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ABSTRACT 

Corrosion of equipment is one of the most vital factors that results in serious 

process safety incidents. Though various types of equipment are subject to corrosion 

issues to different extent depending on the process conditions, the pipe and the piping 

network connecting units and equipment are relatively more vulnerable to corrosion. The 

vulnerability of a pipe to internal corrosion is predominantly due to the process conditions. 

Among the factors contributing to the internal corrosion, substances creating corrosive 

conditions in the pipe, such as CO2 and H2S, are the most common factors, followed by 

the flow condition of processes (flow rate and temperature). In this paper, a single-phase 

integrated prediction model for H2S/CO2 corrosion is developed to study a holistic effect 

of most important variables. The model investigates the electrochemical kinetics of 

corrosive substances, the scale formation conditions, and the flow conditions that have 

impact on the mass transport of corrosive species. The COMSOL software based on finite 

element method is used to simulate all these. The prediction results of present model are 

in good accordance with the measured field data. Additionally, it is found in the present 

model that the charge transfer current density has significant contribution to the corrosion 

rate, which is ignored in some other models. Apart from that, other comparisons have been 

made to investigate the impact on corrosion rate as a function of flow region, H2S and CO2 

concentration, and temperature. Finally, the present model is able to provide the 

information on if there are FeS (or FeCO3) protective scales formed at steel surface. 
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CHAPTER I 

 INTRODUCTION 

1.1 Background 

Oil refining industry has been playing a significant role in global economy 

development. Not only is the source of energy for transportation and residential use 

dependent on the refined products, but also the manufactory industry that largely 

consumes the petrochemicals relies on the oil refining industry, since the refined products 

are the feedstocks of various industry products as well as consuming goods such as resins, 

plastics, engineering materials and fibers. Due to the influence on the downstream 

manufactory to a large extent, the existence of refinery sector is not only the strategic 

advantage in a single country or region, but in a global-wide range. 

Corrosion of an equipment part is one of the most important factors that results in 

the serious process safety incidents in oil & gas industry. The reliability of equipment can 

reduce gradually till the serious failure due the uncontrolled corrosion that results in the 

release of hazardous materials. Therefore, corrosion can put plant personnel and 

production at risk, which can lead to the damage or even shutdown of the units.  

Although different types of equipment can be subject to corrosion issues to 

different extent depending on the process conditions, the pipe and the pipe network 

connecting units and equipment are relatively more vulnerable to corrosion. The 
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vulnerability of pipe to corrosion is due to the internal process conditions. According to 

the study by JCS in 2013 [1], it has been identified what types of substances and operation 

conditions were the major contributors that lead to corrosion associated incidents, among 

which substance was the biggest contributor and the following was the flow conditions. 

Crude oil and natural gas can carry many high-impurity products which are 

inherently corrosive. Among those impurities, the most common ones are CO2 and H2S, 

which can cause sweet corrosion and sour corrosion in the presence of free water in oil 

and gas pipes. CO2 corrosion, or sweet corrosion, has been a recognized problem in oil 

and gas production and transportation facilities for many years due to the technique of 

CO2 injection for enhanced oil recovery. CO2 is one of the main corroding agents in the 

oil and gas production systems. Dry CO2 gas itself is not corrosive within oil and gas 

production systems but is corrosive when mixed with free water. The corrosion of metal 

due to contact with hydrogen sulfide (H2S) and moisture is called sour corrosion which is 

the most damaging corrosion to pipe. Although H2S is not corrosive by itself as well, it 

becomes severely corrosive in the presence of water.  

 

1.2 Corrosion associated incidents in oil refining industry 

Since 1984, around 20% corrosion failures were reported as an important 

contributing factor in 137 major refinery accidents in EU countries[1]. And in the U.S, the 
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cost related to corrosion in the oil industry has been estimated about $3.7 billion per 

year[1]. 

On August 6, 2012, the Chevron Richmond Refinery in California experienced a 

catastrophic pipe rupture and fire incident. The incident was caused by a pipe rupture on 

a 52-inch long component due sulfidation corrosion. At the time of the incident, light gas 

oil was flowing through the 8-inch line at a rate of approximately 10,800 barrels per day 

(bpd). During the weeks after the incident, it was estimated that local hospitals received 

over 15,000 people of the public who sought treatment for ailments [2]. 

Chevron Richmond Refinery incident in 2012 was not the first one that was caused 

by sulfidation corrosion at a Chevron refinery. In 1988, a low silicon carbon steel (0.02 

wt. % silicon) piping component failed at the Chevron’s former El Paso Refinery in El 

Paso, Texas. In addition, in 2002, a fire incident occurred at the Chevron Salt Lake City 

Refinery which was caused by a process piping failure because of sulfidation corrosion in 

a carbon steel pipe, where the corrosion rate was failed to be detected at the rupture 

location. Compared with the corrosion rates at other locations in the pipe that were 

successfully detected, the corrosion rate at the failure point was estimated to be five times 

greater. It has been realized in the following incident investigation that the increase in 

operation temperature and concentration hydrogen sulfide over time was the major 

contributor that increased the corrosion rate and final rupture [2]. 

On November 9, 2009, the Silver Eagle refinery in Woods Cross, Utah, 

experienced a severe pipe rupture and fire incident due to sulfidation corrosion in the pipe. 
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The corrosion rate also increased because of the temporarily increased temperature that 

was higher than the regular operational temperature. The ruptured pipe located on the 

bottom of a dewaxing reactor released hydrogen, which then led to fire and explosion. The 

consequences of incidents included injuries of four workers and damages on over 100 

homes in the near neighborhood [2]. 

On October 6, 2011, Canadian refinery in Regina, Saskatchewan experienced a 

pipe rupture due to hydrogen sulfide corrosion, which then resulted in a catastrophic 

explosion and fire incident, where 52 workers were injured. Although the company’s 

detection data showed the wall thickness of overall piping system in the refinery was 

within acceptable range, corrosion rate at the failure location was higher than other 

locations and was not correctly inspected [2].  

 

1.3 Corrosion prediction models 

Corrosion can cause severe incidents with fires and fatalities in a refinery unit, 

since corrosion is ubiquitous. Therefore, the chance of failures such as ruptures or large 

leaks due to corrosion is higher than pinhole leaks due to human error. Because of 

difficulties in detecting high corrosion rate and the change of process conditions such as 

the increase in flow rate and temperature that can facilitate the corrosion rates over time, 

equipment failure due to corrosion always takes place before the increased corrosion rate 

is detected. 
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So corrosion prediction models are largely utilized to help corrosion engineers and 

scientists for the decision-making process when designing an oil & gas production (or 

treatment) facility and scheduling the mechanical integrity inspection, which involves the 

use of corrosion resistant alloys (CRA) that is with high economic cost, corrosion inhibitor 

as well as other mitigation approaches. Corrosion predictions models can be divided into 

two types: empirical model versus mechanistic model. The empirical models are 

dependent mostly on the empirical correlations with experimental results or field data, 

while the mechanistic models are mainly based on the first principle derivation of 

chemical/ electrochemical reaction and transport phenomena involved in a corrosion 

process, although some experimental data are needed to adjust and calibrate the models. 

One major contrast that differentiates a mechanistic model from an empirical one is that 

the mechanistic model is able to predict the formation and protective effect of corrosion 

scales. The related corrosion mechanisms that a corrosion prediction model may consider 

includes: kinetics of electrochemical reactions on metal surface, homogeneous reaction of 

corrosive species, formation of protective scales, mass transport as well as flow conditions 

and flow regime, etc. Not all the models include all these factors, and models with different 

approach to have different emphasis on treating various factors and parameters.  

All models have limitations since they are developed for the application with 

respect to specific environmental conditions and certain systems. Thus, all the prediction 

models applied for a specific condition should be verified by experimental or field data 

under the same condition. Therefore, the empirical models have the advantage of utilizing 

ranges of data that they correlate with. For example, as shown in Table 1, different oil 
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companies and research institutions have developed models to predict H2S/CO2 corrosion 

in carbon steel pipe, most of which are empirical or semi-empirical models. Those models 

work well for the worst-case scenario, but varies widely when more complex effects are 

considered, such as the formation and growth of protective scales. This is because that the 

empirical models largely rely on the empirical correction factors when dealing with 

complex effects under specific corrosion environment. 

 
 

 
Table 1. Corrosion prediction models developed by different oil & gas companies 

Model Developer Year Description 

De Waard Shell 1995 Uses a scale factor to take account for corrosion product scales 

Cassandra BP 1997 De Waard model including BP's experience in using this model 

Lipucor Total 1996 Based on both laboratory results and a large amount of field data 

Hydrocor Shell 2002 Combines corrosion and fluid flow modeling 

 
 

 
Similarly, mechanistic models also need verification from large number of data in 

order to be applicable for the more accurate prediction within the range of data. The 

corrosion mechanisms that a corrosion prediction model may consider mentioned in the 

previous paragraph have been intensively studied in the past three decades, with some CO2 

corrosion model being developed [3-8]. These models are able to predict very well in the 

case of no protective scale formation, while the deviation is obvious in the presence of 

iron carbonate scale which is formed from CO2 corrosion. 
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Different from CO2 corrosion, H2S corrosion mechanism is more complex, which 

means the prediction is more difficult to achieve, since the understanding in H2S corrosion 

mechanism is insufficient, and the research papers studying the electrochemical reaction 

of hydrogen sulfide and the formation of iron sulfide scale are limited [9-13].  

 

1.4 Research objectives  

In this research, a mechanistic H2S/CO2 corrosion model is developed that 

integrates the effect of most important variables including kinetics of electrochemical 

reaction involving corrosive substances, protective scale effects, and effect of flow 

conditions on the mass transport of corrosive species. 

As shown in Scheme 1, the first part of model is to study the electrochemical 

reaction on the steel surface. Since the corrosion process is electrochemical in nature, the 

corrosion rate can be determined by calculating the rate of the electrochemical reaction, 

which is the kinetics of the reaction: such as oxidation of iron (anodic reaction) and the 

reduction of acid (cathodic reaction). The electrochemical reaction rate can be expressed 

as current density, which is a function of the reaction potential, while the potential is an 

important measure of thermodynamics to show which specie can react or react first. So in 

this part of process, it is necessary to investigate how the reaction conditions like pH, 

temperature and concentration will affect the thermodynamics and kinetics of the 

corrosion reaction on the steel surface. 
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Once the corrosion reaction takes place, the formation of corrosion product may 

occur, depending on the saturation of corrosion products, and this step is called scale 

formation. When the corrosion products precipitate at the steel surface, which it could be 

either iron carbonate or iron sulfide, or both, it can slow down the corrosion process by 

providing a diffusion barrier. However, depending on different solution conditions, like 

pH and temperature the composition and thickness of scale can be different, which will 

have different effect on corrosion rate. This because the porosity of iron sulfide and iron 

carbonate are different, which have different effect on the mass transport of corrosive 

species.  

