MCG W F556_1 1.3 26 55.7 35.0 76.3 3.7 1 13.1 5.0 39.8 191.9 78.6 298.1 294.6 34 46 

2016 MCG W F559_1 2.4 32 74.8 27.0 77.6 4.7 1 11.9 5.2 45.4 139.5 88.0 328.9 222.8 43 15 

2016 MCG W F566_3 2.2 30 72.4 32.5 77.5 4.6 1 12.1 5.7 47.2 152.9 82.3 393.7 298.6 40 28 

2016 MCG W F576_1 2.3 30 75.0 36.0 76.4 4.3 1 11.7 5.1 43.4 146.4 83.8 331.3 230.3 44 16 

2016 MCG W F588_3 2.8 29 67.8 36.0 76.5 5.1 1 11.9 5.6 48.4 139.6 77.9 236.9 236.2 37 38 

2016 MCG W F59_2 2.5 29 73.0 33.5 76.6 3.5 2 11.8 4.6 39.9 135.7 70.0 349.5 232.6 32.5 47.5 

2016 MCG W F590_5 2.6 27 75.1 28.0 76.2 4.7 1 12.8 5.7 45.2 158.6 87.3 330.3 316.4 46 11 

2016 MCG W F591_1 3.2 27 61.7 31.5 78.6 3.6 2 10.8 4.0 38.6 137.6 67.2 355.4 211.4 29.5 46.5 

2016 MCG W F595_1 2.9 29 74.9 35.0 77.6 4.1 1 11.5 5.0 43.8 129.9 74.0 308.9 220.4 41 25 

2016 MCG W F596_4 2.7 28 63.1 33.0 77.2 3.3 1 10.4 3.6 36.2 134.2 60.9 362.7 201.6 25 67 

2016 MCG W MW118_3 3 31 82.9 23.0 76.6 2.9 1 12.7 5.1 42.2 173.1 80.1 222.0 243.5 39.33 27 

2016 MCG W MW118_4 3.7 34 91.8 22.0 79.1 3.0 1 12.8 5.4 43.0 216.5 86.9 225.9 261.8 63 2 

2016 MCG W MW120_8 3.5 27 75.6 13.0 74.0 2.9 1 16.2 5.6 36.7 236.5 89.6 390.7 263.4 31 52 

2016 MCG W MW122_1 3 30 81.0 16.0 77.1 3.2 1 14.8 6.0 40.1 211.3 102.5 306.1 336.9 28 59 
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2016 MCG W MW122_5 3.5 30 83.1 20.0 76.7 2.7 1 14.3 5.3 38.5 208.2 82.3 308.8 260.3 39.5 30.5 

2016 MCG W MW76_1 2.3 32 91.2 16.0 76.5 3.2 1 12.9 5.6 44.0 188.8 95.3 305.2 319.2 43.5 16.5 

2016 MCG W MW76_2 3.5 30 75.2 20.0 74.0 3.2 1 13.3 5.2 39.6 244.2 67.7 353.0 260.5 45 13 

2016 MCG W MW80_1 3.9 31 89.1 21.0 77.9 3.2 1 11.8 5.5 48.1 169.8 78.2 191.3 251.3 51 2 

2016 MCG W OBA11_13 2.8 29 68.1 34.5 76.0 3.2 1 12.7 5.2 41.5 182.4 76.2 240.5 249.9 42 18.5 

2016 MCG W OBA11_2 2.3 26 60.0 24.0 72.5 5.8 1 15.8 6.8 43.7 168.0 92.4 159.9 341.5 29 57 

2016 MCG W OBA11_31 2.8 26 77.0 24.0 74.7 3.8 1 13.1 4.7 36.6 135.6 59.6 235.9 215.6 31 52 

2016 MCG W OR104 1.4 26 64.3 21.0 77.3 4.4 1 12.1 5.7 49.8 171.1 88.1 174.3 265.7 34 46 

2016 MCG W OR106 1.7 25 51.6 29.0 75.5 3.6 1 13.1 5.2 41.6 204.4 79.1 264.9 268.6 38 23 

2016 MCG W OR108 2.7 29 55.3 31.0 77.0 3.5 1 12.3 4.9 40.8 147.0 83.0 311.3 225.7 34.5 29.5 

2016 MCG W OR813 2.9 27 70.4 36.0 77.0 3.3 2 11.5 4.7 43.7 131.3 79.7 157.2 229.8 31.5 49 

2016 MCG W OR818 2 23 57.4 21.0 75.6 6.2 1 12.1 5.4 45.7 122.9 89.5 103.3 317.7 47 4 

2016 MCG W OR91 1.9 24 61.3 28.0 77.2 6.4 1 11.5 6.7 56.1 117.5 98.0 85.9 318.0 31 52 

2016 MCG W PO71_87 2.4 27 66.9 20.0 77.6 4.2 1 12.6 5.1 42.8 161.3 89.7 185.4 235.0 39 21 

2016 MCG W Short_11 2.7 29 78.2 24.0 78.8 3.7 1 11.7 5.1 46.1 156.1 91.8 141.7 251.8 54 3 

2016 MCG W Short_12 2.1 30 83.3 28.0 78.5 3.9 1 11.0 4.8 44.3 139.6 92.8 139.8 306.2 47 4 

2016 MCG W Short_13 2.2 28 70.6 23.0 75.6 5.4 1 17.7 7.1 42.6 201.7 105.3 141.2 395.0 31 34 

2016 MCG W Short_16 2.8 29 76.9 31.0 78.1 3.7 1 11.9 4.9 42.6 140.5 85.5 231.5 277.4 44.5 10.5 

   Min 1.1 23.1 50.8 13.0 72.5 2.7 1.0 10.4 3.6 35.9 107.2 59.6 47.0 201.6 25.0 1.0 

   Max 3.9 34.1 91.8 43.0 80.1 7.3 2.0 17.7 7.1 60.2 244.2 107.3 502.1 395.0 64.0 67.0 

   Avg 2.5 28.9 71.3 27.2 76.7 4.0 1.1 12.6 5.2 42.9 157.6 82.6 275.0 257.7 39.6 27.6 

   Std. Dev 0.6 2.2 9.7 7.3 1.3 0.9 0.3 1.2 0.6 4.0 28.5 11.0 105.2 37.6 7.5 16.3 

   Std. Error 0.1 0.3 1.2 0.9 0.2 0.1 0.0 0.1 0.1 0.5 3.4 1.3 12.7 4.5 0.9 2.0 

   Ideal Range . 36-45  > 80% . . 1.8-2.5 . ≤ 13.0% 5.2-5.7% 42-47% > 150 > 50 < 120 > 210 . . 

   # Lines met criteria .  158 . . 105 . 88 79 53 194 327 9 191 . . 
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A-6: TCAP spring two- and six-row barley lines and commercial check malt quality evaluations (Bold indicate lines that met criteria). 

