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ABSTRACT 

To understand the physical and geological processes that drive the volcanism and 

control the morphology of KEJ volcano, the only active submarine volcano in the Lesser 

Antilles volcanic arc, I conducted near-source, high-resolution bathymetry and magnetic 

mapping of KEJ volcano and its subsurface using the ROV Hercules during cruise 

NA054 of the E/V Nautilus (Sept.-Oct. 2014). In our results, multiple generations of 

submarine landslides and well-developed canyons are observed, suggesting that the area 

has been hosting dynamic sediment transport systems from the flank of the volcano to 

the seafloor at multiple scales over time, with some of them being attributed to past 

eruptions. The canyons likely formed from in situ gravity flows due to the lack of 

evidence for subsidence in the area of KEJ. Columnar basalts located in the middle of 

the landslide deposit are similar in appearance to those observed in the KEJ crater during 

previous ROV dives, indicating a possible extent of a landslide event, i.e. a travel 

distance of volcanic materials from the crater region along landslide path. Landslide 

triggers at KEJ are still debated, but sector collapse of the edifice has been numerically 

predicted to be the failure style. High-resolution near-bottom magnetic anomaly data is 

used to investigate ongoing volcanism at KEJ, and revealed a magnetic anomaly high 

within the inner crater of KEJ. The source of the dichotomy in magnetization is both a 

dike complex at the inner crater and a fault trending NNE-SSW. I propose the following 

cyclic evolution scenario of KEJ from eruption events to inter-eruption periods, by 
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combining seafloor morphology observations, integrating high-resolution bathymetry 

maps, ROV visuals and rock samples from the wholesale KEJ, and subsurface 

characterization with high-resolution near-bottom magnetic survey of KEJ crater and 

inner crater. KEJ formed from arc volcanism; the magma rises quickly though the 

magma conduits to the shallow subsurface with a series of dikes; it erupted in shallow 

water depth; it erupted in an explosive style; these volcanic eruptions trigger a landslide 

and deposit material downslope; submarine canyons form from in situ submarine gravity 

flows until next the eruption. 
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NOMENCLATURE 

 

A/m ampere/meter 

BP before present 

C Celsius 

cm centimeter 

D headscarp height 

E east 

H height of fall 

HD high-definition 

Hz hertz 

IGRF International Geomagnetic Reference Field 

KEJ  Kick ‘em Jenny 

km kilometers 

kyr thousand years 

L runout 

m meters 

N north 

mbsl meter below sea level 

NNE north-northeast 

nT nanotesla 

RMSE root mean square error 
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ROV remotely operated vehicle 

S south 

SSW south-southwest 

TMI total magnetic intensity 

μm micrometer 

USBL ultra short baseline 

W west 

° degree 
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1. INTRODUCTION 

 

Submarine volcanism provides evidence for understanding Earth’s planetary 

evolution. About 90% of the annual output of the magma budget on Earth is produced at 

the seafloor (White et al. 2006), rendering submarine volcanism an important component 

of the planetary-scale energy budget and thermal evolution of Earth (Crisp, 1984; White 

et al. 2006). Volumetrically, the most pronounced submarine volcanism is globally 

observed in the form of seafloor spreading at mid ocean ridges (Crisp, 1984; Haymon et 

al. 1993; Sinton and Detrick, 1992; Speight and Henderson, 2010; White et al. 2006) and 

of numerous seamounts and igneous provinces within intra plate settings (Clouard and 

Bonneville, 2001; Wessel, 1997; Wilson 1963), convergent plate boundaries (Speight 

and Henderson, 2010) and rifting margins (Larsen and Saunders, 1998). Submarine 

volcanism is often associated with landslides when the sediment blanket has thickened 

over time (Bell et al. 2013; Boudon et al. 2007; Dondin et al. 2012; Siebert et al. 1987; 

Silver et al. 2009; Watt et al. 2012; White et al. 2006). Understanding the nature and 

behavior of submarine volcanoes allows us to assess Earth’s magmatic events in time 

and place (Bleeker and Ernst, 2006; Kay and Kay, 1993), their environmental impacts 

(Eldholm and Thomas, 1993; Jones and Jenkyns, 2001; Stothers, 1993), as well as the 

tsunamigenic potential of underwater landslides (Dondin et al 2017, 2012; Watt et al. 

2015), which becomes a significant geohazard, especially areas near large human 

populations (Cummins, 2007; McAdoo et al. 2009; Polet and Kanamori, 2000). 
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Devastating natural disasters can be caused by submarine landslides (Locat and 

Lee, 2002; Masson, 2006; Smolka, 2006), with different inherent risks based on the 

landslide’s location relative to human activity (Randolph and White, 2012). Submarine 

landslides are commonly observed in the continental shelves (Bryn et al. 2005; Masson 

et al. 2006; Twichell et al. 2009), the flank of oceanic islands (Heinrich et al. 1998), and 

submarine volcanoes (Carey et al. 2016; Dondin et al. 2012; Watt et al. 2015; Watt et al. 

2012) (Table 1). Submarine landslides on the continental slope pose a direct hazard to 

the deepwater pipelines that transport hydrocarbon (Kvalstad et al. 2001; Randolph and 

White, 2012). Large-scale landslides are a key process in the evolution of oceanic 

islands (Masson et al. 2002), such as Hawaii (Moore et al. 1994), La Reunion (Masson, 

1996; Lenat and Aubert, 1982), and the Canary Islands (Masson, 2002; Masson, 1996) 

where material from the islands can be transported hundreds of km and cover hundreds 

of km2 of the seafloor (Masson et al. 2006; Masson et al. 2002). Although possible 

impacts by such submarine geological process can make a significant impact on human 

society, characterizing the submarine landslide occurrence in space and time has been 

merely discussed. Investigating characteristics of the landslide activities from 

topographic observations and rock samples that were involved in the landslide can 

provide insight into the emplacement processes of a landslide (Horbitz et al. 2006; Watt 

et al. 2012) and, in turn, geological processes that induced the landslides (Watt et al. 

2015; Watt et al. 2012). 

In determining the source of the material, lithology and structure of the landslide 

material from high-resolution and systematic observations, particularly in the case of  
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Location Failure type Volume (km3) Velocity (m/s) Environmental Impact Tectonic Setting Reference 

Storegga Slide (Norway, 

ca. 8200 years ago) 

Earthquake, sediment 

loading, and Gas hydrate 

melting 

2500-3500 10-20 

Catastrophic impact on the 

Mesolithic population in the 

area 

Continental shelf Bryn et al. 2005 

Nuuanu (Hawaii, 1888) - 5000 - - Hot Spot Masson et al. 2006 

Great Banks (Canada, 

1927) 

Slope Failure and 

Earthquake 

100-150 15-30 Broke submarine cables Stable mid continent Fine et al. 2005 

Unimak (Alaska, 1946) 

Earthquake and Slope 

Failure 

- 199 - 

Aleutian Subduction 

Zone 

Watts et al. 2005 

Seward (Alaska, 1964) 

Earthquake induced 

landslides 

.211 - 

Destruction to the city of 

Seward 

Aleutian Subduction 

Zone 

Suleimani et al. 2011 

Kitimat Arm (Canada, 

1975) 

Failed mass .055 17-22.5 - - Skvortsov et al. 2007 

Nice Failure 

(Mediterranean Sea, 1979) 

Submarine Slide 0.0087-0.07 - - - 

Assier-Rzadkiewicz et al. 

