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ABSTRACT 

Nutritional ecology provides a novel framework linking biotic factors, such as 

life-history traits of an animal, to abiotic factors, such as nutrients. Carrion serves as a 

nutrient-rich and ephemeral environment attracting a host of consumers ranging from 

microbes to mammals. These diversified consumers accommodate complex ecological 

relationships. My study primary focuses on bacteria as related to the nutritional ecology 

of the blow fly, Lucilia sericata (Diptera: Calliphoridae). Four objectives were 

investigated: 1) to develop a proper sterile diet for examining the bacterial dimension of 

nutritional ecology framework as related to L. sericata development. 2) to measure the 

impact of protein: lipid on the life-history traits of L. sericata. 3) to quantify the 

alternation of life-history traits of L. sericata due to the interactions of exogenous 

bacteria (Proteus mirabilis and Salmonella) and diet (protein: lipid ratios). 4) investigate 

the impact of these interactions on associated bacterial communities. 

I compared the life-history traits of L. sericata developing on six sterilized diets. 

Overall, the liver-based diets (decomposed and powdered) resulted in similar L. sericata 

development as those reared on the fresh beef liver. Larvae reared on blood agar resulted 

in a significantly (increased 20.56% ± 8.09%) greater pupation rates than those raised on 

the decomposed and powdered beef liver diets. Pupae from larvae fed the fresh beef liver 

were significantly larger (6.27 ± 1.01 mg, 4.05 ± 0.94 mg greater, respectively) than 

those reared on the blood agar diet, decomposed beef liver, and powdered beef liver 

diets. However, none of these diets were appropriate for my following objectives, 
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because the macronutrients are not adjustable. Therefore, a modified herbivore insect 

diet was used for the remaining objectives. 

Through studies with the sterile herbivore diet, I demonstrated increasing protein: 

lipid ratio leads to an acceleration of larval development as well as a greater survivorship 

of L. sericata. Moreover, the introduction of exogenous bacteria altered the responses of 

L. sericata to the dietary impacts, like the extended duration of each developmental 

stage. I hypothesized that the alternative in the life-history trait of L. sericata could 

cause the accumulation of the protein in the diet treatments and the cross-talk with the 

exogenous bacterial treatment. 

Furthermore, to examine the cross-talk with the exogenous bacteria and L. 

sericata, the 16s rRNA gene amplicon analysis was employed for investigating the 

bacterial community of L. sericata. According to the result, the diet treatment was unable 

to alter the bacterial community of L. sericata. Regardless of diet impacts on the 

development of L. sericata, L. sericata was successfully regulated itself and surrounding 

bacterial community. However, the regulation mechanism was disrupted by introducing 

the exogenous bacteria. I also determined the exogenous bacterial treatment did not 

impact the bacterial community of L. sericata at later development stages, including the 

pupal and adult. There has yet to be a study investigating the bacterial dimension of 

nutritional ecology in the carrion system. Therefore, my study contributes to an 

understudied area of the carrion ecology. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Nutritional ecology fundamentally integrates a broad spectrum of sciences into a 

framework allowing researchers to investigate the roles that nutrients play in mediating 

various responses of a consumer ranging from its behavior to morphology 

(Raubenheimer and Boggs 2009). Furthermore, on a basic level, nutritional ecology 

explains ecological phenomena allowing for a greater understanding of how organisms 

adapt (evolve) to shifts in their environment (Parker et al 2009, Raubenheimer et al 

2009). Such results are often applied in areas such as conservation and wildlife 

management (Parker et al 2009, Raubenheimer et al 2009). 

Most nutritional ecology research in entomology has focused on herbivores (in 

Figure 1). For example, Boggs (2009), using the Drosophila melanogaster (Diptera: 

Drosophilidae) model, summarized a framework to understand the relationship of 

nutrient acquisition and allocation with foraging and life-history traits in insects under 

benign and stressful environments. This area of research has expanded to include other 

trophic levels in order to explain ecological phenomena beyond the herbivore and the 

plant it consumes. Douglas (2009) indicated that microbial symbionts widely distributed 

in herbivorous insects enhance subsequent plant utilization. 

Little is known about the nutritional ecology associated with the vertebrate 

carrion system. Previous works has explored the growth rates of carrion-associated fly 
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larvae on different organs or tissues (Clark et al 2006, Kaneshrajah and Turner 2004) For 

instance, the larvae of Calliphora vicina R. -D. (Diptera: Calliphoridae) developed two 

days faster on pig lung, kidney, heart or brain than on pig liver (Kaneshrajah and Turner 

2004). Lucilia sericata Meigen (Diptera: Calliphoridae) also grew faster and produced 

larger adults when cultured on pig rather than cow tissue, and when cultured on lung and 

heart in comparison with liver (Clark et al 2006). These data imply that variation in 

development experienced by these arthropods could be due to nutritional differences 

between the tissue types provided as the larval resource.  For example, the nutrient 

composition varies across tissue types. Pig lung contains 0.00% carbohydrates and 

14.08% proteins, while pig liver contains 2.47% carbohydrates and 21.39% proteins 

(information from U. S. Department of Agriculture Nutrients Database 

http://ndb.nal.usda.gov). However, this research focused on the interactions between 

tissue type and development rate of the flies (strictly forensic application) but failed to 

discuss the nutritional component and its relevance to the data produced (ecological 

significance). 
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Vertebrate carrion is an ephemeral and nutrient-rich resource. It plays a critical 

role in its surrounding ecological system by introducing nutrient-rich materials, which 

influence the larger scale community structure and biodiversity. For example, in forest 

ecosystems, herbaceous species usually dominate the landscape. They act as ecological 

filters reducing the number of seeds from trees from reaching the forest floor and 

germinating (Bump et al 2009, Coomes et al 2005, George and Bazzaz 1999a, George 

and Bazzaz 1999b, Gilliam 2007, M Dearden and A Wardle 2008). However, the 

introduction of vertebrate carrion into an ecosystem creates a nutrients-rich patch and 

further attracts and aggregates the arthropod community of the forest. For example, an 

estimated 522 arthropod species feed directly on the baby pig (Sus scrofa Linnaeus) 

carrions source or indirectly on organisms feeding on the carrion (Payne 1965). The 

Provide nutrient supplements 
OR Compete for food 

Organisms: Longevity, fecundity, 
and duration of development 

Environmental 
variations 

Food variations: composition 
and availability 

Microbes’ growth: 
metabolize available food 

Suppress OR Mutual help 

Influence 

Figure 1 | Concept of Organisms-Microbes interaction based on food variations 
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microbial biomass of soil beneath a rat carcass increased by 400% (Carter et al 2008). 

The framework governing research within the vertebrate carrion system usually 

involves three trophic levels. These levels are the scavenger-large animals, consumers-

arthropods, and decomposer-microorganisms. In some terrestrial ecosystem, the 

vertebrate scavengers are the secondary consumer, arriving just after arthropods (Wilson 

and Wolkovich 2011). Although scavengers, such as raccoons and vultures, feeding on 

carrion accelerates the degradation process, they usually serve as unpredictable 

opportunists, unlike arthropods and bacteria that heavily rely on vertebrate carrion for 

survival (Campobasso et al 2001, DeVault et al 2004). 

Arthropods play a dominant role in the degradation of vertebrate carrion in 

terrestrial habitats. The succession of arthropods on carrion has been well studied 

(Benecke and Leclercq 1999, Mégnin 1894, Motter 1898, Payne 1965, Sorg and 

Haglund 1996). Two arthropod orders, Diptera and Coleoptera, are the dominate 

decomposers of carrion, while other orders, such as Lepidoptera, Hymenoptera, are 

secondary consumers and tend to be generalists (Campobasso et al 2001). 

Many species associated with carrion are temporally driven (i.e., activity on 

carrion dependent on the level of its degradation).  Their occurrence on carrion is fairly 

predictable with regards to the amount of time to pass after death of the animal and the 

arrival and utilization of the resource by a particular arthropod. Diptera, particularly 

larvae of Calliphoridae and Sarcophagidae, usually inhabit carrion during the initial 

period following the death of an animal, when large quantities of soft tissue are present. 

Lucilia sericata Meigen (Diptera: Calliphoridae) can locate and colonize a fresh exposed 
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carrion within 2-3 hours after its death (Campobasso et al 2001) while Cochliomyia 

macellaria Fabricius (Diptera: Calliphoridae) is even quicker and detected an accessible 

carrion in 10 minutes (Payne 1965). Coleoptera, including Silphidae and Dermestidae, 

are colonizers of carrion in the later stages of decomposition when less soft tissue is on 

the carrion (Campobasso et al 2001). 

Microbes play an essential part in the putrefaction of carrion. They are known to 

initiate this process through the rendering of complex organic macromolecules, such as 

proteins, carbohydrates, and lipids into micromolecules, such as amino acids, water, fatty 

acids, while emitting gases and volatiles (Coe 1993, Spitz and Spitz 2006). Although 

autolysis of individual cells can affect the process of putrefaction, exogenous and 

endogenous microbes are more efficient at degrading the carcass than just autolysis 

(Macchiarelli and Feola 1995). Exogenous microbial factors are mainly aerobic, 

including mostly airborne bacteria such as Staphylococcus species. Endogenous 

microbes are anaerobic bacteria and are typically located in the carrion’s intestine (Spitz 

and Spitz 2006). Gases and volatiles, including ammonia, hydrogen sulphide, methane, 

nitrogen, lactic acid, and phenol, are formed and released as a part of microbial 

destruction of organic matters. These volatiles can attract arthropods to carrion and serve 

as an oviposition cue (Campobasso et al 2001, Ma et al 2012). Bacteria can also elevate 

temperatures of microclimates in and on carrion and assist in attracting more insects to 

oviposit on carrion (Nuorteva 1959, Rodriguez and Bass 1985). In addition, bacteria help 

larvae to suppress detrimental fungi on the larval food or the bacteria serve as an 

oviposition cue to affect behavior of gravid females, such as Klebsiella oxytoca with 
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Musca domestica (Diptera: Muscidae) (Lam et al 2007, Lam et al 2009b). 

An increasing number of studies indicate that an animal’s microbiota 

significantly influences their host range (Adams and Douglas 1997, Bäckhed et al 2007, 

Douglas 1998, Douglas 2009, Peterson et al 2009, Raubenheimer and Boggs 2009, 

Stappenbeck et al 2002, Turnbaugh et al 2006, Turnbaugh et al 2007). For example, 

aphids (Homoptera: Aphidae) usually feed on phloem sap, which is known to have a low 

concentration of essential amino acids. Aphids therefore rely on endosymbiotic gut 

bacteria to provide those required amino acids (Adams and Douglas 1997, Douglas 

1998). Germ-free mice also required higher calorie diet compared to mice with 

microbiota (Bäckhed et al 2007, Stappenbeck et al 2002). In addition, gut microbiota of 

humans is an important factor that contributes human obesity (Turnbaugh et al 2006). 

Thus, research and exploration of the nutritional ecology of microbial roles in carrion-

associated flies are indeed and necessary. 

Research interests 

Microbes and arthropods dominate the consumption of carrion. This ephemeral 

resource impacts the surrounding environment by providing nutrients aiding in the 

proliferation of microbes and invertebrates. There is a wealth of research focused on 

insect succession on carrion and how environmental variables affect community and 

species level succession patterns (Greenberg 1991, Payne 1965, Tomberlin et al 2011). 

However, the nature of the relationship and interactions between Diptera and bacteria are 

still poorly understood (Tomberlin et al 2017). Outside of research examining the anti-

bacterial capabilities of some Diptera (Davydov 2011, Parnés and Lagan 2007, Sherman 
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et al 2000), little else is known. 

We now know that volatile organic compounds associated with a Proteus 

mirabilis (a commensal of L. sericata) behavior, which is quorum sensing regulated, 

serve as a mechanism governing fly attraction and colonization. This suggests that the 

fly is able to “listen” to bacterial decision-making using the signaling information to 

make decisions regarding the use of a resource (Ma et al 2012). However, it is not 

known if this response is density dependent. Bacteria at select densities might be 

favorable for blow fly larval development while other densities might be detrimental. 

For example, oviposition-inducing strains of bacteria were isolated from the surface of 

M. domestica L. (Diptera: Muscidae) eggs, and those bacteria at 5×104-105 cfu/mL 

(Colony-forming unit per milliliter) larval diet resulted in greater survivorship of M. 

domestica larvae than those bacteria at 102-105 CFU (Lam et al 2009a).   

Bacterial roles with blow fly larvae could also shift depending on nutrients 

present within the resource. As with aphids, these bacteria could provide essential 

nutrients absent or in low quantity in the larval resource. Nutritional contributions can 

have varied effects, including increased survival on suboptimal diets, better digestive 

efficiency, provision of vitamins, and additional digestive enzymes, like aphid’s 

endosymbiotic gut bacteria provide aphid essential amino acids when feed on low 

nutrients plants (Adams and Douglas 1997, Dillon and Dillon 2004, Douglas 1998). 

Another effect of symbiotic insect-microbe interactions could be improved resistance of 

the insect host to pathogens (Dillon and Charnley 2002). Desert locust Schistocerca 

gregaria Forsskål (Orthoptera: acrididae) are known to have increased pathogen 
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resistance due to gut bacteria to form the colonization resisitance (Dillon and Charnley 

2002). One possible mechanism for this is a commonly gut bacteria Pantoea 

agglomerans with locusts resulted in antimicrobial agents production to prevent 

germination and infection of fungal entomopathogens (Dillon and Charnley 2002). 

As R. J. Dillon and V. M. Dillon said (2004), “Insect feeding on plants or animals 

must first negotiate the extensive microbiota on the surface of the host and any 

metabolic products released by that community. Conversely, the host is also exposed to 

microbial products released from the insect feces and from the regurgitant of the insect.” 

They suggest there is an interaction loop between microbes and insects based on carrion 

nutrients beyond attraction and repletion. Therefore, the goal of this work is try to 

understand the nutritional facts behind insect behavior reaction interacting with 

microbes, which explain the phenomenon of bacterial fly attraction. The objectives of 

this research are described in the following paragraphs. 

Focus 1: formulation of artificial diet 

Goal. Develop a larval diet for testing interaction between L. sericata and 

different bacteria.  

