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ABSTRACT

It is well known that the molecular basis of many diseases, particularly cancer, re-

sides in the loss of regulatory power in critical genomic pathways due to DNA mutations.

We propose a methodology for model-based fault detection and diagnosis for stochastic

Boolean dynamical systems indirectly observed through a single time series of transcrip-

tomic measurements using Next Generation Sequencing (NGS) data. The fault detec-

tion consists of an innovations filter followed by a fault certification step, and requires no

knowledge about the system faults. The innovations filter uses the optimal Boolean state

estimator, called the Boolean Kalman Filter (BKF). We propose an additional step of fault

diagnosis based on a multiple model adaptive estimation (MMAE) method consisting of

a bank of BKFs running in parallel. The efficacy of the proposed methodology is demon-

strated via numerical experiments using a p53-MDM2 negative feedback loop Boolean

network. The results indicate the the proposed method is promising in monitoring bi-

ological changes at the transcriptomic level. Genomic applications in the life sciences

experimented an explosive growth with the advent of high-throughput measurement tech-

nologies, which are capable of delivering fast and relatively inexpensive profiles of gene

and protein activity on a genome-wide or proteome-wide scale. For the study of microbial

classification, we propose a Bayesian method for the classification of r16S sequencing pro-

files of bacterial abundancies, by using a Dirichlet-Multinomial-Poisson model for micro-

bial community samples. The proposed approach is compared to the kernel SVM, Random

Forest and MetaPhyl classification rules as a function of varying sample size, classification

difficulty, using synthetic data and real data sets. The proposed Bayesian classifier clearly

displays the best performance over different values of between and within class variances

that defines the difficulty of the classification.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Fault Detection and Diagnosis in Gene Regulatory Networks

Biochemical processes in the cellular environment are governed by complex cascades

of molecular interactions. Of particular interest are transcriptional regulatory circuits,

which govern the functioning of key cellular processes, such as the cell cycle, stress re-

sponse, DNA repair, and more. Boolean networks, first introduced by Kauffman and col-

laborators [2, 3], have emerged as an effective model of the dynamical behavior of regula-

tory circuits consisting of bi-stable genes, which can be either in an activated or suppressed

transcriptional state [4, 5, 6, 7, 8]. In the Boolean network model, the transcriptional state

of each gene is represented by 0 (OFF) or 1 (ON), and the relationship among genes is de-

scribed by logical gates updated at discrete time intervals [9, 10, 11]. This model has been

successful in accurately modeling the dynamics of the cell cycle in the Drosophila fruit fly

[6], in the Saccharomyces cerevisiae yeast [7], as well as the mammalian cell cycle [8], as

well as the switching behavior displayed by the p53 gene in tumor-suppressing pathways

[12, 13].

It is well known that the molecular basis of many diseases, particularly cancer, re-

sides in the loss of regulatory power in critical genomic pathways due to DNA mutations.

For example, mutations in the p53 gene can render it permanently inactive, with the re-

sult that proper response to DNA damage signals are not produced, leading to dangerous

disturbances in the cell cycle that may eventually lead to cancerous cells [14]. In this

paper, we develop a model-based fault detection and diagnosis methodology that can de-

tect and classify sudden changes in the underlying Boolean regulatory network through a

single time series of noisy observations of the system state, consisting of transcriptomic

data from Next Generation Sequencing (NGS) experiments. The problem of fault detec-
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tion and diagnosis (also known as “fault detection and identification”) has been studied

extensively in many diverse areas of Engineering; e.g., see [15, 16, 17, 18, 19, 20, 21].

However, most if not all of the existing model-based techniques rely on system linear-

ity (or linearizability) assumptions. The methodology developed here applies to Boolean

dynamical systems, which are highly-nonlinear, derivativeless (and thus non-linearizable)

systems. The optimal state estimator for such models is called the Boolean Kalman Filter

[11]. The fault detection consists of an innovations filter followed by a fault certification

step, and requires no knowledge about the system faults. The innovations filter relies on

the fact that the innovations of the optimal state estimator are uncorrelated under normal

operation of the system, a well-known principle in linear Kalman filtering [22], which is

applied here in the context of the BKF. The application of the innovations filter for fault

detection previously appeared in [23]. In the presence of knowledge about the possible

system faults, we propose an additional step of fault diagnosis based on a bank of BKFs

running in parallel, which is known as a multiple model adaptive estimation (MMAE)

procedure in the literature of linear systems [24]. Performance is assessed by means of

false detection and misdiagnosis rates, as well as average times until correct detection and

diagnosis. The efficacy of the proposed methodology is demonstrated via numerical ex-

periments using the p53-MDM2 negative feedback loop network with stuck-at faults that

model DNA mutation events commonly found in cancer, as described previously. This

Boolean network model with stuck-at faults appears in [12], and proposes a fault detec-

tion method for deterministic systems with directly observable states. Our methodology

removes these assumptions by allowing uncertainty in the state transitions and allowing

indirect observation of the state through noisy NGS data.

NGS technologies are able to sequence millions of short DNA fragments in parallel;

the length and number of the reads vary with the specific technology [25]. The application

of NGS to transcriptional profiling is called RNA-seq (from “RNA sequencing”), which

2



records how frequently each transcript is represented in a sequence sample [26]. RNA-seq

is a probe-free approach that can capture any relevant transcripts present in a sample, with-

out the need of prior knowledge about the target sequence. Due to the accurate sequencing

platforms available today, closely related transcripts can be easily distinguished from each

other [27], making RNA-seq well-suited to dealing with splice variants, fused transcripts,

and mutants. The RNA-seq experiment first randomly fragments messenger RNAs into

small pieces, then converts the mRNA fragments to library complementary DNA (cDNA)

fragments. The cDNA fragments are amplified and sequenced in parallel, resulting in mil-

lions of short sequences called “reads.” These reads are mapped to a given region of the

genome or transcriptome; the number of reads mapped to each gene determines a count,

which is a discrete measure of the corresponding gene expression level [28, 25]. RNA-

seq has a large dynamic range and sensitivity due to its digital nature, which is especially

important for highly abundant and extremely low abundant genes.

Several tools for partially-observed Boolean dynamical system (POBDS) have been

developed in recent years, such as the optimal filter and smoother based on the mini-

mum mean square error (MMSE) criterion, called the Boolean Kalman Filter (BKF) and

Boolean Kalman Smoother (BKS) [29], respectively. In addition, particle filtering imple-

mentations of these filters, as well as schemes for handling correlated noise, simultaneous

state and parameter estimation, network inference, and control for POBDSs were devel-

oped [30, 31, 32, 33, 34, 35, 36, 37]. The software tool "BoolFilter" [38] is available

under R library for estimation and identification of partially-observed Boolean dynamical

systems.

