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ABSTRACT

In this thesis, we discuss the mixed spectral problem for Schrödinger operators and

study the invertibility properties of a certain Toeplitz operator. Further results of mixed

spectral problems obtained by Borg, Hochstadt, Liberman and Horvath are mentioned.

In the first section, we summarize some basic facts of meromorphic inner functions,

Herglotz functions, de Branges functions, and model spaces. We define the spectrum of

a meromorphic inner function Θ by {Θ = 1}. From the construction of a Weyl inner

function of a Schrödinger operator, we show that the Dirichlet boundary condition can be

replaced by any other boundary conditions with a trivial transform. Also, we discuss a

chain structure of the de Branges spaces associated with de Branges functions E which

are obtained from the solutions of a Schrödinger equation.

In the second section, we define the kernel of a Toeplitz operator and discuss the crite-

rion of the triviality of the kernel. If we consider regular Schrödinger operators, after prov-

ing the ratio of the two meromorphic inner functions of different Schrödinger equations is

a trivial factor, we can replace any non-trivial regular potentials by a trivial potential.

In the last section, we study the spectral problems for the Schrödinger operators.

Firstly, we discuss the completeness problem of the model space in terms of the invert-

ibility properties of a Toeplitz operator. Then we apply the Toeplitz kernels to the spectral

problems. Especially, we characterize the mixed data spectral problem by a determination

proposition of meromorphic inner functions Θ = ΦΨ. Combined with our definition of the

spectrum of a meromorphic inner function, we recover a meromorphic inner function Φ

from the spectrum of Θ and the known factor Φ. Furthermore, we use this characterization

to prove Hochstadt-Liberman’s theorem and Horvath’s theorem.
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1. BACKGROUND AND INTRODUCTION

In quantum mechanics, a Schrödinger equation describes a kind of motion with small

distortion to the classical motion and the solutions of a Schrödinger equation determine

a probability for finding a particle at some points. Solving the Schrödinger equations

is a central topic in the study of quantum mechanics. The current methods are divided

into two groups: matrix diagonalization and iteration numerical integration. In both case,

the knowledge of the spectrum of Schrödinger operator enables the improvement of the

characterization of a solution.

The spectral problems for differential operators attracted great deal of interest among

mathematicians in the past. The classical spectral problems have two important branches:

inverse and direct problems. The direct spectral problem is to find the spectra of the oper-

ator. In the case of Schrödinger operators, the problem is to determine the spectrum from

the potential q. Also, the direct spectral problem asks for a spectrum measure of the op-

erator. In inverse problem, we focus on the recovery of the operator from the information

of the spectrum. In the case of Schrödinger operators, we try to recover the potential q

from σ(L), where σ(L) denotes the spectrum of L. In this thesis, we mainly consider the

inverse spectral problems for Schrödinger operators. Let us mention the important paper

of Marchenko [1], where he explicitly states that knowing the information of the spectral

measure can uniquely recover the potential q of a Schrödinger operator. Another important

paper of Borg [2] states that given two spectra subject to different boundary conditions,

the potential q can be uniquely recovered.

A very interesting group of inverse spectral problems is the mixed spectral problems.

The mixed spectral problem asks for a description of the amount of information of partial

spectrum and partial potential satisfying that the potential q can be uniquely recovered
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from the information. The amount of information is not quantifiable and the mixed infor-

mation is case by case, from knowing a part of one spectrum to knowing parts of several

spectra or from knowing the restriction of the potential to knowing additional smooth-

ness of the potential. Our approach is in terms of the invertibility properties of a certain

Toeplitz operator (whose symbol depends on the Weyl inner function of a Schrödinger

operator). And the ideas of our approach enable a precise mathematical characterization

of this problem. A special case of this problem was first explicitly solved by Hochstadt

and Liberman in 1978 [3], where half of the potential plus one spectrum can recover the

potential uniquely. Their statement is precise that missing a small amount of the infor-

mation cannot recover the potential q. This result partially coincides Borg’s theorem: the

information of one spectrum gives half of the potential. For further deduction, the infor-

mation of one-half of one spectrum gives one-fourth of the potential. In this thesis, we

will study Hochstadt and Liberman’s theorem and give a proof in terms of invertibility of

certain Toeplitz operators. Let us emphasize a significant paper by Hruschev, Nikolskii,

and Pavolv [4]. The idea to use Toeplitz operators to study of complex analysis was first

mentioned.

Moreover, Gesztesy and Simon include direct information of the smoothness to recover

the potential, e.g. [5, 6, 7, 8]. In [9], the mixed spectral problems were systematically

treated by Horvath (see also [10]). His results generalize almost all former discussion of

mixed spectral problem, where the idea to determine the condition of recovery in terms of

closeness properties of known spectrum. In his discussion, the information of spectrum is

selected from several spectra. In section 4.5, we give an equivalent statement of Horvath’s

theorem in terms of uniqueness sets in model space and sketch a proof for a special case. In

paper [11], Makarov and Poltoratski obtain the most cutting-edge results which combine

the uncertain principle with mixed spectral problem. Also, they discuss the three-interval

case.
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2. PRELIMINARIES

In this section, we discuss some harmonic functions on the upper half plane which will

be used in our further discussions. Also, we discuss some spaces of harmonic functions:

Hardy space Hp(C+) and Smirnov class N+(C+); And we state the correspondence be-

tween Herglotz functions and meromorphic inner functions; In the end, we state the def-

inition of de Branges functions and discuss an interesting chain structure of de Branges

spaces. Some simple examples are included.

2.1 Harmonic functions on C

Given a function f(x) ∈ Lp(R), 1 < p < ∞, f can be instantly extended to a harmonic

function on C+,

f(x+ iy) :=
1

π

∫
yf(t)

(x− t)2 + y2
dt.

This harmonic extension is called Poisson formula. Also, we have the following

sup
y>0

∫
|f(x+ iy)|pdx < ∞. (2.1)

The condition (2.1) characterizes the boundness of this extension. Conversely, if a har-

monic function f : C+ → C satisfies (2.1), then f can be obtained from a Lp(R) inte-

grable function by Poisson formula. All such functions form a normative space with the

following norm

∥f(z)∥p := (lim
y→

∫
|f(x+ iy)|pdx)

1
p ,
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and denote as hp(C+). Given a function f(z) ∈ hp(C+), we can recover a Lp(R) inte-

grable function from f(z) by taking vertical limits,

f(x) := lim
y→0

f(x+ iy).

The limit is well-defined for almost every x ∈ R. We usually call this limit as a boundary

function.

Each function f(z) ∈ hp(C+) has a representation

f(x+ iy) := ky +
1

π
+ π

∫
y

(x− t)2 + y2
µ(dt),

where µ is some positive measure on the real line. The correspondence of function f and

positive measure µ is one-to-one.

