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ABSTRACT 

Room-temperature multiferroics, possessing ferroelectricity and ferromagnetism 

simultaneously in one phase, hold great promise in miniaturized devices including sensors, 

actuators, transducers, and multi-state memories. However, single-phase multiferroics are 

scarce because of the drastically different orbital requirements for ferroelectricity 

(requiring empty d-orbital) and ferromagnetism (coming from partially filled d-orbitals). 

Combining two cations possessing ferroelectric and ferromagnetic ordering respectively 

into one phase is one of the effective routes towards creating single-phase multiferroic 

materials, such as the Bi-based perovskites BiFeO3 and Bi2FeMnO6. For Bi-based 

perovskites, the ferroelectricity comes from the high stereochemical activity of the lone-

pair electrons of the Bi3+ cation and the B-site cation provides the magnetism. 

Bi3Fe2Mn2O10+ supercell (BFMO322 SC) is a layered structure with enhanced 

ferroelectricity and magnetism compared to the conventional pseudocubic Bi2FeMnO6

phase. BFMO322 SC has been fabricated on LaAlO3 (001) substrate and can also be 

fabricated on CeO2 buffer layer. 

In this dissertation, the influence of CeO2 thickness to the growth and magnetic 

property of BFMO322 SC has been first investigated. The result shows that a CeO2 buffer 

layer as thin as 6.7 nm is sufficient to trigger the growth of BFMO322 SC and the sample 

exhibits the best magnetic properties with both highest magnetization and anisotropy. The 

growth of BFMO322 SC with high phase purity and superior magnetic properties on CeO2 
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with a thickness of 6.7 nm is attributed to the lattice match between Ce-Ce and Bi-Bi bond 

as well as the smooth surface of CeO2 buffer layer. 

Next, the influence of Fe/Mn molar ratio to the growth and magnetic property of 

Bi-based layered supercell structure has been studied by both experimental and theoretical 

methods. It was found that that Mn is more important than Fe in facilitating the growth of 

Bi-based layered supercell structures. With more Fe than Mn in the structure, the layered 

supercell structure cannot be formed. The three-dimensional distribution of Young’s 

modulus of the Bi-based layered supercell structures is calculated based on density 

functional theory. The theoretical calculation indicates that the strain energy is too high to 

keep the layered supercell structure if there is more Fe than Mn. In particular, the layered 

supercell structure with Bi2Ox slabs can also be obtained on CeO2 buffer layer and SrTiO3 

(001) for single-perovskite BiMnO3 under well controlled growth conditions. 

Then tunable layered supercell (SC) structures have been designed and achieved 

in both BiMnO3 and Bi2NiMnO6 thin films. More specifically, both supercells with two 

layer BiOx-slabs (2-Bi SC) and three layer structure BiOx-slabs (3-Bi SC) have been 

achieved on both LaAlO3 (001) and SrTiO3 (001) under deposition parameter tuning. The 

novel layered supercell structures consist of alternative layered stacking of Bi2Ox (or Bi3Ox) 

slabs and Mn-O (or Ni-Mn-O) octahedra layers along out-of-plane direction, respectively. 

Both the BiMnO3 and Bi2NiMnO6 layered supercell structures exhibit robust multiferroic 

response at room temperature and tunable ferromagnetic and optical properties attributed 

to the variable SC structures. 
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Finally, a new layered supercell structure with Bi3Ox slabs has been designed and 

fabricated from the new material system Bi2AlMnO6 (BAMO). The new BAMO layered 

supercell structure is self-assembly grown by alternative layered stacking of three-layer-

thick Bi-based slabs [Bi3O3+] and one-layer-thick [MO2]∞ layer (M = Al/Mn). It can be 

fabricated on single-crystal substrates SrTiO3 (001) and LaAlO3 (001), with or without 

CeO2 (001) and La0.7Sr0.3MnO3 (001) buffer layers. Robust room-temperature multiferroic 

responses have been observed for the new BAMO misfit (incommensurate) layered 

structure with non-magnetic cations Al3+ and magnetic cations Mn3+.   

The Bi-based layered supercell structures present great composition flexibility and 

hold great significance towards the design and creation of new two-dimensional layered 

materials with a wide range of potential functionalities, such as single-phase multiferroic 

materials, thermoelectrics, and layered materials with tunable band gaps. 
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CHAPTER I 

INTRODUCTION 

Complex oxide materials have been extensively studied because of their various 

crystal structures, multifunctionalities and potential device applications. In this chapter, 

functional metal oxides will be reviewed first in section 1.1, including crystal structures 

of oxides and oxide thin film growth. Then in section 1.2 the functionalities of oxide thin 

films including ferroelectricity, magnetism and multiferroism are introduced. In section 

1.3, several well-known multiferroic materials are briefly reviewed. In section 1.4, two-

dimensional materials including non-oxide based and oxide-based two-dimensional 

materials will be reviewed and finally the research motivation for this work is introduced. 

1.1 Functional metal oxide thin films 

1.1.1 Overview of functional metal oxides 

Metal oxides, especially transition metal oxides, represent a large family of 

materials that cover a wide range of crystal structures and functionalities. Metal oxides 

have found various applications and have played an incredible role in modern technology. 

Oxides with high ferroelectric response and dielectric constant such as BaTiO3 and 

Pb(Zr,Ti)O3 have been used for tranducers, capacitors, sensors, thermistors, etc.1, 2 

Superconductors (e.g. YBa2Cu3O7 and FeSe) have been extensively studied and the 

proposed applications include superconducting cables, superconducting transformers, and 

superconducting filters.3, 4 The Li-based metal oxides (e.g. LiCoO2 and LiMn2O4) with 

https://en.wikipedia.org/wiki/Thermistor
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layered structures have been commercialized and used as cathode materials in Li-ion 

batteries.5, 6 Single phase multiferroic materials including BiFeO3 and BiMnO3 have been 

extensively studied for the application of data storage.7  

Compared to their bulk forms, metal oxides in thin film form have remarkably 

different crystalline quality and physical properties. With the development of high-quality 

thin film growth techniques and characterization capabilities, the field of functional metal 

oxides has experienced unprecedented development in terms of discovering new 

materials, understanding of fundamental physics, and controlling of physical properties.8 

The increasing needs for miniature devices with small volume and low energy 

consumption have also stimulated the study of functional metal oxide thin films.  

 

1.1.2 Crystal structures of functional metal oxides  

As mentioned above, metal oxides have been extensively studied with a wide range 

of crystal structures and fascinating properties. To understand metal oxides especially their 

physical properties, one should have solid knowledge of the crystal structures of various 

oxides. Metal oxides are ionically bonded and can be categorized to binary and ternary 

oxides as shown in Table 1.1. Binary oxides cover a series of crystal structures including 

rock salt, fluorite, wurtzite, rutile and corundum (Figure 1.1). The ternary systems include 

perovskite, spinel, ilmenite, Ruddlesden-Popper, and layered-perovskite (Figure 1.2).   
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Table 1.1 The classification of metal oxides. 

Systems Crystal structures Representative oxides 

Binary oxides Rock salt MgO, TiO, VO, MnO, 

NiO 

Wurtzite ZnO, BeO 

Fluorite CeO2, ZrO2, HfO2, ThO2 

Rutile TiO2, MoO2, RuO2 

Corundum Al2O3, V2O3, Cr2O3 

Ternary oxides Perovskite CaTiO3, BiFeO3, 

SrRuO3 

Spinel CoFe2O4, NiFe2O4, 

MgAl2O4 

Ilmenite FeTiO3, MnTiO3, 

LiNbO3 

Layered perovskite YBa2Cu3O7 

Ruddlesden-Popper SrRuO3, Sr2RuO4, 

Sr3Ru2O7 
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Figure 1.1 Common binary oxide crystal structures including (a) rocksalt, (b) wurzite, (c) 

fluorite, (d) rutile, and (e) corundum.8 

 

 

Figure 1.2 Common ternary oxide crystal structures including (a) ilmentite, (b) spinel, (c) 

perovskite, and derivatives of the perovskite such as (d) the Ruddlesden-Popper series, 

and (e) layered perovskites.8 

 

Among the binary and ternary material systems, metal oxides with perovskite and 

perovskite-related structures have gained increasing research interest with a variety of 

attracting physical properties including ferroelectricity, ferromagnetism, 

superconductivity, and multiferroicity. Perovskites are ABO3-type cubic or pseudocubic 

materials which was named after the prototype CaTiO3. Perovskites are composed of 
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corner-sharing octahedral with the A-site cation coordinated by 12 oxygen ions and the B-

site cation by 6 oxygen ions. The ionic radius of A-site cation is larger than that of the B-

site cation and the overall charge of A and B is +6. The structure can easily accommodate 

a wide range of valence states on both A- and B-site and includes three categories: 

A+1B+5O3, A
+2B+4O3, and A+3B+3O3. The perovskite structure acts as the parent phase for 

a wide range of structures such as the Ruddlesden-Popper series.  

 

1.1.3 Growth of metal oxide thin films 

1.1.3.1 Thin film growth techniques 

Basically, thin film growth techniques can be classified into two categories: 

physical vapor deposition (PVD) and chemical vapor deposition (CVD). There are also 

methods that combine both physical and chemical reactions. Table 1.2 shows the summary 

and comparison of different thin film growth techniques demonstrated for oxide growth.  

Both physical vapor deposition (PVD) and chemical vapor deposition (CVD) are 

performed under vacuum for thin film growth. PVD is a process of using physical sources 

(e.g. heating and sputtering) to produce plasma to deposit thin films on an object. PVD 

mainly includes molecular beam epitaxy (MBE), pulsed laser deposition (PLD), 

magnetron sputtering (direct current (DC) and radio frequency (RF)), thermal evaporation 

and electron-beam evaporation. PVD techniques need relatively simple experimental set-

up and can provide precise thin film stoichiometry for complex oxide thin films. 

Moreover, almost all materials, including metal oxide thin films, metal nitride thin films, 

and metals, can be grown by PVD with high quality. However, the disadvantages of PVD 
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such as high cost, limited surface coverage and low productivity limit its practical 

applications. 

CVD is a chemical process which is used to obtain high quality thin film materials, 

especially in semiconductor industry. For typical CVD, the wafer is exposed to volatile 

precursors which react/decompose on the substrate surface to produce the desired 

materials. CVD includes atmospheric pressure CVD (APCVD), low-pressure CVD 

(LPCVD), plasma-enhanced CVD (PECVD), atomic layer CVD (ALCVD), and metal-

organic CVD (MOCVD). CVD has the advantages of high surface coverage, high 

throughput, easily varied stoichiometry, and reasonable cost. But it suffers from the safety 

issue.  

Besides the pure physical and chemical deposition techniques under vacuum, other 

non-vacuum thin film deposition techniques have also been developed. These techniques 

include liquid phase epitaxy and solution-based techniques (sol-gel and polymer assisted 

deposition). These non-vacuum techniques are more cost-effective and widely used in 

large-scale industrial applications.  

 

Table 1.2 Comparison of different categories of thin film deposition techniques. 

Category Sub-

category 

Main 

characteristics 

Advantages Disadvantages 

PVD MBE low-energy 

atomic beams 

of each 

component 

generated by 

heater/e-beam 

evaporators 

high film 

quality, in-situ 

diagnosis, no 

contaminations, 

no exhaustion 

gas 

high cost, low 

throughput 
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Table 1.2 Continued.  

Category Sub-

category 

Main 

characteristics 

Advantages Disadvantages 

 

 

 

 

 

PLD high-power 

laser beam 

focused on the 

target surface 

to produce 

plasma 

simple 

deposition 

technique, can 

deposit nearly 

all metals and 

ceramic 

materials, 

reproduction of 

target 

stoichiometry 

high cost due to 

laser system, low 

surface coverage, 

formation of 

particulates 

Magnetron 

sputtering 

magnetic field 

to confine 

electrons near 

the target to 

sustain plasma 

precise target-

film 

stoichiometry, 

low-

temperature 

processing, 

high film 

quality 

substrate heating 

during sputtering, 

radiation damage 

E-beam 

evaporation 

high-energy 

beam from an 

electron gun to 

boil a target 

material 

can deposit 

both metals and 

ceramic 

materials, less 

contamination 

poor film 

uniformity and 

density, high cost 

CVD LPCVD lowering the 

total pressure 

of the gas 

stream 

increases the 

diffusion and 

extends the 

reaction to 

higher 

temperature 

high deposition 

rate at reduced 

pressure, high 

production rate, 

less auto 

doping, low 

cost, less 

particulates 

formation 

shadowing and 

less uniform 

surface coverage 
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Table 1.2 Continued.  

Category Sub-

category 

Main 

characteristics 

Advantages Disadvantages 

 PECVD plasma source 

to supply 

additional 

energy and 

reduce the 

reaction 

temperature 

reduced 

deposition 

temperature, 

enhanced 

deposition rate 

at low 

temperature, 

better surface 

coverage for 

non-planar 

structures 

Nonstoichiometric 

composition of 

films, 

incorporation of 

byproducts into 

films 

ALCVD two 

complementary 

precursors 

alternatively 

introduced into 

the reaction 

chamber  

extremely 

precise control 

of film 

thickness and 

uniformity 

high cost, low 

throughput 

MOCVD a CVD method 

based on 

metal-organic 

precursors 

high film 

quality, high 

throughput, 

large area 

production 

requiring high 

temperature, not 

for all materials 

Other 

deposition 

techniques 

Liquid 

phase 

epitaxy 

top seeded 

solution 

growth method 

with a 

substrate 

introduced 

vertically 

high film 

quality, high 

deposition rate 

ultrahigh 

temperature 

needed, hard to 

deposit thin films 

Solution-

based 

deposition 

transition of a 

system from 

liquid phase to 

solid phase 

simple, low 

cost 

poor surface 

roughness and 

coverage 
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Among the above thin film growth techniques, PLD has gained ever increasing 

attention in the past several decades for oxide thin film growth. PLD is a relatively simple 

thin film growth technique and offers many advantages as discussed in the following 

Chapter 2. The microstructures and physical properties of the thin films can be easily tuned 

by controlling the substrate temperature, oxygen partial pressure in the chamber, laser 

beam frequency and energy density.  

 

1.1.3.2 Epitaxy theory for thin film growth 

The term “epitaxy” comes from the Greek roots “epi” (meaning “above”) and 

“taxis” (meaning “in ordered manner”). In the area of thin film study, epitaxy refers to the 

extended single-crystal film growth on top of a crystalline substrate. There are two types 

of epitaxy: homoepitaxy and heteroepitaxy.9 Homoepitaxy means that the thin film 

material is the same as the substrate material while heteroepitaxy refers that the thin film 

material is different from the substrate material. For homoepitaxy or if the lattice constants 

of film and substrate are the same or nearly identical, there will be no strained interfacial 

bonds due to the perfectly matched lattice. Such film-substrate structures are called lattice-

matched epitaxial structures as shown in Figure 1.3(a). Usually the lattice parameters for 

thin films and substrates are different and thus the films can grow on the substrates either 

coherently (called coherently strained lattice-mismatched heteroepitaxy) or incoherently 

(relaxed lattice-mismatched heteroepitaxy) as shown in Figure 1.3(b) and (c).  
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Figure 1.3 Schematic illustration of (a) lattice-matched epitaxy, (b) coherently strained 

lattice-mismatched heteroepitaxy, and (c) relaxed lattice-mismatched heteroepitaxy.9 

 

Strain plays an important role in controlling the microstructures and tuning the 

physical properties of the thin films. For the heteroepitaxial structures, lattice mismatch 

between the films and the substrates will cause the films to be in compression or in tension. 

Thus there will be a lattice parameter change from the equilibrium values and therefore 

the physical properties will be influenced. For a heteroepitaxial structure, the lattice 

mismatch strain f is evaluated by, 

𝑓 = 2(𝑎𝑓 − 𝑎𝑠)/(𝑎𝑓 + 𝑎𝑠)   (1-1)  

where af and as are the unstrained lattice parameters of film and substrate, respectively. 
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When the misfit strain f is < 7%, coherently strained lattice-mismatched 

heteroepitaxy is preferred while if f is larger than 7%, relaxed lattice-mismatched 

heteroepitaxy occurs. For the strained heteroepitaxial structures, the atoms of the films are 

constrained to the substrate interatomic spacing in the plane of the interface. Due to the 

lattice misfit, elastic strain energy is stored in the structures. The elastic strain energy 

increases linearly with the increase of the film thickness. When the elastic strain energy is 

large enough after a “critical thickness”, the strain energy at the interface will be relaxed 

via the formation of misfit dislocations.  

If the lattice mismatch is very large (> 10%), the films can’t grow coherently at 

the initial stages. In this situation, domain matching epitaxy will be possible for the 

epitaxial growth of thin films. For domain matching epitaxy, although the initial mismatch 

is very large, the strain can be relaxed by matching of m planes of the film with n planes 

of the substrate. The matching of integral multiples of lattice planes usually leaves a 

residual strain fr given by the following equation, 

𝑓𝑟 = (𝑚𝑎𝑓 − 𝑛𝑎𝑠)/𝑛𝑎𝑠   (1-2) 

where n = m + 1, n and m are simple integers.  

One such example of domain matching epitaxy is the epitaxial growth of TiN on 

Si (100). The mismatch strain is as large as ~24.6% based on the strained lattice-

mismatched epitaxy. However, by the domain matching epitaxy the residual strain can be 

reduced to be ~4.4%. TiN will grow epitaxially on Si (100) by 3/4 domain matching.10 

Other examples of domain matching epitaxy include AlN/Si (100) with 4/5 matching, 
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ZnO/-Al2O3 (0001) with 6/7 matching, and SrTO3/MgO (001) with 14/13 matching 

(Figure 1.4).11, 12   

 

 

Figure 1.4 HRTEM and fast Fourier filtered images of domain matching epitaxy of SrTiO3 

thin film grown on MgO substrate with a 14/13 matching.12 
 

1.1.3.3 Thin film growth modes  

There are three major thin film growth modes: (1) Frank-Van der Merwe or layer-

by-layer growth, (2) Volmer-Weber or island growth, and (3) Stranski-Krastanov growth. 

It was reported by Bauer that relative surface energies play an important role in 

determining which growth mode occurs at the thermodynamic equilibrium.13 When the 

extension of the smallest nucleus occurs in two dimensions and results in the formation of 

planar sheets, the layer-by-layer growth dominates the film growth. For this growth mode, 
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the atoms are more strongly bonded to the substrates but not to each other. Usually 

semiconductors and oxides grown by this mode. When the atoms deposited onto the 

substrate are more strongly bonded to each than to the substrate, Volmer-Weber or island 

growth occurs. This island growth mode usually happens when the film and substrate are 

dissimilar materials. This is often the case when metals or semiconductors are grown on 

oxide substrates. Stranski-Krastanov growth mode is a combination of layer-by-layer and 

island growth. For this growth mode, one or more monolayers are formed first and then 

island growth will dominate the film growth because the layer-by-layer growth becomes 

energetically unfavorable.  

 

1.2 Functionalities of oxide thin films 

Functional oxide thin films represent a large family of materials with varieties of 

crystal structures and abundant physical properties. Oxide thin films have received ever 

increasing attention both from scientific and technological points of view. Various 

interesting physical phenomenon have been discovered in functional oxide thin films 

including ferroelectricity, ferromagnetism, and multiferroicity.  

 

1.2.1 Ferroelectricity  

Ferroelectricity is a physical property of the materials that have 

noncentrosymmetric crystal structures and spontaneous electric polarizations which can 

be reversed by applying an external electric field. The ferroelectric polarization only 
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occurs in noncentrosymmetric materials which lack a center of symmetry leading to the 

shift in the relative positions of anions and cations and thus formation of electrical dipoles.  

The ferroelectric response of a material is characterized by the ferroelectric 

hysteresis loop as shown in Figure 1.5.14 For a typical ferroelectric hysteresis loop, several 

important parameters are considered when evaluating a ferroelectric material. Ps is the 

saturation polarization which refers to the total dipole moment per unit volume of a poled 

ferroelectric material. Its value does not increase with the increase of the electric field. Pr 

refers to the remanent polarization retained in the ferroelectrics when the electric field is 

removed. Ec is the coercive field which is required to reverse the polarization to zero. Es 

means the switching field required for the complete reversal of polarization.  
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Figure 1.5 Ferroelectric polarization-electric field hysteresis loop corresponding to two 

lattice distortions, polarization up and polarization down.14 

 

For a ferroelectric material, its dipoles are randomly oriented in the virgin state 

and the net polarization is zero. With the application of an external electric field, the 

dipoles are forced to orient in a parallel manner to each other. However, this happens only 

under a certain temperature which is called Curie temperature (TC). Above the Curie 

temperature, the electric polarization will disappear because the thermal motion will 
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cancel the individual electron spins. Across the Curie temperature, a phase transformation 

occurs and above the Curie temperature the crystal structure will be centrosymmetric (also 

called paraelectric phase) while below the Curie temperature it is ferroelectric phase. The 

ferroelectric phase always has a lower symmetry than the paraelectric phase as shown by 

the case of BaTiO3 (Figure 1.6). BaTiO3 transforms from the centrosymmetric cubic phase 

to the low symmetric tetragonal phase at around 120 oC.  

