
IMPROVING ANIMATIC CREATION IN MAYA

A Thesis

by

JOSHUA BRENT SEAL

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Frederic Parke
Committee Members, Stephen Caffey

Tim McLaughlin
Head of Department, Tim McLaughlin

May 2017

Major Subject: Visualization

Copyright 2017 Joshua Seal

ii

ABSTRACT

The goal of this work is the development of a new tool within Autodesk Maya for the

creation of animatics. A brief history and survey of pre-visualization techniques and methods

is provided, and the functionality and effective uses of current pre-visualization programs

and tools are explored, focusing on an analysis of the current Maya Camera Sequencer tool.

Development of the modified animatic creation tool (named ‘jSequencer’) is then discussed

and the new tool is demonstrated using an example animation sequence. Results of the

application of jSequencer are then compared with an animatic created with the Maya Camera

Sequencer. jSequencer enhances the functionalities and adds elements that improve the

animatic creation process’s efficiency and effectiveness; therefore, jSequencer is a better tool

for creating animatics in the Maya workspace.

iii

DEDICATION

This thesis is dedicated to my Mom and Dad, and my brother Jordan. Thanks for always

supporting my goals and dreams, however farfetched they may be.

iv

ACKNOWLEDGEMENTS

 This thesis project would not have been achieved without the support of the faculty,

staff and students of the Texas A&M Visualization department. Specifically, I would like to

thank Dr. Frederic Parke, my committee chair, for his guidance and support throughout the

proposal and thesis process. Without Dr. Parke’s help, my research and project would not

have succeeded. I would also like to thank my other committee members, Dr. Stephen Caffey

and Prof. Tim McLaughlin, for their counsel and continuing encouragement.

 I would like to thank my family for all their support throughout my academic career

at Texas A&M. Their encouragement and trust were incredibly helpful during the most

stressful times. I could not have succeeded without them.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

 This work was supported by a thesis committee consisting of chair Dr. Frederic Parke

and Professor Tim McLaughlin of the Department of Visualization and Dr. Stephen Caffey

of the Department of Architecture.

 All work for the thesis project was completed independently by the student, with edits

made to the paper by Dr. Frederic Parke of the Department of Visualization and Christopher

Seal.

Funding Sources

 There are no outside funding contributions to acknowledge related to the research and

compilation of this document.

vi

TABLE OF CONTENTS

Page

ABSTRACT ……….……………………………………………………….…………. ii

DEDICATION………………………………………………...………………………. iii

ACKNOWLEDGEMENTS…………………...………………………………………. iv

CONTRIBUTORS AND FUNDING SOURCES…………………………………….. v

TABLE OF CONTENTS..……………….……………………………………………. vi

LIST OF FIGURES……………………………………………………………………. viii

1. INTRODUCTION …………………..……..………….…….….…………………. 1

1.1 Definitions……………………….………...……………….….…………... 1

2. BACKGROUND.………………….……………....…………..…………………... 4

2.1 Evolution of Pre-visualization……………………………………………... 4
2.2 Pre-visualization Today………...………………………………………….. 6
2.3 Current Software and Tools………………………………………………... 9

3. METHODOLOGY……….………………………………………………………... 12

3.1 Goals and Objectives………………………………………………………. 12

4. FUNCTIONALITIES AND DESIGN SPECIFICATION………………………… 14

4.1 Maya Camera Sequencer…………………………………………………... 14
4.2 Design Specification...……..………………………………………………. 15

5. IMPLEMENTATION……………………………………………………………... 21

5.1 jSequencer Development…………….……………………………………. 21
5.2 Animatic Creation……………………………………….………………… 35

6. RESULTS AND EVALUATION..………………………………………………... 40

6.1 Comparisons…….…………………………………………………………. 40

7. CONCLUSIONS AND FUTURE WORK………………………………………… 48

7.1 Future Work……………………………………………………………….. 49

vii

Page

REFERENCES….………….…………………………………...…….……………….. 51

APPENDIX A…………………………………………………………………………. 54

APPENDIX B…………………………………………………………………………. 57

APPENDIX C…………………………………………………………………………. 58

viii

LIST OF FIGURES

Page

Figure 2.1 Frames showing the difference between a layout/pre-vis
 animatic frame and the final render………………….………………….. 8

Figure 2.2 User Interfaces of the different types of software used
 for creating pre-vis animatics…………….………………………………… 11

Figure 4.1 The default Camera Sequencer………...……..…………………………. 15

Figure 4.2 Representation of the modified Camera Sequencer display.……………. 19

Figure 5.1 Screenshot of the first prototype…………...……………………………. 22

Figure 5.2 Screenshot of the new editor window………….………………………… 23

Figure 5.3 Both options of the jSequencer window layout………………………….. 26

Figure 5.4 jSequencer prototype with the custom Heads-Up Display……………… 28

Figure 5.5 jSequencer prototype with the resolution gate…………………………… 30

Figure 5.6 jSequencer prototype with an adjusted pane layout……………………… 31

Figure 5.7 jSequencer prototype with an adjusted resolution gate………………….. 33

Figure 5.8 Comparison showing a view with different object visibilities…………… 34

Figure 5.9 Screenshots of character animation and reference video………………… 36

Figure 6.1 Maya workspace with the default Camera Sequencer…………………… 41

Figure 6.2 Maya workspace with the jSequencer…………………………………… 42

Figure 6.3 The animation editing process with the jSequencer……………………… 44

Figure 6.4 Screenshots of both resulting animatics……………..…………………… 47

1

1. INTRODUCTION

A common software package used for the pre-visualization or pre-vis process,

Autodesk Maya, features the Camera Sequencer tool for creating animatics. The research in

this project focused on modifying the Camera Sequencer and designing a more efficient

animatic creation tool for Maya.

To better understand the impact of an improved animatic creation process on the

production team during the pre-vis stage, a survey of the evolution of pre-visualization and of

current tools and software was conducted. While the issues identified in software other than

Maya are not specifically addressed in this work, they informed the development of the

modified animatic creation tool.

1.1 Definitions

Development of animatics is part of a broader area in film production referred to as

pre-visualization. There are a number of terms associated with pre-visualization and with

Maya that have specific meanings in the context of this research.

The Maya Embedded Language, or MEL, is a scripting language used to run and

simplify tasks in Autodesk Maya. MEL is descended from UNIX shell scripting, which

means MEL executes commands to accomplish functions and processes in the same way as

UNIX commands. Most menu selections within Maya’s Graphical User Interface (GUI) can

also be accomplished at the command prompt using MEL.

Animatics are a constituent component of pre-visualization and can refer to the

preliminary version of a movie, produced by recording successive images of a storyboard and

adding a soundtrack. The term “animatic” also refers to the video created in 3D during the

2

layout/pre-visualization stages of animation or visual effects (VFX). These animatics are

focused on the more technical aspects of the shots, such as composition, camera moves, and

character animation. The creation of animatics is the primary focus of this research.

Pre-visualization, or pre-vis, supports project development using digital software,

developing scenes from early concept and design through filming and post production while

managing technical data, digital assets, and video footage. Pre-vis is usually one of the

earliest stages of film production. A more thorough discussion and understanding of the term

and process is given in Section 2.

In the context of this research, workflow refers to the way a particular type of work is

organized, or the order of the stages in its process. In the case of this research, the type of

work is animatic creation. The number of people involved and their workflow can vary

during animatic creation depending on the scope of the project.

A panel is a collection of UI screen objects (buttons, fields, graphical views) that are

grouped together. A panel can be moved around as a group within the application interface or

separated to exist in its own window. A scripted panel is a panel that is defined using MEL

script, with all required functions available as MEL procedures in the installation files.

Workspace is defined as an arrangement of screen windows or panels, with interface

options or tools designed for various groups of tasks. Within robust 3D packages such as

Maya, the user can “modify the current workspace by opening, closing, and moving

windows, panels, and other UI elements, as well as docking and undocking windows and

panes.” (19)

A Playblast is a preview “sketch” of the animation, providing an idea of the result

without requiring the time needed for a complete render. “Playblasting gives you a fast way

3

to evaluate your work on the fly, taking a screen grab of the animation in the viewport at

each frame during playback, and then “blasting” those images to an image viewer. By

default the Playblast tool generates image sequences using the active view and current time

range in the Time Slider to determine the animation range.” (19) This paper includes several

versions of this term, but all refer to the definition above.