Expected results. The development of a sterile diet that will suit for larvae of L. 

sericata development as well as select microbes growth. 

Rationale. The goal for this objective is to develop an artificial diet for L. 

sericata, which will serve as a model organism. This fly species was selected as a model 

for three reasons. First, L. sericata is cosmopolitan and they are known to be primary 

colonizers of vertebrate carrion (Campobasso et al 2001). Second, there is ample 
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literature related to the antimicrobial nature of L. sericata.  Moreover, some of this work 

has generated valuable insight by culturing both bacteria and L. sericata concurrently 

(Barnes and Gennard 2011). Third, the current established colony in lab that has been 

used in the past to generate a transcriptome as well as conduct research examining 

microbe-insect interactions (Ma et al 2012, Sze et al 2012, Tomberlin et al 2011). 

The artificial diet can be easily modified allowing for shifts in protein and lipids 

allowing for a geometric framework with regards to nutrition to be developed as 

described Simpson and Raubenheimer (2012). Though the classical nutrition framework 

diets are altered by shifting proteins and carbohydrates ratio such as exemplified in 

Simpson and Raubenheimer’s framework model, this diet will be altered by changing 

protein: lipid ratio. Lipids have been chosen instead of carbohydrates for the following 

reasons: First, Simpson and Raubenheimer’s framework model was developed for insect 

herbivores, but L. sericata is a carrion associated species.  Furthermore, L. sericata can 

complete its life cycle on beef and pork lung, neither of which contains carbohydrates 

(Clark et al 2006). Second, the lipids content of L. sericata changes remarkably during 

its immature development (Yuill and Craig 1937). 

Experiment design. Diet development is based upon quantified measures of the 

nutrient content of raw beef liver (information from USDA http://ndb.nal.usda.gov).  The 

diet medium will include the following components: proteins, lipids, minerals, and 

vitamins. Important characteristics of the diet include: 1) that it be autoclavable; 2) that 

the formulation of artificial diet includes raw beef liver; 3) that it be possible to alter the 

ratio of proteins to lipids by adding supplements, which is to build a framework of 
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nutrition (Simpson and Raubenheimer 2012). The framework in here will include lipids 

concentration as Y-axis while proteins concentration as X-axis, and this coordinate 

frame presents different proteins: lipids ratio diets to further compare L. sericata 

performances. And 4) the contents of minerals and vitamins be maintainable at fixed 

level, identical to that of raw beef liver, by adding different stock solutions (Dr. J 

Tomberlin lab unpublished data). A chemically defined diet medium that is equivalent to 

raw beef liver in protein: lipid ratio and vitamin and mineral content will the control diet. 

The effects of the diet on bacteria will be measured only by quantifying bacterial 

growth. One bacterium will be tested, Proteus mirabilis. P. mirabilis has been 

demonstrated to produce a strong attraction response in L. sericata adults when 

exhibiting the quorum-sensing behavior of swarming. Furthermore, this bacterium is 

found inside the salivary gland of 3rd instar L. sericata larvae (Ma et al 2012). 

Focus 2: effect of altered protein: lipid ratio on Lucilia sericata growth and 

development. 

Null hypothesis: shifting the protein: lipid ratio of the diet will have no effect on 

the life table of L. sericata. The life table of L. sericata includes duration of larval stage, 

pupae stage, longevity, and fecundity. 

Alternative hypothesis: shifting the protein: lipid ratio of the diet will affect L. 

sericata. The growth of bacteria is based on its growth curve, which its generation time 

may extend or shorten. 

Expected results. Two suboptimal diets for L. sericata have been developed, 

including one of high protein content with low lipids content, and one of low proteins 
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content with high lipids content. 

Rationale. The purpose of this objective is to create a nutrient shortage stress on 

L. sericata by adjusting ratio of proteins: lipids for further bacteria-L. sericata 

interaction testing. According to the Simpson and Raubenheimer’s framework, the 

optimal diet achieves an intake target which is defined as the point of nutrient intake that 

is most beneficial for the animal fitness (Sherman and Tran 1995). Due to the wide use 

of raw beef liver for L. sericata feed, it assumes that the raw beef liver indicates optimal 

fitness and performances of L. sericata. Moreover, if the intake target cannot be 

achieved, L. sericata will compromise its intake target as close as possible, for example, 

eating less diet or prolonging its development duration. 

Experiment design. The ratio of proteins: lipids of shifting diet will be 5:1, 1:1, 

and 1:2 at 30% total macronutrient concentration. These ratios base on beef tissue 

nutrient value. For example, the ratio 5:1 represents beef liver, ratio 1:1 represents beef 

brain, and ratio 1:2 represents beef thymus. Life table of L. sericata will be examined 

independently on these alternative suboptimal diets. 

Focus 3: effect of nutritional background on the interaction of exogenous bacteria 

and L. sericata 

Null hypothesis: There is no interaction of P. mirabilis or Salmonella with L. 

sericata on optimal or suboptimal diets.  

Alternative hypothesis: At least one bacterium has interaction with L. sericata 

on optimal or suboptimal diets. 

Expected results. 1) Concurrent culturing of P. mirabilis or Salmonella with L. 
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sericata will result in significant differences in larval development when compared with 

mono-feeding of L. sericata on the diets; 2) L. sericata positive or negative influences P. 

mirabilis or Salmonella growth; 3) The effect of culturing the bacteria and L. sericata 

will describe the ecological relationship, be it inter-kingdom competition, mutualism, or 

commensalism. 

Rationale. There are two variables, which will be tested and determined in this 

objective. The first is to determine effective concentrations of P. mirabilis or Salmonella 

that are able to induce interaction with L. sericata. The interaction in here indicates at 

certain concentrations of P. mirabilis or Salmonella coating on the diet may change L. 

sericata’s life table significantly. Second, different artificial diets-the optimal diet, high 

protein/low lipid suboptimal diet, and low protein/high lipids suboptimal diet will also 

be tested. Different types of artificial diets could contribute to differentiating the 

performance of L. sericata when co-cultured with bacteria, including the optimal diet 

and suboptimal diets. Different effective concentrations of bacteria added to these diets 

may impact L. sericata development. One potential observation is that the bacteria (P. 

mirabilis or Salmonella) may act as a competitor for nutrient uptake and have a negative 

impact on L. sericata on the optimal diet such as significant change on its life table. 

However, on the suboptimal diets, the bacteria and L. sericata become mutually 

beneficial as the bacteria assist L. sericata to consume the over-dose proteins or lipids to 

help L. sericata to reach its intake target.  Therefore, it is vital to identify the 

combination of factors, which mediate these insect-microbe interactions, including 

effective concentrations of bacteria, artificial diets of different nutrients concentrations. 
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Experiment design. The interaction between L. sericata and P. mirabilis or 

Salmonella will be tested in this objective. The life table of L. sericata and growth curve 

of P. mirabilis will record by rising L. sericata with P. mirabilis concurrently on different 

diet, including optimal diet and suboptimal diets. 

Research significance and future application 

This research will be the first to quantify the interaction between bacteria and L. 

sericata. A low-cost and achievable artificial diet for L. sericata also will be provided. 

As described, L. sericata is a species of forensic and medical importance. In forensic 

science, this work will help us to increase the accuracy of minimum postmortem interval 

(Tomberlin et al 2011) estimations by allowing us to include a microbe-flies interaction 

factor instead of data from each group developed in isolation. Further, in medical 

science, larvae of L. sericata appear to be the most suitable species for maggot therapy. 

This quantified interaction model will assist researchers studying antimicrobial treasure 

of L. sericata.  
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CHAPTER II 

EVALUATION OF STERILIZED ARTIFICIAL DIETS FOR MASS-REARING 

THE GREEN BOTTLE FLY, LUCILIA SERICATA (DIPTERA: 

CALLIPHORIDAE) 

 

Introduction 

Maggot debridement therapy (MDT) can be used to treat chronically infected 

wounds. This practice was well-established in Western medicine during World War I 

(Baer 1931); however, it was abandoned due to an increase in effective antibiotic use 

following the discovery of penicillin (Davydov 2011, Sherman et al 2000). Recently 

however, due to increases in antibiotic resistance in microbes, MDT has experienced a 

resurgence due its ability to kill such microbes. In 2004, the Federal Drug 

Administration approved MDT as a medical device in the United States for treating 

necrotic wounds and ulcers (Andersen et al 2010). MDT has even been demonstrated to 

be effective against one of the most challenging multidrug-resistant organisms to treat 

because of its prevalence to be easily spread within the health care-associated settings, 

methicillin-resistant Staphylococcus aureus (MRSA) (Jarvis et al 2012, Parnés and 

Lagan 2007). The primarily species used for MDT are from the blow fly family (Diptera: 

Calliphoridae. Examples include Calliphora vicina (Robineau-Desvoidy) (Teich and 

Myers 1986), Lucilia caesar (Linnaeus) (McLellan 1932), Lucilia cuprina (Wiedemann) 

(Fine and Alexander 1934), Lucilia illustris (Meigen) (Leclercq 1990), Phormia regina 

(Meigen) (Baer 1931), and Lucilia sericata (Meigen) (Baer 1931). L. sericata is the most 
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commonly used to reduce necrotic tissue and infection in chronic wounds (Weil et al 

1933). 

Some bacteria can be eliminated through larval ingestion and by the production 

of antimicrobials in the excretion/secretions (ES) of indigenous bacteria, such as P. 

mirabilis (Greenberg 1968, Jaklič et al 2008, Lerch et al 2004, Mumcuoglu et al 2001, 

Sherman et al 2000). Presently, research on MDT has focused on the isolation and 

identification of those antimicrobial factors. Thomas et al. (1999) indicated ES from L. 

sericata larvae is more effective at killing Gram-positive bacteria (i.e., Pseudomonas sp. 

and Staphylococcus aureus), but less effective in eliminating Gram-negative bacteria 

(i.e. Escherichia coli and Proteus sp.). Initially three sizes of bioactive molecules (<0.5 

kDa, 0.5-10 and >10 kDa) were identified from the ES of larval L. sericata (Bexfield et 

al 2004, Bexfield et al 2008, Huberman et al 2007). Then Cerovský et al. (2010) 

successfully isolated Lucifensin® from the larvae, which expressed activity against 

wound bacteria, even MRSA infections.  

In order to continue further exploration of the interactions between pathogenic 

bacteria and L. sericata larvae, a sterile rearing substrate is needed to determine if the 

antibacterial effect is directly from the larvae or from bacteria residing in and on the 

larvae. It is not known if variation in the diversity of microbes present during rearing of 

the larvae could impact the efficacy of the MDT treatment. Despite the enormous 

number of publications on MDT antimicrobial component isolation, the sterility of the 

larvae themselves and their rearing substrates are often not validated (Barlow and 

Kollberg 1971, Daeschlein et al 2006, Daniels et al 1991, Lerch et al 2004, Sherman and 
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Tran 1995, Tachibana and Numata 2001). Combined with a lack of information about the 

composition of the diets makes study comparisons difficult (Andersen et al 2010, Barnes 

and Gennard 2013, Daeschlein et al 2006, Jaklič et al 2008, Kerridge et al 2005, 

Mumcuoglu et al 2001).  

 The objective of this research was to evaluate six artificial sterile diets for 

sustainable production of L. sericata. We also explored the impact of larval density on 

development and survivorship on the diets, as previous studies indicate larval density is 

a critical factor for insect survivorship (Dos Reis et al 1999, Turner and Howard 1992). 

Such information could provide a standardized method for future MDT studies. 

Materials and methods 

Fly source and eggs collection. A L. sericata colony initiated from specimens 

collected from Davis, CA, USA, in 2006 (Tarone and Foran 2008) was used. The colony 

was maintained in a BudDorm® (DP1000, 30 × 30 ×30 cm, MegaViewScience, 

Taichung, Taiwan, China) cage at 27˚C, 70%, 14:10 L:D. For each experiment, eggs 

were collected by placing ~30 g fresh beef liver inside a 50 mL beaker in the cage for 3 

h. Eggs were transferred aseptically to a sterile petri dish covered with Kimwipes® 

(Kimberly-Clark Corp., Irving, TX, USA) soaked with deionized water and maintained 

in a Percival® I-36VL growth chamber set at 27˚C, 70% RH, 14:10 L:D. Eggs were 

monitored hourly for hatch after the initial 8 h. Resulting larvae were used in the 

subsequent experiments. 

Dietary treatments. Six dietary treatments were tested against a fresh beef liver, 

our standard larval colony maintenance diet (Tarone and Foran 2008). These diets were; 
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1) a blood agar, 2) a decomposed beef liver, 3) a powdered beef liver, 4) a powdered 

fish, 5) a milk-based, and 6) a chemically-defined diet (see Tables 1 and 2 for detailed 

formulas). The powdered beef liver diet and powdered fish diet were included as they 

were nutritionally similar to beef liver, a common material used to raise blow flies 

(Tarone and Foran 2008), and are commercially available. Fresh beef liver was obtained 

from Rosenthal Meat Science and Technology Center, Texas A&M University (College 

Station, TX, USA) served as the control for comparisons. The powdered beef liver diet 

was prepared from freeze-dried beef liver (Simply Nourish™, Phoenix, AZ, USA). The 

formulation of the decomposed beef liver diet followed the description from Sherman 

and Tran (2008). The powdered fish diet was made from dehydrated fish powder 

(CarlPool products, Gladewater, TX, USA). The formulation of the blood agar diet 

followed that described by Daniels et al. (1991). The formulation of the milk-based diet 

followed that described by Tachibana and Numata (2001). The formulation of the 

chemically-defined diet followed that described by Barlow and Kollberg (1971). Except 

for the fresh beef liver control, all other diets were autoclaved for sterilization at 121˚C, 

20 min. After being autoclaved, each diet was distributed into 33 mL sterilized medical 

cups and lids (Dart® Container Corp., Mason, MI, USA), which contained 20 g of each 

assigned diet. All the dietary treatments were stored at 4˚C until use, except for the fresh 

beef liver, which was stored at -20˚C. 