 

 

Figure 1.6 Temperature-dependent unit cell dimensions, spontaneous polarization, and 

dielectric constant of BaTiO3.
15 
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Among all the ferroelectric materials, PbZrxTi1-xO3 was once extensively studied 

because of its good thermal stability, strong electrochemical coupling, easy poling and 

sintering.16, 17 However, more attentions have been drawn to other alternative ferroelectric 

materials which do not contain the toxic Pb with the increase of environmental 

consciousness. BaTiO3 is the first perovskite that was discovered to possess 

ferroelectricity and the first ceramic that was implanted in a piezoelectric transducer.18 

BaTiO3 is very stable but its applications are severely limited by the low TC of around 120 

oC. Dopants called TC shifters like SrTiO3, PbTiO3, and CaZrO3 are incorporated to 

increase or decrease the TC. Stoichiometry is very critical in controlling the ferroelectric 

response of BaTiO3 because the composition directly determines the unit cell structure 

and therefore the physical and chemical properties. It was reported that the laser fluence 

and oxygen partial pressure could both influence the Ba/Ti ratio in the BaTiO3 thin films 

and therefore the ferroelectric properties (Figure 1.7).19, 20, 21 Another ferroelectric material 

that is extensively studied is BiFeO3 with a theoretical ferroelectric polarization value of 

more than 100 C/cm2 and a high TC value of 830 oC. BiFeO3 will be discussed in more 

detail in the following section.  
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Figure 1.7 Oxygen pressure dependent (a) Ti/Ba ratio and (b) Pr in BaTiO3 films.21 

 

1.2.2 Magnetism 

1.2.2.1 Overview of magnetism 

Magnetism is a physical property of a material that responds to an applied 

magnetic field at atomic or subatomic level. There are several kinds of magnetism 

depending on the orbital and spin motions of electrons and how the electrons interact with 
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each other.22 With different spin alignments of the electrons, the main magnetic 

interactions include ferromagnetism, antiferromagnetism, ferrimagnetism, 

paramagnetism, superparamagnetism, and diamagnetism. For a ferromagnet, spontaneous 

net magnetization exists even in the absence of an external magnetic field because of the 

long range and parallel alignment of the atomic magnetic moments. For the ferromagnetic 

materials, they don’t exhibit net magnetization above the Curie temperature with the 

atomic moments randomly oriented resulting a paramagnetic phase. For 

superparamagnetism, it refers to a magnetism existing in small ferromagnetic or 

ferromagnetic nanoparticles where the magnetization can flip the direction. The net 

magnetization will be measured to be zero if the time used to measure the magnetization 

is much longer than the time between two flips (called Neel relaxation time). This small 

nanoparticle can still be magnetized by applying a magnetic field but the magnetic 

susceptibility is much larger than that of paramagnets. Antiferromagnetism means that the 

atomic moments are aligned antiparallel. For ferrimagnetism, the spins are also aligned 

antiparallel, but the net magnetism is not zero because one subset of dipoles is larger than 

the other. Diamagnetism is a material property belonging to all materials and can be 

neglected if the materials show some forms of magnetism such as ferromagnetism and 

paramagnetism. Diamagnetic materials are usually those nonmagnetic materials including 

water, wood, most organic compounds, some plastics and many metals such as copper, 

gold, and bismuth. The magnetic susceptibility for diamagnetic materials is negative. The 

schematic in Figure 1.8 shows the spin alignment for different magnetism.23  
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Figure 1.8 Schematic diagram showing the spin alignment for different magnetism.23 

 

Several fundamental coupling mechanisms have been developed to explain how 

indirect exchange which is mediated through nonmagnetic ions like oxygen to give rise 

the effects in the oxide materials. The three main magnetic coupling model include 

superexchange, double exchange, and RKKY coupling as shown in Figure 1.9. 

Superexchange is a magnetic coupling getting its name from the fact that it extends the 

short-range exchange to long-range interaction which was formally developed in 1950.24 

Superexchange can well describe how antiferromagnetism occur in some ionic compounds 

where 3d and 2p orbitals of transition metals and oxygen/fluorine atoms interact to each 

other. The superexchange coupling can well describe the antiferromagnetism in LaMnO3. 

One electron from the 2p orbital of oxygen is donated to the 3d orbital of neighboring Mn 

and the spins of the two nearest neighboring Mn are antiparallel leading to 

antiferromagnetism of LaMnO3 as shown by Figure 1.9(a). Double exchange was 

proposed to describe the magneto-conductive properties of the mixed valence compounds 

(Sr or Ca doped LaMnO3 on the A site). For the case of La0.7Sr0.3MnO3 containing Mn3+ 

and Mn4+ the O2- ion has full p-orbitals (Figure 1.9(b)). The electron on the Mn-sites jump 

back and forth through the oxygen and the electron is thus delocalized over the entire M-

O-M group. This model can describe the ferromagnetic alignment and conductive 

mechanism of La0.7Sr0.3MnO3. RKKY is used to explain the coupling in dilute magnetic 
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semiconductors where the magnetic ions are too far to interact with each other directly 

(Figure 1.9(c)). This model describes that a local moment can induce a spin polarization 

which oscillates in sign as a function of distance and this spin information can be carried 

over relatively long distances.  

 

 

Figure 1.9 Schematic diagram showing the magnetic couplings in oxides. (a) 

superexchange, (b) double exchange, and (c) RKKY coupling.8 

 

1.2.2.2 Magnetic ferrites 

Several types of magnetic oxides have been investigated both for fundamental 

study and technological applications. Here two types of magnetic materials will be 

discussed: ferrites and manganites. Ferrites refers to the Fe-containing oxides including 

spinels (AFe2O4), garnets (AFe5O12), hexaferrites (AFe12O19), and orthoferrites (RFeO3, 

R is one or more of the rare-earth elements). Ferrites have been used as transformer cores, 

microwave magnetic devices, magneto-optic data storage materials, and flux guides and 

sensors. Among these ferrites, spinel ferrites have been extensively investigated to create 

high quality thin films to enable better understanding of structure-property relationship. 

Ferrites have also been widely studied to create vertically aligned nanocomposites for 



22 
 

multiferroism.25, 26 In this section, the epitaxial thin films of Fe3O4, NiFe2O4, and CoFe2O4 

will be briefly reviewed.  

Fe3O4 is an old magnetic material and has been used in the compass for navigation 

several thousand years ago. Band structure calculations show that the majority of the spin 

electrons are semiconducting and minority spins metallic.27  Fe3O4 has a high Curie 

temperature of ~858 K and undergoes a first-order metal-insulator transition from cubic 

to monoclinic phase with an increase in resistivity and decrease in magnetic moment.28, 29 

It is still under debate on the fundamental mechanism of the transition. Epitaxial Fe3O4 

thin films have been grown on MgO (001) by various techniques such as pulsed laser 

deposition with a temperature range of 200 and 500 oC, yield bulk-like properties.30, 31, 32 

NiFe2O4 exhibits an insulating state because of the sizeable gap in the majority spins and 

a smaller one in the minority spins. Epitaxial NiFe2O4 thin films have been fabricated on 

various substrates including c-plane sapphire and SrTiO3 (001) by pulsed laser 

deposition.33, 34 Anomalous magnetic behavior including diminished magnetization has 

been observed for these epitaxial NiFe2O4 thin films.35 During the study of ultrathin films 

of NiFe2O4 grown on SrTiO3 (001) indicates an anomalous distribution of Fe and Ni 

cations among the A and B sites and distinctly different magnetic and electronic behaviors 

including enhanced magnetic moments by 250% and metallic character were observed. 

For CoFe2O4, the thin film form has quite different properties from its bulk form and the 

magnetic properties are significantly influenced by the microstructure. Various substrates 

including MgO (100) and MgAl2O4 (110) have been used to create CoFe2O4 films free of 

antiphase boundaries which allows the study of the correlation of cation distribution and 
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lattice distortion to the anomalous magnetic behavior.36, 37 As mentioned above, the 

ferrimagnetic CoFe2O4 has been combined with other oxides to create the vertically 

aligned nanocomposites for multiferroism recently.25, 26  

 

1.2.2.3 Magnetic manganites 

In the past two decades, colossal magnetoresistance (CMR) materials such as 

doped manganites are especially attractive because of their strong couplings between 

lattice, charge, spin and orbital degrees of freedom. These manganese-based oxides with 

perovskite structure shows half-metallic characteristics and CMR response which make 

these manganites especially intriguing both for fundamental physics study and 

development of novel electronic devices.  

The discovery of CMR effect in La0.67Ca0.33MnO3 thin film has aroused the 

rejuvenation of research interest in manganite materials. In 1994, Jin et al. reported the 

thousandfold change in resistivity in the magnetoresistive La0.67Ca0.33MnO3 thin film,38 

which is three orders of magnitude larger than that in giant magnetoresistance materials 

(Figure 1.10). Strain was then believed to play an important role in controlling the physical 

properties of the manganite thin films. The CMR effect was attributed to the mixed Mn3+-

Mn4+ valence state in La0.67Ca0.33MnO3 thin film. The CMR in La0.67Ca0.33MnO3 thin film 

requires a large magnetic field which limits its application. Recently, another magnetic 

transport effect called low-field (< 0.1 T) magnetoresistance has been reported for 

La0.7Sr0.3MnO3 thin films. Grain boundary was considered to play a predominant role. 

Chen et al. reported the enhanced low-field magnetoresistance in vertically aligned 
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nanocomposites created from the combination of La0.7Sr0.3MnO3 and other insulating 

oxides such as ZnO and CeO2.
39, 40, 41, 42, 43  

 

 

Figure 1.10 Magnetoresistance ratio (ΔR/RH) versus temperature curves for the La-Ca-

Mn-O films treated under different conditions: curve 1, as deposited; curve 2, annealing 

at 700 oC in O2 for 30 min; curve 3, annealing at 900 oC in O2 for 3 hours.38 

 

1.2.3 Multiferroism 

1.2.3.1 Overview of multiferroism  

Multiferroics refers to a class of materials where at least two primary ferroic 

orderings coexist in a single material.44, 45, 46 There are four primary ferroic orderings 

including ferromagnetism, ferroelectricity, ferroelasticity, and ferrotoroidicity. 
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Nowadays, the definition of multiferroics has been expanded and non-primary ferroic 

orderings are also included such as antiferromagnetism and ferrimagnetism. 

Ferromagnetism is a phenomenon that a material shows spontaneous magnetization which 

can be switched by an applied magnetic field. Ferroelectricity is a material property that a 

material have spontaneous electric polarization and its direction can be reversed by 

applying an external electric field. Ferroelasticity refers to that a material may have strain 

due to the externally applied stress. Ferrotoroidicity means a phase transition to 

spontaneous long-range order of microscopic magnetic toroidal moments but 

ferrotoroidicity is still under debate because no clear evidence has yet been presented. 

Among the four primary ferroic orderings, ferroelectricity and ferromagnetism could be 

coupled to produce the magnetoelectric effect and has received a lot of attention both from 

the fundamental physics and technological point of view.45, 47 Hereafter, multiferroicity 

refers specifically to the coexistence of (ferro)magnetism and ferroelectricity as shown by 

the schematic in Figure 1.11. The magnetoelectric effect was first proposed by Curie in 

1894 and confirmed by the work on Cr2O3 in 1960s.48 Taking the advantages of 

magnetoelectric materials, a wide range of devices with different applications have been 

proposed, including devices for magnetoelectric data storage and switching, optical 

diodes, spin-wave generation, amplification, and frequency conversion.  

 

https://en.wikipedia.org/wiki/Phase_transition
https://en.wikipedia.org/wiki/Long-range_order
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Figure 1.11 A schematic showing the relationship between ferroelectricity, magnetism, 

and multiferroism.49 
 

1.2.3.2 Pathways to multiferroism  

Multiferroic materials exhibit great potentials in ferroelectric random access 

memory, magnetic data storage, multiple state memories, etc. Ni3Bi7O13I is believed to be 

the earliest multiferroic material which was reported in 1960s.50 With the development of 

high-quality thin film growth techniques and extensive research on multiferroic materials, 

different kinds of multiferroics have been discovered or created. From the fundamental 

mechanism and geometry, the thin film multiferroic materials can be classified into three 

categories: single-phase epitaxial thin films, horizontal multilayered heterostructures, and 

vertically aligned heterostructures as shown in Figure 1.12.  
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Figure 1.12 Schematic diagrams showing the three types of multiferroic materials: (a) 

single-phase epitaxial thin films, (b) horizontal multilayered heterostructures, and (c) 

vertically aligned heterostructures.44 

 

Horizontal multilayered multiferroic heterostructures is created by atomic level 

layering to engineer specific magnetic ordering and the compositional ordering leads to 

polarizations. The multilayered heterostructures include CaTiO3/BaTiO3/SrTiO3, Co-

doped TiO2/PZT, Fe/BaTiO3, etc.51, 52, 53 Vertically aligned heterostructures for 

multiferroism have been fabricated by nanostructured columnar growth of oxide-oxide by 

careful selection considering lattice matching, immiscibility and different elastic modulus. 

BaTiO3:CoFe2O4 is one of the typical vertically aligned heterostructures created by the 

alternating columnar growth of BaTiO3 and CoFe2O4.
25, 26, 54 This kind of heterostructure 

with large interface/volume ratio removes the clamping effect from the substrate and could 

allow better strain induced couplings. Many other vertically aligned nanostructures have 

been created for the creation of multiferroics including BiFeO3-CoFe2O4,
55 and BaTiO3-

NiFe2O4.
56  

Compared to the heterostructures mentioned above, single-phase multiferroic thin 

films are more intriguing with rich physical phenomena behind and could allow the 

fundamental mechanism study. The single-phase multiferroics can be classified into four 
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groups based on the mechanism of creating ferroelectricity. The first group is the lone-

pair multiferroics which usually have the perovskite structure of the form ABO3, such as 

BiFeO3,
7 BiMnO3,

57 and PbVO3.
58 The ferroelectricity comes from the stereochemical 

activity of the lone pair on the A-site cation while the smaller B-site cation provides the 

magnetism. BiFeO3 and BiMnO3 are two of the most important lone-pair multiferroic 

materials and will be discussed in detail in the following sections.  

The second group is the geometrically driven ferroelectricity which is compatible 

with the coexistence of magnetism. YMnO3
59, 60 and BaMF4 (M = Fe, Co, Ni)61, 62 belong 

to this group. YMnO3 is the earliest hexagonal manganite which was investigated for 

multiferroism (Figure 1.13). The long range dipole-dipole interactions and oxygen 

rotations lead to the ferroelectricity and antiferromagnetism. The first epitaxial films of 

YMnO3 with hexagonal structure was grown by magnetron sputtering on MgO (111) and 

ZnO (0001)/sapphire (0001).63 Later on, it was found that metastable, non-ferroelectric 

YMnO3 thin films with orthorhombic structure can be obtained on appropriate substrates 

such as SrTiO3 (001) and NdGaO3 (101) owing to the epitaxial strain.59 This is the first 

evidence that strain can be utilized to tune the crystal structure of YMnO3 between 

hexagonal and orthorhombic phases.  
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Figure 1.13 (a) Crystal structures of YMnO3 with paraelectric and ferroelectric phases. (b) 

polarization-electric field hysteresis of the epitaxial-YMnO3/Pt and the oriented-

YMnO3/Pt.64 

 

Third, certain non-centrosymmetric charge-ordering can also lead to 

ferroelectricity in some magnetic materials, like LuFe2O4.
65, 66 LuFe2O4 belongs to the 

family of RFe2O4 (R is rare-earth elements) and the crystal structure consists of alternating 

stacking of triangular lattices of rare-earth elements, iron and oxygen as shown in Figure 

1.14. The mixed-valence LuFe2O4 consists of the same amount of Fe2+ and Fe3+ at the 

same site in the triangular lattice. LuFe2O4 is believed to be a charge-frustrated system of 

triangular lattices. The postulated charge structure allows the presence of a local electrical 

polarization indicating the possibility of ferroelectricity. Also, the magnetic ordering 

around 250 K gives a small net moment. Finally, a new mechanism for inducing 

ferroelectricity was identified in TbMnO3,
67 and TbMn2O5,

68 where the ferroelectricity is 

resulted from a symmetry-lowering magnetic ground state that lacks inversion symmetry.  
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Figure 1.14 The charge-ordering model for RFe2O4 showing the double iron layer.66 

 

1.3 Bismuth-based perovskites for multiferroism  

1.3.1 Overview of perovskites  

Despite the existence of the above mentioned single-phase multiferroics, single-

phase multiferroics are still scarce owing to the drastically different orbital requirements 

for ferroelectricity (requiring empty d-orbital) and ferromagnetism (coming from partially 

filled d-orbitals) as mentioned above. Even for the current single-phase multiferroic 

materials, they suffer from different kinds of disadvantages which prevents the practical 

applications. For instance, although BiFeO3 shows a polarization as high as 100 C/cm2, 

its room temperature magnetization coming from the canting spin is very weak and the 
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strong antiferromagnetism is not convenient for practical applications. However, Bi-based 

perovskites with the Bi 6s2 lone pair giving rise to ferroelectricity and magnetic cations 

provide people important clues of designing new multiferroic materials. In the following 

several sections, several important Bi-based perovskites including Bi-based single-

perovskites and double-perovskites will be reviewed which may provide people some 

hints to design new materials for multifunctionalities.  

In this section, the perovskite structures are reviewed first. The perovskites are a 

group of materials named after calcium titanium oxide (CaTiO3), known as perovskite 

structure. The perovskite structure can be represented by the chemical formula ABO3 

where A and B are cations. The ideal cubic-symmetry perovskite structure has B cations 

in 6-fold coordination and A cations in 12-fold coordination. B cations are surrounded by 

6 first-neighbor oxygen anions forming BO6 octahedron and A cations are surrounded by 

12 oxygen anions forming cuboctahedron. The perovskite structure can be viewed as 

alternating stacking of BO2 and AO atomic planes along any of the orthogonal directions.  

The stability of perovskite structure can be evaluated by the Goldschmidt tolerance 

factor t which is defined as below. 

𝑡 =
𝑟𝐴+𝑟𝑂

√2(𝑟𝐵+𝑟𝑂)
   (1-3) 

where rA, rB, and rO are the ionic radius of cation A, cation B, and oxygen anion, 

respectively. The tolerance factor t can directly affect the crystal structure of the 

perovskites. When t = 1, the perovskites has ideal cubic structure and SrTiO3 is one typical 

example (rA = 1.44 Å, rB = 0.605 Å, and rO = 1.40 Å). When t deviates from 1, it will lead 

to structure distortion which is compensated by the rotation of BO6 octahedron. To keep 
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a cubic perovskite structure the tolerance factor is usually in the range of 0.9 < t < 1.0. 

When t < 1, it means that A cation has smaller ionic radius than cation B. Typically, 

orthorhombic or rhombohedral structures are formed to achieve a close packaging of the 

ions with the BO6 octahedron tilted. One example is the orthorhombic GdFeO3 with a 

tolerance factor of 0.81. When t > 1, it means that the A cation is much larger than B cation 

and it is not possible to accommodate A cation in the cubic perovskite. In this case, 

different hexagonal polymorphs become stable.  

For bismuth-based perovskites, the ferroelectricity comes from the 

stereochemically active Bi3+ 6s2 lone pair electrons which always locates at the A-site. 

Bi3+ has an electron configuration of [Xe]4f145d106s26p0 with two outer 6s orbital electrons 

called lone pairs. The two outer electrons do not participate in chemical bonds and are 

nearly spherically distributed. Due to the Coulombian electrostatic repulsion, the lone 

pairs shift away the centrosymmetric position when surrounded by the oxygen anions. A 

lobe-like distribution of the electrons is then formed. Thus the lone pairs form an electric 

dipole which breaks the spatial inversion symmetry and becomes the driving force for the 

ferroelectric response in all Bi-based compounds.  