2.1.1 Hardy space Hp

If we take all the holomorphic function on the upper half plane satisfying condition

(2.1), we get the Hardy space Hp(C+), which is a linear subspace of hp(C+). The corre-

sponding space of boundary functions is written as Hp(R). Besides the Poisson formula,

we can recover f(z) ∈ Hp(C+) by the Cauchy formula:

f(z) =
1

2πi

∫
f(t)

t− z
dt,

where f(t) is Lp integrable on the real line. Moreover, for 1 < p < ∞, the Cauchy

operator C : Lp(R) → Hp(R),

Cf(z) :=
1

2πi

∫
f(t)

t− z
dt

is bounded and onto. When p = 2, the Cauchy operator defines an orthogonal projection.
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2.1.2 Smirnov class N+

The Smirnov class in the upper half plane is denoted by N+(C+). Functions in

N+(C+) are ratios H1

H2
, where H1, H2 ∈ H∞(C+) and H2 is outer. Furthermore, functions

in the Smirnov class have positive real part on C+. Let Π denote the Poisson measure, i.e.

dΠ(t) =
dt

1 + t2
.

The boundary functions f(x) of f(z) ∈ N+(C+) is Poisson integrable,

f(t) ∈ L1
Π = L1(

dt

1 + t2
).

Conversely, if f(z) has a Poisson integrable boundary function, then f(z) ∈ N+(C+).

Moreover, we have a complete description of the zeros sets of functions in Smirnov

class. Suppose {zk} is the zeros set of f(z) ∈ N+(C+), then

∑
k

ℑ(zk)
1 + |zk|2

< ∞. (2.2)

Given a point sets {zk} satisfying (2.2), there exists a function b(z) in N+(C+) with zeros

exactly in set {zk}. We can construct the function as

b(z) :=
∏ 1− z

zk

1− z
zk

,

and b(z) is known as the Blaschke product. It is easy to check that Blacschke product

|b(z)| ≤ 1 for z ∈ C+, and has vertical limit on R. Besides having easy to describe zero

sets, functions in Smirnov class have a factorization property. Let f(z) ∈ N+(C+), then

f(z) = Ceiazb(z)s1(z)h(z), (2.3)
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where |C| = 1, a ≥ 0, and

s1(z) := exp(− 1

π

∫
tz + 1

t− z

µ1,s(dt)

1 + t2
),

and

h(z) := exp((− 1

π

∫
tz + 1

t− z

log|f(t)|
1 + t2

).

This factorization is called inner-outer factorization, which is introduced by Burling.

Definition 2.1.1. A holomorphic function f in the upper half plane is an inner function if

|f(z)| ≤ 1 for z ∈ C+ and |f(z)| = 1 for almost all z ∈ R.

Definition 2.1.2. A function H(z) in the upper half plane is an outer function if it takes

the form

H(z) = exp(Sh), h ∈ L1
Π,

where Sh(z) = 1
πi

∫ [
1

t−z
− t

1+t2

]
h(t)dt is the Schwarz integral of h(z).

If z ∈ R,

Sh(z) = 1

πi

∫ [ 1

t− z
− t

1 + t2

]
h(t)dt = h(z).

Hence, H = eh on R. It is not hard to verify that H is in Simirnov class. In (2.3), h(z)

is outer, s1(z) and b(z) in (2.3) are inner functions. To sum up, f ∈ N+(C+) can be

factorized by: f = IH , where I is inner which is unimodular on the real line R, and H is

outer. Moreover, we have the inequality of log|f |:

log |f(x+ iy)| ≤ 1

π

∫
y log |f(t)|

(x− t)2 + y2
dt, y > 0. (2.4)

Conversely, if a holomorphic function on C+ satisfies the inequality (2.4), then it must be
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in the Simirnov class. This characterization of Smirnov class yields that

Hp(R) ⊂ N+(C+), 1 ≤ p ≤ ∞.

Hence, every function in Simirnov class with Lp integrable boundary functions can recover

a function in Hardy space Hp uniquely. In other word, we have

Hp = N+(C+) ∩ Lp(R).

2.1.3 Herglotz functions

Definition 2.1.3. A Herglotz function is a meromorphic function with a nonnegative imag-

inary part.

In the Herglotz representation, a meromorphic Herglotz function can be represented

by (b, a, µ),

m(z) = a+ bz + i
1

π

∫
tz + 1

t− z

µ(dt)

1 + t2
, (2.5)

where a is a real number, b is non-negative, and µ is a positive Poisson integrable measure

on the real line. The constant b is determined by the point mass of the measure at ∞:

b = lim
y→∞

ℑm(iy)

y
.

Given a Herglotz function m, we can construct a corresponding meromorphic inner func-

tion Θm. The closed correspondence between these two functions is given by the Cayley

transform

m(z) = i
1 + Θ(z)

1−Θ(z)
.
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Conversely, we have

Θ(z) =
m(z)− i

m(z) + i
.

In this case, Θ is inner if and only if the measure µ in the representation of m is singu-

lar. From this construction, we can build a correspondence between inner functions and

singular Poisson integrable measures with point mass at infinity. In other word, we have

ℜ1 + Θ(z)

1−Θ(z)
= by +

1

π

∫
yµ(dt)

(x− t)2 + y2
.

Also, given a meromorphic inner function Θ, Θ can be characterized by a pair (a,Λ),

Θ = BΛe
iaz,

where a is nonnegative and BΛ is a Blaschke product with Λ satisfying the Blaschke con-

dition: ∑
Λ

ℑ(λ)
1 + |λ|2

< ∞.

Proposition 2.1.4. If Θ(z) be a meromorphic inner function, then Θ(z) has an equivalent

representation on R,

Θ(z) = exp(iθ(z)),

where θ is a real increasing function.

We will see in section 2.2 that the meromorphic inner function Θ has a close relation-

ship with mixed spectral problems. For now, we define the spectrum of an inner function

and we will see in section 2.3 that the definition of spectrum reflects the Dirichlet boundary

condition at one endpoint of the Schrödinger equation. For further reference, see [10].

8



Definition 2.1.5. The spectral of an inner function J is

σ(J) = {J = 1}.

If ∞ is in the spectrum, then σ(Θ) = {Θ = 1} ∪ {∞}.

We usually call the measure µΘ in the representation of m the spectral measure of Θm.

Example 1. Let Θ1 and Θ2 be two inner functions, the corresponding spectral measures

are µΘ1 and µΘ2 . If Θ is the inner function with spectral measure µΘ = (µΘ1 + µΘ2)/2,

then Θ is given as

Θ =
Θ1 +Θ2 − 2Θ1Θ2

2−Θ1 −Θ2

.

Definition 2.1.6. The function ϕ is a factor of an inner function Θ if Θ
ϕ

is also an inner

function, denoted by ϕ|Θ.