Experiment design and data collection. Three densities of larvae on the dietary 

treatments were tested in two trials; each consisting of five technical replicates. Density 

treatments included 10, 20 and 40 larvae/20 g diet; equaling 2, 1 and 0.5 g diet per larva. 
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Newly hatched first instars were transferred to replicate cups covered with a breathable 

lid via a 12 mm diameter hole punched in the center. A sterilized cotton ball was inserted 

into the hole and served as a means to regulate ventilation. During larval development, 

deionized, sterile water was provided ad libitum at 12 h intervals by soaking the cotton 

ball. Once the post-feeding stage was observed for a given replicate, it was transferred 

into a 946 mL Mason jar (Ball®, Daleville, IN, USA), which was covered with a double 

layer Wypall-wipes (Kimberly-Clark Corp., Irving, TX, USA) held in place with a 

rubber band. These replicates were observed at 24 h interval for larval pupation. All 

pupae were collected and the percent pupation per replicate and individual pupal weight 

was recorded. Individual pupae were transferred into a new medical cup with 10 g 1:1 

sugar-sand mix (Quikrete® Play Sand; Great Value® Pure Cane Sugar) in order to 

provide a carbohydrate resource and pupation substrate. Such an approach allowed for 

adult longevity to be based on fat reserves acquired during larval development. Pupae in 

cups were observed at 24 h intervals for adult emergence and resulting longevity. 
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Table 1 | Diet composition of Fresh beef liver, Powdered beef liver diet, Decomposed beef liver diet, Powdered fish diet, 
Blood agar diet, and Milk based diet (per 100 g diet) used for rearing Lucilia sericata at different densities on different diets at 
27˚C, 70%, 14:10 L:D 

 
 

Control 

 

Diets 

Ingredients  

Fresh      
beef 
liver   

Powdered 
beef liver  

Decomposed 
beef liver  

Powdered 
fish  

Blood 
agar  

Milk 
based 

Beef Liver (g)             
Fresh  100           

Powdered 
 

 
 

30.77  
       

Decomposed     
 100  

 
 

 
 

 
Fishmeal (g)             

Powdered        32.25     
Horse Blood (mL)             

Defibrinated          23.81   
Whole Milk (g)             

Powdered            5 
Blood agar base (g)    

      3.64   
Brewer's yeast (g)    

      4.57  5 
Wheat germ (g)            5 
Agar-agar (g)    1.18  2.7 

 
1.18 

   
2 

Deionized water 
(mL)       100   100   100   91.43   100 
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Table 2 | Chemical defined diet composition (milligram per 100 g diet) used for rearing 
Lucilia sericata at different densities on different diets at 27˚C, 70% RH, 14:10 L:D 

Amino acids  Salts  Lipids  

Glycine 270.0
0 CaCl2 11.00 Cholesterol 125.00 

L-Alanine 257.0
0 CoCl2*6H2O 1.70 Linoleic acid 75.00 

L-Arginine 211.0
0 CuSO4*5H2O 2.00 Oleic acid 240.00 

L-Aspartic acid 7.60 FeCl3 3.90 Palmitic acid 110.00 
L-Cysteine HCl 71.00 K2HPO4*3H2O 241.60 Stearic acid 50.00 
L-Glutamic acid 27.30 KOH 576.80 α-Linolenic acid 25.00 

L-Histidine 120.0
0 MgSO4 23.18 Others  

L-Isoleucine 304.0
0 Na2HPO4 33.84 Agar 1500.0

0 

L-Leucine 55.90 ZnCl2 2.50 D-Glucose 1250.0
0 

L-Lysine HCl 252.0
0 

Vitamins  Ribonucleic acid 188.00 

L-Methionine 188.0
0 Biotin 7.00   

L-Phenylalanine 279.0
0 

Ca 
pantothenate 113.00   

L-Proline 399.0
0 

Choline 
Chloride 523.00   

L-Serine 351.00 Folic acid 89.00   

L-Threonine 188.0
0 myo-Inositol 1490.0

0 
  

L-Tryptophane 94.00 Nicotinic acid 81.00   

L-Tyrosine 8.20 Pyridoxine 
HCl 225.00   

L-Valine 328.0
0 Riboflavin 41.00   

trans-4-
Hydroxyproline 96.00 Thiamine HCl 33.00   

γ-Aminobutyric acid 2.26     
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Statistical analysis. Since no larvae survived on the powdered fish diet, milk-

based diet, and chemical-defined diet, they were excluded from the analysis. Initially, 

multivariate linear regressions were performed for multivariate model independent 

variables backward selection with Pillai’s trace test from Multivariate Analysis of 

Variance (MANOVA) by car package (v2.0-25) in R (v3.2.1). Results from the 

MANOVA indicated no significant effects on larval density treatments, as well as no 

significant differences between biological replicates. Therefore, these biological 

replicates were combined for further analysis. Hence, Canonical Discriminant Analysis 

(CDA) was applied for subsequent analysis. CDA defined pupal weight, pupation 

percentage, eclosion percentage, and adult lifespan as dependent matrices, and diet 

treatments as independent matrices. These analyses were conduced using candisc 

package (v0.6-7), and plotted using ggplot2 package (v1.0.1) in R (v3.2.1). Additionally, 

Mahalanobis squared distance, !"# , associated with F test between diet treatments, was 

calculated using SAS (University Edition 3.3, SAS Institute, Inc., Cary, NC) CANDISC 

procedure with distance option, which measured and compared all pairwise distances 

between the centroids of diet treatments for clustering. The dependent variables with 

largest influences in CDA were picked for post hoc analysis through pairwise t-test with 

Bonferrnoi correction by lsmeans package (v2.18) in R (v3.2.1). 

Results 

Multivariate model selection. Pupal weight, pupation percentage, eclosion 

percentage, and adult lifespan were used in the model (Table 3). While larval density had 

a marginally significant influence on pupal weight, pupation percentage, eclosion 
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percentage, and adult lifespan (F8, 78 = 1.877, P = 0.076,) compared to diet effects, the 

backward multivariate model selection indicated diet (F12, 126 = 3.547, P <0.001) as the 

only significant factor in the model (Table 4). Using pupal weight, pupation percentage, 

eclosion percentage, and adult lifespan, univariate regressions were performed for 

further confirmation of larval density effects. While the results were consistent for three 

of the four variables, eclosion percentage was significantly (F2, 44 = 3.280, P = 0.047) 

impacted by larval density. In order to explore the biological impacts of larval density on 

eclosion percentage, pairwise t-tests have performed. However, pairwise t-tests did not 

indicate any significant differences.  A density of 40 larvae/20 g eclosed more larvae 

than a density of 10 larvae/20 g, but was only marginally significant (mean difference = -

17.19 ± 7.3%, with t44 = -2.353, P = 0.069). 

Diet treatment overall effects. Diet significantly (F12, 126 = 3.547, P = 0.0001) 

impacted pupal weight, pupation percentage, and eclosion percentage. Based on CDA, 

diet treatments divided into three discreet clusters: Cluster 1=Fresh beef liver; Cluster 

2=Decomposed beef liver diet and Powdered beef liver diet; Cluster 3=Blood agar diet 

(Figure 2). Table 5 provides the specific dependent parameters contributing to the 

discrimination between clusters. Both canonical axes were significantly correlated with 

original dependent variables, and the 1st and 2nd canonical axes explained 93.43% 

variance of the data. The clustering between diets was further confirmed with the 

Mahalanobis distance criterion, !"# , in Table 6. Pupal weight, pupation percentage, and 

eclosion percentage were selected for downstream post hoc analysis, because of their 

higher weight in explaining the variances (underlined in Table 5). 
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Diet treatment effects on pupal weight. Mean pupal weight by treatment 

distinguished Cluster 1 from Clusters 2 and 3 (Figure 3). Mean pupal weight from 

Cluster 1 was 6.268 ± 1.008 mg more than Cluster 2 (P < 0.001, t44 = 6.216), and 4.049 ± 

0.940 mg more than those in Cluster 3 (P < 0.001, t44 = 4.309). However, pupal weight 

associated with Cluster 2 was marginally significantly (P = 0.068, t44 = -2.361) less (-

2.219 ± 0.940 mg) than those associated with Cluster 3. 
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Table 3 | Mean ± SE (n = 10) of different life-history traits of Lucilia sericata reared at different densities on different diets at 
27˚C, 70% RH, 14:10 L:D 

	
	
	
	
	
	
	
	
	
	
	
	

Diet Treatment Density Treatment 
(larvae per 20 g diet) 

Pupal weight 
(mg ± SE) 

% Pupation 
(% ± SE) 

% Eclosion 
(% ± SE) 

Lifespan 
(day ± SE) 

Fresh beef liver 10 23.03 ± 1.34 69.55 ± 5.40 64.98 ± 5.76 7.32 ± 0.89 
Fresh beef liver 20 23.33 ± 1.33 61.52 ± 5.75 62.75 ± 5.90 6.89 ± 0.48 
Fresh beef liver 40 23.99 ± 1.12 66.30 ± 6.00 77.10 ± 3.21 7.20 ± 0.41 
Blood agar diet 10 21.60 ± 1.34 57.08 ± 6.02 58.59 ± 7.86 6.70 ± 0.73 
Blood agar diet 20 20.98 ± 1.96 64.78 ± 6.96 58.65 ± 8.32 6.19 ± 0.64 
Blood agar diet 40 20.57 ± 1.65 69.89 ± 6.98 65.47 ± 8.43 5.92 ± 0.29 
Decomposed beef liver diet 10 22.34 ± 1.76 55.56 ± 7.87 74.91 ± 7.70 6.06 ± 0.72 
Decomposed beef liver diet 20 21.89 ± 1.39 62.50 ± 5.18 69.13 ± 7.35 6.10 ± 0.59 
Decomposed beef liver diet 40 21.46 ± 1.13 77.80 ± 3.68 76.19 ± 4.59 6.66 ± 0.25 
Powdered beef liver diet 10 23.23 ± 2.70 42.00 ± 7.93 44.90 ± 15.51 6.21 ± 1.50 
Powdered beef liver diet 20 23.15 ± 1.72 42.95 ± 5.21 62.50 ± 7.44 6.15 ± 0.64 
Powdered beef liver diet 40 23.99 ± 1.68 60.83 ± 6.10 66.55 ± 5.59 7.43 ± 0.65 
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Table 4 | Model parameters table for model selection for determining critical factors for different life-history traits of Lucilia 
sericata reared at different densities on different diets at 27˚C, 70% RH, 14:10 L:D 

 
 
 

Models Explanatory variables 
Full model (Intercept) + (Diet treatment) * (Density treatment) * (Trial) 

Reduced model 1 (Intercept) + (Diet treatment) * (Density treatment) 
Reduced model 2 (Intercept) + (Diet treatment) + (Density treatment) 

Treatment only model (Intercept) + (Diet treatment) 
Naïve model (Intercept) 

Models Reduced model 1 Reduced model 2 Treatment only model § Naïve model 
Full model F32, 108 = 0.995; 

P = 0.487 
F56, 108 = 0.951; 

P = 0.576 
F64, 108 = 1.002; 

P = 0.489 
F76, 108 = 1.458; 

P = 0.036 
Reduced model 1  F24, 140 = 0.864; 

P = 0.649 
F32, 140 = 1.098; 

P = 0.345 
F44, 140 = 1.727; 

P = 0.009 
Reduced model 2   F8, 78 = 1.877; 

P = 0.076 
F20, 164 = 2.839; 

P < 0.001 
Treatment only model    F12, 126 = 3.547; 

P < 0.001 
All models response variables were: Pupal weight, Pupation percentage, Eclosion percentage, Adult lifespan. 
The interaction terms in each model included all lower order interactions. 
§ Final model being selected for further canonical discriminant analysis 
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Canonical discriminant analysis plot showing the four diet treatments separated 

into three discreet clusters: Cluster 1 = Fresh beef liver (As red dot label, with 95% 

confident ellipse); Cluster 2 = Decomposed beef liver diet and Powdered beef liver diet 

(As green triangle label, with 95% confident ellipse); Cluster 3 = Blood agar diet (As 

blue square label, with 95% confident ellipse) with the shifts between the clusters along 

Canonical 1st axis. 
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Figure 2 | Canonical discriminant analysis plot of diet treatments used for Lucilia sericata 
reared on different diets at 27˚C, 70% RH, 14:10 L:D 
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Table 5 | Standardized canonical coefficients for different life-history traits of Lucilia 
sericata reared at different densities on different diets at 27˚C, 70% RH, 14:10 L:D 

Parameters 
Canonical Variables 

1 2 
Pupal weight (mg) 1.078 -0.209 
Pupation percentage (%) -0.402 -0.860 
Eclosion percentage (%) -0.285 0.531 
Adult lifespan (d) -0.118 -0.164 
Canonical correlation 0.738 0.356 
Approximate F value F9, 99 = 5.726 F4, 84 = 2.510 
P level of significance <0.001 0.048 
Variance accounted for (%) 83.300 10.130 
The parameters with the largest influence for with significant canonical variety are 
underlined 
 

Table 6 | Clustering based on Mahalanobis's Distance (squared distance, DM) for 
summary of different life-history traits of Lucilia sericata reared on different diets at 
27˚C, 70% RH, 14:10 L:D 

Diet Treatments Blood 
agar diet 

Decomposed 
beef liver 

diet 

Powdered 
beef liver 

diet 

Clustering 

Fresh beef liver DM
2 7.254 2.829 2.745 

Cluster 1 F4, 41 11.829 4.060 3.503 
P-value <0.001 0.007 0.015 

Decomposed beef 
liver diet 

DM
2   1.348 

Cluster 2 

F4, 41   1.555 
P-value   0.205 

Powdered beef 
liver diet 

DM
2   0.000 

F4, 41   0.000 
P-value   1.000 

Blood agar diet DM
2  2.360 2.994 

Cluster 3 F4, 41  3.386 3.820 
P-value  0.018 0.010 

 

  



	 28	

Figure 3| Mean values for pupal weight, pupation percentage, and eclosion percentage 
for Lucilia sericata reared on different diets at 27˚C, 70% RH, 14:10 L:D 

 

The mean value of pupal weight (mg) from Cluster 1 is significantly greater than 

Cluster 2 (t44 = 4.309, P < 0.001) as well as Cluster 3 (t44 = 6.216, P < 0.001). And the 

mean value of pupation percentage from Cluster 3 is significantly higher than Cluster 2 

(t44 = 2.542, P = 0.044) 

Discussion 

Our results indicate decomposed liver, powdered liver, and blood-based diets are 

suitable sterilized diets for rearing and maintaining L. sericata in colony. These three 

diets have similar nutritional values to fresh beef liver (20.36% protein, 3.63% lipid, and 

3.89% carbohydrate). Moreover, the habitat for larval L. sericata is vertebrate carrion, 

which probably explains why larvae did so well on the previously mentioned diets 

(Smith and Wall 1997). 
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However, results for some diets in our study differed from those previously 

published. For example, a milk-based diet was suggested to produce 81% survivorship to 

adult stage (Tachibana and Numata 2001), and a chemically defined diet to produce 68% 

survivorship to pupal or 3rd instar stages (Barlow and Kollberg 1971). In our study, 

those two diet treatments did not support good larval survivorship. The heat sterilization 

processes may have contributed to reductions in survivorship due to nutrient structural 

modification or loss of individual nutritive components. For example, autoclaving for 20 

min at 15 PSI to sterilized diets can significantly reduced (22.56%) free amino acids in 

powdered infant formula (Cohen 2015, McCollum and Davis 1915, Yeung et al 2006), 

and such nutrient loss may have led to the survivorship difference in our study. 