2000 

Skagway (Alaska, 1994) Various Landslides 0.003-0.01 31-35 Destroyed railway dock 

Aleutian Subduction 

Zone 

Watts et al. 2005 

Montserrat (Lesser 

Antilles, 1997) 

Debris Avalanche 0.04 30-40 - Volcanic Island Arc 

Heinrich et al. 1998 

 

Papuaa New Guinea (1998) 

Underwater Slump and 

Earthquake 

6 11.4 20 km of coast affected Subduction zone Watts et al. 2005 

Izmit Bay (Turkey, 1999) Earthquake Induced Slides - 2.4 - Active plate margin Watts et al. 2005 

Chehalis Lake (Canada, 

2007) 

Subaerial landslide .003 - Extensive shoreline damage - Roberts et al. 2013 

Table 1. Historical Documented Landslides. Historical landslides catalog highlighting the key attributes of the different 

landslides.
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submarine volcanoes, outcrop scale geophysical remote sensing are imperative to 

accurately characterize textures and lithologies of the deposits. These techniques can 

help determine the provenance of the material, and informs the transportation processes 

that occurred (e.g. Carey et al. 2016; Day et al. 2015; Watt et al. 2015; Watt et al. 2012). 

Based on the near-source characterization of the seafloor features and rocks involved in 

the landslide, as example, Watt et al. (2012) deciphered the relative timing between the 

landslides to occur offshore Montserrat, Lesser Antilles, and the triggering mechanism 

for the landslides. Despite the widely recognized significance of advancing our 

knowledge on submarine volcanism and associating material transport as a consequence 

of planetary magmatism however, their eruption mechanisms, let alone, their origin and 

environmental impacts at different timescale –whether landslides are attributed to the 

eruption of underwater volcano, inflation of the ground inducing instability or gravity 

flows induced by the fault instability and whether how material transport due to the 

slides have operated have merely been discussed. 

In this study, I examine the nature of KEJ submarine volcano and associated 

landslides using shipboard multibeam data, high-definition video, and photomosaics 

from the crater of KEJ volcano, midslope and toe of the landslide. Our findings provide 

new evidence and implications for the provenance and processes of the landslide and 

volcanic activity at KEJ, in time and space, and will suggest in situ geological processes 

only a year prior to its most recent eruption event. 
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2. BACKGROUND 

 

2.1 Submarine Volcanoes 

Numerous submarine volcanoes have been identified based on satellite altimetry 

and gravimetry data (Hillier and Watts, 2007; Speight and Henderson, 2010; Wessel, 

2001). The number of estimated submarine volcanoes, which is based on minimum size 

(e.g at least 1 km above seafloor), on the ocean floor range from 100,000 (Wessel, 2001) 

to 1 million (Speight and Henderson, 2010) to 3 million (Hillier and Watts, 2007). Some 

of the submarine volcanoes are in shallow water. Submarine volcanoes located in 

shallow waters have the potential for explosive and hazardous eruptions as a result of the 

lower pressure exerted on the crater from the above water column (Fagents et al. 2013). 

Magma composition at submarine volcanoes varies, and different hazards are 

associated with different magma composition, depending on tectonic setting the volcano 

forms on. Submarine volcanoes are typically found at plate boundaries, and hot spots 

(Hillier and Watts, 2007; Speight and Henderson, 2010). The largest concentrations of 

active submarine volcanoes are found on arcs in subduction zone settings (Watts et al. 

2012). At all three of these areas basaltic magma can be produced, but if a convergent 

boundary or hot spot erupt on continental crust, andesitic magmas predominate 

(Tatsumi, 2005). There is an additional hazard associated with that due to the higher 

volatile percentage (Sigurdsson et al. 2006), making these volcanic eruptions more 

explosive. Identifying what tectonic setting the submarine volcanism is occurring on 



 

 6 

provides insight into the magma composition and the different hazards with the different 

magma types.  

Hazards associated with shallow water submarine volcanoes include tsunamis, 

lowered water density above the crater, and ballistic projectiles (Lindsay et al. 2005). 

Tsunamis can occur by the displacement of a large amount of mass downslope during a 

submarine landslide, inducing tsunami waves (Dondin et al 2012). Lowered water 

density is caused when there is a large release of gas into the water during magma 

degassing (Lindsay et al. 2005).  Ballistic projectiles can emerge from the sea and be 

propelled up to 5 km from the volcano, posing danger to nearby ships (Lindsay et al. 

2005). The damages caused by submarine landslides have been well documented to have 

devastating impacts on people and infrastructure (Locat and Lee, 2002; Masson, 2006; 

Smolka, 2006).  

Once a submarine volcano or seamount is identified, different techniques are 

used to visualize the morphology and architecture of the submarine volcano. Shipboard 

multibeam has been the preferred data source for mapping, identifying and sampling 

submarine volcanoes and their associated features (Horbitz et al. 2006; Machida and 

Ishii, 2003; Watt et al. 2012). Shared features of a submarine volcano and landslide are: 

a caldera, levees, scarp, and toe (Carey et al. 2016; Dondin et al. 2012; Watt et al. 2015; 

Watt et al. 2012). Dredges have historically been used to collect samples from submarine 

volcanoes (Machida and Ishii, 2003). Recent development of integrated surveying 

techniques utilize ROVs and Autonomous Underwater Vehicles to record videos of key 

geologic features, collect rock samples, and measure high-resolution geophysical data of 
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the underwater landslide (Carey et al. 2016; Day et al. 2015; Watt et al. 2015).  

Identifying key features associated with submarine landslides, using bathymetric and 

ROV-based data, is the first step in characterizing a submarine landslide and the failure 

that caused the landslide. 

TMI data provides insight into present day volcanic and geologic processes 

occurring at the volcano’s caldera. Aeromagnetic data has been used to characterize the 

magmatic source of submarine volcanoes (Lenat and Aubert, 1982; Malahoff and 

Wollard, 1968). While in recent years, magnetometers have been attached to 

submersibles to obtain high-resolution magnetic anomaly data, which are used to 

provide constraints to detect hydrothermal activity, study the hydrothermal activity’s 

affect on the magnetization value of the basalt and andesite hosted rocks and to 

investigate study the magnetic structure of a slow spreading ridge (Fujii et al. 2015; 

Honsho et al. 2009; Szitkar et al. 2015a; Szitkar et al. 2015b). Due to the active geologic 

processes occurring at the volcano’s caldera, the passive nature of the magnetic dataset 

allows us to capture the geological processes and quantify the geological processes 

(Tivey and Johnson, 1989). 

2.2 Geologic Background of Kick ‘em Jenny 

KEJ volcano (Fig. 1), is the only active submarine volcano in the Lesser Antilles, 

and has been investigated previously by (Carey et al. 2016; Carey et al. 2014; Devine 

and Sigurdsson, 1995; Dondin et al. 2012; Lindsay et al. 2005; Sigurdsson and 

Shepherd, 1974). It is located approximately 8 km northwest of the island of Grenada 
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(Fig. 1). KEJ volcano formed from arc volcanism and primarily consists of amphibole 

bearing andesitic basalt (Devine and Sigurdsson, 1995; Sigurdsson and Shepherd, 1974). 

Amphibole is an important mineral because breakdown rims will form on the outside of 

the amphibole grains as the magma ascends to the surface due to decrease in melt water 

percentage (Devine et al. 1998; Devine and Sigurdsson, 1995). This decease in water 

percentage tends to cause reactions between the amphibole phenocryst and melt, and the 

extent of the reaction is a function of decompression rate, which is proportional to the 

ascension rate of the magma (Geschwind and Rutherford, 1995; Rutherford and Hill, 

1993). The thicker (200-400 μm) the breakdown rim, the longer it took the magma to 

ascend to the surface (Devine et al. 1998; Devine and Sigurdsson, 1995). 