We can see that if ϕ|Θ1 and ϕ|Θ2, then ϕ|Θ.

2.2 Schrödinger operators and meromorphic inner functions

2.2.1 Weyl inner functions

In the theory for spectral problems of second operator with compact resolvent, the

meromorphic inner function is heavily used. See [12, 1] for the general reference of spec-

tral theory. Here, we only consider Schrödinger operators.

Consider the Schrödinger equation

Lu(t) = −u′′(t) + qu(t) = λu(t), t ∈ (a, b) (2.6)

and suppose the potential q is L1 integrable and a is finite. Let uλ(z) be a nontrivial

solution of (2.6) with a fixed self-adjoint B.C. β at b, then the corresponding Weyl m-
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function is defined as

ma
b,β(λ) =

u′
λ(a)

uλ(a)
, λ /∈ R.

We usually assume L has compact resolvent. Then the Weyl m-function m can be extended

to a meromorphic Herglotz function. Thus, we have the corresponding meromorphic inner

function

Θ(z) =
m(z)− i

m(z) + i
.

In this case, Θ is also called the Weyl inner function. Since we construct the Weyl m-

function m by fixing the boundary condition β at b, this function Θ is denoted as Θa
b,β.

Similarly, if we fixed the self-adjoint B.C. (α) at a and b is finite, we can define the

Herglotz function m:

ma
a,α(λ) = −u′

λ(b)

uλ(b)
, λ /∈ R.

Example 2. Suppose the potential

qν(t) =
ν2 − 1

4

t2
0 < t < 1,

and uλ(t) be the solution subject to B.C. (α) at 0:

uλ(t) =
√
tJν(t

√
λ)

of the Schrödinger equation (1.7). Obviously, when ν = −1
2
, α is Neumann condition;

when ν = 1
2
, α is Dirichlet condition. Jν is the Bessel function of order ν. The corre-

sponding Weyl m-function is

mν(λ) = −
1
2
Jν(

√
λ) +

√
λJ ′

ν(
√
λ)

Jν(
√
λ)

,
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and the Weyl inner function is

Θν(λ) =
(1
2
+ i)Jν(

√
λ) +

√
λJ ′

ν(
√
λ)

(1
2
− i)Jν(

√
λ) +

√
λJ ′

ν(
√
λ)

.

2.3 Model spaces and the modified Fourier transform

Each inner function Θ(z) defines a model space

KΘ := H2(C+)⊖ΘH2(C+) = {F ∈ H2 : ΘF ∈ H2}.

The H2-model space KΘ is a Banach space. Its reproducing kernel is

kθ
λ(z) =

1

2πi

1−Θ(λ)Θ(λ)

λ− z
, λ ∈ C+.

Moreover, if the inner function Θ is meromorphic, we can extend the definition of re-

producing kernels to λ ∈ R. Besides, if we consider the model spaces in N+(C+) and

Hp(C+), we have

K+
Θ = N+(C+)⊖ΘN+(C+),

and

Kp
Θ = Hp(C+)⊖ΘHp(C+) = K+

Θ ∪ Lp(R)

Every function f(z) ∈ KΘ can be extended analytically to the points where Θ(z) can

be extended. An inner function Θ(z) = Ceiazb(z)s(z) can be extended to a meromorphic

function on the complex plane if and only if s(z) is unimodular on the real line and the

zeros of b(z) are not close to the real line. In this case, f(z) ∈ KΘ can also be extended to

a meromorphic function on the whole plane.
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Another important theorem is given by Clark [13]. We briefly state the theorem without

proof.

Theorem 2.3.1. Let CΘ be a restriction map from KΘ to L2(µΘ),

CΘ : f → f |σΘ.

Then, CΘ is unitary.

Let S be the simplest inner function: S(z) = eiz. Then the space S−aK[S2a] is the

space of Fourier transform of L2(−a, a), which is also called Paley-Wiener space PWa.

In other words, the Fourier transform identifies L2(−a, a) with S−aK[S2a].

Intuitively, we try to construct a transform for the case of Schrödinger operator. In

other word, the correspondence between L2(a, b) and KΘ, and Θ is a Weyl inner function.

For any z ∈ C, there exists a solution uz(t) satisfying B.C. (β) at b. Thus, we can construct

the transform W from L2 to the model space KΘ:

W : f(t) → F (t) =

∫ b

a

f(t)
uz(t)

u′
z(a) + iuz(a)

.

This transform is also called Weyl-Titchmarch Fourier transform. It is not hard to show

that W is indeed a unitary operator.

Corollary 2.3.2. Let Θ be the meromorphic inner function of a Schrödinger operator. The

composition of the modified Fourier transform and the Plancherel operator is a unitary

operator:

L2(a, b)
W−→ KΘ

CΘ−−→ L2
µΘ
.

Remark 1. This corollary is extremely important in our further discussion of the mixed

spectrum problems for Schrödinger operators. We can view the invertible problem of a
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Weyl inner function as the completeness problem in space L2(a, b), which will be discussed

in section 3.

We can see that the point mass of Weyl inner functions is finite. From our construction,

we usually fix one boundary condition and construct the Weyl m-function m. Now let us

explain the definition of the spectrum of an inner function.

Let Θ = Θa
b,β . Ifλ ∈ σ(Θ), then we have

Θ(λ) =
m− i

m+ i
= 1 ⇐⇒ mΘ(λ) =

u′
λ(a)

uλ(a)
= ∞ ⇐⇒ uλ(a) = 0.

In other word, the spectrum of Θ is the spectrum of the Schrödinger operator with Diri-

hchlet and Neumann boundary condition at two endpoints respectively. Similarly, we can

see that σ(−Θ) = σ(q;N, β),

Θ(λ) =
m− i

m+ i
= −1 ⇐⇒ mΘ(λ) =

u′
λ(a)

uλ(a)
= 0 ⇐⇒ u′

λ(a) = 0.

More generally, the boundary condition α at a is defined as

cos
α

2
u(a) + sin

α

2
u′(a) = 0.

Since

Θ(λ) =
m− i

m+ i
= eia ⇐⇒ mΘ(λ) =

u′
λ(a)

uλ(a)
= − cot

α

2
⇐⇒ cos

α

2
u(a)+sin

α

2
u′(a) = 0.

Hence, the spectrum of e−iaΘ is the spectrum of the Schrödinger operator with α and β

B.C. at two endpoints respectively

Remark 2. From the above discussion, we can see that the definition of the spectral of a

Weyl inner function is feasible. With a multiplication of constant of modular 1, any self-
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adjoint boundary conditions will be identified. Hence, we only consider the Dirichlet B.C.

at endpoint a when fixing the B.C. (β) at endpoint b.

2.4 De Branges spaces

In this subsection, we discuss a class of entire functions with close relation with a

Schrödinger operator.