1.2 Optimal Bayesian Classification of Metagenomic Data

The characterization of microbial communities by 16S rRNA gene amplicon sequenc-

ing has received renewed interest in the last decade, in part due to the emergence of high-

3



throughput sequencing technology [39]. Microbial metagenomics provides a means to

determine what organisms are present without the need for isolation and culturing. Next

generation sequencing, applied to microbial metagenomics, has transformed the study of

microbial diversity [40]. For amplicons reads it is possible to classify sequence reads

against known taxa, and determine a list of those organisms that are present and the read

frequency associated with them [41]. In this case an unsupervised strategy can be used to

identify proxies to traditional taxonomic units by clustering sequences, so called Opera-

tional Taxonomic Units (OTUs).

In this paper, we apply the Optimal Bayesian Classifier (OBC) [42] to sample classifi-

cation based on r16S sequencing profiles of microbial abundance. Each microbial sample

is represented as a set of operational taxonomic unit (OTU) frequencies. The performance

of the proposed approach is compared to other classifiers such as a kernel Support Vector

Machine (SVM), Random Forest (RF), which is considered to be the de-facto standard for

metagenomics classification, and the MetaPhyl algorithm [43], as a function of varying

sample size, classification difficulty, by means of a numerical experiment using synthetic

data and real data sets.
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2. FAULT DETECTION AND DIAGNOSIS IN TRANSCRIPTIONAL CIRCUITS

USING NEXT-GENERATION SEQUENCING∗

2.1 Boolean Networks

Let the Boolean expression stateXki ∈ {0, 1} of each of d transcripts at a discrete time

k be represented by a Boolean state vector Xk = (Xk1, . . . , Xkd) ∈ {0, 1}d. A Boolean

network (with input) describes the evolution of the time series {Xk; k = 0, 1, . . .} by

Xk = f (Xk−1,uk) , (2.1)

for k = 1, 2, . . ., where uk ∈ {0, 1}p is an input vector of dimension p at time k and

f : {0, 1}d+p → {0, 1}d is an arbitrary network function that transforms the previous state

plus the current input into the current state. The network function can be written in terms

of its components, f = (f1, f2, . . . , fd), where each component fi : {0, 1}d+p → {0, 1},

i = 1, . . . , d, is a Boolean function, which expresses a logical relationship among the state

and input variables.

As an example, consider the p53-MDM2 negative feedback loop transcriptional circuit

in the presence of DNA double strand breaks. The p53 transcription factor plays a key

role in tumor suppression; in fact 30% to 50% of commonly occurring human cancers are

associated with loss of p53 functionality through mutations [14]. The dynamics of p53 in

response to DNA double strand breaks can be summarized by the activated/deactivated

patterns of the genes for p53, MDM2, the serine-protein kinase ATM (responsible for

transduction of the DNA damage signal), and the phosphatase WIP1 [1, 13]. Hence,

∗Reprinted with permission from "Optimal Fault Detection and Diagnosis in Transcriptional Circuits us-
ing Next-Generation Sequencing" by A. Bahadorinejad and U. Braga-Neto, 2015. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 10, 113–121, Copyright 1969 by IEEE
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Figure 2.1: Activation/repression pathways and state transition diagrams corresponding
to constant inputs dna_dsbk ≡ 0 (no stress) and dna_dsbk ≡ 1 (DNA damage) for the
p53-MDM2 negative feedback loop Boolean network model. Reproduced from [1].

d = 4 and the state of the system at time k can be represented by the Boolean vector

Xk = (ATMk, p53k,WIP1k,MDM2k), where a subscript k is attached to the name of gene

to indicate its expression state at time k. The input uk = dna_dsbk at time k is a Boolean

signal that indicates the presence of DNA double strand breaks. Using the pathway infor-

mation in [13], Layek and Datta obtained the following Boolean network model [1]:

ATMk = WIP1k−1 AND (ATMk−1 OR dna_dsbk)

p53k = MDM2k−1 AND (ATMk−1 OR WIPk−1)

WIP1k = p53k−1

MDM2k = ATMk−1 AND (p53k−1 OR WIPk−1)

(2.2)

We can see that MDM2 has a suppressing effect on p53, which in turn activates it. This

is the well-known p53-MDM2 negative-feedback regulatory loop, which, under no stress,

keeps the expression of p53 at small levels. However, we can see that MDM2 is also

6



inactivated by ATM, which in turn is activated by the DNA damage signal. Figure 2.1(a)

depicts the activation/suppression pathways corresponding to this BN. We can see that

ATM is the transductor gene for the DNA damage signal, which eventually activates p53,

through inactivation of MDM2. However, there is also a negative feedback loop between

p53 and ATM, through WIP1, so that p53 is expected to display an oscillatory behavior

under DNA damage [13]. On the other hand, under no stress, it is known that all four

proteins are inactivated in the steady state [14]. These behaviors are captured nicely by

the BN model. Figures 2.1(b-c) display the state transition diagram under no stress and

under DNA damage, respectively. In the first case, we can see that “0000” is a singleton

attractor state, while the other states are transient. In the second case, we can see that there

is a cyclic attractor, corresponding to an oscillation of p53, along with the other proteins

in its regulatory pathway. Furthermore, we can see that activation of MDM2 and WIP1

lags behind that of p53, which in turn lags behind that of ATM. All of these behaviors are

consistent with biological knowledge [44]. Summing up, the BN displays two basins of

attraction, corresponding to the state of the DNA damage signal. The moment the latter

changes, the system jumps to the other basin of attraction, and if left undisturbed will

eventually reach the restive state, in the case of no stress, or the cyclic pattern of p53

activation, in the case of DNA damage.

2.2 Stochastic Signal Model

The Boolean network model describes a deterministic dynamical system, and assumes

that the state is directly observable or that noisy non-Boolean observations can be readily

thresholded into Boolean values. But, in fact, due to system noise from unmodeled vari-

ables, there is uncertainty in state transition; i.e., there is a chance that the next state of the

system is not the one prescribed by the Boolean network. In addition, the Boolean states

of a system are never observed directly; modern expression-based technologies, such as

7



RNA-seq, (1) produce noisy non-Boolean measurements, and (2) may also produce mea-

surements of part of the state vector only. In the first case, thresholding methods can be

used to binarize the expression for each gene; in the second case, there is no recovery. In

this Section, we describe a stochastic signal model for Boolean Dynamical systems, first

introduced in [11], that accounts for these issues.

2.2.1 Boolean State Transition Model

There have been a series of models proposed to extend the Boolean Network model

to allow uncertainty in state transitions. These include Random Boolean Networks [2],

Boolean Networks with perturbation (BNp) [10], and Probabilistic Boolean Networks

(PBN) [45]. In [11], it is shown that PBNs are actually a special case of Boolean Net-

work with perturbations. The BNp model is thus quite general, and is used here as the

state model. The sequence of state vectors {Xk; k = 0, 1, . . .} is a Markov stochastic

process, called the state process, specified by

Xk = f (Xk−1,uk) ⊕ nk , (2.3)

for k = 1, 2, . . ., where “⊕” indicates component-wise modulo-2 addition, uk and f :

{0, 1}d+p → {0, 1}d are the input and network function, respectively (see the previous Sec-

tion), whereas {nk; k = 1, 2, . . .} is a “white noise” process, with nk = (Nk1, . . . , Nkd) ∈

{0, 1}d. The noise process is “white” in the sense that nk is an independent process, which

is independent from the initial state X0; its distribution is otherwise arbitrary. The input

uk is typically, but not necessarily, a deterministic signal.

