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ABSTRACT

In the first essay, we investigate the nonlinear quantile regression with mixed discrete

and continuous regressors. A local linear smoothing technique with the mixed continuous

and discrete kernel function is proposed to estimate the conditional quantile regression

function. Under some mild conditions, the asymptotic distribution is established for the

proposed nonparametric estimators, which can be seen as the generalization of some ex-

isting theory which only handles the case of purely continuous regressors. We also study

the choice of the tuning parameters in the estimation procedure which is crucial in kernel-

based smoothing approach. We suggest using the cross-validation approach to choose the

optimal bandwidths. A simulation study is provided to examine the finite sample behav-

ior of the proposed method and compare it with the naive local linear quantile estimation

without smoothing the discrete regressors and the nonparametric inverse-CDF (cumulative

distribution function) method.

In the second essay, we propose to estimate a nonparametric regression function sub-

ject to a monotonicity restriction using the Knn (k-nearest neighbors) method. We also

propose using a new convergence criterion to measure the closeness between an uncon-

strained and the (monotone) constrained Knn estimated curves. This method is an alterna-

tive to the monotone kernel methods. We use a bootstrap procedure for testing the validity

of the monotone restriction. We apply our method to the ‘Job Market Matching’ data and

find that the unconstrained/constrained Knn estimators work better than kernel estimators

for this type of highly unevenly distributed data.

In the third essay, we propose a nonparametric methodology to test heterogeneous

risk preference against asymmetric value distribution of bidders. By modeling bidders’

asymmetry as unobserved heterogeneity, we first show that bid distributions conditional
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on the heterogeneity are nonparametrically identified. Next, we find that the two alterna-

tive models provide distinct implications on the conditional bid distributions. Based on the

estimated conditional bid distributions, we are able to distinguish the two models by for-

mally testing the distinct model implications. The Monte Carlo experiments demonstrate

the good performance of our method. In an application using the US Forest Service timber

auction data, we find that the data support the model with heterogeneity in risk preference.
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1. INTRODUCTION

This dissertation includes three essays, the title of the first essay is “Nonparamet-

ric Estimation of Conditional Quantile Regression with Mixed Discrete and Continuous

Data". The title of the second essay is “Nonparametric Knn Estimation with Monotone

Constraints". The title of the third essay is “Nonparametric Identification and Testing of

First-Price Auctions with Asymmetric Bidders".

1.1 Introduction to the First Essay

In recent years, there has been increasing interest on nonparametric estimation of the

regression relationships among variables, as a nonparametric approach allows the data

“speak for themselves" and thus has the ability to detect the regression structure which

may be difficult to be uncovered by the traditional parametric modelling approach. Var-

ious nonparametric methods have attracted the attention of the statisticians and econo-

metricians partly due to the wide availability of large data sets in empirical applications,

see, for example, Green and Silverman (1993), Wand and Jones (1995), Fan and Gijbels

(1996), Pagan and Ullah (1999), Li and Racine (2007) and Horowitz (2009). One of

the most commonly-used nonparametric estimation methods is the local linear smoothing

method as it is well-known that the local linear approach has advantages over the tra-

ditional Nadaraya-Watson kernel approach, such as higher asymptotic efficiency, design

adaption and automatic boundary correction. We refer to the book by Fan and Gijbels

(1996) for a detailed account on this subject.

Most of the literature introduced above mainly focuses on the nonparametric estima-

tion approaches with continuous regressors. However, in practice, it is not uncommon

that some of the regressors might be discrete (c.f., gender, race and religious beliefs) and

the extension of the nonparametric method to handle the case of discrete regressors is
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non-trivial. For example, the local linear smoothing method relies on the first-order Tay-

lor expansion of the regression function with respect to the continuous component, and

needs to be substantially generalized to handle the case of discrete regressors. A plausible

method is to split the whole sample into several subgroups determined by the values of the

discrete regressors, and then apply the nonparametric method separately to each subgroup.

However, as mentioned by Li and Racine (2004), such splitting method may not perform

well when the number of the subgroups is relatively large and the number of observa-

tions in some subgroups is small. To address this problem, they introduce a nonparametric

kernel-based method with both continuous and discrete kernel functions involved, which

works well for the case of mixed continuous and discrete regressors. Recent developments

on this field include Racine and Li (2004), Hall et al. (2004), Li et al. (2009), Li et al.

(2016), most of which investigate the nonparametric estimation of the conditional mean

regression function as well as the associated econometric application.

However, it is well-known that the conditional mean may not be a good representative

of the impact of the explanatory variables on the response variable. Hence, it is usually

of interest to model the conditional quantile when studying the regression relationship be-

tween the dependent variable and the explanatory variables. Since the seminal paper by

Koenker and Bassett Jr (1978), the quantile regression method has been widely used in

many disciplines such as economics, finance, political sciences and other social science

fields. The quantile method serves as a robust alternative to the mean regression method.

Koenker (2005) gives an overview on various methodologies in quantile regression as

well as their applications. Recent development on the nonparametric quantile estimation

includes Yu and Jones (1998), Cai (2002), Yu and Lu (2004), Lin and Li (2007), Cai and

Xu (2008), Li et al. (2013), Hallin et al. (2009) and Cai and Xiao (2012). In particu-

lar, Li et al. (2013) first estimate the conditional cumulative distribution function (CDF)

nonparametrically which admits a mix of discrete and continuous data, and then obtain
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quantile estimation by inverting the estimated conditional CDF at the desired quantiles.

They choose the optimal bandwidth when estimating the nonparametric CDF, and thus

avoid the direct bandwidth selection for the kernel-based quantile estimation.

In this paper, we propose a different nonparametric method to estimate the conditional

quantile function via minimizing the local linear based “check function" defined in Sec-

tion 2.1. The local linear smoothing technique is constructed with both the continuous

and discrete kernel functions involved, and can thus handle the case of mixed continu-

ous and discrete regressors. The asymptotic distribution is established for the proposed

nonparametric estimators. We also study the choice of the tuning parameters in the local

linear estimation procedure, and propose a completely data-driven cross-validation (CV)

approach to directly choose the optimal bandwidths which is different from that in Li et al.

(2013). The asymptotic properties of the CV bandwidth selection approach are discussed

in Section 2.2, where the asymptotic optimality of the chosen bandwidths are obtained.

A simulation study is presented to illustrate the finite sample behavior of the proposed

method. Meanwhile, in the simulation study, we also compare our method with some

existing methods such as the naive local linear quantile estimation without smoothing

the discrete regressors and the nonparametric inverse-CDF method proposed by Li et al.

(2013).

1.2 Introduction to the Second Essay

In regression analyses, researchers may use nonparametric estimation methods when

they are not sure about the specific regression function forms for the data they want to an-

alyze. Some widely used nonparametric estimation techniques include kernel, K-nearest-

neighbor (Knn), series and wavelet methods. Undoubtedly each nonparametric estimation

method has its own advantages and disadvantages, and different methods may be preferred

for different empirical applications. For example, although the kernel method is the most
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popular nonparametric method in practice, it has an obvious drawback when using a fixed

smoothing parameter over the whole data range, the use of a constant bandwidth may re-

sult in oversmoothing in some ranges of the data support while undersmoothing in other

parts of the data support,1 this is true especially when the data is highly unevenly dis-

tributed over the data support (which is common for non-experimental data). Therefore,

the estimation and inference results based on the kernel method could be unreliable in such

situations. In this case, the Knn estimation method might be the preferable approach to

analyze the data. Since the Knn method always uses the k nearest observations in the esti-

mation, it effectively uses a different bandwidth when estimating the unknown regression

function at each different point of the data support.

Although economic theories rarely give specific regression functional forms, they of-

ten lead to some shape restrictions on regression functions such as monotonicity, concavity

and symmetry, etc. For example, based on the utility-maximization behaviors of individ-

uals and firms, Gan and Li (2016) show that the job matching probability function is a

monotonically increasing function in market size. Therefore, nonparametric regression

function estimation with shape constraints is attractive and has received much attention

recently among econometricians and statisticians (Delecroix and Thomas-Agnan, 2000;

Henderson and Parmeter, 2009). For example, Hall and Huang (2001) consider the re-

stricted kernel regression function estimation under the monotonicity constraint. To con-

struct a constrained estimator, Hall and Huang (2001) adjust an unconstrained estimator

by attaching different weights to different observed data points. The weights are chosen

to minimize a distance measure while obeying the monotonic constraint. They show that

the constrained kernel estimator is consistent and has the same rate of convergence as the

unconstrained kernel estimator under some general conditions. Hall and Huang (2001)

1Although one can use adaptive bandwidth to avoid this problem, adaptive bandwidth method requires
that one selects a different bandwidth at each different data evaluation point. It is computationally quite
costly especially in large sample applications.
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method can be applied to a wide range of kernel-type estimators including Nadaraya–

Watson, local linear, Priestley–Chao and Gasser–Müller estimators.

Empirical applications of Hall and Huang (2001) method include Henderson et al.

(2012) who estimate a monotone first-price auction function, and Xu and Phillips (2011)

who suggest using Hall and Huang (2001) method to ensure monotonicity of an estimated

conditional variance function. A more general approach is proposed by Du et al. (2013)

who extend Hall and Huang (2001) method to more general shape restrictions and to the

multivariate and multi-constraint settings. Applications of Du et al. (2013) approach can

be found in Malikov et al. (2016), and Sun (2015). Specifically, Malikov et al. (2016) use

Du et al. (2013) approach to impose linear homogeneity constraints onto the cost func-

tions in studying production technologies of US retail credit unions; Sun (2015) proposes

using a constrained nonparametric method to estimate an input distance function with

constraints imposed on the regression function. Besides Hall and Huang (2001) method of

choosing weights, Lee et al. (2014) propose a bagging constrained nonparametric estima-

tion method. They use the local linear least square estimation method and achieve local

monotonicity by imposing constraints on local coefficients. They further demonstrate that

their proposed approach performs well in forecasting equity premium.

There are many research papers that promote nonparametric smoothing under shape

constraints. For example, Freyberger and Horowitz (2015) propose using monotone re-

striction to identify an unknown regression function with endogenous discrete covariate

when the discrete instruments has fewer mass points than that of the covariates. However,

most of them use either the kernel-based method or the sieve-based (series) method, see

Chen (2007) on an overview of using sieve method in estimating nonparametric / semi-

parametric models with shape restrictions. As we argued earlier when data points are

highly unevenly distributed over the data support, the kernel-based estimation method has

some undesirable properties when one uses a fixed bandwidth parameter. First, the uncon-
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strained estimator may give unreliable estimation results especially at ranges with sparse

data. Second, there may not exist a set of feasible weights that make the constraint bind-

ing for the constrained estimator. We show that this is indeed true for the ‘Job Market

Matching’ data collected by Gan and Li (2016).

In this paper, we propose using the Knn smoothing method to estimate a nonparametric

conditional mean function under the monotonicity constraint. The constrained estimation

method in Hall and Huang (2001) and Du et al. (2013) can be directly applied to using

the Knn estimation method. Moreover, instead of measuring the distance by a power di-

vergence metric as proposed in Hall and Huang (2001) or the Euclidean distance between

a uniform weight and the non-uniform weight proposed by Du et al. (2013), we suggest

choosing the weights by minimizing an objective function that directly measures the dis-

tance between the curves with and without constraints. We apply our method to the ‘Job

Market Matching’ data taken from Gan and Li (2016), and estimate the ‘matching proba-

bilities’ (frequency of candidates finding academic jobs) as a function of the market size.

This data is highly unevenly distributed, we show that both the constrained and uncon-

strained Knn estimators give more reasonable estimation results than those obtained by

using the kernel method. We also use a bootstrap procedure discussed in Du et al. (2013)

to test whether the relationship between the job matching probability and market size is

monotone or not. Again, we show that using the Knn method gives more reasonable testing

result than that using the kernel method.

1.3 Introduction to the Third Essay

In most of the existing studies of auction models, bidders are assumed to be symmet-

ric, i.e., they are homogeneous except that their values are i.i.d. draws from the same

value distribution. Until recently, a few empirical studies document two main sources of

asymmetry among bidders: Guerre et al. (2009), and Campo (2012) show that bidders

6



have different levels of risk aversion, and Athey et al. (2011) find that bidders’ private

values are distributed according to different distributions. Nevertheless, most of the ex-

isting studies presume both the existence of asymmetry and the source of the asymmetry.

It is unclear in the literature how researchers can test the existence and source (if any) of

bidders’ asymmetry from observed bids. We aim to develop a formal testing procedure

in this paper to investigate whether asymmetry exists, and furthermore, what the source

of asymmetry is. This formal testing procedure can provide solid empirical evidences of

bidders’ asymmetric behavior, which will shed some light on analysis of auctions’ revenue

as well as mechanism design questions.

We focus on two widely studied first-price sealed-bid auction models, where bidders

have (1) asymmetric risk preferences (AP model), and (2) asymmetric value distributions

(AVD model). The existence of equilibria is guaranteed by Athey (2001). In both mod-

els, we treat the asymmetry of bidders as unobserved and discrete heterogeneity. Thus,

the observed joint distribution of bidders is a finite mixture with the components being

the conditional distributions of bids and coefficients being the probability of the hetero-

geneity. It take several steps for us to formally test AP against AVD: First, we show that

the conditional distributions of bids on the heterogeneity are nonparametrically identified

and estimable from the observed distribution using the recently developed methodology

in measurement error, i.e., Hu (2008). Next, we prove that the difference between two

conditional distributions is strictly increasing and decreasing respectively in the quantiles

for AP and AVD model. To exploit the model implications, we propose a procedure to test

the monotonicity of the difference using the estimated conditional bid distributions.

In the first step, we nonparametrically recover conditional distributions of bids. Upon

characterizing the asymmetry of bidders by discrete heterogeneity in both AP and AVD

model, and labeling bidders with heterogeneity as “types", the existence of asymmetry is

equivalent to that the number of types is greater than one. Our identification argument re-
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quires that we observe the identity of each bidder, and at least three bids from each bidder.

The three bids collected from each bidder enable us to recover the joint bid distribution.

Assuming each bidder’s type is time-invariant, the heterogeneity information is thus em-

bedded into the joint bid distribution. It can be shown that the number of types is equal to

the rank of the matrix which is constructed using the observed bid distribution. To deter-

mine the number of type, we employ the testing procedure proposed by Robin and Smith

(2000), which tests the rank of a matrix in a sequential manner. The testing result gives

the number of types and further implies the existence of asymmetry. The identification

of the conditional bid distributions employs the recent development in measurement error,

e.g., Hu (2008). The main idea of identification is to use the multiple bids of each bidder

as measurements of his type. Since values are assumed to be independent across auctions

for a bidder and type is time-invariant, the correlation of the multiple bids can be used

to recover the conditional distributions on type. Note that the identification in this step is

constructive and an estimating procedure follows directly the results of identification.

In the second step, we first investigate the testable implications based on the identi-

fied conditional distributions of bids for the two models. We prove that in both models,

the difference between any two conditional bid distributions is monotone in its quantile.

Specifically, the difference is increasing in AP model and decreasing in AVD model. To

leverage these model implications, we obtain the distance between any two conditional bid

distributions from the first step. The test of the monotonicity of this distance in its quantile

is based on the method proposed by Fang and Santos (2014). The idea is that we project

the estimated function (the difference as a function of its quantile) into the convex set of

all monotone functions, and measure the distance between the function and its projection.

This distance serves as our test statistic. A practical difficulty of the test is to construct

the critical values via bootstrapping: since the operation of projection is not Hadamard

differentiable, the regular procedure does not work. Thus we employ the method in Fang
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and Santos (2014) to obtain the critical values by a bootstrap procedure based on delta

method.

We demonstrate the performance of our approach by several numerical studies. The

results suggest that both the test power and the test size behave very well for mid-size sam-

ples in both AP and AVD models. We further check the robustness of our testing procedure

subject to a crucial assumption: values of a bidder are independent across auctions. For

this purpose, we allow correlation of values to check the validity of our test. The results

show that for mid-size samples, if the correlation of values is not large, e.g., less than 0.1

our test still performs very well.

Using the US Forest Service (USFS) Timber Auction data, we empirically test the ex-

istence and source of asymmetry of bidders. First of all, by testing the rank of an observed

matrix, we find that the asymmetry exists and there are two types of bidders. For each

type of bidders, we recover their type probabilities (about 0.5) and the conditional bid dis-

tributions. Then we apply the formal test to the data and we obtain a p-value 0.855 and

0.011 if the data are generated by AP and AVD model, respectively. The testing result then

suggests that AP model better explains the timber auction data and this is in contrast to the

findings in Athey et al. (2011) where bidders have asymmetric value distributions.

The main contribution of the paper is to show that bidders’ asymmetry is testable

from the observables in standard auction data. Unlike the existing literature on bidders’

asymmetry, which often assumes the existence and specification of the asymmetry ex ante

by researchers, this paper proposes a constructive method to detect the asymmetry directly

from observables. We first boil down the existence of bidders’ asymmetry to the rank of an

estimable matrix and test the rank rigorously following Robin and Smith (2000). Similar

existing studies on the rank lack a theoretical foundation, e.g., in Hu et al. (2013) the rank

of a similar matrix is analyzed using condition number. A main innovation of the paper is

the finding that the model implications of AP and AVD models are distinct and testable,

9



which enables us to test a model against the other. To my best knowledge, this is the first

paper to test alternative asymmetries of bidders in first-price sealed-bid auctions. Even

though that our test only applies to AP and AVD models, the methodology will shed some

light on rigorous analysis of bidders’ asymmetry in auctions.

Another contribution of this paper is to apply the recent development of measurement

error into the analysis of first-price auctions with asymmetry. The methodology in mea-

surement error has been applied to analyze first-price auctions (e.g., see An et al. (2010),

Hu et al. (2013)). Nevertheless, this paper is among the first ones that treat bidders’ asym-

metry as unobserved heterogeneity and conduct the analysis using the method in measure-

ment error. In addition, this paper employs a newly developed monotonicity test to deal

with auction data. Specifically, our test statistic involves non-differentiable functions and

a new bootstrap method has to be implemented to obtain the critical values. Also, our

approach is fully nonparametric and does not depend on any parametric assumptions. To

the best of our knowledge, ours is the first paper to provide empirical evidence on the

existence of bidders’ asymmetry by using a fully nonparametric approach.

This paper is closely related to the literature of first-price auctions with asymmetric

bidders, e.g., Athey et al. (2011) and Campo (2012). Athey et al. (2011) investigate the

same USFS timber auctions as we do. They assume that the asymmetry is indicated by

some observed characteristics of bidders (e.g. the scale of the company), and further

assume the asymmetry lies in value distributions. Campo (2012) uses the construction

contracts from Los Angeles City Hall. She documents that firms’ heterogeneous risk

preferences are affected by its financial situation. These connections between bidders’

characteristics and asymmetry are plausible and yet vague. Our approach does not rely on

the presumed relationship between bidders’ characteristics and asymmetry. Instead, our

formal test procedures provide a new and convincing evidence for the existence of asym-

metry among bidders. Especially, for the USFS timber auction data, we document that
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the source of the asymmetry is in the risk preferences, other than the value distributions

indicated by Athey et al. (2011).

This paper is further related to some recent studies of auctions with heterogeneity.