Another important factor that affects the corrosion rate is the flow condition. The 

flow condition will affect the mass transport efficiency of corrosive species in the 

boundary layer, since the flow condition will determine the distribution of velocity and 

turbulent kinetic energy, which will have the influence on the mass transport coefficient 

and the mechanical damage on protective scales. 
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Scheme 1. Framework of integrated mechanistic H2S/CO2 corrosion prediction model 

 
 

 

1.5 Outline of research in this thesis  

A general literature review and extension of the theory behind H2S/CO2 corrosion 

is presented in Chapter 2. First of all, the basic kinetics of corrosion reaction is presented, 

which includes the water chemistry and the electrochemical reaction on carbon steel 

surface. Second, the theory and general description of mass transport of corrosive 

materials is demonstrated such as Nernst-Planck equation and effects of flow. In the 

following part of literature review, the development and the mechanism of mechanistic 

models for H2S/CO2 corrosion prediction in the publications are described and explained, 

with some key chemical reactions and empirical equations for the equilibrium constants 

being listed. These prediction model in this literature reviews are electrochemical reaction 

model, mass transport model and scale formation model. 

The development of H2S/CO2 corrosion prediction model in this research work is 

described in Chapter 3. Based on the existed models in the literature review in Chapter 2, 

some of the models will be modified and included with factors that are not considered in 

the existed models. Then the models associated with electrochemical reaction, mass 

transport and scale formation are “connected” together to form a one-dimensional 

integrated corrosion model. In the last part of Chapter 3, the one-dimensional integrated 

corrosion model is coupled with a three-dimensional flow field & regime model to give a 
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completed H2S/CO2 corrosion prediction model that can generate a “map” of corrosion 

rate distribution at different flow regime. 

The results of developed corrosion model as well as the comparison with 

experimental data in open publications are discussed in Chapter 4. Conclusion and 

suggestion for future work are presented in chapter 5 and 6. 
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CHAPTER II 

 LITERATURE REVIEW 

2.1 Electrochemical corrosion theory 

Uniform corrosion is basically the electrochemical corrosion, which is sustained 

by a current flow in a short-circuited electrochemical cell, and this is also the basis of 

many other corrosion mechanisms such as crevice corrosion, intergranular corrosion and 

pitting corrosion. In this section, the basic principles of electrochemical kinetics of 

corrosion reaction is presented in the following parts. 

2.1.1 Polarization Resistance 

Stern and Geary have developed a fundamental theory for polarization resistance 

in 1950s [14]. In a corroding system, there are two or more co-existing half-cell 

electrochemical reactions conducting electrons via the short-circuit in solution. The 

oxidation reaction of metal losing electrons takes place at the anode: 

𝑀	 → 𝑀8 +	𝑒;     (1) 

The other half-cell electrochemical reaction is the reduction of a corrosive specie 

in the solution at the cathode: 

𝑍8 +	𝑒; 	→ 	𝑍     (2) 
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The equilibration potentials of the couples in equations (1) and (2) are labeled Eeq,M 

and Eeq,Z, respectively. The corrosion potential (Ecorr) is the potential at which the current 

density of oxidation reaction at anode (iox,M) is equal to current density of reduction 

reaction at cathode (ired,Z). Since the electrochemical reaction rate is proportional to current 

density, the reaction rate of cathode and anode reaches equilibrium at corrosion potential. 

Also, the difference between the current density of cathode and anode is called net current, 

which is measured to be zero with an external device. 

	𝑖>?@A = 	 𝑖CD,E −	 𝑖G?H,I = 0             (3) 

𝑖KCGG = 	 𝑖CD,E = 	 𝑖G?H,I        (4) 

Here icorr is directly related with the corrosion rate of metal, which will be elaborated in 

the later part. 

2.1.2 Tafel Plots 

A Tafel plot is obtained by polarizing the metal within the potential range of ±300 

mV from the corrosion potential, Ecorr. The potential applied to metal for polarization can 

either be continuously scanned or step wised. An example of experimentally obtained 

Tafel plot is as shown in Figure 1. 
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Figure 1. Example of experimentally measured Tafel plot [15]. 

 
 
 

The logarithmic Tafel plot can be expressed by the Tafel equation for both anode 

and cathode, where 𝜂 is the over potential (the difference between the applied potential E 

and corrosion potential Ecorr), 𝛽O  and 𝛽P  are Tafel constants for anode and cathode, 

respectively, i is the current in 𝜇𝐴 at applied potential E. It can be noticed from the 

Equation (5) or (6) that when the applied potential (E) is equal to the corrosion potential 

Ecorr (𝜂 = 0), the current i at the applied potential is equal to the icorr.  

𝜂 = 	𝛽O𝑙𝑜𝑔
WXY,Z
W[X\\

     (5) 

𝜂 = 	𝛽P𝑙𝑜𝑔
W\]^,_
W[X\\

     (6) 

 Making rearrangement on Equation (5) or (6) can give Equation (7), which make 

𝜂 have a linear correlation with log(i) in forms of y=kx+b. And the slope of the new plot 
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is the Tafel constant 𝛽. Therefore, the Tafel constant can be determined from the plot of 

experimental data. 

𝜂 = 𝛽 𝑙𝑜𝑔 𝑖 − 𝑙𝑜𝑔	(𝑖KCGG)         (7) 

2.1.3 Calculation of corrosion rate from current density 

As is shown the Faraday’s Law in Equation (8), Q is coulomb number, n is the 

number electrons transferred in the electrochemical reaction at electrode surface, F is 

Faraday constant (F=96,478), W is the weight of electroactive species, and M is molecular 

weight. 

𝑄 = bcd
E

     (8) 

By knowing Q=I*t (t is time) and defining equivalent weight (E.W.) is the ratio of M/n, 

rearrange Equation (8) to get: 

d
e
= f(g.d.)

c
     (9) 

Here W/t is the corrosion rate with in forms of grams per second. However, the corrosion 

rate (CR) is normally expressed with the unit mm/year. So by dividing Equation (9) on 

both sides with the corrosion area A and the metal density 𝜌 and converting time scale 

from second to year, we are able to obtain the expression for CR in terms of mm/year 

(Equation (10)), where i is current density (A/m2) at electrode (or metal) surface, (E.W.) 

is equivalent weight of metal (g) and 𝜌E is density of corroding metal, (g/m3). 
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𝐶𝑅(𝑚𝑚 𝑦𝑟) = op.qr∗W∗(g.d.)
tZ

    (10) 

 

2.2 Water chemistry 

2.2.1 Water chemistry of CO2 

Since the pipes transporting oil & gas products always carry some amount of CO2 

gas and water as the same time. When CO2 gas dissolves in water, a series of chemical 

reactions (see Table 2) will occur, which include the formation and dissociation of H2CO3. 

These basic chemical reaction equations determine the equilibrium and concentration of 

different carbonic species under different solution conditions that will further determine 

the corrosion rate at the metal surface [4, 16, 17]. The calculation of relevant equilibrium 

constants is listed in Table 3. 

 
 
 

Table 2. Chemical reactions of CO2 in aqueous solution and relevant reaction equilibrium equations 

Reaction name Reaction equation Equilibrium equation 

CO2 dissolution 𝐶𝑂p(v) ⇌ 𝐶𝑂p(@x)          (11) 𝐾ACz =
P{|'
}{|'

           (12) 

CO2 hydration 𝐶𝑂p(@x) + 𝐻p𝑂 ⇌ 𝐻p𝐶𝑂o(@x)   (13) 𝐾��H =
P�'{|1
P{|'

        (14) 
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Reaction name	 Reaction equation	 Equilibrium equation	

H2CO3 dissociation 𝐻p𝐶𝑂o(@x) ⇌ 𝐻(@x)8 + 𝐻𝐶𝑂o(@x);    (15) 𝐾K@ =
P�{|1�P�.

P�'{|1
      (16) 

HCO3
- dissociation 𝐻𝐶𝑂o; ⇌ 𝐻(@x)8 + 𝐶𝑂o(@x)p;       (17) 𝐾�W =

P{|1'�
P�.

P�{|1�
      (18) 

H2O dissociation 𝐻p𝑂 ⇌ 𝐻(@x)8 + 𝑂𝐻(@x);        (19) 𝐾�@ = 𝐶�.𝐶���   (20) 

 
 
 

Table 3. Equations for the equilibrium constant calculation for CO2 

Equilibrium constant Source 

𝐾ACz =
��.�

�.��p�r
×10; p.p�8�.q�×���1��;r.�q×������

'8�.���f 												 𝑚𝑜𝑙 𝑏𝑎𝑟 				(21) [18] 

𝐾ACz = 2.58	×	10;o                                                              (22) [19] 

𝐾K@ = 387.6×10; q.��;�.���×���1��8o.�p×������
';o.��×����};�.���p�f�.�8�.��r��f 			 𝑚𝑜𝑙    (23) [18] 

𝐾�W = 10; ��.q�;�.��×���1��8�.oo�×������
';p.qp�×����};�.qqf�.�8�.o�qq�f 								 𝑚𝑜𝑙    (24) [18] 

𝐾�@ = 10; p�.orqr;�.��o������8�.��rr�×������
'
																						 𝑚𝑜𝑙p   (25) [20] 

*Tf is temperature in ℉, Tk is absolute temperature in K, I is ionic strength in molar: 𝐼 = �
p

𝐶W𝑍WpW , and p is the pressure 
in bar  

 
 
 
To calculate the bulk concentration of different carbonic species and protons in an 

aqueous solution, a water chemistry model needs to be developed. In the aqueous solution, 

the concentrations of six species need to determine which are CO2, H2CO3, HCO3
-, CO3

2-

, OH- and H+, while there are only 5 equations available (see Table 2). Due to the electro-

neutrality of the solution, the number of negative charges should be equal to the number 

of positive charge. Therefore, the sixth equation (Equation (26)) is found to solve the 

concentration of six species. 
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𝐶�. = 	𝐶�P�1� + 2𝐶P�1'� + 𝐶���    (26) 

Here the expression in Equation (26) only considers the condition with pure CO2 

If in the case with other ions in the solution such as Fe2+, HS- and S2-, etc., Equation (26) 

should be modified with regard to the change of charged species in the solution. In 

addition, the equilibrium equations listed in Table 2 should be modified or added for the 

new species (e.g., H2S) that will be involved in the homogeneous reactions. 