The state equation (2.3) differs from (2.1) by the presence of the additive noise process.

It therefore extends the previous Boolean Network model to allow for stochasticity. In the

special case where the noise vector is i.i.d., with P (Nki = 1) = p for i = 1, . . . , d, then

there is a probability p that each state variable Xki will be flipped from 0 to 1 or 1 to 0,

8



independently of the other state variables. The parameter p determines the intensity of

the noise, i.e., how often a state variable is flipped. If p is very small, the system state

evolves as a standard Boolean Network, settling into attractors in the long range, but the

occasional flip of a variable can pull the system out of its attractor states, and even into

different attractor basins altogether. On the other hand, larger p leads to much more chaotic

behavior.

2.2.2 Observation Model for RNA-seq Data

The second component of the signal model is the observational model. In most real-

world applications, the system state is only partially observable, and distortion is intro-

duced in the observations by sensor noise — this is certainly the case with RNA-seq tran-

scriptomic data.

Let Yk = (Yk1, . . . , Ykd) be a vector containing the RNA-seq data at time k, for k =

1, 2, . . .We assume a single-lane NGS platform, so that Yki is the read count corresponding

to transcript i in the single lane, for i = 1, . . . , d. There are multiple methods for modeling

the RNA-seq reads. Because of the discrete nature of reads, most methods are based on

either the negative binomial [46] or the Poisson distribution [25]. In this study, we choose

to use the Poisson model for the number of reads for each transcript:

P (Yki = m | λki) = e−λki
λmki
m!

, m = 0, 1, . . . (2.4)

where λki is the mean read count of transcript i at time k. Recall that, according to the

Boolean state model, there are two possible states for the abundance of transcript i at time

k: high (Xki = 1) and low (Xki = 0). Accordingly, we model the parameter λki as

follows:
log(λki) = log(s) + µb + θi , if Xki = 0 ,

log(λki) = log(s) + µb + δi + θi , if Xki = 1 .

(2.5)

9



The parameter s is the sequencing depth [28], and is assumed here to be common to

all transcripts, since a single lane is being modeled. The sequencing depth s accounts

for different total numbers of reads produced in the lane and plays a key role, since it

determines the approximate range of read counts that is produced. The parameter µb > 0

accounts for the baseline level of read counts produced in the single lane in the inactivated

transcriptional state, which is assumed to be common to all transcripts. The differential

level of expression δi > 0 expresses the effect on the observed RNA-seq read count as

transcript i goes from the inactivated to the activated state. This effect may change for

different transcripts, which is modeled here by assuming δi to be Gaussian with mean

µδ > 0 and variance σ2
δ , common to all transcripts, where σδ is assumed to be small enough

to keep δi positive. The Gaussianity assumption is by no means necessary to the proposed

approach; any other positive-valued distribution, such as exponential or Gamma, could be

substituted for the Gaussian and the methodology would apply unchanged. The term θi is

zero-mean Gaussian noise with small variance σ2
θ , common to all transcripts (once again,

the Gaussian assumption is not essential), and models unknown and unwanted technical

effects that may occur during the experiment. Typical values for all these parameters are

given in Section VII when we discuss the numerical experiments performed to evaluate

the proposed approach.

Note that one may rewrite the equations in (2.5) as:

λki = s exp(µb + θi + δiXki) . (2.6)

As θi and δi are normally distributed and µb is fixed, the mean read count Yki for transcript

i at time k has a log-normal distribution given Xki.

For simplicity, we assume that, at a each time k, the read counts Yki, for i = 1, . . . , d,

are conditionally independent given Xk. In practice, the model will still be applicable if

10



the read counts are only weakly correlated. However, the independence assumption can be

lifted at the expense of introducing extra parameters. A model including all correlations

between transcripts would require d(d− 1) extra parameters (the off-diagonal elements of

the covariance matrix); to reduce model complexity for large d, one may assume a block

covariance matrix, where clusters of transcripts are correlated (e.g., the ones with similar

sequences) but the clusters are conditionally-independent of each other.

2.3 Boolean Kalman Filter

The minimum mean-square error (MMSE) state estimator for the model described in

the previous sections is the Boolean Kalman Filter (BKF) [11]. A recursive algorithm for

the exact computation of the BKF for a general signal model was given in [11]. Next, we

adapt it to the signal model described in the previous sections.

The optimal filtering problem consists of, given the history of observations Y1, . . . ,Yk

up to the present time k, find an estimator X̂k = h(Y1, . . . ,Yk) of the state Xk that

optimizes a given performance criterion. The criterion considered here is the (conditional)

mean-square error:

MSE = E
[
||X̂k −Xk||2 | Yk, . . . ,Y1

]
. (2.7)

The solution to this problem is given next. Let (x1, . . . ,x2d) be an arbitrary enu-

meration of the possible state vectors. For each time k = 1, 2, . . . define the posterior

distribution vectors (PDV) Πk|k and Πk|k−1 of length 2d by:

(Πk)i = P
(
Xk = xi | Yk, . . . ,Y1

)
,

(Πk|k−1)i = P
(
Xk = xi | Yk−1, . . . ,Y1

)
,

(2.8)

for i = 1, . . . , 2d. These give the posterior distribution of the state given the observation
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histories up to time k and k− 1, respectively. Let the prediction matrix Mk of size 2d× 2d

be the transition matrix of the Markov chain defined by the state model:

(Mk)ij = P (Xk = xi | Xk−1 = xj)

= P
(
nk = xi ⊕ f(xj,uk)

)
= pO(xi⊕f(xj ,uk))(1− p)1−O(xi⊕f(xj ,uk)),

(2.9)

for i, j = 1, . . . , 2d, where O(v) is defined as the number of 1’s in Boolean vector v and

we assumed that the noise vector nk is i.i.d. On the other hand, let the update matrix Tk,

also of size 2d × 2d, be a diagonal matrix defined by:

(Tk)jj = P (Yk | Xk = xj)

= e(−
∑d

i=1λki) Πd
i=1

λYkiki

Yki!

(2.10)

for j = 1, . . . , 2d, where we used (2.4) and (2.6). Finally, define the matrixA of size d×2d

via A =
[
x1 · · ·x2d

]
.

The following result is a specialization of Theorem 1 in [?] to the signal model de-

scribed previously.

Theorem 1. (Boolean Kalman Filter.) The optimal minimum MSE estimator X̂k of the

state Xk given the observations Y1, . . . ,Yk up to time k is given by

X̂k = E [Xk | Yk, . . . ,Y1] , (2.11)

where the binarization of a vector v is defined by (v)i = I(v)i>1/2 for i = 1, . . . , d. This

estimator and its optimal conditional MSE can be computed by the following procedure:

1. Initialization Step: The initial PDV is defined by (Π0|0)i = P (X0 = xi), for i =
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1, . . . , 2d.