Based on 2014 shipboard bathymetry data, KEJ volcano has the following 

dimensions: 1300 m thick from toe to the cone, a 320 m radius crater, a 100 m radius 

inner crater, located in the north central portion of the crater, and the summit is 185 m 

below the sea level. From the top of the Kick ‘em Jenny crater (ca. 185 m) to the toe of 

associated landslide (ca. 2500 m) is 14 km (Fig. 2). The scarp of KEJ opens to the west-

northwest towards the Grenada Basin. 

 

2.2.1 Volcanic Activity at Kick ‘em Jenny Pre- 2014 

KEJ is a premier location to study the interaction between submarine volcanism 

and associated landslides because of the known and frequent eruption history. When 

seismic activity began recording in 1939, there has been a documented seismic swarm 

every 6 years near KEJ location (Devine and Sigurdsson, 1995; Lindsay et al. 2005) with 
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the most recent volcanic activity occurring June 2015 (Robertson et al. 2015). The 

ancestral KEJ volcano is modeled to appear ca. 230 meters above sea level and have 

gone through at least one major landslide event (Dondin et al. 2012), with a possibility 

of two additional landslide events. In August 1944, the Island Queen, a wooden 

schooner, was sunk due to lowered water density over KEJ crater, highlighting the 

hazards and need to monitor KEJ. 

 

 

Figure 1. Map of Study Area. A map showing Kick ‘em Jenny location (red rectangle) 

within the Lesser Antilles island arc chain. Underlying seafloor topography is based on 

satellite altimetry (Smith and Sandwell 1997).  
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2.2.2 Onshore Record of Tsunamis in Grenada and St. Lucia 

 There are two locations on the island of Grenada where there are paleo-tsunami 

relics (Scheffers et al. 2005), that provides additional support that a tsunami has occurred 

in the area. In the northwest area of the island, there is bimodal stratum of sandy matrix 

with well-rounded cobbles and boulders within a pyroclastic strata (Scheffers et al. 

2005). On the west coast, there is a 200 m long boulder ridge with steep flanks 

(Scheffers et al. 2005). It is likely this is not a man made feature according to specialists 

in the field Antillean prehistory (Bullen, 1964). Rendering the placement of these 

boulders as another paleo-tsunami relic. 

 There is also evidence for tsunamis on the islands of St. Lucia, 200 km north of 

Grenada, (Scheffers et al. 2005). On the west coast of St. Lucia, there is thick stratum of 

chaotic mixture of very fine particles with gravel and boulders, with weights up to 10 

tons, which represents paleo-tsunami relic in the pyroclastic stratigraphy (Scheffers et al. 

2005).  Based on weather son the boulders, they could surmise that these were deposited 

during the Middle Pleistocene. Although it could not be determined where exactly the 

tsunami that caused these relics originated from, it is interested to note that they are all 

deposited on the west coast of the islands, indicating that the tsunami did not originate 

from the Atlantic Ocean and move westward the Antilles Island arc (Scheffers et al. 

2005).  
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Figure 2. Bathymetry and Interpretation Map. (A) Shipboard bathymetry map displaying the distribution of the different rock 

samples and the track of the ROV during the two different dives. (B) Different geologic and morphological interpretations of 

the landslide. Green lines represent steep subtle changes in the slope, red represents ridge apexes, and black represents 

submarine valleys. 
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3. METHODS 

 

3.1 Multibeam Bathymetry Acquisition and Data Analyses 

High-resolution shipboard swath bathymetry data was collected with a 

Kongsberg EM302 system during NA054 cruise on the Ocean Exploration Trust’s E/V 

Nautilus (Sept. – Oct. 2014). The data covers the entire landslide ca. 4.4 km2 (Dondin et 

al. 2012). I used the multibeam data to create a bathymetry map (Fig. 2A), and to create 

the slope direction and angle maps, which is extracted from the bathymetry map (Fig. 

3A and 3B). These data provided a new perspective on the morphology of the landslide; 

which is not seen strictly looking at the bathymetry map. These three maps provide 

details about the morphology of the landslide, which are shown in detail (Fig. 2B).  

Bathymetric data highlights the seafloor expression of these landslides, but distances can 

be measured from these maps, which can be used to predict how the imaged landslide 

behaved.  

Landslides have quantitative ratios that can allow us to predict how the landslide 

behaved during failure. The mobility of the second-generation landslide can be predicted 

by the ratio between the height of the fall and the runout (Hayashi and Self, 1992). 

Additionally, the rheology of the material can be highlighted by the ratio between 

headscarp height to runout (Crozier, 1973). Mobility and rheology are two factors that 

go into assessing how a submarine landslide behaved. Another important factor is the 

volume of material moved during the failure. 
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Figure 3.  Slope and Directions Maps. Maps derived from the bathymetric data: (A) Slope angle map of the landslide that is 

displaying the steepness of the slopes at each location. (B) Upslope direction map that displays the direction of the landslide 

slopes. 
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The area of a landslide can has been used to determine the volume of material 

involved in the same landslide. The volume and the area of the second-generation 

landslide is known, which allowed us to determine which empirical relationship between 

the landslide area and volume best fit at KEJ. This empirical relationship is applied to 

the area covered by the third generation landslide to determine the volume. The equation 

used: 

Volume = (0.769)(Area)1.250 ------- (1) 

is determined from 45 different landslides to develop this relationship (Whitehouse, 

1983).  

 

3.2 Near-Bottom High-Resolution Videos and Geological Mapping 

ROV Hercules collected high-definition videos and rocks samples, which are 

used to support our overarching goals. Dives H1379m H1380, and H1390, lasted eight 

hours each. I used digital still images, high-definition videos, and rock samples to 

examine the crater of the volcano, toe, and midslope of the landslide. Dive H1390 was 

designed to investigate a contact between volcanic rocks from the edifice of the volcano 

and newly lithified carbonate rock at the midslope. The ROV collected carbonate 

samples that are in contact with the volcanic rock to perform Accelerator Mass 

Spectrometry on the foraminifera in the carbonate rock, to determine a potential age 

constraint on a landslide deposit. In order to utilize in situ observations efficiently, 

knowing exactly where the samples and observations are located on the landslide is 
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paramount. I located all the visual data because it was merged with USBL navigation 

data between ship and ROV Hercules based on time stamps.  

Still images from the ROV were merged to create 47 photomosaics using the 

photomerge tool in Adobe Photoshop. Notable shared features in consecutive still 

images were used to determine alignment to create a coherent, continuous mosaic. 

Gathering visual aids on how the landslide is deposited provides insight into the 

processes that occurred, which leads to how the material in the landslide is transported. 

Additionally, geologic mapping of bacterial mats, hydrothermal vents, and geologic 

material in the crater is done to allow us to interpret fluid flow in the system, and to 

create a baseline to correlate changes in volcanic activity.  

 

3.3 Near-Bottom Magnetic Mapping 

High-resolution TMI data from the inner crater of the Kick ‘em Jenny Volcano 

has been collected during two ROV dives which added up to be 144-hours of data and a 

total of 18 profiles. The magnetometer that is attached to the ROV is the Honeywell 

HMR 2300, and it measures the X, Y, and Z vector components of the magnetic field. 

 The raw magnetic data is corrected for vehicle induced magnetic noise, and then 

merged with ship navigation data at 1 Hz. The magnetic data is also corrected for the 

IGRF (Thébault et al. 2015) and diurnal variations, using data from the San Juan 

Magnetic Observatory (http://geomag.usgs.gov/monitoring/observatories/sanjuan/) and 

adjusted to survey local time. These additional corrections are made in order to better 

understand the crustal magnetic signatures; thus creating a true magnetic anomaly 
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related to the subsurface. Next, the corrected 18 2-D profile lines are linearly 

interpolated onto a straight line with a15-cm spacing. The remanent magnetic source has 

an effective inclination and declination of +33° and -14° respectively. After corrections, 

the magnetic data is inverted in order to obtain magnetic and geometric properties of the 

subsurface rocks. 