From what have been discussed above, CO2 partial pressure contributes to change 

in pH value of the solution, which decreases as CO2 partial pressure increases. H2CO3 

formed from CO2 dissolution is not only a corroding specie itself that can react at the metal 

surface, but also the acidic agent by giving hydrogen ions from carbonic acid dissociation. 

Since the hydrogen ion are also the corrosive specie for the cathodic reaction, the decrease 

of pH value in the solution can facilitate the corrosion process. Since pH and CO2 pressure 

have influence on the equilibrium of H2CO3 dissociation and the concentration of CO3
2-, 

both factors will affect the formation of iron carbonate, which plays a role protective scale, 

because, as shown in Equation (27) the saturation of iron carbonate is determined by the 

concentration of CO3
2- [21].  

𝑆c?P�1 =
P¡]'.P{|1'�

¢£¤¡]{|1
     (27) 

where 𝐾A}c?P�1 is the solubility product of iron carbonate. 



 

 

 

18 

In summary, CO2 plays an important role in affecting the water chemistry and pH 

of solution, which will further impact the electrochemical reaction at metal surface as well 

as the formation of protective scales.  

2.2.2 Water chemistry of H2S 

Similar to the properties of CO2, H2S can be treated as a weak acid in aqueous 

solutions and can partially dissociate to give hydrogen ions. If both the concentration of 

H2S in aqueous phase and the H2S partial pressure are low enough, Henry’s law can be 

applied to calculate the solubility of H2S. The chemical reactions of H2S occurring in the 

bulk solution and metal surface and related equilibrium equations are listed in Table 4. 

Extensive research work has been done to investigate the thermodynamics of H2S 

reactions in aqueous solution [22]. Major equations for the equilibrium constant 

calculation that will be used in this thesis are listed in Table 5. 

 
 
 

Table 4. Chemical reactions of H2S in aqueous solution and relevant reaction equilibrium equations 

Reaction name Reaction equation Equilibrium equation 

H2S dissolution 𝐻p𝑆(v) ⇌ 𝐻p𝑆(@x)        (28) 𝐾ACz =
P�'¥
}�'¥

         (29) 

H2S dissociation 𝐻p𝑆(@x) ⇌ 𝐻(@x)8 + 𝐻𝑆(@x);   (30) 𝐾�A =
P�¥�P�.
P�'¥

      (31) 

HS- dissociation 𝐻𝑆(@x); ⇌ 𝐻(@x)8 + 𝑆(@x)p;    (32) 𝐾�W =
P¥'�P�.
P�¥�

      (33) 

 
 



 

 

 

19 

 
Table 5. Equations for the equilibrium constant calculation for H2S 

Equilibrium constant Source 

𝐾ACz(�'¥) = 10; qo�.p�8�.p�����;�.������op��
';�q���/��;pq�.�zCv	(��) 												 𝑚𝑜𝑙 𝑏𝑎𝑟 				(34) [23] 

𝐾�A = 10 �rp.�o���;�.oq�pq��;�.����q�pp��
';p��q�.�o����;��p.����pppzCv	(��) 									 𝑚𝑜𝑙    (35) [23] 

𝐾�A = 10 ;po.�o8�.�o���q��;p.�ro�×������
'
																																									 𝑚𝑜𝑙    (36) [20] 

* Tk is absolute temperature in K 

 
 

 
The way to calculate the concentrations of sulfide species involved in the reactions 

listed in Table 4 is similar to that of pure CO2. Different from the case of CO2, 5 different 

sulfide species are with unknown concentrations which are H+, OH-, H2S, HS- and S2-, 

while there are only 4 equations available in Table 4. Again, one more electro-neutrality 

equation (Equation (37)) is needed to solve the concentration of all the sulfide species. 

𝐶�. = 	𝐶�§� + 2𝐶§'� + 𝐶���    (37) 

By comparing the equations in Table 2 and Table 4, it can be indicated that one 

major difference of H2S water chemistry from CO2 is that H2S can directly form the weak 

acid in the aqueous solution with a single step, while the formation of H2CO3 involves two 

steps: dissolution and hydration. Thus, the corresponding calculations for concentrations 

of H2S and H2CO3 are 𝐶�'§ = 	𝐾ACz(�'¥)𝑝�'§ and  𝐶�'P�1 = 	𝐾ACz𝐾��H𝑝P�', respectively. 
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2.3 Mass transport of electrolyte 

2.3.1 The volumetric component mass balance 

 
 
 

 
Figure 2. Mass balance in a controlled volume 
 
 
 

The mass balance across the section area A (m2) of a controlled volume (as shown 

in Figure 2), where 𝑉 = 𝐴 ∙ ∆𝑍  (m3) and length ∆𝑍  (m) of component i is given by 

equation (38). The left side of mass balance equation are the terms of molar flux in, 𝑁W|∆I 

(mol/(m2s)), and mass generation (or consumption) by chemical reaction, Ri (mol/(m3s)). 

The right side are the flux out, 𝑁W|®8∆I  and the overtime, ∆𝑡  (s), accumulation of 

concentration, Ci (mol/m3):  

(∆𝑡 ∙ 𝐴 ∙ 𝑁W)|I + ∆𝑡 ∙ 𝑅W ∙ 𝑉 = (∆𝑡 ∙ 𝐴 ∙ 𝑁W)|I8∆I + (𝐶W|e8∆e − 𝐶W|e)𝑉  (38) 

The direction of both flux, 𝑁W|I and 𝑁W|I8∆I, are perpendicular to the section plane 

A. Dividing Equation (38) by 𝐴∆𝑡∆𝑍 (∆𝑍 → 0 and ∆𝑡 → 0) and rearranging the terms, we 



 

 

 

21 

can obtain a mass balance equation in terms partial differential equation (PDE) as shown 

in Equation (39):  

°P±
°e
= °²±

°®
+ 𝑅W                 (39) 

As for the three dimensional case, Equation (39) can be rewritten as  

°P±
°e
= 𝛻 ∙ 𝑁W + 𝑅W              (40) 

𝛻 ∙ 𝑁W =
°²±,Y
°D

+ °²±,´
°�

+ °²±,µ
°®

             (41) 

2.3.2 The use of Nernst-Planck equation in mass transport 

In order to correctly describe the mass transport of electrolyte in solutions, the 

Nernst-Planck equation is useful obtain to a more comprehensive description. In most 

cases, the Nernst-Planck equation is suitable for dilute solutions. However, for 

concentrated solutions, some assumptions are necessary to be made to deal with the effect 

of ionic strength in the solution. The general form of Nernst-Planck equation is expressed 

in Equation (42): 

°P±
°e
= 𝛻 ∙ 𝐷W𝛻𝐶W + ®±c

·�
𝛻 ∙ 𝐷W𝐶W𝛻𝛷 − 𝛻 ∙ 𝐶W𝑣 + 𝑅W  (42) 

where Ci is the concentration of corrosive species i, Di is the diffusion coefficient of 

species i, zi is the number of charges of species i, F is Faraday’s constant, 𝛷 is the electric 

potential, v is the fluid velocity, and Ri is rate of homogeneous chemical reactions 

generating (or consuming) species i.  
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The term on the left side of equation is the concentration change overtime; the first 

twos terms on the right side is the diffusion of corrosive species from bulk solution to 

metal surface, and the migration induced by the induced potential gradient. The third term 

is the mass transfer due to the convection of fluid. In general, the convection term is 

neglected in the boundary layer mass transport in corrosion modeling, although the 

research done by Harb and Alkire indicated that convection should be considered when 

dealing with the mass transport at the entrance of a pit [24]. 

Another assumption in modeling of mass transport in a corrosion system is electro-

neutrality. Electro-neutrality states that any volume of solution is electrically neutral due 

to the large restoring force resulting from any separation of charge [25]. The solution to 

the Nernst-Planck equation gives full transient profiles of the distributions of species 

concentration, potential, and current density. However, in general, it is also assumed that 

the solution does not transport current in the diffusion boundary layer which can simplify 

the modeling by avoiding the difficulties in calculating the potential gradient. 

The difficulties in solving this differential equation are computational convolution 

and time. The corrosion modeling involves various types of processes, which are so 

different from each other in time scales. For example, the electrochemical reactions on 

metal surface and the homogeneous chemical reactions in solutions are very fast when 

compared with slow processes such as mass transfer in the diffusion boundary layer. In 

addition to the problems of different timescales, the nonlinear boundary conditions such 

as kinetics of electrochemical reactions that will be used to “connect” the models together 



 

 

 

23 

can also bring in more difficulties for calculation. So this requires very small time steps 

and highly refined spatial meshing, which will inevitably increase the computational time. 

2.3.3 Effect of flows 

As mentioned in Chapter 1, flow features have significant impact on the mass 

transfer of corrosive species in the boundary layer and the corrosion rate. Especially, when 

the flow rate increases or there is a turbulent flow, the corrosion rate can be accelerated 

because the flow can change the patterns of diffusion boundary layer, which enhance the 

mass transport of corrosive species from bulk solutions to the metal surface.  

For example, when the corrosion system is absent of protective scales formed from 

corrosion product, the H2S induced corrosion rate is readily to sensitive to the flow rate, 

since, as mentioned in section 2.2, H2S can immediately and partially dissociate to 

hydrogen ions once being dissolved, and the reduction of hydrogen ion is mass transfer 

controlled. In contrast, the CO2 induced corrosion less influenced by flow rate, due to its 

slow hydration process. Intensive research work has been done to investigate the 

relationship between corrosion rate and flow effect. 