In the context of computer animation, a pipeline is a set of sequential processes and

tools that transport data through the various stages of production. “Every major visual effects

(VFX) or feature animation production studio utilizes a pipeline to manage data and

workflows, enhance communication, increase efficiency, and aid troubleshooting when things

go wrong.” (12)

The term production platform refers to an integrated 3D software suite that artists use

to create 3D animation content.

4

2. BACKGROUND

2.1 Evolution of Pre-visualization

 Film directors in the classic Hollywood era depended on the final-draft screenplay for

guidance in set building and camera location. (16) As camera language, or how directors

used cinematography and editing to tell the story, became more common, directors would use

sketches of shots to help visualize their films.

Shooting a scene in one continuous shot from a static vantage point was the standard

in early films. Innovators like D.W. Griffith and Sergei Eisenstein introduced new camera

shooting and editing techniques which required more pre-production planning. These

techniques became the standards for film production.

While pre-production sketches in live action were being used by a few directors, pre-

production drawings and planning were widely used in the production of animated films.

Webb Smith, one of the early Disney sketch artists, is credited as the father of storyboarding.

During production of one of the Mickey Mouse short films, he mounted small sketches on

the wall for Walt Disney and the other story artists to discuss. The small page-sized

storyboards evolved into larger mounted storyboards.

Storyboards were crucial during the development and production of Snow White and

the Seven Dwarfs (1937). They provided a site for creative convergence. Lasseter notes:

“Not only did this [large board] format allow a sequence to be restructured
or refined on the spot, it made it easy for an artist to ‘pitch’ (describe and act
out) the scene to others. Walt Disney’s reputation as an unparalleled
storyteller was cemented in front of such boards, as he analyzed sequences,
suggested changes, acted out key moments, concocted gags, and tweaked
shading.” (11)

5

Storyboards provided a creative site where dialogue and gag ideas originating from

the storyboard artists were finalized. As ideas progressed through the production process,

other artists and storytellers reworked them, facilitating the creative process and cooperation

between studio departments.

Ray Harryhausen’s innovation was to precisely integrate stop-motion characters into

live-action settings. He would often draw directly onto location images then create rough

drawings focused on character action rather than background detail. His storyboards provided

enough specific information to serve as a useful starting, middle, or ending point to guide the

stop-motion sequences, while being vague enough to enable him to improvise during the

animation process. (19)

When George Lucas formed Industrial Light and Magic to create the visual effects for

his Star Wars films, he established pre-production as the best planning method to meet the

demands of special effects filmmaking. During the production of Star Wars: The Empire

Strikes Back (1980), Lucas found that using storyboards as a basis to collaborate with writers

and artists in different locations was particularly useful.

“Frequently wall-mounted, these storyboards established a space in which
large-scale pre-visualization could take place; and, as is often the case where
animation is concerned, they remained subject to constant revision and
removal throughout production.”(16)

As digital technology progressed through the 1980s and 1990s, more emphasis was

put on pre-production for planning sequences that would require computed generated or CG

characters or environments. Using animatics of storyboards, stop motion animation, or early

3D animation became increasingly important in planning the expensive CG effects. The

famous CG dinosaurs in Steven Spielberg’s Jurassic Park (1993) were originally planned to

animate in stop-motion, but once ILM proved that the dinosaurs could be created digitally,

6

the stop motion work done by Phil Tippet’s studio was used as the pre-vis and helped the

animators at ILM with the dinosaurs’ movement and camera composition.

Digital animatics became the primary method of previewing CG shots before going

into final visual effects and sequence production. One of the first films to use digital pre-vis

animatics was Star Wars Episode 1: The Phantom Menace (1999). For most of these

complex sequences, the pre-vis animatics were combinations of 3D animation, live action

clips and puppets, and 2D sketches in 3D scenes. These animatics were instrumental for the

transition from the storyboards to the final scene. Following the acclaim of the CG effects

and successful implementation into the production pipeline, digital animatics and pre-vis

became the most effective way of pre-production for CG sequences, effects, and characters.

2.2 Pre-visualization Today

With more demanding audiences, diminishing schedules, and ever-growing artistic

ambition, pre-visualization has expanded into an important component of film production.

Pre-vis animatics perform a role in pre-production similar to the role editing plays in

post-production: The ability to visualize sequences quickly and at low cost helps filmmakers

and artists invent alternate ways of telling the story, explore ideas and choose the best ones.

This can potentially save millions of dollars by testing scenes that might otherwise end up on

the cutting room floor. The goal is to help filmmakers not only plan complex visual effects,

but also to design sets and coordinate stunts. According to Chris Pallant:

“Pre-vis has become the step in the pre-production process that the film crew
strive to reach as quickly as possible. As with the animatic and the storyboard
before it, pre-vis presents the most accurate vision possible with the resources
available of how the final film should look.” (16)

7

 In the words of pre-vis pioneer Ron Frankel, pre-vis is becoming “a nexus of inter-

departmental communication.” With the technology currently available, departments are able

to quickly create animatics and communicate shot information with each other during

productions.

“New digital production demands a non-linear workflow that is available to
all departments and to the director and all creative leads. It requires a
collaborative workspace that threads through all of production and iteratively
generates the metadata of any film from inception, and gathers and distributes
information throughout the production. Pre-vis is perfectly placed to provide
this virtual production space from early concept and design through
locations, blocking, sequence, capture and post production, while managing
technical data, assets and footage throughout production.” (3)

From its initial roots in the conceptual phase, pre-vis has now expanded into five

roles. The first, pre-vis, is the conceptualizing of shots at the preproduction stage. The

second, on-set pre-vis, creates real-time visualizations on location to help the director, visual

effects supervisor, cinematographer and crew quickly evaluate captured imagery. Third, post-

vis involves the compositing of pre-vis into the live-action footage for the verifying of final

effects. Tech-vis incorporates and generates accurate camera, lighting, design and scene

layout information to help define production requirements. Finally, there is design-vis, which

provides a preliminary, accurate virtual design space in which production requirements can

be tested, and locations can be scouted.

“Pre-visualization acts as the hub of a new digital process of making movies.
Information from multiple departments coalesce within pre-vis and when
orchestrated correctly, pre-vis provides an array of advantages (both
technically and conceptually) to a director that were unheard of years ago.”
(18)

The general pre-vis approach for both animated features and live-action films is

similar. Larger animation studios like Walt Disney Animation and DreamWorks Animation

8

use their own proprietary tools. At these studios, all of the branches of pre-visualization are

done in the Layout Department. Storyboards are given to the layout artists. These artists then

animate the characters with block poses and rough sets. The supervisor of the scene defines

the animation detail needed for the layout phase, but the rule of thumb is “Enough to convey

the action and story.” (4) The initial cameras are usually placed to establish focal lengths

and shot compositions to match the storyboards.

At Disney, the layout department uses a custom camera toolkit called “QT” that “uses

actual movements of camera rig such as roll, pan, tilt, boom, swing, shake, and has 2D

camera features inside 3D camera.” (15) Once cameras are placed, the Maya Playblast tool

is used to generate the initial pre-vis animatics, which contain the rough sets, animation,

lighting, and effects done by the layout artists in pre-vis. The initial layout sequences are then

moved forward in the production pipeline by the respective departments such as Animation,

Lighting and Effects. After the director and department heads approve the separate pieces of

the shot, the layout team finalizes the cameras in post-vis and delivers the final shot sequence

to the editing and compositing departments.13

Figure 2.1: Frames showing the difference between a layout/pre-vis animatic frame and the final
render. Taken from “Frankenkite” animation created at Texas A&M University (21)

9

2.3 Current Software and Tools

Today, films with multiple visual effects shots often contract pre-visualization to

specialist studios such as The Third Floor, Pixel Liberation Front, and Halon. Artists at these

studios build most of the pre-vis sets, characters, and animations in software packages such

as Maya, Zbrush and Motionbuilder, or use libraries of pre-made rigged character models,

sets, vehicles, and effects stand-ins.(8) Pre-vis and post-vis supervisor at The Third Floor

Gerardo Ramirez explains:

“We used The Third Floor’s standard pre-vis pipeline on this project:
Autodesk Maya for modeling, rigging, animation and rendering; Adobe
Photoshop for texturing; After Effects for the compositing of pre-vis and post-
vis shots; and PFTrack during postvis to track the live-action plates. When
creating assets, we would receive information from various departments. The
visual development team would provide concept art for the characters, the art
department would give us set designs and the location department would send
reference images and survey data for the filming locations. Our asset team
would then build and rig the models in Maya.” (5)

Depending on the budget and scope of the project, studios will use various software

for pre-vis. Programs like ToonBoom’s Storyboard Pro are used for creating storyboards and

2D animatics. Storyboard Pro allows the artist to create storyboards with layers using several

brushes (similar to Photoshop) and manipulate objects and cameras in both 2D and 3D space.