Definition 2.4.1. Cartwright class Ca is the space of entire functions F (z) of exponential

type ≤ a satisfying log |F (t)| ∈ L2
Π.

An important theorem by Krein states a correspondence between the Simirnov class

N+(C) and Cartwright class Ca.

Proposition 2.4.2. An entire function F (z) ∈ Ca if and only if

F

S−a
∈ N+(C), and

F#

S−a
∈ N+(C),

where S(z) = eiz, and F#(z) = F (z).

If we consider entire functions with L2 integrabal boundary functions, then we obtain

a correspondence between the Hardy space H2(C+) and the Paley-Wiener space PWa.

Proposition 2.4.3. An entire function F (z) ∈ PWa if and only if

F

S−a
∈ H2(C), and

F#

S−a
∈ H2(C).

The above statement of f ∈ PWa is a special case of the definition of Hermite-Biehler

function.

Definition 2.4.4. If an entire function E satisfies E ̸= 0 on R and

|E(z)| > |E(z)|, z ∈ C+,

14



then such function E is a Hermite-Biehler function.

In [12], Louis de Branges introduced a correspondence of de Branges functions and

meromorphic inner functions:

ΘE =
E

E
.

And we usually call de Branges functions with no real zeros Hermite-Biehler functions.

Usually we call an entire function real if it is real on R. Any entire function F can be

represented as F = C + iD where C and D are real entire functions. It is well known

that E = C + iD is an Hermite-Biehler function if and only if the real function C and D

have real alternating zeros. In the case E = C + iD is a de Branges function, its real and

imaginary parts can be viewed as analog of sin z and cos z.

Example 3. Let potential q be a summable function on interval (a, b). In this case, we

assume a and b are finite. Given a self-adjoint boundary condition (α) at a, i.e.

cos
α

2
u(a) + sin

α

2
u′(a) = 0.

Let u′
λ be a solution of a Schrödinger equation satisfying the following conditions

uλ(a) = − sin
α

2
, u′

λ(a) = cos
α

2
.

And the Weyl inner function is

Θb
a,α(λ) =

−u′
λ(b)− iuλ(b)

−u′
λ(b) + iuλ(b)

,

and the corresponding Hermite-Biehler function is

E(λ) = −u′
λ(b) + iuλ(b).
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Since we fix only one boundary condition, for λ ∈ C+, the function u(λ) and u′(λ) are

holomorphic functions and uλ(b) + u′
λ(b) ̸= 0, λ ∈ R.

Now, we can define the de Branges space.

Definition 2.4.5. The de Branges space BE associated with a Hermite-Biehler function

E(z) is the space of holomorphic functions F (z) satisfying

F

E
∈ H2(C), and

F#

E
∈ H2(C).

Also, we can define a norm ∥F∥E = ∥F/E∥2, such that de Branges space is normative.

An important property of de Branges spaces is that we have an equivalent definition.

Given a normative space H , then the following statements are equivalent:

1. H = BE for a de Branges function E;

2. If F ∈ H , F (λ) = 0, then F (z)(z−λ)
z−λ

∈ H and it has the same norm with H;

3. For any λ with ℑλ ̸= 0, point evaluation at λ is a bounded linear functional on H;

4. If F ∈ H , then F# has the same norm.

Each de Branges space possesses a family of spectral measures ν, and the natural em-

bedding B(E) → L2(u) is a unitary operator. Now let us return to Schrödinger operators.

The spectral measure of the Weyl inner function has closed relationship with the spectral

measure of a de Branges space.

Suppose uλ(t) is a solution of Schrödinger equation with Neumann boundary con-

ditions at a. Then the function Et(λ) = uλ(t) + iu′
λ(t) is an Hermit-Biehler function.

The spaces B(Et) form a chain, i.e., B(Et) is isometrically embedded into B(Es) for

t ≤ s. Let µ− denote the spectral measure of Θa
b,N . Then, µ− is the spectral measure for
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de Branges space B(Eb). For t ∈ (a, b), the space E(Bt) is isometrically embedded in

L2(µ−).

Similarly, suppose vλ(t) is a solution of Schrödinger equation with the Neumann

boundary conditions at b, Ft(λ) = vλ(t)− iv′λ(t) is a Hermit-Biehler function. The spaces

B(Et) form a chain, i.e., B(Ft) is isometrically embedded into B(Es) for t ≥ s. Let µ+

denote the spectral measure of Θb
a,N . Then, µ+ is the spectral measure for de Branges

space B(Eb). For t ∈ (a, b), the space E(Bt) is isometrically embedded in L2(µ+). For

further reference, see [11].

Indeed, the de Branges spaces B(Et) are equal to Paley-Wiener space PWt/π as sets.

Similarly, B(Ft) = PW(π−s)/π as sets. For further reference of de Branges spaces, see

[14].
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3. TOEPLITZ KERNELS

In this section, we introduce the Toeplitz kernel, which is a main tool to study the

mixed spectral problem in our discussion. We focus on the conditions when the Toeplitz

kernel is trivial or non-trivial.

3.1 Introduction

Definition 3.1.1. A Toeplitz operator TU associated with a function U ∈ L∞(R) is the

map TU : H2(C+) → H2(C+) defined by

TUF := P+(UF ),

where P+ is the orthogonal projection in L2(R) onto the Hardy space H2(C+).

In this section, we always assume U is unimodular, i.e.,

U = eiγ, γ : R → R.

Let N [U ] denote the kernel of the Toeplitz kernel. The Toeplitz kernels in N+(C+) is

N+[U ] := kerTU = {f(z) ∈ N+(R+) ∩ L1
loc(R) : Ū(t)f̄(t) ∈ N+(C+)}.

Hence, the kernel in Hp, 0 < p ≤ ∞ is

Np[U ] = {f(z) ∈ HP (R+) ∩ L1
loc(R) : Ū(t)f̄(t) ∈ HP (C+)}.

Especially, if U is a meromorphic inner function, we have a correspondence between

18



the Toeplitz kernel of TU and the model space KŪ ,

N+[Θ̄] = K+
Θ , Np[Θ̄] = Kp

Θ.

3.2 Characterization of Toeplitz kernels

We usually multiply U by integer powers of Blaschke factor to characterize its kernel.

Let b denote the Blaschke product

b(z) =
i− z

i+ z
.

We can see that b(z) is an inner function on the upper half plane, and the argument

2 arctan(b(t)) increase from −π at −∞ to +π at +∞.

Lemma 3.2.1. dimNp[U ] = n+ 1 ⇐⇒ dimNp[bnU ] = 1, where n ∈ N.