     
Kernel Plump Barley Malt 

  
Barley Wort 

  
Alpha- Beta- 

  
 

     
Weight 6/64" Color Extract Wort Wort Protein Protein S/T DP amylase glucan FAN Quality 

Overall 

Rank 

Year Loc Type SAS_Name Yield (mg) (%) (Agtron) (%) Color Clarity (%) (%) (%) (°ASBC) (20°DU) (ppm) (ppm) Score  

2015 MCG S2 06AB_24 1.6 26.7 84.7 12.0 78.0 4.7 1 13.2 6.0 46.8 117.3 95.9 536.2 281.0 35 69 

2015 MCG S2 06BA_81 2 29.3 84.9 18.0 79.3 . 3 13.4 6.1 47.0 87.1 60.4 202.7 201.5 21 141 

2015 MCG S2 06MT_26 2.4 31.9 73.0 11.0 78.0 3.7 1 13.4 5.1 38.9 95.0 55.4 713.0 182.3 28 115 

2015 MCG S2 06MT_59 4.6 28.2 67.7 15.0 78.2 4.4 1 13.3 5.3 41.4 114.5 50.0 858.6 212.8 36 63 

2015 MCG S2 06MT_67 4.4 34.6 88.6 17.0 79.7 4.5 2 13.6 6.0 47.1 114.8 79.1 185.2 220.7 30 99 

2015 MCG S2 06MT_82 3.4 31.6 88.6 14.0 78.5 . 3 13.1 5.0 38.9 122.5 62.0 704.4 211.8 38 53 

2015 MCG S2 06N2_06 3.5 36.8 90.7 16.0 78.4 . 3 12.8 5.1 42.1 127.0 59.7 821.7 198.3 50 9 

2015 MCG S2 06N2_17 3.7 41.4 95.2 8.0 80.9 . 3 12.3 5.4 48.1 101.5 56.7 548.3 187.4 47 16 

2015 MCG S2 06N2_39 3.3 34.2 92.5 9.0 80.0 . 3 13.4 5.7 42.9 114.1 39.5 593.4 171.9 29 104 

2015 MCG S2 06N2_70 4 35.3 90.4 23.0 81.4 . 3 12.8 5.4 43.7 84.0 52.8 471.3 240.5 49 11 

2015 MCG S2 06WA_38 2.1 29.3 63.8 11.0 76.5 5.9 1 15.6 6.6 43.1 157.7 67.2 546.5 254.1 26 120 

2015 MCG S2 06WA_77 2 29.5 74.5 7.0 78.9 5.7 2 13.3 6.7 51.8 153.6 78.2 228.2 291.5 29 104 

2015 MCG S2 07AB_53 4 29.7 90.3 23.0 77.0 4.6 2 13.3 5.6 43.4 102.0 69.9 473.0 200.3 35 69 

2015 MCG S2 07AB_77 3.1 33.0 78.1 17.0 78.0 3.9 1 14.4 5.2 37.5 156.3 64.2 622.5 218.8 32 89 

2015 MCG S2 07MT_40 2.6 35.0 82.3 16.0 79.8 4.6 1 12.5 5.3 44.7 130.3 81.1 471.1 216.6 50 9 

2015 MCG S2 07MT_94 3.5 33.7 90.0 15.0 79.4 . 3 12.9 5.6 46.8 100.9 56.9 222.2 210.2 46 18 

2015 MCG S2 07N2_02 2.8 35.8 92.7 20.0 78.3 . 3 13.5 5.8 45.6 118.9 61.4 470.3 223.2 33 83 

2015 MCG S2 07N2_13 4.5 33.9 92.9 22.0 79.0 . 3 12.9 5.8 48.0 109.0 56.7 230.9 233.7 38 53 

2015 MCG S2 07N2_31 3.4 37.4 93.3 27.0 79.8 . 3 13.6 6.0 46.5 124.8 66.7 365.5 263.8 36 63 

2015 MCG S2 07N2_73 3 32.9 91.1 22.0 75.6 . 3 14.8 6.8 46.4 95.8 48.2 498.9 235.6 19 148 

2015 MCG S2 07WA_03 1.9 33.9 94.0 11.0 78.2 5.7 2 13.1 5.2 41.8 114.4 61.5 350.6 191.1 43 31 

2015 MCG S2 07WA_13 2.2 32.2 87.5 12.0 75.4 14.0 2 13.8 8.3 60.5 89.9 54.0 32.9 358.7 23 135 

2015 MCG S2 08AB_17 1.2 27.8 63.1 10.0 77.0 8.0 2 14.0 6.7 47.7 103.9 58.7 146.8 279.9 20 146 

2015 MCG S2 08AB_24 2.1 29.5 73.4 7.0 77.0 . 3 13.9 8.6 60.7 84.9 48.8 44.7 338.3 16 154 

2015 MCG S2 08AB_45 1.7 31.6 73.3 11.0 77.0 . 3 15.7 6.5 42.4 125.0 76.1 525.9 252.0 24 130 

2015 MCG S2 08BA_02 1.5 30.4 81.4 10.0 76.4 . 3 14.3 8.4 56.1 86.5 60.3 61.9 368.5 19 148 

2015 MCG S2 08BA_11 1.1 31.7 86.8 11.0 75.0 . 3 14.1 10.2 62.2 96.4 58.1 27.9 419.0 22 138 

2015 MCG S2 08BA_76 2.3 36.7 90.7 12.0 79.2 4.3 1 13.9 5.7 43.5 108.7 54.9 357.7 225.1 35 69 

2015 MCG S2 08MT_04 2.6 30.6 83.3 15.0 76.9 4.5 2 14.6 5.6 40.6 141.4 67.1 845.3 212.8 32 89 

2015 MCG S2 08N2_73 3.6 37.4 91.7 18.0 78.7 . 3 12.3 5.1 43.7 74.7 54.2 384.4 198.7 43 31 

2015 MCG S2 08WA_11 1.3 27.6 82.5 14.0 74.8 . 3 13.7 8.5 54.3 92.1 59.8 21.7 426.0 19 148 

2015 MCG S2 08WA_27 1.6 31.2 76.4 10.0 77.1 4.8 2 13.3 5.9 45.1 100.2 59.6 384.4 275.6 30 99 

2015 MCG S2 08WA_40 1.8 29.6 68.1 9.0 77.7 3.8 2 12.6 5.0 41.0 93.5 57.5 355.2 192.0 35 69 

2015 MCG S2 08WA_64 1.4 24.4 80.8 1.0 71.2 . 3 13.9 9.3 55.7 97.5 48.3 19.9 434.5 16 154 

2015 MCG S2 09AB_10 1.1 26.4 78.2 10.0 76.3 5.8 1 14.7 6.7 44.4 89.6 57.6 1064.5 302.6 19 148 

2015 MCG S2 09AB_43 1.7 31.5 62.3 10.0 77.4 . 3 14.9 6.1 41.3 52.3 31.9 1329.0 205.6 10 158 

2015 MCG S2 09AB_48 2.3 36.1 95.1 24.0 78.1 2.7 1 13.9 5.1 36.7 161.6 62.7 523.4 191.2 37 59 

2015 MCG S2 09AB_82 2.2 33.2 90.2 12.0 78.3 5.3 1 12.9 5.8 45.6 82.2 61.5 390.2 204.4 41 45 

2015 MCG S2 09BA_03 3.7 30.6 91.9 25.0 79.1 2.9 1 12.5 5.9 50.6 173.2 71.0 586.2 286.1 43 31 

2015 MCG S2 09BA_10 2.2 28.6 91.3 8.0 74.5 10.1 2 14.8 8.7 56.7 137.6 48.0 51.1 342.2 29 104 

2015 MCG S2 09BA_89 1.8 27.7 68.6 17.0 76.9 . 3 14.8 9.1 56.7 130.5 44.7 22.6 385.9 23 135 

2015 MCG S2 09MT_16 1.9 28.8 70.3 12.0 78.0 4.4 1 12.6 5.6 45.7 134.5 97.8 383.0 273.9 43 31 

2015 MCG S2 09MT_78 2.6 32.1 89.8 16.0 79.7 3.8 2 12.5 5.6 46.5 174.5 76.9 383.8 202.3 48 13 

2015 MCG S2 09MT_94 1.5 27.5 62.3 9.0 78.5 . 3 12.3 7.4 61.5 117.4 96.0 52.6 323.2 37 59 

2015 MCG S2 09N2_12 4 32.4 81.4 19.0 78.4 4.0 2 12.8 5.4 45.6 178.6 74.1 358.3 219.0 46 18 

2015 MCG S2 09N2_21 4.2 32.8 88.1 20.0 79.0 3.9 1 13.0 5.5 44.7 127.9 83.3 218.5 242.2 45 24 

2015 MCG S2 09N2_29 2.6 31.9 81.3 21.0 79.1 . 3 12.2 4.9 40.8 117.3 64.0 653.4 203.4 42 40 

2015 MCG S2 09N2_39 2.4 32.9 75.5 21.0 78.1 4.0 2 12.2 5.1 43.0 131.8 74.0 503.0 210.4 46 18 

2015 MCG S2 09N2_55 3 33.1 87.3 22.0 79.6 . 3 11.9 6.3 53.8 140.5 65.2 113.5 259.9 42 40 
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2015 MCG S2 09WA_15 1.5 27.9 79.1 5.0 76.7 . 3 13.0 7.3 55.1 99.6 58.4 78.5 277.0 24 130 