Storyboard Pro also features a tool which allows the user to watch the shots in sequential

order and then adjust the timing between frames. While considered a useful tool for

storyboarding, Storyboard Pro lacks full animation capabilities and is expensive.

Reallusion’s iClone focuses on storyboards and real time 3D animation for tablet and

smartphone mobile applications. iClone allows users to import and export content such as

characters, props, and animation data from external 3D packages like Maya or the Unity

10

game engine. While iClone can efficiently produce real-time animations, it depends on

outside software (like Maya) to create the models, rigs, and more complex animation.

FrameForge 3D is a pre-vis centric tool with built-in or “stock” character models

containing rigs, props and sets. FrameForge 3D allows for various cameras, lenses, and types

of rendering and is thus a relatively quick process to create and share shots with the

production team on low budget productions. FrameForge 3D lacks the tools to create

complex animation and high quality models. Both iClone and FrameForge 3D are

inexpensive options that allow independent artists to design and create accurate storyboards

and pre-vis for live action production. (14)

Maya offers a complete creative suite for 3D computer animation, modeling,

simulation, rendering, and compositing on a highly extensible production platform. Many of

the deficiencies and shortcomings in the tools listed in previous paragraphs are addressed in

the Maya environment. By enhancing the animatic creation capabilities within it, a new or

modified animatic tool which takes advantage of the powerful features of Maya would help

make it a preferred environment for animatic creation.

11

Figure 2.2: User Interfaces of the different types of software used for creating pre-vis animatics.
Going across from top left: Storyboard Pro(2), FrameForge3D(6), iClone(10), Maya

12

3. METHODOLOGY

The approach of this research is to develop and demonstrate a modified animatic

creation tool for Maya and to confirm that use of the new tool is a more effective and

efficient way to create animatics. The background of pre-visualization software discussed in

Section 2 was utilized to determine what improvements could be made to the Camera

Sequencer. The description and functionalities of the Camera Sequencer are discussed in

Section 4.

3.1 Goals and Objectives

 The goal for this project was to research, develop, and demonstrate a more efficient

and effective version of the Camera Sequencer. The project had the following objectives:

• To develop a clear understanding of the current Maya animatic creation tool and its

limitations. This also determined how a new animatic creation process could be

developed to improve its functionality and effectiveness.

• To design a MEL based animatic creation tool that is an improvement upon the

existing Camera Sequencer.

• To develop a thorough understanding of the MEL script language and how to use it.

This knowledge informed how to modify the Camera Sequencer so that the new tool

follows the design specifications.

• To create the modified Camera Sequencer tool using MEL, based on the design

specifications.

• To demonstrate the new tool by creating example animatics, showing how it

improves the workflow, process speed, and provides more useful data for the artists.

13

The results of this demonstration will be determined by comparing the default

Camera Sequencer to the modified version.

14

4. FUNCTIONALITIES AND DESIGN SPECIFICATION

4.1 Maya Camera Sequencer

Due to Maya’s animation and camera capabilities, many artists use its Camera

Sequencer to create their layout animatics.

“The Camera Sequencer is a tool that lets you create, rearrange, and
manipulate camera shots of your scene. Each shot defines which camera is
active at any particular time, and for how long. By adjusting the placement
and timing of camera shots, you can effectively manage the ‘filming’ of the
animation in the scene. When you finish manipulating camera shots in the
Camera Sequencer, you can playblast the sequence into a rendered movie
clip.” (1)

Shots are set up within the shot view area of the Camera Sequencer, in a fashion

similar to a video editor like Adobe Premiere or After Effects. Camera shots are represented

as a set of rectangles arranged on tracks in the clip editor. These represent the time(s) at

which a particular camera is active in the viewport. Information presented in the rectangles

include the shot’s start and end frames, shot durations, the sequence time showing where the

individual shots are placed, and the camera name. These attributes are set when the shots are

created. Shots can be grouped together to make them easier to manage. For example,

alternate versions of a shot can be collected together in a single group node and then moved

and played together in the timeline through the Camera Sequencer window. When the layout

and timing of the camera shots are set, the shots can be playblasted together into animation

clips. Figure 4.1 shows a screen capture of the default Camera Sequencer GUI.

15

The Camera Sequencer Menu Bar contains sub-menus such as File, Edit, View,

Create, Group, and Playblast. The Toolbar is divided into collapsible sections and displays

frequently used functions such as Create Shot, Ripple Edit, and Remove Overlaps as icons.

4.2 Design Specification

This project is intended to develop a modified tool in Maya that combines the

functionalities of the Camera Sequencer with added elements that improve the animatic

creation process. The modified tool will be developed using MEL script and be referred to as

“jSequencer”.

As discussed in Section 4.1, the Camera Sequencer is a tool that allows the user to

create, rearrange, and manipulate camera shots in a scene. By adjusting the placement and

timing of the camera shots, the user can effectively manage the “filming” of the animation in

the scene. The basic idea behind this tool is that complex scenes with multiple cameras can

Figure 4.1: The default camera sequencer. From the Autodesk Knowledge Network (17)

16

be viewed all within a viewport. When you play an animation in the Camera Sequencer, as a

default the animation is presented in the viewport that was last selected by the user.

Editing tools available in the Camera Sequencer toolbar include the Ripple Edit

(which when selected, automatically adjusts the shots following a manipulated shot in the

timeline), Split Shot (which cuts the selected shot at the current sequence time), and Remove

Overlaps (which adjusts the track to remove any time overlaps between shots). Another

Camera Sequencer functionality is the ability to import audio files that can be associated with

specific shots or applied for an entire sequence.

Despite these functionalities, the utility of the Camera Sequencer for an experienced

user is limited by constraints within the tool and within Maya’s interface and settings. The

jSequencer has been designed to address these limitations, as discussed in the following:

1. When using a multiple panel layout with several viewports in Maya, the Camera

Sequencer automatically plays the shot sequence in the viewport panel last selected. The

back-and-forth between the camera viewport and animation editor can often result in the

wrong viewport being selected. The user then has to reset all of the viewports to the

correct state, adding frustration and time to the workflow when editing animation and

cameras. Viewport designation for the Camera Sequencer is available through the

Ubercam tool (in the Menu Bar of the Camera Sequencer), but the Ubercam tool can only

be used once the sequence is completed and ready for rendering. Since the primary

function of the Sequencer is to quickly create and edit animatics, the capability to update

in any viewport in real-time is needed. Enabling this functionality within the jSequencer

should improve efficiency during animatic creation.

17

2. Unlike a standard shot-by-shot playblast, the Playblast tool in the Camera Sequencer

cannot display the resolution gate mask. The resolution gate displays a border within the

viewport showing the rendering area and resolution specified by the render settings. The

mask surrounds the rendered area, framing the shot in an aesthetically pleasing way. It

also provides a background for any display information needed in the viewport and

animatic. The gate mask creates an effect similar to “letterboxing”, or the practice of

adjusting film aspect ratios to fit standard video formats. The resulting image has mattes

(black bars) above and below. The matte areas are part of the overall image display and

have an area for subtitles or text, avoiding overlap with the image. In the case of

animatics, the mattes are where shot information should go. To display the resolution

gate for individual cameras, the user must manually adjust the attributes of each camera

by toggling the “Display Resolution” and “Display Gate Mask” boxes and adjusting the

sliders for the “Gate Mask Opacity” and “Gate Mask Color” options. These functions are

accessible via the individual camera’s attribute editor and are not part of the Camera

Sequencer. In the jSequencer tool design, manual adjustments are not required – the

resolution gate and mask are automatically applied for each camera. By scripting these

operations directly to the attributes of the cameras, the presentation in the camera

viewport and the animatic will be more effective.

3. Specific shot information is missing in animatics created with the Camera Sequencer

using the Playblast options. Modifying the tool so that the animatic will automatically

display the missing shot information will improve the animatics created.