Moreover, regarding the powdered fishmeal diet, the higher lipid content (9.08% dry 

weight in fishmeal verses 3.63% in beef liver) in fish may have affected survivability by 

L. sericata (U.S. Department of Agriculture Nutrients Database http://ndb.nal.usda.gov). 

For instance, increased dietary fat content resulted in reduced development time of the 

3rd instar in the blow fly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae), 

(Li et al 2014). Li et al. (2014) increased dietary fat from 0% to 80%, which resulted in a 

shorter development time by 21 h, but increased larval mortality from 5.5% to 58.3%. 

Pupal weight is a critical factor implicated in determining the survivorship of insects 

(Davidowitz et al 2003). Pupal weight of L. sericata in this research was useful in 

differentiating the impact of diets on development with Cluster 1 (fresh beef liver) diet 

producing the largest pupae, Cluster 3 (blood agar diet) producing the smallest pupae, 

and Cluster 2 (decomposed beef liver diet and powdered beef liver diet) producing 
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intermediate sized pupae. Previous research with other species demonstrated the 

importance of pupal weight as a measure of colony fitness. For example, the primary 

screwworm Cochliomyia hominivorax (Conquerel) (Diptera: Calliphoridae) pupated 

successfully only 3.9% of the time when the larval weight ranged between 21–25 mg, 

but had 100% successful pupation when larvae weighed 56–60 mg (Hightower et al 

1972). 

The nutritional composition of the diet interacting with indigenous microbial 

populations in the larval gut may contribute to the variation of the traits (pupal weight, 

pupation percentage, and eclosion percentage) and could explain some of the differences 

observed in the percentage of successful pupation (see Table 1 and 2; U.S. Department 

of Agriculture Nutrients Database http://ndb.nal.usda.gov). Moreover, these microbial 

populations brought by the larvae that can subsequently colonize the different diets could 

also affect larval development and survivorship. Microbes can produce toxins or convert 

food into unpalatable resources for other competitors (i.e., blow fly larvae), and hence 

the nutrient composition is shifted (Janzen 1977). For example, Proteus mirabilis, an 

opportunistic pathogen, produces “mirabilicide” antimicrobials suspected to suppress 

Gram-positive and Gram-negative bacteria that are harmful to blow fly larvae 

(Greenberg 1968).  Alternatively, some microbes are required for L. sericata survival; 

for instance, the same Proteus mirabilis can synthetize methionine, which is beneficial 

for metamorphism (Grabow and Smit 1967, Levenbook and Dinamarca 1966). However, 

an acidic environment can suppress P. mirabilis growth (Garrity et al 2006), and the 

decomposed beef liver diet is an acidic (pH=3) environment. 
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Although this research indicated there are not significant density effects, this may be 

due to the conservative statistical methods utilized for analysis and the limited sample 

size (Picheny et al 2010). But there is a trend of better and more stable survivorship of L. 

sericata at the highest larval density (40/g diet). Larval aggregation is beneficial for 

predigesting food sources by larvae as it concentrates larval secretions, proteolytic 

enzymes and metabolic heat, and thus the efficiency of their feeding behavior (Dos Reis 

et al 1999, Turner and Howard 1992). Therefore, the highest larval density diet treatment 

allowed for larval aggregation, and increased survivorship through eclosion. Whereas at 

low densities, the overproduction of larval secretions required to process the same food 

source may be too costly for the few larvae present and thus diminish the individual’s 

chances of reaching an adult stage. This would explain the lower eclosion percentage 

associated with lower density rearing. Unfortunately, many maggot secretion studies 

focus on antimicrobial action, thus the relationship of larval secretions to larval density 

and the success of the individual life cycle remains understudied. 

Each diet had advantages and drawbacks with regards to preparation and utilization. 

A decomposed liver diet can challenge the olfactory senses due to its foul odor, and 

preparation of the diet is time consuming (requires 5 d to age), but the material is widely 

available at a low cost. In contrast, the blood-based diet is more suitable choice for 

laboratory research since it can be prepared within 3 h, but the blood needs to be 

preserved in a freezer. Thus, the powdered liver diet could be a better choice since the 

freeze-dried liver can stored at ambient temperatures for longer periods than blood or 

fresh liver; however, the availability of the freeze-drying equipment for preprocessing 
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could be a limiting factor. 

In future studies, interactions between bacteria and larvae on sterile diets should be 

taken into consideration. As previously indicated, some bacteria, such as P. mirabilis, 

could be essential for successful larval development and such information could prove 

critical for MDT, especially if there is a true commensal relationship. The data generated 

from this study in conjunction with methods for sterilizing fly eggs developed by 

Brundage et al. (2016) could lead to advancements in the sterile process for fly 

production subsequent to use in MDT. 
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CHAPTER III 

BACTERIAL INFLUENCES ON THE NUTRITIONAL ECOLOGY OF LUCILIA 

SERICATA (DIPTERA: CALLIPHORIDAE) 

Introduction 

Nutritional ecology fundamentally integrates a broad spectrum of sciences into a 

framework allowing researchers to investigate the roles that nutrients play in mediating 

various responses of a consumer ranging from its behavior to physiology (Raubenheimer 

and Boggs 2009). Nutritional ecology also explains ecological phenomena allowing for a 

greater understanding of how organisms adapt (evolve) to shifts in their environment 

(Parker et al 2009, Raubenheimer et al 2009). Insects as the most diversified group, their 

diets are remarkable diversified, such as nectar feeders, blood feeders, sarcophagus 

feeders, and etc (Triplehorn et al 2005). Under the nutritional ecology framework, the 

diet alone is effectively impacted the development of insects. For example, the 

imbalance of amino acid drives the dietary restriction effects in terms of the trade-off 

between lifespan and fecundity of Drosophila (Grandison et al 2009). However, in order 

to adapt to the diversified diets, bacterial dimension of nutritional ecology plays an 

important role for nutrients acquisition of insects (Douglas 2009). For instance, aphids 

(Homoptera: Aphidae) usually feed on phloem sap, which is known to have a low 

concentration of essential amino acids. Aphids therefore rely on endosymbiotic gut 

bacteria to provide those required amino acids (Adams and Douglas 1997, Douglas 
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1998). Moreover, vertebrate carrion is an ephemeral and nutrient-rich resource, and 

attract a host of consumers (Benbow et al 2015). For example, an estimated 522 

arthropod species feed directly on the baby pig (Sus scrofa Linnaeus) carrions source or 

indirectly on organisms feeding on the carrion (Payne 1965). The microbial biomass of 

soil beneath a rat carcass increased by 400% (Carter et al. 2008). Thus, the vertebrate 

carrion system may provide an ‘arena’ for a host of interactions between arthropods and 

bacteria. 

However, little is known about the nutritional ecology associated with the 

vertebrate carrion system. Previous works has explored the growth rates of carrion-

associated fly larvae on different organs or tissues with various moisture effects 

(Bernhardt et al 2016, Clark et al 2006, Kaneshrajah and Turner 2004, Tarone and Foran 

2006). For instance, the larvae of Calliphora vicina R. -D. (Diptera: Calliphoridae) 

developed two days faster on pig lung, kidney, heart or brain than on pig liver 

(Kaneshrajah and Turner 2004). Lucilia sericata Meigen (Diptera: Calliphoridae) also 

grew faster and produced larger adults when cultured on pig rather than cow tissue, and 

when cultured on lung and heart in comparison with liver (Clark et al 2006). These data 

imply that variation in development experienced by these arthropods could be due to 

nutritional differences between the tissue types provided as the larval resource. For 

example, the nutrient composition varies across tissue types. Pig lung contains 0.00% 

carbohydrates and 14.08% proteins, while pig liver contains 2.47% carbohydrates and 

21.39% proteins (information from U. S. Department of Agriculture Nutrients Database 

http://ndb.nal.usda.gov). However, this research focused on the interactions between 



	 35	

tissue type and development rate of the flies (strictly forensic application) but failed to 

discuss the nutritional component and its relevance to the data produced (ecological 

significance). 

We now know that volatile organic compounds associated with a Proteus 

mirabilis (a commensal bacterium of L. sericata) behavior, which is quorum sensing 

regulated, serve as a mechanism governing fly attraction and colonization (Ma et al 

2012). Subsequent research hypothesized flies were tapping into ‘public information’ of 

the bacteria as a means to determine quality of the potential larval resource (Liu et al 

2016). Such interactions are beneficial to the bacteria as they could be dispersed by the 

fly to new resources (Nayduch and Burrus 2017). Moreover, a selected bacterium at a 

given concentration might be favorable for blow fly larval development while other 

species and concentration might be detrimental. For example, oviposition-inducing 

strains of bacteria were isolated from the surface of Musca domestica L. (Diptera: 

Muscidae) eggs, and those bacteria at 5×104-105 cfu/mL (colony-forming unit per 

milliliter) larval diet resulted in greater survivorship of M. domestica larvae than those 

bacteria at 102-105 cfu/mL (Lam et al 2009a). 

In order to investigate the effects of bacterial dimension of nutritional ecology in 

vertebrate carrion system, we selected L. sericata as a model organism to accomplish the 

following goals: (1) the nutritional effects on the development of L. sericata; (2) the 

nutritional impacts on the bacterial community of L. sericata; (3) the perturbation (i.e., 

introduced an exogenous bacteria) of nutritional effects on the development and bacterial 

community of L. sericata. 
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Material and method 

Fly source and eggs collection. A L. sericata colony initiated from specimens 

collected from Davis, CA, USA, in 2006 (Tarone and Foran 2006) was used. The colony 

was maintained in a BudDorm® (DP1000, 30 × 30 ×30 cm, MegaViewScience, 

Taichung, Taiwan, China) cage at 27˚C, 70% RH, 14:10 L: D. For each experiment, eggs 

were collected by placing ~30 g fresh beef liver inside a 50 mL glass beaker in the cage 

for 3 h. Eggs were transferred aseptically to a sterile petri dish covered with Kimwipes® 

(Kimberly-Clark Corp., Irving, TX, USA) soaked with deionized water and maintained 

in a Percival® I-36VL growth chamber set at 27˚C, 70% RH, 14:10 L: D. Eggs were 

monitored hourly for hatch after the initial 8 h. Resulting larvae were used in the 

experiments. 

Dietary treatments. Three sterilized dietary treatments with different 

Protein:Lipid percentage were tested. These diets were; 1) 23% protein, 7% lipid, 2) 

25% protein, 5% lipid, 3) 27% protein, 3% lipid (detailed composition see Table 7). The 

diet with 25% protein and 5% lipid was selected as it is similar in composition for these 

nutrients in fresh beef liver, a common material used to raise blow fly (Tarone and Foran 

2008). According to preliminary result, L. sericata is unable to complete development on 

a diet with lipid concentration greater than 7%. The 27% protein and 3% lipid diet was 

selected as a means to test an inverse symmetric shift in protein and lipid percentages. 

All dietary treatments were sterilized in an autoclave at 121˚C, 20 min prior to use. After 

being autoclaved, each diet was individually partitioned at 20 g allotments in 33 mL 

sterilized medical cups (cups: Dart® 125PCG, lids: Dart® 125PCL25; Dart Container 
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Corp., Mason, MI, USA). All dietary treatments were stored at 4˚C until inoculated with 

assigned bacterial treatments. 

Bacterial treatments. Four bacterial treatments were tested. These treatments 

were: 1) PBS (Phosphate Buffered Saline) as a control; 2) 103 cfu/gram Proteus 

mirabilis; 3) 107 cfu/gram Proteus mirabilis; 4) 107 cfu/gram Salmonella. P. mirabilis is 

known to play an important role in L. sericata larval and adult ecology (e.g., larval 

development and adult attraction) (Ma et al 2012). Salmonella was selected, as it has 

been associated with L. sericata in the past (Singh et al 2015). 

Experiment design and data collection. Previous research indicated sampling 

larvae from a population resulting in reduced density impacted corresponding life-

history traits. In order to avoid this impact, replicates were randomly assigned either to 

blow fly life-history trait or bacterial community assessment. Replicates assigned for 

assessing life-history traits L. sericata were monitored until all resulting adults died; 

thus, contact was reduced. Replicates of each treatment assigned for bacterial 

community assessment were destructively sampled at select time points (Table 8). The 

combination of four bacterial treatments and three dietary treatments were tested (Table 

8). Three biological replicates with each consisting of three technical replicates were 

used. Twenty newly hatched first instars were transferred to each replicate. Cups 

(replicates) containing larvae were covered with a breathable lid with a 12 mm diameter 

hole punched in the center. A sterilized cotton ball was inserted into the hole and served 

as a means to regulate ventilation. During larval development, deionized, sterile water 

was provided ad libitum at 12 h intervals. Post-feeding larvae within a given replicate 
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were transferred into a sterilized 1 L Mason jar (Ball® 1440096254, Daleville, IN, USA), 

which was covered with a double layer sterilized Wypall-wipes (Kimberly-Clark Corp., 

Irving, TX, USA) held in place with a rubber band. These replicates were observed at 8 

h interval until pupation, and the larval development duration recorded. All pupae were 

collected and pupation proportion per replicate and individual pupal weight recorded. 