2015 MCG S2 09WA_19 1.7 29.4 79.0 9.0 75.9 3.8 1 14.1 5.8 43.9 121.8 67.5 243.8 208.7 29 104 

2015 MCG S2 09WA_52 2.4 29.5 80.1 16.0 78.7 8.0 3 13.3 6.6 52.6 173.3 74.9 111.0 257.1 31 95 

2015 MCG S2 09WA_64 1.3 30.5 79.3 10.0 75.9 2.9 1 13.3 5.1 39.7 135.6 75.3 350.6 187.3 31 95 

2015 MCG S2 AC_MET 1.8 30.3 85.2 18.4 76.2 . 3 14.6 7.8 52.0 133.0 56.7 52.6 349.3 29 104 

2015 MCG S2 CDC 2 31.1 87.4 19.8 76.3 . 3 13.2 7.5 53.2 94.8 40.3 31.8 299.8 27 113 

2015 MCG S2 CON 2.4 32.3 84.5 14.8 78.4 4.5 1 13.7 5.8 43.6 133.3 80.0 383.6 257.1 33 84 

2015 MCG S6 06AB_55 3.5 27.7 66.4 15 76.6 2.8 1 11.9 4.8 43.8 103.4 55.0 848.1 194.9 27 118 

2015 MCG S6 06AB_62 2.6 29.0 74.1 18 79.1 2.8 1 12.3 5.4 44.8 148.9 65.2 431.2 221.7 58 1 

2015 MCG S6 06AB_84 3.9 26.0 68.9 23 76.2 2.5 1 11.8 5.0 43.5 154.5 56.8 684.1 212.0 39 49 

2015 MCG S6 06BA_06 3.1 29.1 83.1 25 79.3 2.9 1 13.6 6.1 49.8 213.8 79.9 295.9 262.2 43 31 

2015 MCG S6 06BA_30 3.4 28.5 87.9 21 79.2 . 3 12.7 6.3 50.2 182.9 66.2 170.3 277.4 46 18 

2015 MCG S6 06MN_10 2.9 29.9 90.1 25 77.9 3.2 1 13.2 6.1 49.3 205.1 72.1 528.3 256.6 42 40 

2015 MCG S6 06MN_18 3.5 32.1 88.6 20 78.4 6.3 2 12.8 6.8 56.0 113.2 53.7 128.8 316.1 43 31 

2015 MCG S6 06MN_51 2.9 29.8 82.1 25 76.9 2.9 1 14.1 5.9 43.9 183.4 55.7 557.5 256.4 36 63 

2015 MCG S6 06MN_62 2.6 29.7 83.8 15 74.6 . 3 14.3 7.4 51.7 116.1 44.8 30.4 336.0 23 135 

2015 MCG S6 06N6_66 3.8 28.5 83.8 21 78.4 4.2 2 13.5 6.1 47.2 164.4 57.5 370.0 288.2 39 49 

2015 MCG S6 06N6_71 3.4 29.7 88.3 23 79.0 2.5 1 13.6 5.1 40.5 161.7 60.6 479.1 220.7 46 18 

2015 MCG S6 06N6_88 1.8 30.9 84.4 13 76.1 3.4 2 13.8 5.8 43.7 152.4 64.7 681.8 260.8 42 40 

2015 MCG S6 07AB_16 1.9 27.6 64.3 21 77.8 3.1 1 11.3 4.7 42.6 119.8 70.2 127.3 193.5 29 104 

2015 MCG S6 07BA_09 3.4 27.3 81.3 25 78.3 5.0 2 12.8 6.6 54.2 153.2 82.4 122.2 279.7 45 24 

2015 MCG S6 07BA_24 3.2 28.0 75.7 29 79.4 2.4 1 12.1 5.4 46.0 151.9 66.5 310.1 234.4 58 1 

2015 MCG S6 07BA_28 2.9 31.3 88.3 27 78.6 2.7 1 12.9 5.7 47.2 217.7 59.5 677.5 261.2 54 4 

2015 MCG S6 07MN_42 2.5 31.4 84.7 28 78.8 2.8 1 13.4 5.9 45.2 199.7 61.8 625.3 248.1 55 3 

2015 MCG S6 07MN_52 2.9 32.0 87.4 22 79.0 2.5 1 13.8 5.9 45.9 206.4 68.0 916.3 221.0 53 6 

2015 MCG S6 07MN_85 3.5 31.4 87.6 19 79.3 2.7 1 13.9 5.8 42.9 196.9 58.6 881.0 232.2 53 6 

2015 MCG S6 07MN_90 3.3 29.1 83.1 22 78.1 2.8 1 13.4 5.6 44.9 183.0 73.2 672.5 233.6 54 4 

2015 MCG S6 07MN_94 1.7 30.3 87.5 24 77.7 2.9 1 14.9 5.6 38.3 220.8 75.0 557.9 218.3 41 45 

2015 MCG S6 07N6_51 3.1 29.0 88.0 24 77.3 . 3 14.8 7.1 51.5 165.2 64.2 170.3 273.7 26 120 

2015 MCG S6 07N6_80 4.2 27.0 76.3 21 77.3 3.6 1 13.6 6.3 49.6 162.3 70.4 533.7 262.6 29 104 

2015 MCG S6 07UT_18 1.2 27.8 80.6 16 76.2 4.3 2 15.4 6.2 42.4 127.6 68.5 601.8 254.6 27 118 

2015 MCG S6 07UT_36 2.1 34.5 81.8 1 72.7 3.4 1 12.5 4.9 41.6 183.2 66.7 1033.2 175.9 39 49 

2015 MCG S6 07UT_83 2.0 29.5 80.6 11 74.0 2.2 1 14.6 4.7 34.1 150.8 49.0 1246.4 163.2 20 146 

2015 MCG S6 07UT_88 1.9 32.4 87.0 15 75.8 . 3 14.2 6.2 43.9 77.3 41.1 701.8 214.8 24 130 

2015 MCG S6 07UT_93 1.9 29.3 68.7 9 75.6 2.3 1 15.5 5.2 35.1 123.9 52.4 1054.7 191.3 21 141 

2015 MCG S6 07UT_96 2.0 30.2 78.2 8 77.3 2.7 1 13.3 5.5 42.9 138.9 59.3 1044.4 208.5 47 16 

2015 MCG S6 08AB_54 2.0 29.9 83.2 16 76.3 3.2 1 16.0 6.2 39.6 219.8 68.1 576.7 237.7 28 115 

2015 MCG S6 08AB_80 2.7 31.4 90.4 18 77.9 3.8 2 14.9 6.0 43.4 198.8 54.8 1050.6 239.0 38 53 

2015 MCG S6 08BA_44 3.6 28.4 78.3 23 77.4 2.8 1 13.4 5.8 44.7 190.5 57.9 731.5 211.3 44 26 

2015 MCG S6 08BA_54 2.1 27.0 70.4 24 78.6 3.6 1 13.6 6.0 46.3 213.1 62.4 605.3 264.5 38 53 

2015 MCG S6 08BA_60 3.2 24.0 61.3 16 78.6 4.5 2 13.0 6.5 53.0 183.1 71.8 622.3 260.8 37 59 

2015 MCG S6 08BA_64 2.1 29.7 94.0 18 75.2 . 3 13.6 7.5 56.2 119.3 28.1 198.5 257.9 17 152 

2015 MCG S6 08MN_34 1.8 27.7 67.4 20 78.3 . 3 13.5 9.7 73.9 143.3 65.4 86.7 362.5 38 53 

2015 MCG S6 08MN_49 1.4 27.8 67.4 25 77.5 3.7 1 14.5 6.8 49.4 189.2 73.3 374.6 281.4 21 141 

2015 MCG S6 08MN_67 2.8 30.6 87.4 25 76.9 2.7 1 14.9 5.8 41.7 203.4 65.6 621.6 260.2 33 83 

2015 MCG S6 08MN_78 2.8 30.6 83.2 20 78.4 3.0 1 13.6 6.1 48.2 210.5 68.7 587.8 285.5 42 40 

2015 MCG S6 08N6_09 3.5 26.9 73.0 15 78.7 3.5 1 12.1 5.1 45.3 133.2 69.9 672.2 258.7 46 18 

2015 MCG S6 08N6_21 3.1 26.2 71.1 25 78.0 4.1 2 13.9 6.4 48.6 137.6 67.6 713.1 298.2 26 120 

2015 MCG S6 08N6_35 2.5 23.8 61.0 15 74.6 4.5 1 14.3 6.8 49.6 147.6 63.3 601.6 307.2 21 141 

2015 MCG S6 08N6_52 3.7 28.5 86.2 21 77.9 4.6 2 13.1 6.6 52.7 138.9 61.8 223.0 293.7 38 53 

2015 MCG S6 08N6_77 2.2 28.0 83.9 22 76.6 3.2 1 14.2 5.6 40.6 203.7 69.7 620.9 222.7 35 69 

2015 MCG S6 08N6_91 4.0 26.5 82.5 14 77.8 3.8 1 12.9 5.8 45.7 153.7 66.6 681.8 277.8 48 13 

2015 MCG S6 08N6_96 3.4 25.5 66.6 20 76.5 4.3 1 13.7 6.5 49.8 157.0 71.6 469.4 300.1 26 120 

2015 MCG S6 08UT_10 1.8 32.3 83.1 13 75.8 3.2 1 15.8 5.7 37.9 137.6 50.1 814.1 252.2 31 95 
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2015 MCG S6 09BA_37 3.7 26.6 77.3 16 79.0 3.9 1 12.8 6.2 51.3 186.7 77.5 404.0 294.2 44 26 