For k = 1, 2, . . ., do:

2. Prediction Step: Given the previous PDV Πk−1|k−1, the predicted PDV Πk|k−1 is

given by Πk|k−1 = Mk Πk−1|k−1.

3. Update Step: Let βk = Tk Πk|k−1. The updated PDV Πk|k is obtained by normaliz-

ing βk to obtain a probability measure: Πk|k = βk/||βk||1.

4. MMSE Estimator Computation Step: The MMSE estimator is given by

X̂k = AΠk|k (2.12)

with optimal conditional MSE

MSE(Y1, . . . ,Yk) = ||min{AΠk|k, (AΠk|k)
c}||1 , (2.13)

where the minimum is applied component-wise, and the complement of a vector v is

defined by (vc)i = 1− (v)i, for i = 1, . . . , d.

Notice that, due to the normalization in the update step, the matrix Tk can be scaled at

will. In particular, the constant s(
∑d

i=1Yki)/Πd
i=1Yki! in (2.10) can be dropped, which results

in significant computational savings.

2.4 Fault Detection and Diagnosis System

The proposed methodology for model-based fault detection and diagnosis is based

on the Boolean Kalman Filter, introduced in the previous section. The fault detection

step consists of an innovations filter followed by a fault certification step, and requires no
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knowledge about the system faults, followed by a fault certification step that is aimed at

reducing the false detection rate. The fault diagnosis step is based on a bank of BKFs

running in parallel, which is known as a multiple model adaptive estimation (MMAE)

procedure. The proposed fault detection and diagnosis system is represented as a block

diagram in Figure 2.2.

Figure 2.2: Block diagram of the proposed fault detection and diagnosis system.

2.4.1 Innovations Filter

It is a well-known fact in the theory of linear Kalman filters [22] that the innovations of

the optimal state estimator constitute a “white noise” sequence. This fact is applied here in

the context of the BKF. For completeness, we give the main result below. Given the history

of observations Y1, . . . ,Yk up to the present time k, let YMS
k = E [Yk | Yk−1, . . . ,Y1] is

the MS-predictable component of Yk, with YMS
1 = E[Y1]. The innovation Vk at time k

is defined as the MS-unpredictable component of Yk:

Vk = Yk −YMS
k

= Yk − E [Yk | Yk−1, . . . ,Y1] ,

(2.14)
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for k = 1, 2, . . . The next theorem establishes the “white noise” property of the innovations

sequence.

Theorem 2. The innovations sequence {Vk; k = 0, 1, . . .} is zero-mean and uncorrelated;

i.e., E[Vk] = 0 and E[VkV
T
l ] = 0d×d , for k, l = 1, 2, . . . and k 6= l.

Proof. We have

E[Vk] = E[Yk]− E[YMS
k ]

= E[Yk]− E[E[Yk | Yk−1, . . . ,Y1]]

= E[Yk]− E[Yk] = 0 ,

(2.15)

for k = 1, 2, . . . , showing that the innovations sequence is zero mean. We now show that

E[VkV
T
l ] = 0d×d , where we can assume that k > l, without loss of generality. First note

that
E[YMS

k YT
l ] = E[E[Yk | Yk−1, . . . ,Y1 ]YT

l ]

= E[E[YkY
T
l | Yk−1, . . . ,Y1]] = E[YkY

T
l ] .

(2.16)

Similarly, we can show that E[YMS
k (YMS

l )T ] = E[Yk(Y
MS
l )T ]. Now,

E[VkV
T
l ] = E[(Yk −YMS

k )(Yl −YMS
l )T ]

= E[YkY
T
l ]− E[Yk(Y

MS
l )T ]

− E[YMS
k YT

l ] + E[YMS
k (YMS

l )T ] = 0d×d ,

(2.17)

as required.
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Now, note that YMS
k can be written as

YMS
k = E[E[Yk |Xk,Yk−1, . . . ,Y1] |Yk−1, . . . ,Y1]

= E[E[Yk | Xk] | Yk−1, . . . ,Y1]

=
2d∑
i=1

E[Yk | Xk = xi]

× P (Xk = xk | Yk−1, . . . ,Y1)

= Dk Πk|k−1

(2.18)

where Πk|k−1 is the vector of posterior probabilities defined in (2.8), and Dk is a d × 2d

matrix defined by

(Dk)ij = E[Yki | Xk = xj] = λki

= s exp(µb + θi + δi(x
j)i) ,

(2.19)

for i = 1, . . . , d and j = 1, . . . , 2d, where we used (2.6).

Assuming normal operation of the system, the BKF is run, and the residue at time k,

ek = Yk −Dk Πk|k−1 , (2.20)

is computed, for k = 1, 2, . . . From the previous results, the sequence {ek; k = 1, 2, . . .} is

the innovations sequence, and therefore “white noise,” provided that the normal-operation

model, assumed by the BKF, matches the actual model producing the data. A fault de-

tection method therefore is provided by testing the hypothesis that the residue sequence

is white. In this paper, this is done by means of a chi-square test applied to L lags of the

sample auto-correlation function based on a “window” of observations preceding k0 of a

specified length LD.
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2.4.2 Fault Certification

To improve false-positive error rates, we adopt the fault certification step described in

[20]: a fault is signaled if the number of false detections over a window of specified length

LC preceding the current time k0 exceeds a threshold tC ; for example, in [20], a fault is

signaled if a fault is detected at least 3 times over a window of 10 time points preceding

the current time.

2.4.3 Fault Diagnosis

Upon detection of a fault, and if all possible system faults are known and can be mod-

eled, then an optimal Bayesian procedure for fault diagnosis can be derived, which selects

the fault as the candidate with the largest posterior probability given the observations. The

computation makes use of probabilities computed by a bank of BKFs running in parallel,

one for each candidate fault model. This is similar to the multiple model adaptive estima-

tion (MMAE) method for linear systems [24], applied here to the nonlinear signal model

described previously. Let M be the number of candidate fault models, which are indexed

by C ∈ {1, . . . ,M}. It is assumed that this set is exhaustive; that is, once a fault is (cor-

rectly) detected, then one of the fault models must be the one in operation. Our goal is

to determine which one. Let kd be the time at which a fault is detected. At time kd, the

prior probability of fault class m is given by P (C = m), for m = 1, . . . ,M . Let pml be

the posterior probability of fault class m at time kd + l, given the history of observations

Ykd+1, . . . ,Ykd+l between the time immediately after the fault is detected and the present

time kd + l, for l = 1, 2, . . . and m = 1, . . . ,M . A simple application of Bayes theorem

yields

pml = P (C = m | Ykd+l, . . . ,Ykd+1)

=
P (Ykd+l | C = m,Ykd+l−1, . . . ,Ykd+1)pml−1∑M
i=1 P (Ykd+l | C = i,Ykd+l−1, . . . ,Ykd+1)pil−1

(2.21)

17



Figure 2.3: Block diagram for one iteration of the proposed fault diagnosis system.

for l = 1, 2, . . ., with pm0 = P (C = m). Furthermore, one can write

P (Yk | C = m,Ykd+l, . . . ,Ykd+1)

=
2d∑
i=1

P (Ykd+l,Xkd+l = xi | C = m,Ykd+l−1, . . . ,Ykd+1)

=
2d∑
i=1

P (Ykd+l | Xkd+l = xi, C = m,Ykd+l−1, . . . ,Ykd+1)

× P (Xkd+l = xi | C = m,Ykd+l−1, . . . ,Ykd+1)

=
2d∑
i=1

P (Ykd+l | Xkd+l = xi, C = m)

× P (Xkd+l = xi | C = m,Ykd+l−1, . . . ,Ykd+1)

=
2d∑
i=1

(Tml )ii (Π
m
l|l−1)i

= ||Tml Πm
l|l−1||1 = ||βml ||1 ,

(2.22)
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where βml is the unnormalized PDV at time kd + l, computed at the update step of a BKF

based on model C = m and started at time kd, for m = 1, . . . ,M .