4. During playback within the Camera Sequencer, extraneous curves, joints, and other

objects may be presented in the default viewport and can be distracting. The jSequencer

18

display will not include these types of objects and will save the user the time needed to

manually turn them off.

4.2.1 Functionality Goals

The jSequencer will combine the tools and look of the Camera Sequencer with added

elements that improve the animatic creation and review process. The new features of

jSequencer are intended to resolve the limitations of the Camera Sequencer described in the

previous section. They will be based on what is possible with the Maya procedures,

commands, and interface. The added functionalities for the desired tool are the following:

1. The standard Camera Sequencer panel will be combined with a newly designed

designated viewport into a window separate from the main Maya interface. The

jSequencer window will have multiple user-adjustable panels and can adapt to different

workspace layouts, giving the user the freedom of using the main display for other work

without crowding the display. Because the jSequencer viewport will be assigned to the

Camera Sequencer panel, the animation sequence in that specified location can be

updated in real-time, no matter what edits and alterations are done to the sequence.

2. The jSequencer window will include a display of detailed shot information (such as

user/artist, date, the camera name, the focal length of the camera, the frame number, and

the overall scene time) in both the viewport and the playblasted animatics. This display

also includes the resolution gate mask, providing a background for the shot information

and presenting the animation sequence in an aesthetically pleasing way.

19

4.2.2 jSequencer Display Design

The image below is a visual breakdown of the sections and elements of the

jSequencer display. These elements are described in Section 4.2.3.

4.2.3 jSequencer Design Elements

The main design element in the jSequencer tool is the GUI equivalent of the “tear

off” function in the Maya user interface. The “tear off” function creates a floating window

(separate from the main display) of a specified panel, or a grouped collection of UI objects

Figure 4.2: Representation of the modified Camera Sequencer display. This shows
the separate elements of the jSequencer display specifying the separate elements and

their locations in the window.

20

(buttons, fields, graphical views etc.). The state of its UI is maintained when it is relocated,

resized, or recreated.

The display elements are created in Maya using MEL script. This section does not

include specific scripts, but discusses MEL commands at a functional level. A more in depth

description of the commands used are in Appendix A.

To create a customizable standalone window, the window() command is used. The

window() command has flags which control the size and elements displayed within the

window. The standalone window can be designed for either a single or dual monitor

workspace and should include a layout with multiple sections and customizable size and

layout type options. The jSequencer window displays the Camera Sequencer panel in the

bottom section. (The contents of this panel are described in Section 4.1) The designated

viewport created by jSequencer will display the sequence playback in the top section of the

window.

The jSequencer tool uses the headsUpDisplay() command to display the important

shot information as a 2D overlay plane on the 3D viewport. The specific information, such as

user/artist, date, the camera name, the focal length of the camera, the frame number, and the

overall scene time, will be visible in the designated viewport when working in Maya and also

in the playblasted animatics created.

21

5. IMPLEMENTATION

5.1 jSequencer Development

The jSequencer was developed for Autodesk Maya 2015. Autodesk Maya is an

industry standard animation suite which offers a powerful set of tools for 3D content creation

and utilizes the Maya Embedded Language (MEL) for programming access and for scripting

using built-in Maya commands. MEL is descended from UNIX shell scripting, which means

MEL executes commands to accomplish functions and processes in the same way as UNIX

commands. “Most commands you use to control Maya act like UNIX command-line utilities:

little stand-alone programs with many options that modify their behavior.” (13) Most menu

selections within Maya’s Graphical User Interface (GUI) can be completed at the command

prompt by using MEL. In addition, because MEL is the foundation of Maya’s infrastructure,

tools and commands scripted with MEL should work in every version of Maya. Debugging

and editing the scripts are also much easier than other scripting languages, because the Script

Editor in Maya can show the specific MEL commands and errors using the “Echo All

Commands” option. The reasons I wrote the script in MEL were my familiarity with the

language and its specificity to Maya, making examples and tutorials easier to find through

the MEL Command Reference and other online sources.

5.1.1 Separating the Camera Sequencer

Research to create jSequencer began with example scripts in the MEL documentation.

Following the tool design specifications, the initial goal was the creation of the separate

window. The “tear off” command in MEL creates a floating window, or a window not

attached to the main display, for a specified panel or group of UI objects (buttons, fields,

22

graphical views etc.). The panel takes care of maintaining the state of its UI when it is

relocated or recreated. Following the echoed commands in the Script Editor when “tearing

off” the Camera Sequencer panel enabled me to see the specific MEL commands used which

led me to the correct commands and other resources to use in the jSequencer tool script.

One of the best examples I found focused on creating separate windows for Scripted

Panels. A Scripted Panel (for example the Render View panel, the Graph Editor, and the

Camera Sequencer) is a panel that is predefined in MEL and includes several pre-made tools,

menus, and functionalities. The script example I found docks the scripted panel within a

custom layout and adds buttons. In order to use the correct scripted panel, the panel type is

sourced in the scriptedPanel() command. While it didn’t exactly fit the jSequencer design,

this example became the basis for a window created with the Camera Sequencer. Several

prototypes, as shown in Figure 5.1, were developed to separate the Camera Sequencer into its

own window.

5.1.2 Viewport Editor

Once the sequencer was figured out, I focused on creating a separated viewport,

referred to in MEL as a model panel. When a model panel is created, it includes a model

Figure 5.1: Screenshot of first prototype.

23

editor and the modeling menu. These model editors show the default “perspective” views,

but can be manually switched to other cameras. To create a model editor without the menu

bar, the modelEditor() command was used. This command can also specify model shading

modes, lighting and shadows, and cameras. For the jSequencer, a newly created model editor

was used for the camera viewport. Figure 5.2 shows the “torn off” window of the new model

editor. This new model editor was used in later prototypes.

5.1.3 Window Layout

The next step was the development of the window layout. To get the layout correct

according to the design specification, research in types of UI layouts was conducted. Many

different layouts showing basic UI objects exist in MEL including column, row, form, and

pane layouts. To use scripted panels like the model editor and Camera Sequencer, form

layout and pane layout were prototyped to determine which was more effective for the

jSequencer.

Figure 5.2: Screenshot of new editor window.

24

A form layout allows absolute and relative positioning of the UI objects (in this case

the scripted panels) that are the layout’s immediate children. In Maya, the parent is

considered the main object and the children are considered sub-objects. Children’s attributes,

like position and scaling, are manipulated by the attributes of its parent. There is no default

positioning relationship, so to have children appear in the form layout they must have at least

one edge attached to another UI object in each direction. Because the formLayout() command

is used to build most of the Maya user interface, it tends to function more predictably than

many of the simpler, but less common, layout types. However, once the object positions are

set, the size and relationship within the window cannot be altered without adjusting the

script.

A pane layout creates multiple panels in a floating window, which are split into

individual panes with separators. The panes are separate from each other and can contain

anything created in MEL, such as custom controls, sub-layouts, or scripted panels.

Configuration of the panes is also adjustable. Configurations control how many panes are

created in the pane layout. For example, the “horizontal2” configuration creates two panels

vertically separated in the middle of the window. To make sure the scripted panels are placed

in the correct panes, and because the scripted panels return their own custom layouts, the

setParent() command has to be used to signal the end of each pane. This command makes the

scripted panels children of the pane layout. This information can all be set and edited within

the paneLayout() command in MEL.

To compare the two layout types, prototypes of each were created. (See Figure 5.3).

Although they seem almost alike in appearance, form layout uses absolute positioning for the

UI objects, while pane layout can have adjustable panels. In the pane layout, the dotted line

25

“pane separator” above the Camera Sequencer menus is the panel separator and can be

dragged vertically to adjust the panel size. This became the preferred jSequencer layout,

since it was user-adjustable.

5.1.4 Heads-Up Display

The next design element development was the shot information display in the

viewport. This focused on the application of the headsUpDisplay() command, with additional

research into existing plugins and examples. Tools like animHUD and scHUDAnim provided

great examples on how to use the headsUpDisplay() command. Much work went into

breaking down the code for these tools, focusing on common elements and how to use them

in jSequencer. The main issue was figuring out what type of information to include. This

problem was solved by looking at the types of information animators and VFX artists

included in their reels and animatics. Common information includes camera name, focal

length, and shot frame number. Basing my tool’s HUD on the information displayed in these

references, I programmed jSequencer to provide this useful information.