2015 MCG S6 09BA_50 3.0 33.1 91.5 16 78.3 3.6 2 14.4 5.7 39.9 186.2 51.6 894.3 220.3 44 26 

2015 MCG S6 09MN_04 3.2 27.5 86.2 22 77.3 2.7 1 14.3 5.7 41.2 177.0 68.1 459.5 237.9 33 83 

2015 MCG S6 09MN_30 1.9 31.1 85.5 26 77.2 2.9 1 14.0 6.0 43.9 203.7 60.3 824.8 248.3 35 69 

2015 MCG S6 09MN_50 3.7 31.6 90.3 21 78.2 3.5 2 14.2 5.9 42.9 164.7 50.2 757.2 241.3 44 26 

2015 MCG S6 09MN_70 2.2 31.3 79.0 24 77.5 . 3 14.6 8.2 57.8 176.3 70.3 168.3 348.8 29 104 

2015 MCG S6 09N6_36 3.0 29.4 79.2 15 77.1 3.6 1 13.6 6.0 45.0 194.3 59.4 682.8 235.6 36 63 

2015 MCG S6 09N6_59 1.8 28.0 72.9 22 79.1 3.4 2 14.0 6.2 44.2 181.7 45.6 380.5 261.6 34 78 

2015 MCG S6 09N6_63 2.2 30.2 88.5 14 77.8 3.1 1 14.6 6.3 44.0 198.4 60.3 584.5 262.5 39 49 

2015 MCG S6 09N6_69 2.9 29.1 87.6 20 77.8 3.5 2 13.7 5.9 44.9 163.7 61.1 334.8 255.1 44 26 

2015 MCG S6 09UT_13 1.8 29.3 78.0 18 76.5 3.3 1 14.4 6.0 43.5 192.2 64.6 1026.0 249.1 34 78 

2015 MCG S6 AC_MET 1.8 29.7 80.0 23 75.3 . 3 15.8 9.4 58.7 134.7 53.6 82.9 347.3 30 96 

2015 MCG S6 CDC 2.1 32.4 87.8 17.8 76.8 10.2 2.8 14.1 7.8 54.9 99.1 39.4 37.7 313.4 27 115 

2015 MCG S6 CON 2 31.3 82.9 16 78.3 3.3 1 13.9 5.8 42.6 110.7 69.5 377.1 243.4 43 31 

2015 MCG S6 S_610B 2.3 25.6 61.8 19 76.6 3.2 1 15.1 6.4 44.9 162.4 75.9 393.3 278.6 26 120 

2015 MCG S6 S_622B 2.1 32.8 82.0 14 74.5 . 3 17.9 11.2 64.4 134.8 62.3 145.3 396.0 29 104 

2015 MCG S6 SIDNEY 0.8 37.1 89.6 27 72.4 2.8 1 18.1 5.2 30.2 112.8 43.5 832.0 211.1 28 115 

2016 MCG S2 06AB_24 2.5 33.1 93.7 26.0 80.2 2.4 1 10.9 4.6 44.0 124.4 76.1 265.9 212.9 50 24 

2016 MCG S2 06BA_63 . 37.1 92.3 20.0 80.9 3.8 1 10.4 5.2 50.1 99.2 80.0 234.1 235.2 38 55 

2016 MCG S2 06BA_81 1.7 33.0 99.0 24.0 83.5 2.4 1 9.2 4.9 54.3 115.3 80.8 49.5 198.6 52 16 

2016 MCG S2 06MT_26 2.6 39.3 97.8 25.0 82.3 2.8 2 9.6 4.5 46.8 116.7 60.6 253.4 195.0 49 33 

2016 MCG S2 06MT_59 2.5 31.2 94.4 31.5 81.1 2.7 2 11.0 4.9 46.2 112.6 48.5 619.2 188.4 43 43 

2016 MCG S2 06MT_67 2.6 39.1 98.6 23.0 82.3 2.8 2 10.2 4.7 46.8 96.5 82.1 54.1 249.6 55 20 

2016 MCG S2 06MT_82 3.2 35.2 98.2 28.5 82.0 2.6 1 11.2 4.9 45.5 145.3 74.9 418.8 215.9 56 14 

2016 MCG S2 06N2_06 2.1 34.5 98.9 25.5 80.6 2.8 1 10.7 4.9 48.7 97.4 64.3 389.5 200.6 42 48 

2016 MCG S2 06N2_17 2.2 46.9 99.4 14.0 83.3 2.4 1 10.6 5.0 49.9 107.8 76.8 623.7 249.5 50 28 

2016 MCG S2 06N2_39 2.0 42.3 99.6 17.5 81.9 2.7 1 10.9 5.2 48.7 164.1 76.7 258.0 206.6 55 12 

2016 MCG S2 06N2_70 2.6 40.1 98.5 35.0 84.1 3.0 1 10.8 5.7 56.7 97.0 92.3 95.5 296.8 45 41 