Hence, the posterior probability of fault class m can be obtained by running a bank of

M BKFs in parallel, one for each of the fault models, where all BKFs are started at time

kd. At each time kd + l the posterior probabilities are updated by the equation:

pml =
||βml ||1 pml−1∑M
i=1 ||β

i
l||1 pil−1

(2.23)

Fault classification can be then accomplished by a maximum a-posteriori criterion. Instead

of simply taking the maximum of the probabilities, we further require that the maximum

probability exceed a given threshold ts near 1. This has the property of avoiding any fluc-

tuations in the probabilities that can occur early in the process and increasing confidence

in the predicted fault class.

The entire fault diagnosis system can be summarized as follows. Upon detection of a

fault at time kd, a bank of M BKFs are started in parallel, one for each of the fault models,

and the following recursion is run:

1. Initialization Step: pm0 = P (C = m), for i = 1, . . . ,m.

For k = 1, 2, . . ., do:

2. Posterior Update: Using the outputs ||βil|| of the bank of BKFs, for i = 1, . . . ,M ,

compute the current model posterior probabilities as

pml =
||βml ||1 pml−1∑M
i=1 ||β

i
l||1 pil−1

(2.24)
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3. Fault Classification: If maxm=1,...,M pml > ts, diagnose

m∗ = arg max
m=1,...,M

pml . (2.25)

as the fault class and stop. Otherwise, wait for a new observation and go back to

step 2.

Figure 2.3 displays a block diagram for one iteration of the proposed fault diagnosis

system.

2.5 Performance Evaluation

Several metrics can be defined to assess the performance of fault detection and diagno-

sis methods; e.g. see [20]. Here, we define the error rates and average lag times that will

be used in the next section to evaluate the performance of the fault detection and diagnosis

system described previously.

Let K be the total length of the time series observations. Let k0 < K be the time a

fault occurs, and let kd be the time when a fault is first detected. We assume that once a

fault is detected, the monitoring system issues an alarm and initiates the fault diagnosis

step, and no further fault detection is run. There are two possibilities: either kd < k0 or

kd ≥ k0. In the first case, a false alarm has occurred. In the second case, we are interested

in how soon the fault is detected, i.e., how small kd−k0 is. In a simulation setting, average

values for these quantities can be computed. Assume that T time series of length K are

generated and, without loss of generality, assume that k0 = K/2 is a fixed time when the

fault occurs for all time series. The false detection rate (FDR) is defined as

FDR =
1

T

T∑
t=1

Iktd<k0 , (2.26)

where ktd is the time where a fault is detected for time series t, for t = 1, . . . , T , while the
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average time until correct detection (ATCD) is defined as

ATCD =
1

Td

T∑
t=1

(ktd − k0)Iktd≥k0 , (2.27)

where Td =
∑T

t=1 Iktd≥k0 is the number of times when a correct detection is made.

To assess the performance of fault diagnosis, we consider only the time series for

which a correct fault detection is made (i.e., ktd > k0). Let m0 be the true identity of the

fault and m∗t be the fault model selected by the fault diagnosis procedure for time series t,

for t = 1, . . . , T . The fault misdiagnosis rate (FMR) is defined as

FMR =
1

Td

Td∑
t=1

Im∗
t 6=m0Iktd≥k0 . (2.28)

As before, it is interesting to evaluate the lag between the time a fault is detected and the

fault diagnosis procedure begins and the time when a diagnosis is reached. Let kts denote

the latter quantity. The average time until diagnosis (ATD) is defined as

ATD =
1

Td

T∑
t=1

(kts − ktd)Iktd≥k0 . (2.29)

2.6 Numerical Experiments

In this section, we conduct a numerical experiment using the p53-MDM2 Boolean

network discussed in Section II. We consider the input to be either no stress, dna_dsb = 0,

or DNA damage, dna_dsb = 1. In addition, we adopt the “stuck-at” system fault models

described in [12]. Briefly, transcript i is stuck at 0/1 if

Xki = 0/1 , for k ≥ k0 , (2.30)
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is one of the equations in the state transition model, where k0 is the time when the fault

occurs. Stuck-at fault models correspond to the loss of function of a gene due to mutation

that either silences (stuck-at-0) or permanently activates (stuck-at-1) the gene. In this

experiment, there are a total of 16 possible cases, corresponding to the presence or absence

of a DNA damage signal, and each of the four genes p53, MDM2, ATM, or WIP1 is stuck

at 0 or 1.

For each of these fault models, we generated T = 100 time series of length K = 400,

with the fault occurring at k = 200. Hence, for k < k0 the system is under “normal”

operation, and for k ≥ k0, (2.30) is introduced, for the appropriate transcript i. In addition,

three different settings were used for the sequencing depth parameter s in (2.5) or (2.6),

which are consistent with a total number of reads (for a typical RNA sample) in the ranges

1K-50K, 50K-100K, and 250K-300K, as reported in [25]. The range of 50K-100K is a

typical range of read tags in SAGE experiments [25]. Table 2.1 summarizes the values

of all the parameters used in the simulation (please refer to the previous sections for the

meaning of each parameter). The proposed fault detection and diagnosis methodology was

applied to each of the simulated time series, and the performance metrics described in the

previous section were computed. We mention that varying the noise parameters around

the values given in Table 2.1 did not produce any appreciable changes, so these results are

not shown.

Figure 2.4 displays typical plots of the chi-square test statistic for the innovations filter,

for the DNA-damage Boolean network (dna_dsb = 1), 250K-300K reads, and two fault

classes: WIP1 stuck-at-0, and MDM2 stuck-at-1. Based on L = 15 lags of a window with

LD = 150 observations, the threshold for a 95%-level test (p < 0.05) is 24.99. This value

is represented as a dashed horizontal line in the Figure 2.4. We can observe in both cases

that as soon as the fault occurs at k0 = 200, the test statistic rises sharply and soon exceeds

the horizontal line. A fault is detected after this has occurred at 6 out of the last 10 time
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Table 2.1: Parameter values used in the numerical experiments.