An (2010) considers auctions with bidders being different levels of cognitive ability. Hu

et al. (2013) focus on auctions with unobserved and nonseparable heterogeneity. Our ap-

proach of identification using the results in measurement error is related to Li and Vuong

(1998), Li et al. (2000), Krasnokutskaya (2011) and An et al. (2010). Our monotonicity

test leverages the latest development of the inference on non-differentiable but direction-

ally differentiable functions (Fang and Santos, 2014; Hong and Li, 2014). This is related to

the literature of nonparametric testing of shape constraints on functions (Hall et al., 2001;

Hall and Huang, 2001; Du et al., 2013; Li et al., 2016).
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2. NONPARAMETRIC ESTIMATION OF CONDITIONAL QUANTILE

REGRESSION WITH MIXED DISCRETE AND CONTINUOUS DATA

2.1 Local Linear Quantile Regression

In this section, we describe the nonparametric estimation method for the conditional

quantile regression function, and then give the asymptotic theory of the resulting estimator.

Suppose that (Yi, X
′
i, Z

′
i)
′, i = 1, · · · , n, are the observations independently drawn from

an identical distribution, where Yi is univariate, Xi is a d1-dimensional continuous vector

and Zi is a d2-dimensional discrete vector. For notational and expositional simplicity, we

will only consider the case that Xi and Zi are both scalars. That is, we let d1 = d2 = 1

throughout the paper. Extension of the methodology and theoretical property to the case

of d1 > 1 and d2 > 1 is straightforward.

For fixed x0 and z0, denote by F(y|x0, z0), y ∈ R, the conditional CDF of the response

variable Yi (evaluated at y) given the regressors Xi = x0 and Zi = z0. Let Qτ (x0, z0),

0 < τ < 1, be the conditional τ -quantile regression function of Yi given Xi = x0 and

Zi = z0, which is defined as

Qτ (x0, z0) = inf
{
y ∈ R : F(y|x0, z0) ≥ τ

}
(2.1)

or

Qτ (x0, z0) = arg min
a∈R

E
[
ρτ (Yi − a)

∣∣Xi = x0, Zi = z0

]
, (2.2)

where ρτ (·) is the check (loss) function

ρτ (y) = y(τ − I{y<0})
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with IA being the indicator function of the set A.

We next apply the local linear smoothing approach to estimate the conditional τ -

quantile regression function based on the definition (2.2). It is well-known that the local

linear approach has various advantages over the Nadaraya-Watson kernel approach (c.f.,

Fan and Gijbels, 1996). However, the mixture of categorical and continuous data in the

regressors makes our estimation methodology more complicated than that in existing lit-

erature which only considers continuous regressors. To address this issue, two types of

kernel-weights are needed to handle the mixed continuous and discrete data locally. For

the continuous regressor, we use a kernel defined by

Kh(Xi − x0) =
1

h
K
(Xi − x0

h

)
, (2.3)

where h is the bandwidth for continuous regressor and K(·) is a univariate kernel function.

For the discrete regressor, we use the following discrete kernel

Λλ(Zi, z0) = λI{Zi 6=z0} , (2.4)

where λ ∈ [0, 1] can be seen as the bandwidth for the discrete regressor. Then, the local

linear estimates of Qτ (x0, z0) and its derivative (with respect to the continuous component)

Q(1)
τ (x0, z0) are obtained by minimizing the weighted loss function

Ln(α, β;x0, z0) =
n∑
j=1

ρτ
[
Yj − α− β(Xj − x0)

]
Kh(Xj − x0)Λλ(Zj, z0) (2.5)

with respect to α and β. We denote the minimizers by Q̂τ (x0, z0) and Q̂(1)
τ (x0, z0), re-

spectively. When the tuning parameter in the discrete kernel, λ, is chosen as zero, the

above estimator reduces to the local linear quantile estimators by the traditional approach
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which splits the whole sample into several groups (or sub-samples) according to the value

of the discrete regressor. Thus, there would be non-smoothing over the discrete regressor.

However, as pointed out by Li and Racine (2004), such a splitting method may increase

the estimation variance. In particular, it is well-known that if the sample size in splitted

subgroups are too small, one cannot hope to get sensible results with the splitting local

linear quantile estimation method. On the other hand, when λ is chosen as one, the dis-

crete regressor would not have any influence on the response variable and such a discrete

regressor can be regarded as an irrelevant regressor (Hall, Li and Racine, 2007). Based

on the above discussion, throughout this paper, we let 0 ≤ λ ≤ 1. Section 2.2 below will

introduce a data-driven method to choose appropriate bandwidths h and λ.

Before giving the asymptotic distribution theory for Q̂τ (x0, z0) and Q̂(1)
τ (x0, z0), we

give some notations. For expositional simplicity, we only consider the case that the uni-

variate discrete variable takes two values (z0 or z1) as the extension to the more general

case is straightforward. Let µk =
∫
ukK(u)du and νk =

∫
ukK2(u)du for k = 0, 1, 2, · · · .

Let fe(·|x, z) be the conditional density function of ei ≡ Yi−Qτ (Xi, Zi) for givenXi = x

and Zi = z and assume that P(ei ≤ 0|Xi = x0, Zi = z0) = τ . Let p1 be the probability

of Zi = z0 and f(x|z) be the conditional density function of Xi for given Zi = z. Let

Q(k)
τ (x0, z0) be the k-th order derivative function of Qτ (·, ·) (with respect to the continuous

component) at point (x0, z0), k ≥ 1. Define

S(x0, z0) =

 S1(x0, z0) S2(x0, z0)

S2(x0, z0) S3(x0, z0)

 with Sk(x0, z0) = p1µk−1fe(0|x0, z0)f(x0|z0),

Ω(x0, z0) = τ(1−τ)p1f(x0|z0)diag(ν0, ν2) and b(x0, z0) =
[
b1(x0, z0), b2(x0, z0)

]′, where

b1(x0, z0) =
1

2
h2Q(2)

τ (x0, z0)µ2 + λ
(1− p1)f(x0|z1)

p1f(x0|z0)

[
Qτ (x0, z1)−Qτ (x0, z0)

]
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and b2(x0, z0) = o(h2 +λ). We establish the asymptotic distribution theory for Q̂τ (x0, z0)

and Q̂(1)
τ (x0, z0) in the following theorem.

THEOREM 2.1. Suppose that Assumptions 1–3 and 4(i) in Appendix A are satisfied. Then,

we have

√
nh

 Q̂τ (x0, z0)−Qτ (x0, z0)− b1(x0, z0)

hQ̂(1)
τ (x0, z0)− hQτ (x0, z0)− b2(x0, z0)

 d−→ N
[
0, V∗(x0, z0)

]
, (2.6)

where

V∗(x0, z0) = S−1(x0, z0)Ω(x0, z0)S−1(x0, z0) =
τ(1− τ)

f2
e (0|x0, z0)p1f(x0|z0)

 ν0 0

0 ν2/µ
2
2

 .

The above theorem can be seen as the extension of the corresponding results from

the continuous regressors case (c.f., Yu and Jones, 1998; and Hallin, Lu and Yu, 2009)

to the mixed continuous and categorical regressors case. The point-wise convergence rate

(
√
nh-rate) and the form of the asymptotic variance in (2.6) indicate that the discrete kernel

Λλ(Zi, z0) does not contribute to the asymptotic variances of the estimators Q̂τ (x0, z0) and

Q̂(1)
τ (x0, z0). However, the involvement of the discrete kernel function would influence the

form of the asymptotic bias, which can be seen from the second term of b1(x0, z0),

λ
(1− p1)f(x0|z1)

p1f(x0|z0)

[
Qτ (x0, z1)−Qτ (x0, z0)

]
.

This finding is similar to that obtained by Li, Lin and Racine (2013).

2.2 Choice of the Tuning Parameters

In this section, we study the bandwidth selection problem, which is of crucial impor-

tance in nonparametric local linear smoothings. A completely data driven cross validation
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(CV) based method will be introduced to choose appropriate tuning parameters h and λ.

The CV-based bandwidth selection criterion has been extensively studied in the context of

local kernel conditional mean regression estimation with continuous regressors (c.f., Rice,

1984; Härdle and Vieu, 1992; Hall, Lahiri and Polzehl, 1995; Xia and Li, 2002; and Le-

ung, 2005). In recent years, there has been also increasing interest in the CV bandwidth

selection approach for the case with mixed continuous and categorical regressors (c.f., Li

and Racine, 2004; Racine and Li, 2004; and Li, Simar and Zelenyuk, 2014). However,

most of the existing literature focuses on the bandwidth selection in the kernel-based es-

timation in the context of conditional mean regression. Extension of the CV bandwidth

selection method to the conditional quantile regression is non-trivial and the derivation of

the asymptotic theory in quite challenging as there is no closed form expression for the lo-

cal linear quantile estimation. There is no theoretical result on investigating the bandwidth

selection issue in the local linear quantile regression with mixed continuous and discrete

data. In fact, to the best of our knowledge, there is no theoretical result on using com-

pletely data driven CV method to select smoothing parameters even with only continuous

covariates. Our paper aims to fill this gap.

Let Q̂(−i)(Xi, Zi;h, λ) be the leave-one-out local linear estimated value of Qτ (Xi, Zi)

with bandwidths h and λ, which can be obtained by minimizing (2.5) with (x0, z0) being

replaced by (Xi, Zi) and
∑n

j=1 being replaced by
∑n

j=1,j 6=i. Define the CV-based loss

function as

CV(h, λ) =
n∑
i=1

ρτ
[
Yi − Q̂(−i)(Xi, Zi;h, λ)

]
M(Xi, Zi), (2.7)

where M(Xi, Zi) is a weight function trimming out boundary observations. Then, the

optimal bandwidths can be chosen as ĥ and λ̂, which minimize CV(h, λ) defined in (2.7).
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We next study the asymptotic property of the CV bandwidth selection method. Define

b(Xi, z0;h, λ) =
1

2
h2Q(2)

τ (Xi, z0)µ2 + λ
(1− p1)f(Xi|z1)

p1f(Xi|z0)

[
Qτ (Xi, z1)−Qτ (Xi, z0)

]
,

b(Xi, z1;h, λ) =
1

2
h2Q(2)

τ (Xi, z1)µ2 + λ
p1f(Xi|z0)

(1− p1)f(Xi|z1)

[
Qτ (Xi, z0)−Qτ (Xi, z1)

]
,

and

σ2(Xi, z0;h) =
1

nh
· τ(1− τ)ν0

f 2
e (0|Xi, z0)p1f(Xi|z0)

,

σ2(Xi, z1;h) =
1

nh
· τ(1− τ)ν0

f 2
e (0|Xi, z1)(1− p1)f(Xi|z1)

.

The following theorem gives the asymptotic expansion of CV(h, λ), which is critical to

derive the asymptotic optimality of ĥ and λ̂.

THEOREM 2.2. Suppose that the conditions of Theorem 2.1 and Assumption 4(ii) in Ap-

pendix A are satisfied. Then, we have

CV(h, λ) = CV1 +
1

2

n∑
i=1

[
b2(Xi, Zi;h, λ) + σ2(Xi, Zi;h)

]
M(Xi, Zi)fe(0|Xi, Zi) + s.o.,

(2.8)

where CV1 ≡
∑n

i=1 ρτ (ei)M(Xi, Zi) is unrelated to the tuning parameters and s.o. rep-

resents some terms with smaller (asymptotic) probability order.

Define

MSE(h, λ) =
n∑
i=1

[
Qτ (Xi, Zi)− Q̂(−i)(Xi, Zi;h, λ)

]2
M(Xi, Zi)fe(0|Xi, Zi). (2.9)

If we further assume that ei is independent of Xi and Zi, fe(0|Xi, Zi) would reduce to

fe(0) the density function of ei at point zero, which indicates that fe(0|Xi, Zi) can be
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removed in (2.9). Following the proof of Theorem 2.2, one can show that

MSE(h, λ) =
n∑
i=1

[
b2(Xi, Zi;h, λ) + σ2(Xi, Zi;h)

]
M(Xi, Zi)fe(0|Xi, Zi) + s.o. (2.10)

Letting h∗ and λ∗ be the minimizers to MSE(h, λ), by Theorem 2.2 above and standard

argument (c.f., proof of Theorem 3.1 in Li and Racine, 2004), we have

ĥ− h∗
h∗

= oP (1),
λ̂− λ∗
λ∗

= oP (1), (2.11)

which shows the asymptotic optimality of ĥ and λ̂.

2.3 A Simulation Study

In this section, we use simulations to examine the finite sample performance of the

check function based local linear conditional quantile function estimation, where the band-

widths are chosen by the CV method. Furthermore, we compare our method with the

traditional check function based local linear quantile estimation but only smoothing the

continuous covariate (it thus splits the sample into cells according to different values of

the discrete covariate), and the nonparametric inverse-CDF estimation, where the band-

widths for nonparametric CDF estimation are chosen by CV method (Li, Lin and Racine,

2013).

We consider the following two data generating processes:

DGP 1 : Yi = 1 + sin(Xi) +
1

5
Zi + |Xi|ui, i = 1, · · · , n,

where Xi ∼ N(0, 1) and Zi ∼ B(3, 0.5) (sum of 3 Bernoulli trials with success probability

0.5 for each trial), i.e., Zi ∈ {0, 1, 2, 3} with P(Zi = 0) = 0.53 = 1/8, P(Zi = 1) =
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3(0.5)3 = 3/8, P(Zi = 2) = 3(0.53) = 3/8 and P(Zi = 3) = 0.53 = 1/8; and

DGP 2 : Yi = log(Xi + 1) + Z1i + (Xi + 1)ui, i = 1, · · · , n,

where Xi ∼ U[0, 1] and Zi ∼ B(3, 0.3), i.e., Zi ∈ {0, 1, 2, 3} with P(Z1 = 0) = 0.73,

P(Z1 = 1) = 3(0.3)(0.7)2, P(Z1 = 2) = 3(0.3)2(0.7) and P(Z1 = 3) = 0.33. We

consider two distributions for the error term ui: the student’s t-distribution with 5 degrees

of freedom denoted by t(5), and the Laplace distribution which is denoted by L(0, 1). The

quantiles we consider in the simulation are τ = 0.10, 0.25, 0.50, 0.75, 0.90. The sample

sizes are n = 100 and n = 200, and the number of replications is 500.

Tables 2.1 and 2.2 (which correspond to the t-distribution and Laplace distribution for

the error term, respectively) report the simulation results of the average MSE under DGP

1. For simplicity, in the tables, “method 1” stands for the naive local linear based check

function method without smoothing over the discrete regressor, “method 2” stands for the

local linear based check function method with bandwidths selected by the CV method,

and “method 3” stands for the nonparametric inverse-CDF method proposed by Li, Lin

and Racine (2013). From the two tables, we can see that our method which smoothes

both continuous and discrete variables performs better than the naive method which only

smoothes the continuous variable but does not smooth the discrete variables. This is sim-

ilar to the findings by the existing literature in the context of conditional mean regression

such as Hall, Li and Racine (2007). The main reason is that smoothing discrete variable

can borrow data from the neighborhood to significantly reduce variance, while only in-

troducing mild biases. As a result, the finite sample mean squared errors can be reduced.

Meanwhile, we can also find from the two tables that our check function method performs

better than the inverse-CDF method in particular at extreme quantiles.

Tables 2.3 and 2.4 (which correspond to the t-distribution and Laplace distribution for
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the error term, respectively) report the simulation results of the average MSE under the

DGP 2. We have the similar findings to those in Tables 2.1 and 2.2.

In addition to the smaller average MSE, our local linear based check function method

also has the advantage of less computational time than the inverse-CDF method. Specifi-

cally, the method proposed in this paper involves O(n2) computations, while the inverse-

CDF method requires O(n3) computations. As a result, our method takes 2.18 and 7.72

seconds per replication when n = 100 and n = 200, respectively, while the inverse-CDF

method takes 2.30 and 14.74 seconds per replication. Such advantage in computational

time would be more obvious as the sample size increases.

Table 2.1: Average MSE: DGP 1 with Distribution 1

Method n/τ 0.10 0.25 0.50 0.75 0.90
Method 1 100 1.07 0.49 0.39 0.49 1.07
Method 1 200 0.76 0.35 0.27 0.33 0.72
Method 2 100 0.85 0.44 0.36 0.43 0.84
Method 2 200 0.62 0.32 0.28 0.33 0.59
Method 3 100 0.87 0.47 0.37 0.46 0.87
Method 3 200 0.68 0.37 0.30 0.36 0.66

Table 2.2: Average MSE: DGP 1 with Distribution 2

Method n/τ 0.10 0.25 0.50 0.75 0.90
Method 1 100 1.33 0.59 0.41 0.58 1.34
Method 1 200 0.93 0.38 0.28 0.39 0.96
Method 2 100 1.04 0.46 0.37 0.47 1.03
Method 2 200 0.77 0.36 0.28 0.37 0.79
Method 3 100 1.08 0.53 0.40 0.57 1.07
Method 3 200 0.86 0.42 0.31 0.44 0.88
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Table 2.3: Average MSE: DGP 2 with Distribution 1

Method n/τ 0.10 0.25 0.50 0.75 0.90
Method 1 100 0.58 0.24 0.21 0.35 0.79
Method 1 200 0.30 0.12 0.11 0.22 0.52
Method 2 100 0.47 0.20 0.19 0.34 0.68
Method 2 200 0.29 0.12 0.12 0.21 0.48
Method 3 100 0.51 0.23 0.20 0.33 0.71
Method 3 200 0.30 0.14 0.12 0.19 0.45

Table 2.4: Average MSE: DGP 2 with Distribution 2

Method n/τ 0.10 0.25 0.50 0.75 0.90
Method 1 100 0.87 0.29 0.18 0.42 1.13
Method 1 200 0.48 0.15 0.10 0.25 0.74
Method 2 100 0.68 0.25 0.16 0.35 0.89
Method 2 200 0.40 0.14 0.11 0.24 0.63
Method 3 100 0.75 0.28 0.18 0.37 0.97
Method 3 200 0.45 0.16 0.10 0.22 0.63

21



3. NONPARAMETRIC KNN ESTIMATION WITH MONOTONE CONSTRAINTS

3.1 The Regression Model

3.1.1 Unconstrained and Constrained Kernel Estimators

Let (X1, Y1), · · ·, (Xn, Yn) denote a sample of pairs of explanatory and dependent vari-

ables. We assume that {Xi, Yi}ni=1 are independent and identically distributed. Consider a

nonparametric regression model of the form

Yi = g(Xi) + ui, i = 1, ...n, (3.1)

where g(x) = E(Y |X = x) and the functional form of g(x) is not specified.

Conventional unconstrained kernel estimators of g(x) can be expressed as

g̃(x) =
1

n

n∑
i=1

Ai(x)Yi, (3.2)

where Ai(x) is a weight function which depends only on x and observations Xis that are

close to x. The forms of Ai(x) and g̃(x) can be very general and include the local constant

(Nadaraya (1965), Watson (1964)) estimator, the local polynomial estimator (Fan (1992)),

the Priestley-Chao estimator (Priestley and Chao (1972)) and the Gasser–Müller estimator

(Gasser and Müller (1979)), among others. For example, for the local constant estimator,

we have

Ai =
k(Xi−x

h
)

1
n

∑
j k(

Xj−x
h

)
,
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where k(·) is a bounded non-negative kernel function that satisfies

∫
k(v)dv = 1,

k(v) = k(−v),∫
v2k(v)dv = µ2,

where µ2 is a positive constant.