The magnetic anomaly data is inverted using the Parker and Huestis, (1974) 

method to better understand the magnetic source distribution, and gain insight on the 

volcanic processes occurring within the crater. To provide information on the subsurface 

volcanic processes of the KEJ crater and check if the inversion returned a reasonable 

output, a prism forward model based on (Talwani and Heirtzler, 1964) method is 

implemented. This forward code enabled us to represent the magnetic architecture of the 

subsurface using varying magnetic distribution and prism thicknesses. 

 

3.4 Geological Samples  

I used rock samples that spanned the landslide, (cone, midslope, and toe) to 

obtain a complete representation of rocks involved in the landslide, ground-truth our HD 

video, and provide additional evidence for the formation of shallow water material 

(Table 2). Specifically, it is important for us to collect rock samples that were located in 

the cone in order to compare those cone rocks with the volcanic material that is seen 

downslope. 



 

 17 

Table 2. Sample Depth and Local. Sample ID, depth and location on Dive H1379, 

H1380, and H139 samples. 

Sample Dive 

Depth 

(m) 

Latitude 

(N) 

Longitude 

(W) 

NA054-004* H1379 2204.0 12.3420 -061.7441 

NA054-007* H1379 2203.4 12.3422 -061.7438 

NA054-008* H1379 2188.6 12.3418 -061.7438 

NA054-010* H1380 260.5 12.3013 -061.6376 

NA054-011* H1380 264.1 12.3012 -061.6376 

NA054-050* H1390 1652.0 12.3332 -061.6832 

NA054-051* H1390 1653.0 12.3332 -061.6815 

NA054-053* H1390 1651.7 12.3333 -061.6814 

NA054-054* H1390 1673.0 12.3329 -061.6815 

*Rock Sample and thin sections 
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4. RESULTS 

 

4.1 Seafloor Morphology 

From the shipboard bathymetry data, I observed the following: a head scarp 

cone, toe of a landslide (with some hemiplegic sediment extending further), levee (from 

a previous landslide), channels on bounding the landslide deposit, eroding the northern 

and southern escarpment, and thin submarine canyons that deposit into the channels 

(Fig. 2B).  

The first generation landslide of KEJ (Fig. 4B) is the largest landslide and 

formed a levee observed in the north.  This landslide has a horseshoe-shaped collapse 

structure and deposits 17 km downslope, terminating in the Grenada basin. I also 

identified the second-generation landslide, which is the landslide, generated by a sector 

collapse, which is a failure of the edifice that involves the magma conduit, which shaped 

the current edifice. It has deformed sediments and a plateau in the mid slope that is 

highlighted by the slope angle map (Fig. 2A). The second-generation landslide (Fig. 4C) 

deposited the prominent toe feature, where chemosynthetic cold seeps occur (Carey et al. 

2014) and is capable of having generated a tsunami with 15-m waves (Dondin et al. 

2012). The second-generation landslide would be characterized as a rock avalanche type 

of failure because the H/L ratio, indicative of limited mobility of the landslide (De 

Blasio et al. 2006; Hayashi and Self, 1992), was ca. 0.21. The rheology was blocky-

disintegrative because the D/L ratio, indicative of a more fluid landslide, not as many 
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Figure 4. Distribution of Landslides Generations. (A) Shipboard bathymetry maps with interpretations showing the 

distribution of the three different landslides observed in the area. (B) The first generation landslide.  This deposit has an 

additional 5 km runout that is not seen, where the landslide deposits into the Grenada Basin (Dondin et al. 2012). (C) The 

second-generation landslide. (D) The third generation landslide. 
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blocks involved in the landslide (Croizer, 1973), was ca. 0.004 (Table 3).  Lastly, I 

identified the third generation landslide (Fig. 4D) that occurred on the top most 

sediments, and bounded to the midslope with a volume of 0.295 km3.  This landslide is 

the only deposit that has a rounded toe.  Three generations of landslides are outlined on 

top of one another for comparison (Fig. 4A). 

I observed that the bottom current of the submarine canyons and channels have 

significant influence on the morphology in the vicinity of Kick ‘em Jenny volcano (Fig. 

2A).  Slope direction highlights where the possible source for these bottom currents 

originate from (Fig. 3B).  Along the eastern edge of the southern escarpment, I see a 

bottom current channel and another bottom current near the mid slope of the southern 

escarpment. Near the north escarpment, I see the levee from an earlier landslide, next to 

the toe of a different landslide.  

 

Table 3. Second-Generation Landslide Statistics. Empirical ratios to characterize the 

second-generation landslide at KEJ. 

 Ratio 

Characterization based on 

ratio 

Implications References 

H/L *ca. 0.21 Rock avalanche group **Limited mobility 

*Dondin et al. 

2012 

**De Blasio et al. 

2006 

D/L ca. 0.004 

Blocky-Disintegrative 

rheology 

More fluid 

landslide, not as 

many blocks 
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4.2 ROV Near-bottom Observations 

We have provided new ROV visual observations that will supplement the visuals 

that have already been completed (Carey et al. 2016; Carey et al. 2014).  In the crater, 

numerous bubble streams, a shallow ephemeral hydrothermal system, and bacterial mats 

are identified and located for future comparison.  Cold seeps are also located on the talus 

slope and down on the toe of the landslide. 

High-definition video from the ROV allowed us to document the midslope and 

toe of the landslide during our two dives. Photomosaics of the seafloor on the landslide 

during the dive are displayed (Fig. 5A). Dive H1390, covered 120 m, ranging in depths 

from 1700 m to 1659 m below sea level.  At the midslope, I observed the contact 

between carbonate material and volcanic material (Fig. 5B). Rock samples NA054-053 

and NA054-054 were taken at this contact.  

Large blocks of highly fractured volcanic material from the crater are seen 

throughout the dive (Fig. 5C). Another piece of evidence that I will present is columnar 

basalts, which form from the unique cooling pattern of the crater (Fig. 5E). These 

volcanic material have a layer of sediment a few cm thick, indicating they were recently 

transported a distance of 7 km (Fig. 5D); distance is known because the volcanic rocks 

are proto crater material. 
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Figure 5. Focused Dive of Landslide. (A) Contour map displacing the focused dive area where I explored the nature of the 

volcanic and carbonate contact at ca. 1700 m. The red box in the inset map marks where this dive took place. Photomosaics 

from the dive were placed at their exact location with orientation based on ROV navigation and altitude data.  Blue color 

represents seen carbonate outcrop, and red represents seen volcanic outcrop. (B) Contact between carbonate and volcanic 

material.  (C) Thick, lithified section of carbonate outcrop. (D) Highly fractured volcanic material that that was observed at the 

midslope of the second-generation landslide.  (E) Columnar basalt that was observed at the midslope of the second-generation 

landslide.  
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4.3 Near-Bottom Magnetic Mapping, Inversion and Forward Modeling Results 

I observe a positive magnetic anomaly within the inner crater of the KEJ crater, 

with the magnetic intensity decreasing on the eastern half of the crater (Fig. 6D). There 

is a semi linear trend that runs NNE-SSW through the center of crater.  