2016 MCG S2 06WA_38 1.9 36.2 93.2 26.0 80.8 2.7 1 11.6 4.7 43.9 176.1 71.5 291.6 266.5 54 18 

2016 MCG S2 06WA_77 2.8 33.5 92.9 21.5 81.6 2.2 2 9.7 4.2 47.8 108.0 62.9 382.7 174.1 37 52 

2016 MCG S2 07AB_53 2.2 35.5 99.0 27.0 81.0 2.6 1 11.7 5.3 47.0 198.3 100.0 114.5 269.7 57 8 

2016 MCG S2 07AB_77 2.7 35.9 94.2 35.0 80.9 3.2 1 11.1 5.1 46.5 151.5 54.0 658.6 209.2 55 15 

2016 MCG S2 07MT_40 3.2 40.8 95.0 19.5 81.5 2.5 1 10.8 4.4 43.5 130.8 69.6 428.5 209.1 51 28 

2016 MCG S2 07MT_94 1.6 40.3 97.3 27.5 81.9 2.5 1 10.6 4.7 46.3 140.6 73.2 240.3 206.6 56 13 

2016 MCG S2 07N2_02 2.3 40.8 97.8 24.5 81.1 3.1 2 12.6 5.4 43.7 125.9 60.1 587.8 259.0 54 16 

2016 MCG S2 07N2_08 
 

35.6 97.5 22.0 81.5 4.2 1 10.1 5.5 55.6 90.3 81.9 85.8 269.3 48 36 

2016 MCG S2 07N2_13 1.8 42.8 99.4 21.5 82.3 . 3 10.8 5.1 47.8 125.2 69.5 488.3 237.9 54 20 

2016 MCG S2 07N2_31 1.9 43.8 96.7 32.0 83.3 . 3 12.5 5.6 46.5 137.3 72.1 501.6 296.2 59 7 

2016 MCG S2 07N2_38 3 38.3 98.1 14.5 82.2 3.0 1 10.8 4.3 43.2 132.9 70.9 552.7 209.4 55 17 

2016 MCG S2 07N2_61 2.5 42.4 98.5 22.0 81.6 3.4 1 11.4 5.5 50.5 101.1 94.0 389.7 270.2 48 32 

2016 MCG S2 07N2_73 1.5 38.8 97.8 30.5 82.3 2.9 1 12.3 6.1 51.5 167.1 110.7 454.4 283.0 50 28 

2016 MCG S2 07WA_03 2.9 40.7 99.2 12.0 81.3 3.5 2 9.9 4.6 47.5 116.0 57.7 145.7 182.0 49 30 

2016 MCG S2 07WA_13 1.7 39.1 95.5 22.5 80.5 3.9 1 10.8 5.6 53.5 109.0 108.6 122.5 288.7 48 37 

2016 MCG S2 08AB_17 2.3 35.4 99.1 29.0 82.1 2.8 1 10.0 4.5 46.4 106.5 67.8 323.7 189.2 48 36 

2016 MCG S2 08AB_24 2.2 39.2 95.6 17.0 80.7 3.4 1 11.4 5.4 50.3 143.3 104.7 247.7 265.0 49 20 

2016 MCG S2 08AB_45 1.7 37.1 97.6 19.0 82.7 3.7 1 11.8 5.7 50.8 143.8 85.7 191.3 282.3 41 7 

2016 MCG S2 08BA_02 2.2 35.8 94.6 26.0 81.1 3.0 1 10.9 5.5 51.9 142.3 91.7 226.5 250.6 47 17 

2016 MCG S2 08BA_11 1.3 38.7 98.0 24.0 82.6 4.8 1 11.8 6.1 52.8 119.7 103.5 248.0 328.2 50 32 

2016 MCG S2 08BA_76 2.2 36.4 88.4 23.0 79.8 4.3 1 12.3 6.1 50.3 181.6 123.8 183.9 332.0 41 28 

2016 MCG S2 08MT_04 2 39.2 97.9 17.0 80.1 2.8 1 12.1 5.1 45.9 163.7 72.5 364.3 220.1 57 30 

2016 MCG S2 08MT_41 . 37.3 97.5 23.0 81.3 3.7 1 10.2 5.2 54.0 101.4 83.9 212.2 240.2 45 37 

2016 MCG S2 08MT_68 2.3 37.1 97.4 20.5 81.0 2.6 1 9.9 4.4 45.1 109.7 61.0 308.5 172.0 42 36 

2016 MCG S2 08N2_12 2.9 44.4 99.1 23.5 81.6 2.1 1 11.4 4.9 45.3 113.1 64.3 481.7 220.3 60 30 

2016 MCG S2 08N2_37 1.8 44.1 98.8 20.0 80.9 3.3 1 12.4 5.7 48.0 120.6 95.3 328.0 298.9 51 39 
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2016 MCG S2 08N2_62 2.5 47.5 99.5 25.0 82.7 2.6 1 11.0 4.8 45.5 107.7 66.9 337.6 237.4 60 38 