Some commonly used kernel functions include the Gaussian and Epanechnikov weight

functions. The smoothing parameter h is usually selected using some data-driven methods

such as the leave-one-out least squares cross-validation method, i.e.,

ĥLS−CV = arg min
h
CV (h) = arg min

h

1

n

n∑
i=1

[Yi − g̃−i(Xi)]
2M(Xi),

where g̃−i(Xi) is the leave-one-out kernel estimator of g(Xi) and M(Xi) is a compactly

supported weight (trimming) function that avoids a zero value at the denominator of

CV (h) or large estimation bias at the boundary region.

In many economics applications, the functional relationship of a response variable and

the explanatory variables is believed to satisfy some shape restrictions such as monotonic-

ity and/or concavity. In such situations if the unconstrained estimator does not satisfy the

constraint, one may want to use some estimation methods with constraints imposed to re-

estimate the model. Hall and Huang (2001) and more recently, Du, Parmeter and Racine

(2013) suggest methods for ‘monotonizing’ a kernel estimator. Hall and Huang (2001)

propose a constrained kernel estimator of g(x) based on the following weighted estimator

of Y ’s.

ĝ(x|p) =
n∑
i=1

piAi(x)Yi, (3.3)
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where p = (p1, ..., pn) is a n-vector of weights attached to the data set {Xi}ni=1. The

unconstrained estimator g̃(x) can be seen as a special case of (3) if we take a uniform

weight p = pu = (1/n, ...1/n). When pi 6= 1/n for some i for the constrained estimator,

we say that the constraint is binding.

To impose the monotone constraint while making the least possible change to the un-

constrained estimated curve, one should select p = p̂ to minimize some distance function,

say D(p), subject to that the estimated derivative function is non-negative (non-positive)

if g(·) is believed to be a monotone increasing (decreasing) function, i.e., one imposes that

ĝ′(x|p) ≥ 0 (or ĝ′(x|p) ≤ 0),

where ĝ′(x|p) = ∂ĝ(x|p)/∂x is the partial derivative of ĝ(x|p) with respect to x.

Following Hall and Huang (2001) we use D(p) to denote a distance measure between

a uniform weight pu = (1/n, ..., 1/n) and a non-uniform weight p = (p1, ..., pn). The

measure D(p) should have the property that D(p) ≥ 0 and D(pu) = 0. Several different

forms of distance function D(p) are proposed in the literature. Hall and Huang (2001)

consider probability weights and the power divergence distance measure (Cressie and Read

1984):

DHH,ρ(p) =
1

ρ(1− ρ)

{
n−

n∑
i=1

(npi)
ρ

}
, (3.4)

for −∞ < ρ <∞ and ρ 6= 0, 1, and

DHH,0(p) = −
n∑
i=1

log(npi), DHH,1(p) =
n∑
i=1

pi log(npi).

with
∑n

i=1 pi = 1 and min1≤i≤n pi ≥ 0.

Du, Parmeter and Racine (2013) suggest using a different distance function DDPR(p)
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based on the L2-distance (square) between p and the uniform weight pu:

DDPR(p) = (p− pu)′(p− pu). (3.5)

Since Du, Parmeter and Racine (2013) do not assume p have to be probability weights,

they allow for both positive and negative weights and without requiring that
∑n

i=1 pi = 1.1

In this paper, instead of minimizing the distance between p and the uniform weights

pu, we propose using a new distance measure that directly measures the closeness between

the constrained and unconstrained curves. We suggest selecting p = p̂ by minimizing an

alternative D(p), denoted as Dcurve(p), and is defined by

Dcurve(p) =
n∑
i=1

(ĝ(Xi|p)− g̃(Xi))
2. (3.6)

As in Du, Parmeter and Racine (2013), we do not require that either min1≤i≤n pi ≥ 0,

nor do we require that
∑n

i=1 pi = 1.

One problem with the kernel method is that it effectively uses data points falling inside

the interval [x − h, x + h] (with a fixed interval length) when estimating g(x). Since the

bandwidth h is fixed, more observations are used to estimate g(x) at the high density point

(when the density function f(x) is large), while much fewer observations are used at points

when f(x) is small. The constrained kernel estimator has the same problem. Therefore, in

practice, sometimes the kernel method does not work well.

Let yD be an n × n diagonal matrix with yi in the ith diagonal. Denote A as an

n × n matrix with Aij = Ai(xj). Then our objective function can be written as (AyDp −

AyDp0)′(AyDp − AyDp0). Hence, both DDPR and Dcurve are quadratic in p and the

monotone constraints are linear in p. We are able to use quadratic programming in the

1We thank a referee pointing out that Du, Parmeter and Racine (2013) does not require
∑n

i=1 pi = 1 and
that this condition was listed in the paper is in fact a typo.
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optimization. Quadratic programming is highly efficient in computation, which can solve

large optimization problems in a short time. On the other hand, quadratic programming

does not apply to HH method and we need to employ some alternative algorithms such

as sequential quadratic programming to solve the optimization problem. Those alternative

algorithms have much lower computational efficiency than quadratic programming, see

Henderson and Parmeter (2015, Chapter 12) for a detailed discussion on this. Therefore,

for the computational efficiency ranking, our proposed curve method is as efficient as the

DPR method and both of them are much more efficient than the HH method.

3.1.2 The Knn Method

In order to have enough observed data in estimating the regression function at each

evaluation point, including the low density range, one can use the Knn estimation method.

The constrained Knn estimator can be constructed in a similar way as the constrained

kernel estimator.

We use Rx to denote the Knn distance to x which is defined as

Rx = the Euclidean distance between x and its kth nearest neighbor among {Xi}ni=1.

We still use equation (3) to construct the constrained estimator, while the forms of Ai(x)

need to be changed since the bandwidth is now stochastic. For the local constant method,

we have

Ai =
K(Xi−x

Rx
)

1
n

∑
jK(

Xj−x
Rx

)
,

where K(·) is a kernel function such as the Gaussian or Epanechnikov weight functions.

We see that the difference between a kernel and a Knn estimator is that the non-random

bandwidth h in the kernel estimator is replaced by a random bandwidth Rx.2

2The asymptotic analysis for the Knn method is more complex than that for the kernel method, see Mack
and Rosenblatt (1979), Mack (1981), Ouyang, Li and Li (2006), Fan and Liu (2015), among others.
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For the Knn estimation method, Li (1987) established the optimality property of using

the the least-squares cross-validation (LS-CV) method to select k. Therefore, we will use

the LS-CV method to select k:

k̂LS−CV = arg min
k
CV (k) = arg min

k

1

n

n∑
i=1

[Yi − g̃−i(Xi)]
2M(Xi)

where g̃−i(Xi) is the leave-one-out Knn estimator of g(Xi) and M(·) is a trimming weight

function.

3.2 Simulation Results

3.2.1 The Data Generating Process

This section provides simulation results. We consider the following data generating

processes (DGPs):

DGP1 : Yi = ln(Xi) + ui, i = 1, ..., n,

DGP2 : Yi = ln(Zi) + ui, i = 1, ..., n,

DGP3 : Yi = sin(Xi)− ln(Xi) + ui, i = 1, ..., n,

DGP4 : Yi = sin(Zi)− ln(Zi) + ui, i = 1, ..., n,

where ui ∼ N(0, σ2
u) with σu = 1/2. The regressor X is unevenly distributed in its

support and is generated via:

Xi ∼ Uniform[π, 1.5π] for i = 1, ..., 0.8n,

Xi ∼ Uniform[1.5π, 3π] for i = 0.8n+ 1, ..., n.

27



The regressor Z is evenly distributed with Uniform[π,3π]. {ui}ni=1, {Zi}ni=1 and {Xi}ni=1

are independent with each other.

We use DGP1 and DGP2 to study the performance of kernel and Knn methods with

unevenly (DGP1) and evenly (DGP2) distributed data. DGP1 and DGP2 also serve to

examine size performance of our test for monotonicity and DGP3 and DGP4 serve to

study the power performance of our monotonicity test.
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Figure 3.1: Scatter of Data Generating Processes

Figure 3.1 shows the data points generated from DGP 1 to DGP4. We can see that

points generated by DGP1 and DGP3 are highly unevenly distributed while DGP2 and

DGP4 generate evenly distributed data. With sparse data at the tail of the distribution,

the kernel approach may not be a suitable method (when using a fixed bandwidth) for
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analyzing such type a data. Therefore, we will mainly use the Knn method to estimate

the regression model and to test the null hypothesis of monotonicity of g(·). To com-

pare the Knn estimation/testing results with those of the kernel method, we also include a

constrained kernel estimator based on our new distance measure (we term it as the kernel-

curve estimator or simply kernel estimator).

We estimate ĝ(x|p) using the local constant estimation method with a Gaussian kernel

as the weight function and least-squares cross-validation for k selection

k̂LS−CV = arg min
k
CV (k) = arg min

k

1

n

n∑
i=1

[Yi − g̃−i(Xi)]
2M(Xi).

We consider three forms of distance measure in our experiments: Hall and Huang’s

distance function DHH,ρ(p), Du, Parmeter and Racine’s distance function DDPR(p) and

our new distance function Dcurve(p). For Hall and Huang’s distance function DHH,ρ(p),

we set the parameter ρ = 0.5.

All simulation results are based on 1000 replications, with results reported for sample

sizes of n = 50, 100 and 200.

3.2.2 The Performance in Estimation

First we compare the MSEs of five estimation methods: kernel-curve-local-constant

(Kernel-LC, we omit ‘curve’ in our short hand notation to save spaces in tables), the Knn-

curve-local-constant (Knn-LC), the Knn-curve-local-cubic (Knn-L-Cubic),3 the Knn-HH

and Knn-DPR estimators. Specifically, we compute the sample mean square errors as

follows

MSE =
1

n

n∑
i=1

[ĝ(Xi)− g(Xi)]
2 ,

3We would like to thank a referee for pointing out that local-polynomial estimates would serve better as
criterion in the curve method.

29



where n ∈ {50, 100, 200} is the sample size, M = 1000 is the number of simulations and

ĝ(Xi) is one of the five estimators: kernel-curve-local-constant, Knn-curve-local-constant,

knn-curve-local-cubic, Knn-HH and Knn-DPR.

Table 3.1 reports the results when data is unevenly distributed (DGP1) while Table 3.2

reports the results when data is evenly distributed (DGP2). The MSEs are reported for

the 25%, 50% and 75% quantiles. First we focus on the unevenly distribute data case of

DGP1. From Table 3.1 we see that the the constrained Knn local cubic estimator performs

the best, followed by the the constrained Knn local constant estimator.

Next, we examine the estimation results for evenly distributed data (DGP2). From Ta-

ble 3.2 we observe that when n = 50, the constrained kernel local constant based estimator

has the smallest estimation MSE. However, when n = 100 and n = 200, the Knn-HH per-

forms the best. When sample size is large (n = 200), the MSEs of different estimation

methods become close to each other.

Table 3.3 reports the proportion of points violating the monotonicity constraint under

DGP1 and DGP2 with unconstrained kernel and Knn methods. Let x(1) ≤ x(2) ≤ ... ≤

x(n) be the order statistics, we say that g(·) violates the monotone (increasing) condition

at x(i) if g(x(i)) < g(x(i−1)). From Table 3.3 we observe that for both unevenly and

evenly distributed data cases, the Knn method has more points violating the monotone

constraint than the kernel method. This result suggests that the better performance of the

Knn method (when data are unevenly distributed) is not due to having less points violating

the monotone constraint, rather it is due to its more accurate estimation of the unknown

regression function. We observe the same phenomenon in our empirical application using

the ‘Job Matching data’.
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Table 3.1: MSE-DGP1 (Unevenly Distributed)

Quantile Kernel-LC Knn-LC Knn-L-Cubic Knn-HH Knn-DPR
n = 50

0.25 0.0124 0.0117 0.0110 0.0129 0.0148
0.50 0.0194 0.0182 0.0172 0.0217 0.0294
0.75 0.0285 0.0279 0.0273 0.0384 0.0579

n = 100
0.25 0.0076 0.0072 0.0068 0.0071 0.0092
0.50 0.0121 0.0107 0.0100 0.0116 0.0156
0.75 0.0164 0.0154 0.0147 0.0187 0.0272

n = 200
0.25 0.0046 0.0047 0.0042 0.0049 0.0053
0.50 0.0072 0.0064 0.0061 0.0077 0.0083
0.75 0.0101 0.0093 0.0087 0.0128 0.0130

Table 3.2: MSE-DGP2 (Evenly Distributed)

Quantile Kernel-LC Knn-LC Knn-L-Cubic Knn-HH Knn-DPR
n = 50

0.25 0.0084 0.0091 0.0099 0.0088 0.0089
0.50 0.0143 0.0156 0.0169 0.0164 0.0158
0.75 0.0238 0.0247 0.0262 0.0311 0.0292

n = 100
0.25 0.0058 0.0057 0.0057 0.0052 0.0053
0.50 0.0088 0.0091 0.0097 0.0081 0.0087
0.75 0.0138 0.0141 0.0148 0.0130 0.0141

n = 200
0.25 0.0033 0.0033 0.0033 0.0028 0.0029
0.50 0.0052 0.0051 0.0051 0.0045 0.0048
0.75 0.0076 0.0075 0.0076 0.0070 0.0072

3.2.3 The Performance in Testing

3.2.3.1 The Bootstrap Procedure

To test the monotonic relationship between a dependent variable and an explanatory

variable (say, the relationship of job matching probability and market size of Gan and Li
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Table 3.3: Propotion of Points Violating Constraints

Kernel-LC Knn-LC Kernel-LC Knn-LC
n DGP1 DGP2

50 0.071 0.342 0.095 0.216
100 0.081 0.391 0.092 0.195
200 0.074 0.383 0.082 0.169

(2016)), following Du, Parmeter and Racine (2013) we use a bootstrap testing procedure

to obtain critical values. We note that Du, Parmeter and Racine (2013) has shown that

their test statistic DDPR(p̂) has a limiting χ2-distribution under the null hypothesis that

the regression function is a monotone function. We leave the theoretical investigation of

the limiting distribution of our Dcurve(p̂) to a possible future research topic. Below we

describe the bootstrap procedure of our test.

First, We use the Knn method and one of the three distance functions DHH,ρ(p),

DDPR(p) and Dcurve(p) to estimate the constrained regression function ĝ(x|p) using the

Knn method based on the observations {Yi, Xi}ni=1, and get p̂ and D(p̂), where D(p̂) de-

notesDHH,ρ(p̂), orDDPR(p̂) orDcurve(p̂). Then we useD(p̂) as the test statistic and reject

the null hypothesis if D(p̂) is too large. The resampling approach involves generating re-

samples for Y ∗i using iid residual resampling. Note that the bootstrap sample (Y ∗i , Xi)
n
i=1

must satisfy a monotone relationship, i.e., one needs to impose the null hypothesis when

generating Y ∗i . The bootstrap steps are as follows:

(i) Estimate ĝ(x|p) under the monotone constraint and obtain residuals: ûi = Yi −

ĝ(Xi|p̂) for i = 1, ..., n.

(ii) For each i, generate Y ∗i = ĝ(Xi|p̂) + û∗i , where û∗i is drawn randomly from {û1 −
1
n

∑n
j=1 ûj, ..., ûn −

1
n

∑n
j=1 ûj}.

(iii) Use the bootstrap sample {Y ∗i , Xi} to recompute ĝ(x|p), denoted ĝ(x|p∗), and

obtain D(p∗).
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(iv) Repeat steps (ii) and (iii) B− 1 times and then construct the empirical distribution

of the B bootstrap statistics (by adding the original statistic to the B − 1 bootstrap statis-

tics), {D(p∗j)}Bj=1. We reject the null hypothesis if D(p̂) > D(p∗(αB)), where D(p∗(αB)) is

the upper α-percentile of {D(p∗j)}Bj=1.

We use Monte Carlo simulations to examine the finite sample performance of the boot-

strap testing procedure. The number of simulations is 1000. We follow the bootstrap

testing procedure stated above and take B − 1 = 199.4

Remark: When D(p̂) = 0, the bootstrap is degenerated and the decision must be not

rejected. When assessing the test size and test power, this degeneration of bootstrap will

lead to a downward bias of rejection rate. To correct this bias, one can simply drop out the

cases when D(p̂) = 0 in simulations.5

3.2.3.2 The Estimated Sizes

We first simulate the data under the null hypothesis of a monotone regression function,

i.e., a monotone increasing function: g(Xi) = ln(Xi). The simulation results are provided

for different estimation methods (Kernel and Knn) and for different forms of distance

measures (curve, HH and DPR): Kernel-LC, Knn-LC, Knn-HH and Knn-DPR. Tables 3.4

reports empirical rejection rates of DGP1 (unevenly) for the bootstrap tests with nominal

significance levels (α) of 1%, 5% and 10%, using DHH,0.5(p), DDPR(p) and Dcurve(p) as

the distance measures, respectively. The simulation results present two noteworthy points.

First, no matter which distance function among DHH,0.5(p), DDPR(p) and Dcurve(p) are

used, the rejection rates are close to their nominal values, even for a small sample size,

e.g., n = 50. Secondly, when comparing the sizes of the four tests with different distance

4In the simulation part, since the null hypothesis is a monotonic increasing function, we estimate all
ĝ(x|p) and ĝ(x|p∗) by selecting p = p̂ or p∗ to minimize some distance functions D(p), while imposing that
derivative function is always non-negative.

5We would like to thank Jeffrey Racine for his helpful suggestion about correcting bias in estimating test
size.
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measures, we can see overall that the test using our new distance functionDcurve(p) shows

the closest rejection rates to the nominal significance levels (α), although all four tests give

reliable rejection rates. Table 3.5 shows the empirical rejection rates of DGP2 (evenly

distributed data) for the same settings of Table 3.4. All methods we discuss here give

normal rejection rates. We next examine performances of the tests under the alternative

hypothesis, that is, the power of the tests.

Table 3.4: Estimated Test Size (DGP1)

α Kernel-LC Knn-LC Knn-HH Knn-DPR
n = 50

0.01 0.002 0.010 0.006 0.007
0.05 0.058 0.050 0.037 0.040
0.10 0.117 0.117 0.085 0.079

n = 100
0.01 0.009 0.011 0.006 0.009
0.05 0.048 0.053 0.040 0.035
0.10 0.099 0.105 0.099 0.092

n = 200
0.01 0.008 0.012 0.008 0.009
0.05 0.041 0.050 0.033 0.036
0.10 0.100 0.097 0.080 0.090

3.2.3.3 The Estimated Powers

We consider the powers of the bootstrap tests against the alternative hypothesis DGP3,

i.e., g(Xi) = sin(Xi)−ln(Xi), which is not monotonic on the interval [π, 3π]. The simula-

tion results for the tests with different forms of distance measures and different regression

models are reported in Tables 3.6. As expected, all four tests show reasonable power and

the power increases in both sample size and nominal significance levels (α). Comparing

the four tests with different distance measures and different regression models, we find
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Table 3.5: Estimated Test Size (DGP2)

α Kernel-LC Knn-LC Knn-HH Knn-DPR
n = 50

0.01 0.016 0.011 0.011 0.011
0.05 0.062 0.058 0.055 0.061
0.10 0.109 0.103 0.120 0.117

n = 100
0.01 0.007 0.005 0.010 0.007
0.05 0.055 0.037 0.057 0.057
0.10 0.117 0.085 0.135 0.133

n = 200
0.01 0.007 0.009 0.012 0.010
0.05 0.049 0.043 0.055 0.057
0.10 0.100 0.078 0.114 0.111

the tests of Knn-HH and Knn-DPR show the weaker power than the tests of Kernel-LC

and Knn-LC. This is due to the advantage of our new measure of distance. If we compare

Kernel-LC and Knn-LC, we can see that Knn-LC outperforms Kernel-LC, especially when

α = 0.01. These results suggest that Knn method has advantage against kernel method

when data is unevenly distributed.