For the B-site magnetic cations, they are interrupted by the oxygen anions and the 

magnetic interactions are mediated by the adjacent oxygen ions through the 

superexchange interaction. Pauli’s exclusion principle states that two electrons in the same 

orbital must possess antiparallel spins and Hund’s rule states that the d orbital electrons 

minimize their energy in a parallel spin alignment. The magnetic nature depends largely 

on the filling of eg orbitals according to Goodenough-Kanamori’s (GK) rules. Figure 1.15 
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demonstrates several the magnetic interactions giving rise to antiferromagnetism or 

ferromagnetism depending on the eg orbital filling. These magnetic interactions are for the 

simplest scenario where the B-O-B bond angle is 180o. Different B-O-B bond angles, 

distorted perovskites, and rotation of oxygen octahedron may lead to different magnetic 

interactions. Usually BiBO3 perovskites (BiMnO3 is an exception) are antiferromagnetic 

caused by the same oxidation states, i.e. have the same eg orbital filling. For double 

perovskites it is possible to achieve ferromagnetism by appropriately choosing B (empty 

eg orbitals) and B’ (half-filled eg orbitals). Even if antiferromagnetic interaction dominates 

in a double perovskite, ferrimagnetism is likely to occur because each cation possesses 

different magnetic moments producing a net magnetization.   
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Figure 1.15 A schematic showing the superexchange interaction in ABO3 perovskite with 

180o B-O-B bond angle. The magnetic interaction can be either antiferromagnetic (a, b) 

or ferromagnetic (c) depending on the occupation of eg orbitals.69 
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1.3.2 BiFeO3 

1.3.2.1 Overview of BiFeO3  

BiFeO3 (BFO) has received the most attention as a famous single-phase 

multiferroic material since its discovery. BFO was first produced in the late 1950s and 

many efforts were spent to understand its fundamental crystal structure and physical 

properties since then. Bulk BFO at room temperature has a rhombohedral structure 

belonging to the space group of R3c while thin film BFO shows a monoclinic crystal 

structure.8 Studies show that BFO is a G-type antiferromagnet (Figure 1.16) with a Néel 

temperature of ~673 K. Owing to the spin canting of the antiferromagnetic moments, BFO 

also shows weak ferromagnetism at room temperature (~0.05 B per unit cell). The Curie 

temperature for the ferroelectricity is ~1100 K and theoretical calculations indicate a 

polarization value of 90-100 C/cm2 which is consistent with the experimental 

measurement.7 The details of the physical properties will be discussed in the following 

sections.  
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Figure 1.16 Crystal structure of BiFeO3 from different orientations: (a) pseudocubic-[110], 

(b) pseudocubic-[111], and (c) a general three dimensional view of the structure. (d) The 

magnetic structure of BiFeO3.
70 

 

1.3.2.2 Ferroelectricity in BiFeO3  

Much efforts have been made to elucidate the structural and physical properties of 

BFO throughout the 1960s and 1970s, including the ferroelectric nature. There was once 

doubt about whether BFO is a ferroelectric material until the ferroelectric measurements 

for BFO at 77 K was made in 1970.71 A polarization value of ~6.1 C/cm2 was observed 

for BFO along the <111> direction which was consistent with the rhombohedral polar 

space group R3c. This finding was further confirmed in 1980 by the characterization of 

ferroelectric/ferroelastic monodomain single crystal samples of BFO. Later on, the 

chemical etching experiments proved that the ferroelectric/ferroelastic phase was stable 

between 4 and ~1103 K.72 The ferroelectric polarization of BFO is achieved by the 

displacement of Bi ions relative to the FeO6 octahedra. Theoretical calculations 
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demonstrate a polarization value of 90-100 C/cm2 and a paper in 2003 has aroused the 

rejuvenation of research interest in BFO.7 Since the report of high ferroelectric 

polarization in 2003, much efforts have been made to investigate BFO to explore its 

fundamental physics and potential applications.  

Domain structure in ferroelectrics is the result of minimizing elastic and 

electrostatic energy and plays an important role in influencing the physical properties of 

the ferroelectric materials. Much advances have been made in controlling the ferroelectric 

domain structures through the use of thin film epitaxy. Phase field simulations have shown 

that strain affects the polarization variants and can be used to predict the domain structure 

of BFO thin films.73 These theoretical studies show that the domain structure of BFO can 

be controlled by selecting proper film orientations (by selecting the substrate types) and 

strain constraints. Chu et al. have done a lot work to control the domain structure of BFO 

by selecting proper substrates which confirms the theoretical prediction. In 2006, Chu et 

al. created one-dimensional nanoscale arrays of domain walls in BFO thin films taking 

advantage of the close lattice matching of BiFeO3, SrRuO3, DyScO3 and the anisotropic 

in-plane lattice parameters of DyScO3.
74 The buffer layer of SrRuO3 plays an important 

role in determining the final domain structures of the BFO thin films which results in 

ferroelectric domain structure with 4-polarization and 2-polarization variants. The stripe-

like domain structures of BFO predicted by phase field simulations were confirmed by 

experiment (Figure 1.17). These BFO thin films have shown excellent ferroelectric 

response with room temperature remanent polarization of ~65 C/cm2.75 Later on in 2007, 
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the same authors showed the ability of controlling the domain structures of BFO thin films 

by selecting the substrate orientations of SrTiO3 ((001), (110), and (111)).76  

 

 

Figure 1.17 (a) Schematic diagrams showing the heterostructures of 

BiFeO3/SrRuO3/DyScO3. (b) Domain structure of BFO thin film predicted by phase field 

simulations. The in-plane PFM images of domain structures in BFO thin films showing 

(c) 4-polarization variants (left), and 2-polarization variants (right).74 

 

A problem with BFO as a ferroelectric material is that the leakage current is large 

which is caused by defects and non-stoichiometric compositions. Element doping (both at 

A-site and B-site) has been used to reduce the leakage current in order to improve the 

ferroelectricity and piezoelectricity of BFO. Doing of Ti4+ and Cr has been proved to 

increase the resistivity and doping Ni2+ can decrease the resistivity.77 Different from the 

aforementioned doping, Yang et al. observed large physical property change by doping 

Ca in BFO.78 An electronic conductor-insulator transition in Ca-doped BFO was observed 

by controlling of band-filling. A new pseudo-tetragonal phase is formed around a Ca 

concentration of 1/8 (Figure 1.18(a)). Upon the application of an electric field the doped 

BFO can become conductive and this effect can be reversibly controlled by 

applying/removing the electric field as shown by Figure 1.18(b) and (c). This modulation 
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of conduction is attributed to the naturally produced oxygen vacancies acting as donor 

impurities to compensate Ca acceptors and to maintain the highly stable Fe3+ valence state.  

 

 

Figure 1.18 (a) A pseudo-phase diagram demonstrating the structural and property 

evolution of Ca-doped BiFeO3. (b) Conducting-atomic force microscopy image showing 

an electrically poled and re-poled area of the doped BiFeO3 film. (c) Illustration of the 

process of creating a multi-state memory.8, 78  

 

1.3.2.3 Multiferroism and magnetoelectric coupling in BiFeO3 

As aforementioned, BFO is a G-type antiferromagnet with weak ferromagnetism 

caused by the spin canting of the antiferromagnetic moments.79 The paper in 2003 

spawned a hailstorm of research into BFO thin film which showed enhanced electric 

polarization and ferromagnetism (Figure 1.19).7 Although there is still debate about its 

ferromagnetism, BFO has been extensively studied for its multiferroism and 

magnetoelectric effect.  
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Figure 1.19 (a) Magnetic hysteresis loops of a 70 nm BFO thin film (blue: in-plane, red: 

out-of-plane). (b) Ferroelectric hysteresis loop of BFO thin film.7 

 

Magnetoelectric effect refers to the coupling between ferroelectric and magnetic 

orders where the electric polarization can be induced by applying an external magnetic 

field or the magnetization can be induced by applying an electric field. The 

magnetoelectric coupling in BFO was already anticipated and the first direct evidence was 

reported by Zhao et al. in 2006.45 The authors observed the direct changes of the 

antiferromagnetic domain structure in BFO by applying an electric field. The X-ray 

photoemission electron microscopy images in Figure 1.20(a) and (b) clearly show the 

antiferromagnetic domain changes before and after poling, respectively. The piezoelectric 

force microscopy images in Figure 1.20(c) and (d) together with the superposition of in-

plane PFM scans shown in (c) and (d) demonstrate the ferroelectric domain changes.  
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Figure 1.20 X-ray photoemission electron microscopy images before (a) and after (b) 

poling. In-plane piezoelectric force microscopy (PFM) images before (c) and after (d) 

poling. (e) A superposition of in-plane PFM scans shown in (c) and (d) used to identify 

the different switching mechanisms that appear with different colors and are labeled in the 

figure.45 
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1.3.3 BiMnO3 

1.3.3.1 Overview of BiMnO3  

BiMnO3 (BMO) is also one of the most promising multiferroics. The crystal 

structure of bulk BMO at room temperature is noncentrosymmetric monoclinic with space 

group of C2. The lattice parameter is a = 9.5323 Å, b = 5.6064 Å, c = 9.8535 Å,  = 

110.667o.80  To gain more insight into the physics of BMO, it is helpful to view it as a 

pseudo-perovskite structure and the lattice parameter is a = 3.950 Å, b = 3.995 Å, c = 

3.919 Å,  = 90.7o,  = 90.9o,  = 91.0o. BMO undergoes several phase transitions in a 

wide temperature range (Table 1.3).  

 

Table 1.3 Crystal structure information and phase transitions of BiMnO3.
81 

Temperature Crystal structure information 

> ~770 K Centrosymmetric structure, Pbnm orthorhombic 

< ~770 K Non-centrosymmetric structure, monoclinic C2 

am = ~9.58 Å, bm = ~5.58 Å, cm = ~9.75 Å, and  = ~108o 

< ~450 K Non-centrosymmetric structure, monoclinic C2 

am = ~9.532 Å, bm = ~5.605 Å, cm = ~9.854 Å, and  = ~110.7o 

< ~105 K Spins of Mn3+ ions ordered ferromagnetically 

 

BMO is not stable at atmospheric pressure and the synthesis of bulk BMO requires 

high pressure (~6 GPa) and high temperature (~1100 K).82 Strain, exposed by the substrate 

could be used to replace the high pressure requirement to stabilize the BMO in thin film 
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form.82, 83, 84, 85 The first growth of BMO in thin film form was by pulsed laser deposition 

on SrTiO3 (001) single crystal substrate.82 The growth of pure BMO in thin film form is 

very difficult due to the volatility of Bi and the easy formation of impure phases like Bi2O3 

and Bi12MnO20. The ferromagnetic transition temperature TC of bulk BMO is 105 K and 

depending on the substrate, it can be as low as 50 K on LaAlO3.
86 The ferromagnetic 

transition temperature is far below the room temperature which prevents the practical 

application of BMO. Similar to BFO, BMO also suffers from the high leakage current 

which limits the direct polarization-electric field hysteresis loop measurement. The 

detailed information regarding ferroelectricity, ferromagnetism, and growth of BMO thin 

film will be discussed in the following sections.  

 

1.3.3.2 Ferroelectricity and ferromagnetism of BMO   

Due to the stereochemical activity of Bi cations, BMO crystallizes in a highly 

distorted non-centrosymmetric monoclinic structure at low temperatures. The monoclinic 

unit cell contains 8 formula units. BMO can also be treated as a triclinic lattice (at  ct  

3.935 Å, bt  3.989 Å,     91.46o,   90.96o) with one formula unit and the 

pseudocubic representation is usually used for BMO thin films. At high temperatures, 

BMO undergoes two phase transitions at ~450 K and ~770 K as shown in Table 1.3. The 

phase transition at ~770 K leads to a centrosymmetric structure which does not allow 

spontaneous polarization and 770 K is usually considered at the ferroelectric Curie 

temperature.  
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The magnetic behavior of BMO can be understood based on the superexchange 

interaction between Mn3+-O-Mn3+. The d4 transition metal ion Mn3+ has a d-orbital 

electron configuration of t2g
3, eg

1 with the four electrons occupying the d-orbitals to 

maximize the total spin. To reduce the Coulomb electrostatic repulsion of the surrounding 

oxygen anions, the MnO6 octahedron is slightly elongated (the so-called Jahn-Teller).  

Based on the Goodenough-Kanamori rules, a perovskite can be either 

ferromagnetic or ferrimagnetic based on the superexchange coupling of Mn3+-O-Mn3+ and 

the ferrimagnetism is more possible. However, an overall long-range ferromagnetism 

occur in BMO due to the highly distorted monoclinic structure caused by the 

stereochemical active Bi3.87 The actual Mn-O-Mn bond angle is between 140o and 160o.  

 

1.3.3.3 Growth of BMO thin films  

It is a fact that single-phase Bi-based manganite-family perovskites is difficult to 

be synthesized because of the multiphase formation and high volatility of bismuth.82, 88, 89 

High pressure and high temperatures are required to synthesize bulk single-phase Bi-based 

manganite-family perovskites such as BiMnO3. Strain, exposed by the lattice mismatch 

between the film and single-crystal substrate, could be used to replace the high pressure 

requirement to achieve single-phase synthesis of Bi-based manganite-family perovskites. 

For example, SrTiO3 (001) (a = 3.905 Å) has been chosen as the substrate to fabricate 

BMO thin films with pseudocubic structure (pseudocubic representation: at  ct  3.935 

Å, bt  3.989 Å,     91.46o,   90.96o). Much efforts have been made to optimize the 
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growth conditions of fabricating single-phase BMO thin films by pulsed laser deposition, 

such as optimizing the substrate temperature, oxygen pressure, doping, etc. 

Oxygen pressure can highly influence the phase formation of Bi-Mn-O thin films. 

In 2007, Fujino et al. studied the multiphase thin film growth of Bi-Mn-O system on 

SrTiO3 (001) using a stoichiometric BiMnO3 target. It was shown that the dominant phase 

can be tuned from the single phase BiMnO3 to epitaxially grown ferromagnetic Mn3O4 by 

controlling the oxygen pressure (Figure 1.21).85 A composite consisting of BiMnO3 and 

Mn3O4 was obtained when the oxygen pressure was 10 mTorr.  
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Figure 1.21 XRD θ-2θ scans of Bi-Mn-O thin films deposited on SrTiO3 (001) substrates 

at 650 oC under an oxygen pressure range of 1 and 20 mTorr.85 

 

Langenberg et al. did temperature dependence study on the growth of Bi-Mn-O 

thin films and showed that the BiMnO3 phase can be obtained in a narrow temperature 

window around 630 oC with multiple impure phases formed (Bi2Mn4O10, Mn3O4, Bi2O3, 

etc.).90 There are several other reports regarding BMO where pure pseudocubic BMO thin 

films were fabricated on STO (001). Gajek et al. studied the spin filtering and tunnel 

junctions using the pseudocubic BMO as the multiferroic tunnel barriers and the 
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pseudocubic BMO thin films were grown on STO (001) in a narrow temperature window 

around 625 oC.83, 91 Lee et al. fabricated highly epitaxial and pure pseudocubic BMO thin 

film on STO (001) at 500 oC using a target Bi1.2MnO3 to compensate the Bi loss (Figure 

1.22).92 Yang et al. obtained pure pseudocubic BMO thin film on STO (001) at an even 

lower temperature around 460 oC.93  

 

 

Figure 1.22 (a) XRD θ-2θ pattern for the BiMnO3 thin film grown on SrTiO3 (001). Inset 

shows the rocking curve for a (010) BiMnO3 peak. (b) X-ray reciprocal space mapping 

around the SrTiO3 (114) plane shows well-developed peaks for BiMnO3 in the lower 

region and two strong substrate peaks in the upper region.92  
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Substituting Bi3+ by a cation with smaller ionic radius has also been used to 

stabilize the BMO phase to achieve the highly pure growth. La3+ (ionic radius 1.22 Å) has 

been doped into BMO to substitute Bi3+ (ionic radius 1.24 Å) to make the growth of BMO 

easier because the smaller La3+ exerts a chemical pressure strain to the unit cell of BMO 

to stabilize the phase.88, 91, 94, 95, 96 As a rare single-phase multiferroics, BMO is intriguing 

but its low ferromagnetic transition temperature of 105 K has limited its practical 

applications at room temperature. For BMO thin films, the Curie temperature TC is even 

lower than that of bulk BMO. The physical properties of BMO thin films highly depend 

on the substrates. Son et al. reported a ferromagnetic transition temperature of 50 K for 

the pseudocubic BMO thin film grown on LaAlO3 (001) (lattice mismatch -4.3%).86 Luca 

et al. reported a TC value of 100 K for ultrathin BMO thin films grown on STO (001) 

(lattice mismatch -1.0%) which is slightly lower than that of bulk BMO.97  

Although the smaller La3+ lowers the structural distortion, it also causes a slight 

reduction of the Jahn-Teller distortion leading to weaker ferromagnetic properties (TC ~ 

90 K). Choi et al. studied the doped growth and multiferroic properties of Bi1-xSmxMnO3 

(BSMO).98 It was found that the dopant Sm3+ can facilitate the pure phase growth of BMO 

as shown in Figure 1.23. Similar to the dopant of La3+, the much smaller Sm3+ (1.13 Å 

compared to Bi3+ 1.22 Å) also exerts a chemical pressure to the unit cell causing a reduced 

unit cell volume to achieve the stabilized growth of BMO. Besides, both the ferroelectric 

and ferromagnetic responses are improved with the doping of Sm3+. Compared to the pure 

BMO, BSMO shows a much higher d33 value of 10 pm/V than that of Bi0.9La0.1MnO3 (2 

pm/V). The ferromagnetic transition temperature of BSMO was measured to be around 
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140 K, 40 K higher than that of pure BMO thin films (Figure 1.23). The enhancement of 

the multiferroic properties is ascribed to the fact that the out-of-plane Mn-O-Mn 

ferromagnetic bonds were reduced which enhanced the out-of-plane ferromagnetic 

coupling. At the meantime, the in-plane Mn-O-Mn antiferromagnetic bonds were not 

reduced and hence the in-plane antiferromagnetic coupling was not enhanced. These two 

aspects lead to an enhanced ferromagnetic response of the BSMO thin film.  

 

 

Figure 1.23 (a) XRD θ-2θ scans of undoped-BMO and BSMO films. (b) Normalized 

magnetization-temperature curve of undoped-BMO and BSMO thin films under a 

magnetic field of 200 Oe.98 

 

Besides the above mentioned single-perovskites BFO and BMO, there are also 

several other potential multiferroic candidates. BiCrO3 was predicted to be 

antiferromagnetic and antiferroelectric in 2002 and later on in 2006 thin film of BiCrO3 

was prepared on single substrates, which was shown to be antiferromagnetic (TN: 120-140 

K) with weak ferromagnetism. BiCoO3 was predicted to show a giant polarization of 150 
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C/cm2 but the efforts on the preparation of thin film BiCoO3 was not successful.99 High-

quality epitaxial BiAlO3 thin film was deposited on LaAlO3 (001) and exhibited a 

remanent polarization of about 29 C/cm2.100  

Bi-based double-perovskites also attract people’s attention besides the single 

perovskites mainly because of the above room-temperature ferromagnetic transition as 

well as the desirable ferroelectricity. Two of the extensively studied double perovskites 

are Bi2FeMnO6 and Bi2NiMnO6.  