Morris, et al., reported that in the case of H2S reduction at anode, with the increase 

of H2S concentration at metal surface, the limiting current density was observed to 

gradually decrease to zero, which indicated H2S reduction is charge transfer controlled 

[26].  
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Facilitating corrosion rate in cathodic reaction by increasing the flow velocity has 

also been experimentally verified by Galvan-Martinez’s research group, where a rotating 

cylinder electrode was utilized for electrochemical test in pure H2S solution under 

different rotation rate [27]. It is also indicated by the research work of Sun, et al., that 

corrosion rate can be drastically increased by accelerating flow rate [28]. Corrosion rate 

was found to increase from 0.45 mm/yr to 2 mm/yr with an increase in velocity from 0.5 

m/s to 5 m/s at 25 °C, pH2S 13.8 bar, and pCO2 3.4 bar. 

So in general, the higher flow rate is operated, the higher corrosion rate is expected, 

which has been verified by the comparison between the cases of corrosion with and 

without the formation protective scales [7, 21]. However, in many practical engineering 

applications, however, the flow conditions are more complicated, since there are more 

factors involved that impact the flow features, such as the separated flow zones due 

geometries of pipe (e.g., elbow, T-joints and U-bend) and secondary flow velocity in radial 

directions. 

On the other hand, when there exists a protective scale on the metal surface formed 

from corrosion products, the effect of flow rate on corrosion rate is not obvious [5], which 

indicates the mass transfer rate is largely determined by the diffusivity of  protective 

scales.  

According to the investigation of using a rotating cylinder electrode by Sun, et al., 

the rotation rate plays an important role in impacting the initial corrosion rate of on bare 

metal surface, while the corrosion rate after 24 hours of exposure to the corrosive solution 
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is insensitive the change of rotating rate [28]. However, the study conducted in a flow loop 

by Omar, et al., indicated no obvious effects of flow on H2S corrosion [29]. More 

interesting results were found in the review by Bonis, et al., where from over 100 reviewed 

different cases of sour field, low flow rates were found to result in severe corrosion, which 

is opposite to laboratory observations [30]. 

In addition, the formation of a protective scale from corrosion products is also 

under the impact flow, because the precipitation rate of iron sulfide (or iron carbonate) is 

determined by the concentrations of sulfide (or carbonate) ions at metal surface, which are 

affected by flow conditions. For the formation of iron sulfide, it is difficult to precipitate 

under the high flow velocity condition.  

Another potential impact of the flow condition on corrosion is that wall shear stress 

at high flow rate is indicated to be able to mechanically damage the protective scales and 

initiate localized corrosion. For example, In the case H2S corrosion with high flow 

velocities, it is likely that the formed and existed iron sulfide scales can be easily peeled 

off by the high rate flow, which then led the increase in corrosion rate. However, A 

substantial amount of research work has been done to investigate this impact [31], yet no 

significant effect of flow on mechanical damage on scales was discovered. 

2.3.4 Mechanistic models 

Mechanistic models are based on physical transport phenomena coupled with 

kinetics of chemical reactions, which are first principle mathematical derivations, to 
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describe the corrosion process. Although the models don't fully rely on the empirical 

correlations, but corrections are needed to make the models fit corrosion rates from 

experimental measurements.  

One of the first mechanistic models for CO2 corrosion was developed by Turgoose 

et al., in 1990s [32]. In their model, due to the existence of Nernst diffusion layer, which 

leads to the difference in concentrations between metal surface and bulk solution, an 

electrochemical model and a diffusion model were coupled together, and the approach on 

how to solve the involved equations were also demonstrated.  Since the environment that 

the model simulated was a rotating disk electrode, the electrochemical model did not 

follow the standard Volmer-Butler mechanism. Instead, a hydrodynamic equation was 

applied to estimate the current density at the metal surface by simply coupling current 

density with the Nernst diffusion layer thickness together by using the relationship 

between the diffusion coefficients and the rotation frequency. 

Fick’s law was applicable for this case, and a hyperbolic PDE can be used to 

express all the mathematical problems in the model. Since it was a non-steady sate process 

expressed by PDE, numerical method by discretizing time steps and diffusion length was 

utilized. As shown in Figure 3, the boundary conditions are constant concentrations at the 

metal surface and in the bulk solution.  
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Figure 3. Corrosion diffusion model by Turgoose. Red lines are two boundaries at steel surface and 
bulk solution. The thickness of boundary diffusion layer is 𝜹𝑵 [32]. 

 
 
 

In this model, mass balance has been set up for every discretized length, by 

rewriting Equation (39) for specie i in space j in absence of chemical reaction (Ri = 0): 

HP±
He ¼

= 𝐷W
H'P±
H®' ¼

     (43) 

To obtain the solution to specie concentrations on metal surface, we need solve 

this set of n coupled PDEs, which is difficult to be solved analytically. So slight change 

needs to make on the right side of equation by second order Taylor expansion:  

°'P±
°®' ¼

=
P½�¾8pP½.{½.¾

(∆®)'
          (44) 

Substituting Equation (44) back into Equation (43), we can obtain Equation (45). 

So the PDEs are converted into a set of coupled ordinary differential equations (ODEs), 

which make this model solvable numerically. 
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𝑑𝐶W ¼ =
À±He
(∆®)'

𝐶¼;� + 2𝐶¼8P½.¾          (45) 

For next time step k+1, the calculation of concentration can be conducted by 

assuming 𝑑𝐶W ≈ ∆𝐶W , so the concentrations at time step k and k+1 can be linked by 

𝐶W Â8� ≈ 𝐶W Â + (∆𝐶W)Â. 

On the right side of Nernst diffusion layer, the boundary condition is the bulk 

concentrations of corrosive species, which are assumed constant overtime, while the 

boundary condition on at metal surface follows the Faraday’s Law for t > 0. Assuming the 

flux from diffusion layer to metal surface is equal to the flux of producing (or consuming) 

current at metal surface, it can be indicated that the concentration of species at metal 

surface also remains constant instead of being accumulated. The flux is expressed by 

current density in Faraday’s law: 

𝑁W = ± Ã±
b±c

𝑖W           (46) 

where n is the number of electron exchanged for one mol specie i carry and v is the 

stoichiometric coefficients of species i in electrochemical reaction. For species that are 

consumed by electrochemical reaction, use positive sign; And negative sign is used for 

species generated by electrochemical reaction. For non-reacting or non-charged species, 

the flux is considered to be zero. Some examples of fluxes at metal surface are given by: 

𝑁c?'. = −
W¡]'.
pc

           (47) 
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𝑁�. =
W�.
c

            (48) 

𝑁�'� = 0            (49) 

The flux of Fe2+ is negative sign since Fe2+ is produced from the electrochemical 

reaction, while positive sign is applied for H+ due to the consumption of hydrogen ion. 

The flux of water is zero because it is both non-charged and non-reaction specie. Although 

what the diffusion model can evaluate is the concentration profile of corrosive species at 

metal surface, once the concentration profile is coupled into electrochemical model, the 

corrosion rate can be obtained. 

Figure 4 demonstrates the corrosion model by Sundaram et al., in 1996 [33], which 

constructed a comprehensive description on corrosion behavior.  

 
 
 

 

Figure 4. Corrosion model by Sundaram with three diffusion layers [33].  
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One major difference of this model from Turgoose’s model is that the 

electrochemical kinetic model at the surface is incorporated. Another difference is the 

extension of diffusion model to three diffusion layers (porous diffusion layer, diffusion 

layer and turbulent bulk layer) from one in the Turgoose’s model shown in in Figure 3. 

Considering the phase transition between the gas phase and the turbulent bulk layer, a 

mass transfer correlation was applied. Also, activities of species were coefficients were 

introduced so as to deal with equilibrium between the gas-liquid phase transition. Slightly 

different from Turgoose’s diffusion model, the mass transport in diffusion layer was more 

detailed described with Nernst-Planck equation instead of Fick’s Law, while the porous 

diffusion layer can fit Fick’s Law and the diffusion in this layer was diffusion controlled. 

As a result, the concentration of transported species at metal surface (𝑧 = 0) is expected 

to be much lower than the concentration at the interface of porous layer and diffusion layer 

(𝑧 = 𝛿}). The mass balance can be solved in steady state by using Equation (39), where 

𝑑𝐶W 𝑑𝑡 = 0, while  𝑅W ≠ 0. The existing problem of this model includes some missing 

parameters introduced in the model and reproducibility of the model.  

As shown in Figure 5, the model developed by Dayalan et al., also includes a 

porous diffusion layer [34]. 

Similar to Sundaram’s model, a mass transfer correlation was applied for mass 

transport, while for the mass transport in the porous diffusion layer, an effective diffusion 

coefficient Deff was introduced to simplify the complexity of transport process. Deff is 

proportional to the free diffusion coefficient (D) and the porosity of scales (𝜙) while 
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disproportional to the square of tortuosity (𝜏). Thus, the expression for effective diffusion 

coefficient is given by Equation (50): 

𝐷?ÉÉ =
ÀÊ
Ë'

     (50) 

 
 
 

 

Figure 5. Corrosion model by Dayalan with two diffusion layers [34]. 

 

In the early of 2000s, Nesic et al., developed the Kjeller Sweet Corrosion (KSC) 

model, which is a more comprehensive corrosion prediction model [5, 6, 35, 36], which, 

as shown in Figure 6, is similar to the work done by Sundaram et al., and Dayalan et al. 
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Figure 6. Corrosion model by Nesic with two diffusion layers and the diffusion coefficients are 
position dependent [35]. 

 
 

 
Throughout the diffusion & turbulent layer from bulk solution to metal surface, 

the concentration profile of corrosive species is dealt with Nernst-Planck equation, where 

the mass conservation is comparable to Equation (39) with the exception that some 

empirical corrections are applied to adjust the porosity of protective scale, 

H ÌP±
He

= − H Ì¾.�²±
H®

+ 𝜀 ∙ 𝑅W       (51) 

where 𝜀 was the porosity of scale layer. Same with Turgoose’s model, on the right side of 

Nernst diffusion layer, the boundary condition is the bulk concentrations of corrosive 

species, which are assumed constant overtime, while the boundary condition on at metal 

surface follows the Faraday’s Law for t > 0. The KSC model was able to calculate 

corrosion rate, since the diffusion model discussed above was coupled with an 

electrochemical model by utilizing Equation (46). The diffusion coefficients are different 

depending on the layers of mass transport due to the induced factors such as tortuosity in 

porous layer and turbulence in turbulent diffusion layer. Thus,	𝜀 and 𝐷W  (free diffusion 
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coeffiecient) changes as the location in the diffusion layers changes. It was estimated by 

Nesic et al., that	𝜀 ranges from 0.1 to 0.6 when z moves from zero to 𝛿Î. For the mass 

transport from 𝑧 = 𝛿Î to 𝑧 = 𝛿�, 𝜀 = 0.6 was assumed. In addition, an effective diffusion 

coefficient (𝐷?ÉÉ) was applied by summing the total effect of free diffusion (𝐷W ) and 

turbulence contribution to diffusion (𝐷e).  