In addition, we examine the case when the data is evenly distributed. Table 3.7 reports

the empirical rejection rates with DGP4 with the same settings of Table 3.6. In this case,

the advantage of Knn method vanishes as expected, but the advantage of curve method

still plays its role. Speaking of numbers, Kernel-LC has the highest test power followed

by Knn-LC, while Knn-HH and Knn-DPR have lower test power.

3.3 An Empirical Study

3.3.1 The Data

In this section we use the ‘Job Market Matching’ data taken from Gan and Li (2016)

to illustrate that when a data is highly unevenly distributed, the kernel method may not be
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Table 3.6: Estimated Test Power (DGP3)

α Kernel-LC Knn-LC Knn-HH Knn-DPR
n = 50

0.01 0.702 0.865 0.207 0.225
0.05 0.940 0.966 0.522 0.543
0.10 0.988 0.989 0.678 0.728

n = 100
0.01 0.885 0.962 0.635 0.630
0.05 0.987 0.993 0.878 0.894
0.10 0.997 0.996 0.941 0.955

n = 200
0.01 0.970 0.991 0.925 0.936
0.05 0.994 1.000 0.990 0.992
0.10 1.000 1.000 0.995 0.998

Table 3.7: Estimated Test Power (DGP4)

α Kernel-LC Knn-LC Knn-HH Knn-DPR
n = 50

0.01 0.823 0.615 0.138 0.189
0.05 0.966 0.832 0.409 0.515
0.10 0.993 0.932 0.612 0.700

n = 100
0.01 0.994 0.923 0.510 0.586
0.05 0.999 0.979 0.819 0.871
0.10 1.000 0.989 0.924 0.943

n = 200
0.01 1.000 0.990 0.926 0.941
0.05 1.000 0.997 0.989 0.991
0.10 1.000 0.998 0.995 0.998

the appropriate approach to analyze such a data. Gan and Li collect data from 1999-2000

and 2000-2001 job openings/candidates market for economists and organize new Ph.D

economists’ market by field. This data set contains three variables described as follows:

Number of job openings (V ): the total number of job opening in the top 50 U.S.
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universities by each field in 1999 and 2000. The definition of ‘field’ can be found in the

“Classification System of Journal Articles” by the Journal of Economic Literature. In

particular, they label the field with a capital letter and a numeral. For example, E0 means

‘Macroeconomics and Monetary Economics’.

Number of filled positions (M ): the number of filled positions describes how many

academic job openings in 1999 and 2000 for the top 50 economic departments in the U.S.

were finally filled for each field in the following years (in 2000 and 2001).

Number of candidates (U ): the number of candidates is obtained by searching the

links of job candidates in each of the top 50 economic departments in the U.S. The first

field listed in each candidate’s CV or his/her brief research statement is used to determine

the field of each candidate.

We are interested in the relationship between the matching probability (y) (percentage

of candidates finding academic jobs) and the market size (x). Therefore, following Gan

and Li (2016) we use Yit = Mit/Vit as the dependent variable, where Mit is the number

of positions filled in field i at year t (t = 1, 2 correspond to 1999-2000, 2000-2001), Vit

is the number of openings for field i and time t, the explanatory variable is defined as

Xit = (U2
it + V 2

it )
1/2, where Uit is the total number of job candidates in field i at year

t. Xit describe the thickness for field i at year t. A large value of Xit means a large

market size for field i at time t. Gan and Li (2016) show that the theoretical matching

probability should be an increasing function in market size. The sample size for this data

set is n = 128. The data points are plotted in Figure 3.2.

37



Figure 3.2: Job Matching Data

3.3.2 The NLS Estimation

Gan and Li (2016) prove that the probabilities of matches in a thin market are signifi-

cantly lower than those in a thick market. In a regression framework we have

Yit = g(Xit) + uit (3.7)

then g(x) should be an (monotone) increasing function in x. Similar to Gan and Li (2016)

we propose using a simple parametric model to study the relationship between job match-

ing probability Y and market size X:

Yit = α1 + α2/X
α3
it + uit. (3.8)

The monotonic increasing relationship between Y and X implies that α2 < 0 and

α3 > 0. Also, the non-negativity of matching probability requires that α1 > 0. Using 1999
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and 2000 economist job market data to estimate model (8) gives the following results:

α̂1 = 0.683, t-stat= 3.72, p-value= 0.000;

α̂2 = −0.507, t-stat= −2.55, p-value= 0.012;

α̂3 = 0.297, t-stat= 2.03, p-value= 0.045.

We see that all the estimated coefficients have the predicted signs and they are all

statistically significantly different from zero at the 5% level. We plot in Figure 3.3 the

parametric model fitted curve: α̂1+α̂2/X
α̂3
it with the above reported estimated coefficients.
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Figure 3.3: NLS Estimation Result

Figure 3.3 confirms that job matching probability is an increasing function in market

size. However, model (8) imposes a strong parametric regression functional form. To ex-

amine whether the finding that matching probability is a monotone increasing function of
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market size is not influenced by the specific chosen functional form, we turn to using non-

parametric methods to analyze this data and examine whether the monotone relationship

between job matching probability and market size is supported by nonparametric estima-

tion results that are robust to regression functional form specifications.

3.3.3 The Kernel Estimation

Below we first use unconstrained and constrained kernel methods to estimate the re-

gression function g(·). For smoothing parameter selection, one of the most commonly used

method is the least-squares cross-validation method, see Härdle et al. (1988, 1992) for the

optimality property of using the least-squares cross-validation method to select smoothing

parameter h. Therefore, we use the local constant estimation method with the least-squares

cross-validation for bandwidth selection, i.e., we select the smoothing parameter h via

ĥLS−CV = arg minCV (h) =
1

n

2∑
t=1

nt∑
i=1

[Yit − g̃−(it)(Xit)]
2,

where g̃−(it)(Xit) is the leave-one-out kernel estimator of g(Xit), n = n1 + n2 and nt

is the number of observations at time period t (t = 1, 2). When applying a Gaussian

kernel, the cross-validated bandwidth ĥLS−CV = 0.8389. While for constrained estima-

tors ĥLS−CV is too small to find feasible solutions satisfying the constraints, we have to

increase the bandwidths in order to obtain constrained estimated curves that satisfy the

monotone restriction. The unconstrained and constrained kernel estimation results using

different distance measures are presented in Figures 3.4, 3.5 and 3.6.

The smoothing parameter is selected by the least squares cross validation method.

Figures 3.4 - 3.6 show the unconstrained kernel estimated curve (without imposing the

monotone constraint) is too wiggly and does not seem to describe a reasonable relation-
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Figure 3.4: Kernel Estimation: DHH(p)
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Figure 3.5: Kernel Estimation: DDPR(p)

ship between the matching probability and the market size. This data is highly unevenly

distributed. Most of Xi’s (103 of 128) are within 20, while only 5 points lie between

60 and 96. When fixing the bandwidth, there is not enough data to use at the tail of the

distribution. Therefore, the Knn method may be more suitable to this kind of data applica-

tion. We next present the Knn unconstrained and constrained estimation results at the next

section.
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Figure 3.6: Kernel Estimation: Dcurve(p) with Local-Constant
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Figure 3.7: Unconstrained Kernel Estimation: Local-Cubic

We also consider the kernel estimation of local cubic and the result is plotted in Figure

3.7. We can see that with this empirical data set, local cubic estimated curve does not

deviate much from that of the local constant method. The two curves are actually very

close to each other. To save space, we will only report local constant estimation results in

the remaining part of this paper.
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3.3.4 The Knn Estimation

This section reports Knn method estimation results for the ‘Job Market Matching’

data. We use a Gaussian kernel and use the LS-CV method to choose K. The LS-CV

selects k̂LS−CV = 9. When conducting local constant estimation with k̂LS−CV = 9, the

unconstrained and constrained Knn estimated curves using different distance measures are

presented in Figures 3.8, 3.9 and 3.10. We would like to emphasize the importance of

imposing monotonicity constraints with this data set. From figure 3.8 we observe that the

unconstrained Knn estimated curve has two peaks around market size x = 5 and x = 10.

Based on the theoretical result of Gan and Li (2016), we believe that the constrained curve

more accurately reflects the true regression functional form, the matching probability at

market size x = 5 (x = 10) should be similar to that of x close to 5 (10) rather than

significantly higher than that with similar market size. The observed peaks are likely due

to sampling errors.
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Figure 3.8: Knn Estimation: DHH(p)

Comparing Figures 3.8 - 3.10 with Figures 3.4 - 3.6, we see that the Knn method gives
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Figure 3.9: Knn Estimation: DDPR(p)
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Figure 3.10: Knn Estimation: Dcurve(p)

more reasonable estimated curves than those obtained by using the kernel method. More-

over, when using our proposed distance measure (equation (3.6)), the constrained curve is

quite close to the unconstrained curve. We compute the empirical L2 distance of the three

constrained Knn curves to the unconstrained Knn curve via L2 = {n−1
∑n

i=1[ĝ(Xi) −

g̃(Xi)]
2}1/2, where ĝ(Xi) is the constrained estimator (it can be HH, DPR or curve) and

g̃(Xi) is the unconstrained estimator. The L2 distances between the unconstrained Knn
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curve and the three constrained curves are L2,HH = 0.1217, L2,DPR = 0.1470 and

L2,Curve = 0.0412, respectively. This confirms the fact that our curved based estimate

gives the closest fit to the unconstrained curve. The closeness between the constrained and

the unconstrained curves also suggests that the monotonic relationship between the job

matching probability and the market size (field thickness) is likely to be supported by the

‘Job Market Matching’ data.

Table 3.8: Proportion of Points Violating Constraints

Violating/Total Kernel Knn
Observation 22/128 40/128
Grid 33/97 37/97

We also compute the number of data points that violate the monotone constraints.

Table 3.8 reports number of data points that violate the monotone restriction by the un-

constrained kernel and the Knn methods. Out of the 128 observations, the kernel method

has 22 points violating the monotone restriction, while the Knn method gives 40 violation

points. We also used grid points rather than data points in evaluating the unconstrained

kernel and Knn estimators. The grid points are evenly distributed grids (x=1, 2, 3, ..., 97).

Over the 97 grid evaluations points, the Kernel has 33 points and the Knn has 37 points

violating the monotone restriction, respectively. Even the unconstrained Knn estimated

curve fits the unconstrained monotone curve quite well, it does not mean that it has a

smaller percentage of evaluation points that violate the monotone constrain. It only means

that the magnitudes of deviations from the monotone curve are relatively small (compared

to those of kernel method estimated curve). Indeed, the relatively smooth Knn estimated

curve is quite flat when the data is sparse, there is no guarantee the smooth curve is in-

creasing. It can decrease at many observation or grid evaluation points which lead to a
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large number of points violating the monotone constraints. On the other hand, Kernel give

very wiggly curve. It can also have many points violating the monotone constraint by

large magnitude, but there is no guarantee that it has fewer points violating the monotone

constraint. In fact, for the ‘Job Market Matching’ data, it has less violation points than the

that using the Knn method. In summary, the percentage of evaluation points that violate

the monotone constraint may not be a good measure of whether the constrained curve is

close to the unconstrained curve.

In the next section, we test the null hypothesis that whether the regression function

g(x) is a monotonically increasing function (in x) based on the Knn estimation method

and use the bootstrap testing procedure discussed in section 3.

3.3.5 The Testing Result

In section 3.3.2, we show that when applying a parametric model to analyze the

economists’ job matching data, the estimated job matching probability is an increasing

function in market size. The next question is whether the monotonic relationship between

job matching probability and market size is supported by the robust nonparametric estima-

tion method. Figures 3.8 - 3.10 present the unconstrained and constrained Knn estimated

curves using different distance measures. There we see that the constrained curves are

close to the unconstrained curves, especially when our new distance measure is employed,

suggesting that the monotonic relationship is likely to be true. In this section, we apply

the proposed bootstrap testing procedure to formally test the null hypothesis that the job

matching probability function is a monotonically increasing function in market size (field

thickness) using the ‘Job Market Matching’ data. Tests with different distance measures

are considered. We estimate the constrained regression function ĝ(x|p) using local con-

stant estimation method with a Gaussian kernel as the weight function and least-squares

cross-validation method for selecting k. The number of bootstraps is B − 1 = 999. Ta-
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ble 3.9 reports the testing results. In Table 3.9, D represents the distance measure, which

could beDHH,0.5 (Hall and Huang’s distance function with ρ = 0.5), DDPR (Du, Parmeter

and Racine’s distance function) or Dcurve (our new distance function). D(p̂) is the test

statistic, obtained by using the three different distance measures respectively.

Table 3.9: Bootstrap Tests with Job Matching Data

D DHH,0.5 DDPR Dcurve

D(p̂) 33.49 43.36 0.13
p-value 0.311 0.065 0.134

As shown in Table 3.9, all three tests with different distance measures have p-values

that are greater than 5%. For the test with our new distance measure, the p-value= 0.134,

which is even greater than 10%. Therefore, we cannot reject the null hypothesis that job

matching probability is a monotonically increasing function of market size at the 5% sig-

nificance level. We confirm the monotone relationship between job matching probability

and market size by using the nonparametric Knn method.
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4. NONPARAMETRIC IDENTIFICATION AND TESTING OF FIRST-PRICE

AUCTIONS WITH ASYMMETRIC BIDDERS

4.1 The Models

In this section, we set up the two alternative models of first-price sealed-bid auc-

tions where bidders display unobserved heterogeneity. We first propose a general baseline

model, in which bidders can have arbitrary heterogeneity in preferences and value distribu-

tions. Then we restrict the heterogeneity into preference-only or value-distribution-only,

which leads to two specific models: asymmetric preferences (AP) model and asymmetric

value distributions (AVD) model.

4.1.1 Baseline First-Price Auction Model

A single and indivisible object is sold by auction. All bids are sealed and collected

simultaneously. The highest bidder wins the object and pays her own bid to the seller.

There is no entry cost and reservation price. The auction is within the independent private

values (IPV) paradigm and all of the bidders play Bayesian Nash equilibrium (BNE).

Suppose there are n bidders. Each bidder i ∈ I ≡ {1, 2, · · · , n} has a private value which

is a random draw from an individual-specific value distribution Fi(·) ∈ F . Values are

independent among different bidders. F is defined as follows.

Definition 1. Let F be the set of value distributions F (·) s.t. (a) F (·) is a cumulative

distribution function defined on the interval [v, v]. (b) F (·) has at least second order

continuous derivatives. (c) The density f(·) is bounded away from zero and infinity on its

support [v, v].

Each bidder i has a preference described by an individual-specific utility function ui(·) ∈

U . The set of utility functions U is defined as follows.
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Definition 2. Let U be the set of utility functions u(·) s.t. (a) u : [0,+∞)→ [0,+∞). (b)

u(0) = 0. (c) u has at least second order continuous derivatives and u′(·) > 0.

Given the model setup above, the expected utility maximization problem for bidder i

is given by

max
b∈R+

Pr(bj < b, j 6= i) · ui(vi − b).

Denote Gj(b) as bidder j’s bid distribution, j ∈ I \ i. Since the model is within the IPV

paradigm, bidder i’s winning probability can be written as the product of all other bidders’

bid distributions.

Pr(bj < b, j 6= i) =
∏
j∈I\i

Gj(b)

The utility maximization problem is then given by

max
b∈R+

∏
j∈I\i

Gj(b) · ui(vi − b).

Denote G̃i(b) ≡
∏

j∈I\iGj(b). We further rewrite the above equation as

max
b∈R+

G̃i(b) · ui(vi − b).

The first order condition gives

vi = s−1
i (b) = b+ λ−1

i (
G̃i(b)

g̃i(b)
) (4.1)

where λi ≡ ui(·)/u′i(·) and g̃i(b) = dG̃i(b)/db. By Definition 2, λi : [0,+∞)→ [0,+∞).

λ−1
i is the inverse function of λi and thus λ−1

i : [0,+∞)→ [0,+∞). Equation (4.1) builds

up the relationship between values and bids, given other bidders strategies. It characterizes

the best response function for bidder i. The equation system that consists of all bidders
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best response functions characterizes the BNE, i.e.,



v1 = s−1
1 (b1) = b1 + λ−1

1 ( G̃1(b1)
g̃1(b1)

)

v2 = s−1
2 (b2) = b2 + λ−1

2 ( G̃2(b2)
g̃2(b2)

)

· · ·

vi = s−1
i (bi) = bi + λ−1

i ( G̃i(bi)
g̃i(bi)

)

· · ·

vn = s−1
n (bn) = bn + λ−1

n ( G̃n(bn)
g̃n(bn)

)

4.1.2 First-Price Auctions with Unobserved Heterogeneity

The baseline model involves individual-specific utility functions and value distribu-

tions, i.e., two-dimensional unobserved heterogeneities of bidders. This is general but

leads to unnecessary complexity. We assume that the heterogeneity is discrete and finite,

and we call it “type". Suppose there are K ≥ 2 types1 and each bidder belongs to type

k ∈ K = {1, 2, · · · , K} with type probability p(k) with
∑K

k=1 p(k) = 1. The number of

types K is unknown to the researchers. Each type k has a type-specific utility function

uk(π) and a type-specific value distribution Fk(v). Each bidder knows her own type but

does not know any other bidder’s type. Each bidder learn the others’ types according to

a set of type probabilities, {pk}Kk=1, i.e., a bidder with unknown type belongs to type k

with probability pk. We also assume bidders’ types are independent with each other. The

common knowledge for all bidders are type probability pk, type-specific utility function

uk and type-specific value distribution Fk, where k = 1, · · · , K.

Assume bidders within the same type play symmetric strategy, then the bid distribu-

tions for the bidders can be categorized according to type. We call them type-specific bid

distributions, denoted as Gk(b). We can rewrite Equation (4.1) in terms of types, given

1If K = 1, the bidders are symmetric.
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bidder i belongs to type k

vi = s−1
i (b) = b+ λ−1

k (
G̃i(b)

g̃i(b)
) (4.2)

where λk = uk/u
′
k and λ−1

k is the inverse function of λk. We then show that G̃i(b) is

identical across bidder i = 1, 2, · · · , n. For a specific bidder i, she perceives the bid

distribution of bidder j 6= i as an expectation over the unknown types.

Gj(b) =
∑
k∈K

pkGk(b)

Since the types among bidders are independent, we have that

G̃i(b) =
∏
j∈I\i

Gj(b) =

(∑
k∈K

pkGk(b)

)n−1

Note that G̃i(b) is invariant across i. Denote G̃(b) ≡
(∑

k∈K pkGk(b)
)n−1. We have that

G̃i(b) = G̃(b), i = 1, 2, · · · , n

Given the above property, we rewrite Equation (4.2) as

vi = s−1
i (b) = b+ λ−1

k (
G̃(b)

g̃(b)
)

Note that the right-hand side of the above equation depends on only type k, instead of

individual i. We change the subscript of s−1
i (b) to k, i.e., s−1

k (b). The equation above

becomes

vi = s−1
k (b) = b+ λ−1

k (
G̃(b)

g̃(b)
) (4.3)
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Equation (4.3) characterizes the best response functions for bidders within type k.