26

Figure 5.3: Both versions of the jSequencer window layout. Top is form
layout, bottom is pane layout.

27

Turning the script into something that could automatically display this information

exposed an issue with the headsUpDisplay() command. HUD objects depend on the

placement flags, section and block. Each section is composed of a single column of blocks. If

another HUD object or preset has the same placement as one of the newly created objects in

the animatic tool, the script errors. There can only be one HUD object occupying a block at a

time. The easiest remedy for this is using the removePosition flag, which removes the content

of a specific block location in the HUD layout. This frees that space for the new objects

created in the animatic tool’s display. Due to the need for several HUD objects, the

removePosition flag had to be used for each occupied block to free the space for each new

HUD object. Once that was done, the HUD was correctly displayed. (See Figure 5.4)

28

5.1.5 Resolution Gate

 The final element in the jSequencer implementation was the resolution gate for the

camera viewport. The resolution gate displays a border within the viewport showing the

rendering area and resolution specified by the render settings. A mask surrounds the

resolution border, framing the shot in an aesthetically pleasing way. It provides a background

for the display information needed in the viewport and the animatic. The gate mask creates

an overlay color outside the border set by the resolution gate, similar to the “letterboxing”

Figure 5.4: jSequencer prototype with the custom Heads-Up Display.

29

technique in film. The gate mask can only be viewed when the gate is on. As discussed in the

specifications, activating the gate mask involved manually going into the attribute editor of

each individual camera to turn on the resolution gate and gate mask, and adjust the mask

opacity and color values.

The final goal for jSequencer was to create a process which automatically completes

these adjustments and speeds up the scene setup process. Using examples found in the MEL

command reference and scripts accomplished for previous projects, this task was completed

using the setAttr() command and determining the specific attributes. When combined with

the information display, jSequencer was starting to look more like its intended design. (See

Figure 5.5)

30

5.1.6 Final Design Adjustments

Once the initial prototype was completed, I finished the design of the tool and fixed

any other issues by scripting and editing flags. MEL commands such as paneLayout() and

headsUpDisplay() have flags that are edited to fit specific designs. In MEL, flags are part of

the commands and modify how they work. Apart from these scripting issues, other

adjustments were needed to facilitate the animatic creation and Maya scene setup process and

are discussed at the end of this section.

Figure 5.5: jSequencer prototype with the resolution gate.

31

To get the desired design, and make the viewport an effective size with the resolution

gate and heads up display turned on, the pane layout was adjusted. As explained in Section

5.1.3, using pane layout provides the ability to adjust the size of the panes after the script

runs. Editing pane size was done using the “paneSize” flag in the paneLayout() command

resulted in the viewport display take up 65% of the total window. Figure 5.6 shows how this

adjustment to the pane size makes jSequencer appear closer to the original desired design.

 Figure 5.6: jSequencer prototype with an adjusted pane layout

32

In the initial prototype, the resolution gate and surrounding gate mask were activated

for the selected camera when the tool was created. When switching to the next shot in the

Camera Sequencer, the next camera did not have the attributes turned on. Since the goal was

to have the script adjust every camera used in the scene, modifying the script so that it sets

the attributes of every camera to be the same was very important. The solution was putting

the setAttr() commands in a “for loop” that runs through all the cameras in the scene. The

script finds every object in Maya that is labeled as a camera and automatically adjusts its

attributes. This assigned the setAttr() commands to every camera, and saved the time needed

to manually set the commands for each camera.

However, an issue surfaced during playback in the jSequencer. As the sequence

played, cameras may have different viewport sizes and film gate values, resulting in jarring

differences between cameras. Checking the Maya documentation and camera attributes, I

discovered the issue was the overscan values. The overscan value is what adjusts the gate and

mask size in the viewport. The default value automatically selects a horizontal and vertical fit

so that the selected image fills the render frame. Like the other attributes for the cameras,

using the setAttr() command was the easiest solution to correct for this. Putting this new

attribute adjustment in the “for loop” forced all cameras to the same viewport dimensions and

improved the video playback. As a result, the surrounding gate mask became more effective

and the tool optimized the available window space. As seen in Figure 5.7, the camera frame

goes to the sides of the window while still maintaining the resolution and mask on the top

and bottom boundaries. This mask space allows the HUD to be more effective.

33

The viewport had another aesthetic problem due to the various objects cluttering the

viewports and blocking the view of the animation. For example, NURB Curves (the shapes

drawn in Maya commonly used as the controls for character rigs) are visible by default. In a

scene with many characters, the NURB Curves and other objects can clutter the viewport and

hide the action and camera composition. Visibility of these objects is controlled in the Show

menu at the top of the model panel, where the user can select the types of objects they want

to see in the selected viewport. As a default, every object type is visible. The user has to

manually turn on/off the objects they want to see in the scene’s viewport. Since the

Figure 5.7: jSequencer prototype with an adjusted resolution gate

34

jSequencer uses a custom model editor without the Show menu, this problem was solved

through additional scripting. Within MEL object visibility is controlled in the modelEditor()

command flags. The flags used in the jSequencer are –cameras, -nurbCurves, and –joints.

These flags turn off the display of the specific type of objects in the viewport. Figure 5.8

shows what a cluttered and an uncluttered viewport with many cameras, curves and other

objects look like.

An unexpected issue involved the Playblast tools in the Camera Sequencer. In the

current version of Maya, the “Show Ornaments” option is missing from the options box of

the Playblast tools under the Camera Sequencer menu. The “Show Ornaments” flag in the

playblast() command turns on the Heads-Up Display during playback so it shows up in the

resulting animatic. This option is available when using the Playblast tool in the Maya >

Figure 5.8: Comparison showing a view with different object visibilities. Objects’ visibility
turned on in the left, visibility turned off in the right.

35

Create menu, however when using the Camera Sequencer, the option is automatically turned

off. After extensive research, the easiest solution was to alter the flag in the base MEL scripts

(doPlayblastSequenceArgList.mel and doPlayblastShotArgList.mel) to make the HUD

display correctly. When the code is run in jSequencer, because the flag values are adjusted in

global procedures, the old values in “Show Ornaments” are automatically overwritten.

There were a number of minor scripting syntax errors made during the

implementation of jSequencer. These were debugged in the script or solved by researching

the specific errors and how to fix them.

5.2 Animatic Creation

5.2.1 Maya Scene Setup

 The Maya scene setup depends on the user to create character animation and the

cameras setups jSequencer can use. For demonstration of jSequencer, I created a simple

character animation sequence with fourteen separate characters, all animated for 500 frames.

Six of these characters have complex animations, while the others are in the background to

represent movement and composition. Animation for these characters was done using basic

keyframe animation techniques, with live action reference videos for guidance on timing and

body placement.

Once the character animation was completed, I began setting up the cameras. In an

attempt to mimic sports documentaries and films, multiple cameras were placed at angles and

focal lengths that would capture the action. Like the animation, the initial camera placement

and animation was done in the default Maya viewport. Once these cameras were placed, I

was ready to start creating the animatic.

36

5.2.2 Using jSequencer in Maya

To use jSequencer, the script has to be downloaded from the script/plugin database on

Creative Crash, or highend3d.com. The script is then copied and pasted into the Maya Script

Editor. Once the script is executed, entering “jSequencer” into the Command Line will

activate the tool and the jSequencer window will pop up on the screen.

Figure 5.9: Screenshots of character animation and reference video.

37

Adding the code into the Script Editor is advantageous because it will automatically

save the state whenever the window is closed. As long as the code is still in the Editor’s

window, the script can be compiled without having to copy and paste it again. As long as the

Maya session is on the same workstation, the only step is entering the same command and

the jSequencer will be activated.

5.2.3 jSequencer Code Structure

The jSequencer script is comprised of three main parts: the GUI creation procedure

(in MEL called proc), the display creation procedure, and display removal procedure.

Procedures in MEL allow the user to collect a series of commands into a new function that

will perform a new action. The procedures in the jSequencer script are global procedures,

which can be called using the command line or by any other script, expression, or script

node.