The inversion results provide the simplest solution of the 2-D magnetization 

distribution model for a varying thickness magnetic source layer.  There is a strong 

correlation between the positive magnetic anomaly and positive magnetization value.  At 

the inner crater, I see the largest positive magnetization values ~10 A/m.  Near the center 

of KEJ crater, there is a N-S trend of positive magnetization that can be correlated with 

the different 2-D lines.  The magnetization values decrease and become negative as I 

move away from the inner crater toward the outer crater in a W-E trend.  

The inversion results provided the starting point for the 3 different forward 

models that were used: polarity reversal (Fig. 6A), structural boundary (Fig. 6B), and 

lithological changes (Fig. 6C).  The magnetization values were changed to provide a 

better fit between the observed magnetic anomaly and the forward model’s predicted 

magnetic anomaly.  Based on average RMSE, the polarity model best represented the 

observed magnetic anomaly (356 nT), followed by the structural boundary (773 nT), 

with the lithological model having the most error (1052 nT). 

The magnetic source thickness and magnetization distribution was taken from the 

final forward model results and used to create my interpretation of the magnetic source 

below KEJ (Fig. 7C). 
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Figure 6. Magnetic Forward Models. Diagrams displaying the 3 different magnetic 

forward models that were used to investigate the source of the dichotomy in the 

magnetization distribution and magnetic anomaly signatures in the inner crater.  (A) 

Polarity reversal model, average RMSE value of 356 nT. (B) Structural boundary model, 

average RMSE value of 773 nT. (C) Lithological model, average RMSE value 1052 nT. 

(D) Total magnetic field intensity map of the inner crater.  Black line on the magnetic grid 

represents the magnetic survey line that these anomalies originate from. 
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Figure 7.  Magnetic Inversion and Forward Results. Magnetic inversion and forward 

modeling results:  (A) Displays corrected magnetic anomaly grid, with magnetization 

distribution values of the 18 different track lines plotting on top for comparison. (B) 

Bathymetry of Kick ‘em Jenny crater with key geologic features labeled and plotted.  (C) 

Forward prism model with thickness of magnetic source layer under Kick ‘em Jenny 

crater.  Color represents magnetization distribution given to the different prisms. 
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4.4 Thin Section Analyses 

Thin sections, NA054-004 and NA054-007, were added to the three other thin 

sections that were made from samples collected in the September 2013 E/V Nautilus 

cruise.  The samples from 2013 were collected from the toe of the landslide, whereas the 

samples from 2014 were collected from the toe and near a contact between volcanic rock 

and lithified carbonate rock. 

 

 

Figure 8. Thin Section Evidence for Volcanic Eruption. Four rock thin sections are 

shown to provide evidence for past rate of magma ascension, eruption depth and style. 

(A and B) are from sample NA054-004, (C and D) is from sample NA054-007, and both 

samples were collected from the toe at a depth of ca. 2200 m. (A) Amphibole phenocryst 

from sample NA054-004 in plain polarized light, and (B) Same amphibole phenocryst, 
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but in cross-polarized light. (C) Pyroclastic breccia that contains hyaloclastites. (D) 10x 

zoom in of a single round and highly fractured hyaloclastite. 

 

Sample NA054-004, has amphibole breakdown rims present on the rims of the 

phenocryst (Fig. 8A and 8B). The grain displayed has a 90 micron thick breakdown rim, 

and the other amphibole grains have smaller or non-existent rims. 

Sample NA054-007, hyaloclastites are seen in a pyroclastic breccia (Fig. 8C and 

8D).  Hyaloclastites form when basaltic lava erupted at water depths and the lava reacts 

with the water (Honorez and Kirst, 1975; Smith and Batiza, 1989).  They are composed 

of super-cooled magma that turns into glass, which forms from the stress produced by 

super-cooling magma with water and not forming any lava flow (Carlisle, 1963; 

Honnorez, 1961; Nayudu, 1962). 
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5. DISCUSSION 

 

5.1 Sediment Transportation Regime and the Nature of Landslides at KEJ   

KEJ volcano’s seafloor morphology exhibits a complex relationship between 

different submarine sedimentological activities: development of submarine channels and 

canyons (Fig. 2B) and the multi-generation of landslides (Fig. 4A), which play a major 

role in controlling sediment transportation regimes around an active submarine volcano. 

Volcanoes evolve over time, including permanently subaqueous volcanoes, represented 

by Lō’ihi in Hawaii and numerous other seamounts (Fornari et al. 1988; Malahoff and 

Woollard, 1968) and volcanoes that experienced both subaerial and submarine 

environments, represented by the Canary Islands (Krastel et al. 2001; Watts and Masson, 

1995) and KEJ, have been known to be closely related to vigorous sediment 

transportation regimes by weathering and erosion processes of the volcanoes (Fornari et 

al. 1988; Malahoff, 1987; Watts and Masson, 1995).  However, despite such pronounced 

observations on the well-evolved submarine canyons and channels in the vicinity of 

submarine portion of the volcanoes, mechanisms that formed these seafloor 

morphological features involving the weathering and erosion processes of the volcanoes 

and their roles in global sediment cycle and transportation systems have rarely been 

discussed to date.  

Understanding the origins of the seafloor morphological features can provide an 

important first step to advance our understanding of the sediment transportation regime 

hosted by submarine volcanoes. Overall, contrasting features in the seafloor morphology 
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are observed at and in the vicinity of KEJ, i.e. the smooth flank of KEJ’s cone and 

landslide surface just below the cone to the Grenada Basin (Fig. 2A), and a well-

developed shelf platform composed with submarine canyons and channels (Fig. 2B). The 

formation scenarios of submarine canyons on the flanks of ocean islands depends on 

how a volcanoes experiences subaerial and submarine environments, i.e. whether the 

initiation of these sediment transportation systems has taken place by subaerial 

weathering and erosion of rocks or by sediment instability at submarine slopes (e.g. 

Moore et al. 1989; Krastel et al. 2001). To determine KEJ’s canyon and channel 

formation scenarios, I first investigate whether the weathering and erosion started 

subaerially by assessing whether subsidence occurred or not.  In the best proximal case, 

a subsidence rate of 0.4m/kyr is observed from the northern islands of Guadeloupe, 

which is a part of the same volcanic island arc chain (Leclerc et al. 2014). Although KEJ 

is located within the same island arc, this subsidence rate may not be directly applicable 

to KEJ because: (1) this subsidence rate at Guadeloupe is related to the Les Saintes fault 

system (Leclerc et al. 2014), and I do not see any connectivity of the Les Saintes fault 

system from Guadeloupe to Grenada; (2) even the seismic evidences, which are from the 

closest geographical locations that are attributed to any fault systems that could induce 

subsidence at KEJ, are located 17 km downslope from KEJ volcano, suggesting there is 

no subsidence occurring in the Grenada Basin (e.g. Aitken et al. 2011). Closer to KEJ, 

there is a mapped fault scarp near the crater (Sigurdsson and Shepherd, 1974), and the 

epicenters of the 2001 volcanic earthquakes appear to closely associate with this fault 

scarp, rather than with the volcanic activities of KEJ (Lindsay et al. 2005). However, it 
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has been debated whether this fault scarp is still active, inactive, or dormant, and 

assessing denser focal mechanism data is needed to determine if the source of these 

earthquakes are tectonic or volcanic related (e.g. Lindsay et al. 2005). Hence, I propose 

that there is no active subsidence occurring at KEJ; rather, the transition from a subaerial 

to submarine volcano has been attributed to instantaneous volcanic eruption and 

subsequent landslide events, supporting a scenario that Dondin et al. (2012) numerical 

simulations have predicted. 