Proof. Suppose the dimension of the kernel Np[U ] is greater than 2, then there exists

H,G ∈ Np[U ], and G, F are linear independent. Then, the function

F = H(z)G(i)−H(i)G(z) ∈ Np[U ],

and we can see that i is a single zero of F . Hence,

b̄F ∈ Hp, (Ūb)(b̄F ) = Ū F̄ ∈ Hp,

where Ū F̄ ∈ Hp comes from F ∈ Np[U ]. From the definition of Toeplitz kernel, the

function b̄F is in the kernel of Toeplitz operator TbU and the dimension of the kernel is

greater than 1.
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On the other hand, given a non-trivial function F from the kernel Np[bU ], then

F ∈ Hp, Ū(b̄F̄ ) ∈ Hp.

Since bF ∈ Hp, we have bF ∈ Np. Suppose Ū b̄F̄ = G ∈ Hp, then Ū F̄ = bG ∈ Hp,

which means that F is in the kernel Np[U ]. Since F and bF are linear independent, then

dimNp[U ] ≥ 2.

Let us consider the fractional power of the inner function b,

bs = e2si arctanx, s ∈ R.

The equality on R

b
s
(1− b)s = ((b− 1)s − 1)s

shows that N∞[b
s
] is not trivial for non-negative s. Thus, for every unimodular function

U , there exists s⋆ ∈ R satisfying

Np[b̄sU ] ̸= 0, ∀s > s⋆, Np[b̄sU ] = 0, ∀s < s⋆.

Now let us give a characterization of U in the case of non-trivial Toeplitz kernels. The

following proposition is quite useful in our further discussion.

Proposition 3.2.2. N [p] ̸= 0 if and only if U equals to

U = Φ̄
H̄

H
,

where Φ is an inner function and H ∈ Hp(C+) ∩ L1(R) is an outer function.

Proof. If F ∈ Np[U ], then Ū F̄ ∈ Hp. Suppose UF = Ḡ ∈ H̄p, then |F | = |G| on the
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real line. Use the inner-outer factorization, we have

F = FiFe, G = GiGe,

and |Fe| = |Ge|, which means Fe = Ge. Hence,

U =
Ḡ

F
= (F̄iḠi)

F̄e

Fe

.

Moreover, by Coburn’s lemma, if N [U ] is trivial, then N [Ū ] is not trivial; The opposite

is the same.

3.3 Trivial factors

If we consider a Schrödinger operator on a fixed interval(a, b), its spectrum is subject

to the B.C. at two endpoints and the potential q. From our approach, the problem can be

simplified in the case q ∈ L1(R). In this subsection, we discuss the trivial factor of a

Toeplitz kernel and prove the equivalence of trivial potentials and L1 integrable potentials.

Definition 3.3.1. A function V is called a trivial factor if

Np[UV ] ̸= 0 ⇐⇒ Np[U ] ̸= 0.

The trivial factors do not influence the invertible property of the Toeplitz operator.

From the last section, we have the following proposition.

Proposition 3.3.2. If V = H̄
H

where H±1 ∈ H∞, then V is a trivial factor.

Let q be summable on (a, b) and let (α) ̸= (D) be the boundary condition at a = 0.

Then we construct Θ = Θb
a,α. As mentioned before, we try to compare Θ with the ΘN ,
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where ΘN is the corresponding Weyl inner function with trivial q and (N) B.C. at a.

Theorem 3.3.3. The function Θ
ΘN

is a trivial factor of the kernel of TΘN
.

Proof. Recall that a Weyl inner function can be expressed by a de Branges function:

ΘE =
E#

E
.

The corresponding Hermite-Biehler function EΘ is

EN(λ) = cos
√
λ− i

√
λ sin

√
λ.

Suppose uλ(t) is a solution with q ∈ L1, α boundary condition at a = 0, and initial value

uλ(0) = 1. Then the corresponding de Branges function is

Θ(λ) = −u′
λ(1) + iuλ(1).

Hence, we have Θ
ΘN

= H̄
H

, where H = E/EN . Both E and EN are outer functions on the

upper half plane. Hence, if we can show that H ∈ H∞, in other words,

|E| ≍ |EN |, z ∈ R,

then Θ/ΘN is a trivial factor. From [10], we have the asymptotic formula for uλ(1) and

u′
λ(1):

|uλ(1)− cos
√
λ| = O(

√
λ), |u′

λ(1) +
√
λ sin

√
λ| = O(1),

when |λ| goes to infinity.
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In the case λ goes to positive infinity,

|E(λ)|2, |EN(λ)|2 ≍ | cos
√
λ+O(

1√
λ
)|2 + λ| sin

√
λ+O(

1√
λ
)|2.

Thus, we can see that E
EN

is bounded when λ → +∞.

If λ → −∞,

| cos
√
λ| = |e

i
√
λ + e−i

√
λ

2
| ≍ O(e

√
−λ), |λ sin

√
λ| = |λe

i
√
λ − e−i

√
λ

2i
| ≍ O(λe

√
−λ).

Hence, E
EN

is bounded when λ → −∞.

3.4 Toeplitz kernels with real analytic symbols

In this subsection, we consider U = eiγ where γ is real analytic. In this case, functions

in TU are also real analytic.

Proposition 3.4.1. If γ ∈ Cω(R), then if f(z) ∈ N+[eiγ], then f(z) is real analytic.

Proof. Take f from the Toeplitz kernel N+[U ], then UF = Ḡ for some G ∈ N+. We

analytically extend the function UF to the lower half plane and denote as G−. Since

U = eiγ ̸= 0 on R, then F = U−1G− on R, which means that F can be extended to real

line R.

If U = eiγ for some real analytic γ, the Toeplitz kernel has a definite criterion of

triviality.

Theorem 3.4.2. Let γ be a real analytic function. Then N+[eiγ] ̸= 0 if and only if γ has

the following representation:

γ = −f + h̃,

where f is an increasing real analytic function and h ∈ L1
Π.
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Proof. If N+[U ] ̸= 0, from previous result, U has a representation:

U = Ī
F̄

F
, z ∈ R,

for inner function I and real analytic function F . Also, F is outer. If F only has simple

zeros on R, then we choose J to be the Blaschke product with the zero set of J−1 exactly

the zeros set of F . Hence, the outer function

H :=
F

1− J

has no zero on R. Also, U can be represented by H:

U = Ī · H̄
H

· 1− J̄

1− J
= −Ī J̄

H̄

H
:= Φ̄

H̄

H
.

If F has multiple zeros on R, we do the same process and still get the same results. Hence,

N+[U ] ̸= 0 if and only if

U = Φ̄
H̄

H
,

and Φ is meromorphic inner and the outer function H ∈ Cω(R) ̸= 0 on the real line.

3.5 Twin inner functions

We discuss properties of twin inner functions. In the following sections, we apply the

results of twin inner function to discuss spectral problems in the case of real spectrum.

Definition 3.5.1. Let F and G be two meromorphic inner functions. If σ(F ) = σ(G), then

we call F and G twin functions.