Parameter Value

Length of time series K 400

Fault time point k0 200

State noise probability p 0.05

Sequencing depth s 1.0175 (1K-50K reads)

2.875 (50K-100K reads)

10.75 (250K-300K reads)

Baseline expression µb 0.01

Differential expression mean µδ 3

Differential expression variance σ2
δ 0.5

Technical effects variance σ2
θ 0.1

Detection window length LD 150

Auto-correlation function lags L 15

Certification window length LC 10

Certification threshold tC 6

Diagnosis threshold ts 0.8

points, which is the fault certification step. The average total time between the detection

time kd and k0 is the AVCD performance metric discussed previously.

One can examine the operation of the fault diagnosis system by means of Figures 2.5

and 2.6, which display plots of the posterior probabilities pml for each of the eight fault

classes, in the case of the no-stress Boolean network (dna_dsb = 0) and 250K-300K reads,

under two assumed fault classes. All probabilities are zero before there is a detection,

which occurs a little after the fault time k0 = 200. The fault prior probabilities is assumed
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to be uniform, so that pm0 = 1/8 for all fault classes. The posterior probability for the

correct fault model rises sharply from this value to 1, while the ones for the incorrect

models decrease rapidly to zero. The case of ATM stuck at zero for the no-stress Boolean

system, shown in Figure 2.6, is unique in that the procedure initially experiences some

confusion among a few fault classes before settling on the correct one, which is reflected

in longer average times until diagnosis (ATD).

Table 2.2 contains all the performance evaluation results of the numerical experiments.

Fault diagnosis was perfect in all simulated time series, so that the fault misdiagnosis rate

(FMR) defined in the previous section is identically zero and is omitted from the Table.

One can observe that in nearly all cases the results improve substantially as the number

of NGS reads increases, as expected. Some Boolean networks and transcripts can present

more difficulties than others. For example, the ATM gene under a stuck-at-0 fault presents

an elevated ATD, as mentioned in the previous paragraph and seen in Figure 2.6. This is

because the no-stress system tends to settle in the “0000” singleton attractor state, making

stuck-at-0 faults harder to detect and discriminate among transcripts. This effect can be

seen clearly in Table 2.2: the stuck-at-0 faults tend to have larger ATCD and ATD than

stuck-at-one faults in the no-stress network. This effect is not visible in the DNA-damage

network, where the transcripts cycle on and off in the steady state (see the discussion in

Section II). The performance of fault detection and diagnosis in the no-stress network is

indeed generally worse than in the DNA-damage network.
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(a) WIP1 stuck-at-0 (b) MDM2 stuck-at-1

Figure 2.4: Fault detection results: chi-square test statistic for the innovations filter, for
the DNA-damage Boolean network (dna_dsb = 1), 250K-300K reads, and (a) WIP stuck-
at-0 fault (b) MDM2 stuck-at-1 fault. The horizontal dashed line corresponds to the 95%-
confidence detection threshold.
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Figure 2.5: Fault diagnosis results: Posterior probabilities for each class fault when the
true fault model is p53 stuck-at-1, for the no-stress Boolean network (dna_dsb = 0) and
250K-300K reads.

25



ATM stuck-at-0 p53 stuck-at-0 WIP1 stuck-at-0 MDM2 stuck-at-0

200 250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

A
TM

 s
-a

-0

200 250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

P
53

 s
-a

-0

200 250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

W
IP

1 
s-

a-
0

200 250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

M
D

M
2 

s-
a-

0

ATM stuck-at-1 p53 stuck-at-1 WIP1 stuck-at-1 MDM2 stuck-at-1

200 250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

A
TM

 s
-a

-1

200 250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

P
53

 s
-a

-1

200 250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

W
IP

1 
s-

a-
1

200 250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

M
D

M
2 

s-
a-

1

Figure 2.6: Fault diagnosis results: Posterior probabilities for each class fault when the
true fault model is ATM stuck-at-0, for the no-stress Boolean network (dna_dsb = 0) and
250K-300K reads.
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Table 2.2: Performance evaluation results.

No-stress DNA-damage

Fault class Reads FDR ATCD ATD FDR ATCD ATD

1K-50K 0.27 21.53 7.18 0.22 34.18 10.02

ATM stuck-at-1 50K-100K 0.08 13.38 2.75 0.15 15.26 2.88

250K-300K 0.15 8.26 1.16 0.18 8.24 1.675

1K-50K 0.29 28.41 31 0.26 41.33 8.82

ATM stuck-at-0 50K-100K 0.15 31.7 16.87 0.15 21.56 2.96

250K-300K 0.12 18.1 10.66 0.24 16.4 1.346

1K-50K 0.24 22.92 8.32 0.21 32.03 9.13

P53 stuck-at-1 50K-100K 0.2 13.29 2.39 0.13 15.34 2.4

250K-300K 0.18 6.2 1.42 0.27 9.26 1.33

1K-50K 0.24 53.75 11.65 0.24 27.32 9.14

P53 stuck-at-0 50K-100K 0.18 31.64 4.71 0.21 14.54 3.13

250K-300K 0.15 21.81 3.75 0.26 7.87 1.04

1K-50K 0.21 29.34 6.27 0.23 26.86 8.95

WIP1 stuck-at-1 50K-100K 0.2 15.66 2.56 0.21 16.16 3.05

250K-300K 0.17 7.2 1.88 0.27 9.81 1.56

1K-50K 0.16 33.92 10.08 0.21 25.01 9.29

WIP1 stuck-at-0 50K-100K 0.15 25.08 5.24 0.2 14.85 3.51

250K-300K 0.09 19.83 2.75 0.31 9 1.32

1K-50K 0.15 29 12.43 0.2 26.37 7.32

MDM2 stuck-at-1 50K-100K 0.16 18.47 2.72 0.16 17.43 2.59

250K-300K 0.2 6.8 1.52 0.18 7.48 1.51

1K-50K 0.27 35.53 7.23 0.29 38.4 7.84

MDM2 stuck-at-0 50K-100K 0.15 21.59 3.13 0.18 19.86 3.3

250K-300K 0.13 15.78 3.01 0.29 9.98 1.32
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3. A BAYESIAN APPROACH TO THE CLASSIFICATION OF MICROBIAL

COMMUNITIES BASED ON R16S SEQUENCING DATA

3.1 Optimal Bayesian Classifier

The Optimal Bayesian Classifier (OBC) minimizes the expected error over the space

of all classifiers under assumed forms of the class-conditional densities. Ordinary Bayes

classifiers minimize the misclassification probability when the underlying distributions are

known. However, Optimal Bayesian classification trains a classifier from data assuming

the underlying distributions are not known exactly, but are rather part of an uncertainty

class of distributions, each having a weight based on the prior and the observed data.

Let Sn be sample data consisting of metagenomic measurements on n individuals

drawn independently from a mixture of two populations Π0 and Π1. Each measurement

consists of an M -dimensional vector X of bacterial abundances, where M is the number

of OTUs (features), and a label Y ∈ {0, 1} identifying the population that the individual

belongs to. Let c be the prior probability that an individual belongs to Π0, and let the class

conditional density Pθy(x|y) for population y be specified by a parameter vector θy, for

y = 0, 1. It is assumed that c, θ0, θ1 are all independent prior to observing the data.