 

1.3.4 Bi2FeMnO6 

As stated above, BFO shows a polarization value as large as 90 C/cm2 but its 

drawbacks, for example, the weak magnetic moment caused by the cycloidally modulated 

G-type antiferromagnetic structure with a large period of 62 nm, limit its practical 

applications. The problem for BMO lies in its low ferromagnetic Curie temperature (50-

105 K). To enhance the magnetic moment of BFO, various transition metal elements have 

been doped into BFO including Mn. Pálová et al. theoretically predicted that it may be 

possible to achieve the co-existent of ferromagnetism and ferroelectricity by Mn 

doping.101 Azuma et al. studied the magnetic and structural properties of BiFe1-xMnxO3 

and proved that solid solutions was formed in the entire composition range when 

fabricated at high pressure of several GPa.102 In the composition range of 0.2 and 0.6, a 

new orthorhombic phase was formed and a tentative phase diagram was proposed as 

shown in Figure 1.24.  
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Figure 1.24 Phase diagram for BiFe1-xMnxO3. The open circles stand for the 

antiferromagnetic TN and the closed ones are for ferromagnetic TC.102 

 

Among the whole BiFe1-xMnxO3 system, BiFe0.5Mn0.5O3, which can be viewed as 

Bi2FeMnO6 (BFMO), has been especially and extensively studied as one of the famous 

bismuth-based double-perovskites (Bi2BB’O6, B and B’ are transition metal cations). Both 

bulk and thin film of BFMO have been studied for its multiferroic response. Rana et al. 

reported a magnetization value of 10 emu/cc at 10 K for bulk BFMO.103 In fact, there is 

controversy regarding the magnetic response of BFMO. Different researchers have 

obtained drastically different magnetization values for the double perovskite BFMO. For 
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many of the literatures, weak magnetizations for BFMO were demonstrated.102, 103, 104, 105, 

106, 107, 108, 109, 110, 111, 112, 113, 114 In 2008 Bi et al. did the oxygen pressure dependence study 

of the growth of BFMO on STO (001). The results showed that the Bi loss decreased with 

the increase of oxygen pressure and pure BFMO thin film can be obtained under 1 mTorr 

of oxygen (Table 1.4). But the magnetization value of BFMO thin film is only 0.8 emu/cc 

(under a magnetic field of 10 kOe) at room temperature (Figure 1.25(a)).108 It was assumed 

that the magnetization of BFMO thin film originates from the canted antiferromagnetism 

at room temperature. To investigate the low-temperature magnetic ordering of BFMO, the 

magnetization of BFMO at 5 K was measured using a superconducting quantum 

interference device (SQUID) magnetometer. A magnetization value of 5.4 emu/cc at 9 

kOe, corresponding to 0.03 B per B-site ion, was obtained. This value is much lower than 

the values expected from ordered Fe and Mn ordering (4 B for ferromagnetic and 0.5 B 

for antiferromagnetic ordering of Fe3+ and Mn3+). These results indicate that most of the 

B-site cations are disordered for the BFMO sample in this study. However, in 2011 Choi 

et al. reported a strong room-temperature magnetization value of 90 emu/cc at H = 3 kOe 

for BFMO thin film grown on STO (001) (Figure 1.25(b)).111 The magnetic transition 

temperature is as high as 600 K, much higher than the value of 105 K for bulk BMO. They 

attributed the high magnetization value to the high level of strain induced by the epitaxial 

growth. The BFMO film is 30 nm thick and highly strained showing high tetragonality 

with high epitaxial quality and phase purity.  
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Table 1.4 Phases and compositions of Bi2FeMnO6 films grown on SrTiO3 (001) substrates 

at 680 oC and various oxygen partial pressures.108 

PO2 (mTorr) Phases Bi/(Fe + Mn) 

(at. %) 

Fe/Mn 

(at. %) 

0.8 Bi2FeMnO6, 

-Fe2O3, Mn3O4 

0.94 0.91 

1 Bi2FeMnO6 1.07 0.92 

3.5 Bi2FeMnO6, Bi2O3 1.10 0.91 

2.5 (in situ 

annealed) 

Bi2FeMnO6, Bi2O3, 

-Fe2O3, Mn3O4 

0.56 0.95 

7.5 (in situ 

annealed) 

Bi2FeMnO6, Bi2O3, 

-Fe2O3, Mn3O4 

0.65 0.94 

 

 

Figure 1.25 (a) Magnetic hysteresis loops of BFO and BFMO thin films along the out-of-

plane direction at room temperature.108 (b) Magnetic hysteresis loops of BFMO thin films 

along the in-plane and out-of-plane directions.111 
 

In 2014, Choi et al. studied the influence of strain to the magnetism of BFMO thin 

films in more detail.113 Highly epitaxial and pure BFMO thin films with thicknesses of 30, 
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60, and 120 nm were fabricated on STO (001) and with the decreasing of the film 

thickness, the crystallinity of the films increased (Figure 1.26(a) and (b)). Figure 1.26(c) 

indicated that the thinner films exhibit higher tetragonality. These results showed that the 

films are highly epitaxial and strained throughout the whole film thickness. The magnetic 

measurement results showed that films with higher tetragonality exhibited higher saturated 

magnetization value and higher magnetic transition temperature (Figure 1.26(d)). The 

maximum magnetic moment in this study is 50-60 emu/cc at 5 kOe at 300 K. This value 

(~0.4 B/f.u.) is less than half of the theoretical value of 1.0 B/f.u. for the fully ordered 

BFMO. This may indicate partial or full disordered Fe3+ and Mn3+.115, 116 X-ray magnetic 

circular dichroism (XMCD) could provide information regarding the spin and orbital 

moments of the atomic level as well we element sensitivity.117 With the help of XMCD, 

the authors probed the origin of the magnetic properties and confirmed that Fe and Mn 

order antiferromagnetically with respect to each other. The magnetization of Fe is parallel 

and Mn is antiparallel to the magnetic field, producing a ferrimagnetic ordering. There is 

no evidence of long range ordering of Fe and Mn and hence the possible bonds are Fe3+-

O-Fe3+, Mn3+-O-Mn3+, and Fe3+-O-Mn3+. So it is understood that the reduced 

magnetization of 90 emu/cc comes from the Fe3+-O-Mn3+ ordering.  
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Figure 1.26 (a) XRD θ-2θ scans and (b) ω-rocking curves of BFMO thin films: Film 2 (30 

nm thick), Film 3 (60 nm thick), Film 4 (120 nm thick). (c) Normalized in-plane M-T 

curves of Film 2 and Film 3. (d) The relationship between c-axis lattice parameter (open 

squares), FWHM of ω-rocking curves (red squares), and film thickness.113  

 

Most of the work on BFMO thin films were focused on the magnetic properties 

with little work on its electric properties. Miao et al. studied the ferroelectricity and 

magnetism of BFMO thin films grown on CaRuO3-buffered STO (001) (Figure 1.27). At 

350 K, an ellipslike shape of polarization-electric field loop was obtained due to the 

considerable leakage current. But below 250 K, a remnant polarization value of ~23 

C/cm2 was observed for the BFMO thin film. The magnetic measurement showed a 

remnant magnetization of ~1 emu/cc at 50 K. The authors stated that the weak magnetism 

of BFMO in this study may be attributed to the ferrimagnetic ordering of Fe and Mn at 
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~140 K while the magnetization above 200 K comes from the canted antiferromagnetic 

arranged spins between Mn ions.  

 

 

Figure 1.27 (a) Polarization-electric field loops and (b) magnetization hysteresis loops of 

BFMO thin films.110 
 

1.3.5 Bi2NiMnO6 

1.3.5.1 Overview of Bi2NiMnO6 

Bi2NiMnO6 (BNMO) is another famous double-perovskite with the B-site cations 

ordered in a 3D rock-salt pattern as shown by the schematic in Figure 1.28. Similar to 

BMO, BNMO is also a metastable compound and the synthesis of BNMO needs high 

pressure (6 GPa) and high temperature (~800 oC). As a multiferroic material, BNMO has 

also been studied either in bulk or in thin film form.118, 119, 120, 121, 122, 123, 124, 125, 126 
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Figure 1.28 A schematic diagram showing the double-perovskite structure with long-range 

B-site order in a rock-salt configuration.69 

 

In 2005, Azuma et al. designed and fabricated the new double perovskite BNMO 

under high temperature and high pressure.127 Synchrotron X-ray powder diffraction 

pattern taken at room temperature shows that the BNMO has a monoclinic unit cell with 

the lattice parameters of am = ~5.4041 Å, bm = ~5.5669 Å, cm = ~7.7338 Å, and  = 

~90.184o, which is quite close to the unit cell of BMO. The monoclinic C2 symmetry of 

BNMO allows spontaneous polarization and a theoretical polarization of 20 C/cm2 was 

predicted. The dielectric constant measurement shows an anomaly at 485 K which can be 

treated as the ferroelectric temperature (Figure 1.29(a)). At 500 K, the unit cell of BNMO 

was indexed as centrosymmetric monoclinic with the lattice parameters of am = ~5.4041 

Å, bm = ~5.5669 Å, cm = ~7.7338 Å, and  = ~90.184o. The crystal structure and phase 

information is summarized in Table 1.5. The monoclinic supercell of BNMO is the same 

as that of La2NiMnO6 with Ni2+ and Mn4+ ordered in a rock-salt configuration.128  
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Figure 1.29 (a) Temperature dependence of relative dielectric constant and (b) temperature 

dependences of magnetic susceptibility and inverse susceptibility of Bi2NiMnO6.
127 

 

From the crystal structure of BNMO, the magnetic exchange path is -Ni2+-O-Mn4+-

O-Ni2+. Ni2+ possesses the eg
2 configuration and Mn4+ has no eg electron which may favor 

the ferromagnetic interaction between the neighboring spins. It was also shown that there 

is no Jahn-Teller distortion in NiO6 and MnO6 octahedra which also supports the Ni2+ 

(t2g
6eg

2) and Mn4+ (t2g
6eg

0) oxidation states in BNMO. The magnetic susceptibility 

measurement as a function of temperature shows a sharp increase in at 140 K indicating 

the ferromagnetic transition (Figure 1.29(b)). The saturated magnetization measured at 5 

K was 4.1 B at 5 T which is quite close to the theoretical value of 5 B expected from the 

ferromagnetic coupling between Ni2+ (S = 1, 2 B) and Mn4+ (S = 3/2, 3 B). The smaller 

magnetization may come from small antisite disorder of Ni2+ and Mn4+. The Ni-O-Ni and 

Mn-O-Mn interaction leads to antiferromagnetism which will reduce the saturated 

magnetization.  
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Table 1.5 Crystal information and phase transitions of double-perovskite Bi2NiMnO6.
127 

Temperature Crystal structure information 

> ~485 K Monoclinic P21/c, centrosymmetric structure 

am = ~5.4041 Å, bm = ~5.5669 Å, cm = ~7.7338 Å, and  = ~90.184o  

< ~485 K Monoclinic C2, non-centrosymmetric structure   

am = ~9.4646 Å, bm = ~5.4230 Å, cm = ~9.5431 Å, and  = ~107.8o 

< ~140 K Spins of Ni2+ and Mn4+ are ferromagnetically ordered. 

 

1.3.5.2 Thin film growth of Bi2NiMnO6 

As mentioned above, BNMO is a multiferroic material with the ferroelectric 

transition temperature of 485 K and ferromagnetic transition temperature of 140 K. The 

high pressure requirement for the synthesis of bulk BNMO can be replaced by the epitaxial 

strain exposed by the substrates. Much efforts have been made to fabricate BNMO thin 

films. However, the high volatility of Bi and multiphase tendency of Bi-based compounds 

make it difficult to stabilize BNMO as pure single phase although Sakai et al. fabricated 

single phase BNMO thin film on STO (001) at 630 oC.120 The growth window of the thin 

film deposition condition is narrow and it is difficult to optimize the growth conditions.  

One strategy of stabilizing the single phase Bi-based compounds is to partially 

replace Bi3+ by La3+.88 The ionic radius of La3+ (1.30 Å) is a little smaller than that of Bi3+ 

(1.31 Å) which reduces the unit cell volume and exerts a chemical pressure to the unit cell 

to prevent the volatility of Bi.129, 130, 131 Langenberg et al. fabricated epitaxial 

(Bi0.9La0.1)2NiMnO6 (BLNMO) thin films on STO (001) and studied the influence of 
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temperature and oxygen pressure to the growth of BLNMO thin films as shown in Figure 

1.30.129 The results showed that the substrate temperature can influence the phase growth 

of BLNMO and the optimized temperature is 620 oC. The growth of BLNMO thin films 

is not sensitive to the oxygen pressure.  

 

 

Figure 1.30 XRD θ-2θ scans of BLNMO thin films grown (a) at 0.5 mbar of O2 at different 

temperatures and (b) at 620 oC at different oxygen pressures.129 
 

Other double-perovskites include Bi2FeCrO6,
132, 133, 134 which was predicted to 

have a polarization of 80 C/cm2 and was theoretically confirmed. However, the 

magnetization of Bi2FeCrO6 is very weak for both bulk and thin film samples (0.2 B/f.u.).  

 

1.4 Two-dimensional layered materials  

1.4.1 Overview of two-dimensional materials  

Two-dimensional (2D) layered materials, no longer possessing the same behavior 

as their three-dimensional forms, has sparked special research interest because of their 

unique anisotropic structures and rich physics as well as the potentials of fabricating 
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nanoscale devices. Graphene and transition metal chalcogenides (e.g., GeS, SnSe, WS2, 

and MoS2) represent two kinds of hotly studied 2D materials nowadays with varieties of 

physics discovered such as quantum spin Hall effects, topological insulating transitions 

and ferromagnetism, which paves an avenue towards 2D devices. Besides the non-oxide 

2D materials, oxide-based 2D materials have also attracted wide attention and have been 

the focus of condensed matter physics and material science with the underlying rich 

physical phenomena. For example, perovskite-related 2D materials like Aurivillius and 

Ruddlesden-Popper phases exhibit remarkable structural variability because of their 

unique ionic structural framework. And intriguing physical properties such as 

piezoelectricity and ionic conductivity have been reported for these kinds of perovskite-

related 2D layered materials. In the following sections, the 2D non-oxide based and oxide-

based layered materials will be briefly discussed.  

 

1.4.2 Non-oxide based two-dimensional layered materials  

The non-oxide based 2D materials include graphene, transition metal 

dichalcogenides, boron nitride (BN), magnesium diboride (MgB2), etc (Figure 1.31). 

Graphene is a crystalline allotrope of carbon with 2D layered structures. Its carbon atoms 

are densely packed in hexagonal pattern. Graphene has many unique properties. Its 

strength is 100 times stronger than that of the strongest steel. It can conduct heat and 

electron very efficiently and is nearly transport. In addition, several other physical 

phenomena have been discovered in graphene, such as bipolar transistor effect, ballistic 

transport of charges, and large quantum oscillations. Graphene has been widely studied 
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and has potential applications in different areas such as medicine, electronics, energy, 

environmental, and structural materials.135, 136, 137, 138, 139, 140, 141, 142, 143, 144 Transition metal 

dichalcogenides are atomically thin semiconductors with the form MX2, where M is 

transition metal atoms such as Mo and W, and X represents the chalcogen atom such as S, 

Se, and Te.145, 146, 147, 148, 149, 150 The M atom layer lies between two layers of X atoms. 

Transition metal dichalcogenides have potential applications in the areas of electronics 

(e.g. transistor), optics (e.g. emitters and detectors), etc. Boron nitride is a compound 

composed of boron and nitrogen with the formula BN. BN has three crystal structure: 

hexagonal, cubic and wurtzite.151, 152, 153 Among these different forms of BN, the 

hexagonal BN is the most stable and soft one and can be used as lubricant and addition to 

cosmetic products. Magnesium diboride is an ionic compound with the formula MgB2. 

MgB2 is proved to be a superconducting material with a critical temperature of TC of 39 

K.154  
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Figure 1.31 Crystal structure model of (a) graphene, (b) MoS2, (c) BN, and (d) MB2.
154, 

155, 156, 157, 158 

 

1.4.3 Oxide-based two-dimensional layered materials  

The oxide-based 2D materials cover a wide range of compounds which include 

LiMO2 (M = Co, Mn, Ni), vanadium dioxide (VO2), Ruddlesden-Popper phases, 

YBa2Cu3O7, Aurivillius phases, etc (Figure 1.32). LiMO2 (M = Co, Mn, Ni) is a series of 

compounds consist of Li+ and MO2
- with layered structure and these kinds of layered 

materials are used as cathode materials in lithium ion battery.159 Vanadium dioxide (VO2) 

has four different structures which are rutile (R phase), monoclinic (M phase), monoclinic 

(B phase), and tetragonal (A phase). The metastable monoclinic B phase shows layered 

structure and attracts interests as lithium ion battery cathode material.160 Ruddlesden-

https://en.wikipedia.org/wiki/Yttrium
https://en.wikipedia.org/wiki/Yttrium
https://en.wikipedia.org/wiki/Copper
https://en.wikipedia.org/wiki/Oxygen
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Popper phases are a series of materials composed of two dimensional perovskite slabs 

interleaved with cations. Several examples of Ruddlesden-Popper phases include Sr2TiO4, 

Ca2MnO4 and SrLaAlO4. Yttrium barium copper oxide (YBa2Cu3O7) is a perovskite 

structure consisting of layers and is a famous superconductor with high critical 

temperature.3 Aurivillius phases are a form of perovskite structures which are built by 

alternating layers of [Bi2O2]
2+ and pseudo-perovskite blocks. The simplest example of 

Aurivillius phases is Bi2WO6. Aurivillius phases represent an intriguing family of layered 

structures with great flexibility in structure construction and provide people more 

capabilities to design new layered materials for desired functionalities. In the following 

section, the Aurivillius phases will be discussed in detail.  

 

https://en.wikipedia.org/wiki/Yttrium
https://en.wikipedia.org/wiki/Yttrium
https://en.wikipedia.org/wiki/Copper
https://en.wikipedia.org/wiki/Oxygen
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Figure 1.32 Crystal structure model of (a) LiCoO2, (b) VO2, (c) YBa2Cu3O7, and (d) 

Bi2WO6.
161, 162, 163, 164 

 

1.4.3.1 Aurivillius phases  

Aurivillius phases are a kind of layered materials built by alternating stacking of 

[Bi2O2]
2+ slabs and pseudo-perovskite blocks. It can be represented by the general formula 

(Bi2O2)(Am-1BmO3m+1), where A and B are a large 12 co-ordinate cation and a small 6 co-

ordinate cation, respectively. The Aurivillius phases were first described by B. Aurivillius 

in 1949. People first showed interest to Aurivillius phases because of their ferroelectricity 

arising from the Bi3+ 6s2 lone pairs. Oxide ion-conducting properties of Aurivillius phases 

were also discovered by Takahashi et al. in 1970s.165 One important and intriguing feature 

of Aurivillius phases is the compositional flexibility of the perovskite layers where various 

https://en.wikipedia.org/wiki/Bismuth
https://en.wikipedia.org/wiki/Oxygen
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cations can be incorporated into A site such as Na+, K+, Sr2+, Ca2+, Bi3+, Ba2+, Ln3+, Y3+, 

U4+ and into B site such as Fe3+, Ga3+, Ti4+, Nb5+, Ta5+, Cr3+, W6+, Mo6+. In addition, the 

m value can be as large as 8 from the reported Aurivillius phases. Owing to the flexibility 

in structure construction, various Aurivillius phases have been fabricated by incorporating 

different cations and adjusting the m values. Table 1.6 lists some examples of the reported 

Aurivillius phases.166  

 

Table 1.6 Examples of reported Aurivillius phases.166 

m = 1 Bi2WO6, Bi2MoO6, 

Bi2TeO6, Bi2NbO5F, 

Bi2TaO5F, Bi2TiO4F2  

167, 168, 169, 170 

m = 2 Bi3TiNbO9, Bi2PbNb2O9, 

Bi2CaNb2O9 

171, 172, 173 

m = 3 Bi4Ti3O12, Bi2LaTi3O12 
174, 175, 176, 177 

m = 4 Bi4BaTi4O15, Bi5Ti3GaO15, 

Bi5Ti3FeO15 

175 

m = 5 Bi4Pb2Ti5O18, Bi5NaNb4O18, 

Bi2.5Na3.5Nb5O18, 

Bi4Pr2Ti3Fe2O18 

178 

m = 6 Bi4Pb3Ti6O21 
178 

m = 7 Bi4Pb4Ti7O24 
178 

m = 8 Bi9Ti3Fe5O27 
179 
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Here we will use the first three members of the Aurivillius phases (m = 1, 2, and 

3) as examples to briefly discuss the crystal chemistry of the Aurivillius phases. As shown 

in Figure 1.33, the Aurivillius phases consist of Bi2O2 sheets interleaved with perovskite-

like Am-1BmO3m+1 layers. Many of the reported Aurivillius phases are ferroelectric 

materials caused by the displacement of Bi atoms along the a axis in the perovskite A sites 

with respect to the chains of the octahedra. All the known ferroelectric Aurivillius phases 

can be described on the basis of a doubled orthorhombic (pseudo-tetragonal) diagonal cell 

with an Fmmm underlying, nonpolar parent structure. The real structure of Bi2WO6, 

Bi3TiNbO9, and Bi4Ti3O12 was determined by Newnham et al. and refined by Withers et 

al. as shown in Figure 1.33(d-f).166 Compared to the prototype structure, the real structures 

show deformation which is directly caused by the anisotropic behavior of the lone-pair 

Bi3+ cation. Take Bi3TiNbO9 as an example. The strong covalent Bi-O bonds in the 

Aurivillius phases will cause the atomic movements. The Nb and Ti atoms are shifted 

along the polar a axis away from the center of the octahedra with the octahedral rotating 

about c axis which causes a decrease of the a and b parameters and therefore a slight 

orthorhombic distortion. In addition, the very short Bi(1)-O(1) bond causes the rotation of 

the (Nb, Ti)O6 octahedra around a axis and this rotation is enhanced by Bi(2)-O(2) bond. 