For the purpose of tractability, we restrict our analysis to the cases where bidders’

asymmetry is due to one-dimensional unobserved heterogeneity. We introduce two spe-

cific first-price auction models with types: asymmetric preference (AP) model and asym-

metric value distribution (AVD) model. In AP model, value distributions are identical

across all types, i.e., Fk(v) = F (v), while preferences remain type-specific. Denote the

strategy for type k as sk,AP (v) and the inverse strategy as s−1
k,AP (b). From Equation (4.3),

we have the best response function for AP model

vi = s−1
k,AP (b) = b+ λ−1

k (
G̃(b)

g̃(b)
) (4.4)

Since s−1
k,AP (b) is increasing in b, the type-specific bid distribution for type k is then give

by

Gk(b) = F (s−1
k,AP (b))

In AVD model, bidders’ preferences are identical, and we further assume that the prefer-

ence is risk-neutral with utility function uk(x) = u(x) = x. Then,

λk(x) = uk(x)/u′k(x) = x

and

λ−1
k (x) = x

for all k ∈ K. Denote the strategy for type k as sk,AV D(v) and the inverse strategy as

s−1
k,AV D(b). From Equation (4.3), we have the best response function for AVD model

vi = s−1
k,AV D(b) = b+

G̃(b)

g̃(b)
(4.5)
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The value distributions remain type-specific. Since s−1
k,AV D(b) is increasing in b, the type-

specific bid distribution for type k is then give by

Gk(b) = Fk(s
−1
k,AV D(b))

Lebrun (1999) proves the existence and uniqueness of a Bayesian Nash equilibrium

(BNE) if all the K distributions have a mass point at v. At this equilibrium, any two

bidders who draw their values from the same distribution have the same bidding strategy.

Moreover, if there exists a relation of stochastic dominance between two valuation distri-

butions, the same relation of stochastic dominance extends to the bid distributions, i.e.,

Fj(v) ≤ Fi(v) for all v ∈ [v, v] implies Fj(s−1
j (b)) ≤ Fi(s

−1
i (b)) for all b ∈ [v, η] with

η = s1(v) = ... = sK(v).

Assumption 1. There exists a relation of stochastic dominance among the K value distri-

butions F1(·), ..., FK(·), i.e., F1(·) ≤ ... ≤ FK(·). Moreover, the K distributions share the

common support [v, v] and have a mass point as v.

4.1.3 Model Implications

For notation simplicity, denote the α-th quantile of type k’s bid distribution as bk,α ≡

G−1
k (α) and the α-th quantile of type k’s value distribution as vk,α ≡ F−1

k (α). Define

T (α) ≡ bk,α − bl,α, which measures the distance between Gk(·) and Gl(·) horizontally,

i.e., the distance between inverse Gk(·) and inverse Gl(·). Denote H(b) ≡ G̃(b)/g̃(b).

Assumption 2. In AP model, there exists a pair of types k < l ∈ K s.t. both type k and l

have CRRA utility functions, and type k is more risk averse than type l.

Assumption 3. In AVD model, there exist a pair of types k < l ∈ K and a quantile interval

Q ⊂ [0, 1] s.t. Fk first-order stochastic dominates Fl and vk,α − vl,α is non-increasing on

Q.
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Assumption 2 and Assumption 3 are mild. CRRA utility functions are widely used

when studying first-price auction models. Assumption 3 places restrictions only within a

limited quantile interval.

Proposition 1. (a) Under Assumption 2, if 0 ≤ ∂H(bk,α)

∂bk,α
≤ ∂H(bl,α)

∂bl,α
, then T (α) is in-

creasing; (b) under Assumption 3, if ∂H(bk,α)

∂bk,α
≥ ∂H(bl,α)

∂bl,α
≥ 0, and α ∈ Q, then T (α) is

decreasing in α.

Proof. See Appendix.

Since we are able to estimate H(b), the conditions in Proposition 1(a) and (b) are

testable. We then visually illustrate Proposition 1 in Figure 4.1.

Panel (a) of Figure 4.1 illustrates the behavior of the function T (α) in part (a) in

Proposition 1. For bidders with values at very high quantiles, winning probabilities are

high. They are facing a dilemma of sacrificing winning probability and sacrificing win-

ning profit. Bidders with higher levels of risk-aversion tend to choose sacrificing winning

profit by bidding high, while those with lower levels of risk-aversion will try to balance

the sacrifice between winning probability and winning profit. This leads to a large value of

T (α) when α is large. For bidders with values at very low quantiles, winning probability

is low and close to zero. They have to bid very close to their own values to obtain an

acceptable winning probabilities. Since all bidders’ values are i.i.d. draws from an identi-

cal value distribution, we should not observe much difference in behavior among different

types of bidders at very low quantiles. This explains the small value of T (α) when α is

small.

Panel (b) of Figure 4.1 illustrates the behavior of the function T (α) in Proposition 1.

For bidders with values at very low quantiles, just like the case in AP model, they will bid

very close to their own values. The difference between bid distributions will approximate

the difference between value distributions. For bidders with values at very high quantiles,
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(a) Illustration of T (α) in AP Model (b) Illustration of T (α) in AVD Model

Figure 4.1: Illustration of function T (α)

they have very high winning probabilities, and thus will tend to bid significantly lower

than their own values. To be specific, the strong type will go much further than the weak

type does. This is because the strong type is at really high quantiles while the weak type is

at sub-high quantiles, if we consider the mixture model. As a result, when α is high, T (α)

will be a lot smaller than the distance between value distributions. As long as the distance

between value distributions does not increasing in α, T (α) is decreasing in α.

Proposition 1 shows distinct implications on T (α) (increasing and decreasing) from

AP and AVD model. In the next, we show that these model implications are testable, and

provide corresponding test procedures.

4.2 Identification, Estimation and Testing

The model implications of both AP and AVD model are placed on the function T (α).

In order to test the model implications, we first discuss the approach to obtain T (α), i.e.,

the identification and estimation of the type-specific bid distributions Gk(b).
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4.2.1 A Unified Econometric Model

In both AP and AVD model, we observe a set of bids from all bidders without knowing

the types. Denote the unconditional bid distribution as G(b), which can be recovered

from the data. The unconditional bid distribution is a mixture of the type-specific bid

distributions. The type probabilities are the weights in this mixture model.

G(b) =
∑
k∈K

Gk(b)pk

=


∑

k∈K F
(
s−1
k,AP (b)

)
pk, AP model∑

k∈K Fk
(
s−1
k,AV D(b)

)
pk, AVD model

(4.6)

Equation (4.6) shows that both AP and AVD model lead to an identical form of mixture

model. A unified approach can be used for the identification. We want to identify the

number of types K, type-specific bid distributions Gk(b) and type probabilities pk, i.e., to

identify all of the elements in the mixture model.

4.2.2 The Number of Types

One key point in Equation (4.6) is that it contains the information of the number of

types K. Under our assumption of discrete and finite types, the test of K = 1 against

K > 1 will be equivalent to the test of the existence of heterogeneity, which is our first

essential goal. We follow the method proposed by Hu (2008), which was first applied to the

measurement-error models. The idea of this method is to obtain three different measures

in terms of bids to identify the latent variables, which in our case are bidders’ types and

bid distributions. As a result, some restrictions must be placed on the data structure.

Assumption 4. (1) Each bidder participates in at least three homogeneous auctions and

her values in the three auctions are independent. (2) The type is invariant across auctions.
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By Assumption 4, we obtain three bids for each bidder, denoted as a bid vector

(b1 b2 b3)T .

To identify the discrete types, it is convenient to transform two of the measures into dis-

crete form. Without loss of generality, we discretize b1 and b3 into d1 and d3. The dis-

cretization is as follows. Divide the support of bi into M bins, i = 1, 3. Label the bins

from left to right as bin1, bin2, · · · , binM .

di =



1, bi ∈ bin1

2, bi ∈ bin2

· · ·

M, bi ∈ binM

di takes values from 1 to M , according to which bin bi falls into. The choice of M will

be discussed later. Another assumption we need for identification is to ensure there is

sufficient variation in bidding behavior among different types, i.e., there is no type-specific

bid distribution that is a linear combination of the other type-specific bid distributions.

Assumption 5. There does not exists a non-zero vector of constants {ck}k∈K such that


∑

k∈K ckF (s−1
k,AP (b)) = 0, AP model∑

k∈K ckFk(s
−1
k,AV D(b)) = 0, AVD model

(4.7)

Note that Equation (4.7) is equivalent to
∑

k∈K ckGk(b) = 0. Denote the joint probability

mass function (pmf ) of d1 and d3 as g(d1, d3). A matrix form of the joint pmf is expressed

as

Bd1,d3 ≡ [g(d1 = i, d3 = j)]i,j
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where Bd1,d3 is an M ×M matrix. This matrix is the key to identify the number of types

K.

Proposition 2. Under Assumption 5, Rank(Bd1,d3) = K if M ≥ K.

Proof. See proof of Lemma 2 in An (2013) .

According to Proposition 2, as long as the dimension of Bd1,d3 is greater than K, its

rank equals K. If the dimension of Bd1,d3 is less than K, it has full rank (less than K).

The procedure to determine K is as follows.

(1) Start from M = 2 and test if Bd1,d3 has full rank. If Bd1,d3 has full rank, it implies

that M ≤ K.

(2) Increase M by 1 and test if Bd1,d3 has full rank.

(3) Repeat step (1) and step (2) until Bd1,d3 has not full rank.

The final value of M equals K+1. The remaining issue is the rank test. We follow the

method proposed by Robin and Smith (2000). The idea is to test the number eigenvalues in

a matrix that are significantly different from zero. Given a matrix with dimension M×M ,

our objective is to determine its rank. The null hypothesisH0 is that rank(Bd1,d3) = r∗ and

the alternative hypothesis H1 is that rank(Bd1,d3) > r∗, where r∗ is chosen by researchers

and 0 ≤ r∗ ≤ M − 12. This is a sequential test, in which r∗ starts from 0 and stops at the

true rank. The details of the testing procedure are summarized in Appendix B.1.

4.2.3 The Type-Specific Bid Distribution

Once the number of types is identified, we further identify the bid distributions condi-

tional on types and the corresponding type probabilities. Denote g(b1, b2, b3) as the joint

density of the three bids. By law of total probability, we have

g(b1, b2, b3) =
∑

k∈K
g(b1, b2, b3, k) =

∑
k∈K

g(b1|b2, b3, k)g(b2|b3, k)g(k, b3)

2If r∗ = M , the alternative hypothesis can never be true.
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By Assumption 4, bids are independent conditional on types. As a result, g(b1|b2, b3, k) =

g(b1|k) and g(b2|b3, k) = g(b2|k). This allows us to rewrite the equation above as

g(b1, b2, b3) =
∑

k∈K
g(b1|k)g(b2|k)g(k, b3)

Replacing b1 and b3 in the above equation respectively with d1 and d3 gives

g(d1, b2, d3) =
∑

k∈K
g(d1|k)g(b2|k)g(k, d3) (4.8)

Since type k is discrete, so are d1 and d3, it is convenient to express the above equation in

matrix form

Bb2,d1,d3 = Bd1|kDb2|kBk,d3 , (4.9)

where the matrices are defined as

Bb2,d1,d3 ≡ [g(b2, d1 = i, d3 = j)]i,j

Bd1|k ≡ [g(d1 = i|k = l)]i,l

Db2|k ≡ diag [g(b2|k = 1), g(b2|k = 2), · · · , g(b2|k = K)]

Bk,d3 ≡ [g(k = l, d3 = j)]l,j

Proposition 2 enables us to choose M = K, then the matrices Bd1,d3 , Bd1|k, and Bk,d3

are all full-rank, and thus invertible. Note that B−1
d1,d3

= B−1
k,d3

B−1
d1|k holds. If we post-

multiply B−1
d1,d3

to both sides of (4.9) and we will have

Bb2,d1,d3B
−1
d1,d3

= Bd1|kDb2|kB
−1
d1|k. (4.10)

The right-hand side of the equation above is a form of eigenvalue-eigenvector decomposi-
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tion of the left-hand side. The left-hand side consists of the probability density of b2 and

the probability mass of d1 and d3, which are observable. Thus, we identify Bd1|k through

eigenvalue-eigenvector decomposition. Note that each column of Bd1|k should sum up to

1. We normalize Bd1|k by setting its 1-norm as 1, instead of setting its 2-norm as 1.

Bd1|k is the key to identify type-specific bid distributions and type probabilities. It is a

bridge between the unobserved type k and the observed discretized bid d1. The identifica-

tion equation for type probabilities is given by

p(d1) = Bd1|kpk (4.11)

where p(d1) = (p(d1 = 1), p(d1 = 2), · · · , p(d1 = M))′. Since Bd1|k is invertible, Equa-

tion (4.11) can be rewritten as pk = B−1
d1|kp(d1). The probability p(d1) can be estimated by

sample analog. The equation to identify type-specific bid distributions is given by

 G(b2|k = l) = G(b2, k = l)/p(k = l)

g(b2|k = l) = g(b2, k = l)/p(k = l)
, l = 1, 2, · · · ,M (4.12)

where G(b2, k = l) can be estimated by empirical CDF estimator and g(b2, k = l) can be

estimated by kernel method.3

The identified type-specific bid distributions are anonymous. They can be labeled

according to the characteristics of both AP and AVD model. We thus need assumptions to

ensure these characteristics are clear.

Assumption 6. In AP model, different types have different levels of risk-aversion.

The risk-aversion in Assumption 6 is measured by R = −u′′/u′.

3For more details regarding estimation, see An (2013).
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Assumption 7. In AVD model, there exists first-order stochastic domination (FOSD)

relationship between any two value distributions.

Proposition 3. Under Assumption 6 and 7, in either AP or AVD model, there exists FOSD

relationship between any two different type-specific bid distributions.

Proof. See Lebrun (1999) proof of Corollary 4.

By Proposition 3, we can thus label the identified types according to the FOSD rela-

tionship. Denote type 1 as the strongest type, type 2 as the second strongest type and so

on, i.e., G1(b) FOSD G2(b), G2(b) FOSD G3(b), · · · , GK−1(b) FOSD GK(b). Given

the identified type-specific bid distributions, we further identify the function T (α) =

G−1
k (α)−G−1

l (α).

Proposition 4. The type probability estimator p̂(k) and type-specific bid distribution esti-

mator Ĝk(b) are both
√
n-consistent. The estimator for function T (α) is

√
n-consistent.

Proof. See Appendix.

4.2.4 Testing Model Implications

Proposition 1 states that the function T (α) is either increasing under AP model, or

decreasing under AVD model. This section introduces the corresponding test to investigate

the monotonicity of the function T . Let T̂ (α) be the estimator for T (α), and it is a
√
n

consistent estimator. Since testing increasing and testing decreasing are equivalent, we

focus on testing increasing, and use “increasing" and “monotone" interchangeably.

The monotonicity condition is imposed on grids, i.e.,

T (αi) < T (αj), ∀αi < αj
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where i, j ∈ {1, 2, · · · ,m}. To accommodate the formation of the monotonicity condition,

the function T (α) refers to a vector (T (α1) T (α2) · · ·T (αm))T , i.e., a vector consists of

the function values on the grids. We then set up our test under the context of functional

analysis. Denote Λ as the set of increasing functions. The null hypothesis H0 of our

monotonicity test is that T (α) ∈ Λ, i.e. T (α) is increasing. The alternative hypothesis H1

is that T (α) 6∈ Λ, i.e., T (α) is not increasing. The main idea of this test is to determine if

the estimated function T̂ (α) is far enough from the set Λ. If the distance is too large, we

tend to believe that the true function T (α) 6∈ Λ, and reject the null hypothesis. Otherwise

we cannot reject the null hypothesis. To determine the distance between the function T̂ (α)

and the set Λ, we need to obtain the projection of T̂ (α) on Λ. Denote the projection as

T̃ (α) and denote ΠΛ as the projection operator on set Λ. Then T̃ (α) = ΠΛT̂ (α). The

distance between function T̂ (α) and set Λ is equivalent to the distance between the two

functions, T̂ (α) and T̃ (α). We use Euclidean norm to define the distance, i.e.,

||T̂ (α)−T̃ (α)|| =
√

(T̂ (α1)− T̃ (α1))2 + (T̂ (α2)− T̃ (α2))2 + · · ·+ (T̂ (αm)− T̃ (αm))2

The projection T̃ (α) is obtained by the following optimization.

T̃ (α) = argmin
T̃ (α)

||T̂ (α)− T̃ (α)||

s.t. T̃ (α) ∈ Λ

Recall that T̃ (α) refers to a vector (T̃ (α1) T̃ (α2) · · · T̃ (αm))T . The above optimization is

in fact choosing {T̃ (αi)}mi=1, i.e., m parameters, to minimize the objective function. Note

that we can rewrite this optimization problem by applying a monotone transformation on
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the objective function, which is given by

T̃ (α) = argmin
T̃ (α)

||T̂ (α)− T̃ (α)||2

s.t. T̃ (α) ∈ Λ

The new objective function is quadratic in the parameters, and the conditions are linear in

the parameters (T̃ (α1) < T̃ (α2) < · · · < T̃ (αm)), which enables us to apply the algorithm

of quadratic programming to solve the optimization problem. The quadratic programming

algorithm is a highly efficient algorithm. The time complexity of quadratic programming

has an order of O(m lnm). There is barely a computational burden if m takes a value of

several hundreds or thousands.

After obtaining the projection T̃ (α), we are able to calculate the distance between

T̂ (α) and Λ. Denote the distance as φ(T̂ (α)) ≡ ||ΠΛT̂ (α) − T̂ (α)||. The next step is

to determine if φ(T̂ (α)) is large enough so that we can reject the null hypothesis, i.e., to

obtain the critical values. Since the projection operator is not Hadamard differentiable, the

asymptotic distribution of
√
n(φ(T̂ (α)) − φ(T (α))) cannot be consistently estimated by

bootstrapping on φ(T (α)). Fang and Santos (2014) provide a consistent bootstrap method

based on the delta method. We have that

√
n(φ(T̂ (α))− φ(T (α))) ≈ φ′T (α)(

√
n(T̂ (α)− T (α)))

The asymptotic distribution of the derivative φ′T (α)(
√
n(T̂ (α) − T (α))), however, can be

consistently estimated by bootstrapping on T (α). The bootstrap procedure is as follows:

(1) Generate a bootstrap sample by pairwise resampling4 the bid vector (b1 b2 b3)T .

Denote the bootstrap sample as (b∗1 b
∗
2 b
∗
3)T .

4We allow for other commonly used resampling methods. We can also allow the bootstrap sample size
to be different from the observed sample size.
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(2) Estimate the function T (α) from the bootstrap sample. Denote the estimates as

T̂ ∗(α). Obtain φ′n(h∗) by

φ′n(h∗) ≡ φ(T̂ (α) + tnh
∗)− φ(T̂ (α))

tn

where h∗ =
√
n(T̂ ∗(α)− T̂ (α)). Hong and Li (2014) suggest that tn goes to 0 at the rate

of n−
1
3 .