Theorem 3.5.2. If F and G are twin meromorphic inner functions, then N [Θ̄J ] = 0.
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Proof. Suppose N [Θ̄J ] ̸= 0. From our previous results,

Θ̄J = ϕ̄
H̄

H
,

where ϕ is inner and H ∈ H2 ∩L1
loc(R) is outer. Since σ(Θ) = σ(J) = Λ, then ϕ(z) = 1,

z ∈ Λ. Hence, we have

Θ̄J =
H̄

H
,

and we can get

H =
1−Θ

1− J
.

In this case, H is real analytic. If ∞ is not in the spectrum, then H /∈ L2(R). If ∞ is in

the spectrum, then

H(∞) = lim
∞

1−Θ

1− J
=

Θ′(∞)

J ′(∞)
̸= 0.

In this case, H /∈ L2. From our results, this contradicts to H ∈ H2 ∩ L1
loc(R). Hence,

N [Θ̄J ] = 0.

Remark 3. • From this theorem, we see that if {Θ = 1} = {J = 1}, then N [Θ̄J ] =

0. Also, if we require ∞ /∈ σ(Θ), then

σ(Θ) ⊂ σ(J) ⇒ N [Θ̄J ] = 0.

• If we consider function u = Θ̄JH̄/H for twin inner function Θ and J and outer

function F with no zero on the real line, then if the dimension of Np[H̄/H] is finite,

then

Np[b̄sΘ̄JH̄/H] ̸= 0 ⇐⇒ (1− b)s
1−Θ

1− J
H ∈ Hp.
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4. SUMMARY OF SPECTRAL PROBLEMS

In this section, we introduce some applications of Toeplitz kernels. Firstly, we discuss

the completeness of a family of eigenfunctions of the Schrödinger operator in L2(a, b) by

Toeplitz kernels; Then, we consider the spectral problems for Schrödinger operators and

interpret the mixed spectral problems in terms of a determination statement. Some classi-

cal results are included, such as Borg’s two-spectra theorem [2] and Hochstadt-Liberman’s

theorem [3]; In the end, we discuss Horvoth’s results [9] and sketch a proof by our ap-

proach.

Let us mention the important paper of N. Makarov and A. Poltoratski [10], where

the idea of using Toeplitz operators to explain Horvath’s results was introduced. We will

present these results in this section.

4.1 Uniqueness sets

Consider the Schrödinger equation

−u′′(t) + q(t)u(t) = λu(t), t ∈ (a, b),

where the potential q ∈ L1
loc(R) and a is finite. Fixing the B.C. (β) at b:

cos
β

2
u(a) + sin

β

2
u′(a) = 0.

For λ ∈ C, we suppose uλ is a solution satisfying the above boundary condition (uniquely

up to a constant).

Definition 4.1.1. For Λ ⊂ C, the family of solutions {uλ, λ ∈ Λ} is complete in L2(a, b)
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if

for f ∈ L2(a, b), < f, uλ >= 0, λ ∈ Λ ⇒ f ≡ 0.

For Λ ⊂ C, let Λ+ be the intersection of Λ and the upper half plane with boundary; Let

Λ− be the intersection of Λ and the lower half plane. From our previous construction, we

denote Θ = Θa
b,β as the Weyl inner function. For λ ∈ Λ+, the reproducing kernel of KΘ is

kΘ
λ (z) =

1

2πi

1− ¯Θ(λ)Θ(z)

λ̄− z
,

and the dual reproducing kernel is

k⋆
λ(z) =

1

2πi

Θ(λ)−Θ(z)

z − λ
.

And we have

Θ̄kΘ
λ = k̄⋆

λ.

Also, let KE
λ be the reproducing kernel of a de Branges space B(E). From the discussion

in [10], we have the following theorem.

Theorem 4.1.2. If Λ ∈ C and {uλ}Λ is the family of solutions of the Schrödinger equation,

then the following completeness conditions are equivalent:

• The set of solutions {uλ}Λ is complete in L2(a, b);

• The set of reproducing kernels{k⋆
λ}Λ+ ∪ {kλ̄}Λ− is complete in KΘ.

Given f ∈ KΘ, if

f vanishes on Λ ⇐⇒ f ≡ 0,

then the set Λ is unique in the model space KΘ. If Λ ⊂ C+ ∪R, we can extend the results

to divisors.
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Proposition 4.1.3. Suppose Λ = Λ+ and M is a point set in the upper half plane. The set

of reproducing kernels {k⋆
λ}Λ∈M∪{kλ}λ∈Λ is complete if and only if Λ∪M is a uniqueness

divisor.

Proof. If the set of reproducing kernels {k⋆
λ}Λ∈M ∪ {kλ}λ∈Λ is not complete, then there

exists F in the model space which is orthogonal to {k⋆
λ}Λ∈M ∪ {kλ}λ∈Λ. By the definition

of model space, there exists H ∈ KΘ, such that

Θ̄F = H̄, z ∈ R.

Hence, F vanishes on Λ. There exists a representation

H = BMJ,

where BM is a Blaschke product of M and J ∈ H2. Thus, we have

Θ̄(BMF ) = J̄ .

We see that the function BMF = 0 on Λ ∪M and BMF ∈ KΘ.

In the case Λ in the upper half plane, we have the following characterization of unique-

ness sets of KΘ.

Theorem 4.1.4. If Λ ∈ C+, then Λ is a uniqueness set of model space with Θ if and only

if the Toeplitz kernel of TΘ̄BΛ
= 0.

Proof. If F ∈ KΘ vanishes on Λ, then we have

ΘF̄ ∈ H2, B̄ΛF ∈ H2.
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Hence,

(Θ̄BΛ)(B̄ΛF ) = Θ̄F ∈ H2,

which means that BΛF ∈ N [Θ̄BΛ]. The opposite direction is the same.

If we consider the model space Kp
Θ, the result is the same. If Λ has no intersection

with the lower half plane, then for p > 0, Λ is unique in the model space Kp
Θ if and only if

Np[Θ̄B] = 0.

4.2 Spectral problems

Consider a Schrödinger operator L on (a, b) with B.C. (α) at a and (β) at b and po-

tential q ∈ L2
loc. Pick c on the interval (a, b), a < c < b. We denote q− = q(a,c) and

q+ = q(c,b). Let Θ− = Θc
a,α and Θ+ = Θc

b,β . Then, we have the following proposition

about the spectrum of Θ± and L.

Proposition 4.2.1. The spectrum of L is the spectrum of (Θ−Θ+).

Proof. Let λ ∈ C be an eigenvalue of Θ−Θ+, by definition, Θ−(λ)Θ+(λ) = 1. Then,

m+(λ) +m−(λ) = 0

or

m−(λ)m+(λ) = ∞.

In either case, we have the following equality

u′
−,λ(c)

u−,λ(c)
=

u′
+,λ(c)

u+,λ(c)
,

where u−,λ(z) and u+,λ(z) are non-trivial solutions. This means λ ∈ σ(L).