Denoting the prior for θy by π(θy), we have π(θ) = π(c)π(θ0)π(θ1). The posterior for

c, denoted π∗(c), is obtained from the number of sample points in each class using Bayes

rule. It can be shown that the respective posterior distributions π∗(c), π∗(θ0) , π∗(θ1)

remain independent.

π∗(θ) = f(c, θ0, θ1|Sn) (3.1)

= f(c|Sn, θ0, θ1)f(θ0|Sn, θ1)f(θ1|Sn). (3.2)
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As we assumed c is independent from sample values and distribution parameters and

given ny, f(c|Sn, θ0, θ1) = f(c|ny) and f(θy|Sn) = f(θy|{xyi }
ny

1 ), hence,

π∗(θ) = f(c|n0)f(θ0|{x0
i }
n0
1 )f(θ1|{x1

i }
n1
1 ), (3.3)

= π∗(c)π∗(θ0)π∗(θ1). (3.4)

The Optimal Bayesian Classifier [42] is defined in terms of the posterior distributions as:

ψOBC(x) =

 0, if Eπ∗ [c]f(x|0) ≥ (1− Eπ∗)f(x|1),

1, otherwise,
(3.5)

where

f(x|y) =

∫
θy

Pθy(x|y)π∗(θy)dθy . (3.6)

3.1.1 Microbial Community Samples

We propose to model the r16S data for microbial abundance using a Dirichlet-Multinomial-

Poisson framework, Figure 3.1. We assume that each M -dimensional abundance vector is

multinomially distributed with probabilities that follow a Dirichlet distribution, in which

case we have, for each class y,

Pθy(x|y) = P (x|p,Ni) = Γ(Ni + 1)ΠM
j=1

p
xij
j

xij!
, (3.7)

where xij is the observed abundance of OTU j in community sample i, where i =

1, · · · , ny and j = 1, · · · ,M , p is the multinomial vector of probabilities, and Ni =∑M
j=1 xij is the total number of reads of community sample i, which is assumed to have

a Poisson distribution with parameter λ, which in turn follows a Gamma distribution with
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Figure 3.1: Poisson-Dirichlet Multinomial model for microbial community samples

parameters α, β. The posterior distributions for parameters of each class is defined by

π∗(θy). Now,

π∗(θ) ∝ f(Sn|θ)π(θ), (3.8)

= π(p|αd)π(Ni|λ)π(λ|α, β)Π
ny

i=1f(xi|p1, · · · , pM , Ni), (3.9)

=
Γ(
∑M

j=1 άj)

ΠM
j=1Γ(άj)

(β + ny)
(
∑ny

i=1Ni+α)

Γ(
∑ny

i=1Ni + α)
e−λ(ny+β) (3.10)

.λ
∑ny

i=1Ni+α+1ΠM
j=1p

άj−1
j , (3.11)

where άj = αdj +
∑ny

i=1 xij , j = 1, · · · ,M and i = 1, · · · , ny.

Because of the discrete nature of microbial data equation (3.6) converts to f(x|y) =∫
θy
Pθy(x|y)π∗(θy)dθy. We Plug the equations (3.8, 3.7) into Equation (3.6).
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f(x|y) =

∫
PΘy(x|θy)π∗(θy)dθy, (3.12)

=
1

ΠM
j=1Γ(xj + 1)

Γ(
∑M

j=1 άj)

ΠM
j=1Γ(άj)

(β + ny)
(
∑ny

i=1Ni+α)

Γ(
∑ny

i=1 Ni + α)
(3.13)

ΠM
j=1Γ(xj + άj)

Γ(Nnew +
∑M

j=1 άj)

Γ(
∑ny

i=1Ni + α +Nnew)

(ny + β + 1)(
∑ny

i=1Ni+α+Nnew)
(3.14)

where Nnew =
∑M

j=1 xj and xj is new sample that we want to predict its label.

For simulated data because the total number of reads Ni =
∑M

j=1 xij for each sample

is constant so the equation (3.8) shrinks to:

f(x|y) =

∫
PΘy(x|θy)π∗(θy)dθy, (3.15)

=
Γ(Nnew + 1)

ΠM
j=1Γ(xj + 1)

Γ(
∑M

j=1 άj)

ΠM
j=1Γ(άj)

ΠM
j=1Γ(xj + άj)

Γ(Nnew +
∑M

j=1 άj)
(3.16)

We assume that the parameter c is beta distributed with hyper parameters β0, β1 ,

independently of the parameters θy (prior to observing the data). It can be shown that the

posterior distribution π∗(c) is also beta with hyper parameters β0 + n0 and β1 + n1,

π∗(c) =
cβ

0+n0−1(1− c)β1+n1−1

B(β0 + n0, β1 + n1)
(3.17)

in which case Eπ∗ [c] = n0+β0
n+β0+β1

. In problems with more than two classes, the distribution

of parameter c is assumed to be Dirichlet. This completes the specification of the Bayesian

classifier in (3.5).
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3.2 Prior Construction

To improve classification performance, we need to find the hyper parameter values that

make the posterior function closest to the model of interest, Figure 3.2. For constructing

the priors, we minimize the mean log likelihood

E(log(f(x|θ))) =

∫
x∈χ

f(x|θtrue) log f(x|θ) dx . (3.18)

We split the available data, using half of it to construct the prior and half to obtain the

posterior probabilities and thus the Bayesian classifier.

min
π(θ)∈Π

−Eθ[`np(θ)]. (3.19)

where `np(θ) = 1
np
`(θ;Spriornp

) is the log-likelihood of the data distribution. `np(θ) can be

interpreted as a measure of similarity between the true model and the model governed by

θ. For the metagenomic data, we have that:

`np =
1

np
logPθy(x|y), (3.20)

=
1

np
log(Π

np

i=1Γ(Ni + 1)ΠM
j=1

p
xij
j

xij!
) (3.21)

=
1

np

np∑
i=1

M∑
j=1

log(Γ(Ni + 1)) + [xij log(pj)− log(xij!)]. (3.22)
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Figure 3.2: An illustrative view of general approach

where np denotes number of samples that we use for constructing the priors for each class.

The expectation of the log-likelihood is:

Eθ[`np(θ)] =
1

np

np∑
i=1

M∑
j=1

Eθ(log Γ(Ni + 1))+ (3.23)

[xijψ(αj)− ψ(α̂))− log xij] (3.24)

where ψ(α) = d
dα

log Γ(α) is the digamma function.

3.3 Results

In this section, we demonstrate the efficacy of the proposed approach, by comparing its

performance against that of the kernel SVM, Random Forest and MetaPhyl classification

algorithms, as a function of varying sample size, classification difficulty, and number of

OTUs (features). The numerical experiments are based on both synthetic data and real
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metagenomic data sets.

3.3.1 Synthetic Data Results

Synthetic OTU abundance data and phylogeny trees were generated using the strategy

proposed in [43], which considers the common phylogenetic tree T that relates OTUs

in all the 16S rDNA samples. To generate samples for a class k, the tree is traversed

systematically, deciding for each internal node v what fraction of species would come

from each of the subtrees rooted at the child nodes of v.