(3) Repeat step (1) and step (2) for B times, and collect all B values of φ′n(h∗). Sort

the bootstrap test statistics ascending. Since this is a one-sided test, the upper 5% quantile

of the bootstrap test statistics is the critical value for 5% significance level.

4.3 Monte Carlo Studies

In this section, we demonstrate the performance of our method by Monte Carlo sim-

ulation. We consider two data generating processes (DGP) from AP and AVD model

respectively. For both DGPs, there are two types of bidders, i.e., K = 2. We consider

three type probabilities, p1 = 0.4, 0.5, 0.6, and p2 = 1 − p1. The number of qualified

bidders (with 3 independent bids) N takes values of 400, 800 and 1200. The bids are

collected from homogeneous auctions. Each auction contains 5 bidders. The number of

replications is 1000. For the DGP from AP model, type 1 has a CRRA utility function and

type 2 has a risk neutral utility function, i.e., u1 = x0.5

0.5
and u2 = x. The common value

distribution is log-normal distribution, i.e., F = eZ , where Z ∼ N(0, 1). For the DGP

from AVD model, every bidder is risk-neutral, i.e., u(x) = x. The value distribution of

type 2 is log-normal distribution, i.e., F2 = eZ , where Z ∼ N(0, 1). Type 1 has a shifted

log-normal value distribution, i.e., F1(v) = F2(v − 0.5).

To simulate bids from each auction, we first determine the type of each bidder and let

each bidder attend three independent and homogeneous auctions. The private values v for

each bidder in each auction are randomly drawn from their own value distributions. We
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then calculate each bidder’s bids according to the BNE. The equilibrium for both AP and

AVD model are characterized by Equation (4.4) and Equation (4.5) respectively. Due to

the complexity of the differential equation, we cannot obtain a closed-form solution. Thus,

we numerically solve for the equilibrium. The main idea is to do iterations over the system

of the best response functions. The initial strategy for bidder i is to bid her/his own value,

i.e., s0
i (v) = v. The iteration is as follows.

(1) Generate a large sample of homogeneous auctions with bidders’ strategies being

s0
i (v). Estimate the bid distributions for each type.

(2) Let each bidder reacts to the estimated type-specific bid distributions in step (1).

Plug the type-specific bid distributions and type probabilities into the system of the best

response functions. Update the mapping from value v to bid b for each bidder. Denote this

new mapping as a new strategy s1
i (v).

(3) If s1
i (v) and s0

i (v) are not close enough (depends on the numerical convergence

condition), override s1
i (v) with s0

i (v) and repeat step (1) and step (2). If s1
i (v) and s0

i (v)

converges, s1
i (v) is the strategy in equilibrium.

Note that this iteration is a contract mapping process. The convergence in step (3) is

thus guaranteed. In the next subsection, we examine the performance of our method bases

on the simulated data from both AP and AVD model.

4.3.1 The DGP from AP Model

In this subsection, we discuss the performance of our method for the DGP from AP

model. For simplicity, we call this DGP as AP DGP. The first step of our method is to

determine the number of types. The type probability we consider here is p1 = p2 = 0.5.5

Table 4.1 shows the results of the rank test on the matrix Bd1,d3 . The null hypothesis H0

is that rank(Bd1,d3) = r∗ and the alternative hypothesis H1 is that rank(Bd1,d3) > r∗.

5The results for p1 = 0.4 and p1 = 0.6 are quite similar to the results for p1 = 0.5.
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The significance level is 5%. The number of bins M is 3, and thus Bd1,d3 is a 3×3 matrix.

Recall that the true rank of Bd1,d3 equals the number of types, which is 2. The first row

of Table 4.1 shows the test results when r∗ = 1, in which the null hypothesis is false.

The results assess the test power. We see that even in the case with the smallest sample

size, N = 400, the rejection rate is 50.8%. When sample size increases, the rejection rate

approaches 100%. The test power is satisfactory. The second row of Table 4.1 shows the

test results when r∗ = 2, in which the null hypothesis is true. The results assess the test

size. We see that the rejection rates are very close to the significance level in all three cases

with different sample sizes. The test size is normal.

Table 4.1: Rejection Rates of Rank Test with AP DGP

N = 400 N = 800 N = 1200
r∗ = 1 0.322 0.561 0.818
r∗ = 2 0.034 0.043 0.045

After the rank test, we are able to determine that the number of types K is 2. Given

the number of types, we then estimate the type probabilities, i.e., p1 and p2, as well as the

type-specific bid distributions, i.e., G1(b) and G2(b). Table 4.2 shows the estimated type

probabilities in all 9 cases, where p1 = 0.4, 0.5 and 0.6, and N = 400, 800 and 1200. For

each case, we report the mean and the standard errors (in parenthesis) of the estimates in

1000 replications. We see that as the sample size increases, the means are getting closer

and closer to the true value, and the standard errors decrease substantially. This pattern

suggests that our estimator behaves normally. Figure 4.2 shows the estimated type-specific

bid distributions when sample size is 400 and p1 = 0.5. The two solid curves are the true

type-specific bid distributions. There are two sequences of dots representing the means of

our estimates. They are very close to the true value. The sequence of crosses and sequence
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of squares represent the 90% confidence intervals for type 1’s bid-distribution estimator

and type 2’s bid-distribution estimator respectively. Figure 4.3 and 4.4 show the cases

when sample size is 800 and 1200 respectively. The confidence intervals shrink quickly

when sample size increases. Most of the time, the two confidence intervals do not overlap,

indicating that our separation of types is solid.

Table 4.2: Estimated Type Probabilities with AP DGP

p1 N = 400 N = 800 N = 1200
0.4 0.468 0.440 0.421

(0.411) (0.301) (0.250)
0.5 0.496 0.506 0.491

(0.358) (0.285) (0.236)
0.6 0.551 0.571 0.580

(0.352) (0.273) (0.228)

After the estimation of type-specific bid distributions, we use the estimates to test the

model implications for both AP and AVD model. For simplicity, we call the two tests as

AP test and AVD test. Recall that the true model is AP model, and thus the null hypothesis

for AP test is true and the null hypothesis for AVD test is false. The significance level

is 5%. The type probability we consider here is p1 = p2 = 0.5. The first row of Table

4.3 shows the rejection rates of AP test, whose null hypothesis is true. The rejection rates

approximate the test size. For all three sample sizes, the rejection rates are close to the

significance level. This indicates a normal test size for AP test. The first row of Table 4.4

shows the rejection rates of AVD test, whose null hypothesis is false. The rejection rates

approximate the test power. When sample size is 400, the rejection rate is around 50%.

As the sample size increases, the rejection rates increase at a satisfactory speed.
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Figure 4.2: Type-Specific Bid Distributions N = 400

Table 4.3: AP Test: Size and Power

True Model N = 400 N = 800 N = 1200
AP 0.066 0.052 0.052

AVD 0.698 0.878 0.948

Table 4.4: AVD Test Size and Power

True Model N = 400 N = 800 N = 1200
AP 0.542 0.713 0.802

AVD 0.033 0.046 0.053

4.3.2 AVD Model DGP

In this subsection, we turn to discuss the results for AVD DGP. To avoid reporting

redundant results, we omit the parts of type separation and directly dive into assessing the
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Figure 4.3: Type-Specific Bid Distributions N = 800

performance of AP test and AVD test. Since the true model is AVD model, we will be able

to learn the test power of AP test and the test size of AVD test. The second row of Table

4.3 shows the rejection rates of AP model test. When sample size is 400, the rejection

rate is about 70%. As sample size increases, the rejection rates increase quickly. On the

other hand, the second row of Table 4.4 shows the rejection rates of AVD model test. The

rejection rates are close to the significance level in all three cases. To sum up, the test

power of AP test is satisfactory, and the test size of AVD test is normal.

4.3.3 Robustness Check: Correlated Values

This subsection aims to address a major concern regarding a fundamental assumption

of our method, i.e., what if a bidder’s private values in the three auctions are not inde-

pendent and Assumption 4 fails. To evaluate this situation, we redo the whole simulation

in the above with all the same settings except that bidders’ private values are correlated
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Figure 4.4: Type-Specific Bid Distributions N = 1200

across auctions. This correlation is on individual level. To simplify the analysis, we as-

sume the correlation coefficients are identical across all bidders. For each bidder, denote

the correlation coefficient between bi and bj as ρij , i, j = 1, 2, 3. We further assume

ρ12 = ρ23 = ρ13 = ρ. We examine 2 values of ρ, which are 0.1 and 0.2, and compare the

results with the results from ρ = 0 (uncorrelated values). The type probability we consider

here is p1 = p2 = 0.5.

First, we discuss the determination of the number of types with AP DGP. Table 4.5

shows the rejection rates of the test on rank(Bd1,d3) = 2. Although the number of types

is 2, since Assumption 4 fails, rank(Bd1,d3) is no longer 2. We see that as the correlation

coefficient ρ increases, it becomes more and more likely to reject that rank(Bd1,d3) = 2.

However, as long as the correlation coefficient is not very large, the rejection rates are still

acceptable.

Table 4.6 shows the rejection rates of AP test with both AP DGP and AVD DGP,
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which approximate the test size and power of AP test respectively. On the other hand,

Table 4.7 shows the rejection rates of AVD test with both AP DGP and AVD DGP, which

approximate the test power and size of AVD test respectively. We see that both test size and

power increase as the correlation coefficient increases, and as the sample size increases.

As long as the correlation coefficient is small and the sample size is not too large, the test

size distortion is acceptable.

Table 4.5: Rejection Rate of Rank Test under Correlated Data

ρ N = 400 N = 800 N = 1200
0 0.034 0.043 0.045

0.1 0.048 0.056 0.052
0.2 0.050 0.056 0.061

Table 4.6: AP Test Size and Power under Correlated Data

ρ N = 400 N = 800 N = 1200
AP Model DGP

0 0.066 0.052 0.052
0.1 0.038 0.048 0.052
0.2 0.014 0.039 0.067

AVD Model DGP
ρ N = 400 N = 800 N = 1200
0 0.698 0.878 0.948

0.1 0.659 0.855 0.923
0.2 0.724 0.887 0.961

4.4 Empirical Studies

In this section, we apply the proposed estimation procedure and model-specification

tests to USFS timber auction data. The test results are informative. We can reject AVD
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Table 4.7: AVD Test Size and Power under Correlated Data

ρ N = 400 N = 800 N = 1200
AP Model DGP

0 0.542 0.713 0.802
0.1 0.821 0.966 0.997
0.2 0.897 0.986 0.998

AVD Model DGP
ρ N = 400 N = 800 N = 1200
0 0.033 0.046 0.053

0.1 0.028 0.076 0.072
0.2 0.021 0.090 0.084

model and cannot reject AP model. This is a support of AP model in explaining USFS

timber auction data. Note that AP and AVD model are two very specific auction models

with asymmetry. Our evidence does not rule out the possibility that the observed bidding

behavior can also be explained by other alternative asymmetry of bidders, e.g., mixed

asymmetric preferences and value distributions. However, the evidence can extend our

understanding of the two basic but popular kinds of bidders’ asymmetry.

4.4.1 The Data

The USFS timber auction data has been widely used in auction literature, including

the analysis of bidders’ asymmetry in either preferences or value distribuitions.6 As for

bidders’ preferences, Baldwin (1995) provides empirical evidence which suggests that

bidders can have decreasing absolute risk averse preferences. The risk aversion feature in

bidders’ preferences is also confirmed by Athey and Levin (2001). Campo et al. (2011)

estimates the level of bidders’ risk aversion by parametrizing their preferences with CRRA

utility function. The risk aversion parameter in CRRA uttlity function is estimated to

be around 0.30. As for bidders’ value distributions, Athey et al. (2011) suggests that

6See Baldwin et al. (1997) for detailed description of USFS auctions.
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bidders in USFS timber auction can be divided into two groups with high and low value

distributions respectively.

The complete data set of timber auction contains both ascending price auctions and

first-price auctions. Our analysis focuses on first-price auctions within IPV paradigm, so

we rule out ascending price auctions. Among the remaining first-price auctions, we only

consider “scaled sale" auctions, which are believed to be with private values. Haile et al.

(2003) suggests that there is little empirical evidence supporting common values in “scaled

sale" auctions. In addition, various studies assume private values in timber auctions, such

as Baldwin et al. (1997), Haile (2001), and Haile and Tamer (2003). In “scaled sale"

auctions, the auctioned object is timber to be harvest with unknown volume7. Bidders bid

on per unit price instead of total price and the winner pays after the timber is harvested.

The volume will be measured by a third party when harvesting. Among “scaled sale"

auctions, we further eliminate salvage and small-business set-aside sales as they exhibit

different features from original auctions. The reservation price is believed to be non-

binding in various studies, such as Haile (2001), Baldwin et al. (1997) and Campo et al.

(2011). Thus, we confidently apply our models with no settings of reservation price.

Table 4.8: “Scaled Sale" Auctions Summary Statistics

Variable Mean Std Min Max

Bids 52.45 45.91 0.13 534.58
Appraisal value 31.94 30.23 0.43 450.40
Volume 2808 2958 10 56350
Number of bidders 3.76 1.86 2 12

The time period of our data set is from 1982 to 1993. Auctions in all regions of the US

7The timber volume is measured in thousand board feet (mbf)
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are considered. Each bidder’s identity and bids, each tract’s volume and appraisal value

are available to us for each auction in the data set. Table 4.8 summarizes the statistics

that are of our interest. The sample contains 5901 auctions. Bids and appraisal values are

in 1982 real dollars. The auctions contain all kinds of timbers with various numbers of

bidders and are clearly not homogeneous. To get rid of this heterogeneity, we first fix the

number of bidders as 3 and rule out the other auctions. Among the remaining auctions, we

identify 462 bidders who participates in at least 3 auctions. Then we control for appraisal

values to capture the heterogeneity caused by different kinds of timbers as suggested by

Campo et al. (2011) and Haile (2001). Similarly to the method used in Haile et al. (2003)

and Bajari et al. (2007), we run a first-stage linear regression of bids on appraisal values,

which is given by

bij = β0 +X ′iβ1 + uij, uij ⊥ Xi

where bij is the j-th bid in i-th auction and Xi are the appraisal value in i-th auction. Xi

can contain other auction characteristics if they are reasonable and available. The sum of

the intercept and residual, i.e., β0 +uij , is considered as “normalized" bid and will be used

in the following estimation and testing procedures.

4.4.2 Estimation and Testing

Our first step is to determine the number of types. We consider four different ways to

discretize b1 and b3. The number of bins M takes values from 2 to 5. Table 4.9 shows the

results of rank test on the matrix Bd1,d3 . The null hypothesis H0 is that rank(Bd1,d3) = r∗

and the alternative hypothesis H1 is that rank(Bd1,d3) > r∗. The first row shows the p-

values when r∗ = 1. We see there are straight rejections at 5% significance level across all

discretization methods and hence we move to the test on r∗ = 2. The second row shows

the p-values when r∗ = 2. In the case when M = 2, the test is invalid since Bd1,d3 is a

2 × 2 matrix and has a rank of at most 2. In the cases when M > 2, we cannot reject
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the null hypothesis at 5% significance level. As a result, we are confident to determine the

number of types to be 2 and proceed to type-specific bid distribution estimation.

Table 4.9: Results of Rank Test with Timber Auction Data

P-Value M = 2 M = 3 M = 4 M = 5

r∗ = 1 0.000 0.000 0.001 0.022
r∗ = 2 N/A 0.066 0.237 0.173

Figure 4.5 shows the estimated type-specific bid distributions. The three curves on the

right-hand side are of high type, labeled as type 1, and the three curves on the left-hand

side are of low type, labeled as type 2. The plain solid curves represent the means of

the estimates. The curves with squares and cross constitute two bands covers the plain

solid curves. These bands are 90% confidence intervals of the estimates for type 1 and

type 2 respectively. The confidence intervals are generated by bootstrap. At each quantile,

high-type bidders will bid higher than low-type bidders, which displays the property of

FOSD. Most of the time, the two confidence intervals have no overlap. It is a sign of

the robustness of our type separation. Besides bid distibutions, we are also interested in

type probabilities. The estimated type probabilities are p̂1 = 0.495 and p̂2 = 0.505 with

standard errors of 0.117. The two estimates share the standard errors because they always

sum up to 1. Both type probabilities are significantly different from 0. Given type-specific

bid distributions, we can now proceed to model-specification tests.

The AP test gives a p-value of 0.855 while the AVD test gives a p-value of 0.011. We

reject AVD model and cannot reject AP model at 5% significance level. These results

indicate that AP model might be more favorable in explaining USFS timber auction data.

This is a new empirical evidence compared to Athey et al. (2011). Athey et al. (2011)
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Figure 4.5: Type-Specific Bid Distributions

exploit the characteristics of bidders and realize that bidders are constituted by loggers

and mills. By assuming loggers and mills have different value distributions, they deploy

AVD model. This assumption could be plausible but it is also possible that loggers and

mills share an identical value distribution. If the assumption fails, AP model will become a

better choice. Our empirical results do not get into the argument of bidders’ characteristics

but relies on Assumption 4. It requires that each bidder’s values across the three auctions

are independent. We cannot eliminate the possibility that their values do have correlations.

As shown in the section of Monte Carlo studies, as long as the correlations are small, our

method is still robust. The way to handle heavily correlated values remains in question.
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5. CONCLUSIONS

In the first essay, we study the estimation of the nonlinear quantile regression, where

the regressors include both the continuous and discrete components. Unlike the method

proposed in Li et al. (2013) which first estimates the CDF nonparametrically and then

inverts the estimated CDF to obtain the quantile estimation. One of the advantage of using

our proposed method is that, besides the estimate of a conditional quantile function, we

also obtain the derivative function (of the quantile function) estimate and its asymptotic

theory, while it is difficulty to obtain derivative function estimation and to derive the related

asymptotic theory if one uses the inverse CDF method to estimate conditional quantile

function.

We combine the quantile check function and a local linear smoothing technique with

the mixed continuous and discrete kernel function to directly estimate the conditional

quantile regression function. We establish the asymptotic normal distribution theory for

the proposed local linear estimators, which generalizes some existing results which are

only applicable to the case of purely continuous regressors. We also study the choice of

the tuning parameters in the proposed local linear estimation procedure by proposing a

CV approach to directly choose the optimal bandwidths which is different from that in Li

et al. (2013), and further derive the asymptotic properties of the CV bandwidth selection

approach. A simulation study is provided to examine the finite sample behavior of the pro-

posed method. Through the simulation study, we find that our method has a better small

sample performance than the naive local linear quantile estimation without smoothing the

discrete regressors and the nonparametric inverse-CDF method.

In the second essay, we consider the problem of estimating a nonparametric regres-

sion function with monotonicty restriction using the nonparametric K-nearest-neighbor
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method. We show that when data is highly unevenly distributed, the constrained and un-

constrained Knn estimators give more reasonable estimation results than those obtained

by using the kernel method. We also propose using a new distance function, which di-

rectly measures the closeness between the constrained and unconstrained Knn curves. We

obtain the constrained Knn estimate by minimizing the new distance function. We use

a bootstrap procedure to test the validity of the monotone constraint. Our Monte Carlo

simulations demonstrate good finite sample performance of the bootstrap testing proce-

dure. The size of the test is reliable and the power is strong, especially when our new

distance measure is employed. We apply our constrained Knn estimation method to ana-

lyze the ‘Job Market Matching’ data and demonstrate the advantages of using Knn method

to estimate regression functions with highly unevenly distributed data. The bootstrap test-

ing procedure confirms the monotone relationship between job matching probability and

market size.