The corresponding (Nb, Ti)-O distance increases strongly and leads to the elongation of 

the octahedra along c axis and an increase of the c parameter.  
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Figure 1.33 A perspective drawing of the undistorted patent structures: (a) Bi4Ti3O12 (m 

= 3), (b) Bi3TiNbO9 (m = 2), and (c) Bi2WO6 (m = 1). (011) sections of (d) Bi2WO6, (e) 

Bi3TiNbO9, and (f) Bi4Ti3O12 real structures. The dashed lines indicated strong Bi-O 

bond.166 

 

For perovskites the stability can be evaluated by the tolerance factor but for the 

Aurivillius phases the possibilities of forming layered structures are reduced because the 

Bi2O2 layer and perovskite layer need to conform to the same lateral dimensions. By 
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calculation it was found that the tolerance factor window for perovskite layer is narrower 

than that of pure perovskites. By examining the solubility limit of various cations in A and 

B sites of Bi4Ti3O12, Newnham et al. concluded that the lower limit of the ionic radius 

depends on the stability of the perovskite layer while the upper limit is determined by the 

mismatch between Bi2O2 and perovskite layers.180 Theoretically the m values can range 

from 1 to  (pure perovskite) but only a few systems have been investigated in order to 

synthesize high-order superstructures. And the results showed that the synthesized 

superstructures are composed of various mixtures. The results are confusing and 

contradictory. It appears that phases with m larger than 5 are very difficult to be 

synthesized and ordered.  

Besides the Aurivillius phases listed in Table 1.6, many other Aurivillius phases 

have been synthesized in order to achieve different functionalities since the discovery of 

Aurivillius phases by B. Aurivillius in 1949. The Aurivillius phases have found 

applications as ferroelectrics, piezoelectrics, ion conductors, multiferroics, etc. Compared 

to BaTiO3 and Pb1-xZrxTiO3, the Aurivillius phases have the following characteristics: (1) 

lower dielectric constants; (2) higher Curie temperature: (3) lower temperature 

coefficients of the resonant frequency; (4) stronger anisotropic electromechanical 

coupling factors; (5) a lower aging rate. With the development of high-quality thin film 

growth techniques, much efforts have been made to the thin film fabrication of Aurivillius 

phases besides ceramic Aurivillius phases. Here, several examples of Aurivillius phases 

in thin film form as ferroelectrics and multiferroics will be briefly introduced. As 

ferroelectrics, the structural origin of ferroelectricity for Aurivillius phases comes from 
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the a axis displacement of Bi atoms in the perovskite A sites with respect to the chains of 

octahedra.  

Many of the Aurivillius phases are ferroelectrics including Bi2WO6, Bi4Ti3O12, 

Bim+1Ti3Fem-3O3m+3, etc. In 2002, a paper published in Science by Lee et al. reported the 

thin film growth of La-substituted Bi4Ti3O12 (Bi3.25La0.75Ti3O12, BLT) by pulsed laser 

deposition.181 By optimizing the growth conditions, Bi3.25La0.75Ti3O12 thin film can be 

grown on yttria-stabilized zirconia-buffered Si (100) substrates using SrRuO3 as the 

bottom electrode with nearly 99% volume fraction of phase along the a axis. A remanent 

polarization value of as high as 32 C/cm2 was achieved by poling the thin film entirely 

along the direction normal to the film plane (Figure 1.34).  
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Figure 1.34 (a) XRD θ-2θ scan and (b) pole figure of an almost purely a axis-oriented 

BLT thin film. (c) Polarization-electric field hysteresis loop of a Pt/BLT (100)-SrRuO3 

(110) capacitor.181 

 

Multiferroics have been created based on the Aurivillius phases either by 

incorporating magnetic cations or by integrating with a magnetic material to form a 

composite. One example is the epitaxial m = 6 Aurivillius phase Bi7Mn3.75Ti2.25O21 

fabricated via pulsed laser deposition by incorporating the magnetically active manganese 

into the perovskite structure of the ferroelectric Bi4Ti3O12.
182 Imai et al. created a 

multiferroic composite consisting of ferroelectric Bi5Ti3FeO15 (BTFO) and ferrimagnetic 

CoFe2O4 (CFO) as shown by Figure 1.35(a) and (b). The multiferroic composite shows 

much stronger magnetic response than that of pure BTFO. With the CFO pillars 
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incorporated into the BTFO matrix, the in-plane piezoelectric force microscopy response 

is also enhanced which saturated at 35% composition Figure 1.35(d)-(g).183  

 

 

Figure 1.35 (a) Scanning electron microscopy image showing that CFO is well dispersed 

in the BTFO matrix throughout the entire sample. (b) TEM images showing that the 

nanopillars grow vertically to the bottom of the matrix. (c) In-plane magnetic hysteresis 

loops measured at 10 K for BTFO and BTFO/CFO nanocomposite (30 vol.% CFO). (d)-

(g) In-plane piezoelectric force microscopy (PFM) images for four compositions where 

the volume fraction of the CFO is systematically increased (d, 5%; e, 20%; f, 35%; and g, 

45%).183 

 

1.4.3.2 Novel bismuth-based layered supercell structures  

Very recently, Chen et al. reported a novel self-assembled Bi-based 2D layered 

supercell structure Bi3Fe2Mn2O10- (BFMO322 SC), from the double perovskite 

Bi2FeMnO6. The layered structure was deposited on single crystal LaAlO3 and exhibits a 

magnetization of 110 emu/cc and 6 C/cm2 at room temperature (Figure 1.36).184 The 

BFMO322 SC is composed of alternating stacking of Bi2O2 layers and FeO6/MnO6 
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octahedra along the out-of-plane direction epitaxially. The multiferroic property of this 

Bi-based layered structure is much stronger than that of the conventional pseudocubic 

phase of BFMO grown on SrTiO3 (001) substrate (34 emu/cc). The layered structure can 

also be grown on CeO2 buffered LaAlO3 or SrTiO3 (001) substrates.185 Geometric phase 

analysis (GPA) study on the pseudocubic BFMO phase and the layered BFMO322 SC 

phase indicates that strain plays a critical role in the formation of the layered structure.186 

The strain between the pseudocubic phase of BFMO and STO is -0.6% leading to the 

cube-on-cube growth of BFMO while a strain as large as -2.0% exists between the 

BFMO322 SC and LAO substrate. This large strain leads to the highly strained growth of 

a tetragonal phase (c/a = 1.15) on which the layered BFMO322 SC phase was formed.  
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Figure 1.36 Cross-sectional scanning transmission electron microscopy (STEM) images 

of the BFMO322 SC structure grown on (a) LaAlO3 (001) and (c) CeO2 buffered STO 

substrate. (b) Magnetization hysteresis loops of the BFMO322 SC structure and the 

pseudocubic Bi2FeMnO6 phase. (d) Magnified STEM image of the BFMO322 SC 

structure.184, 185  

 

1.5 Research motivation  

The newly fabricated Bi-based layered BFMO322 SC shows stronger room 

temperature multiferroic response compared to the pseudocubic phase. Strain analysis 

shows that strain may play a critical role in the formation of the new layered structure and 

it can also be grown on CeO2 buffer layer. However, several questions still remain 
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unsolved including the growth mechanism of BFMO322 SC and several related aspects 

as described below.  

(1) What is the growth mechanism of the Bi-based BFMO322 SC?  

(2) What is the influence of CeO2 thickness to the growth and physical properties of 

BFMO322 SC? As with the increase of CeO2 thickness the growth mode of CeO2 

transforms from 2D layer-by-layer growth to 3D island growth.  

(3) What is the role of Fe and Mn in the formation of the Bi-based layered supercell 

structure? Which cation is more important during the growth of the layered supercell 

structure? 

(4) Is there possibility that the Bi-based layered supercell structure can be fabricated in 

other Bi-based double-perovskites besides Bi2FeMnO6.  

With these questions in mind, the influence of CeO2 thickness to the growth and 

physical property of BFMO322 SC, the role of Fe and Mn in the formation of BFMO322 

SC, and the possibility of growing other new Bi-based layered supercell structures for 

multiferroism are investigated in this dissertation. It is expected that with these exploration 

to the above questions we can have more understanding to the growth mechanism of the 

Bi-based layered structures which can help the design and creation of new Bi-based 

layered supercell structures with more interesting structural and physical phenomena 

discovered.  
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CHAPTER II  

EXPERIMENTAL TECHNIQUES  

 

2.1 Pulsed laser deposition  

All the thin film samples in this dissertation were fabricated by pulsed laser 

deposition (PLD, Lambda Physik Compex Pro 205, KrF excimer laser, λ = 248 nm). Laser 

is an acronym for “Light Amplification by Stimulated Emission of Radiation”. Laser is a 

very collimated, monochromatic and coherent beam and in pulsed laser modem the output 

of a laser beam varies with time in the form of alternated “on” and “off” periods.  

Laser has wide applications and PLD is an outstanding representative which has 

achieved significant development in the past several decades. PLD is one of the physical 

vapor deposition (PVD) techniques with simple system setup. Figure 2.1 shows the 

schematic diagram of a typical PLD system. It mainly includes a vacuum chamber and a 

pulsed laser source. Inside the vacuum chamber, there is a multiple target holder and a 

substrate holder. A molecular turbo pump is used to achieve a high vacuum of at least 1.0 

 10-6 mbar before the deposition. The high-energy laser beam is focused on the target 

surface to vaporize the target material to deposit the thin films. The angle between the 

laser beam and target surface is 45o. The distance between the target surface and the 

substrates is between 3 cm and 5 cm. The substrate temperature varies between room 

temperature and 750 oC. A laser beam with an energy of 400 mJ and a frequency of 2 Hz 

is used in this study. The quality and phases of the fabricated thin films depend on various 
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PLD parameters, including substrate temperature, oxygen pressure, laser energy density, 

laser frequency, and substrate-target geometry.  

 

 

Figure 2.1 Schematic diagram showing the pulsed laser deposition system.187 

 

PLD takes the advantages of all the characteristics of laser beam. The high energy 

density and directionality of laser beam allow localized heat treatment of materials with 

high spatial resolution. The monochromaticity of the laser could allow for the control of 
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depth of heat treatment by simply changing the laser wavelength. The advantages of PLD 

also include reproduction of the target stoichiometry, low contamination level and in-situ 

control of thin film quality.  

Despite the simplicity of PLD, the laser-target interaction is a very complicated 

process. In 1990, R. K. Singh and J. Narayan described the basic PLD physical 

principles,187 which include the laser-target interaction, the interaction of laser beam with 

evaporated materials, and adiabatic plasma expansion as shown in Figure 2.2. PLD 

combines both equilibrium and non-equilibrium processes. After the laser beam is 

absorbed on the target surface, the electromagnetic energy of the incident laser beam will 

be first converted into electronic excitation and lastly into thermal, chemical, and 

mechanical energy. These series of energy transfer will lead to the target material 

evaporation, ablation, excitation, plasma formation and exfoliation. A plume consisting of 

a mixture of energetic species of small particles, molted globules, clusters, molecules, 

atoms, ions, and even electrons will be formed. The collisional mean free path inside the 

plume is very short and the plume will rapidly expand into the vacuum and reach the 

substrates for the thin film growth. With the appropriate laser and gas inside the chamber, 

versatile thin films can be grown by PLD.  
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Figure 2.2 Schematic diagram showing the laser-target interaction stages during the short 

pulsed laser process.187 

 

The laser-target interaction can be divided into three stages for each nanosecond 

laser pulse, as shown in Figure 2.2. (1) the evaporation of target surface layers resulted 

from the interaction of the laser beam and the target; (2) the isothermal plasma formation 

and expansion resulted from the interaction of the evaporated materials with the incident 

laser beam; (3) the anisotropic adiabatic expansion of the plume which subsequently leads 

to the deposition process. The first two regimes happen at the beginning of the laser 

radiation and continue through the laser pulse duration. The third stage starts right after 

the laser pulse termination. 
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High-power laser irradiation of the surface layers of the target materials will cause 

the melting and evaporation of the surface materials. The heating rate, melting and 

evaporation depend both on the laser beam (e.g. pulse energy density, pulse duration time, 

wavelength, and shape of the laser) and material properties of the target (e.g. reflectivity, 

absorption coefficient, heat capacity, density, thermal conductivity). During a nanosecond 

pulsed laser processing, the thermal diffusion distances are short and the dimension of the 

laser beam large compared to the melting depth. The thermal gradients perpendicular to 

the interface is much larger than the thermal gradients parallel to the interface. Hence, the 

three-dimensional heat flow problem can be reduced to a one-dimensional heat flow 

problem which can be expressed by the following equation,  

𝜌𝑖(𝑇)𝐶𝑝(𝑇)
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑡
[𝐾𝑖(𝑇)

𝜕𝑇(𝑥,𝑡)

𝜕𝑥
] + 𝐼0(𝑡)[1 − 𝑅(𝑇)]𝑒−𝑎(𝑇)𝑥   (2-1) 

where x is the distance perpendicular to the surface of the sample and t is the time. i(T) 

is temperature-dependent density, Cp(T) is the thermal heat capacity per unit mass of the 

target material, R(T) is the temperature-dependent reflectivity, a(T) is the absorption 

coefficient, I0(t) is the time-dependent incident laser intensity and Ki(T) is for the thermal 

conductivity of the solid and liquid phases at the interface. The subscript i = 1 and 2 refers 

to solid and liquid phases, respectively.  

Emission of positive ions and electrons from the target surface will happen due to 

the interaction of high-power laser beam with the bulk materials. The emission of positive 

ions and electrons shows an exponential increase with temperature which can be 

calculated by Langmuir-Sha equation,  

𝑖+

𝑖0
=

𝑔+

𝑔0
𝑒[(𝜙−𝐼)𝐾𝑇]   (2-2) 
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where i+ and i0 refers to fluxes of positive and neutral ions emitted from the surface at a 

certain temperature T.  g+ and g0 are the weights of the ions which are in the ionic and 

neutral states,  is the work function of the electron and I is the material ionization 

potential.  Despite that the surface temperature of the target is close to the boiling point, 

higher temperature can be achieved in the plasma due to the interaction of the laser beam 

with the plasma. The penetration and absorption of the laser beam by the plasma is related 

to the electron-ion density, temperature, and the laser wavelength. And the penetration or 

reflection of the incident laser beam depends on the plasma frequency and the plasma 

frequency should be lower than that of the laser for the laser energy to be transmitted or 

absorbed. The plasma is further heated by absorption of laser radiation. The primary 

absorption mechanism for plasma is based on the electron-ion collisions and the 

absorption involves absorption of a photon by free electrons.  

After the plasma formation and the initial isothermal expansion, the adiabatic 

expansion of the plasma will occur which gives rise to the laser-deposition process. With 

the thermal energy converted to kinetic energy, the velocity of the plasma will increase. 

At the meantime, the temperature drop of the plasma is slow because the cooling is 

balanced by the energy regain from the ions recombination processes and the plasma will 

only expand in one direction. The initial dimensions of the plasma are much larger in the 

transverse direction.  



82 
 

2.2 Microstructure characterization 

2.2.1 X-ray diffraction 

X-ray diffraction (XRD) is one of the most popular methods to study the structure 

and composition of crystalline materials. It is also used for determining crystalline 

orientation, crystalline size and stress in thin films. It is an interaction between X-rays and 

the periodic electronic potential geometry of crystals. Diffraction occurs when the 

wavelength of the X-ray is the same order as a structure’s repeat distance. The XRD 

equipment used in this dissertation is the high-resolution XRD from PANalytical 

Empyrean. The diffraction process is shown in Figure 2.3 and the diffraction is governed 

by the Bragg’s equation,   

𝑛 = 2𝑑 𝑠𝑖𝑛 𝜃   (2-3) 

where n is an integer,  the wavelength (1.5406 Å for Cu K), d the lattice spacing, and θ 

the diffraction. XRD is a non-destructive method for studying the microstructure of the 

materials. The θ-2θ is used to study the out-of-plane crystalline orientations. The  scan 

is used to study the in-plane orientation of the thin films. Reciprocal space mapping (RSM) 

can be used to study the strain of the thin films.  
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Figure 2.3 Schematic showing the Bragg diffraction for a set of crystal planes.188 

 

2.2.2 Transmission electron microscopy 

Transmission electron microscopy (TEM) was widely used in this dissertation to 

obtain the structural and morphological information for the layered structures. TEM uses 

the electron as the beam source which can transmit through an electronic transparent 

sample to study the microstructure of the samples. The TEM tool used in this study is FEI 

Tecnai F20 analytical microscope (200 kV, ZrO2/W Schottky field emitter with 0.27 nm 

point resolution).  

The resolving power or spatial resolution of an imaging device can be estimated 

by the classical Raleigh criterion without any aberration of lenses,  

𝛿 =
0.61

  sin
   (2-4) 
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where  is the wavelength of the radiation,  is the refractive index of the viewing medium, 

and  is the semi-angle of collection of the magnifying lens. Because of the coherency of 

electron beam and short wavelength of the accelerated electrons, the resolution limit can 

go to several Å. The TEM uses the electron beam with much shorter wavelength as the 

illuminating source can reach much higher resolution than the optical microscope which 

uses the photons as the beam source.  

The wavelength of an electron beam in nm at an accelerating voltage V is given by  

 =
1.22

√𝑉
   (2-5) 

With an accelerating voltage of 200 kV, the wavelength of the resulted electron 

beam is 0.0027 nm. However, the practical resolution of a microscope can not reach the 

ideal value of the resolution power of an imaging device using the accelerated electrons 

as the beam source. Spherical aberration, chromatic aberration and stigmatism are the 

main electromagnetic lens defects that limit the resolution power of an electron 

microscope as shown in Figure 2.4.  

Spherical aberration is a lens defect coming from the non-paraxiality of the 

electron beam. The electrons that leave from point P with different angles with respect to 

the optical axis of the microscope will focus before the image plane or on the image plane. 

Instead of a point, a disk with a radius rs is formed, where rs = Cs
2,  is the angular 

aperture of the lens. Chromatic aberration arises from the non-chromaticity of the electron 

beam with slightly different energies. The electrons with higher energy will be less 

strongly refracted from the objective lens than the electrons with lower energy. Thus the 

electrons with higher energy will be brought into focus beyond the image plane. The 
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astigmatism comes from the asymmetric magnetic field which occurs when the lens 

exhibits different focal lengths. As shown in Figure 2.4(c), the rays traveling through plane 

A will be focused at point PA while those traveling through plane B will be focused at 

point PB. In this situation, a point on the object will be imaged at a disk with a radius rA = 

fA, where fA is the maximum difference in focal length arising from astigmatism.  

The spherical aberration will limit the resolution of the microscope if all the 

astigmatism are corrected, the sample is thin enough, and chromatic aberration is 

negligible. The resolution of a microscope is given by the combination of Rayleigh 

criterion and the aberration error,  

𝑟min = 0.91(𝐶𝑠
3)1/4   (2-6) 

where r is the aberration error, Cs is the spherical aberration, and  is the wavelength of 

the electrons.  

 



86 
 

 

Figure 2.4 Objective aberration: spherical (a), chromatic (b), astigmatism (c).189  

 

There are two basic operation modes for TEM: diffraction mode and image mode 

as shown in Figure 2.5. The working mode of the TEM can be controlled by changing the 
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focal length of the intermediate lens. For diffraction mode, the image plane coincides with 

the back focal plane of the objective lens while the image plane coincides with the image 

plane of the objective lens for the image mode.  

 

 

Figure 2.5 The two basic operation modes of the TEM system: (a) diffraction mode and 

(b) image mode. In each case the intermediate lens selects either the back focal plane or 

the image plane of the objective lens as its objects.190  

 

To improve the contrast of imaging, appropriate objective apertures can be inserted 

at the back focal plane of the objective lens. Two imaging modes can be obtained 

depending on the objective aperture configuration and the beam diffraction. If only 



88 
 

transmitted electrons are allowed to pass, a bright-field (BF) image is formed as shown in 

Figure 2.6(a). A dark-field (DF) image is obtained when only certain diffracted electrons 

are allowed to pass as shown in Figure 2.6(b).  

 

 

Figure 2.6 Schematic diagram showing the (a) bright-field and (b) dark-field imaging 

modes.191 
 

2.2.3 Scanning transmission electron microscopy  

Scanning transmission electron microscopy (STEM) is a Z-contrast technique 

which can provide high-resolution images at atomic level with strong compositional 
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sensitivity. A key feature with STEM is that the scanning beam must not change direction 

as the beam is scanning. An advantage with STEM is that no lens is used in an STEM. 

The resolution of the STEM is controlled by beam only and is not affected by the defects 

in imaging lenses. A fundamental difference between the scanning STEM and static TEM 

is that the magnification of STEM is controlled by the scan dimensions on the specimen 

while the magnification of TEM is controlled by the lenses. For example, if the scanned 

dimension on the specimen is 10 nm and the resultant image is displayed with an area of 

10 cm  10 cm, then the magnification is 107 times. Similar to TEM, STEM also has two 

working modes: bright-field and dark-field STEM.  