𝐷?ÉÉ = 𝐷W + 𝐷e        (52) 

where, for  𝛿Î< z <𝛿�, 

𝐷e = 0.18 D;ÏÐ
ÏÑ;ÏÐ

o Ò
t
            (53) 

Here, (𝛿� − 𝛿Î) represents the thickness of diffusion & turbulence layer, which is can be 

correlated with Reynold’s number by Equation (54): 

(𝛿� − 𝛿Î) = 25𝑅𝑒;� r𝑑             (54) 

where d is the hydraulic diameter and 𝑅𝑒 = 	𝜌𝑣𝑑/𝜇, v is velocity of bulk flow, 𝜌 and 𝜇 

are density and viscosity of the bulk solution, respectively. 

Recently, Zhang and Nesic et al., developed an advanced H2S/CO2 mechanistic 

model based on the principles FREECORP and MULTICORP corrosion models [37]. The 

set-up of the model is pretty much similar with KSC, as shown in Figure 7. 
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Figure 7. Corrosion model by Zhang and Nesic et al., with two diffusion layers which are treated as 
a single mass transport domain [37].  

 
 

 
Different from the approach in KSC model dealing with the mass transport in 

different types of diffusion layer, concentration profile of species is not calculated 

throughout the mass transfer boundary layer, due the complexity and long computation 

time involved in KSC model. Instead, only two nodes are considered, one is the 

concentration of species in the bulk, which can be easily obtained from water chemistry 

model mentioned section 2.2, the other is the concentration at steel surface, which can be 

calculated with mass transfer flux by using a mass transfer coefficient, kT,j, which is related 

with flow conditions of bulk solution, as well as the tortuosity and the porosity of product 

layer. The mass transport of this corrosion model is described by Equation (55), which is 

pretty much similar with Nernst-Planck Equation: 

∆𝑧 °ÌP£Ó\�Ô[],½
°e

= ± W½
bÕc

+ 𝑘�,¼ 𝐶�×zÂ,¼ − 𝐶A×GÉ@K?,¼ + ®½c
·�
𝐶�×zÂ,¼∆𝛷 + ∆𝑧 ∙ 𝑅¼(55) 
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where, kT,j is the function of ks,j and km,j. km,j is the mas transfer coefficient in boundary 

layer and ks,j is the mas transfer coefficient in corrosion product layer 

�
ÂØ,½

= �
Â£,½

+ �
ÂÙ,½

    (56) 

The model was able to predict the H2S/CO2 corrosion rate by estimating: water 

chemistry in the bulk solution and steel surface, electrochemical kinetics at the steel 

surface, as well as the formation of corrosion product and growth of protective scales. The 

one of the keys of this model to incorporate different factors together is the mass transfer 

coefficient, and it is significantly impacted by flow velocity of bulk solution. However, 

this model does not consider the effect of flow conditions on the velocity distribution in 

the whole pipe as well as the effect on the damage of protection scale. 

Recently, there have been some research works carried out to develop a flow field 

model in a pipe and then couple with a corrosion model to simulate the flow assited 

corrosion (FAC) [38-40].  

Das and coworkers conducted a comparative investigation in different turbulence 

models in simulating the flow-assisted corrosion (FAC) process for pipes with noncircular 

cross sections and bends [41]. As shown in Figure 8, due to the special geometry of U-

bend pipe, the flow velocities at different locations were analyzed. And the corrosion rate 

at corresponding locations were also estimated by coupling the results from the flow field 

model into the corrosion model. 
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Figure 8. Velocity distribution at cross sectional planes within the bend section of a pipe [41]. 

 
 

 
In another paper published by Cui et al., in 2014, a H2S/CO2 corrosion model was 

developed to predict the uniform corrosion rate in pipe [42]. In this model, the flow 

parameters were simulated by CFD based on turbulence theory including flow velocity, 

turbulent kinetic energy and phase distribution. Then the flow condition model was 

coupled with the corrosion model to generate a “map: of corrosion rate, as shown in this 

Figure 9, at different locations in the pipe. 
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Figure 9. Contour map of corrosion rate calculated the model of by Cui et al., in a pipe [42]. 

 
 

 
However, the corrosion model used in this paper is an empirical model, which does 

not have comprehensive description in mass transport of corrosive species, 

electrochemical reactions on steel surface and the formation of protective scales.   
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CHAPTER III 

METHODOLOGY AND MODEL DEVELOPMENT 

In most engineering practice, the flow condition within a pipe is always turbulent. 

In addition, corrosion process involves mass transport to transfer the corrosive species to 

steel surface for electrochemical reaction. Furthermore, all pipes include elbows with the 

associated complex flow features, which makes the model more complicated. Based on 

the literature review in Chapter 2, most of the published mechanistic model on corrosion 

prediction in pipes focused on either a single straight pipe with an one-dimensional mass 

transport model, which were not applicable to describe the complex mass transport process 

in a elbow under turbulent condition, which is important for the prediction of corrosion 

rate distribution in an elbow or band of pipe.  

Since the flow condition determines the mass transport coefficient, while mass 

transport coefficient determines the concentrations of corrosive species at steel surface, 

which is proportional to the corrosion rate, a better description on the flow condition and 

mass transport in an elbow is very helpful for predicting corrosion rate. Due to the strong 

influence of local mass transfer coefficients on corrosion rate predictions, prediction 

models for corrosion in a bend or a 90° elbow have been developed to correlate mass 

transport coefficient with corrosion rate [40, 41, 43, 44]. However, all these models 

calculated the mass transfer coefficient with a numerical method, where the concentrations 

of corrosive species were assumed to be zero, then directly correlated the mass transfer 

coefficient to corrosion rate. In this case, the corrosion rate is solely mass-transfer 
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controlled, and it is difficult to incorporate electrochemical reaction and scale formation 

into the model. 

In the present study of this thesis, an electrochemistry model is constructed to 

describe the electrochemical reaction and corrosion rate at steel surface. Also, a mass 

transport model containing mass transport and water chemistry in both boundary layer and 

bulk layers is developed, which is then incorporated into the electrochemistry model.  

Then the flow model in an elbow is developed to obtain the information such as surface 

shear stress, boundary layer thickness and turbulent diffusivity. At last, the flow model is 

linked together with other two models by the transferable data. 

 

3.1 Electrochemistry model 

3.1.1 Cathodic reaction 

H+ reduction 

 Hydrogen ions dissociated from either H2S or H2CO3 are most readily reduced 

specie due to its large diffusion coefficient compared to other species. As expressed in 

Equation (55), The total current density from the reduction of H+ includes two parts: the 

charge transfer current density and diffusion limit current density, 

�
W�.

= �
WÚ,�.

+ �
WÛ±Ù,�.
^      (57) 
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where, 𝑖�. is the total current density of H+ reduction, 𝑖Ü,�. is the charge transfer current 

density and 𝑖zW>,�.
H  is the diffusion limit current density. For the charge transfer current 

density, it can be expressed as Equation (58):  

𝑖Ü,�. = 	 𝑖�,�.	×	10
; Ý
Þ[    (58) 

where,  𝛽K is the Tafel slope as mentioned in Chapter 2. According to Bockris [45], for H+ 

reduction,	𝛽K is 120 mV/decade at 30 °C when 𝛼K= 0.5. And this number is consistent with 

the experimental result of Zheng, et al. F is Faraday constant (F = 96,485.33 s∙A/mol) 

𝛽K =
p.o�o·�
Ü[c

     (59) 

𝜂  is the difference between the applied potential E and reversible potential Erev (or 

corrosion potential Ecorr), and the reversible potential of hydrogen ion reduction is related 

with the pH value of solution. Due to extremely low partial pressure of H2, the second 

term in Equation (60) can be ignored during calculation. 

𝐸G?Ã(�.) = − p.o�o·�
c

p𝐻 − p.o�o·�
pc

𝑙𝑜𝑔𝑃�'   (60) 

The calculation of exchange current density (𝑖�,�.) is shown in Equation (61), 

where the reference exchange current density (𝑖�
G?É ) is chosen to be 0.03 A/m2 at the 

reference temperature (Tref = 298.15 K) and the reference concentration of hydrogen ion 

(𝐶�.G?É  = 10-4 M). 30 kJ/mol is taken for the enthalpy of activation as indicated by 

Nordsveen, et al., in 2003[6].  
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𝑖�,�. = 𝑖�
G?É P�._¥

P�.\]�

�.�
×𝑒

;∆�ä
¾
Ø;

¾
Ø\]�    (61) 

For diffusion limit current density, it can be calculated by Equation (62). 𝑘>,�. is 

mass transport coefficient of hydrogen ion (m/s), which can be determined from the flow 

condition model discussed in the later section of this chapter. And 𝐶�.is the concentration 

in bulk.   

𝑖zW>,�.
H = 𝑘>,�.𝐹𝐶�._�    (62) 

So the unknowns for calculation charge transfer current density are the applied potential 

(E) and H+ concentration at steel surface  (𝐶�._§), and the later can be solved from the 

mass transport model in the later section of Chapter 3. 

H2S reduction 

Besides the reduction of hydrogen ions, the dissolved H2S can also be reduced to 

contribute to corrosion process. The total current density of H2S reduction is also consist 

of charge transfer current density and diffusion limit current density, which is given by 

Equation (63): 

�
W�'¥

= �
WÚ,�'¥

+ �
WÛ±Ù,�'¥
^      (63) 

For the calculation of charge transfer current density,  𝛽K= 120 mV was determined 

from experiments at 30 °C by Zheng, et al., [46], which same with hydrogen ion. And 
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𝐸G?Ã(�'§)  is calculated by Equation (65), where the partial pressure of H2S (𝑃�'§ ) is 

considered.  

𝑖Ü,�'§ = 	 𝑖�,�'§	×	10
; Ý
Þ[    (64) 

𝐸G?Ã(�'§) = − p.o�o·�
c

𝑝𝐻 − p.o�o·�
pc

𝑙𝑜𝑔𝑃�'§   (65) 

For the calculation of exchange current,  𝑖�
G?É=0.00015 A/m2 at Tref = 293.15 K, 

𝐶�'§G?É = 10-4 M and 𝐶�.G?É = 10-4 M, The enthalpy of activation is taken to be 60 kJ/mol, 

which was in good agreement of experiment results[46]. 