In the third essay, we have developed a methodology to nonparametrically test the ex-

istence of bidders’ asymmetry in two models of auctions: (1) Bidders’ are risk averse and

their risk preference is heterogenous (AP model); (2) Bidders’ values are asymmetrically

distributed (AVD model). The testing procedure took two steps: in the first step, we non-

parametrically recover bid distribution conditional on bidders’ unobserved heterogeneity.

In the second step, we show that the difference between any two bid distributions for two

distinct types is monotonic in its quantile. Specifically, the distance is increasing in AP

model and decreasing in AVD model. The application of our method to USFS timber

auctions demonstrates that bidders in field auction display heterogenous risk preference.
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APPENDIX A

PROOFS IN THE FIRST ESSAY

A.1 Assumptions

In this appendix, we give some regularity conditions which have been used to derive

the asymptotic properties of the proposed approaches in Sections 2.1 and 2.2.

ASSUMPTION 1. The kernel function K(·) is a continuous and symmetric probability

density function with a compact support.

ASSUMPTION 2. The sequence of {(Yi, Xi, Zi)} is composed of independent and identi-

cally distributed (i.i.d.) random vectors.

ASSUMPTION 3. (i) The conditional density function of ei for given Xi = x and Zi = z,

fe(·|x, z), exists and is continuous at point zero. Furthermore, fe(0|x, z) is continu-

ous with respect to x when z = z0 or z1. Let the conditional cumulative distribution

function of ei for given Xi = x and Zi = z, Fe(·|x, z), be continuous with respect to

x when z = z0 or z1, and Fe(0|x0, z0) = τ .

(ii) The probability of Zi = z0, p1, satisfies that 0 < p1 < 1. The conditional density

function of Xi for given Zi = z, f(x|z), is bounded away from infinity and zero for

x ∈ X and z = z0 or z1, where X is the compact support of Xi.

(iii) The conditional quantile regression function Qτ (·, z) and f(·|z) are twice con-

tinuously differentiable on X for z = z0 or z1.

ASSUMPTION 4. (i) Let the tuning parameters h and λ satisfy

h→ 0, nh→∞ and λ = O(h2).
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(ii) Let the tuning parameter h satisfy

nh6 → 0, nh9/2 →∞.

Assumption 1 imposes some mild conditions on the continuous kernel function in the

nonparametric kernel-based smoothing, and several commonly-used kernel functions such

as the uniform kernel and the Epanechnikov kernel satisfy these conditions (c.f., Fan and

Gijbels, 1996; Li and Racine, 2007). As the kernel function is symmetric, it is easy to

check that µk = 0 when k is odd. In Assumption 2, we impose the i.i.d. condition

on the observations, which has been commonly used in the literature on nonparametric

estimation with both categorical and continuous data (c.f., Li and Racine, 2004; Racine

and Li 2004; Li, Simar and Zelenyuk, 2014). The developed asymptotic theory in this

paper can be generalized to the general stationary and weakly dependent processes at

the cost of more lengthy proofs. There is no moment condition on ei to estimate the

conditional quantile regression, which indicates that the distribution of ei is allowed to

have heavy tails. Assumption 3 gives some smoothness conditions on the (conditional)

density functions and the quantile regression function, which are necessary in order to

apply the local linear smoothing method. Assumptions 4 imposes some restrictions on the

various tuning parameters. In particular, Assumptions 4(ii) is only needed when we derive

the asymptotic expansion of the CV-based loss function.
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A.2 Proofs of the Main Results

Before proving the main results in Sections 2.1 and 2.2, we introduce some notations

to simplify the presentation. Let

un(α;x0, z0) =
√
nh
[
α−Qτ (x0, z0)

]
, vn(β;x0, z0) =

√
nh3
[
β −Q(1)

τ (x0, z0)
]
.

Let

∆ni(α, β;x0, z0) =
1√
nh

[
un(α;x0, z0) + vn(β;x0, z0)

(Xi − x0

h

)]
,

bi(x0, z0) = Qτ (Xi, Zi)−Qτ (x0, z0)−Q(1)
τ (x0, z0)(Xi − x0).

With the help of the above notations, it is easy to see that

Yi − α− β(Xi − x0) = ei −∆ni(α, β;x0, z0) + bi(x0, z0). (B.1)

Throughout the proof, we let an ∼ bn and an
P∼ bn denote an = bn(1 + o(1)) and an =

bn(1 + oP (1)), respectively.

We next give the detailed proofs of Theorems 2.1 and 2.2.

PROOF OF THEOREM 2.1

Letting

Ln(x0, z0) =
n∑
i=1

ρτ
[
ei + bi(x0)

]
Kh(Xi − x0)Λλ(Zi, z0)

which is unrelated to α and β, and using (B.1), it is straightforward to show that minimiz-
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ing Ln(α, β;x0, z0) is equivalent to minimizing

L̃n(α, β;x0, z0) ≡ Ln(α, β;x0, z0)− Ln(x0, z0),

=
n∑
i=1

{
ρτ
[
ei + bi(x0, z0)−∆ni(α, β;x0, z0)

]
−ρτ

[
ei + bi(x0, z0)

]}
Kh(Xi − x0)Λλ(Zi, z0). (B.2)

Note that the identity result (c.f., Knight, 1998):

ρτ (x− y)− ρτ (x) = y
[
I{x≤0} − τ

]
+

∫ y

0

[
I{x≤z} − I{x≤0}

]
dz.

Letting x = ei + bi(x0, z0) and y = ∆ni(α, β;x0, z0) ≡ ∆ni in the above identity and

denoting ηi(x0, z0) = I{ei≤−bi(x0,z0)} − τ , L̃n(α, β;x0, z0) can be rewritten as

L̃n(α, β;x0, z0) = Ψn(x0, z0)

+un(α;x0, z0)
[ 1√

nh

n∑
i=1

ηi(x0, z0)Kh(Xi − x0)Λλ(Zi, z0)
]

+

vn(β;x0, z0)
[ 1√

nh

n∑
i=1

ηi(x0, z0)
(Xi − x0

h

)
Kh(Xi − x0)Λλ(Zi, z0)

]
,

where

Ψn(x0, z0) =
n∑
i=1

Kh(Xi − x0)Λλ(Zi, z0)

∫ ∆ni

0

[
I{ei≤z−bi(x0,z0)} − I{ei≤−bi(x0,z0)}dz.
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We first consider Ψn(x0, z0). By Assumptions 2 and 3(i), we can prove that

E
[
Ψn(x0, z0)|Fn(X,Z)

]
=

n∑
i=1

Kh(Xi − x0)Λλ(Zi, z0)

∫ ∆ni

0

{
Fe
[
z − bi(x0, z0)|Xi, Zi

]
−Fe

[
− bi(x0, z0)|Xi, Zi

]}
dz

P∼
n∑
i=1

Kh(Xi − x0)Λλ(Zi, z0)

∫ ∆ni

0

zfe
[
− bi(x0, z0)|Xi, Zi

]
dz

P∼ 1

2

n∑
i=1

Kh(Xi − x0)Λλ(Zi, z0)fe(0|Xi, Zi)∆
2
ni

≡ 1

2

[
un(α;x0, z0), vn(β;x0, z0)

]
Sn(x0, z0)

[
un(α;x0, z0), vn(β;x0, z0)

]′
, (B.3)

where Fn(X,Z) is the σ-field generated by (Xi, Zi), i = 1, · · · , n,

Sn(x0, z0) =
[ Sn1(x0, z0) Sn2(x0, z0)

Sn2(x0, z0) Sn3(x0, z0)

]

with

Snk(x0, z0) =
1

nh

n∑
i=1

(Xi − x0

h

)k−1Kh(Xi − x0)Λλ(Zi, z0)fe(0|Xi, Zi), k = 1, 2, 3.

Following the proof of Theorem 3.1 in Li, Simar and Zelenyuk (2014) and using Assump-

tions 1, 3(i)(ii) and 4(i), we may show that

Snk(x0, z0) = h−1p1µk−1f(x0|z0)fe(0|x0, z0) + oP (h−1),
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which indicates that

hSn(x0, z0)
P∼ S(x0, z0) ≡

[ S1(x0, z0) S2(x0, z0)

S2(x0, z0) S3(x0, z0)

]
. (B.4)

Meanwhile, we can prove that the conditional variance Ψn(x0, z0) for given Fn(X,Z)

satisfies √
V
[
hΨn(x0, z0)|Fn(X,Z)

]
= oP (1). (B.5)

By (B.3)–(B.5), we can prove

hΨn(x0, z0)
P∼ 1

2

[
un(α;x0, z0), vn(β;x0, z0)

]
S(x0, z0)

[
un(α;x0, z0), vn(β;x0, z0)

]′
.

(B.6)

Let

Wn(k) ≡ Wn(k;x0, z0) =
h√
nh

n∑
i=1

ηi(x0, z0)
(Xi − x0

h

)k−1Kh(Xi − x0)Λλ(Zi, z0)

for k = 1 and 2, and Wn(x0, z0) =
[
Wn(1),Wn(2)

]′. Note that

hL̃n(α, β;x0, z0)−
[
un(α;x0, z0), vn(β;x0, z0)

]
Wn(x0, z0)

converges in probability to the right hand side of (B.6), which is a convex function. Then,

by Pollard (1991)’s convexity lemma, the minimizer to L̃n(α, β;x0, z0) satisfies

[
ûn(x0, z0), v̂n(x0, z0)

]′ P∼ [S(x0, z0)
]−1

Wn(x0, z0), (B.7)

where ûn(x0, z0) =
√
nh
[
Q̂τ (x0, z0)−Qτ (x0, z0)

]
and v̂n(x0, z0) =

√
nh3
[
Q̂(1)
τ (x0, z0)−
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Q(1)
τ (x0, z0)

]
. Thus, to establish the asymptotic distribution theory of

[
ûn(x0, z0), v̂n(x0, z0)

]′
,

we only need to derive the limiting distribution of Wn(x0, z0).

Let Wn∗(x0, z0) be defined as Wn(x0, z0) with ηi ≡ ηi(x0, z0) replaced by ηi∗ =

I{ei≤0} − τ . Then,we have

Wn(x0, z0)− E
[
Wn(x0, z0)

]
= Wn∗(x0, z0)− E

[
Wn∗(x0, z0)

]
+Wn(x0, z0)−Wn∗(x0, z0)

−E
[
Wn(x0, z0)−Wn∗(x0, z0)

]
. (B.8)

Note that

V
[
Wn(x0, z0)−Wn∗(x0, z0)

]
≤ E

[∥∥Wn(x0, z0)−Wn∗(x0, z0)
∥∥2
]

= E
[∥∥Wn(x0, z0)−Wn∗(x0, z0)

∥∥2∣∣Fn(X,Z)
]

≤ O
(h
n

n∑
i=1

E
{
K2
h(Xi − x0)Λ2

λ(Zi, z0)E
[
(ηi − ηi∗)2

∣∣Fn(X,Z)
]})

≤ O
(h
n

n∑
i=1

E
{
K2
h(Xi − x0)Λ2

λ(Zi, z0)
[
Fe(−bi(x0, z0))− Fe(0)

]})
≤ o

( 1

nh

n∑
i=1

E
{
K2
(Xi − x0

h

)
Λ2
λ(Zi, z0)

})
= o(1),

which implies that Wn∗(x0, z0) − E
[
Wn∗(x0, z0)

]
is the leading term of Wn(x0, z0) −

E
[
Wn(x0, z0)

]
. We next turn to the proof of

Wn∗(x0, z0)− E
[
Wn∗(x0, z0)

] d−→ N
[
0,Ω(x0, z0)

]
, (B.9)
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where Ω(x0, z0) = τ(1 − τ)p1f(x0|z0)diag(ν0, ν2) is defined as in Section 2.1. By the

so-called Cramér-Wold device (Billingsley, 1968) and the classical central limit theorem

for the i.i.d. random vectors, we can complete the proof of (B.9). In view of of (B.8) and

(B.9), we can show that

Wn(x0, z0)− E
[
Wn(x0, z0)

] d−→ N
[
0,Ω(x0, z0)

]
. (B.10)

Meanwhile, note that when Xi and x0 are close enough,

bi(x0, z0) ≈ 1

2
Q(2)
τ (x0, z0)(Xi − x0)2

for Zi = z0; and

bi(x0, z0) ≈ Q(x0, z1)−Q(x0, z0)

for Zi = z1 6= z0. Then, by some elementary calculations, we may also prove that

1√
nh

[
S(x0, z0)

]−1E
[
Wn(x0, z0)

]
∼ b(x0, z0), (B.11)

where b(x0, z0) is defined as in Section 2.1. By (B.10) and (B.11), we can prove

Wn(x0, z0)−
√
nhS(x0, z0)b(x0, z0)

d−→ N
[
0,Ω(x0, z0)

]
. (B.12)

The proof of Theorem 2.1 can be completed by using (B.7) and (B.12). �

PROOF OF THEOREM 2.2

Throughout this proof, we let

Q̂(−i)(Xi, Zi) = Q̂(−i)(Xi, Zi;h, λ), ζi(Xi, Zi) = Q̂(−i)(Xi, Zi)−Qτ (Xi, Zi).
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Note that

CV(h, λ) =
n∑
i=1

ρτ
[
ei + Qτ (Xi, Zi)− Q̂(−i)(Xi, Zi)

]
M(Xi, Zi)

=
n∑
i=1

ρτ (ei)M(Xi, Zi) +
n∑
i=1

{
ρτ
[
ei − ζi(Xi, Zi)

]
− ρτ (ei)

}
M(Xi, Zi)

≡ CV1 + CV2(h, λ). (B.13)

It is easy to see that CV1 does not rely on the tuning parameters h and λ, which indi-

cates that this term would not play any role in choosing the optimal bandwidths. Thus,

to complete the proof of Theorem 2.2, we only need to derive the asymptotic order for

CV2(h, λ).

Using Knight (1998)’s identity result, we may show that

ρτ
[
ei−ζi(Xi, Zi)

]
−ρτ (ei) = ζi(Xi, Zi)

[
I{ei≤0}−τ

]
+

∫ ζi(Xi,Zi)

0

[
I{ei≤z}−I{ei≤0}

]
dz. (B.14)

Define

CV21(h, λ) =
n∑
i=1

ζi(Xi, Zi)
[
I{ei≤0} − τ

]
M(Xi, Zi),

CV22(h, λ) =
n∑
i=1

M(Xi, Zi)

∫ ζi(Xi,Zi)

0

[
I{ei≤z} − I{ei≤0}

]
dz.

We next derive the asymptotic orders for CV21(h, λ) and CV22(h, λ), respectively.

By the uniform asymptotic approximation of ζi(Xi, Zi) in Lemma C.1 in Appendix C,

we have uniformly for i = 1, · · · , n,

ζi(Xi, Zi)
P∼ (1, 0)

[
S(Xi, Zi)

]−1
W(−i)(Xi, Zi), (B.15)
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where W(−i)(x, z) =
[
W(−i),1(x, z),W(−i),2(x, z)

]′ with

W(−i),k(x, z) =
h

nh

∑
j 6=i

ηj(x, z)
(Xj − x

h

)k−1Kh(Xj − x)Λλ(Zj, z)

and ηj(x, z) is defined as in the proof of Theorem 2.1. Letting ηi∗ = I{ei≤0}− τ , by (B.15)

and following the proof of (B.12) above, we may show that

CV21(h, λ) =
n∑
i=1

ζ(−i)(Xi, Zi)ηi∗M(Xi, Zi)

P∼
n∑
i=1

ηi∗b1(Xi, Zi)M(Xi, Zi) +

1

nh

n∑
i=1

∑
j 6=i

ηi∗ηj∗K
(Xi −Xj

h

)
Λλ(Zi, Zj)

≡ CV211(h, λ) + CV212(h, λ), (B.16)

where b1(Xi, Zi) is defined as in Section 2.1. Following the proof of Theorem 3.1 in Li,

Simar and Zelenyuk (2014), we can prove that

CV211(h, λ) = OP (
√
nh2 +

√
nλ) = OP (

√
nh2) (B.17)

and

CV212(h, λ) = OP (h−1/2). (B.18)

Using (B.16)–(B.18), we can show that

CV21(h, λ) = OP (
√
nh2 + h−1/2). (B.19)
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We next consider CV22(h, λ). It is easy to verify that

CV22(h, λ)
P∼ E

[
CV22(h, λ)

∣∣Fn(X,Z)
]

(B.20)

and

E
[
CV22(h, λ)

∣∣Fn(X,Z)
] P∼

n∑
i=1

M(Xi, Zi)fe(0|Xi, Zi)

∫ ζi(Xi,Zi)

0

zdz

=
1

2

n∑
i=1

ζ2
i (Xi, Zi)M(Xi, Zi)fe(0|Xi, Zi). (B.21)

Furthermore, following the proof of Lemma C.2 in Appendix C below, we have

n∑
i=1

ζ2
i (Xi, Zi)M(Xi, Zi)fe(0|Xi, Zi)

P∼
n∑
i=1

b2(Xi, Zi;h, λ)M(Xi, Zi)fe(0|Xi, Zi) +

n∑
i=1

σ2(Xi, Zi;h)M(Xi, Zi)fe(0|Xi, Zi), (B.22)

where b(Xi, Zi;h, λ) and σ2(Xi, Zi;h) are defined in Section 2.2. By (B.20)–(B.22), we

can show that

CV22(h, λ)
P∼ 1

2

n∑
i=1

[
b2(Xi, Zi;h, λ) + σ2(Xi, Zi;h)

]
M(Xi, Zi)fe(0|Xi, Zi). (B.23)

Note that CV21(h, λ) is asymptotically negligible (compared with CV22(h, λ)) by As-

sumption 4(ii). We then complete the proof of Theorem 2.2 by (B.13), (B.19) and (B.23).

�
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A.3 Some Auxiliary Lemmas

In this appendix, we give some auxiliary lemmas which have been used to prove the

main results in Appendix A.2.

LEMMA C.1. Suppose that the conditions of Theorem 2.2 are satisfied. Then we have

[
ûn(x, z), v̂n(x, z)

]′ P∼ [S(x, z)
]−1

Wn(x, z) (C.1)

uniformly for x ∈ X and z = z0 or z1, where ûn(x, z), v̂n(x, z), S(x, z) and Wn(x, z) are

defined in Appendix A.2.