Different from the TEM using an objective aperture to select the direct or scattered 

electrons, in STEM detectors are used to select the direct or scattered electrons to form BF 

or DF images as shown by the comparison between TEM and STEM in Figure 2.7. As we 

can see in Figure 2.7, a BF on-axis detector or an annular DF (ADF) detector is inserted 

in a conjugate plane to the back focal plane. The electrons are controlled to fall on which 

detector and thus contribute to the image by adjusting the post-specimen (imaging) lenses 

to change the camera length. The ADF detector gathers more electrons than the objective 

aperture for DF imaging, which is good for imaging some specimens. More information 

regarding the BF and DF imaging can be found in some other references (Transmission 

electron microscopy: a textbook for materials science / David B. Williams and C. Barry 

Carter). In this dissertation, the HR-STEM images in high-angle annular dark-field 

(HAADF) mode were obtained using a FEI Titan G2 80-200 STEM with a Cs probe 
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corrector operated at 200 kV and a modified FEI Titan STEM TEAM 0.5 with a 

convergence semi-angle of 17 mrad operating at 200 kV, respectively.  

  

 

Figure 2.7 Comparison of the use of an objective aperture in TEM to select (A) the direct 

of (B) the scattered electrons form BF and DF images, respectively. In STEM an on-axis 

detector (C) or an annular detector is used to form BF or DF images.191 
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2.2.4 Energy-dispersive X-ray spectroscopy  

Energy-dispersive X-ray spectroscopy (EDS) is used for elemental analysis or 

chemical characterization. With the help of an energy dispersive spectrometer, the number 

and energy of the X-rays emitted from the specimen will be measured quantitatively. The 

energies of the X-rays are characteristic of the energy difference of electrons from 

different shells and of the atomic structures of the element, the EDS has the capabilities 

of determining the chemical compositions of the specimen. For the high-resolution 

energy-dispersive X-ray spectroscopy (EDS) mapping in this dissertation, a FEI TitanTM 

G2 80-200 STEM with a Cs probe corrector and ChemiSTEMTM technology (X-FEGTM 

and SuperXTM EDS with four windowless Si drift detectors) operated at 200 kV was used.  

 

2.2.5 TEM sample preparation  

TEM sample preparation plays an important role in the microstructural 

characterization of the thin film samples. The main steps of preparing a TEM sample 

include: (1) cut small pieces of sample with the size of ~ 2  2 mm; (2) glue the two pieces 

of sample face-to-face and heat the sample; (3) thinning of the glued sample from the 

cross-section direction to 40-70 m; (4) final grinding and polishing; (5) ion mill the 

sample to get a hole with thin area. A tripod polisher is used for the pre-thinning of the 

sample to 40-70 m with the help of diamond lapping films and diamond polishing paste. 

After that, the sample is grinded to 20-25 m and polished by a leather grinder. Finally, 

the sample is ion milled to get electron-transparent thin area in a Gatan Precision Ion 

Polishing System (Gatan).  
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2.3 Physical property measurement  

2.3.1 Magnetic property measurement  

The magnetic properties including magnetizations and resistance were measured 

in a Physical Properties Measurement System (PPMS 6000, Quantum Design) equipped 

with a vibrating sample magnetometer (VSM) option. The PPMS can achieve magnetic 

field up to 9 T and a temperature range of 1.9-400 K. The noise for VSM measurement is 

less than 510-7 emu. Figure 2.8(a) shows the basic components of the PPMS. The black 

container is the EverCool dewar system and the blue box on the right side is the electronic 

control part for VSM option. The sample drive motor and detection coil set of the VSM 

option is shown in Figure 2.8(b). The induced voltage is detected by oscillating the sample 

near a detection coil after the sample is loaded at the center of the magnet. Two magnetic 

measurements were conducted in this study. The first is the magnetization vs. magnetic 

field (M-H) measurement. The magnetizations were recorded at different temperatures 

after applying a magnetic field which is either perpendicular (out-of-plane) or parallel (in-

plane) to the film plane. The second magnetic measurement is the magnetization vs. 

temperature (M-T). For M-T measurement, it includes zero-field cooling (ZFC) and field 

cooling (FC) measurement. For ZFC and FC measurements, the samples were first cooled 

down from a high temperature to a low temperature without or with a magnetic field 

applied to the samples, respectively, and the magnetizations were recorded when the 

samples were heated to a high temperature.  
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Figure 2.8 (a) The Quantum Design PPMS equipment in the laboratory. (b) The sample 

motor drive and detection coil set for VSM option. 
 

2.3.2 Electrical property measurement  

The piezoelectric properties were measured at ambient conditions with a 

conductive Pt-Ir coated Si tip (model: SCM-PIT) via a Bruker Dimension Icon atomic 

force microscopy (AFM) with high resolution (Z < 0.1 nm, XY < 1 nm). The schematic 

in Figure 2.9 shows how the AFM works for piezoelectric property measurement. During 

the piezoelectric measurement, an external voltage with a certain frequency was applied 

to the sample through the conductive tip. Due to the converse piezoelectric effect, the 

sample under the electric field will vibrate at the same frequency. The vibration of the 

sample will force the tip to oscillate and the modulated deflection signal is detected by the 

lock-in amplifier. In order to avoid the mechanical resonance of the cantilever, the 

frequency of the applied voltage is much lower than that of the cantilever. The ferroelectric 

property of the samples is referenced to the piezoelectric response in the forms of 

amplitude change and phase change.  
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Figure 2.9 Schematic of piezoelectric response measurement in contact mode AFM.192 

 

2.4 Precision electron diffraction tomography 

Precession electron diffraction (PED) patterns were obtained using a JEOL 2010 

(200 kV) transmission electron microscope (TEM) equipped with a side-mounted Gatan 

Orius CCD camera and a Nanomegas Digistar PED unit. The data collection was 

performed on a cross-sectional sample prepared from a film using the tomography 
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approach.193 In such a case, the rotation axis is mostly limited to the out-of-plane direction 

to avoid shadowing the film by the substrate. PED patterns were recorded in the tilt range 

from -44.5 to +34.8 degrees with a precession angle of 1.2 degree. The data were processed 

using the programs PETS194 and Jana2006195.  
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CHAPTER III  

STRAIN AND INTERFACE EFFECTS IN A NOVEL BISMUTH-BASED SELF-

ASSEMBLED SUPERCELL STRUCTURE*  

 

3.1 Overview 

BFMO thin films with both conventional pseudocubic structure and novel 

supercell structure have been grown on SrTiO3 (001) substrates with different thicknesses 

of CeO2 buffer layers (ranging from 6.7 nm to 50.0 nm) using pulsed laser deposition. The 

correlation between the thickness of the CeO2 buffer layer and the structure of the BFMO 

films shows that the CeO2 buffer layer, as thin as 6.7 nm, is sufficient in triggering the 

novel BFMO supercell structure. This may be ascribed to the interfacial strain between 

the BFMO supercell structure and the CeO2 buffer layer which also serves as a seed layer. 

The buffer layer thickness is found to be critical to control the microstructure and 

magnetism of the formed BFMO supercell structures. Thin seed layers can produce a 

smoother interface between the BFMO film and the CeO2 buffer layer, and therefore better 

ferrimagnetic properties. Our results have demonstrated that strain and interface could be 

utilized to generate novel thin film structures and to tune the functionalities of the thin 

films. 

 

*Reprinted with permission from “Strain and interface effects in a novel bismuth-based self-assembled 

supercell structure” by Leigang Li, et al. 2015. ACS Applied Materials & Interfaces, 7, 11631-11636, 

Copyright [2015] by American Chemical Society.   



97 
 

3.2 Introduction 

Complex transition metal oxides, including perovskite, double-perovskite, spinel, 

rocksalt, rutile, etc., have been extensively studied in the past decades.7, 56, 196, 197, 198, 199, 

200, 201 The development of state-of-the-art thin film growth techniques and the growing 

needs for oxide-based functional devices have further stimulated the progress in this 

field.44, 202, 203 Diversified unique physical properties have been reported, such as 

magnetoresistance,40, 41, 43 multiferroism,7, 200, 204, 205, 206, 207 magnetoelectricity,208, 209 and 

high-temperature superconductivity210. These physical properties are strongly correlated 

to the lattice structures of complex oxides. Among all the factors controlling complex 

oxide lattice structures, strain has been reported to play a critical role in tailoring the lattice 

structures and therefore the functionalities of transition metal oxide thin films.184, 196 For 

example, strain engineering provides an easy and effective way to control the overall film 

structure and thus tune the physical properties, such as the giant magnetocaloric effect in 

La0.7Ca0.3MnO3,
211 the enhanced perpendicular magnetic anisotropy in 

BiFeO3:CoFe2O4,
25

 and the tunable low-field magnetoresistance in 

(La0.7Sr0.3MnO3)0.5:(ZnO)0.5.
40, 42  

More attractively, strain engineering could trigger new structures, for example, the 

intermediate pseudomorphic structures Ti2O3 and V2O3 have been previously reported in 

TiO2/Ti2O3/Al2O3 and VO2/V2O3/Al2O3 heterostructures,11, 184, 212 respectively. Another 

exciting example is the formation of the novel self-assembled Bi3Fe2Mn2Ox supercell 

(BFMO322 SC), which was enabled by the careful selection of substrates and deposition 

parameters.184, 186 It is a novel layered oxide structure which is formed on LaAlO3 (LAO) 
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substrates, and exhibits superior multiferroic properties at room temperature with the 

saturation magnetization value of 110 emu/cc. Strain was found to play a critical role in 

the formation of the new BFMO322 SC structure.184, 186 Comparing the lattice mismatch 

between the SrTiO3 (STO) substrate and the BFMO pseudocubic structure (–0.6%) with 

that between LAO and BFMO322 SC (–2.0%), the later exhibits a much larger lattice 

mismatch which could be the primary reason triggering the formation of a thin strained 

transition layer (~5 nm) before the formation of the supercell phase. This reassembles the 

characteristics of a typical pseudomorphic growth in thin film epitaxy, i.e., a thin layer of 

highly strained layer was formed within a critical thickness and beyond that, the film is 

relaxed with misfit dislocations nucleated at the transition interface.11, 212 However the 

BFMO322 SC case is much more complicated with a new phase formation and the strain 

relaxation mechanism is thus quite different from the simple nucleation of misfit 

dislocations.  

To explore the formation mechanism of the BFMO322 SC structure, a unique 

approach could be used to grow the critical transition layer with various film thicknesses, 

and explore the corresponding phase transformation. Here we select a CeO2 buffer layer 

as the critical transition layer. We have demonstrated that a thin layer of CeO2 could also 

serve as an excellent buffer layer enabling the growth of BFMO322 SC. This is because a 

45o in-plane rotated CeO2 (a = 5.411 Å, a/√2 = 3.826 Å) provides a perfect lattice match 

for the growth of the BFMO322 SC phase on SrTiO3 substrates (a = 3.905 Å). In this study, 

the effects of the strain and the interface structure of the CeO2 buffer layer on the 

microstructure and ferrimagnetic property of BFMO films were investigated by 



99 
 

systematically controlling the CeO2 buffer layer thickness. The results could shed light on 

the supercell growth mechanisms that can be generalized to other supercell systems for 

new functionalities.   

 

3.3 Experimental 

The composite BFMO and the CeO2 targets were prepared by a conventional solid 

state sintering method. For the BFMO target, the powders of Bi2O3, Fe2O3 and MnO2 were 

mixed in stoichiometric ratio, pressed into a pellet, and then sintered at 800 oC for 3 hours. 

For CeO2 target, the powder of CeO2 was pressed into a pellet and annealed at 1200 oC for 

6 hours. The growth of BFMO films and CeO2 buffer layers was conducted using pulsed 

laser deposition (PLD) under an optimized substrate temperature of 700 oC and an oxygen 

pressure of 200 mTorr. After deposition, the films were in-situ annealed at 400 oC for 1 

hour with an oxygen pressure of 500 Torr and then cooled down to room temperature with 

a cooling rate of 5 oC/min.  

The microstructures of the films were investigated by high resolution X-ray 

diffraction (HRXRD, PANalytical Empyrean) and transmission electron microscopy 

(TEM, FEI Tecnai G2 F20). The high resolution scanning transmission electron 

microscopy (HRSTEM) images in high angle annular dark-field (HAADF) mode (also 

called Z-contrast imaging) were obtained using a FEI Titan G2 80–200 STEM with a Cs 

probe corrector operated at 200 kV and a modified FEI Titan STEM TEAM 0.5 with a 

convergence semi-angle of 17 mrad operating at 300 kV. The magnetic properties of the 

films were investigated using the vibrating sample magnetometer (VSM) option in a 
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commercial Physical Properties Measurement System (PPMS 6000, Quantum Design). 

During measurements, the out-of-plane and in-plane magnetization were recorded by 

applying a magnetic field of 1 T perpendicular and parallel to the film plane, respectively.  

 

3.4 Results and discussion 

Figure 3.1 shows the θ-2θ XRD patterns of the BFMO films directly on STO and 

on CeO2 buffered STO substrates. Figure 3.1(a) indicates the high quality textured growth 

of BFMO pseudocubic structure along the (00l) direction of STO as evidenced by the 

dominant BFMO (00l) diffractions. Significantly different from the pseudocubic structure 

directly grown on STO, however, a new set of (00l) peaks along with CeO2 (002) and (004) 

peaks appear when the film was deposited on STO substrate buffered by 6.7 nm CeO2 as 

shown in Figure 3.1(b). This new set of diffractions belongs to the layered BFMO322 SC 

structure which is composed of Bi2O2 sheets and distorted FeO6/MnO6 octahedra184 as 

shown by the high resolution STEM image of the supercell structure in Figure 3.2(a) and 

(b). 
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Figure 3.1 (a) XRD θ-2θ scans of BFMO film directly grown on STO substrate with a 

pseudocubic structure. The “#” indicates impurity phase and PC means pseudocubic phase. 

(b)-(d) XRD scans of the BFMO322 SC structure grown on STO substrates buffered by 

different thicknesses of CeO2 ranging from 6.7 nm, 11.5 nm, to 50.0 nm, respectively. The 

“*” indicates a minor phase Bi25FeO40.  

 

The bright sheets in Figure 3.2(a) are attributed to the Bi2O2 due to the heavier 

element of Bi (ZBi = 83) than that of Fe (ZFe = 26) and Mn (ZMn = 25). Figure 3.2(b) clearly 

shows the bright zigzag Bi2O2 sheets as well as the less bright distorted FeO6/MnO6 

octahedra. For the composition of the BFMO thin films, dispersive x-ray spectroscopy 

(EDS) analysis was conducted and showed that there is about 9% bismuth loss for the 
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conventional pseudocubic phase while the cation ratio of the novel supercell phase is 

Bi:Fe:Mn = 3:2:2, with higher bismuth loss. This is also confirmed by the atomic model 

built for the supercell structure based on the previous report.184 As the CeO2 thickness 

increases to 11.5 nm and 50.0 nm, similar XRD results to that of Figure 3.1(b) have been 

obtained as shown in Figure 3.1(c) and (d), respectively. It is interesting to note that the 

peaks of the CeO2 buffer layer shift to the left while the new supercell structure shifts to 

the right with increasing the CeO2 thickness. For example, the CeO2 (004) peak shifts from 

69.80o to 69.40o and SC (008) peak shifts from 78.10o to 78.65o when the CeO2 thickness 

increases from 6.7 nm to 50.0 nm. For the left shift of the CeO2 peaks, it could be attributed 

to that, with the increase of the CeO2 thickness from 6.7 nm to 50.0 nm, the strain 

generated from the substrate is relaxed as shown by the red dashed line for bulk CeO2 (004) 

peak in Figure 3.1. For the right shift of the supercell peaks buffered by 50.0 nm CeO2, it 

is to be discussed in the later part.  
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Figure 3.2 Cross-sectional STEM image of the 6.7 nm CeO2 buffered BFMO322 SC with 

low magnification (a) and high magnification (b), STEM image of the interface between 

BFMO322 SC and CeO2 (c), schematic model showing the interface lattice matching 

between BFMO322 SC and CeO2 (c), schematic model showing the interface lattice 

matching between BFMO322 SC and CeO2 (d). 
 

To better understand the microstructure evolution as a function of the CeO2 buffer 

layer thickness, cross-sectional TEM was conducted for both the BFMO films grown on 

STO only and CeO2-buffered STO substrates, as shown in Figure 3.3. Figure 3.3(a) shows 

the cross-sectional TEM image of the BFMO film directly grown STO substrate with the 

pseudocubic structure. The corresponding selected area diffraction (SAED) pattern shown 

as the inset in Figure 3.3(a) clearly illustrates the pseudocubic structure and high-quality 
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epitaxy of the film with clear cubic lattice fringes. Completely different from the 

pseudocubic BFMO structure directly grown on STO substrate, however, a distinctively 

new layered structure (BFMO322 SC) is formed on the 6.7 nm CeO2 buffered STO 

substrates, as shown in Figure 3.2(b) and Figure 3.3(b). The distinguished diffraction dots 

in the inset of Figure 3.3(b) indicate the highly epitaxial growth of the BFMO322 SC 

structure. For the two distinctively different BFMO structures, the strain mapping analysis 

of these two structures has shown that strain may play an indispensable role in triggering 

the formation of the supercell structure.186 As discussed above, the strain between the 

BFMO film and the STO substrate is only -0.6% while it is -2.0% for the BFMO film and 

the LAO substrate. The relatively small lattice mismatch between the BFMO film and the 

STO substrate has enabled the cube-on-cube growth. The much larger lattice mismatch 

between BFMO film and LAO substrate, however, leads to the growth of highly distorted 

pseudocubic structure, forming a thin transition layer. With the increase of film thickness, 

the large strain in the transition layers gets relaxed followed by the formation of the novel 

layered structure. For the CeO2 buffered BFMO samples in this work, the 45o-rotated 

CeO2 provides an optimal lattice match between CeO2 and BFMO322 SC and the strain is 

calculated to be about -4.4% between CeO2 and BFMO322 SC (Figure 3.2(c) and (d)). 

Furthermore, the zigzagged Ce-Ce layer has served as an ideal template for the following 

Bi-Bi layer. Overall, both the large strain between CeO2 and BFMO322 SC and the zig-

zagged Ce-Ce bonding structure have triggered the formation of the BFMO322 SC.  



105 
 

 

Figure 3.3 Cross-sectional TEM images and diffraction patterns of the BFMO samples 

(along (100) zone axis). (a) BFMO with pseudocubic structure. (b)-(d) BFMO322 SC 

structure with the CeO2 thickness of 6.7 nm, 11.5 nm, and 50.0 nm, respectively. 

 

For the 11.5 nm CeO2 buffered case, a similar quality of BFMO films with 

distinctive diffraction patterns was obtained (Figure 3.3(c)), except a small amount of 

tilted supercell growth observed in few areas (Figure 3.4). When the thickness of the CeO2 

buffer layer was increased to 50.0 nm, the film quality of both the CeO2 buffer layer and 

the BFMO film is distinctively lower than those of the thinner buffer layer cases, as shown 
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by Figure 3.3(d). The interface between the BFMO film and the CeO2 buffer layer is no 

longer smooth as that in Figure 3.3(b) and (c) and the Bi2O2 lattices of the supercell are 

not parallel to the surface of the STO substrate. Instead, the Bi2O2 lattices form a certain 

angle with the lattice of the STO substrate. This tilted supercell structure is quite different 

from the 6.7 nm and 11.5 nm CeO2 buffered samples and thus results in different peak 

positions in XRD results (Figure 3.1). The microstructure evolution of BFMO films with 

the increase of the CeO2 buffer layer thickness could be correlated to the strain state of the 

CeO2 buffer layer and the interface morphology between the BFMO film and the CeO2 

buffer layer. The interface between the BFMO film and the CeO2 buffer layer of the 6.7 

nm CeO2 buffered sample is sharp and smooth (Figure 3.2(a) and Figure 3.3(b)) owing to 

the layer-by-layer growth of the strained CeO2 buffer layer with the in-plane 45o rotation 

on STO. This smooth interface has served as an optimal surface seed layer to trigger the 

growth of the highly epitaxial supercell structure with the Bi2O2 sheets parallel to the 

surface of the STO substrate. The film structure and the interface of the 11.5 nm CeO2 

buffered sample resembles that of the 6.7 nm CeO2 buffered sample except that tilted 

supercell phase has been observed in some areas (Figure 3.4) due to the island growth of 

the CeO2 buffer layer initiated around this CeO2 thickness. The growth of the tilted 

supercell become dominant for the 50.0 nm CeO2 buffered sample (Figure 3.3(d) and 

Figure 3.5). This could be ascribed to the rough interface due to the dominant island 

growth of the CeO2 buffer layer. Owing to the island morphology of the CeO2 buffer layer, 

the BFMO322 SC lattice has coupled to island lattice facets which could trigger the tilted 
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growth of the supercell. Overall the above findings suggest the CeO2 buffer layer thickness 

plays a critical role in the film strain, surface morphology and the resulted film structures.  