 

𝑖�,�'§ = 𝑖�
G?É P�'¥_¥

P�'¥\]�

�.� P�._¥
P�.\]�

;�.�
×𝑒

;∆�ä
¾
Ø;

¾
Ø\]�   (66) 

Similar with the calculation in Equation (62), the diffusion limit current density of 

H2S is expressed in Equation (67), where the mass transport coefficient is solved from 

flow condition model as well, and the bulk concentration of H2S is solved from Equation 

(29) and (34) by given the partial pressure of H2S. 

𝑖zW>,�'§
H = 𝑘>,�'§𝐹𝐶�'§_�    (67) 

H2CO3 reduction 

 Similar with H2S, H2CO3 formed from the dissolved CO2 can also be directly 

reduced by electrochemical reaction at steel surface. As shown in Equation (68), the total 
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current density is consisting of charge transfer current density and hydration limit current 

density.   

�
W�'{|1

= �
WÚ,�'{|1

+ �
WÛ±Ù,�'{|1
\     (68) 

𝑖Ü,�'P�1 = 	 𝑖�,�'P�1	×	10
; Ý
Þ[    (69) 

𝛽K =
p.o�o·�
Ü[c

     (70) 

For charge transfer current density of H2CO3 reduction, ,  𝛽K  is approximate to 120 

mV/decade, when 𝛼K is equal to 0.5 at 30 °C. Similar with H2S, the reversible potential of 

H2CO3 reduction is a function of CO2 partial pressure (see Equation (71)). 

𝐸G?Ã(�'§) = − p.o�o·�
c

𝑝𝐻 − p.o�o·�
pc

𝑙𝑜𝑔𝑃P�'   (71) 

For the calculation of exchange current,  𝑖�
G?É=0.018 A/m2 at Tref = 293.15 K, 

𝐶�'P�1G?É = 10-4 M and 𝐶�.G?É = 10-4 M, The enthalpy of activation is taken to be 50 

kJ/mol [4, 6]. 

𝑖�,�'P�1 = 𝑖�
G?É P�'{|1_¥

P�'{|1\]�

�.� P�._¥
P�.\]�

;�.�
×𝑒

;∆�ä
¾
Ø;

¾
Ø\]�   (72) 

The hydration limit current density is calculated by Equation (73) [4],  

𝑖zW>,�'P�1
G = 𝑓×𝐹×𝐶P�'_�× 𝐷�'P�1𝐾��H𝑘��H

É �.�
  (73) 
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where 𝐾��H is the CO2 hydration constant equal to 0.00258 and the 𝑘��H
É  is the forward 

hydration reaction constant which is calculated in Equation (74) [2015 Zheng: 25]: 

𝑘��H
É = 10op�.r�;���.���×zCv��;

¾ç'��.è
Ø�     (74) 

The concentration of  dissolved CO2 in bulk 𝐶P�'_� is calculated by Equation (12) and 

(21). 

H2O reduction 

 Since the corrosion model in this thesis considers single-phase condition with H2O 

as solvent, the total current density of H2O reduction is purely equal to its charge transfer 

current density. Therefore: 

𝑖�'� = 𝑖Ü,�'� = 	 𝑖�,�'�	×	10
; Ý
Þ[    (75) 

where, 𝛽K is equal to 120 mV/decade at 30 °C or can be calculated by Equation (59) [47]. 

Since the thermodynamics of reduction of H2O and H+ are similar, the reversible potential 

of H2O can also be calculated by Equation (60) [46]. 

 According to Zheng, et al., for the calculation of exchange current density for H2O 

in the presence of H2S (Equation (69)), the reference exchange current density (𝑖�
G?É) and 

the enthalpy of activation are taken to be 10-6 A/m2 and 90 kJ/mol, respectively, while the 

𝐶�'§G?É and 𝐶�.G?É are same with the value taken for H2S reduction. 
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𝑖�,�'� = 𝑖�
G?É P�'¥

P�'¥\]�

;�.� P�.
P�.\]�

;�.�
×𝑒

;∆�ä
¾
Ø;

¾
Ø\]�   (76) 

HS-  and HCO3
- reduction 

 Since both HS- and HCO3
- are negatively charged, the reduction of two species are 

more thermodynamically difficult than H+, H2S, H2CO3 and H2O. Thus, the reduction of 

than H+, H2S, H2CO3 and H2O are dominant in corrosion process, while the reduction of   

HS- and HCO3
- can be ignored. 

3.1.2 Anodic reaction 

Fe oxidation with OH- 

 Current density at anode due to the oxidation of iron is expressed in Equation (77), 

which is only related with charge-transfer current density, since the diffusion process 

involved in the iron dissolution can be ignore as compared with the diffusion of other 

species. 

𝑖c? = 	 𝑖�,c?	×	10
Ý
ÞÔ     (77) 

The Tafel slope for iron oxidation ranges from 40 mV/decade to 50 mV/decade with or 

without the presence of H2S.  

𝛽@ =
p.o�o·�
ÜÔc

      (78) 
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According to Bockris, et al., 𝛽@  is 38.9 mV/decade, when the apparent symmetry 

coefficient for the anodic reaction of Fe dissolution was taken as 1.5 at 30 °C [45]. This 

value is in good agreement with Zheng’s experimental results [46, 48]. The reversible 

potential of Fe was -0.488 V for X65 steel [4]. 

 The exchange current density is as expressed in Equation (23). The exchange 

current density is proportional to the adsorption of OH- ions (𝜃���) on steel surface, which 

is correlated with the concentration of OH- ions at steel surface by Frumkin adsorption 

model (Equation (80)) [48]. 

𝑖�,c? = 𝑖�,c?∗ 𝜃���𝑒
;∆�ä

¾
Ø;

¾
Ø\]�    (79) 

𝐾�𝐶��� =
ê|��

�;ê|��
𝑒(;Éê|��)    (80) 

According to Bockris, et al., the best-fit values for Equation (79) and (80) are 𝑖�,c?∗ = 0.25, 

𝐾�= 1.56×109, f = 3.83, ∆𝐻=37.5 kJ/mol and Tref = 293.15 K [45]. The concentration of 

OH- ion can be calculated by Equation (20) and (25) 

Fe oxidation with HS-      

 When in the acidic solution with the presence of H2S, the concentration of OH- 

ions at steel surface is much lower than HS-, even with a small amount of H2S in the gas 

phase (e.g., 100 ppm). Thus, the anodic adsorption is dominated by HS-, while the effect 

of OH- can be ignored. The expressions of exchange current density for anodic reaction 
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controlled by HS- concentration Equation (81) and (82) are similar to the of exchange 

current density controlled by OH- concentration. 

𝑖�,c? = 𝑖�,c?∗ë 𝜃&§�𝑒
;∆�ä

¾
Ø;

¾
Ø\]�     (81) 

𝜃�§� =
¢'P�¥�

�8¢'P�¥�
     (82) 

According to Zheng and Nesic [46, 48], the best-fit values in Equations (81) and (82) are 

𝑖�,c?∗ë  = 0.33, K2 = 3.5×106, , ∆𝐻=37.5 kJ/mol and Tref = 293.15 K. The concentration of 

HS- ion can be calculated by Equation (31) and (35). 

3.1.3 The mixed potential theory 

As mentioned in the derivation of corrosion rate in Equation (10) in Chapter 1, the 

corrosion rate is proportional to the either cathodic current density or anodic current 

density. In order to calculate the current densities, the steel surface concentrations can be 

obtained from the mass transport model in the later section, while the applied potential (E) 

can be calculated by using the mixed potential theory and solving the charge balance 

equation (Equation (83) and (84)). Since total cathodic current density and total the anodic 

current density are with opposite signs, and the total current density at steel surface is zero. 

𝑖@bCHWK = 𝑖K@e�CHWK    (83) 

𝑖c? = 𝑖�. + 𝑖�'§ + 𝑖�'� + 𝑖�'P�1         (84) 
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Once the applied potential is solved by Equations (84), the corrosion rate can be 

immediately determined.  

 

3.2 Mass transport model 

According to the description on the electrochemistry model, corrosive species such 

as H+, H2S and H2CO3 are consumed at steel surface while Fe2+ are generated, which 

resulted in the concentration gradients that trigger the molecular diffusions with corrosive 

species being diffused to the steel surface while Fe2+ ions being diffused away. Since the 

rate of electrochemical reactions at steel surface is much faster than the diffusion process, 

the concentrations of corrosive species are so different from the bulk concentrations, 

which means that using bulk concentrations for the calculation of corrosion current density 

and rate will lead to inaccuracy. Instead, the corrosion rate is more dependent on the 

concentrations at steel surface. Therefore, the surface concentration of different corrosive 

species is the key to couple the electrochemical reactions and the mass transport in the 

boundary layer. 

Normally, since different corrosive species have different diffusion coefficients, 

as listed in Table 6, and the equilibrium chemical reactions that dissociate positively and 

negatively charged ions are accompanied with the diffusion process, the charges will be 

separated due to the difference in diffusion coefficients, which then leads to the generation 

of potential gradient and electro-migration of charged species. However, due to the fact 
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that the aqueous solution with corrosive species in the current model is so diluted, the 

contribution of electro-migration to mass transport can ignored in this case.  

 
 
 

Table 6. Diffusion coefficient of corrosive species involved in current model 

Species Diffusion coefficient (m2/s) Source 

H+ 9.312 ×10–9 [49] 

OH- 5.26 × 10–9 [49] 

H2S 1.61 × 10–9 [50] 

HS- 2.00 × 10–9 [6] 

S2- 2.00 × 10–9 [6] 

CO2 1.96 × 10–9 [50] 

H2CO3 2.00 × 10–9 [51] 

HCO3
- 1.105 × 10–9 [49] 

CO3
2- 0.92 × 10–9 [51] 

Fe2+ 0.72 × 10–9 [51] 

 
 
 
The mass transport process for listed species is demonstrated in Figure 10. Here 

only one-dimensional mass transport along the radial direction is considered, which will 

be then coupled with three-dimensional flow model of pipe and elbow. Due to the 

complexity of corrosion product scale formation mechanism and the fact that the scale 

formation is dependent on the species concentration on bare steel surface, the diffusion 

barrier effect of protective scale is not taken into consideration in the current model, but 

the solution conditions on whether protective scales can form will be discussed in the later 

section.  