PROOF:

Following the proof of Theorem 2.2 and using the convexity lemma in Pollard (1991), we

only need to show that

1

n

n∑
i=1

(Xi − x0

h

)kKh(Xi − x0)Λλ(Zi, z0)fe(0|Xi, Zi)

= µkfXZ(x, z)fe(0|x, z) + oP (1) (C.2)

uniformly for x ∈ X and z = z0 or z1, k ≥ 1, where fXZ(x, z0) = p1f(x|z0) and

fXZ(x, z1) = (1− p1)f(x|z1). It is easy to prove (C.2) using standard calculation and the

uniform consistency result in Mack and Silverman (1982). Thus, the proof of Lemma C.1

has been completed. �

LEMMA C.2. Suppose that the conditions of Theorem 2.2 are satisfied. Let ζi(x, z) be

defined as in the proof of Theorem 2.2. Then we have

n∑
i=1

ζ2
i (Xi, Zi)

P∼
n∑
i=1

[
b2(Xi, Zi;h, λ) + σ2(Xi, Zi;h)

]
, (C.3)

where b2(x, z;h, λ) and σ2(x, z;h) are defined in Section 2.2.
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PROOF:

By Lemma C.1 and the definition of ζi(x, z) in the proof of Theorem 2.2, we have uni-

formly for x ∈ X and z = z0 or z1,

ζi(x, z)
P∼ (1, 0)

[
S(x, z)

]−1
W(−i)(x, z), (C.4)

where W(−i)(x, z) =
[
W(−i),1(x, z),W(−i),2(x, z)

]′ with

W(−i),k(x, z) =
h

nh

∑
j 6=i

ηj(x, z)
(Xj − x

h

)k−1Kh(Xj − x)Λλ(Zj, z)

and ηj(x, z) is defined as in the proof of Theorem 2.1.

Recall that ηi∗ = I{ei≤0} − τ . It is easy to show that

W(−i),k(x, z) =
1

nh

∑
j 6=i

ηj(x, z)
(Xj − x

h

)k−1K
(Xj − x

h

)
Λλ(Zj, z)

=
1

nh

∑
j 6=i

[
ηj(x, z)− ηj∗

](Xj − x
h

)k−1K
(Xj − x

h

)
Λλ(Zj, z) +

1

nh

∑
j 6=i

ηj∗
(Xj − x

h

)k−1K
(Xj − x

h

)
Λλ(Zj, z)

≡ Bik(x, z) + Vik(x, z). (C.5)

Let

Bi(x, z) = (1, 0)
[
S(x, z)

]−1[
Bi1(x, z), Bi2(x, z)

]′
and

Vi(x, z) = (1, 0)
[
S(x, z)

]−1[
Vi1(x, z), Vi2(x, z)

]′
.
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Hence, by (C.4) and (C.5), we have

n∑
i=1

ζ2
i (Xi, Zi)

P∼
n∑
i=1

B2
i (Xi, Zi) +

n∑
i=1

V 2
i (Xi, Zi) + 2

n∑
i=1

Bi(Xi, Zi)Vi(Xi, Zi). (C.6)

We next consider the three terms on the right hand side of (C.6), respectively. It is easy

to see that the first term would lead to the asymptotic bias term, i.e.,

n∑
i=1

B2
i (Xi, Zi)

P∼
n∑
i=1

b2
i (Xi, Zi;h, λ). (C.7)

By the uniform consistency of the nonparametric kernel smoothing (c.f., Mack and Silver-

man, 1982), we can show that

n∑
i=1

Bi(Xi, Zi)Vi(Xi, Zi) = OP (
√
nh2). (C.8)

Hence, to prove (C.3), it is sufficient for us to show that

n∑
i=1

V 2
i (Xi, Zi)

P∼
n∑
i=1

σ2
i (Xi, Zi;h, λ), (C.9)

which can be proved by showing that

n∑
i=1

n∑
j=1, 6=i

n∑
k=1, 6=i

ηj∗K
(Xi −Xj

h

)
K
(Xi −Xk

h

)
Λλ(Zj, Zi)Λλ(Zk, Zi)ηk∗

P∼ Vn∗n
2h, (C.10)

where Vn∗ = τ(1− τ)ν0
1
n

∑n
i=1 fXZ(Xi, Zi) with fXZ(·, ·) defined in the proof of Lemma
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C.1. Observe that

n∑
i=1

n∑
j=1, 6=i

n∑
k=1, 6=i

ηj∗K
(Xi −Xj

h

)
K
(Xi −Xk

h

)
Λλ(Zj, Zi)Λλ(Zk, Zi)ηk∗

=
n∑
i=1

n∑
j=1, 6=i

n∑
k=1, 6=i,j

ηj∗K
(Xi −Xj

h

)
K
(Xi −Xk

h

)
Λλ(Zj, Zi)Λλ(Zk, Zi)ηk∗ +

n∑
i=1

n∑
j=1, 6=i

η2
j∗K2

(Xi −Xj

h

)
Λ2
λ(Zj, Zi).

By the uniform consistency result of the nonparametric kernel smoothing and the Law of

Large Numbers, we can prove

1

n2h

n∑
i=1

n∑
j=1,6=i

η2
j∗K2

(Xi −Xj

h

)
Λ2
λ(Zj, Zi)

=
1

n

n∑
j=1

η2
j∗

[ 1

nh

n∑
j=1,6=i

K2
(Xi −Xj

h

)
Λ2
λ(Zj, Zi)

]
=

ν0

n

n∑
j=1

η2
j∗fXZ(Xj, Zj)

P∼ τ(1− τ)ν0
1

n

n∑
i=1

fXZ(Xi, Zi) ≡ Vn∗. (C.11)

By some standard calculations, we can show that

n∑
i=1

n∑
j=1, 6=i

n∑
k=1, 6=i,j

ηj∗K
(Xi −Xj

h

)
K
(Xi −Xk

h

)
Λλ(Zj, Zi)Λλ(Zk, Zi)ηk∗

= OP (n3/2h). (C.12)

The proof of (C.10) can be completed by using (C.11) and (C.12).

99



APPENDIX B

PROOFS IN THE THIRD ESSAY

B.1 Details of Testing Rank

In this section we briefly describe main idea behind the testing method proposed in

Robin and Smith (2000) and how it can be applied to test the rank of Bd1,d3 . The first

step is to transform the matrix Bd1,d3 into two quadratic forms: B1 = Bd1,d3B
′
d1,d3

and

B2 = B′d1,d3Bd1,d3 . Note that B1 and B2 have identical eigenvalues and they have the

same number of zero eigenvalues as Bd1,d3 , thus test the rank of Bd1,d3 is equivalent

to test the number of non-zero eigenvalues that B1 has. Under the null hypothesis H0

(rank(Bd1,d3) = r∗), B1 has r∗ non-zero eigenvalues and M − r∗ zero eigenvalues. Recall

that B1 is in quadratic form, its eigenvalues are all non-negative and zero eigenvalues will

be the smallest. As a result, the summation of its smallestM−r∗ eigenvalues equals to zero

under H0 and we reject H0 if the summation is too large. This leads to the test statistics

TS = n
∑M−r∗

i=1 EIGi, where EIG1, EIG2, · · · , EIGM−r∗ are the smallest estimated

eigenvalues of B1 and n is the number of bidders. Denote the corresponding eigenvectors

as C1, C2, · · · , CM−r∗ and C = (C1 C2 · · · CM−r∗) is a matrix that collects the eigenvec-

tors. Similarly, we pick up the smallest M − r∗ estimated eigenvalues of B2 and denote

the corresponding eigenvectors as D1, D2, · · · , DM−r∗ and D = (D1 D2 · · · DM−r∗).

Both C and D have a dimension of M × (M − r∗).

Note that B̂d1,d3 is a frequency estimator of the joint pmf of d1 and d3, then by Central

Limit Theorem (CLT)

√
n(vec(B̂d1,d3)− vec(Bd1,d3))

d→ NMM(0,Ω) (D.1)
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where vec(·) is a vectorization operator, which converts a matrix into a vector, and Ω is an

M ×M covariance matrix. In practice, Ω may be estimated by bootstrap. The asymptotic

distribution of the test statistic is a sum of weighted chi-square distributions, which is

described as
(M−r∗)2∑
i=1

λi · χ2
1,i (D.2)

where {λi}(M−r∗)2
i=1 are the weights and {χ2

1,i}
(M−r∗)2
i=1 are i.i.d. chi-square random variables

with degree of freedom one. {λi}(M−r∗)2
i=1 are the eigenvalues of (C⊗D)′Ω(C⊗D), where

(C⊗D)′Ω(C⊗D) is a (M−r∗)2× (M−r∗)2 matrix. The critical value can be generated

by simulation.

B.2 Proof of Proposition 1

Part(a)

Proof. From the property of strategy functions, we know that the mapping from value to

bid is increasing. For each type of bidders, the α-th quantile of value must be mapped to

the α-th quantile of bid, i.e., sk(vk,α) = bk,α and sl(vl,α) = bl,α. Then we have bk,α−bl,α =

sk(vk,α)− sl(vl,α). The statement of Proposition 1 is equivalent to that sk(vk,α)− sl(vl,α)

is increasing in α on Q. Since both sk(vk,α) and sl(vl,α) are differentiable with respect to

α, we can write the statement of Proposition 1 in terms of derivatives as

∂sk(vk,α)

∂α
− ∂sl(vl,α)

∂α
≥ 0, ∀α ∈ Q

By the chain rule, we have

∂sk(vk,α)

∂α
− ∂sl(vk,α)

∂α
=
∂sk(vk,α)

∂vk,α
· ∂vk,α
∂α
− ∂sl(vl,α)

∂vl,α
· ∂vl,α
∂α
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Since type k and l share the same value distribution, we have vk,α = vl,α.

∂sk(vk,α)

∂α
− ∂sl(vk,α)

∂α
= (

∂sk(vk,α)

∂vk,α
− ∂sl(vk,α)

∂vk,α
) · ∂vk,α

∂α

Since vk,α is the α-th quantile of type k’s value distribution, ∂vk,α
∂α

> 0. We only need to

show that
∂sk(vk,α)

∂vk,α
− ∂sl(vk,α)

∂vk,α
≥ 0, ∀α ∈ Q (D.3)

Since we do not have the closed-form solutions for sk and sl, but have the closed-form

solutions of s−1
k and s−1

l instead. We consider rewrite the above inequality in terms of

inverse strategy functions. By the chain rule, we have ∂sk(vk,α)

∂vk,α
· ∂s

−1
k (bk,α)

∂bk,α
= 1. Since the

mapping from value to bid is increasing, we have both ∂sk(vk,α)

∂vk,α
> 0 and ∂s−1

k (bk,α)

∂bk,α
> 0.

Similarly, for type l, we have ∂sl(vl,α)

∂vl,α
· ∂s

−1
l (bl,α)

∂bl,α
= 1, ∂sl(vl,α)

∂vl,α
> 0 and ∂s−1

l (bl,α)

∂bl,α
> 0.

Equation (D.3) is equivalent to the following.

∂s−1
k (bk,α)

∂bk,α
− ∂s−1

l (bl,α)

∂bl,α
≤ 0, ∀α ∈ Q (D.4)

Recall that we have closed-form solutions for both s−1
k and s−1

l in Section 2, as showed in

the following.

s−1
k (bk,α) = bk,α + λ−1

k (H(bk,α))

s−1
l (bl,α) = bl,α + λ−1

l (H(bl,α))

Furthermore, we have

∂s−1
k (bk,α)

∂bk,α
= 1 +

∂λ−1
k (H(bk,α))

∂H(bk,α)
· ∂H(bk,α)

∂bk,α
(D.5)

∂s−1
l (bl,α)

∂bl,α
= 1 +

∂λ−1
l (H(bl,α))

∂H(bl,α)
· ∂H(bl,α)

∂bl,α
(D.6)
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Plug Equation (D.5) and Equation (D.6) into Equation (D.4), then we have

∂λ−1
k (H(bk,α))

∂H(bk,α)
· ∂H(bk,α)

∂bk,α
≤ ∂λ−1

l (H(bl,α))

∂H(bl,α)
· ∂H(bl,α)

∂bl,α
, ∀α ∈ Q (D.7)

By Assumption 2(b), we have 0 ≤ ∂Hk(bk,α)

∂bk,α
≤ ∂Hl(bl,α)

∂bl,α
. By Assumption 2(a), uk(x) =

xβk/βk and λk(x) = uk(x)/u′k(x) = x/βk. As a result, λ−1
k reduces to a linear function,

as well as λ−1
l , i.e., ∂λ−1

k (Hk(bk,α))

∂Hk(bk,α)
= βk and ∂λ−1

l (Hl(bl,α))

∂Hl(bl,α)
= βl. By Assumption 6, we

have 0 < βk < βl. Then ∂λ−1
k (Hk(bk,α))

∂Hk(bk,α)
· ∂Hk(bk,α)

∂bk,α
≤ ∂λ−1

l (Hl(bl,α))

∂Hl(bl,α)
· ∂Hl(bl,α)

∂bl,α
. The proof is

completed.

Part(b)

Proof. Since both sk and sl are increasing, the quantiles will thus transfer from values to

bids, i.e., sk(vk,α) = bk,α and sl(vl,α) = bl,α. Then we have bk,α−bl,α = sk(vk,α)−sl(vl,α).

The statement that T (α) is decreasing is equivalent to that sk(vk,α)− sl(vl,α) is decreasing

in α, i.e., ∂sk(vk,α)

∂α
<

∂sl(vl,α)

∂α
. For simplicity in writing the proof, the quantile notation αwe

are using here means ∀α ∈ Q. The quantiles outside of Q are excluded. By Assumption

3(a), we have

vl,α = vk,α − c(vk,α)

The statement that T (α) is decreasing is further equivalent to that

∂sk(vk,α)

∂α
<
∂sl(vk,α − c(vk,α))

∂α
.
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∂sk(vk,α)

∂α
− ∂sl(vk,α − c(vk,α))

∂α

=
∂sk(vk,α)

∂vk,α
· ∂vk,α
∂α
− ∂sl(vk,α − c(vk,α))

∂vk,α
· ∂vk,α
∂α

= (
∂sk(vk,α)

∂vk,α
− ∂sl(vk,α − c(vk,α))

∂vk,α
) · ∂vk,α

∂α

Since vk,α is the α-th quantile of type k’s value distribution, ∂vk,α
∂α

> 0. Only to show

that ∂sk(vk,α)

∂vk,α
− ∂sl(vk,α−c(vk,α))

∂vk,α
< 0. In the following we will decompose ∂sk(vk,α)

∂vk,α
−

∂sl(vk,α−c(vk,α))

∂vk,α
.

∂sk(vk,α)

∂vk,α
− ∂sl(vk,α − c(vk,α))

∂vk,α

=
∂sk(vk,α)

∂vk,α
− ∂sl(vk,α − c(vk,α))

∂vl,α
· ∂vl,α
∂vk,α

=
∂sk(vk,α)

∂vk,α
− ∂sl(vl,α)

∂vl,α
· (1− ∂c(vk,α)

∂vk,α
)

=
∂sk(vk,α)

∂vk,α
− ∂sl(vl,α)

∂vl,α
+
∂sl(vl,α)

∂vl,α
· ∂c(vk,α)

∂vk,α

≡ A+B

where A ≡ ∂sk(vk,α)

∂vk,α
− ∂sl(vl,α)

∂vl,α
and B ≡ ∂sl(vl,α)

∂vl,α
· ∂c(vk,α)

∂vk,α
. In the following we will show

that B < 0. By Assumption 3(a), ∂c(vk,α)

∂vk,α
< 0. Since sl is type l’s strategy function, it

must be increasing in value, i.e., ∂sl(vl,α)

∂vl,α
> 0. The combination of these two inequalities

gives

B =
∂sl(vl,α)

∂vl,α
· ∂c(vk,α)

∂vk,α
< 0

The last step is to show that A < 0. From sk(vk,α) = bk,α and s−1
k (bk,α) = vk,α, by the law

of derivatives of inverse function, we have ∂sk(vk,α)

∂vk,α
· ∂s

−1
k (bk,α)

∂bk,α
= 1. Since ∂sk(vk,α)

∂vk,α
> 0,

we have ∂s−1
k (bk,α)

∂bk,α
> 0. This will also apply to type l. Then A < 0 is equivalent to that

∂sk(vk,α)

∂vk,α
<

∂sl(vl,α)

∂vl,α
and further equivalent to that ∂s

−1
k (bk,α)

∂bk,α
>

∂s−1
l (bl,α)

∂bl,α
. By Equation (4.5),
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∂s−1
k (bk,α)

∂bk,α
and ∂s−1

l (bl,α)

∂bl,α
can be explicitly expressed as

∂s−1
k (bk,α)

∂bk,α
= 1 +

∂Hk(bk,α)

∂bk,α

and
∂s−1

l (bl,α)

∂bl,α
= 1 +

∂Hl(bl,α)

∂bl,α

By Assumption 3(b), we have ∂Hk(bk,α)

∂bk,α
>

∂Hl(bl,α)

∂bl,α
, i.e., ∂s

−1
k (bk,α)

∂bk,α
>

∂s−1
l (bl,α)

∂bl,α
and A < 0.

The proof is completed.

B.3 Proof of Proposition 4

The goal of this section is to derive the asymptotic properties of the estimator. It is easy

to see that both B̂b2,d1,d3 and B̂d1,d3 are
√
n consistent by empirical CDF/pmf estimator. By

Hu (2008), the eigen decomposition function φE(·) is an analytical function. As a result,

B̂d1|k = φE(B̂b2,d1,d3B̂d1,d3)
p→ φE(Bb2,d1,d3Bd1,d3) = Bd1|k

The inverse of Bd1|k is also consistent.

B̂−1
d1|k

p→ B−1
d1|k

Since ~̂p(d1) is
√
n consistent by empirical pmf estimator, we have that

~̂p(k) = B̂−1
d1|k~̂p(d1)

p→ B−1
d1|k~p(d1) = ~p(k)
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Recall that Ĝ(b2|k) is obtained by

Ĝ(b2|k) =
~ekB̂

−1
d1|kĜ(b2, d1)

~ek~̂p(k)

~ek is a deterministic vector. Therefore, ~ekB̂−1
d1|k

p→ ~ekB
−1
d1|k and ~ek~̂p(k)

p→ ~ek~p(k). The only

component left unconsidered is Ĝ(b2, d1). The joint CDF/pmf is estimated by empirical

CDF/pmf estimator with

√
n(Ĝ(b2, d1)−G(b2, d1))

d→ N(0, Vb2,b2)

where Vb2,b2 is the variance for empirical CDF estimator. By Slutsky theorem, we have

that

√
n(Ĝ(b2|k)−G(b2|k))

=
~ekB̂

−1
d1|k
√
n(Ĝ(b2, d1)−G(b2, d1))

~ek~̂p(k)

d→ N(0,
~ekB

−1
d1|kVb2,b2(~ekB

−1
d1|k)

T

(~ek~p(k))2
)

nV ar(Ĝ(b2|k))→
~ekB

−1
d1|kVb2,b2(~ekB

−1
d1|k)

T

(~ek~p(k))2
≡ Vb2,b2,kk

nCov(Ĝ(b2|k), Ĝ(b′2|l))→
~ekB

−1
d1|kVb2,b′2(~elB

−1
d1|l)

T

~ek~p(k)~el~p(k)
≡ Vb2,b′2,kl

According to the asymptotic properties of the conditional CDF estimator, we can fur-

ther derive the asymptotic properties of the conditional inverse CDF estimator by Ba-

hadur’s representation. For notation simplicity, denote bk,α ≡ G−1
k (α). By Bahadur’s
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representation, we have that

Ĝ−1
k (α) = bk,α +

α− Ĝk(bk,α)

gk(bk,α)
+ op(

1√
n

)

The conditional inverse CDF estimator is a
√
n consistent estimator. Furthermore, T̂ (α) ≡

Ĝ−1
k (α)− Ĝ−1

l (α) is a root n consistent estimator for T (α).

107