 

 

Figure 3.4 Cross-sectional TEM image of 11.5 nm CeO2 buffered BFMO sample. 
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Figure 3.5 Cross-sectional TEM image of 50.0 nm CeO2 buffered BFMO sample. 

 

To reveal the structure-property correlation of the BFMO films, room temperature 

(300 K) magnetic hysteresis loops were obtained by applying magnetic field perpendicular 

(out-of-plane, OP) and parallel (in-plane, IP) to the film surface as shown in Figure 3.6. 

By comparing the out-of-plane magnetic hysteresis of the BFMO films directly deposited 

on STO with that on CeO2 buffered STO, it is obvious that the supercell structure grown 

on the CeO2 buffer layer is superior to the conventional pseudocubic structure. From 

Figure 3.6(b), it is clearly shown that the BFMO film with a 6.7 nm CeO2 buffer layer has 

a higher out-of-plane saturation magnetization value of about 226 emu/cc than that of the 
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BFMO sample with the pseudocubic structure (126 emu/cc in Figure 3.6(a)) in this work. 

This result clearly suggests the superior magnetic properties of the novel self-assembled 

supercell structure. Furthermore, the 6.7 nm CeO2 buffered sample shows a strong 

magnetic anisotropy, which benefits the high-density magnetic memory device 

applications. The much stronger magnetization and distinguished magnetic anisotropy of 

the supercell structure could be attributed to the strong anisotropic layered structure and 

the resulted highly anisotropic properties. Coupled with the ferroelectric properties from 

the previous report,184 the remnant polarization value Pr is 6.0 μC/cm2 for the novel BFMO 

supercell phase while the conventional BFMO phase showed a Pr of 2.7 μC/cm2. Although 

its Pr value is lower than that of other ferroelectric materials, such as BiFeO3 with Pr of 

60-80 μC/cm2, the supercell structure with CeO2 buffer showed a much stronger room 

temperature magnetization of 226 emu/cc compared to BiFeO3 (< 40 emu/cc).  

It is noted that with the increase of the CeO2 buffer layer thickness, the saturation 

magnetization values decrease. For example, when the CeO2 thickness increases to 11.5 

nm, the supercell structure exhibits a relatively lower out-of-plane saturation 

magnetization value of 161.9 emu/cc (Figure 3.6(c)). This lowered saturation 

magnetization value could be related to the tilted supercell structure in certain areas of the 

film (Figure 3.4). For the sample with 50.0 nm CeO2 buffer layer, it shows the lowest 

saturation magnetization value and magnetic hysteresis anisotropy among all the supercell 

structures (Figure 3.6(d)).  In this case, the interface between the film and the CeO2 buffer 

layer is no longer as smooth as that in the other samples and a large amount of tilted 

supercell phase exists (Figure 3.3(d) and Figure 3.5). This results in a much lower 
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saturation value and magnetic anisotropy. There is a concern on the possible magnetic 

properties introduced by the CeO2 layer, since CeO2 with high density Ce and/or oxygen 

vacancies has been reported to be ferromagnetic by previous reports.213, 214 However, in 

this case the magnetism contribution from CeO2 is minimal as the CeO2 layer is thin and 

the films have minimum amount of oxygen vacancies due to the post-deposition annealing 

procedure.  

The variation of the magnetic property as a function of the CeO2 buffer thickness 

is also consistent with the above TEM, STEM, and XRD results. These results indicate 

that a critical thickness range for the CeO2 buffer layer is required for the formation of the 

smooth interface and thus the high phase purity and high epitaxial quality of the BFMO322 

SC structure. The 6.7 nm CeO2 buffer layer is the optimal condition with a smooth 

interface between the supercell structure and the CeO2 buffer layer and the optimal seed 

layer pattern for the formation of highly epitaxial BFMO322 SC structure with the highest 

saturation magnetization value and magnetic anisotropy. This clearly suggests the 

advantage of the CeO2 buffer layer in enabling the formation of novel supercell structure 

with enhanced magnetic properties. The correlation between the magnetic properties and 

the structures of the BFMO films has demonstrated the important role of the interface and 

strain in tailoring the microstructure of the film as well as tuning the physical properties.  
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Figure 3.6 Room-temperature magnetic properties of the BFMO films. (a) Out-of-plane 

(OP) and in-plane (IP) magnetic hysteresis loops of the BFMO film with pseudocubic 

structure. (b)-(d) OP and IP magnetic hysteresis loops of the BFMO322 SC structure 

grown on STO substrates buffered by different thicknesses of CeO2 ranging from 6.7 nm, 

11.5 nm, to 50.0 nm, respectively. 

 

3.5 Conclusion 

In summary, the thickness dependence effects of the CeO2 buffer layer on the 

microstructure and magnetic properties of the BFMO films have been studied. Without 

the CeO2 buffer layer, a conventional pseudocubic structure has been obtained on STO 

substrate with a minimum saturation magnetization value. When buffered by CeO2, a 

novel layered supercell structure forms because of the strain and surface structure induced 

by the CeO2 buffer layer. The magnetic property measurement shows that the novel 
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supercell structure with the optimal CeO2 buffer layer thickness of 6.7 nm exhibits 

significantly enhanced magnetic properties compared to the conventional pseudocubic 

structure without the CeO2 buffer. Moreover, it has been demonstrated that the interface 

morphology between the BFMO and CeO2 layers plays a crucial role in the formation of 

the supercell structure with superior magnetic property. This study demonstrates that both 

strain and interface can be used to tune the structural and physical properties of the 

transition metal oxide thin films for novel structures and new functionalities.  
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CHAPTER IV  

TUNABLE PHYSICAL PROPERTIES IN TWO-DIMENSIONAL BI-BASED 

LAYERED SUPERCELL STRUCTURES VIA COMPOSITION VARIATION 

 

4.1 Overview  

Bi2Fe1-xMnxO6 systems with layered supercell structure have been grown on CeO2 

buffered SrTiO3 (STO) (001) substrates by pulsed laser deposition. The Fe/Mn molar ratio 

has been varied to explore the fundamental growth mechanism of the layered structures 

and their corresponding magnetic property. It is found that Mn element plays a critical 

role in the formation of the bismuth-based layered supercell structures. With Mn-rich 

composition (x  0.5), the Bi-based layered structures can be easily fabricated on CeO2 

buffer layer, while Fe-rich (x < 0.5) results in regular psuedocubic phase. More 

interestingly, the layered supercell structure can be fabricated from BiMnO3 on both 

CeO2-buffered STO and STO substrates, respectively, under well controlled growth 

conditions. This study sheds light on the growth mechanism of the Bi-based layered 

supercell structures and the mechanism for its ferromagnetic properties, and thus is of 

great significance to the design of new Bi-based layered structures.  

 

4.2 Introduction 

Multiferroics with more than one ferroic order coexisting in a single phase have 

attracted significant research interests because of their rich physics behind and enormous 

potential for device applications.26, 44, 63, 98, 114 Among the several groups of multiferroic 
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materials, Bi-based lone-pair multiferroics with the perovskite ABO3 structure, have 

attracted renewed interest. For Bi-based ABO3 perovskites, the ferroelectricity comes 

from the high stereochemical activity of the lone-pair electrons on the A-site cation while 

the smaller B-site cation provides the magnetism. BiFeO3
7, 215, 216, 217 and BiMnO3,

85, 88, 91, 

98, 218 are two of the most important lone-pair multiferroic materials and have been 

extensively studied due to their multiferroic properties and magnetoelectric effect. Besides 

the above mentioned single-perovskites, Bi-based double-perovskites, BiBB’O6 (B and B’ 

are transition metal cations), have also triggered special attention arising from their long-

range ferro/ferri-magnetically ordered B and B’ cations as well as desirable ferroelectricity 

from the Bi 6s2 lone pairs. For example, Bi2NiMnO6, the most extensively studied double-

perovskite in pseudocubic structure, has been proven to possess long-range ordered 

ferromagnetism with a Curie temperature of about 105 K.127, 129, 130, 131  

Bi2FeMnO6 (i.e., BiFeO3:BiMnO3 = 1:1, BF1M1O), another well-known Bi-based 

double-perovskite, has also been widely studied.113, 114, 184 Bi2FeMnO6 in pseudocubic 

phase has been reported with room-temperature ferroelectricity and ferrimagnetism, in 

either bulk form prepared under extreme conditions or thin film form deposited by pulsed 

laser deposition (PLD) on single-crystal substrate SrTiO3 (STO) (001).102, 108, 110, 111, 113, 114 

When deposited on LaAlO3 (LAO) (001) substrate, however, a novel layered 

Bi3Fe2Mn2O10- supercell (called BFMO322 SC) structure was obtained with enhanced 

multiferroic property.184, 185, 186, 219 For the novel BFMO322 SC structure, it can be grown 

on LAO substrates or CeO2 buffered STO (as thin as 6.7 nm).185, 219 STEM images 

combined with geometric phase analysis (STEM-GPA) suggested that the interfacial strain 
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plays a special role in the formation of the BFMO322 SC.186 However, the fundamental 

formation mechanisms of the BFMO322 SC structure is still unclear. One of the key 

parameters yet to be explored is the role of Mn composition, i.e., the molar ratio of Fe/Mn, 

on the overall formation of such layered supercell structure and the impacts on their 

magnetic property.  

In this work, Bi2Fe1-xMnxO6 (BFMO) thin films with different Fe/Mn molar ratios 

were designed and deposited on ~6.7 nm CeO2 buffered STO substrates to investigate the 

fundamental formation mechanisms and to achieve tunable physical properties, such as 

multiferroic properties. Composite BiFeO3-BiMnO3 targets with molar ratios of 1:0 (pure 

BiFeO3), 4:1, 2:1, 1:1, 1:2, 1:4, and 0:1 (pure BiMnO3) were prepared (denoted as FallM0, 

F4M1, F2M1, F1M1, F1M2, F1M4, and F0Mall, respectively). This study could serve two roles, 

one is to shed light on the growth mechanism of the Bi-based layered supercell structures 

which may further help the design and fabrication of other new Bi-based layered structures 

for multiferroism; another is to explore the tunability of physical properties in these novel 

layered supercell structures by fine tuning of the compositions.  

 

4.3 Experimental details and first-principle calculation 

To prepare the composite Bi2Fe1-xMnxO6 targets with different Fe/Mn molar ratios 

(1:0, 4:1, 2:1, 1:1, 1:2, 1:4, and 0:1), Bi2O3, Fe2O3, and MnO2 powders in specific ratios 

were mixed, pressed into pellets, and annealed at 800 oC for 3 hours. For the CeO2 target, 

CeO2 powder was pressed into a pellet and annealed at 1200 oC for 6 hours. Pulsed laser 

deposition (PLD, Lambda Physik, KrF, λ = 248 nm) was employed to deposit the CeO2 
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buffer layers and BFMO films at an optimized substrate temperature of 700 oC. An oxygen 

pressure of 200 mTorr was maintained during deposition. After deposition, the films were 

in-situ annealed at 400 oC for 1 hour with an oxygen pressure of 500 Torr and then cooled 

down to room temperature with a cooling rate of 5 oC/min. High resolution X-ray 

diffraction (HR-XRD, PANalytical Empyrean), transmission electron microscopy (TEM, 

FEI Tecnai G2 F20), and high resolution scanning transmission electron microscopy (HR-

STEM) were used to characterize the microstructures of the as-deposited films. The HR-

STEM images in high angle annular dark-field (HAADF) mode were obtained using a FEI 

Titan G2 80-200 STEM with a Cs-probe corrector operated at 200 kV and a modified FEI 

Titan STEM TEAM 0.5, respectively. The magnetic properties of the films were measured 

by the vibrating sample magnetometer (VSM) option in a commercial Physical Properties 

Measurement System (PPMS 6000, Quantum Design). During the measurement, the out-

of-plane and in-plane magnetizations were recorded by applying a magnetic field of 1 T 

perpendicular and parallel to the film plane, respectively.  

The elastic constants are calculated using plane-wave pseudopotential method 

within the generalized gradient approximation (GGA)220 as implemented in the density-

function theory based Vienna Ab initio Simulation Package (VASP).221 The cut-off for 

plane-wave basis set of 400 eV and Monkhorst-Pack222 k-point sampling grid of 12×4×2 

are used, with a convergence criteria of 10-6 eV for electronic relaxation. 
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4.4 Results and discussion 

The θ-2θ scans of BFMO thin films grown from composite BFMO targets with 

different Fe/Mn molar ratios are shown in Figure 4.1 and 4.2. The dominant (00l)-type 

diffraction peaks in Figure 4.1 demonstrate the highly textured growth of both CeO2 buffer 

layers and BFMO films along (00l).  

 

 

Figure 4.1 XRD θ-2θ scans of BFMO thin films with different Fe/Mn molar ratios, 1:1 

(F1M1), 1:2 (F1M2), 1:4 (F1M4), and 0:1 (F0Mall). The “” indicates a minor phase 

Bi25FeO40. 
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As shown in Figure 4.1, the layered supercell structure can still be obtained with 

the increase of Mn amount (Fe:Mn < 1:1) while with the increase of Fe molar ratio, the 

layered supercell structure is not formed (Figure 4.2). The XRD diffraction results suggest 

that Mn-rich cases facilitate the formation of the layered supercell structures while Fe-rich 

ones are difficult to achieve such supercell structure. In addition, Figure 4.1 shows an 

obvious and gradual right shift of the supercell peaks with the increase of the Mn amount, 

indicating a decreased d-spacing of the layered supercell structures. For example, a right 

peak shift of 4.76o is found from the F0Mall (008) peak to the F1M1 (008) peak. The out-

of-plane d-spacing is determined to be 9.76, 9.68, 9.64, and 9.30 Å for F1M1, F1M2, F1M4, 

and F0Mall layered thin films, respectively.  

 

 

Figure 4.2 XRD θ-2θ scans of BFMO thin films with different BFO and BMO molar 

ratios, 1:1 (F1M1), 2:1 (F2M1), 4:1 (F4M1), and 1:0 (FallM0). 
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TEM/STEM studies were employed to investigate the microstructure of these 

BFMO thin films (Figure 4.3). The low-magnification STEM images of F1M1, F1M4, and 

F0Mall thin films in Figure 4.3(a), (d) and (g) clearly show the layered structures grown on 

CeO2 buffered STO substrates. The corresponding high-resolution STEM images in 

Figure 4.3(b), (e) and (h)  demonstrate the layered structure where the brighter layers are 

attributed to the Bi2O2 sheets due to the higher atomic number (ZBi = 83) while the darker 

layers are identified as distorted Fe/Mn octahedra (ZFe = 26, ZMn = 25). Both Bi2O2 and 

Fe-Mn-O slabs indicate a highly epitaxial layered stacking manner with zig-zag shaped 

arrangements along the out-of-plane direction. An interesting phenomenon to note here is 

the different Bi2O2 layer and Fe-Mn-O layer matching relationship for F1M1 and F1M4. 

From the high-resolution STEM image of F1M1 in Figure 4.3(b), a 1:1 matching 

relationship is observed for Bi2O2 and Fe-Mn-O layers and the neighboring Bi2O2 layers 

are at the same location along the horizontal [010] direction as indicated by the labeled 

triangles along the same direction. For F1M4, however, the Bi2O2 sheets are shifted by half 

period along the horizontal [100] direction (Figure 4.3(e)). In addition, the Bi2O2 and Fe-

Mn-O layers have a 3:4 matching relationship along the [010] direction as marked in 2e. 

The Bi2O2 and Fe-Mn-O layer matching relationship for F1M1 along [100] direction 

(Figure 4.3(b)) and for F1M4 along [010] direction (Figure 4.3(e)) is consistent with the 

previously reported Bi2O2 and Fe-Mn-O layer matching relationship for F1M1 along [100] 

and [010] directions, respectively.184 More interestingly, for F0Mall case (Figure 4.3(g) and 

(h)), it is noteworthy that there is only one layer of Mn atoms between the two Bi2O2 layers 

which is very different from the other BFMO layered samples with two atomic layers of 
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Fe-Mn-O. The distinctive selected area electron diffraction dots (SAED) in Figure 4.3(c), 

(f) and (i) also prove the highly epitaxial growth of F1M1, F1M4, and F0Mall layered 

structures.  

 

 

Figure 4.3 Cross-sectional low-magnification STEM images of (a) F1M1, (d) F1M4, and 

(g) F0Mall. High-magnification STEM images of (b) F1M1, (e) F1M4, and (h) F0Mall. The 

corresponding selected area electron diffraction patterns of (c) F1M1, (f) F1M4, and (i) 

F0Mall grown on CeO2 buffered STO substrates.  
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An interesting phenomenon noteworthy here is the unique layered supercell 

structure formed in the case of F0Mall (BiFeO3:BiMnO3 = 0:1, i.e. BiMnO3). BiMnO3 

(BMO), possessing ferromagnetism and ferroelectricity simultaneously, is famous as a 

rare multiferroic material which has been studied in both bulk and thin film forms.82, 97 On 

the other hand, BMO is not stable at atmosphere pressure and thus strain coming from the 

single crystal substrates, e.g. SrTiO3 (001) and LaAlO3 (001), is often used to stabilize the 

BMO phase at ambient conditions.82 And the BMO phase obtained on these single crystal 

substrates usually has a typical pseudocubic structure.82, 85 In this work, however, novel 

layered supercell structure has grown on CeO2 buffered STO substrate (Figure 4.1 and 

Figure 4.3), which is quite different from the previously reported pseudocubic structure of 

BMO grown on STO (001) and LAO (001). Furthermore, the novel layered supercell 

structure of BMO can also be obtained directly on STO (001) without the CeO2 buffer 

layer by finely controlling the growth conditions (Figure 4.4(a) and (c)). As indicated by 

the dominant (00l)-type diffraction peaks (2θ = 19.06o, 28.72o, 38.70o, 48.83o,…) in Figure 

4.4(a), a new phase which is not pseudocubic phase formed from BMO (F0Mall) on STO 

(001) substrate in this work. Figure 4.4(c) confirms that this new phase is the layered 

supercell structure mentioned above. For F1M1, however, a pseudocubic phase is formed 

on STO (001) substrate under similar growth conditions (Figure 4.4(b) and (d)).  

The growth of the BMO layered supercell structure on STO (001) substrate is very 

different from previous reports where a pseudocubic phase BMO has grown on STO (001) 

or other similar cubic substrates. For example, previous reported BMO was not stable at 

ambient conditions and its growth was sensitive to the growth conditions as well as other 
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factors such as strain, which all play an important role in controlling or stabilizing its 

crystal structure or phases obtained in thin film form. In comparison, the new layered 

supercell structure is a metastable phase and temperature plays a critical role in the 

formation of this unique layered supercell structure. The structural origin of the Bi-based 

layered supercell structures in this work is related to the Aurivillius phases, a Bi-based 

layered compounds composed of alternative stacking of [Bi2O2]
2+ layers. Typical 

examples include Aurivillius phases (e.g. Bi2WO6 and Bi4Ti3O12),
166 Sillen phases (e.g. 

Pb0.6Bi1.4Rb0.6O2Z2, Z = Cl, Br, and I),223 bismuth subcarbonate (Bi2O2CO3),
224 bismuth 

hydroxyl borates (Bi2O2[B3O5(OH)] and Bi2O2[BO2(OH)]),225 etc. The closest Bi-Bi 

distance of the layered supercell structure is measured to be around 4.00 Å which is 

comparable to the lattice parameter of STO (001) (a = 3.905 Å). In these compounds, the 

Bi-O bonds shows covalent nature which is weaker than that of pure ionic bonds exhibiting 

structural flexibility. During the diffusion and nucleation of the adatoms on the single-

crystal substrates, [Bi2O2]
2+ layers are possible to form under proper growth 

thermodynamic and kinetics which can be controlled by the deposition parameters. 

Considering all the factors affecting the growth of BMO films, the close lattice parameters 

of STO (001) and Bi-Bi distance in the layered supercell structure, and the wide existence 

of [Bi2O2]
2+ layers, it is reasonable that novel layered supercell structure consisting 

[Bi2O2]
2+ layers and Fe/Mn octahedra has grown on STO (001) substrate under well-

controlled growth conditions. For the case of F1M1, the growth of pseudocubic phase 

instead of the layered supercell structure on STO (001) substrate might be due to the better 

lattice match between the F1M1 pseudocubic phase and STO (001) substrate. The 
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formation of BMO layered supercell structure and BF1M1O pseudocubic phase on STO 

substrate further confirms the more important role of Mn in the growth of the 2D layered 

supercell structure.  