The GUI creation proc, called jSequencer(), creates the window layout, assigns the

panels, adjusts the resolution gate and mask settings, removes the current display information

and creates the new customized display. This proc is where most of the commands discussed

in Section 5.1 are placed. The new display procedure (called jSeqHUD()) creates the HUD

objects and places them in the designated sections and blocks vacated when the

removeHUD() function is run. The removeHUD() function simply removes any heads-up

display objects in the blocks and sections that are occupying the space new HUD objects will

occupy. Both jSeqHUD and removeHUD are placed in jSequencer, so that they all run

together. Once the script is compiled, the tool is created by entering jSequencer in the Maya

command line.

38

 The script runs and creates the jSequencer. The window pops up in the middle of the

screen and is used with the current scene. The jSequencer is designed for a dual monitor

workstation, so its most efficient placement is on the second monitor away from the main

Maya window. In this setup the tool will not crowd the display and the user will have

complete access to the main viewport to animate, model, or conduct any other type of work.

This workspace management gives the user a place to edit the animation and immediately see

how it looks in the jSequencer view.

 To solve the Playblast tool issue in the default Camera Sequencer mentioned in

Section 5.1.6, the installation scripts for Maya had to be altered. These MEL scripts are

included in the jSequencer. Once the whole script is compiled in the Script Editor, the

jSequencer is ready for use.

5.2.4 Creating and Adjusting Shots

 By default, the Camera Sequencer creates a shot using the active camera in the

current panel. The shot is inserted at the current sequencer playback time and sets the start

and end frame range based on the Maya Time Range Slider. The Create > Shot option box in

the Camera Sequencer Menu Bar provides the user more precise shot adjustments, like

selecting the specific camera and setting the shot length. If the shot needs to be changed in

any way, the attributes can be adjusted manually within the shot view area. The jSequencer

sets the “current panel” to the modelEditor view in the window, so the shot being played is

shown in the viewport. The jSequencer also provides the ability to see how the camera

animation and compositions look when the sequence plays in real time. This capability

makes editing the cameras dynamic and improves the animatic creation process.

39

 I edited the animation and shot compositions by alternating between the jSequencer

(to check the composition) and the perspective view (to edit the character and camera

animation). This process continued until the cameras were finalized. For previsualization and

layout animatics, the character animation isn’t normally considered “final,” but I wanted to

make the animation on the main characters more dynamic.

5.2.5 Creating the Animatics

 Once the cameras were set and animation was completed, the next step was creating

the animatics. By default, the Playblast tool generates image sequences using the active view

and current time range in the Time Slider to determine the animation range. The settings,

such as file output and frame range, can be accessed in the options in the drop menu in the

Camera Sequencer. The resulting animatic video is exported to the designated output file

location (by default where the Maya scene file is located). The default Camera Sequencer

and the jSequencer have different playblast processes. A more thorough explanation of these

processes is discussed in Section 6.1.4

40

6. RESULTS AND EVALUATION

The results from this project compare the default Camera Sequencer to the

jSequencer. The project aimed to improve the animatic creation capabilities, including the

Maya workspace management, the character and camera animation editing process, and use

of the Playblast and Heads-Up Display options. The following sections will discuss the

comparisons between the default Camera Sequencer and jSequencer. The animatics use

character animation created before the cameras were created and roughly placed in the scene.

Then the animation and cameras were edited using both the default Camera Sequencer and

jSequencer.

6.1 Comparisons

6.1.1 Workspace Management

The first comparison made was of the interfaces and workspace. When using the

default Camera Sequencer tool, I had to either place the panel in the Maya display interface

or “tear off” the panel into a separate window. To place the panel in the window, an

acceptable panel layout must be selected from the Maya menus. I chose the quad layout

preset to be able to have an effective layout. The Camera Sequencer takes up the bottom right

panel, with the perspective view taking a majority of the display in the top right panel, the

outliner in the top left, and a camera viewport in the bottom left (see Figure 6.1). When

animating, the Graph Editor display was more needed than the Camera Sequencer, because

being able to adjust the animation keyframes and components was more important. When I

wanted to see how the animation would look in sequence I would have to switch the panels

to playback the scene.

41

The jSequencer creates a new window with the Camera Sequencer and a dedicated

viewport display. This creates a “tear off” copy of the Camera Sequencer, with the added

benefits of the designated viewport and shot information display (which will be discussed in

later sections). jSequencer is best for dual monitor workstations, so that the user can have the

main Maya display on one screen and the jSequencer window on the other. This gives the

user the freedom of having other types of panel layouts in the main Maya window, while still

having the Camera Sequencer panel and camera view visible.

When I activated the jSequencer, I set up the main window with a large editing view

and Graph Editor. If the user only has one monitor, the tool still works effectively, but

adjustments, such as making the windows smaller so that both displays fit the screen, have to

be made to the interfaces. Figure 6.2 is a screenshot of my workstation at Texas A&M

University’s Viz Lab. The second monitor has smaller resolution, but is large enough so that

tool still works effectively. jSequencer was designed for the workstations at Texas A&M

Figure 6.1: Maya workspace with the default Camera Sequencer

42

University’s Viz Lab. If a user has monitors with different resolutions the height and width

dimensions of its window can be altered in the script before execution.

6.1.2 Animation Editing

 Inefficiency in the animation editing process was one of the main problems the

jSequencer was meant to solve. When animating, there is a lot of back and forth between the

main editing window and the Camera Sequencer to check the animation in the camera view.

In the default Camera Sequencer, shot playback automatically uses the active viewport, or

the viewport last selected, to show the sequence. If the main viewport is accidentally

selected, the Camera Sequencer takes over the panel and changes the camera. The panel then

has to be manually changed back to the original editor view, and the user must make sure to

select the camera viewport before using the Camera Sequencer again. This process also has

to be done when switching between the Graph Editor and Camera Sequencer panels. As

mentioned in Section 6.1.1, whenever the user wants to edit the animation, they need to open

the Graph Editor to edit the animation curves and keyframes. To see the shot sequence, then

Figure 6.2 Maya workspace with jSequencer

43

the user has to switch the panel back to the Camera Sequencer. Requiring these extra steps

during the process of editing animation and reviewing in the Camera Sequencer quickly adds

time to the animatic creation process and causes frustration for the user.

The jSequencer facilitates this process by creating an entirely separate window from

the main Maya interface. When the jSequencer window is selected, Maya designates the

viewport as the “active panel”, which means that the sequence will playback in the

jSequencer viewport rather than in the main Maya window. The Camera Sequencer panel is

placed in the jSequencer, and allows the user to place the Graph Editor or other scripted

panels in the main interface. This solves the viewport selection and reassignment problem,

and, as mentioned in Section 6.1.1, frees up space in the Maya display for other panels.

During playback in the jSequencer window, the sequence only plays in the designated

viewport. When the playback is paused, the main display updates automatically. When the

animation is altered in the editing view, the jSequencer viewport updates in real-time. This

makes the animation editing and review process more efficient and effective.

Figure 6.3 below shows the jSequencer being effectively used for character and

camera animation editing. The Camera Sequnecer panel and camera view are separated in the

jSequencer window with the main Maya interface having a large editing viewport and Graph

Editor.

44

6.1.3 Animatic Displays

When using the default Camera Sequencer, the user has to manually adjust the Maya

interface to have shot information and objects displayed in the viewport and activate the

resolution gate mask. The information displays are small, difficult to read and grouped

together, making them less effective and taking up too much screen space. Activating the

Resolution Gate can help the visibility of the shot information, but they can still be difficult

to review on smaller screens. The resolution gate mask has to be turned on and adjusted in

each camera’s attribute editor. Objects to be displayed in the viewport are selected using the

individual panel’s “Show” menu. However, these adjustments must be made before

playblasting the animatic.

Using the jSequencer solves these issues by automatically adjusting the camera

attributes and object visibilities, and by creating the desired information display. The shot

information text is larger, easier to read, and evenly placed on the bottom of the frame. As

mentioned in Section 5.1.4, the elements in the information display are pre-selected for their

usefulness during the review process. The resolution gate mask creates the letterbox effect

Figure 6.3 The animation editing process with the jSequencer

45

and provides a background for the shot information. Display objects, like curves and

cameras, are turned off and create an uncluttered view of animation and composition. All of

this is done automatically when the jSequencer is activated, saving considerable time during

the animatic creation process.

6.1.4 Playblasting Capabilities

As discussed in previous sections, there are issues when playblasting animatics with

the default Camera Sequencer and Maya interface. The default Camera Sequencer’s playblast

tools cannot create animatics that have the resolution gate mask or information display.