 

 

 

50 

 
 
 

 

Figure 10. One-dimensional mass transport model for corrosives species transferred from bulk to 
steel surface 

 
 

 
It is assumed that turbulent mixing is dominant in the bulk solution, so the species 

concentration in the bulk is considered to be constant. This assumption is also extended to 

apply for the flow model, so the concentration of different species throughout the pipe is 

treated as constant as well.  

As for the mass transport in the boundary layer, mass conservation equation is 

applied to be the governing equation for all species, which is expressed in Equation (85). 

°P±
°e
= − °²±

°®
+ 𝑅W            (85) 

where Ci is the concentration of specie i, Ni is the flux of specie i and Ri is the equilibrium 

chemical reactions that specie i is involved in. Equilibrium chemical reactions Ri for the 

species listed in Table 6 has been elaborated in Chapter 2. The flux of species Ni can be 

expressed by Equation (86): 
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𝑁W = −𝐷W
°P±
°®
− 𝑧W𝑢W𝐹𝑐W

°Ê
°®
+ 𝑐W𝑢              (86) 

The first term is on the right side of Equation (86) is the flux contributed by molecular 

diffusion. Again, as mentioned previously, due to the diluted solution, the migration due 

to charge separation can be ignored. The third term is mass transport due to the convection 

in radial direction. In the boundary layer of turbulent flow, it is complicated and time 

consuming to compute the instantaneous velocity (u) in the third term. According to Nesic 

et al., [6], the convection term arising from the presence of eddies can be approximately 

replaced by −𝐷e
°P±
°®

, which is called turbulent diffusivity term [52]. So Equation (86) 

becomes: 

𝑁W = −(𝐷W+𝐷e)
°P±
î®

           (86) 

where, Dt is called turbulent diffusion coefficient, which changes with distance from the 

steel surface and is a function of boundary layer thickness [52]: 

𝐷e = 0.18 ®
Ï

o Ò
t
								(0 ≤ 𝑧 ≤ 𝛿)        (87)  

In order to obtain the concentration profile in the boundary layer, the boundary 

layer thickness at different points of steel surface in the pipe should be determined.  

According to Cengel [53], the thickness of boundary layer is approximated as a function 

of shear stress of pipe wall: 

𝛿 = �Ã
Ëð/t

     (87) 
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where v is the kinematic viscosity of solvent and 𝜏� is the shear stress at pipe wall, which 

can be obtained from the flow field model describe in the following section. If only 

considering the steady state mass transport process, Equation (85) becomes: 

0 = (𝐷W+𝐷e)
°'P±
°®'

+ 𝑅W    (88) 

Therefore, for ten species, there are ten of this ordinary differential equations, which are 

coupled by equilibrium chemical reactions (Ri). The boundary conditions for solving the 

OEDs are the constant concentration in bulk solution and total current density at steel 

surface being zero. Since the electrochemistry model and the mass transport model are 

coupled by the boundary condition, the concentration of corrosive species at steel surface 

and corresponding current density can be easily solved by the electrochemistry module 

incorporated in COMSOL software. 

 

3.3 Flow model in pipe and elbow 

In order to obtain the information of shear stress and boundary layer thickness as 

mentioned in the electrochemistry and mass transport model, a flow model is needed to 

calculate the shear stress distribution at pipe wall. In most engineering practice, flow 

condition within a pipe is almost turbulent, so 𝑘 − 𝜔 model is chosen to simulate the 

single phase turbulent flow in the pipe and elbow. 
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Different from 𝑘 − 𝜀 model, 𝑘 − 𝜔 solves the specific rate of dissipation of kinetic 

energy. One of the advantages of 𝑘 − 𝜔 model is the near wall treatment, which is more 

accurate than 𝑘 − 𝜀 model to simulate internal flows with strong curvature such as flows 

in pipe bend and 90o elbow, and give better computation results of shear flow spreading. 

As expressed by Equation (89) and 90o, the standard 𝑘 − 𝜔  model is a two-

equation model solving the turbulence kinetic energy (k) and the specific rate of 

dissipation (ω) (the rate that turbulence kinetic energy k converts into internal thermal 

energy): 

°
°e

𝜌𝑘 + °
°D½

𝜌𝑘𝑢¼ = °
°D½

𝜇 + Òò
ó�

°Â
°D½

+ 𝐺Â − 𝑌Â + 𝑆Â   (89) 

°
°e

𝜌𝜔 + °
°D½

𝜌𝜔𝑢¼ = °
°D½

𝜇 + Òò
óö

°÷
°D½

+ 𝐺÷ − 𝑌÷ + S÷  (90) 

where, 

 𝐺Â = 𝜌𝜏W¼
°×±
°D½

, generation of turbulent kinetic energy due to mean velocity gradients; 

𝐺÷ = 𝛼 ÷
Â
𝜏W¼

°×±
°D½

, generation of specific rate of dissipation; 

𝑌Â = 𝛽∗𝜌𝜔𝑘, dissipation of k due to turbulence; 

𝑌÷ = 𝛽𝜌𝜔p, dissipation of 𝜔 due to turbulence; 

𝑆Â and 𝑆÷ represents source terms; 
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𝜇e =
tÂ
÷

; 

𝛼 = 	 �
�
; 

𝛽∗ = 0.09; 

𝛽 = 0.075; 

𝜎Â = 𝜎÷ = 2; 

Here in this this thesis, the model is to simulate the corrosion rate distribution in a 

90 o elbow connecting two pieces of straight pipe in a refinery facility of Assiut Oil 

Refining Company (ASORC), with the exception that only single liquid phase flow 

(water) is considered. Then the results of the model are compared with the published 

results by Doheim et al., [44]. The configuration of pipes and elbow is as shown in Figure 

11, and the corresponding geometry and operation parameters are listed in Table 7. 
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Figure 11.  Configuration of pipe and 90° elbow of ASORC 

 
 
 

Table 7. Geometry and operation parameters 

d 0.203 [m] Pipe diameter 

L 0.893 [m] Inlet and outlet pipe length 

Rc 0.305 [m] Radius of curvature 

u 0.19 [m/s] Average flow velocity 

P 1.91 [bar] Operating pressure 

µ  0.000355 [kg/(m•s)] Dynamic viscosity of water 

𝜌  971.8 [kg/m3] Density of water 

 

In order to make sure that the flow in the inlet pipe on one side of elbow is fully 

developed, a two-dimensional axisymmetric model is constructed with the length of 100 
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diameters of pipe. The outlet results from the two-dimensional pipe are mapped onto the 

inlet boundary of the three-dimensional geometry by using coupling variables, which can 

be easily achieved in COMSOL.  

The meshing of the geometry of pipe is completed in COMSOL, which is 

demonstrated in Figure 12. The mesh is constructed to approximately match what is used 

by Doheim et al., [44], with the exception that the mesh in the bend itself is unstructured. 

In order to obtain the results with higher resolution in the boundary layer adjacent to the 

steel surface, more refined meshes are applied near the pipe wall, as shown in the cross-

section enlarged in Figure 12. This is necessary for obtaining more accurate results of 

surface shear stress.  Finally, the number of cells contained in the entire flow model from 

this meshing is 24,535. 
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Figure 12. Mesh of pipe and 90° elbow 

 
 

 

The results that needs to extracted from the flow model are the shear stress (𝜏�) 

on steel surface and the mass transport coefficient (km), which is correlated with diffusion 

limit current density as mentioned in the previous section. According to the Liu et al., and 

Rani et al., [54, 55], mass transport coefficient is proportional to shear stress under the 

turbulent condition based on the Chilton-Colburn equation. 

𝑘> = Ëð
×t

𝑆𝑐;p o           (91) 
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where, u is average flow velocity and Sc is Schmidt number: 

𝑆𝑐 = Ò
tÀ±

     (92) 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Analysis of hydrodynamic parameters 

The simulation results of two-dimensional flow model is as shown in Figure 13. 

The turbulent dynamic viscosity at the centerline maintains almost as a constant after 

distance of 60 pipe diameters while far before the outlet. This indicates that the flow has 

already been fully developed at the outlet, and it is appropriate to apply the outlet 

conditions to the three-dimensional flow model as the boundary conditions. 

 
 

 

 

Figure 13. The change of turbulent dynamic viscosity as a function of position in the two-
dimensional straight pipe 
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The distribution of the shear stress for the different separation distances (upstream, 

elbow and downstream) are shown in Figure 14. The distribution shows almost uniform 

and identical shear stress in the upstream pipe. The wall shear stress distribution starts to 

be diversified at the inlet of 90o elbow and throughout the elbow in the downstream 

direction, with the sharp increase in the inner wall and drastic decrease in the outer wall. 

As the flow go through the elbow, the shear stress increases at the outer wall near exit, 

while static zone is observed at the inner wall near exit. This adverse separation in the wall 

shear stress distribution continues into downstream pipe. 

 
 

 

 

Figure 14. Shear stress (𝛕𝐰 [Pa]) distribution in the pipe and 90o elbow with the view on a) inner 
wall and b) outer wall  
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As mentioned by the correlation of  𝑘> = Ëð
×t

𝑆𝑐;p o  in Chapter 3 that mass 

transfer coefficient is proportional to wall shear stress. As can be observed in Figure 15, 

the distribution of mass transfer coefficient of H+ follows the same pattern of wall shear 

stress distribution, which is in a good agreement with Liu et al., and Rani et al., [54, 55]. 

 
 
 

 

Figure 15. Mass transfer coefficient (km [m/s]) distribution of H+ in the pipe and 90o elbow with the 
view on a) inner wall and b) outer wall 

 
 

 

In general, the increase in both wall shear stress and mass transfer coefficient in a 

flow regime would increase corrosion rate at the steel. The increase in wall shear stress 

will result in the decrease in thickness of boundary layer (see Figure 16), according to 

Equation (87). As a result, the mass transport from bulk to steel surface will be facilitated, 
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which can increase the corrosion rate by increasing the diffusion limit current density and 

the concentration of corrosive species at steel surface. 