Two parameters are assigned to each node v for each class k. Let µkv denote the average

proportion of species that correspond to the subtree rooted at the left child node of v in the

k-th class, and let (σkv )2 denote the variance of this proportion within the class. New class

samples are generated according the proportions of species at each node v and the normal

distributions N(µkv , (σ
k
v )2). The parameters values µkv are in turn sampled from the normal

distribution N(µ̃v, σ̃v
2), where σ̃v2 characterizes the variance between the classes, while

µ̃v are base values that are initialized randomly.

The within- and between-class variances can be controlled by using the parameters σ2
v

and σ̃v2, respectively. The exact values of σ̃v2 and σ2
v are sampled at each tree node v

according to N(0, λ̃d(v)) and N(0, λd(v)), where d(v) is the distance between v and the

tree root. Note that the parameters λ̃ and λ influence the difficulty of the classification

problem, which is proportional to λ and inversely proportional to λ̃.

We consider three sample sizes for the training data, n = 30, 50, 70, with class prior

probability c = 0.5. The sample sizes n0 and n1 are determined according to the class prior

probability as n0 = n1 = n/2. Classifier accuracy is obtained by testing each designed

classifier on a large synthetic test data set, and averaging the results over a large number

of iterations using different synthetic training data sets.

Figures 3.3 and 3.4 compare the performance of our proposed Bayesian classifier,
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Figure 3.3: Comparison of SVM, RF, MetaPhyl and Optimal Bayesian classifier with
uniform or constructed priors, on simulated datasets for varying sample size and within-
and between-class variances. Each sample contains 128 OTUs.

Figure 3.4: Comparison with SVM, RF, MetaPhyl and Optimal Bayesian classifier on
simulated datasets for varying sample size and within- and between-class variances, each
sample contains 128 OTUs.

using constructed priors, against that of kernel SVM, RF and MetaPhyl classifiers and

Optimal bayesian classifier with uniform priors. We observe that the kernel SVM classifier

clearly performs the worst, probably due to the highly nonlinear nature of the data, the RF

and Metaphyl classifier have comparable performance overall, while the proposed OBC

classifier clearly exhibits the best performance over different values for between and within

class variances that defines the difficulty of the classification. As the sample size increases,

classification performance improves for all classification rules, as expected.

3.3.2 Real Data Results

We considered four different data sets:
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1. Hullar et al. [47]. Using optimized methods for fecal bacterial DNA processing and

microbial community analysis, the composition of the gut microbial community as

a contributor of human lignan exposure was assessed in this data set. Microbial di-

versity in stool was assessed using pyrosequencing of the 16S rRNA gene. Stool

samples were collected from participants (n=35) in an ongoing randomized, double-

blind crossover intervention of flaxseed lignan extract and placebo [48]. Each inter-

vention lasted 60 days interspersed with washout periods of at least 60 days.

2. Costello et al. Body Habitats (CBH) [49]. These data included sample communi-

ties from six major categories of habitat: External Auditory Canal (EAC), Gut, Hair,

Nostril, Oral cavity, and Skin. This data set is an example of a relatively easy classi-

fication task due to the generally pronounced differences between the communities.

3. Fierer et al. Subject (FS) [50]. This data set contains all samples from the “key-

board" data set, for which at least 397 raw sequences were recovered[51]. The class

labels are the anonymized identities of the three experimental subjects. This clas-

sification task is the easiest of all four data sets because of the clear distinctions

between the individuals, the fact that all of the samples come from approximately

the same time point, and the large number of training samples available for each

class.

4. Fierer et al. Subject Hand (FSH) [52]. This data set is a more challenging version

of the previous ones. The class labels are the concatenation of the experimental

subject identities and the label of which hand (left vs. right) the sample came from

on that individual. There were three subjects, and so there are six classes in this

dataset.

5. Turnbaugh et al. Twin Gut [53]. This data set contains gut samples from lean,
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Table 3.1: Summary of data sets
Data set Training samples Test samples Number of OTUs Number of classes
CBH 415 207 2741 6
FS 68 33 565 3
FSH 68 33 565 6
Meredith 50 30 100 2
Twin Gut 170 111 462 3

Table 3.2: Performance of classifiers on the real data sets
Method CBH FS FSH Meredith Twin Gut
RF 0.09 0 0.33 0.13 0.21
SVM 0.13 0.08 0.37 0.15 0.24
OBC 0.11 0.03 0.29 0.12 0.18
OBC(constructed priors) 0.075 0.01 0.28 0.11 0.19
MetaPhyl 0.1 0.05 0.328 - 0.19

obese and overweight subjects.This data set is a challenging classification task be-

cause the classes correspond to microbial communities from the same body habitat

and thus are very similar.

The data sets are summarized in Table 3.1. The performance of OBC with constructed

priors on real data is comparable but actually better than its performance on synthetic data,

the results are summarized in Table 3.2 and Figure 3.5. It shows that our Poisson-Dirichlet-

Multinomial assumption on the distribution of OTUs is valid.
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Figure 3.5: Comparison between SVM, RF, OBC with uniform priors and OBC with
constructed priors for Hullar et al. data set
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4. SUMMARY AND CONCLUSIONS

4.1 Conclusions

In this thesis, we proposed a novel methodology for model-based fault detection and

diagnosis for stochastic Boolean dynamical systems based on the optimal state estima-

tor, namely, the Boolean Kalman Filter. This model-based approach is applied here to

an observation model for Next Generation Sequencing transcriptomic data. The fault de-

tection consists of an innovations filter followed by a fault certification step, and requires

no knowledge about the system faults. In the presence of knowledge about the system

faults, a multiple model adaptive estimation (MMAE) procedure for fault diagnosis is pro-

posed, which employs a bank of BKFs running in parallel. The efficacy of the proposed

methodology was demonstrated via numerical experiments using the p53-MDM2 negative

feedback loop network with stuck-at faults. The results indicate the the proposed method

is promising in monitoring biological changes at the transcriptomic level.

In this thesis, we presented a model-based Bayesian framework for the classification of

metagenomic microbial abundance data. This approach was contrasted to non-parametric

classification rules such as kernel SVMs and Random Forests, the latter being considered

the state of the art in metagenomics classification. We also compared performance to the

recently published Metaphyl algorithm, which was designed with metagenoas an estimate

of the Kullback-Leibler information quantity [54]. The proposed classifier outperformed

all of those algorithms on our synthetic data sets.

4.2 Further Study

Future work on the FDI, as the number of potential fault models in gene network is

finite, we will use likelihood based fault detection method along with the bank of particle

filters on the gene network. Likelihood based fault detection compares the two models of
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the network, before and after change by using the likelihood ratio. The typical behavior

of the log-likelihood ratio shows a negative drift before change, and a positive drift after

change. For large numbers of state variables in gene network, the computation of the BKF

becomes impractical and computationally expensive. We will use sequential importance

sampling, a basic and most popular approach for performing this approximation.

Future work on microbial classification study, we will consider the extension to infor-

mative priors using phylogeny trees and other prior information in order to boost accuracy

of the classifier further, particularly in small-sample situations.
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