Without subsidence, these KEJ’s submarine canyons have likely been formed 

from shallow, sediment-laden shelf currents, which pile up sediments on the island 

shelves, causing additional loads in the area, resulting in the gravity flows that erode the 

shelf platform. Erosion of the shelf platform is easy due to the biogenic and 

volcaniclastic source of sediments that cover the flanks near KEJ (Schmincke et al. 

1995; Schmincke and Sumita, 1998). The evolution of KEJ began as a subaerial island 

like the Canary Islands, and could include the weathering and erosion that might have 

started on the KEJ volcanic cone; but soon volcanic activities altered the entire volcanic 

system to a subaqueous environment, where any sediment erosion and weathering 

features with subaerial origins were likely overprinted by both vigorous volcanic 

eruption events as well as other submarine sediment transport regimes. 

Multiple generations of submarine landslides observed at KEJ flank indicate that 

a volumetrically significant sediment transport regime has taken place in addition to the 

submarine canyons and channel systems. To further understand this regime around an 

active submarine volcano in time and space, detailed morphological mapping of the 
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observations from bathymetry is undertaken (Fig. 2B). From seafloor morphological 

observations, it is clear that the landslide exhibits a crosscutting relationship, which that 

the formation of canyons and channels predates the landslides (Fig. 2A).  This is because 

the depth of the canyon toe between the slopes around KEJ is deeper than at the toe of 

the landslide.  Over longer periods of time, canyons and channels have played a major 

role in sediment transportation system around KEJ.  

Our observations on morphology on the KEJ flank and landslide areas using both 

shipboard and high-resolution, near-bottom bathymetry maps (Fig. 2 and 5) revealed that 

three generations of landslides have occurred in KEJ vicinity (Fig. 4). The foundation of 

the current KEJ’s flank structure is the deposit of the first-generation landslide (Fig. 4B). 

However, little is known about this landslide except it’s area, 67 km2 and extent, 17 km, 

which have been calculated from bathymetric data (Lindsay et al. 2005). Based on other 

landslide events in the Lesser Antilles, specifically events at Montagne Pelée, 

Martinique, it appears that landslides with such large areas covered, ca. 65 km2, and long 

extent, ca. 17 km, form when there was a sector collapse of the volcano (Boudon et al. 

2007; Dondin et al. 2012; Le Friant et al. 2003), indicating that it is possible that KEJ 

has undergone two sector collapses.  

The second-generation landslide (Fig. 4C) was the primary focus for our survey 

because it is the landslide, induced by a volcanic event, which shaped the current edifice. 

The sampling and near-bottom observations that were collected are because I were able 

to groundtruth all of our observations that are seen in our bathymetric data. The 

columnar basalt (Fig. 5D), weighted an estimated ca. 144 tons in water, with a velocity 
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range of 2 – 30 m/s during the relocation due to the landslide from the caldera to the 

present location, 6 km laterally and 1.5 km vertically away (Fig. 2A), in 3.4- 51.5 

minutes. The two cooling patterns, highly fractured (Fig. 5C) and columnar basalt (Fig. 

5D), are unique cooling patterns of volcanic material that are seen at KEJ’s crater. The 

presence of these volcanic rocks (Fig.5 C, D) in the second-generation landslide deposit 

allow us to propose that the transportation of the volcanic material was related to the 

sector collapse of KEJ (Dondin et al. 2012), which exhumed the cooled volcanic crater 

material from the subsurface of the crater, and the resulting landslide event, which 

moved the volcanic material from the crater to the survey area (Fig.5A).  

The third generation landslide is difficult to identify as Dondin et al. (2012) only 

interpreted the central deposit to be apart of the third generation of landslides. Our new 

seafloor map revealed that the third generation is composed of a deposited located on the 

right, central, and left side of the previous landslide. By comparing the roundness of the 

lobe of a landslide deposit, a proxy of landslide timing (e.g. Mitchell et al., 2000; Cannat 

et al. 2013), I identified the location and distribution of the third generation landslide. I 

observed that the third generation has a round lobe, ca. 25° (Fig. 4D), and the second-

generation has a steeper lobe, ca. 40° (Fig. 4C). The volume displaced by the third 

generation landslide is minimal compared to the first and second-generation slides, 

which displaced 227 and 15 times more material, respectively; yet it indicates the 

sediment transport regime by landslide has taken place multiple times. Within a short 

time period, both a submarine landslide and gravity flow event can occur 

instantaneously. The amount of material transported during a landslide event is, 
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however, vastly different between these two sediment transportation regimes at KEJ:  the 

landslides can move ca. 4-67 km3, a factor of 40-600 times more material than a single 

canyon could transport per an event of gravity flow.  

The origin of these landslides at KEJ can be attributed to multiple different 

sources: volcanic activity, earthquakes, or underconsolidation (Masson et al. 2006; 

Wiemer et al. 2014). As previously discussed, the volcanic activities at KEJ have been a 

major cause of modifying the morphology of the volcano itself and seafloor, and 

monitoring when they occur is an important and challenging task. The earthquake 

seismicity monitoring system around KEJ’s geographic area may be the most closely 

and intensively monitored submarine volcano anywhere in the world (Lindsay et al. 

2005), with 50 seismic stations positioned in the Eastern Caribbean, and the closest 

station being 3 km to the east of the summit. There are two different types of seismicity 

activity recorded by these seismograph stations: (1) Volcanic related seismicity; and (2) 

earthquakes associated with large-scale tectonic movements. Distinguishing between the 

two sources is accomplished by observing the difference between the T-phase on the 

seismograph. A T-phase is a low-frequency acoustic wave generated during eruption 

events (Shepherd and Robson, 1967). The differences between T-phases generated by 

long-period volcanic earthquakes and earthquake generated by tectonic movements are 

evident in the time and frequency domain (Lindsay et al. 2005).  In the time domain, the 

volcanic earthquakes T-phase last for 4-5 minutes, while the earthquakes themselves last 

20-30 seconds (Lindsay et al. 2005). In the frequency domain, volcanic earthquakes will 

have higher frequencies in the .7 Hz to 10 Hz, whereas the earthquakes will have 
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frequencies mainly at 10 Hz or greater (Lindsay et al. 2005).  This distinction is what has 

allowed for the interpretation that the seismic activity is primarily related to volcanic 

activity at KEJ. Additionally, underconsolidation is known to have cause landslides due 

to increased pore pressure on the underconsolidated sediments (Masson et al. 2005), and 

chemical alteration of existing rock (Mizota and Van Reeuwijk, 1989; Tucker, 2009).  

The alteration of volcanic rock to clay material is known to be a source of landslides due 

to the clay’s low shear strength and friction coefficient (Leroueil and Hight, 2003; 

Wiemer et al. 2014).  Carey et al. (2014) and Koshinsky et al. (2007) obtained visual 

observations of cold seeps on KEJ’s landslide, which can be associated with larger 

amounts of clay present, due to the breakdown of volcanic material into clay material 

(Mizota and Van Reeuwijk, 1989; Tucker, 2009).  

 

5.2 Pre-2014 Eruption at Kick ‘em Jenny: In Situ Volcanic Activity 

  KEJ the only active volcano in the Lesser Antilles island arc with approximately 

80 years of observable eruption cycles (Devas, 1974; Lindsay et al. 2005; McClelland et 

al. 1990; McClelland et al. 1989; Molard, 1947; Robertson et al. 2015; Shepherd, 1988; 

Shepherd and Robson, 1967; Sigurdsson, 1989). Indeed, KEJ erupted nine months after 

our cruise NA054, and there has yet to be a study on the most recent eruption. Toward 

understanding the volcanic eruption cycle and environmental impact, our near-bottom 

observations provide invaluable information. KEJ is a rare case study because there is a 

clear time scale between two different eruptions, 2001 to 2015, where I can observe the 

geologic process that occurred during this time. Normally, when other science teams 
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dive onto submarine volcanoes, i.e. Piton del la Fournaise volcano, the data gathered is 

not a dataset that provides insight into an active volcanic eruption and environmental 

impact. 