Individual pupae were transferred into a sterilized medical cup with 10 g sterilized 

sugar-sand mix (sugar: sand = 1:1, Quikrete® Play Sand; Great Value® Pure Cane Sugar) 

in order to provide a carbohydrate resource and pupation substrate. Such an approach 

allowed for adult longevity to be based on fat reserves acquired during larval 

development. Pupae in cups were observed at 8 h interval for adult emergence, pupal 

duration, and longevity. 

Amplicon data collection. From each replicate, 3-d-old larvae, pupae, and adults 

were sampled and stored at -20˚C for further Amplicon sequencing. DNA extraction on 

three larvae/pupae/adults were accomplished with the PowerLyzer® PowerSoil® DNA 

Isolation Kit (MO BIO LABORATORIES, Inc., Carlsbad, CA). Amplicon (V4 region, 

515f/806r) sequencing was done with the Illumina MiSeq (v2 500 cycle regent cartridge) 

plotfrom with PE250bp at MSU RTSF Genomics Core. 

Statistical analysis 

Life-history trait data has been analyzed in JMP (v12.2.0). Analysis of Variance 

(ANOVA) and Tukey HSD (P < 0.05) were applied for analyzing pupation proportion, 

eclosion proportion, and pupal weight. The semi-parametric proportional hazard model 

and the Kaplan-Meier survival analysis were used for analyzing larval duration, pupal 
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duration, and adult longevity. 

Raw sequencing data were processed through the MICCA (v1.5.0) (Albanese et 

al 2015). The (Operational Taxonomy Unit) OTU was picked by VSERCH (v2.3.4) with 

green gene database (v2013.05) (DeSantis et al 2006, Rognes et al 2016). The Bergey’s 

bacterial taxonomy assigned to each OTU through the RDP classifier (v2.11) (Wang et al 

2007). Due to bacterial treatments, higher-level taxonomic resolution was not possible. 

Five samples were removed due to their low count at genus level (less than 1,000). In 

addition, the total sum normalization was applied to the fly sequencing data and diet 

residual data, respectively. Rare taxa were defined as those with counts less than 0.01% 

of the total abundance. 

The further bacterial community analyses were conducted in data were in R 

(v3.3.2). In order to determine the richness and evenness of bacterial community, the 

alpha diversity (Shannon index) and the beta diversity (Bray-Curtis) calculated on the 

bacterial community data (Beals 1984, Shannon 2001). Furthermore, the Permutation 

Multivariate Analysis of Variance (PerMANOVA) applied for comparing the beta 

diversity among treatments (Legendre and Anderson 1999). The non-Metric Multi-

Dimensional Scaling (nMDS) provided the dimension-reduction visualization of the beta 

diversity (Constantine and Gower 1978). In addition, the Bonferroni-corrected Multi-

Response Permutation Procedure (MRPP) employed for the post-hoc analyses of 

PerMANOVA (Jammalamadaka 2003). The Bonferroni-corrected Indicator Species 

Analysis (ISA) complemented the MRPP by assigning representative indicator species 

(Dufrene and Legendre 1997). 
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Table 7 | The composition of diet treatments (100g) for investigating the interaction effects of nutrients and exogenous 
bacteria on Lucilia sericata reared at 27˚C, 70% RH, 14:10 L:D 

Source Ingredient  Unit 23% Protein, 7% Lipid 25% Protein, 5% Lipid 27% Protein, 3% Lipid 

Protein source 
Casein g 13.8 15 16.2 

Peptone g 4.6 5 5.4 
Albumen g 4.6 5 5.4 

Cholesterol 
source 

Cholesterol mg 550 550 550 

Lipid source Linoleic acid mL 7.7 5.5 3.3 
Mineral source  Wesson's salt g 2.5 2.5 2.5 
Carbohydrate 

source 
Sucrose g 3.5 3.5 3.5 
Dextrin g 3.5 3.5 3.5 

Vitamin source 

Ascorbate acid  mg 275 275 275 
Thiamine mg 0.42 0.42 0.42 

Riboflavin mg 0.42 0.42 0.42 
Nicotinic acid mg 1.67 1.67 1.67 

Pyridoxine mg 0.42 0.42 0.42 
Folic acid mg 0.42 0.42 0.42 

myo-inositol mg 4.17 4.17 4.17 
Ca panththenate mg 0.83 0.83 0.83 

4-aminobenzoic acid mg 0.42 0.42 0.42 
Choline mg 20.83 20.83 20.83 

Biotin mg 0.02 0.02 0.02 
 Agar-agar g 3.5 3.5 3.5 
 Deionized H2O mL 70 70 70 
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Table 8 | The treatments and sampling time point for investigating the interaction effects of nutrients and exogenous bacteria 
on Lucilia sericata reared at 27˚C, 70% RH, 14:10 L:D; The experiment repeat the entire table 3 times (3 trials). 

Diet Treatments 
27% Protein 

3% Lipid 
 

25% Protein 
5% Lipid 

 
23% Protein 

7% Lipid 

Purpose 
Life-history 

Trait 

Bacterial 
Community at 

each stage* 
 

Life-history 
Trait 

Bacterial 
Community at 

each stage 
 

Life-history 
Trait 

Bacterial 
Community at 

each stage 

B
ac

te
ria

l T
re

at
m

en
ts

 

Phosphate 
Buffered Saline 

(PBS) 
3 Reps 1 Reps  3 Reps 1 Reps  3 Reps 1 Reps 

Low Proteus 
mirabilis 

(103 cfu/g) 
3 Reps 1 Reps  3 Reps 1 Reps  3 Reps 1 Reps 

High Proteus 
mirabilis 

(103 cfu/g) 
3 Reps 1 Reps  3 Reps 1 Reps  3 Reps 1 Reps 

High 
Salmonella 
(103 cfu/g) 

3 Reps 1 Reps  3 Reps 1 Reps  3 Reps 1 Reps 

*, the bacterial community sample was collected at each development stage: 3-day old larvae, 3-day old pupae, 3-day old 
adult. 
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Results: life-history trait data 

Larval duration of L. sericata. Diet (P < 0.001, F2,96 = 18.938) and bacterial 

treatments (P < 0.001, F3,96 = 23.755) significantly impacted larval duration (Table 9). 

No interaction effects were significant (P > 0.05). Moreover, there is an approximate 6% 

reduction in larval duration as the protein: lipid ratio increased (Table 10, Figure 4). In 

contrast, there is an approximate 5% increase in larval duration as concentration of P. 

mirabilis increased or if Salmonella introduced (Table 11, Figure 5). 

 

Table 9 | ANOVA on larval duration of Lucilia sericata reared on combinations of three 
diets and two exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation 
room set at 27˚C, 70% RH, 14:10 L:D, n=9 

Factor DF SumSq F P 
Diet treatment 2 18.938 68.102 <0.001 

Bacterial treatment 3 9.909 23.755 <0.001 
Diet treatment: Bacterial treatment 6 0.441 0.528 0.786 

Residual 96 13.348   
 

Table 10 | Tukey HSD (P < 0.05) results of larval duration of Lucilia sericata reared on 
three diets in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

Treatment Mean ± SEM (day) Letter Report 
23%[Protein],7%[Lipid] 9.063 (± 0.006) A 
25%[Protein],5%[Lipid] 8.510 (± 0.006) B 
27%[Protein],3%[Lipid] 8.039 (± 0.006) C 
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Table 11 | Tukey HSD (P < 0.05) results of larval duration of Lucilia sericata reared on 
combinations of three diets and two exogenous bacteria (Proteus mirabilis and 
Salmonella) at different densities in an incubation room set at 27˚C, 70% RH, 14:10 
L:D, n=9 

Treatment Mean ± SEM (day) Letter Report 
PBS 8.077 (± 0.072) A 

P. mirabilis (10^3 cfu/g) 8.575 (±0.072) B 
P. mirabilis (10^7 cfu/g) 8.928 (±0.072) C 
Salmonella (10^7 cfu/g) 8.570 (± 0.072) B 

 

Figure 4 | Effects of diet on the larval duration ± SEM of Lucilia sericata reared on the 
treatments with three diets in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

 

*Treatments with different lowercase letter indicates significant (P < 0.05) difference.  
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Figure 5 | Effects of exogenous bacteria (Proteus mirabilis and Salmonella) on larval 
duration ± SEM of Lucilia sericata reared on combinations of three diets and two 
exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 
27˚C, 70% RH, 14:10 L:D, n=9 

 

*Treatments with different lowercase letter indicates significant (P < 0.05) difference.  

 

Pupal weight of L. sericata. Diet (P < 0.001, F2,96 = 28.453) and bacterial 

treatments (P < 0.001, F3,96 = 25.140) significantly impacted larval duration (Table 12). 
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A significant interaction between diet and bacterial treatments (P = 0.009, F6,96 = 

112.378) was determined for pupal weight (Table 12). Larvae exposed to high and 

moderate protein: lipid diets in conjunction with the high concentrations of P. mirabilis 

were 15% smaller than the PBS controls or the other bacterial treatments (Table 13, 

Figure 6). This effect was lower (5%) when larvae were provided the low protein diet, 

high P. mirabilis, or Salmonella inoculums. 

 

Table 12 | ANOVA of pupal weight of Lucilia sericata on combinations of three diets 
and two exogenous bacteria (Proteus mirabilis and Salmonella) an incubation room set 
at 27˚C, 70% RH, 14:10 L:D, n=9 

Factor DF SumSq F P 
Diet treatment 2 66.615 28.453 <0.001 

Bacterial treatment 3 88.287 25.140 <0.001 
Diet treatment: Bacterial treatment 6 21.141 3.010 0.009 

Residual 96 112.378   
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Table 13 | Tukey HSD (P < 0.05) results of pupal weight ± SEM of Lucilia sericata 
reared on combinations of three diets and two exogenous bacteria (Proteus mirabilis and 
Salmonella) an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

Diet 
Treatment 

Bacterial Treatment Mean ± SEM (mg) Letter Report 

23%[Protein],
7%[Lipid] 

PBS 14.341 (± 0.402) AB 
P. mirabilis (10^3 cfu/g) 15.663 (± 0.402) A 
P. mirabilis (10^7 cfu/g) 13.594 (± 0.402) B 
Salmonella (10^7 cfu/g) 13.854 (± 0.402) B 

25%[Protein],
5%[Lipid] 

PBS 16.023 (± 0.323) A 
P. mirabilis (10^3 cfu/g) 15.533 (± 0.323) A 
P. mirabilis (10^7 cfu/g) 13.279 (± 0.323) B 
Salmonella (10^7 cfu/g) 15.742 (± 0.323) A 

27%[Protein],
3%[Lipid] 

PBS 16.794 (± 0.353) A 
P. mirabilis (10^3 cfu/g) 17.219 (± 0.353) A 
P. mirabilis (10^7 cfu/g) 14.398 (± 0.353) B 
Salmonella (10^7 cfu/g) 16.694 (± 0.353) A 
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Figure 6 | Effects of diet and exogenous bacteria on pupal weight ± SEM of Lucilia 
sericata  reared on combinations of three diets and two exogenous bacteria (Proteus 
mirabilis and Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

 

*Treatments with different lowercase letter indicates significant (P < 0.05) difference. 
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Pupation proportion of L. sericata. Diet treatments (P < 0.001, F2,96 = 10.357) 

significantly impacted pupation proportion, while bacterial treatments were not (P > 

0.05) (Table 14). No interaction effects were significant (P > 0.05). An approximate 12% 

increase in pupation proportion was determined from the lowest and moderate protein: 

lipid ratios to the highest ratio (Table 15, Figure 7). 

 

Table 14 | ANOVA of pupation proportion of Lucilia sericata reared on combinations of 
three diets and two exogenous bacteria (Proteus mirabilis and Salmonella) in an 
incubation room set at 27˚C, 70% RH , 14:10 L:D, n=9 

Factor DF SumSq F P 
Diet treatment 2 0.242 10.357 <0.001 

Bacterial treatment 3 0.050 1.422 0.241 
Diet treatment: Bacterial treatment 6 0.056 0.796 0.575 

Residual 96 1.123   
 

Table 15 | Tukey HSD (P < 0.05) results of pupal proportion of Lucilia sericata reared 
on combinations of three diets and two exogenous bacteria (Proteus mirabilis and 
Salmonella) in an incubation room set at 27˚C, 70% RH , 14:10 L:D, n=9 

Treatment Mean ± SEM Letter Report 
23%[Protein],7%[Lipid] 0.814 (± 0.018) A 
25%[Protein],5%[Lipid] 0.836 (± 0.018) A 
27%[Protein],3%[Lipid] 0.924 (± 0.018) B 
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Figure 7 | Effects of diet on pupation proportion ± SEM of Lucilia sericata reared on 
combinations of three diets and two exogenous bacteria (Proteus mirabilis and 
Salmonella) an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

 

*Treatments with different lowercase letter indicates significant (P < 0.05) difference. 

 

Pupal duration of L. sericata. Diet did not significantly (P > 0.05) impact pupal 

duration. However, bacterial treatment significantly (P < 0.001, F3,96 = 13.656) (Table 

16) impacted pupal duration. No interaction effects were significant (P > 0.05). Pupal 

duration of those larvae exposed to the bacterial treatments was 6% than for those in the 

PBS control (Table 17, Figure 8). 
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Table 16 | ANOVA on diet and bacterial treatments effects on pupal duration of Lucilia 
sericata reared on combinations of three diets and two exogenous bacteria (Proteus 
mirabilis and Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

Factor DF SumSq F P 
Diet treatment 2 0.072 0.309 0.735 

Bacterial treatment 3 4.759 13.656 <0.001 
Diet treatment: Bacterial treatment 6 0.683 0.980 0.443 

Residual 96 11.152   
 

Table 17 | Tukey HSD (P < 0.05) results of pupal duration of Lucilia sericata reared on 
combinations of three diets and two exogenous bacteria (Proteus mirabilis and 
Salmonella) in an incubation room set at 27˚C, 70% RH , 14:10 L:D, n=9 

Treatment Mean ± SEM (day) Letter Report 
PBS 7.114 (± 0.066) A 

P. mirabilis (10^3 cfu/g) 7.656 (± 0.066) B 
P. mirabilis (10^7 cfu/g) 7.497 (± 0.066) B 
Salmonella (10^7 cfu/g) 7.589 (± 0.066) B 
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Figure 8 | Effects of exogenous bacteria on the pupal duration ± SEM of Lucilia sericata 
reared on combinations of three diets and two exogenous bacteria (Proteus mirabilis and 
Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

 

*Treatments with different lowercase letter indicates significant (P < 0.05) difference.  
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Eclosion proportion of L. sericata. Diet (P < 0.001, F2,96 = 15.324) and bacterial 

treatment (P = 0.003, F3,96 = 0.003) significantly impacted eclosion proportion (Table 

18). No interaction effects were significant (P > 0.05). Larvae reared on the diet with the 

lowest protein experienced 18.5% greater eclosion than those raised on the lowest 

protein: lipid ratio treatments (Table 19, Figure 9). Additionally, when considering the 

bacterial treatments, eclosion proportion decreased approximately 9% from the PBS and 

low dosage P. mirabilis treatments to the high dosage P. mirabilis and Salmonella 

treatments (Table 20, Figure 10). 