As for the spectral problems with mixed data, we are given the information of potential
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q on (a, c) and spectrum σ(L). Can we uniquely recover the potential on (a, b)? From the

above proposition, it is equivalent to recover Θ+ from Θ− and σL. According to the results

of Borg and Marchenko [1]: the Herglotz function m(z) determines the potential and the

boundary condition. Hence, we can uniquely recover q from Θ−Θ+. So, we interpret our

problem by the following statement.

Let Θ = ΨΦ. In this case, we only discuss meromorphic inner functions. The infor-

mation [Ψ, σ(ΨΦ)] determine Φ if for any Φ̃,

σ(Φ̃Ψ) = σ(ΦΨ) ⇒ Φ = Φ̃,

where Φ̃ and Φ̃Ψ̃ are all meromorphic inner functions.

Then, we give a proposition in terms of the kernel of Toeplitz operators.

Theorem 4.2.2. If N∞[Φ̄Ψ] ̸= 0, then [Ψ, σ(ΦΨ)] does not determine Φ.

Proof. Take a ∈ N [Φ̄Ψ] and ∥a∥∞ < 1
2
, then for some b ∈ H∞,

Φ̄Ψa = Θ̄Ψ2a = b̄.

Then, we have

Θ̄Ψ2(a+ b) = ā+ b̄.

Let g = a+ b and f = Ψg, so

Θ̄Ψf = Ψ̄f̄ ,

i.e., Θ̄f = f̄ , Ψ|f and f ∈ H∞. Then we can construct Θ̃ as

Θ̃ =
f +Θ

f + 1
,
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which Θ is an inner function:

|Θ̄|2 = (f +Θ)(f̄ + Θ̄)

(f + 1)(f̄ + 1
= 1.

Also, Ψ|Θ. If λ is finite and λ ∈ σ(Θ), then Θ̃(λ) = 1; If ∞ ∈ σ(Θ), since

Θ̃− 1 =
Θ− 1

f + 1
∈ H2,

then we have ∞ ∈ σ(Θ̃).

Proposition 4.2.3. If ∃p < 1, such that Np
Π[Φ̄Ψ] = 0, then [Ψ, σ(ΨΦ)] determine Φ.

Proof. Suppose there exists Θ̃ such that σ(Θ) = σ(Θ̃) and Ψ|Θ. Since Θ = Θ̃ on σ(Θ)

and (1− Θ̃(z))−1 > 0 for z ∈ C+, then we have

f =
Θ1 −Θ

1−Θ

is in Hp
Π ∩ Cω(R) for all p < 1. Also, we have

Θ̄f = Θ̄
Θ̃−Θ

1− Θ̃
=

Θ̃Θ̄− 1

1− Θ̃
= f̄ .

Since Ψ|Θ̃−Θ, we can define g = Ψ̄f ∈ Hp
Π ∩ Cω(R). Then, we have

Φ̄Ψg = ΨΘ̄f = Ψf̄ = g.

Hence, g ∈ Np
Π[Φ̄Ψ] = 0, which leads to Θ = Θ̃.
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4.3 Defining sets

We introduce the defining sets of functions (especially of inner functions) and the re-

lation to uniqueness sets in model space.

Definition 4.3.1. Let Φ = exp(iϕ) be an inner function and Λ be a subset of R. We say Λ

is defining for Φ if

Φ̃ = exp(iϕ̃), ϕ = ϕ̃ on Λ ⇒ Φ ≡ Φ̃.

Now let us discuss two special cases.

(1) Borg’s two spectra case

This is the case

Λ = {Θ = 1} ∪ {Θ = −1}.

Fixing the boundary condition (β) at b, {Θ = 1} is the spectrum of (q,D, β) and {Θ =

−1} is the spectrum of (q,N, β). This corresponds to the famous results by Borg, see [2].

Proposition 4.3.2. Given a function Θ = Θa
b,β . An inner function Θ̃ satisfies {Θ = 1} =

{Θ̃ = 1} and {Θ = −1} = {Θ̃ = −1} if and only if for some c ∈ (−1.1),

Θ̃ =
Φ− c

1− cΦ
.

(2) General mixed data spectral problem

Let Θ = ΨΦ and Λ be the spectrum of Θ. Instantly, we have

(Ψ, σ(ΨΦ)) determine ΨΦ if and only if Λ is a defining set for function Φ.

Let {λn} be the spectrum a Schrödinger operator (q, α, β) and λn ≤ λm for n ≤ m. For

M ⊂ Z, suppose we are given partial spectrum {λn n ∈ M}. Then the mixed date spectral

problem is whether the meromorphic inner function Ψ and {λn n ∈ M} determine Θ. This

is equivalent to discuss whether {λn n ∈ M} is a defining set for Φ.
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Furthermore, we can see that the condition is almost the condition of uniqueness sets.

So, we have the following statements.

Proposition 4.3.3. Let Λ be a point set and Φ be a meromorphic inner function. If there

is a function G ∈ K∞[Φ] s.t.

G = Ḡ on Λ,

then Λ is not a defining set for Φ.

Also, we have the following observation: For p > 1,

∃G ∈ Kp[Φ], G ̸≡ const, G = Ḡ on Λ,

if and only if

∃F ∈ Kp[Φ2], F ̸≡ 0, F vanish on Λ.

For general p, the precise relation is an interesting question. Also, the condition is almost

an if and only if condition. So, we can interpret the problems of defining sets of Φ by

uniqueness sets in model space K∞[Φ2].

4.4 Generalized Hochstadt-Liberman’s theorem

In general, the potential q is uniquely determined by two spectra. By Hochstadt and

Liberman [3], if given one half information of the potential q and a single spectrum, then

the other half information of q is uniquely recovered. Also, we apply the Toeplitz kernels

to extend the Hochstadt-Liberman’s theorem. Let us state the original version first.

Theorem 4.4.1. Consider a regular Schrödinger operator L with summable potential q.

Let σ(L) subject to boundary conditions α and β at two endpoints respectively; Also
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consider another operator L̃ with summable potential q̃ and

q(x) = q̃(x), x ∈ (
1

2
, 1).

Suppose the spectrum of L̃ subject to the same boundary conditions is the same as σ(L).

Then,

q(x) = q̃(x) x ∈ (0, 1).

In this case, the potential q ∈ L1(0, 1). From our construction of Θ− and Θ+, c is the

mid-point of (a, b). Hence, we can interpret the Hochstadt-Liberman problems in terms of

determination of meromorphic inner function.

Theorem 4.4.2. Let L be a self-adjoint Schrödinger operator on (a, b) with B.C. (α ̸= 0)

at a and (β) at b. And the potential q is L1 integrable. Let c be the midpoint of (a, b), then

(Θ−, σ(Θ−Θ+)) determine Θ+.