Characterizing subsurface magmatic activities including: dimensions of a magma 

chamber, magma conduits, and diking system that yield eruption events, is a challenging 

problem in geophysics. The subtle density contrasts, and dimensions of the volcano 

cones often preclude us from successfully conducting inactive seismic source surveys 

due to the wavelength resolution issues, let alone the non-unique solutions in gravity and 

seismic monitoring surveys, in the submarine context particularly. Nevertheless, in 

recent years, high-resolution magnetic anomaly data has been used to provide constraints 

to detect and study hydrothermal activity, study the hydrothermal activities affect on the 

magnetization value of the basalt and andesite hosted rocks, and to investigate the 

magnetic structure of a slow spreading ridge (Fujii et al. 2015; Honsho et al. 2009; 

Szitkar et al. 2015a; Szitkar et al. 2015b), advancing our understanding of the subsurface 

characterizations of submarine volcanic systems. Total field magnetic anomaly data has 

been used to study active volcanoes to understand the current magmatic processes 

currently occurring, because of the passive nature of magnetic data. High magnetic 

anomalies can arise in TMI data, after IGRF and diurnal variations corrections, from 

various different scenarios: geomagnetic polarity reversal (Vine and Matthews, 1963), 

represented by West Blanco Scarp, northeast Pacific (Tivey et al. 1998); tectonic 

juxtaposition of rock units with differing magnetic properties (Grauch et al. 2006), 

represented by San Ysidro Fault, New Mexico, USA (Grauch et al. 2006); and changes 
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in the local lithology (Vine and Matthews, 1963), represented by Piton del la Fournaise 

volcano, La Reunion Island, Indian Ocean (Lenat and Aubert, 1982) and Lō’ihi in 

Hawaii (Malahoff, 1987). Interpretation of magnetic data depends on the set of 

geological constraints, such as source locations, lithology, geometry, and age data, 

applied to the models. Having accurate constraints helps limit the number of models that 

can fit to the observed magnetic anomaly. Our detailed magnetic survey in the inner 

crater produced a magnetic anomaly high (~3000 nT) that corresponds to the area at the 

inner crater, and low magnetic intensities (~ -100 nT) on the eastern side of KEJ’s crater 

(Fig. 6D).  To investigate the magnetic source distribution, I conducted a magnetic 

inversion modeling that yielded a high magnetization distribution at the inner crater (~10 

A/m) and low magnetization distribution on the eastern half of the crater (~ -3 A/m). To 

assess the origins of this dichotomy in magnetization distribution at KEJ crater, I 

investigate the following scenarios: polarity reversal (Fig. 6A), structural boundary (Fig. 

6B), and lithological changes (Fig. 6C).  

Ocean crust preserves ambient magnetic field as the crust is formed, which has 

provided significant evidence to support seafloor spreading at mid ocean ridges, in turn, 

plate tectonics (Vine and Matthews, 1963). Although seafloor spreading magnetic 

anomalies are commonly known to produce the most pronounced magnetic anomaly 

signatures in world’s ocean basins (e.g. Vine and Matthews, 1963), the scale of magnetic 

anomalies associated with the caldera of a submarine active volcano can be much 

smaller and shorter, in space and time, respectively. Moreover, KEJ is an active 

submarine volcano that has been erupting every decade, with the oldest known age 
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constraint being 43.5 kyr BP, based on radiocarbon dating (Dondin et al .2017), and the 

formation and evolution of KEJ is happening all with in the Brunches Chron, which 

began 780 kyr BP. This allows us to omit a polarity reversal as the source of the 

dichotomy in magnetization distribution I observe in KEJ Caldera.  

Faults are ubiquitously observed in the caldera of active volcanoes (Smith and 

Baily, 1968) as a consequence of: magma chamber inflation or deflation (Walter and 

Troll, 2000), both represented by Darwin Caldera, Galápagos Island (McBirney and 

Williams, 1969); inward-slumping of the caldera (Walter and Troll, 2000); and uplift of 

the caldera floor (Walter and Troll, 2000), represented by Ischia Caldera, Italy (Tibaldi 

and Vezzoli, 1998). There is video evidence of faults in the inner crater (Carey et al. 

2016), with another fault scarp, 50 m of vertical offset, 1 km east of KEJ crater (Lindsay, 

2005; Sigurdsson and Shepherd, 1974). I have considered the possibility of structural 

influence that caused the observed linear trend in the magnetic anomaly grid (Fig. 6D); 

observed faults in the inner crater controlling the fluid venting (Carey et al. 2016). There 

is a trend that runs NNE-SSW through the center of KEJ crater (Fig. 6D), on the eastern 

half of the crater is lower magnetic anomaly values (-500 nT – 500 nT), whereas on the 

western side has the higher magnetic anomaly values (-500 nT – 3000 nT). I interpreted 

this trend as being a potential fault running through the crater, and uplifting the eastern 

half of the crater, giving it less magnetic source.50 m offset is used because that is the 

offset that is seen at fault scarp near KEJ crater (Lindsay, 2005; Sigurdsson and 

Shepherd, 1974). I take the fault into account by moving the bottom of our prisms’ 

magnetic source, in the model 50 m up, on the eastern side of the crater (Fig. 6B). I 
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obtained a 773 nT RMSE value, which is a high value indicating lower agreement 

between the observed magnetic anomaly and forward-modeled magnetic anomaly. 

Taking into consideration that faulting is seen within (Carey et al. 2016) and near 

(Lindsay et al. 2005) KEJ caldera, and faulting within volcanic craters is a ubiquitous 

feature (Smith and Baily, 1968), together with our modeling results, I consider 50 m 

fault in the magnetic source layer to be an origin of the dichotomy of magnetization 

values observed at KEJ Caldera (Fig. 7C).  

Magnetic anomalies can arise from lithology contrast with different types and 

amounts of iron bearing materials (Macdonald and Abbott, 1970). Lithological 

boundaries in the form of a dike complex, has been shown to cause magnetic anomaly 

highs at other submarine volcanoes in Hawaii (Malahoff and Wollard, 1968) and on the 

La Réunion island (Lenat and Aubert, 1982).  These dike complexes are characterized by 

higher density and higher magnetization than the surrounding lava, due to the higher 

density because feeder dikes have less vesiculation (Macdonald and Abbott, 1970), 

allowing for more magnetic rich material to be in the dikes. A potential dike swarm is 

modeled by thickening the prisms in the forward model (Fig. 6C) where there is the 

magnetic anomaly high in the inner crater (Fig. 6D). A 1072 nT RMSE value, which is a 

high value indicating lower agreement between the observed magnetic anomaly and 

forward-modeled magnetic anomaly. Whether or not these dikes contribute to create the 

50m fault like structure predicted by our modeling remains uncertain. However, given a 

wholesale operation mechanism of an active volcano is drive by dike swarms from a 
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magma chamber to the shallow subsurface of its caldera, I propose that on-going melt 

transport by dikes below the western half of the inner crater is the best candidate to 

explain the dichotomy in magnetization distribution. 