 

Table 18 | ANOVA on diet and exogenous bacterial treatments effects on eclosion 
proportion of Lucilia sericata reared on combinations of three diets and two exogenous 
bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 27˚C, 70% RH, 
14:10 L:D, n=9 

Factor DF SumSq F P 
Diet treatment 2 0.416 15.324 <0.001 

Bacterial treatment 3 0.203 4.972 0.003 
Diet treatment: Bacterial treatment 6 0.146 1.794 0.108 

Residual 96 1.304   
 

Table 19 | Tukey HSD (P < 0.05) results of eclosion proportion of Lucilia sericata 
reared on combinations of three diets and two exogenous bacteria in an incubation room 
set at 27˚C, 70% RH, 14:10 L:D, n=9 

Treatment Mean ± SEM Letter Report 
23%[Protein],7%[Lipid] 0.691 (± 0.019) A 
25%[Protein],5%[Lipid] 0.800 (± 0.019) B 
27%[Protein],3%[Lipid] 0.838 (± 0.019) B 
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Table 20 | Tukey HSD (P < 0.05) results of eclosion proportion of Lucilia sericata 
reared on combinations of three diets and two exogenous bacteria in an incubation room 
set at 27˚C, 70% RH, 14:10 L:D, n=9 

Treatment Mean ± SEM Letter Report 
PBS 0.802 (± 0.022) A 

P. mirabilis (10^3 cfu/g) 0.829 (± 0.022) A 
P. mirabilis (10^7 cfu/g) 0.714 (± 0.022) B 
Salmonella (10^7 cfu/g) 0.761 (± 0.022) AB 

 

Figure 9 | Effects of diet on the eclosion proportion ± SEM of Lucilia sericata reared on 
combinations of three diets and two exogenous bacteria (Proteus mirabilis and 
Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

 

*Treatments with different lowercase letter indicates significant (P < 0.05) difference.  
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Figure 10 | Effects of exogenous bacteria on the eclosion proportion ± SEM of Lucilia 
sericata reared on combinations of three diets and two exogenous bacteria (Proteus 
mirabilis and Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

 

*Treatments with different lowercase letter indicates significant (P < 0.05) difference.  

 

Adult duration of L. sericata. Diet (P < 0.001, F2,96 = 9.765) and bacterial 

treatments (P < 0.001, F3,96 = 10.301) significantly impacted larval duration (Table 21). 

A significant (P = 0.009, F6,96 = 3.016) interaction effect between diet and bacterial 
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treatments on adult duration was determined (Table 21). For those larvae provided the 

lowest protein: lipid ratio diet and the high P. mirabilis treatment, adults lived an average 

of 15% longer than those provided the other diet/bacteria combinations, including the 

PBS (Table 22, Figure 11). However, it should be noted, with the highest protein: lipid 

ratio diet, the Salmonella treatment, resulted in adults lived 20% longer than those 

provided the other diet/bacteria combinations, including the PBS (Table 22, Figure 11). 

 

Table 21 | ANOVA of adult duration of Lucilia sericata reared reared on combinations 
of three diets and two exogenous bacteria (Proteus mirabilis and Salmonella) in an 
incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

Factor DF SumSq F P 
Diet treatment 2 11.682 9.765 <0.001 

Bacterial treatment 3 18.483 10.301 <0.001 
Diet treatment: Bacterial treatment 6 10.822 3.016 0.009 

Residual 96 57.420   
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Table 22 | Tukey HSD (P < 0.05) of adult duration ± SEM of Lucilia sericata reared on 
combinations of three diets and two exogenous bacteria (Proteus mirabilis and 
Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

Diet 
Treatment 

Bacterial Treatment Mean ± SEM (day) Letter Report 

23%[Protein],
7%[Lipid] 

PBS 3.326 (± 0.252) A 
P. mirabilis (10^3 cfu/g) 3.552 (± 0.252) A 
P. mirabilis (10^7 cfu/g) 3.971 (± 0.252) A 
Salmonella (10^7 cfu/g) 3.212 (± 0.252) A 

25%[Protein],
5%[Lipid] 

PBS 3.390 (± 0.258) A 
P. mirabilis (10^3 cfu/g) 3.863 (± 0.258) A 
P. mirabilis (10^7 cfu/g) 5.245 (± 0.258) B 
Salmonella (10^7 cfu/g) 4.151 (± 0.258) A 

27%[Protein],
3%[Lipid] 

PBS 3.596 (± 0.244) A 
P. mirabilis (10^3 cfu/g) 3.982 (± 0.244) A 
P. mirabilis (10^7 cfu/g) 4.475 (± 0.244) AB 
Salmonella (10^7 cfu/g) 4.965 (± 0.244) B 
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Figure 11 | Effects of diet and exogenous bacteria on the adult duration ± SEM of 
Lucilia sericata reared on combinations of three diets and two exogenous bacteria 
(Proteus mirabilis and Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 
L:D, n=9 
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Results: bacterial community data 

Bacterial community diversity indices across development stage of fly. A 

heatmap for genera abundance at each developmental stage of L. sericata is presented in 

Figure 12. Shannon diversity was only significantly (P < 0.001, F2,67 = 28.52) different 

across development stages (Figure 13) with an approximately 45% increase in diversity 

from larva to adult. 

The nMDS plot (dimension=3) of the impact of diet and bacteria treatments on 

beta diversity across development stages is presented in Figure 14. The nMDS plot had 

an overall stress of 0.1047, with 49.98% beta diversity explained by x-axis, and 32.57% 

beta diversity explained by y-axis.  

For the PerMANOVA results, significant two-way interactions between 

development stage and diet (P = 0.014, pseudo-F4,67 = 1.973) as well as development 

stage and bacterial treatment (P = 0.001, pseudo-F6,67 = 2.454) on fly bacterial 

communities were determined (Table 23). Due to the complexity of the results from the 

additional analyses (PerMANOVA by stage, MRPP and ISA), they have been broken 

down and are presented by development stage and are presented below.  



	 59	

Figure 12 | Heatmap of bacterial genera demonstrating diet and exogenous bacterial 
treatment effects on development stage of Lucilia sericata reared on combinations of 
three diets and two exogenous bacteria (Proteus mirabilis and Salmonella) in an 
incubation room set at 27˚C, 70% RH, 14:10 L:D, n=3 

 

A log2(x+1) transformation applied on the count table. The lighter blue the color is, the 
higher the abundance of the genus.  
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Figure 13 | Shannon diversity index by averaging the bacterial and diet effects at each 
development stage of Lucilia sericata reared on combinations of three diets and two 
exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 
27˚C, 70% RH, 14:10 L:D, n=9 

 

The diversity of bacterial community has significantly increased as the 

development stage progressing (P < 0.001, F2,67 = 28.52). The small case letter indicates 

significant difference. The Shannon diversity index (Mean ± SEM) of larval, pupal, and 

adult stages are 0.920 ± 0.052, 1.302 ± 0.067, and 1.625 ± 0.084, respectively. 
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Figure 14 | nMDS plots on normalized count data by diet and bacterial effects on 
development stage of Lucilia sericata reared on combinations of three diets and two 
exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 
27˚C, 70% RH, 14:10 L:D, n=3 

 

(a) Larval stage, (b) Pupal stage, and (c) Adult stage. The overall stress of the 

nMDS simulation with (dimension = 3) is 0.1047. Moreover, the nMDS x-axis explained 

49.98% of the total beta diversity. And the nMDS y-axis explained 32.57% of the total 

beta diversity.  
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Table 23 | PerMANOVA of normalized bacterial community of each development stage 
of Lucilia sericata reared on combinations of three diets and two exogenous bacteria 
(Proteus mirabilis and Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 
L:D, n=9 

Factor DF SumSq Pseudo-F P 
Diet treatment 2 0.521 2.131 0.035 

Bacterial treatment 3 2.714 7.399 0.001 
Development stage 2 7.288 29.808 0.001 

Diet treatment: Bacterial treatment 6 1.113 1.518 0.052 
Development stage: Diet treatment 4 0.965 1.973 0.014 

Development stage: Bacterial treatment 6 1.800 2.454 0.001 
Development stage: Diet treatment: Bacterial 

treatment 
12 1.649 1.124 0.270 

Residual 67 8.191   
 

Treatment effects on larval bacterial community. The nMDS plot 

(dimension=3) allow for visualizing the beta diversity across diet and bacterial 

treatments for the larval stage (Figure 15). The nMDS plot has an overall stress of 

0.0453, with 78.15% beta diversity explained by x-axis, and 12.22% beta diversity 

explained by y-axis. 

PerMANOVA indicated diet treatment (P = 0.031, pseudo-F2,23 = 0.295) and the 

bacterial treatment (P = 0.001, pseudo-F3,23 = 2.852) were impacted bacterial community 

structure associated with the larval stage (Table 24). Not interaction effect was 

significant (P > 0.05, Table 14). Based on pairwise MRPP analyses bacterial community 

associated with the larval stage, while not significant with regards to diet (Table 25), 

were significant for bacterial treatments (Table 26). ISA indicated Lactobacillus (43.49% 

of the total bacterial composition on diet residuals), Proteus (36.96% of the total 

bacterial composition of the larvae), Salmonella (5.36% of the total bacterial 
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composition of the larvae), Providencia (1.92% of the total bacterial composition of the 

larvae) as well as the rare taxa (Table 27) were the major taxa driving these differences. 

 

Figure 15 | nMDS plots on normalized count data of diet treatment and exogenous 
bacterial treatment effects on larval stage of Lucilia sericata reared on combinations of 
three diets and two exogenous bacteria (Proteus mirabilis and Salmonella) in an 
incubation room set at 27˚C, 70% RH, 14:10 L:D, n=3 

 

 

Table 24 | PerMANOVA of normalized bacterial community of larval stage of Lucilia 
sericata reared on combinations of three diets and two exogenous bacteria (Proteus 
mirabilis and Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=3 

Factor DF SumSq Pseudo-F P 
Diet treatment 2 0.295 3.193 0.031 

Bacterial treatment 3 2.852 20.615 0.001 
Diet treatment: Bacterial treatment 6 0.402 1.452 0.200 

Residual 23 1.061   
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Table 25 | Multi-Response Permutation Procedure (MRPP) of normalized bacterial 
community of larval stage of Lucilia sericata reared on combinations of three diets and 
two exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 
27˚C, 70% RH, 14:10 L:D, n=3 

Diet treatment -Diet treatment delta P P* 
23%[Protein],7%[Lipid] 25%[Protein],5%[Lipid] 0.498 0.869 1.000 
23%[Protein],7%[Lipid] 27%[Protein],3%[Lipid] 0.442 0.107 0.321 
25%[Protein],5%[Lipid] 23%[Protein],7%[Lipid] 0.457 0.386 1.000 

*, the Bonferroni corrected P-value 

 

Table 26 | Multi-Response Permutation Procedure (MRPP) of normalized bacterial 
community of larval stage of Lucilia sericata reared on combinations of three diets and 
two exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 
27˚C, 70% RH, 14:10 L:D, n=3 

Bacterial treatment -Bacterial treatment delta P P* 
PBS P. mirabilis (10^3 cfu/g) 0.331 0.018 0.108 
PBS P. mirabilis (10^7 cfu/g) 0.332 0.001 0.006 
PBS Salmonella (10^7 cfu/g) 0.368 0.004 0.024 

P. mirabilis (10^3 cfu/g) P. mirabilis (10^7 cfu/g) 0.217 0.001 0.006 
P. mirabilis (10^3 cfu/g) Salmonella (10^7 cfu/g) 0.251 0.001 0.006 
P. mirabilis (10^7 cfu/g) Salmonella (10^7 cfu/g) 0.252 0.001 0.006 

*, the Bonferroni corrected P-value 
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Table 27 | Indicator Species Analyses (ISA) of normalized bacterial community of larval 
stage of Lucilia sericata reared on combinations of three diets and two exogenous 
bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 27˚C, 70% RH, 
14:10 L:D, n=3 

*, the Bonferroni corrected P-value 

 

 

 

  

Comparisons Treatments ISA STAT P P* 

Comparison 1 
PBS 

Lactobacillus 0.872 0.005 0.025 
Leuconostoc 0.771 0.020 0.100 

P. mirabilis 
(10^7 cfu/g) 

Proteus 0.864 0.010 
0.050 

Comparison 2 

PBS NA    

Salmonella 
(10^7 cfu/g) 

Salmonella 1.000 0.005 0.025 
Providencia 0.839 0.025 0.125 
Rare taxa 0.959 0.005 0.025 

Comparison 3 

P. mirabilis 
(10^3 cfu/g) 

Lactobacillus 0.849 0.005 
0.025 

P. mirabilis 
(10^7 cfu/g) 

Proteus 0.783 0.005 
0.025 

Comparison 4 

P. mirabilis 
(10^3 cfu/g) 

Proteus 0.953 0.005 
0.025 

Salmonella 
(10^7 cfu/g) 

Salmonella 0.986 0.005 0.025 
Providencia 0.853 0.005 0.025 
Lactobacillus 0.774 0.020 0.100 

Comparison 5 

P. mirabilis 
(10^7 cfu/g) 

Proteus 0.969 0.005 0.025 
Vagococcus 0.868 0.020 0.100 

Salmonella 
(10^7 cfu/g) 

Salmonella 1.000 0.005 0.025 
Lactobacillus 0.891 0.005 0.025 
Providencia 0.890 0.005 0.025 
Rare taxa 0.946 0.005 0.025 
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Treatment effects on pupal bacterial community. The nMDS plot 

(dimension=3) allow for visualizing the beta diversity across diet and bacterial 

treatments for the pupal stage (Figure 16). The nMDS plot has an overall stress of 

0.0808, with 57.79% beta diversity explained by x-axis, and 23.16% beta diversity 

explained by y-axis. 