Neither the “Playblast Sequence” or “Playblast Shot” tools include the “showOrnaments”

box in the options windows, which turns on the Heads-Up Display during playback.

However, when using the main Playblast tool in the Maya > Create menu, this option is

available and works correctly.

The jSequencer corrects this issue by altering the “showOrnaments” flag in the

Camera Sequencer playblast installation scripts. The Playblast options in the Camera

Sequencer remain the same, yet the correct value for “showOrnaments” is in place when the

tool is activated and the animatics are created. The resolution gate mask and information

display show up correctly in frame, and there is no need to use the other Playblast menus to

create the animatics.

6.1.5 Finalizing the Animatic

The final comparison is made using both processes to create a final animatic. When

using the default Camera Sequencer, the user has to export the playblasted sequence into a

separate video editor such as After Effects to add the desired shot information. Once in After

Effects, adding information like shot name, camera name and focal length is done by creating

46

separate text boxes that have to be adjusted to appear in frame for each shot. For sequences

with many shots and cameras, this can take a lot of time. Also, the dimensions of the

imported playblast file have to be altered to allocate space on the bottom of the frame for the

shot information. Once the video size is changed and shot information edited to appear on the

correct shots in frame, the video is rendered. While the resulting animatic can have

information not accessible in Maya, this process adds significant time and complexity to the

animatic creation process.

 Using the jSequencer playblasting capabilities automatically creates the final

animatic. The letterbox effect is created by the uniform resolution gate mask across all of the

cameras, and the shot information is displayed in an aesthetically pleasing way, without the

distracting objects in frame. All of these actions are performed when the Playblast tools in

the jSequencer panel is activated to create the animatic, saving the time needed for exporting

and editing in another program.

Figure 6.4 shows the screenshots of the resulting animatics. The default Camera

Sequencer animatic was created through After Effects and the jSequencer animatic was

created completely in Maya.

47

Figure 6.4 Screenshots of both resulting animatics. Top was created with Camera Sequencer
and After Effects, while the bottom was created with jSequencer.

48

7. CONCLUSIONS AND FUTURE WORK

The default Camera Sequencer is a robust tool that is capable of creating useful

animatics and shot sequences in Maya. However, the tool has several known issues that

affect the efficiency of the animatic creation process. The user has to manually adjust the

resolution gate, mask, and overscan values for each camera. The user also has to manually

toggle which display objects are visible in each viewport. The Camera Sequencer plays the

sequence in whichever viewport was last selected, resulting in time spent switching between

viewports during animation editing. Animation editing also takes longer because of the back

and forth between the Camera Sequencer and Graph Editor panels. Playblasts created from

the Camera Sequencer cannot show shot information or have the resolution gate mask, and

have to exported to a different software to add these missing elements. Editing the animatic

in another program to include shot information adds considerable time.

The jSequencer tool design and functionality fixes these problems, and provides a

more efficient and effective process to create animatics in Maya. The new tool keeps the

main functionality of the Camera Sequencer, creating shot sequence animatics in a user-

friendly interface, but adds elements that facilitate and improve the animatic creation,

editing, and review processes. The jSequencer automatically adjusts all of the camera

attributes and display object visibilities, and creates a custom information display. A

designated viewport for playback separate from the main Maya window is provided,

avoiding the hassle of viewport switching. The resulting playblast is the final animatic since

it displays the resolution mask and shot information correctly, saving the time needed to

49

export to another software. The jSequencer animatic display is much larger and cleaner with

more information.

Maya’s default Camera Sequencer has the basic capabilities to create animatics. The

jSequencer tool enhances these functionalities and adds elements that improve the process

effectiveness. jSequencer is therefore a better tool for creating animatics in the Maya

workspace.

7.1 Future Work

 The development of jSequencer provides a basis for possible future work. The tool

itself could be rewritten in Python rather than MEL script. Python is primarily used for

custom plugins that can be used and modified in many software packages. Python also has

more direct access to C++ libraries and modules, which make reusing the code in other

software easier.

 A similar animatic tool could be developed for other software packages, such as

Autodesk’s 3dsMax and Motionbuilder, SideFX’s Houdini or Maxon’s Cinema4D. 3DsMax

has its own Camera Sequencer tool, but a better tool could be developed using the built-in

script language MAXScript. The other packages lack a Camera Sequencer tool, so a basic

sequencer could be developed to improve their animatic creation capabilities.

 Providing the option to export the animatic sequence directly from the Sequencer into

file formats for programs such as RV or QuickTime could be considered. If the sequence

could be reviewed within RV or QuickTime the review of the animatics would be more

efficient. This system could be setup within the Maya interface or added directly into the

modified Camera Sequencer display. This would involve more precise editing of the Maya

installation files and writing procedures to import and open the animatics in the programs.

50

This would be particularly useful for artists that use multiple shot sequences in one file and

want to see alternate sequences.

51

REFERENCES

1. “Camera Sequencer Overview.” Autodesk Knowledge Network. 7 Sep. 2012.
http://knowledge.autodesk.com/support/maya/learn-explore/caas/mne-
help/global/docs/maya2013/en_us/files/GUID-756DCF5D-C74C-46E4-BE11-
50E5C7FA3376-htm.html. Accessed 12 Sep. 2016.

2. Caron, Tammy. “Toon Boom Storyboard Pro Review.” 22 April 2014.
http://www.imore.com/toon-boom-storyboard-pro-review. Accessed 12 Nov. 2016.

3. Desowitz, Bill. ‘A Previsualization Society Is Born.’ Animation World Network, 29 Sep.
2009. http://www.awn.com/vfxworld/previsualization-society-born. Accessed 12 Sep. 2016.

4. Hian Wong, Hock. ‘Previsualization: Assisting Filmmakers in Realizing Their Vision.’
Siggraph Asia 2012 Courses. 28 Nov. 2012.

5. Hogg, Trevor. ‘Precision Warfare: The Third Floor Visualizes’ Captain America: Civil
War.’ Animation World Network. 30 June, 2016. http://www.awn.com/vfxworld/precision-
warfare-third-floor-visualizes-captain-america-civil-war. Accessed 14 Sep. 2016.

6. “Introducing FrameForge Previz Studio Software.” Creative Writing Software 101.com,
2014. http://www.creativewritingsoftware101.com/graphics/frameforge/04-
frameforgescreen.jpg. Accessed 12 Nov. 2016.

7. Jarratt, Brandon Lee. ‘From Production to Education: An Analysis of Pipeline
Requirements and Practices.’ Master’s thesis, Texas A&M University. 15 Jan. 2013. http : / /hdl

.handle .net /1969 .1 /149239. Accessed 10 Nov. 2016.

8. Lasseter, John. ‘Tell Me a Story’, in Walt Disney Animation Studios – The Archive Series:
Story. New York: Disney Editions, 2008.

9. Lockwood, Noah and Patrick Coleman, Patricio Simari, and Karan Singh. DirectCam: A
Gestural System for Animatic Creation. Poster presented at ACM SIGGRAPH Conference,
San Diego, CA, August 2007.

10. Marques, Alan. “iClone 6.1 Review.” 4 June 2015.
https://www.3dtotal.com/interview/558-iclone-61-review-by-alan-marques-keywords-
reallusion. Accessed 12 Nov. 2016.

11. McEachern, Martin. ‘Orchestrators of the Dream.’ Computer Graphics World. Oct. 2013.
http://cgw.com/Publications/CGW/2013/Volume-36-Issue-6-Sept-Oct-2013-/Orchestrators-
of-the-Dream. Accessed 14 Sep. 2016.

52

12. “MEL for Programmers.” Autodesk Knowledge Network. 11 May 2016.
http://knowledge.autodesk.com/support/maya/learn-
explore/caas/CloudHelp/cloudhelp/2016/ENU/Maya/files/GUID-0F7C50D1-FF45-4868-
8EBC-FE044F54B82E-htm.html. Accessed 4 Nov. 2016.

13. “MEL Command Reference.” Autodesk Knowledge Network.
http://help.autodesk.com/cloudhelp/2017/CHS/Maya-Tech-Docs/Commands/index.html.
Accessed 16 June 2016.

14. “An Overview of Previsualization Software and Methods.” Wolfcrow,
http://wolfcrow.com/blog/an-overview-of-previsualization-previz-software-and-methods.
Accessed 12 Sep. 2016.