2016 MCG S2 08N2_66 2.3 43.7 98.7 24.0 82.9 2.5 1 10.5 5.2 51.8 124.2 75.3 422.7 230.3 53 30 

2016 MCG S2 08N2_73 2.3 46.8 98.8 25.0 81.7 2.8 1 11.4 4.8 45.2 103.4 73.5 600.9 239.4 60 50 

2016 MCG S2 08N2_80 2.9 42.6 99.0 23.5 81.5 3.4 2 11.3 5.2 48.6 144.2 77.6 477.2 239.3 59 9 

2016 MCG S2 08WA_11 1.8 37.0 95.3 29.0 82.9 3.4 1 10.2 5.3 56.7 114.9 107.4 194.5 285.0 47 47 

2016 MCG S2 08WA_27 2 38.9 96.7 27.0 81.4 2.5 1 10.2 4.8 47.5 113.7 68.3 327.9 185.0 45 35 

2016 MCG S2 08WA_40 2.9 36.6 97.2 21.0 81.3 2.8 1 9.3 4.7 44.5 116.7 59.6 193.0 170.1 44 5 

2016 MCG S2 08WA_64 1.7 42.8 99.3 14.0 81.3 3.4 1 10.6 4.6 45.9 130.6 55.3 111.4 186.6 59 22 

2016 MCG S2 09AB_10 2.1 38.5 96.2 25.0 81.9 2.8 2 11.5 4.6 41.1 94.0 50.8 . 176.6 40 3 

2016 MCG S2 09AB_15 . 39.0 98.0 21.5 81.0 3.6 1 11.4 5.1 46.5 101.4 74.0 250.0 243.1 51 20 

2016 MCG S2 09AB_43 1.3 38.5 88.1 12.5 81.9 3.7 2 13.2 5.8 43.3 128.5 87.5 . 271.4 46 5 

2016 MCG S2 09AB_48 1.7 39.7 96.0 27.0 81.6 2.0 1 11.4 4.5 41.1 154.6 65.6 662.3 187.7 58 6 

2016 MCG S2 09AB_82 2.9 38.9 99.3 23.0 81.4 2.8 2 10.2 4.5 46.2 92.6 61.0 376.1 192.8 47 39 

2016 MCG S2 09BA_03 2.3 34.9 98.2 25.0 79.5 2.5 1 14.1 6.3 45.6 225.0 87.3 223.4 330.6 38 47 

2016 MCG S2 09BA_10 1.9 44.3 99.0 21.5 82.0 2.9 2 10.5 4.8 48.3 119.9 95.0 238.8 227.4 55 47 

2016 MCG S2 09BA_89 1 36.2 93.4 26.0 81.0 4.3 1 11.3 5.3 48.4 138.1 122.8 179.0 310.0 52 5 

2016 MCG S2 09MT_16 2.4 37.6 98.1 21.0 81.7 2.7 1 9.6 4.5 49.4 118.4 91.3 202.0 223.6 45 50 

2016 MCG S2 09MT_78 2.6 39.6 99.4 26.0 81.1 2.7 1 10.3 4.4 45.3 152.9 67.9 279.8 184.9 49 27 

2016 MCG S2 09MT_94 2.3 36.5 96.6 24.0 81.4 3.1 1 9.8 5.3 57.0 114.0 105.3 281.6 264.4 47 40 

2016 MCG S2 09N2_12 1.8 42.1 96.6 20.0 79.8 2.3 1 11.9 5.0 45.2 165.5 76.0 323.6 240.9 60 8 

2016 MCG S2 09N2_16 1.9 42.0 98.0 25.0 82.0 4.1 2 11.3 5.3 48.9 106.5 74.3 175.0 262.7 54 31 

2016 MCG S2 09N2_21 3 40.7 98.9 25.5 82.6 2.8 2 10.4 4.5 44.8 116.3 85.7 209.4 240.3 46 50 

2016 MCG S2 09N2_29 2.6 40.3 97.9 31.0 82.4 . 3 10.5 4.8 46.7 117.1 64.1 841.4 223.7 52 12 

2016 MCG S2 09N2_39 2.7 41.4 96.6 23.0 80.8 3.1 2 11.2 4.9 46.2 137.8 71.2 393.5 220.8 53 25 

2016 MCG S2 09N2_55 1.8 40.4 96.2 20.5 80.9 3.2 1 10.9 5.2 49.8 156.6 100.6 174.8 241.2 54 47 

2016 MCG S2 09N2_72 . 47.6 99.5 23.0 81.3 2.8 1 11.7 5.3 45.8 150.4 98.2 70.1 258.8 70 31 

2016 MCG S2 09WA_15 . 39.5 98.5 20.0 82.1 2.6 1 10.0 4.8 49.6 110.2 71.9 165.6 219.7 51 39 

2016 MCG S2 09WA_19 2.3 35.2 97.2 21.0 80.9 2.2 1 10.4 4.7 48.4 112.3 61.2 193.8 190.8 40 3 