PerMANOVA indicated bacterial treatment is impacted bacterial community 

structure associated with the pupal stage (P = 0.037, pseudo-F3,22 = 2.180), while the diet 

treatment is not (P > 0.05, Table 28). Not interaction effect was significant (P > 0.05, 

Table 28). Based on pairwise MRPP analyses, the highest P. mirabilis and the 

Salmonella treatment (Table 29) were significant (P = 0.048, delta = 0.426) drivers of 

these differences. ISA indicated Proteus (46.77% of the total bacterial composition of 

the pupae), Lactobacillus (16.08% of the total bacterial composition of the pupae), 

Morganella (8.62% of the total bacterial composition of the larvae), Providencia (3.96% 

of the total bacterial composition of the larvae), and Salmonella (0.59% of the total 

bacterial composition of the pupae) were the primary genera driving these differences 

(Table 30). 
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Figure 16 | nMDS plots on normalized count data of diet treatment and exogenous 
bacterial treatment effects on pupal stage of Lucilia sericata reared on combinations of 
three diets and two exogenous bacteria (Proteus mirabilis and Salmonella) in an 
incubation room set at 27˚C, 70% RH, 14:10 L:D, n=3 

 

 

Table 28 | PerMANOVA of normalized bacterial community of pupal stage of Lucilia 
sericata reared on combinations of three diets and two exogenous bacteria in an 
incubation room set at 27˚C, 70% RH, 14:10 L:D, n=3 

Factor DF SumSq Pseudo-F P 
Diet treatment 2 0.318 1.319 0.260 

Bacterial treatment 3 0.788 2.180 0.037 
Diet treatment: Bacterial treatment 6 0.864 1.194 0.247 

Residual 22 2.652   
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Table 29 | Multi-Response Permutation Procedure (MRPP) of normalized bacterial 
community of pupal stage of Lucilia sericata reared on combinations of three diets and 
two exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 
27˚C, 70% RH, 14:10 L:D, n=3 

Bacterial treatment -Bacterial treatment delta P P* 
PBS P. mirabilis (10^3 cfu/g) 0.462 0.085 0.510 
PBS P. mirabilis (10^7 cfu/g) 0.468 0.066 0.396 
PBS Salmonella (10^7 cfu/g) 0.620 0.951 1.000 

P. mirabilis (10^3 cfu/g) P. mirabilis (10^7 cfu/g) 0.288 0.711 1.000 
P. mirabilis (10^3 cfu/g) Salmonella (10^7 cfu/g) 0.420 0.028 0.168 
P. mirabilis (10^7 cfu/g) Salmonella (10^7 cfu/g) 0.426 0.008 0.048 

*, the Bonferroni corrected P-value 

 

Table 30 | Indicator Species Analyses (ISA) of normalized bacterial community of pupal 
stage of Lucilia sericata reared on combinations of three diets and two exogenous 
bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 27˚C, 70% RH, 
14:10 L:D, n=3 

Comparisons Treatments ISA STAT P P* 

Comparison 1 

P. mirabilis (10^7 cfu/g) Proteus 0.812 0.040 0.080 

Salmonella (10^7 cfu/g) 

Salmonella 0.846 0.010 0.020 
Lactobacillus 0.856 0.020 0.040 
Providencia 0.851 0.020 0.040 
Morganella 0.839 0.025 0.050 

*, the Bonferroni corrected P-value 
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Treatment effects on adult bacterial community. The nMDS plot 

(dimension=3) allow for visualizing the beta diversity across diet and bacterial 

treatments for the pupal stage (Figure 17). The nMDS plot has an overall stress of 

0.0985, with 45.01% beta diversity explained by x-axis, and 32.68% beta diversity 

explained by y-axis. 

PerMANOVA indicated diet treatment (P = 0.016, pseudo-F2,22 = 2.112) is significantly 

impacted bacterial community structure associated with the adult stage, while the 

bacterial treatment is not (P > 0.05, Table 31). Not interaction effect was significant (P > 

0.05, Table 29). However, Pairwise MRPP applied for comparing diet effects on bacterial 

communities associated with resulting adults were not significantly different (Table 32). 

 

Figure 17 | nMDS plots on normalized bacterial community on adult stage of Lucilia 
sericata reared on combinations of three diets and two exogenous bacteria (Proteus 
mirabilis and Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=3 
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Table 31 | PerMANOVA of normalized bacterial community of adult stage of Lucilia 
sericata reared on combinations of three diets and two exogenous bacteria (Proteus 
mirabilis and Salmonella) densities in an incubation room set at 27˚C, 70% RH, 14:10 
L:D, n=3 

Factor DF SumSq Pseudo-F P 
Diet treatment 2 0.860 2.112 0.016 

Bacterial treatment 3 0.773 1.265 0.230 
Diet treatment: Bacterial treatment 6 1.488 1.218 0.207 

Residual 22 4.478   
 

Table 32 | Multi-Response Permutation Procedure (MRPP) of normalized bacterial 
community of adult stage of Lucilia sericata reared on combinations of three diets and 
two exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 
27˚C, 70% RH, 14:10 L:D, n=3 

Diet treatment -Diet treatment delta P P* 
23%[Protein],7%[Lipid] 25%[Protein],5%[Lipid] 0.656 0.153 0.459 
23%[Protein],7%[Lipid] 27%[Protein],3%[Lipid] 0.626 0.031 0.093 
25%[Protein],5%[Lipid] 23%[Protein],7%[Lipid] 0.586 0.136 0.408 

*, the Bonferroni corrected P-value 

 

Bacterial community diversity indices across feeding stage on diet residual. 

A heatmap for genera abundance between active-feeding-stage diet residual and post-

feeding-stage diet residual (Figure 18). The nMDS (dimension=3) has overall stress at 

0.0672 with 65.32% and 22.81% beta diversity on x-axis and y-axis, respectively (Figure 

19). 

 PerMANOVA further indicated bacterial treatments in conjunction with life stage 

of the blow fly significantly impacted (P = 0.001, pseudo-F3,46 = 1.045) the bacterial 

community associated with the residual diet (Table 33). Pairwise MRPP indicate only 

during the active feeding stage, all the bacterial treatments were significant different 
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from each other (6 pairwise comparison, see Table 34 for details). Further for the diet 

residual (after active feeding stage), both the highest bacterial treatment in P. mirabilis 

and the Salmonella treatments were the primary drivers (P = 0.042, delta = 0.447, see 

Table 35 for details) of these differences. ISA indicate Proteus (43.67% of the total 

bacterial composition on diet residuals), Lactobacillus (27.33% of the total bacterial 

composition on diet residuals), Salmonella (4.53% of the total bacterial composition on 

diet residuals), Leuconostoc (1.40% of the total bacterial composition on diet residuals), 

Providencia (1.29% of the total bacterial composition on diet residuals), as well as the 

rare taxa with abundance less than 0.01% of the community (Table 36 and 37). 

 

Figure 18 | Heatmap of bacterial genera in residual diet after being fed to Lucilia 
sericata larvae in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

 

A log2(x+1) transformation applied on the count table. The lighter blue the color is, the 
higher the abundance of the genus.  
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Figure 19 | nMDS plots of bacterial genera in residual diet after being fed to Lucilia 
sericata larvae in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

 

 

Table 33 | PerMANOVA of normalized bacterial community of diet residuals from 
Lucilia sericata post-feeding after being reared on combinations of three diets and two 
exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation room set at 
27˚C, 70% RH, 14:10 L:D, n=3 

Factor DF SumSq Pseudo-F P 
Diet treatment 2 0.354 1.909 0.072 

Bacterial treatment 3 4.321 15.522 0.001 
Type 1 1.318 14.209 0.001 

Diet treatment: Bacterial treatment 6 0.320 0.575 0.896 
Type: Diet treatment 2 0.091 0.492 0.808 

Type: Bacterial treatment 3 1.045 3.753 0.001 
Type: Diet treatment: Bacterial 

treatment 
6 0.319 0.573 0.912 

Residual 46 4.268   
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Table 34 | Multi-Response Permutation Procedure (MRPP) of normalized bacterial 
community of the active-feeding stage of Lucilia sericata when being reared on 
combinations of three diets and two exogenous bacteria (Proteus mirabilis and 
Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

Bacterial treatment -Bacterial treatment delta P P* 
PBS P. mirabilis (10^3 cfu/g) 0.330 0.004 0.024 
PBS P. mirabilis (10^7 cfu/g) 0.339 0.001 0.006 
PBS Salmonella (10^7 cfu/g) 0.409 0.001 0.006 

P. mirabilis (10^3 cfu/g) P. mirabilis (10^7 cfu/g) 0.134 0.004 0.024 
P. mirabilis (10^3 cfu/g) Salmonella (10^7 cfu/g) 0.205 0.001 0.006 
P. mirabilis (10^7 cfu/g) Salmonella (10^7 cfu/g) 0.214 0.001 0.006 

*, the Bonferroni corrected P-value 

	

Table 35 | Multi-Response Permutation Procedure (MRPP) of normalized bacterial 
community of the post-feeding stage of Lucilia sericata when being reared on 
combinations of three diets and two exogenous bacteria (Proteus mirabilis and 
Salmonella) in an incubation room set at 27˚C, 70% RH, 14:10 L:D, n=9 

Bacterial treatment -Bacterial treatment delta P P* 
PBS P. mirabilis (10^3 cfu/g) 0.413 0.324 1.000 
PBS P. mirabilis (10^7 cfu/g) 0.415 0.178 1.000 
PBS Salmonella (10^7 cfu/g) 0.539 0.204 1.000 

P. mirabilis (10^3 cfu/g) P. mirabilis (10^7 cfu/g) 0.307 0.692 1.000 
P. mirabilis (10^3 cfu/g) Salmonella (10^7 cfu/g) 0.445 0.010 0.060 
P. mirabilis (10^7 cfu/g) Salmonella (10^7 cfu/g) 0.447 0.007 0.042 

*, the Bonferroni corrected P-value 
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Table 36 | Indicator Species Analysis (ISA) of normalized bacterial community of the 
active-feeding stage of Lucilia sericata when being reared on combinations of three diets 
and two exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation room 
set at 27˚C, 70% RH, 14:10 L:D, n=9 

Comparisons Treatments ISA STAT P P* 

Comparison 1 
PBS 

Leuconostoc 0.943 0.005 0.03 
Providencia 0.905 0.020 0.12 
Lactobacillus 0.838 0.015 0.09 
Weissella 0.816 0.025 0.15 

P. mirabilis 
(10^3 cfu/g) 

Proteus 0.848 0.010 
0.06 

Comparison 2 
PBS 

Lactobacillus 0.934 0.005 0.03 
Providencia 0.912 0.020 0.12 
Weissella 0.816 0.030 0.18 
Rare Taxa 0.989 0.025 0.15 

P. mirabilis 
(10^7 cfu/g) 

Proteus 0.862 0.005 
0.03 

Comparison 3 
PBS Enterococcus 0.898 0.035 0.21 

Salmonella 
(10^7 cfu/g) 

Salmonella 0.998 0.005 
0.03 

Comparison 4 

P. mirabilis 
(10^3 cfu/g) 

Lactobacillus 0.862 0.005 
0.03 

P. mirabilis 
(10^7 cfu/g) 

Proteus 0.730 0.040 
0.24 

Comparison 5 

P. mirabilis 
(10^3 cfu/g) 

Proteus 0.968 0.005 
0.03 

Salmonella 
(10^7 cfu/g) 

Salmonella 1.000 0.005 0.03 
Providencia 0.890 0.005 0.03 
Lactobacillus 0.849 0.005 0.03 

Comparison 6 

P. mirabilis 
(10^7 cfu/g) 

Proteus 0.969 0.005 
0.03 

Salmonella 
(10^7 cfu/g) 

Salmonella 1.000 0.005 0.03 
Lactobacillus 0.939 0.005 0.03 
Providencia 0.898 0.005 0.03 
Rare taxa 0.976 0.005 0.03 

*, the Bonferroni corrected P-value 
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Table 37 | Indicator Species Analysis (ISA) of normalized bacterial community of the 
post-feeding stage of Lucilia sericata when being reared on combinations of three diets 
and two exogenous bacteria (Proteus mirabilis and Salmonella) in an incubation room 
set at 27˚C, 70% RH, 14:10 L:D, n=3 

Comparisons Treatments ISA STAT P P* 

Comparison 1 

P. mirabilis (10^7 cfu/g) Proteus 0.848 0.040 0.080 

Salmonella (10^7 cfu/g) 

Salmonella 1.000 0.005 0.010 
Lactobacillus 0.790 0.010 0.020 
Providencia 0.989 0.005 0.010 
Staphylococcus 0.878 0.020 0.040 
Rare taxa 0.873 0.010 0.020 

*, the Bonferroni corrected P-value  

 

Discussion 

Blow flies colonize a variety of decomposing vertebrate remains (Greenberg 

1991). Such ability has resulted in tremendous evolutionary success for these species in 

many ecosystems (Benbow et al 2015). However, their ability to colonize, develop, and 

produce adults is highly dependent on the nutritional quality of the larval resource 

(Daniels et al 1991). Furthermore, recent publications indicate resource in combination 

with associated bacteria co-vary with regards to development responses by flies 

competing for these resources (Ferrandon et al 2007, Gerardo et al 2010, Gottar et al 

2002). 