15. Paik, Jiwon and Cheeyong Kim. ‘Research on Disney’s 3D Animation Wreck-It Ralph’s
Style, Layout Pipeline, and Camera Capture System.’ Journal of Korea Multimedia Society.
Vol. 16, no. 11, Nov. 2013.

16. Pallant, Chris and Steven Price. Storyboarding: A Critical History. New York: Palgrave
Macmillan, 2015.

17. “Playblast an Animation.” Autodesk Knowledge Network. 26 Oct. 2016.
http://knowledge.autodesk.com/support/maya-lt/learn-
explore/caas/CloudHelp/cloudhelp/2016/ENU/MayaLT/files/GUID-1C6EDC8D-DA67-
490E-81F1-1205336DEBD9-htm.html. Accessed 15 Dec. 2016.

18. Pohl, Brian. ‘Previs: Love It or Leave It…It’s Here to Stay.’ Animation World Network. 4
April, 2011. http://www.awn.com/blog/previs-love-it-or-leave-itits-here-stay. Accessed 15
Sep. 2016.

19. Ross, Aaron. ‘Production Rendering From the Maya Camera Sequencer.’ Lynda.com-
Article Center. 1 April, 2014. http://www.lynda.com/articles/production-rendering-maya-
camera-sequencer. Accessed 15 Sep, 2016.

20. Schauer, Bradley. ‘The Auteur Renaissance, 1968-1980.’ In Cinematography, edited by
Patrick Keating. New Brunswick: Rutgers University Press, 2014.

21. Seal, Joshua, layout lead. Frankenkite. Texas A&M University Department of
Visualization, 2015. http://vimeo.com/168993074. Accessed 30 June, 2016.

Supplementary Sources

Primary Plugin References

“animHUD 1.0.5 (maya script).” Creative Crash. 6 April 2010.
https://www.creativecrash.com/maya/script/animhud. Accessed 10 July 2016.

53

Ewert, Bryan. “How Do I Dock Maya’s Graph Editor, HyperGraph, Render View, et al, in
My Own Window?.” MEL How-To. 5 Aug. 2002.
http://ewertb.soundlinker.com/mel/mel.053.php. Accessed 16 June 2016.

“scHUDAnim.mel 1.2.0 (maya script).” Creative Crash. 22 May
2012.https://www.creativecrash.com/maya/script/schudanim-mel. Accessed 10 July 2016.

“shotView 2.3.0 (maya script).” Creative Crash. 2 Feb. 2011.
https://www.creativecrash.com/maya/script/shotview. Accessed 16 Nov. 2016.

Animation Reference Videos

TheAUDLChannel. “Championship Weekend V | Top 10 Presented by Spinlister.” Online
video clip. YouTube. YouTube, 15 Aug. 2015.
https://www.youtube.com/watch?v=ImPM3NOpch8. Accessed 1 Sep. 2016.

Smith, Brodie. “How to Throw a Forehand Far | Brodie Smith.” Online video clip. YouTube.
YouTube, 18 April 2011. https://www.youtube.com/watch?v=NM3tVxL4Q70. Accessed 25,
Aug. 2016.

Smith, Brodie. “How to Throw a Frisbee Far | Brodie Smith.” Online video clip. YouTube.
YouTube, 20 Jan. 2011. https://www.youtube.com/watch?v=Trm_XZR3dA0. Accessed 18,
Aug. 2016.

54

APPENDIX A

MEL Scripting

MEL scripting provides access to the base commands in Maya. Different types of

MEL commands and parameters were used in jSequencer implementation. Below is are

explanations of the MEL commands used in the script. All definitions are from the MEL

command reference in the Autodesk Knowledge Network. 26

MEL Commands Used

The following commands are listed in the order that they appear in the script. Not

included are the commands used in the MEL installation procedures that are copied into the

jSequencer file.

window() - This command creates a new window but leaves it invisible. When combined

with the showWindow() command, a new blank window is created. Everything that is inside

the window has to be defined between these two commands.

paneLayout() - This command creates a pane layout. A pane layout may have any number of

children as determined by the current configuration. In the jSequencer script, a horizontally

split pane is used with a visible separator between the two. The dimensions of the children

can be altered by this separator or in the code.

formLayout() – This command creates a form layout. A form layout allows absolute and

relative positioning of the controls that are its immediate children. There is no default

positioning relationship so to have children appear in the form they must have at least one

edge attached in each direction. This command is present in the script, but it is commented

out because it is not the layout used.

55

getPanel() - This command returns panel and panel configuration information. This function

includes the flag -scriptType and returns the scripted panel “sequenceEditorPanel”.

scriptedPanel() - This command will create an instance of the specified scriptedPanelType.

A scripted panel is a panel that is defined in MEL, with all the required functions and

commands available as MEL’s procedures.

modelEditor() - This command can create, edit or query a model editor. This is used to

create the separated viewport in the jSequencer. The signficant difference between this and

modelPanel(), is that the modelEditor() only includes the viewport without the tool and menu

panels provided by modelPanel().

sequenceManager() - This command is used to manage sequences, shots, and their related

scenes. This is used to specify the dedicated panel that the sequencer will control.

setAttr() - This command is used to set attributes for objects in the scene. For example,

setting the position of the camera. MEL script is especially useful with this command

because the script editor echoes the commands when the user edits something in the

viewport. This way the user can see the specific attributes they want to edit.

setParent() – This command changes the default parent to be the specified parent. One

special parent string “..” indicates one level up in the hierarchy. A control, menu, or panel

must be parented to a control layout or window.

displayColor() - This command changes or queries the display color for anything in the

application that allows the user to set its color.

headsUpDisply() - This command creates a Heads-up Display (HUD) object which is placed

in a 2D inactive overlay plane on the 3D viewport. It is used to display information

56

designated by a user script. The only mandatory flags on creation are the section and block

flags, which designate where the object appears in the viewport.

All of the commands have several flags. Flags modify how a command works. A flag

comes after the command name, is proceeded by a dash (-), and is followed by a parameter. It

is through the use of flags that options and values in the commands are edited in the

following example.

paneLayout -configuration "horizontal2" -paneSize 1 50 65;

A pane layout is created with two panes split horizontally, the top pane taking up 65 percent

of the total layout.

57

APPENDIX B

Software Packages

These are brief descriptions of the software packages referenced in this paper

excluding Autodesk Maya and the other pre-visualization packages described in the

background section.

Adobe After Effects – After Effects is a digital visual effects, motion graphics, and

compositing application used in the post-production process of film making and television

production.

Adobe Premiere – Premiere is a timeline-based video editing software application.

Autodesk 3dsMax – 3dsMax is a professional 3D computer graphics software for making

3D animations, models, games and images.

Autodesk Motionbuilder – Motionbuilder is a professional 3D character animation software

used for virtual production, motion capture animation, and traditional keyframe animation.

Maxon Cinema4D – Cinema 4D is a professional 3D computer graphics software primarily

used for motion graphic animation.

SideFX Houdini – Houdini is a professional 3D computer graphics software that exclusively

uses a suite of procedural generation tools. Its primary uses are for procedural modeling and

visual effects. It is also bundled with its own renderer, Mantra.

58

APPENDIX C

jSequencer Script Installation

jSequencer will only work for Maya 2011 and newer versions, because it depends

upon the Camera Sequencer panel which was introduced in the 2011 version. Without that

panel, the jSequencer will not work. Installing the script into the user’s Maya workspace

requires a few simple steps, provided by the read-me text file on the download page. These

steps are described in detail here.

1 Go to the website highend3d.com and search for jSequencer in the Maya

Scripts/Plugins section. If not found, check in the “Free” section of the same area.

2 Once the page is found, download the files.

3 Copy the entire MEL script into the Script Editor in Maya.

4 Execute the script in the Script Editor. This will compile all the procedures in the

script and make them usable commands in MEL.

5 Input the command “jSequencer” into the Command Line in the Maya interface.

6 The jSequencer window will pop up and be ready for use.

The “jSequencer” command has to be entered into the Command Line each time you

open a new session of Maya. The Script Editor automatically saves its state, or what was in

the editor when the window was last closed, so the jSequencer code will still be there. The

sequence created and the camera attributes and display objects are saved from the previous

session, so activating the tool will bring up the same window as before and be ready for use.

59

If the command does not work during the new session, follow the same instructions above to

activate the tool.