 
 

 

 

Figure 16. Boundary layer thickness (𝜹 [m]) distribution in the pipe and 90o elbow with the view on 
a) inner wall and b) outer wall 

 
 

 

As shown in Figure 17, the pressure contours in the pipe and elbow, the pressure 

increases at outer wall as the flow moves from inlet of elbow to about 45o position, while 

the pressure along the inner wall decreases to negative values. This indicates that the flow 

is more likely to diffuse towards the outer wall with adverse pressure gradient, which is 

consistent with the distribution of boundary layer thickness and shear stress shown in 

Figure 15 and 16. 

In addition, negative pressure gradient is formed from the center line of flow 

towards the outer wall, while the positive pressure gradient is generated towards the inner 
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wall. As a result, a secondary flow is generated due to the pressure difference between 

inner and outer wall, of which the direction is same with the pressure gradient (from outer 

wall to inner wall). Therefore, the secondary flow affects for the motion of the species 

through the elbow, which is in favor of the mass transport of corrosive species towards the 

inner wall in a way of convection. 

Therefore, it is necessary to investigate the near-wall hydrodynamic parameters as 

part of the study on corrosion mechanisms, since they can be closely correlated with 

electrochemical reaction corrosion rates. 

 
 
 

 

Figure 17. Contours of pressure (Pa) on wall in elbow section 
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4.2 Corrosion in the pipe and elbow 

The comparison of the corrosion rate change between inner wall and outer wall 

along the flow direction in the pipe and elbow is demonstrated in Figure 18. Corrosion 

rate keeps identical in the upstream pipe for both inner wall and outer wall until it reaches 

inlet of the elbow, where corrosion rate at inner and outer wall starts to differentiate. The 

corrosion rate at inner wall keeps increasing till the peak value at 25o position of elbow. 

Then the corrosion rate decreases along the outer wall to the lowest value at 90o position 

(outlet). After exiting from the elbow, the corrosion rate at inner wall increases again in 

the downstream pipe and gradually reaches constant. In contrast, the corrosion rate at outer 

wall decreases first at inlet of the elbow till around 10o, then increments in the elbow 

towards the outlet. The corrosion rate at outer wall in the downstream pipe slightly 

decreases, but is still higher than the rate on the inner wall. Generally, in the elbow region, 

corrosion rate on inner wall is larger than outer wall, while in the downstream pipe region, 

the outer wall has larger corrosion rate. 
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Figure 18. Comparison of corrosion rate between inner wall and outer wall of the pipe and elbow 
with T=80 oC, pH=4, 500 ppm CO2 and 100 ppm H2S 

 
 

 

As shown in Figure 19, the predicted corrosion rate from present model is 

compared with the measured data from one of the naphtha pipes in ASORC refinery 

facility and the simulation results from the model by Doheim et al., [44]. The predicted 

corrosion rate decreases along the inner wall while increases along the outer wall in the 

direction of flow. This trend is in a good agreement with the measure data in the elbow. 

The present model’s prediction is closer to the measured value as compared with 

Doheim’s model, with the exception that the prediction on the outer wall is slightly lower 

than the field data. One of the possible explanations for this difference is that, according 
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to Doheim et al., [43], the pipe in ASORC refinery is also affected by oxygen corrosion, 

while the present model does not take account for the oxygen corrosion.  

 

Figure 19. Comparison of present model with the field measurements and published model under 
the condition of T=80 oC, pH=4, 500 ppm CO2 and 100 ppm H2S. Field data are taken from Doheim 

et al., [44] 
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is lower than the one only under the control of diffusion limit current density. From the 

results of present model, the charge transfer current density of H2S reduction is within the 

range of 166 ~ 269 A/m2. In contrast, as shown in Figure 20, the diffusion limit current 

density of H2S is way much smaller, ranging from 8.72×10-5 to 1.08×10-3 A/m2. 

According to �
W�'¥

= �
WÚ,�'¥

+ �
WÛ±Ù,�'¥
^ , it is obvious that the total current density by H2S is 

controlled by the diffusion limit current density, so the corrosion rate contributed by H2S 

reduction is mass transfer controlled (since corrosion rate is proportional to total current 

density and diffusion limit current density is proportional to  mass transfer coefficient). 

On the other hand, due to the contribution of charge transfer current density, the total 

current density of H2S is small than its diffusion current density (see Figure 20). 

 
 
 

 

Figure 20. Total current density (𝒊𝑯𝟐𝑺) and diffusion limit current density (𝒊𝒍𝒊𝒎,𝑯𝟐𝑺
𝒅 ) of H2S reduction 

on inner wall of pipe and elbow under the conditoon of T=80 oC, pH=4, 500 ppm CO2 and 100 ppm 
H2S 
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As demonstrated in Figure 21, although the corrosion rate contributed by H+ 

reduction is also under mass transfer control, a relatively smaller total current density is 

obtained as compared to the diffusion limit current density. 

Figure 21. Total current density (𝒊𝑯.) and diffusion limit current density (𝒊𝒍𝒊𝒎,𝑯.
𝒅 ) of H+ reduction on 

inner wall of pipe and elbow under the condition of T=80 oC, pH=4, 500 ppm CO2 and 100 ppm H2S 

As for H2CO3 reduction, similar trend is observed (see Figure 22), but it needs to 

be noticed that the total current density is under the control of hydration reaction limit 

current density (see Equation (73)) instead of mass transfer current density. This is because 

that the hydration reaction of CO2 is much slower than the mass transport of H2CO3. Since 

the CO2 hydration is a function of temperature rather than the flow, the hydration reaction 

limit current density keeps as a constant throughout the pipe and elbow. 
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Figure 22. Total current density (𝒊𝑯𝟐𝑪𝑶𝟑) and hydration limit current density (𝒊𝒍𝒊𝒎,𝑯𝟐𝑪𝑶𝟑
𝒓 ) of H2CO3 

reduction on inner wall of pipe and elbow under the condition of T=80 oC, pH=4, 500 ppm CO2 and 
100 ppm H2S 
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Figure 23. Comparison of corrosion rate in the pipe and elbow under different concentration of CO2 
with the condition of T=80 oC, pH=4 and 100 ppm H2S 
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approximately 1000 times larger than the concentration H2CO3 in the aqueous phase. 

Therefore, in the presence of both H2S and CO2, it is more likely that H2S will dominate 

the corrosion process. 

 

Figure 24. Comparison of corrosion rate in the pipe and elbow under different concentration of H2S 
with the condition of T=80 oC, pH=4 and 500 ppm CO2 
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model increases by approximately 0.02~0.03 mm/year on both inner wall and outer wall 

with temperature ramping up from 20 oC to 80 oC. In general, temperature is expected to 

increase the rate chemical reaction and electrochemical reaction, as well as the mass 

transport process.  

 
 
 

 

Figure 25. Corrosion rate change in the pipe and elbow as a function of temperature (T=20 oC, 40 
oC, 60 oC and 80 oC) under the condition of pH=4, 500 ppm CO2 and 100 ppm H2S 
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According to Equation (91) and (92), if the supersaturation of FeS (or FeCO3) is 

larger than 1, protective scale can form. 

𝑆c?§ =
P¡]'.P¥'�
¢£¤_¡]¥

        (91)

𝑆c?P�1 =
P¡]'.P{|1'�

¢£¤_¡]{|1
       (92) 

Where, 𝐾A}_c?§ and 𝐾A}_c?P�1 are solubility limit of FeS and FeCO3, respectively, which 

are both the function of temperature, according to Benning, et al.[6], and Sun, et al., [56]. 

𝐾A},c?§ = 10
')è).çç*

Ø ;q.o��𝐾�A𝐾�A (93) 

𝐾A},c?P�1 = −59.3498 − 0.041377𝑇 − p.��qo
�

+ 24.5724𝑙𝑜𝑔𝑇      (94) 

As shown in Figure 26, the supersaturation of FeS (𝑆c?§) in the pipe and elbow 

ranges from 1.2 ×10-3 to 1.6 ×10-3, while the supersaturation of FeCO3 (𝑆c?P�1) is 1,000 

times smaller. This indicates that, under the operation condition of ASORC pipe, both FeS 

and FeCO3 scales cannot be formed. 
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Figure 26. Comparison between the supersaturation of FeS  (𝑺𝑭𝒆𝑺) and FeCO3 (𝑺𝑭𝒆𝑪𝑶𝟑) in the pipe 
and elbow with the condition of T=80 oC, pH=4, 500 ppm CO2 and 100 ppm 
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CHAPTER V 

CONCLUSIONS 

An integrated single-phase prediction model for H2S/CO2 corrosion in pipe, 

especially for the case of a 90o elbow region, has been developed, which is able to solve 

the four key facets in the corrosion process by incorporating the flow model, the mass 

transport model and the electrochemistry model: 

(1) Flow parameters including wall shear stress, boundary layer thickness and 

turbulent diffusivity; 

(2) Equilibrium reactions and mass transport of corrosive species in boundary 

layer, which determines the concentration of corrosive species at steel surface; 

(3) Current density and corrosion rate, which are proportional to the steel surface 

concentration and the mass transfer coefficient; 

(4) Formation of protective scale based on the concentration of Fe2+, S2- and CO3
2- 

at steel surface. 

The prediction results of present model are compared with the previously 

published model and the field data of pipeline in an ASORC refinery facility. This model 

is in good accordance with the measured field data, and follows the prevalent trend of 

H2S/CO2 corrosion process in a pipe and elbow among the existing models. Additionally, 

it is found in the present model that the charge transfer current density has significant 

contribution to the corrosion rate, which is ignored in some other models. Apart from that, 
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other comparisons have been made to investigate the impact on corrosion rate as a function 

of flow region, H2S and CO2 concentration, and temperature. Finally, the present model is 

able to provide the information on if there are FeS (or FeCO3) protective scales formed at 

steel surface.  
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CHAPTER VI 

FUTURE WORK 

Based on the model in this thesis, some recommendations for future work are listed 

as follows: 

(1) Since pipes in a refinery carry different mixtures of refined products and water, 

which are normally insoluble with each other in most cases, further study on 

developing a multi-phase model under different flow patterns, such as stratified 

flow, slug flow and annular flow, is needed to obtain more accurate prediction 

results; 

(2) The protective scale serves as a diffusion barrier. So further study needs to be 

conducted to investigate the effect of protective scale on mass transport process by 

dealing with the thickness and the porosity of scales; 

(3) Since there are many other chemicals that can also lead to internal corrosion of a 

pipe, such as oxygen, ammonia and hydrogen chloride, further study needs to take 

consideration of more corrosive species existed in the pipe system to generate a 

more comprehensive prediction result.  
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