Previous studies examined variation in L. sericata development in association 

with bacteria and diets, such as beef liver or a yeast-based diet; however, nutritional 

composition was lacking or coarsely described. Crooks et al (2016) determined bacterial 

effects on the development of L. sericata with a nutritional-undefined diet, while Singh 

et al (2015) indicated a similarity of bacterial community between L. sericata and a 
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single diet, beef liver. However, confounding factors in these studies prevented the 

investigation of specific factor effect, such as protein/lipid concentrations or variation in 

microbial communities. In order to conduct a more specific investigation into the factors 

driving development variation, the geometric framework in nutrition was implemented 

with the use of a sterile diet where macronutrients, such as carbohydrate, protein, and 

lipid amounts and types were defined (Simpson and Raubenheimer 2012). Doing so, 

allowed for a more refined consideration of the factors (e.g., diet and exogenous 

bacteria) driving the responses observed by blow fly larvae competing for ephemeral 

resources. 

We demonstrate both factors (diet and exogenous bacteria) play a role in the 

manifestation of measured life-history traits (e.g., larval development and survival, pupal 

development and survival, and adult longevity). One notable observation of diet 

treatment effects is L. sericata had accelerated (~6%) larval development (Figure 4) as 

the protein: lipid ratio increased. Moreover, the higher the protein: lipid ratio, resulted in 

greater survivorship (~12%) to the pupal (Figure 7) and adult stages (Figure 9). One 

possible explanation (i.e., diet restriction hypothesis) is that there is a threshold in 

accumulation of protein acquisition for progressing from the larval to pupal stages, and 

lipids are less desirable (Eigenbrode and Espelie 1995). Hence, L. sericata larvae on the 

high protein: lipid ratio diet was able to accumulate adequate protein with little 

inhibitory effects due to lipids. For example, L. sericata failed to survive on the diet with 

lipid greater than 7% (preliminary studies). These data are supported by previous studies 

indicating blow flies demonstrate a high propensity to colonize high-protein resource, 
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such as carrion (Benbow et al 2015, Greenberg 1991, Villet 2011). 

Explaining the impact of exogenous bacteria on the development of L. sericata is 

more complex as the role of microbes is highly dependent on the specific microbe being 

examined in conjunction with its physical attributes at the time of the study (e.g., 

concentration or development stage) (Janzen 1977). Such factors often translate into 

ecological function. In some instances, a microbe might be categorized as a mutualist, 

while at other concentrations the microbe could act as a commensal, pathogen, or 

competitor. For example, Klebsiella oxytoca produces a cue attracting (low 

concentration) or repelling (high concentration) M. domestica seeking oviposition sites. 

This mechanism is hypothesized as a nutrition resource protection behavior of K. 

oxytoca, and such mechanism may serve as an overpopulation cue for the gravid female 

(Lam et al 2007, Lam et al 2009b) Moreover, the impacts from the exogenous bacteria 

may depend on the stage of the host. For instance, the lifespan of the axenic adult 

Drosophila is enhanced by introducing exogenous bacteria during the first week after 

emergence, while the lifespan is reduced if the exogenous bacteria is introduced later 

than the first week (Brummel et al 2004). Furthermore, Liu (2016) demonstrated 

suppression of microbes (e.g., P. mirabilis through the use of antimicrobials) associated 

with L. sericata larvae resulted in their avoiding diets lacking essential amino acids (e.g., 

methionine); however, when microbes are not suppressed, the larvae would actively feed 

on these diets. With regards to P. mirabilis, it can synthetize methionine. These data 

suggest larvae often depend on select microbes for the production of essential nutrients 

possibly not present in a target resource. Such a relationship allows L. sericata to be 
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more plastic in terms of what it can utilize for larval development. 

In our study, exogenous bacterial treatments impacted L. sericata throughout all 

development stages. More specifically, each stage experienced an extended duration 

(~6.67% in larval stage, ~7.14% in pupal stage, and 24.57% in adult stage) regardless of 

exogenous bacterial species and concentration (i.e., duration of larval, pupal, and adult 

stage, Figure 5, 8, 11). Possible mechanisms of extending the total lifespan are discussed 

in detail further down in the discussion. However, extending duration at different life 

stage may lead to different ecological implication. For example, a longer duration of 

larval stage could increase the probability of predation by competing blow fly larvae 

(Brundage et al 2014, Flores et al 2014) or increased risk of parasitism (Roberts 1933). 

Nonetheless, a longer duration of adult stage raise the chance of mating, and hereby, it 

leads to an increased reproduction. 

These results are confounding when one considers P. mirabilis is considered a 

beneficial bacterium for L. sericata due to its ability to produce “mirabilicides” that 

suppress bacterial competitors and pathogens (Greenberg 1968) as well as reduce 

Salmonella (Greenberg 1965, Greenberg et al 1970). One potential hypothesis is P. 

mirabilis establishes a “cross-talk” with L. sericata in terms of metabolic pathway, and 

the metabolic molecule from P. mirabilis may extend lifespan of L. sericata. For 

example, cross-talk has been demonstrated between Bacillus subtilis and Caenorhabditis 

elegans. In this case, the bacterial-originated nitric oxide (NO) induced the activity of 

heat shock proteins (HSPs) in C. elegans resulting in increased host lifespan (Gusarov et 

al 2013). In our case, both P. mirabilis and Salmonella are Enterobacteriaceae, which are 
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capable of producing NO (Arkenberg et al 2011). While we recognize this as conjecture 

on our part, a similar model could exist in the system explored in this study. Thus, a 

further study at the molecular level is needed to determine if this phenomenon applies in 

this case. 

Bacterial diversity associated with L. sericata increased as the insect progressed 

through its life cycle regardless of diet (Figure 12). For instance, the alpha diversity 

(represented by Shannon index) of bacterial community of pupal L. sericata was 

approximately 40% greater than larvae; and, diversity of the adult was 25% greater than 

that found with the pupa (Figure 13). Clearly, L. sericata regulates its bacterial 

community more during larval active feeding under controlled conditions. Because the 

environment (i.e., carrion) occupied by blow fly larvae is considered extreme (e.g., 

pathogenic microbes, unpredictable duration or occurrence, high competition), L. 

sericata larvae have evolved several low-cost mechanisms for eliminating surrounding 

and ingested bacteria, such as production of antimicrobials present in their 

excretion/secretions. 

Even though L. sericata is able to rigorously regulate bacterial community as 

larvae, such capabilities were challenged when exogenous bacteria were introduced at 

high doses. For example, both P. mirabilis and Salmonella treatment at high dosage (107 

cfu/g) reduced (8%) the survivorship of L. sericata to the adult stage (Table 20). 

Moreover, the bacterial community of L. sericata was significantly altered by the 

exogenous bacterial treatment at the high dosage (107 cfu/g for both P. mirabilis and 

Salmonella treatments), which could explain the decreased survivorship due to decreased 
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environmental stability for the larvae. However, what was interesting was the 

community composition converged across treatments when the adult stage was reach 

(Figure 12, Figure 14). For example, the exogenous bacterial treatment is divided into 

three groups by the community similarity (Table 26, Table 25): Group 1, PBS and Low 

dosage of P. mirabilis with indicator genus Lactobacillus (average indicator value: 

0.861); Group 2, High dosage of P. mirabilis with indicator genus Proteus (average 

indicator value 0.872); Group 3, High dosage of Salmonella with indicator genera 

Salmonella (average indicator value 0.995), Providencia (average indicator value 0.872), 

and the collection of rare taxa (average indicator value 0.934). The grouping 

demonstrates high dosage of exogenous bacterial treatments interrupted the regulation of 

bacterial community at larval stage. Lactobacillus is commonly associated with L. 

sericata and their natural habitat (i.e., carrion) and suppresses harmful bacteria by 

creating an acidic environment (Singh et al 2015). In group 2, Proteus, which as 

previously mentioned is capable of suppressing competing bacteria (Greenberg 1968), 

was dominant. But, no single “bacteria” was determined in group 3; however, rare taxa 

were found to be an important indicator. Shifts between P. mirabilis and Salmonella 

populations within treatments could be due to P. mirabilis being known to suppress 

Salmonella in fly larvae (Greenberg 1970). Nonetheless, the groupings at larval stage are 

diminished when reach the adult stage (Table 31). Hereby, the bacterial community 

analysis supports previous statement of relaxing bacterial regulation as the development 

of L. sericata progressing.  

According to the measurement of bacterial community on diet residuals, we 
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further demonstrate the regulation of the surrounding environment bacterial community 

by L. sericata (Figure 18, Figure 19). For instance, when larvae of L. sericata were 

actively feed on diets, the diets had dissimilar groupings and indicator genera (Table 34, 

Table 36). However, the diverged bacterial community on diets was converged as the 

larval regulation taking off from the diet (i.e., the bacterial community on diets after 

pupation).  

In conclusion, this study provides a great of insight of exogenous-bacterial-

influenced nutritional effects on L. sericata in terms of development and regulation of 

bacterial community. According to our results, there is a complex linkage between the 

bacterial community and development of L. sericata, and the outcome of such 

interactions is depended on the development stage of the insect and the concentration of 

the bacteria. The nutritional effects were present for all development stage of L. sericata, 

while the exogenous bacterial treatments confined the effects at larval stage. However, in 

order to further exploring the linkage, further studies are needed; specifically, the effects 

of diet and bacteria on surviving L. sericata fecundity as well as the molecular pathways 

(e.g., gene expression in the fly as well as the bacteria) responding to these factors. 
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CHAPTER IV 

SUMMARY AND SUGGESTIONS FOR FUTURE RESEACH 

 

In order to study the bacterial dimension of nutritional ecology as related to blow 

fly (Diptera: Calliphoridae) development, I initially focused on developing a sterile diet 

for the rearing Lucilia sericata, a common blow fly model. Doing so would provide a 

platform to explore questions on this topic. I evaluated several diets currently in the 

literature. These included powdered beef liver diet (See Chapter 2 for details of the 

ingredient), decomposed beef liver diet (Sherman and Tran 1995), powdered fish diet 

(See Chapter 2 for details of the ingredient), blood agar diet (Daniels et al 1991), 

chemical-defined diet (Barlow and Kollberg 1971), and milk based diet (Tachibana and 

Numata 2001). Through these efforts, I determined blood agar diet and decomposed beef 

liver diet produced similar life-history traits of L. sericata as the beef liver (control). 

Moreover, the evaluated diets can be autoclaved, so they are potential resources for use 

in studies requiring sterile maggots (Daniels et al 1991). However, those diets are not 

well defined in nutritional composition, and this limitation restricted my further studies 

in the framework of nutrition ecology (Raubenheimer and Boggs 2009, Raubenheimer et 

al 2009, Simpson and Raubenheimer 2012). In the end, I determined a diet commonly 

used in nutrition ecology studies with herbivores would be most appropriate for my 

future studies. However, the results of this study could be used in developing nations for 

rearing sterile larvae for medical purposes as they are inexpensive to prepare and most 

ingredients are readily available. 
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My second set of experiments explored the interactions of protein-lipid ratios in 

combination with the introduction of exogenous bacteria (Proteus mirabilis and 

Salmonella) on the development of L. sericata and its associated microbial community. I 

determined diet and exogenous bacteria did in fact impact the life-history traits of L. 

sericata. For example, the higher protein: lipid in the diet is (27% protein: 3% lipid, the 

greater survivorship to pupal and adult stage of L. sericata (~12% higher). In addition, 

introducing the exogenous bacteria has uniformly increased the lifespan of L. sericata at 

all development stages. Moreover, according to the bacteria community analyses, L. 

sericata is able to regulate itself and surrounding bacterial community under the 

alternation of the ingested nutrients (i.e., different protein: lipid ratio). However, 

introducing the exogenous bacteria to the diets disrupted regulation of the associated 

microbial community. As previously stated, studies, which examined the interaction 

effects of diet and exogenous bacteria in the vertebrate carrion system, did not provide a 

precise diet treatment in terms of nutritional composition (Barnes and Gennard 2011, 

Crooks et al 2016, Singh et al 2015). Thus, my study serves as a cornerstone for further 

precise exploration of the bacterial dimension in nutritional ecology discussed as below. 

My study could serve as a foundation on which future research in nutrition ecology is 

built. For example, my study hypothesized that the activation of the Heat Shock Protein 

(HSP) pathway by Nitric Oxide (NO) may contribute to the extension of total lifespan 

for L. sericata. In the case of the bacteria used in my experiments, NO is a known 

metabolic product. Thus, it is possible this pathway also explains the extended life of 

flies in my experiments. However, in order to further investigate such effects in detail, a 
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molecular level research is needed, such as a total gene expression analysis of the 

bacterial community (Leimena et al 2013). Furthermore, a measurement on fecundity of 

L. sericata is necessary for studying the interaction between diet and exogenous bacteria, 

because fecundity is a presumptively ultimate goal of an organism. 

However, there were limitations to this study. The study focused on only two 

macronutrients, protein and lipid; thus, interactions between nutrients, such as protein 

with carbohydrate, obviously were not investigated. Moreover, the study is unable to 

provide molecular insight of the macronutrients as they relate to insect physiology; such 

studies could provide greater understanding of the nutrient-host interaction. For 

example, the dietary-restriction on calorie usually lead to a trade-off between longevity 

and fecundity, and the mechanism has been explained by the imbalance diet of amino 

acids (Grandison et al 2009). Furthermore, my study restricted to the selected bacterial 

species at the given concentrations, and the selected bacteria are belonged to the 

Enterobacteriaceae. Nonetheless, the study neglected other bacteria that may lead to a 

different impact on the host (Moran and Bennett 2014). 

My study may serve as a primer for further ecological studies: the nutrients-

defined diets provides a basic foundation for studying the community succession in a 

finer scale, and the sterilized diets offer a platform for studying the bacterial-mediated 

completion of insect community in carrion system (Benbow et al 2015). Furthermore, 

the outcomes from my study can apply in forensic entomology. For example, different 

tissues were used in forensic entomology studies, such as beef liver, beef brain, or beef 

lung (Clark et al 2006). Hereby, the case study from a forensic investigation is able to 
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rely on those studies for estimating the minimum Postmortem Interval (PMI). 

Nonetheless, according to my study, it is certainly important to take into account the 

nutritional composition of decomposing remains as related to forensic entomology. In 

addition to the forensic entomology studies, my study can also contribute to the medical 

entomology studies, such as the maggot therapy, because the nutrients-defined sterilized 

diet is an ideal food source for understanding the elimination of bacteria in the maggot 

therapy (Daniels et al 1991, Sherman and Tran 1995). 
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