Furthermore, in active volcanic and magmatic systems, hydrothermal activity has 

been shown to demagnetize the iron bearing rocks (Szitkar et al. 2015a; Tivey and 

Johnson, 2002; Tivey and Johnson, 2001), with the rate of demagnetization related to the 

temperature of the fluid (Tivey et al. 2014). When surface geology is plotted on top of 

the magnetic anomaly, a spatial correlation is highlighted between the low magnetization 

area and low-temperature (55°C - 180°C, Carey et al. 2016) hydrothermal seeps and 

vents in the KEJ caldera, similar to low-temperature (~60°C) hydrothermal vent field at 

Tyrrhenian Sea, Italy (Szitkar et al. 2015b). The low temperature hydrothermal alteration 

provides an additional explanation for the presence of a magnetic anomaly low in the 

eastern half of the inner crater, enhancing the dichotomy of the magnetization 

distribution.  

I determined that it is likely some combination of both a structural and 

lithological influence, which yields the optimal model to represent the observed 

magnetic anomalies. With additional support from visual evidence of faults in the inner 

crater (Carey et al. 2016), and hydrothermal activity (55°C - 180°C) (Carey et al. 2016), 

surrounding the magnetic anomaly high. The vents at KEJ have high temperatures fluids 

at their sites, 180°C (Carey et al. 2016), whereas the seeps have the lower temperatures, 

55°C, and the magnetic anomaly highs occur where there are only observed seeps, no 

vents.  The low temperature hydrothermal alteration provides an additional explanation 
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for the presence of a magnetic anomaly high because the demagnetization does not occur 

as readily in low temperature environments. Dike complexes have known to cause 

magnetic anomaly highs within craters of volcanoes in other locations (i.e. Hawaii 

(Malahoff and Wollard, 1968) and on the La Réunion island (Lenat and Aubert, 1982)). 

Pairing the dike complex with low temperature hydrothermal alteration, I propose these 

two lithological sources are a source of the dichotomy of magnetization values I observe 

at KEJ Caldera. I propose the thickness of the magnetic source layer is about 150 m 

thick over the eastern half of KEJ caldera, and 200 m over the western half of the caldera 

(Fig. 7C). 

Our petrographical and petrological observations of in situ rock samples 

collected during the ROV survey provided evidence of previous KEJ volcanic events, 

which allows us to deduce a possible next eruptions and associated volcanic processes 

scenario. At a volcano, the magma ascends from the magma chamber to the surface of 

the volcano by a magma conduit. I are able infer the rate at which the magma rose 

though the magma conduit based on the thickness of the breakdown rim observed on 

amphibole grains in the volcanic rocks (Devine et al. 1998; Devine and Sigurdsson, 

1995). To analyze the breakdown rims on the amphibole grains at KEJ, Rock sample 

NA054-004 was collected from the toe of KEJ, ca. 2000 mbsl. After examining sample 

NA054-004 in thin sections, it is observed that there were more amphibole grains that 

lacked a breakdown rim; which is consistent with previous studies (Devine and 

Sigurdsson, 1995), suggesting that KEJ’s magma ascended rapidly through the magma 

chamber.  An assumption that is made with a quickly rising magma is that the eruption is 
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likely explosive since it moved through the magma chamber quickly.  KEJ’s distribution 

of breakdown rims is similar to another Lesser Antilles volcano that recently erupted, the 

Soufriere Hills Volcano, which is documented as an explosive eruption (Sparks et al. 

2002; Voight et al. 2002). When KEJ erupted, it created formed highly fractured 

hyaloclastites (Fig. 8C and 8D). (Honnez and Kirst, 1973; and Smith and Balt, 1989) 

have shown that this cooling pattern of the hyaloclastites form from explosive 

interaction between water and lava, and explosives eruptions can only occur in shallow 

water depth. Taking into consideration the location at which these rocks were collected 

and the present day location of KEJ’s crater (Fig. 2), it shows a landslide transported this 

material 5 km laterally and 1.5 km vertically. This material is found in the second-

generation landslide area, and this is the landslide that was numerical predicted to cause 

a tsunami comparable to the 1998 Papa New Guinea Tsunami (Heinrich et al. 2001; 

Tappin et al. 2008). When KEJ did erupt in this shallow water depth, it was an explosive 

eruption. Sample NA054-007, displays unique hyaloclastites because they are highly 

fractured and have concave edges (Fig, 8C).  In order to have this cooling pattern of the 

hyaloclastites, the interaction between the lava and water must be explosive.  Explosive 

eruptions only occur in shallow water depth because there is less pressure exerted from 

the above water column.  Rock sample NA054-007 is found at a depth of ca. 2200 m, 

and no explosive eruptions can occur at such depths. 

I propose the following cyclic evolution scenario of KEJ throughout eruption 

events to inter-eruption periods. By combining the seafloor morphology observations, 

integrating high-resolution bathymetry maps, ROV visuals, and rock samples from the 
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wholesale KEJ, and subsurface characterization with high-resolution near-bottom 

magnetic survey of KEJ crater and inner crater. KEJ originally formed from arc 

volcanism from the subducting North and South American plates underneath the 

Caribbean plate (Fig. 9A), and our premise here is that KEJ volcanism has been operated 

by the archetypical active volcano operation regime (Melnik and Sparks, 1999) that 

consists of magma chamber, magma conduit to the shallow subsurface associating with a 

series of diking, then eruption. Based on the lack of breakdown rims in the volcanic 

material (Fig. 8A and 8B), the magma would rise quickly from the magma chamber 

through the conduits (Fig. 9B). This magma was quenched as a series of approximately 

200-m thick dikes right below the inner crater, atleast during pre-2015 eruption period, 

based on our magnetic analyses. Then, the magma erupted at shallow water depth 

suggested by the presence of highly fractured hyaloclastites in the volcanic breccia rock 

samples (Fig. 8). When erupted, the eruption style was explosive (Fig. 9C), as our highly 

fractured hyaloclastites have shown (Fig. 8C and 8D). This eruption then triggered a 

landslide and deposited material downslope from the crater (Fig. 9D). Lastly, submarine 

canyons began to form (Fig. 9E) from in situ gravity flows, waiting for the next eruption 

event.  This is the likely evolutionary scenario that KEJ cycles through before, during, 

and after a volcanic eruption. 
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Figure 9. KEJ Cyclic Evolution Scenarios. Diagrams showing the volcanic evolutionary path of KEJ. (A) Scenario in which 

KEJ volcanism occurs, dike complexes feed the magma to the surface location of the inner crater. (B) The magma rises quickly 

from the magma chamber through the dikes to the surface. (C) KEJ was in a shallow water depth and erupted explosively in 

the past. (D) After the eruption, a resulting landslide changes the seafloor morphology. (E) Submarine canyons and channels 

form from in situ submarine gravity flows.  When the step reaches step E, the process starts over and begins again at step (B). 

However, in step (C), the depth for eruption can potentially change, depending on the failure style, and can be deeper in the 

water column. 
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6. CONCLUSIONS 

 

The conclusions from this study are:  

(1) There is no active subsidence occurring at KEJ; rather, the transition from a subaerial 

to submarine volcano at KEJ has been induced by a volcanic eruption and subsequent 

landslide; 

(2) Over longer periods of time, canyons and channels have played a major role in 

sediment transportation system around KEJ; 

(3) The landslides at KEJ moved 40-600 times more material during one single 

instantaneous event than that a single canyon could transport; 

(4) There is a magnetic anomaly high at the inner crater at KEJ, which has both 

lithological (dike complex) and structural (fault) sources of the variety of magnetization 

values I observe at KEJ Caldera; 

(5) Rock samples from the second-generation landslide deposit indicate that KEJ 

volcanism had a history of shallow water depth and explosive eruptions. 

These conclusions allowed us to propose an eruption model for the second-

generation landslide and a cyclic evolution scenario for KEJ volcanism. 
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