2016 MCG S2 09WA_52 2.6 33.7 96.6 23.0 82.8 2.6 2 11.2 5.0 47.9 165.5 77.3 130.1 231.2 52 13 

2016 MCG S2 09WA_64 2.3 34.3 96.6 19.0 81.9 2.4 1 9.1 4.0 47.9 119.6 67.6 92.1 167.2 45 35 

2016 MCG S2 AC_MET 2 39.2 97.3 30.5 81.9 4.4 1 11.7 6.0 53.9 131.3 99.5 177.8 304.7 51 24 

2016 MCG S2 CON 1.8 40.0 98.3 27.0 83.1 2.7 1 10.9 5.2 50.4 138.5 82.9 660.0 225.0 50 21 

2016 MCG S6 06AB_55 1.5 33.5 95 16 78.5 3.18 2 11.8 5.0 45.4 122.8 62.5 541.9 244.7 52 18 

2016 MCG S6 06AB_62 2.1 34.8 96.9 21.5 80.2 2.99 1 12.1 5.6 48.7 172.6 76.6 229.0 288.6 50 1 

2016 MCG S6 06AB_84 2.2 32.0 96.8 20 79.4 2.67 2 10.5 4.3 43.5 139.0 59.7 336.0 219.3 48 20 

2016 MCG S6 06BA_06 1.9 34.9 98 27.5 80.9 3.37 2 13.6 6.4 49.8 235.6 95.3 170.2 313.7 48 48 

2016 MCG S6 06BA_30 1.5 35.7 98.1 28.5 81.7 3.33 2 11.8 5.6 49.4 173.7 96.3 139.9 288.8 58 25 

2016 MCG S6 06MN_10 2.0 35.1 98.4 28 80.1 3.45 1 12.4 6.0 49.3 198.3 86.2 304.3 316.2 51 42 

2016 MCG S6 06MN_18 1.5 38.0 97.6 21.5 80.5 4.38 2 12.4 5.3 43.6 147.6 77.8 226.1 318.2 53 22 

2016 MCG S6 06MN_51 1.8 33.2 96.5 27 77.7 3.57 1 14.3 6.0 45.1 223.0 68.7 248.6 295.7 40 28 

2016 MCG S6 06MN_62 1.2 38.5 97.9 26.0 80.5 4.6 1 13.0 6.0 48.2 159.8 90.3 195.5 338.7 54 34 

2016 MCG S6 06N6_66 1.7 32.7 98.6 18 80.0 . 3 11.7 5.9 54.6 141.0 90.7 106.3 322.6 55 36 

2016 MCG S6 06N6_71 2.0 32.9 98.4 29 80.3 3.1 1 10.6 4.8 45.7 162.6 83.2 94.4 250.3 58 44 

2016 MCG S6 06N6_88 1.9 35.4 97.6 16 78.7 3.0 2 11.7 5.1 46.7 133.3 74.3 261.0 273.6 49 37 

2016 MCG S6 07AB_16 1.9 30.4 98.1 21.5 79.5 3.3 2 10.5 5.0 48.6 122.1 72.1 114.8 251.2 46 19 

2016 MCG S6 07BA_09 2.1 34.4 95.8 26.5 80.6 2.2 1 11.3 5.4 50.0 225.3 97.7 188.2 283.6 55 29 

2016 MCG S6 07BA_24 1.7 34.4 98.3 17 79.9 2.7 1 12.9 5.6 45.5 176.1 68.2 184.8 360.4 63 25 

2016 MCG S6 07BA_28 1.5 35.3 98.4 15 79.1 3.6 1 12.4 5.2 44.9 172.4 79.4 133.4 278.9 62 54 

2016 MCG S6 07MN_42 1.5 35.5 97.8 26 80.5 2.7 2 13.0 6.0 47.6 189.2 77.9 294.6 295.1 52 18 

2016 MCG S6 07MN_52 1.2 34.2 96.9 24 79.7 2.6 2 13.4 6.5 50.1 204.3 80.7 335.2 334.7 49 10 

2016 MCG S6 07MN_85 1.3 36.8 97.9 24.0 79.8 3.6 2 13.3 5.7 44.6 208.4 77.0 284.3 303.0 54 16 

2016 MCG S6 07MN_90 1.8 35.4 97.1 22 78.4 3.4 2 12.7 5.8 47.5 194.5 94.4 248.8 285.1 51 40 

2016 MCG S6 07MN_94 1.6 32.6 98.3 18 78.9 . 3 13.9 6.4 46.9 165.1 70.9 215.2 323.4 46 47 

2016 MCG S6 07N6_51 1.7 35.2 98.9 26.5 79.0 3.8 3 12.2 6.1 52.5 140.5 85.5 173.6 310.8 48 27 
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2016 MCG S6 07N6_80 1.9 34.4 98 27 78.8 3.6 2 11.8 5.2 45.1 95.8 77.4 140.8 277.7 51 3 