Proof. Given the potential q on (a, c), we know half of the information of Θ−Θ+. Then

this problem can be translated into the following lemma.

Lemma 4.4.3. Suppose Θ = Ψ2, a function Θ̃ satisfies Ψ|Θ̃ and σ(Θ̃) = σ(Θ) if and only

∃r ∈ (−1, 1),

Θ̃ = Ψ
r +Ψ

1 + rΨ
.

Besides, dim({Θ̃}) = 1.

We only prove the lemma in the case ∞ ̸∈ σ(Θ). Since Φ = Ψ, so N∞[Φ̄Ψ] ̸= 0. And

by the second proposition in 3.2, the dimension of Θ̃ is at least 1. If the dim({Θ̃}) ≥ 2,

by the results of Toeplitz kernels, we have

N∞[bΘ̄J ] ̸= 0,
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where Θ and J are inner functions satisfying {J = 1} = {Θ = 1}. Therefore, we have

N [Θ̄J ] ̸= 0.

By assumption that ∞ ̸∈ σ(Θ), J and Θ are twin inner functions, which means

N [Θ̄J ] = 0.

Hence, dim({Θ̃}) = 1. By the construction of the second proposition in section 3.2,

Θ̃ = Ψ
r +Ψ

1 + rΨ
, r ∈ (−1, 1).

By Evritt’s theorem [15], if m is a Weyl m-function of a Schrödinger operator, we have

m(z) = i
√
z + o(1), z → ∞.

Hence, if Θ = Θm, then

Θ(z) = 1− 2√
z
+

2

z
+ o(z−1), z → ∞.

All inner functions of the form (r + Ψ)/(1 + rΨ) with r ̸= 0 do not satisfy the Evritt’s

asymptotic results. Hence, in this case r = 0, i.e. Θ̃ = Θ.

Remark 4. • We can show the same statement without the assumption ∞ ̸∈ σ(Θ).

Also, if we only require σ(Θ̃) ⊂ σ(Θ), then the statement is also true.

• If we consider the Dirichlet boundary condition, the statement is also true, Also, if

we consider non-regular L̃, we can still get the same statement.
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• We can also apply the statement to the case of even potential on real line. In this

case, we view the point 0 as the midpoint of the real line.

4.5 Horvath’s theorem

In a famous paper [9], Horvath gave precise conditions for a set of eigenvalues to

determine the Schrödinger operator on a finite interval, which are closeness properties of

the exponential system corresponding to the known eigenvalues. His results include nearly

all former statement of inverse eigenvalue problem of the Schrödinger operator.

Let FLr be the space of space of Fourier transform of Lr, we have

PW2 = FL2 ⊂ FL1 ⊂ Cart2 ∩ L∞(R).

We will introduce some selected Horvath’ results, also see [10, 11]. Suppose Schr(Lr, D) =

{L : L = (q, α, β) q ∈ Lr(0, 1)}.

Theorem 4.5.1. Let
√
Λ be the square root of Λ, then

• Λ is defining in Schr(Lr, D) if and only if
√
Λ ∪ {∗, ∗} is a uniqueness set of FLr,

{∗, ∗} is the set of any two points.

• Λ is defining in Schr(Lr, N) if
√
Λ is not a zero set of FLr.

We will prove the following L2 version of Horvath’s theorem.

Proposition 4.5.2. Λ is defining in Schr(L2, D) if and only if
√
Λ plus any two points is

a uniqueness set of FL2;

Proof. Let q and q̃ be two potential from L2(R). We can always assume the Schrödinger

operator L = (q,D,N) and L̃ = (L̃,D,N) are positive on (0, 1). Since by adding a

positive constant to the potential, the property of uniqueness set is the same.
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We denote θ and θ̃ as the Weyl inner functions of L and L̃ after the square root trans-

form. For s > 0, suppose uS(t) is the solution of the following equation

−u′′ + qu = s2u, u(0) = 0, u′(0) = 1.

Then us is the solution of the corresponding integral equation

us(x) = sin sx+
1

s

∫ x

0

cos s(x− t)q(t)us(t)dt.

Take x = 1,

us(1) = sin s+
1

s

∫ 1

0

cos s(1− x)q(x)us(t)dx

= sin s+
1

s

∫ 1

0

cos s(1− x)q(x)(sin sx+
1

s

∫ x

0

cos s(x− t)q(t)us(t)dt)dx

= sin s+
1

s

∫ 1

0

cos s(1− t)q(t) sin stdt

+
1

s2

∫ 1

0

cos s(1− x)q(x)dx

∫ x

0

cos s(x− t)q(t)us(t)dt

Let

F1(s) =

∫ 1

0

cos s(1− t)q(t) sin stdt,

and

R1(s) =

∫ 1

0

cos s(1− x)q(x)dx

∫ x

0

cos s(x− t)q(t)us(t)dt.

For t ∈ (0, 1),

|us(t)| ≤ C1.

Hence,

R1(s) ≤ const, ∀S.
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Also, since q(t) ∈ L2(R), F1 is the Fourier transform of a L2(R) integrable function.

Hence,

F1 ∈ L2(R).

From the formula of us(x), we have

u′
s(x) = s cosx+

1

s
q(x)us(x)−

∫ x

0

sin s(x− t)q(t)us(t)dt.

Take x = 1,

u′
s(1) = s cos s+

1

s
q(1)us(1)−

∫ 1

0

sin s(1− t)q(t)us(t)dt

= s cos s+
1

s
q(1)us(1)−

∫ 1

0

sin s(1− x)q(x) sin sxdx

+
1

s

∫ 1

0

sin s(1− x)q(x)dx

∫ x

0

cos s(x− t)q(t)us(t)dt

= s cos s+
1

s
q(1)us(1)− F2(s)−

1

s
R2(s)

Similarly, we have

R2(s) ≤ const, ∀S,

and

F2 ∈ L2(R).

Hence, the Weyl inner function is

Θ(s2) =
−u′

s(1)− ius(1)

−u′
s(1) + ius(1)

,
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and the square root transforms of Θ is

θ =
(s+ 1)Θ(s2) + (s− 1)

(s− 1)Θ(s2) + (z + 1)
.

After calculation, we have

θ

S2
=

H̄

H
on R, H± ∈ H∞,

and

x(θ(x)− θ̃(x)) ∈ L2(R).

Since we require the Neumann boundary condition at 1, we have

θ̃ = θ on {0} ∪
√
Λ.

By the above asymptotic properties,

(z − 1)(θ − θ̃) ∈ K[θθ̃],

hence,

(z − 1)(θ(z)− θ̃(z)) = 0 z ∈
√
Λ or z = 0, 1.

Since
θ

S2
=

H̄

H
on R, H± ∈ H∞,

some function f from the model space of S4 vanish on
√
Λ ∪ {0, 1}.
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