2016 MCG S6 07UT_18 1.9 36.2 97.2 17 80.9 3.6 1 12.1 5.0 42.5 98.6 65.5 319.6 254.7 52 5 

2016 MCG S6 07UT_36 1.6 39.5 98.3 4 77.5 . 3 10.6 5.3 47.7 142.5 55.6 410.6 206.5 37 31 

2016 MCG S6 07UT_71 1.8 33.5 98.3 27 79.6 3.4 1 12.1 5.2 46.9 145.8 77.7 161.5 279.4 66 34 

2016 MCG S6 07UT_83 2 33.1 93.6 16 77.5 2.2 1 11.9 4.2 39.5 134.2 47.6 510.1 181.6 36 27 

2016 MCG S6 07UT_88 1.4 34.3 91.5 27 79.2 3.1 1 12.6 4.8 39.4 121.7 83.2 448.3 265.9 48 33 

2016 MCG S6 07UT_93 1.8 34.7 95.3 14.8 78.7 2.1 1 13.7 5.1 37.6 133.0 55.3 510.3 262.0 47 44 

2016 MCG S6 07UT_96 2.1 34.1 91.2 13 79.2 2.8 2 11.9 5.3 45.1 141.2 69.4 347.6 246.9 62 36 

2016 MCG S6 08AB_54 1.9 32.7 98.8 26 79.6 3.3 1 11.7 5.1 45.1 157.6 80.3 133.7 282.2 62 36 

2016 MCG S6 08AB_80 1.4 38.2 97.8 23.5 80.6 3.6 2 11.6 5.4 48.3 156.0 88.2 186.2 269.2 56 24 

2016 MCG S6 08BA_44 1.9 32.7 94.9 25 80.6 2.7 1 11.2 5.1 47.6 197.0 68.1 189.2 227.4 49 55 

2016 MCG S6 08BA_54 2.2 34.1 97.7 32 81.0 2.2 1 11.1 4.9 45.3 199.9 69.7 209.6 252.7 54 2 

2016 MCG S6 08BA_60 2.1 31.3 93.4 30 80.0 2.3 1 11.8 5.3 48.6 219.5 109.4 207.5 262.5 57 54 

2016 MCG S6 08BA_64 0.8 35.1 96.5 22.5 80.5 4.1 1 12.5 5.9 49.5 139.8 86.0 160.5 310.9 55 47 

2016 MCG S6 08MN_34 1.6 31.8 92.5 29 80.2 4.6 2 12.0 5.7 50.8 115.0 91.9 113.5 317.4 51 43 

2016 MCG S6 08MN_49 1.7 32.5 94.9 34 80.8 2.2 1 10.9 5.2 51.3 132.3 68.8 92.8 234.0 57 4 

2016 MCG S6 08MN_59 . 34.1 98.2 24 80.4 3.2 1 13.1 6.6 52.9 197.1 81.3 155.0 298.1 54 5 

2016 MCG S6 08MN_67 1.8 34.6 96.4 30.5 79.0 2.7 2 13.4 5.3 41.6 218.2 73.1 338.2 245.5 54 18 

2016 MCG S6 08MN_78 1.7 34.5 96.6 23.5 80.7 3.1 2 11.7 5.3 46.5 180.4 74.8 208.0 278.8 56 43 

2016 MCG S6 08MN_84 . 30.1 88.3 31 80.8 2.3 1 10.9 4.9 47.2 185.6 78.1 91.7 229.0 55 18 

2016 MCG S6 08N6_09 2.1 33.8 98 20 81.9 3.2 2 10.2 4.8 50.5 113.4 67.1 306.1 229.5 38 7 

2016 MCG S6 08N6_21 1.8 30.6 94.9 32.0 80.5 2.7 1 10.6 4.9 48.3 139.9 86.8 103.5 240.7 53 23 

2016 MCG S6 08N6_35 1.8 34.6 98.6 22 79.2 . 3 11.4 5.4 49.9 114.8 64.0 261.4 269.6 48 32 

2016 MCG S6 08N6_52 2.6 34.4 97 31.5 79.3 3.5 2 11.6 5.8 51.6 130.0 92.1 48.5 330.8 54 19 

2016 MCG S6 08N6_77 2.5 32.8 98.3 29.5 79.5 3.5 2 12.3 5.5 46.3 178.0 81.9 182.9 269.7 57 11 

2016 MCG S6 08N6_91 2.1 32.3 98.9 18 81.5 3.2 2 10.9 5.6 53.0 154.2 91.5 113.0 331.4 59 11 

2016 MCG S6 08N6_96 2.1 35.1 97.8 22 80.9 . 3 12.7 6.8 55.8 204.2 81.8 289.2 357.4 49 22 

2016 MCG S6 08UT_10 1.6 37.6 98.9 14.0 77.9 . 3 13.4 5.8 44.0 130.1 71.3 273.2 297.6 40 23 

2016 MCG S6 08UT_80 1.9 33.1 89.6 24 78.7 2.6 1 11.4 4.4 39.9 115.0 49.8 352.0 210.8 36 56 

2016 MCG S6 09BA_37 1.9 32.3 98.1 23.0 81.6 3.2 2 10.6 4.9 49.4 131.0 81.6 129.1 278.4 49 26 

2016 MCG S6 09BA_50 1.8 33.0 96.6 28 79.3 2.4 1 13.5 5.7 44.8 208.4 80.9 223.7 275.2 59 44 

2016 MCG S6 09MN_04 2.5 32.0 98.6 29.5 79.7 2.0 1 12.3 5.1 42.7 223.5 80.5 250.5 235.4 57 22 

2016 MCG S6 09MN_30 1.5 31.7 87.5 25 79.7 3.2 1 11.4 5.0 46.1 166.9 96.1 199.8 286.0 53 15 

2016 MCG S6 09MN_50 1.9 34.5 97.4 30 79.9 . 3 12.8 6.3 51.1 188.9 77.5 319.5 332.6 49 5 

2016 MCG S6 09MN_70 1.6 36.5 98.2 22.5 80.5 4.5 3 12.7 5.5 45.9 163.7 88.2 109.0 338.6 55 43 

2016 MCG S6 09N6_36 1.8 34.6 97.7 21 79.3 3.5 2 12.3 5.8 48.4 161.6 79.9 256.8 288.6 56 50 

2016 MCG S6 09N6_59 1.7 35.8 98.2 26 80.3 3.5 2 12.5 5.6 46.5 195.7 81.1 139.9 280.9 58 19 

2016 MCG S6 09N6_63 1.9 33.9 99.5 25 81.3 2.2 1 11.2 4.8 44.8 172.7 75.7 168.1 263.2 54 24 

2016 MCG S6 09N6_69 1.5 34.0 98.6 25.5 79.8 4.2 3 12.7 5.6 45.4 145.0 78.2 231.4 305.3 60 12 

2016 MCG S6 09UT_13 1.7 36.0 97.7 15.5 79.0 3.8 2 11.7 5.2 47.4 153.1 72.8 334.0 262.9 57 8 

2016 MCG S6 AC_MET 1.8 37.1 97.2 23.7 81.1 4.1 2 11.9 5.1 44.9 152.5 93.7 218.3 313.7 59 14 

2016 MCG S6 CDC 1.6 36.7 96.9 24.5 80.6 3.5 2 12.1 5.5 47.1 158.7 79.5 275.4 280.4 53 18 

2016 MCG S6 CON 1.8 39.4 99.2 25 81.7 3.3 1 11.3 4.9 46.2 122.0 82.7 215.8 237.8 51 36 

2016 MCG S6 S_610B 1.4 33.2 96.5 27 80.6 2.4 1 12.3 5.7 49.8 148.0 70.8 181.3 300.6 59 15 

2016 MCG S6 S_622B 1.4 39.3 97.5 24.5 80.7 3.7 1 12.7 6.0 48.7 124.1 91.9 268.0 300.8 51 29 

2016 MCG S6 SIDNEY 1 39.9 97.1 17 77.4 2.3 1 14.1 5.5 40.6 116.2 47.0 535.2 187.7 33 57 

2016 MCG S6 STONE 1 34.9 86.9 18.0 77.4 2.8 1 13.3 4.4 34.4 108.0 52.7 423.6 185.4 27 58 

   
Min 0.8 30.1 86.9 4.0 77.4 2.0 1.0 10.2 4.2 34.4 95.8 47.0 48.5 181.6 26.5 2.0 

   
Max 2.6 39.9 99.5 34.0 81.9 4.6 3.0 14.3 6.8 55.8 235.6 109.4 541.9 360.4 66.0 58.0 

   
Avg 1.8 34.5 96.6 23.5 79.8 3.2 1.6 12.1 5.4 46.8 160.0 77.7 237.2 277.8 51.7 27.8 

   
Std. Dev 0.3 2.2 2.7 5.6 1.1 0.7 0.7 1.0 0.5 3.9 34.9 12.6 112.0 40.3 7.4 15.4 

   
Std. Error 0.0 0.3 0.3 0.7 0.1 0.1 0.1 0.1 0.1 0.5 4.2 1.5 13.5 4.8 0.9 1.9 

   
Ideal Range . 36-45  > 80% . . 1.8-2.5 . ≤ 13.0% 5.2-5.7% 42-47% > 150 > 50 < 120 > 210 . . 

   # Lines Met Criteria . . 215 . . 28 . 152 65 110 103 238 36 210 . . 
 