 

 

Figure 4.4 XRD θ-2θ scans of F0Mall (a) and F1M1 (b) grown on STO substrate directly. 

The symbol “” indicates minor unknown phases. TEM images of F0Mall (c) and F1M1 (d) 

directly grown on STO. The insets are the corresponding diffraction patterns of layered 

F0Mall (c) and pseudocubic F1M1 (d).  

 

To systematically investigate the layered supercell’s growth mechanism, i.e. the 

role of Fe and Mn in the formation of the BFMO based layered supercell structures, first-
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principles calculations were performed to evaluate the mechanical properties of the 

layered supercell structures. The anisotropic mechanical properties, for example, Young’s 

modulus, shear modulus and Poisson ratio of materials, can be described by the second-

order elastic constants which can be obtained from first-principles calculations. For a 

mechanically stable material system, the fourth order stiffness tensor relates to the second 

order stress and strain tensor:  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙 

Einstein’s summation rule is adopted in this work. The fourth order tensor can be 

rewritten to a second order tensor using Voigt notation due to translational and rotational 

symmetries. Using first-principles calculations, we can obtain the second order stiffness 

tensor. The tensor rotation can be described by Euler angles (𝜃, 𝜑). The Young’s modulus 

defined as the ratio of normal stress to linear normal strain (both in the direction of applied 

load) results in226 

𝑌(𝜃, 𝜑) =
1

𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑆𝑖𝑗𝑘𝑙
 

Here 𝑆𝑖𝑗𝑘𝑙 is the fourth order compliance tensor, satisfying the inversion relation 

휀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙 

𝑎𝑖  is the ith element of vector 𝐚 = (
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝜃

) . Thus, we can visualize the Young’s 

modulus in three-dimensional space. The mechanical stability requires the elastic stiffness 

matrix must be definite positive and all eigenvalues of the matrix are positive, first noted 

by Max Born,227 which is originated from the convexity of the energy. Thus, the criteria 
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can be obtained by expanding the internal energy in terms of strain and substituting to the 

energy condition. The second-order elastic constants 𝐸𝑖𝑗 of F1M1 and FallM0 are calculated 

as shown below.  

 

F1M1: 

[𝐸𝑖𝑗] =

[
 
 
 
 
 
3706.4053 1185.3376 1258.9211 0.0000 0.0000 0.0000
1121.8942 2350.5048 1114.6980 0.0000 0.0000 0.0000
 1258.9211

0.0000
0.0000
0.0000

1114.6980
0.0000
0.0000
0.0000

2192.2310 0.0000 0.0000 0.0000
0.0000 242.1905 0.0000 0.0000
0.0000
0.0000

0.0000
0.0000

620.1631 0.0000
0.0000 681.2253 ]

 
 
 
 
 

𝐊𝐁𝐚𝐫 

 

FallM0 (BFO): 

[𝐸𝑖𝑗] =

[
 
 
 
 
 
3283.5640 1131.9091 1037.8040 0.0000 0.0000 0.0000
1131.9091 2558.3034 1114.2511 0.0000 0.0000 0.0000
 1313.5854

0.0000
0.0000
0.0000

1037.8040
0.0000
0.0000
0.0000

1868.5841 0.0000 0.0000 0.0000
0.0000 190.0046       0.0000 0.0000
0.0000
0.0000

0.0000
0.0000

−𝟐𝟔𝟕. 𝟑𝟑𝟔𝟏 0.0000
 0.0000      709.1486]

 
 
 
 
 

𝐊𝐁𝐚𝐫 

 

𝐸55 = 𝐶1313 = 𝐶3131 =
𝜕𝜎31

𝜕𝜀31
< 0 , which means the assumed FallM0 (BFO) structure 

cannot bear the in-plane shear along the x direction. The Young’s modulus of the F1M1 

layered supercell structure is calculated and shown in Figure 4.5. The large anisotropy of 

the Young’s modulus matches well with the 2D anisotropic layered structure and the result 

proves the structural stability of the F1M1 layered supercell structure theoretically. For the 

case of FallM0, i.e. with all the Mn substituted by Fe, however, the 2D layered structure 

becomes mechanically unstable, as proved by the negative E55 in the elastic stiffness 
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matrix which provides theoretical foundation that Fe does not facilitate the growth of Bi-

based layered supercell structure.  

 

 

Figure 4.5 Visualization of Young’s modulus of F1M1 layered supercell structure in unit 

KBar. 

 

To explore the tunability of the magnetic properties of the BFMO layered supercell 

structures, the magnetic response of the samples was measured by the vibrating sample 

magnetometer (VSM) option in a commercial Physical Properties Measurement System 

as shown in Figure 4.6. The saturation magnetization of F1M1, F1M2, F1M4, and F0Mall is 

~166 emu/cc, ~90 emu/cc, ~60 emu/cc, and ~112 emu/cc at 300 K and 10 kOe along the 
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out-of-plane direction (Figure 4.6(a)), respectively, indicating tunable magnetic properties 

of the samples with different Fe/Mn molar ratios (Figure 4.6(b)). It is noteworthy here that 

the magnetic property of the BFMO supercell structures is much better than that of the 

BFMO and BiMnO3 thin films with conventional pseudocubic structures. For example, 

the pseudocubic Bi2FeMnO6 thin films exhibit a magnetization value ranging from 0.8 

emu/cc to 90 emu/cc depending on the growth conditions, strain states, annealing 

procedures, etc.86, 108, 111, 113, 184 Although the magnetizations of some of the pseudocubic 

Bi2FeMnO6 thin films are comparable and even higher than the BFMO supercell structures, 

the high magnetization of 90 emu/cc in the pseudocubic Bi2FeMnO6 thin films only exists 

in very thin films which are highly strained.111, 113 With the increase of the thickness of the 

pseudocubic Bi2FeMnO6 thin films, the magnetization value is as low as 0.8 emu/cc.86 

Regarding the single-phase multiferroic BiMnO3, a problem is the low ferromagnetic 

transition temperature which limits its practical applications at room temperature. The 

bulk BiMnO3 shows a ferromagnetic transition temperature of as low as 105 K and a 

ferromagnetic Curie temperature of 50 K was reported for the pseudocubic BiMnO3 thin 

film grown on LAO (001) substrate.86 It was proposed in the previous work that the 

magnetization of the BFMO322 SC may stem from a net magnetization of Fe and Mn 

cations, which form zigzag-shaped rows favoring the spin canting effect.184 From the 

current results, it is not sufficient to understand the magnetic structure. The magnetization 

of the BFMO layered supercell structures might be a result of several magnetic coupling 

mechanisms such as orbital hybridization and spin compensation between the cations. For 

the case of BMO layered supercell with only one layer of Mn cations between the 



128 
 

[Bi2O2]
2+ sheets, the magnetization may be related to the superexchange coupling of the 

neighboring Mn cations through the oxygen. Figure 4.6(c) shows the tunable transmittance 

of the BFMO thin films with different compositions and structures and a direct band gap 

of ~2.50, ~2.59, ~2.63, ~2.64 and ~2.66 eV was obtained for pseudocubic BFMO, F1M1, 

F1M2, F1M4, and F0Mall, respectively, by the Tauc method Figure 4.6(d).  

 

 

Figure 4.6 Tunable physical properties of the BFMO thin films with different 

compositions and structures. (a) Magnetic hysteresis (M-H) loops of F1M1, F1M2, F1M4 

and F0Mall at 300 K along the out-of-plane direction. (b) Variation of saturation 

magnetization and coercivity of F1M1, F1M2, F1M4 and F0Mall with different Mn contents. 

(c) and (d) Tunable transmittance and band gaps of pseudocubic BFMO, F1M1, F1M2, 

F1M4 and F0Mall.  
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4.5 Conclusion 

In conclusion, the influence of Fe/Mn ratio in Bi2Fe1-xMnxO6 on the formation of 

the layered supercell structure and its magnetic property has been investigated. Both XRD 

and STEM results indicate that Mn concentration plays a dominant role in the formation 

of the novel layered supercell structures grown on CeO2 buffered STO (001) substrates. 

The net magnetization of the BFMO layered supercell structures might be the interplay of 

several magnetic coupling mechanisms including orbital hybridization and spin 

compensation between the Mn and Fe cations. This study reveals the key factors for the 

2D layered supercell formation and demonstrates the possibilities in microstructural and 

physical property tuning in these novel 2D systems.  
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CHAPTER V  

TWO-DIMENSIONAL LAYERED SUPERCELLS FROM BIMNO3 AND 

BI2NIMNO6: SELF-ASSEMBLED GROWTH, STRUCTURE MODULATION, 

AND TUNABLE PHYSICAL PROPERTIES 

 

5.1 Overview  

With the rise of graphene and transition metal dichalcogenides (TMDC), two-

dimensional (2D) materials holding great promises in nanoscale device applications has 

become an extensively studied topic in fundamental research areas including physics, 

chemistry and materials science. In parallel with the non-oxide 2D graphene and TMDC, 

layered oxides (e.g. Aurivillius and Ruddlesden-Popper phases) are also intriguing both 

because of the variety of rich physics behind and the potential device applications. Here, 

by one-step self-assembled growth we designed and fabricated four novel Bi-based 

layered supercell structures from the metastable single-perovskite BiMnO3 (BMO) and 

double-perovskite Bi2NiMnO6 (BNMO). The four layered supercell structures consist of 

alternative layered stacking of Bi2Ox/Bi3Ox slabs and Mn-O/Ni-Mn-O octahedral layers, 

respectively. Robust room-temperature multiferroic properties with tunable magnetic 

response have been demonstrated for the four anisotropic layered supercell structures. The 

realization of these four new layered supercell structures has paved an avenue towards 

exploring and designing new single-phase materials with desired room-temperature 

multiferroic properties.  
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5.2 Introduction 

Two-dimensional (2D) layered materials, no longer possessing the same behavior 

as their three-dimensional forms, has sparked special research interest because of their 

unique anisotropic structures and rich physical phenomena as well as the enormous 

potentials of fabricating nanoscale devices.228, 229, 230 Graphene135, 231 and transition metal 

chalcogenides (e.g., GeS, SnSe, WS2 and MoS2)
232, 233 represent two kinds of extensively 

studied 2D materials nowadays with varieties of physical phenomena predicted or 

discovered such as quantum spin Hall effects,147, 234 topological insulating transitions,235 

and ferromagnetism,236, 237, 238, 239 which paves an avenue towards 2D devices. Besides the 

non-oxide 2D materials, oxide-based 2D materials have also attracted wide attention and 

have been the focus of condensed matter physics and material science with the underlying 

rich physics. For example, perovskite-related 2D materials like Aurivillius165, 182, 240 and 

Ruddlesden-Popper241, 242, 243 phases exhibit remarkable structural variability because of 

their unique ionic structural framework. And intriguing physical properties such as 

piezoelectricity and ionic conductivity have been reported for these kinds of perovskite-

related 2D layered materials.   

In parallel, Bi-based perovskites, including Bi-based single-perovskites (e.g., 

BiFeO3 and BiMnO3)
7, 82 and double-perovskites (e.g., Bi2FeMnO6, Bi2FeCrO6, and 

Bi2NiMnO6),
127, 184, 185 have drawn a tremendous amount of attention owing to their 

multiferroism and magnetoelectric effect. For example, BiMnO3 (BMO) is a well-known 

single-perovskite and one of the most promising single-phase multiferroic materials with 

ferromagnetic ordering at about 105 K. Bi2NiMnO6 (BNMO), a Bi-based double-
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perovskite multiferroic material, possesses long-range ordered Ni2+ and Mn4+ cations with 

a ferromagnetic transition temperature of 140 K.127 At the meantime, both BMO and 

BNMO are metastable phases at ambient conditions and the bulk synthesis requires high 

temperature (~1100 K) and high pressure (~6 GPa).82, 127, 129, 131 The thin film growth of 

BMO and BNMO on single-crystal substrates is sensitive to the deposition parameters 

such as temperature and oxygen pressure. The development of high-quality thin film 

growth techniques and the accompanying strain engineering have provided people much 

more freedom to explore and design new materials in thin film form with new structures 

and functionalities.184 For example, the high-pressure requirement for the stabilization of 

metastable BMO and BNMO phase can be replaced by strain exposed by the substrate.  

Considering the metastable nature of BMO and BNMO and their sensitive thin 

film growth conditions, novel phases from BMO and BNMO may be achieved by 

appropriately controlling the growth parameters. Here, in this work we designed and 

created four novel 2D layered supercell structures from BMO and BNMO systems via 

pulsed laser deposition by finely controlling the deposition parameters. More interestingly, 

the BMO and BNMO structures can be easily modulated between layered supercell 

structures consisting of two-layer-thick and three-layer-thick Bi-based slabs by adjusting 

the deposition parameters. The BMO and BNMO high-temperature layered supercell 

(HLSC) structure consists of alternated Bi2Ox slabs and Mn-O/Ni-Mn-O octahedra layers 

while the BMO and BNMO low-temperature layered supercell (LLSC) structure is formed 

by intergrowth of Bi3Ox slabs and Mn-O/Ni-Mn-O octahedra layers both along the film 

out-of-plane direction. Both BMO and BNMO HLSC and LLSC can be fabricated on both 
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LaAlO3 (LAO) (001) and SrTiO3 (STO) (001) substrates, respectively, and exhibit robust 

room-temperature multiferroic properties. The demonstration of the self-assembled 

multiferroic 2D layered supercell structures in this study paves an avenue towards 

designing new single-phase materials with unique anisotropic structures and multiferroic 

response.  

 

5.3 Experimental 

Sample preparation. Epitaxial BiMnO3 and Bi2NiMnO6 thin films were deposited 

on single crystal LaAlO3 (001) and SrTiO3 (001) substrates by pulsed laser deposition 

(PLD, Lambda Physik, KrF, λ = 248 nm) from stoichiometric BiMnO3 and Bi2NiMnO6 

target, respectively. To prepare the BiMnO3 and Bi2NiMnO6 target, well-mixed pellets 

from stoichiometric ratio of Bi2O3, MnO2 and Bi2O3, NiO, MnO2 powders were sintered 

at 800 oC and 750 oC for 3 hours in air, respectively. The substrate temperature ranged 

from 400 to 700 oC and a dynamic oxygen pressure of 20~200 mTorr was maintained 

during depositions. After deposition, the films were in-situ annealed at 400 oC for 1 hour 

in 500 Torr of oxygen and then cooled down to room temperature.  

XRD, STEM HAADF imaging, EDS, and AFM imaging. High-resolution X-

ray diffraction (HR-XRD, PANalytical Empyrean), transmission electron microscopy 

(TEM, FEI Tecnai G2 F20), and high-resolution scanning transmission electron 

microscopy (HR-STEM) were used to characterize the microstructures of the prepared 

BMO and BNMO thin films. The HR-STEM images in high-angle annular dark-field 

(HAADF) mode were obtained using a FEI Titan G2 80-200 STEM with a Cs probe 
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corrector operated at 200 kV and a modified FEI Titan STEM TEAM 0.5 with a 

convergence semi-angle of 17 mrad operating at 200 kV, respectively. For the high-

resolution energy-dispersive X-ray spectroscopy (EDS) mapping, a FEI TitanTM G2 80-

200 STEM with a Cs probe corrector and ChemiSTEMTM technology (X-FEGTM and 

SuperXTM EDS with four windowless Si drift detectors) operated at 200 kV was used. The 

film composition was analyzed by EDS of both transmission electron microscopy and 

scanning electron microscopy. A Bruker Dimension Icon atomic force microscope (AFM) 

with high resolution (Z < 0.1 nm, XY < 1 nm) was used to get the surface topography 

image.  

PED tomography. Precession electron diffraction (PED) patterns were obtained 

using a JEOL 2010 (200 kV) transmission electron microscope (TEM) equipped with a 

side-mounted Gatan Orius CCD camera and a Nanomegas Digistar PED unit. The data 

collection was performed on a cross-sectional sample prepared from a ~80 nm film using 

the tomography approach.193 In such a case, the rotation axis is mostly limited to the out-

of-plane direction to avoid shadowing the film by the substrate. PED patterns were 

recorded in a tilted range with a precession angle. The data were processed using the 

programs PETS194 and Jana2006195.  

Physical property measurement. The magnetic properties of the fabricated 

samples were measured in a commercial Physical Properties Measurement System (PPMS 

6000, Quantum Design) via the vibrating sample magnetometer (VSM) option. The in-

plane and out-of-plane magnetizations were recorded by applying a magnetic field of 1 T 

parallel and perpendicular to the film plane, respectively. For the zero-field cooling (ZFC) 
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and field cooling (FC) measurements, the samples were cooled down without and with a 

magnetic field applied, respectively, from 380 K to 10 K and the magnetizations were 

recorded during the heating cycle from 10 K to 380 K. For the electrical property 

measurements, the conductive La0.7Sr0.3MnO3 (LSMO) was firstly deposited on STO 

substrate as the bottom electrode. The piezoelectric properties were measured at ambient 

conditions with a conductive Pt-Ir coated Si tip (model: SCM-PIT) via the Bruker 

Dimension Icon atomic force microscope (AFM).  

 

5.4 Results and discussion  

The microstructure of the two BMO layered supercell (LSC) structures was first 

investigated by X-ray diffraction (XRD) as presented in Figure 5.1. Figure 5.1(a) and (c) 

shows the XRD θ-2θ pattern of BMO HLSC which exhibits a series of periodic (00l)-type 

diffraction peaks besides the LAO (001) and STO (001) substrate peaks. The out-of-plane 

d-spacing of BMO HLSC was determined to be ~9.31 Å with the diffraction peaks 

centered at 2θ = 9.49o, 19.06o, 28.76o, 38.68o, 48.89o,… for the HLSC film grown on both 

LAO (001) and STO (001) substrates. With the decrease of the deposition temperature, 

another set of (00l)-type diffraction peaks are observed for the film BMO LLSC grown 

both on LAO (001) and STO (001) substrates as shown in Figure 5.1(b) and (d). With the 

diffraction peaks centered at 2θ = 6.80, 13.45, 20.16, 27.01, 33.97, 41.03,… the d-spacing 

for BMO LLSC was calculated to be ~12.99 Å. The dominant (00l)-type diffraction peaks 

of both BMO HLSC and LLSC indicate that both films have epitaxially grown along the 

film out-of-plane direction on both LAO (001) and STO (001) substrates. In addition, the 
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large d-spacing as well as the unique periodic diffraction features of BMO HLSC and 

LLSC do not fit any of the reported BiMnO3 phases with pseudocubic structure, which 

implies that two new BMO phases have been fabricated. More interestingly, the BMO 

HLSC and LLSC can be both fabricated on CeO2 buffer layers (Figure 5.1(e) and (f)).  
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Figure 5.1 XRD patterns of the self-assembled BMO layered supercell structures. θ-2θ 

scans of BMO HLSC grown on (a) LAO (001), (c) STO (001), and (e) CeO2-buffered 

STO (001) substrates, respectively. θ-2θ scans of BMO LLSC grown on (b) LAO (001), 

(d) STO (001), and (f) CeO2-buffered LAO (001) substrates, respectively.  
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The epitaxial growth of the novel layered supercell structures and conventional 

pseudocubic phase of BNMO was also examined by XRD. As shown by the diffraction 

patterns of BNMO HLSC grown on LAO (001) in Figure 5.2(a), a series of periodic (00l)-

type diffraction peaks (2θ = 9.54o, 19.21o, 28.85o, 38.81o,… corresponding to out-of-plane 

lattice distances of 9.25 Å, 4.62 Å, 3.09 Å, 2.32 Å,… respectively.) are observed besides 

the substrate peaks. For the sample grown on STO (001), a conventional pseudocubic 

phase was obtained. When decreasing the deposition temperature, however, another set of 

sharp (00l)-type diffraction peaks (2θ = 6.81o, 13.56o, 20.35o, 27.31o, 34.32o, 41.47o,… 

corresponding to out-of-plane lattice distances of 12.97 Å, 6.52 Å, 4.36 Å, 3.26 Å, 2.61 

Å, 2.18 Å,… respectively.) are exhibited for BNMO LLSC grown on both LAO (001) and 

STO (001) substrates, demonstrating that the films deposited at low temperatures have 

also grown in a highly epitaxial manner along the out-of-plane direction (Figure 5.2(b)). 

The large out-of-plane d-spacing as well as the unique periodic diffraction features of the 

two new BNMO thin films in this work do not fit any of the reported Bi2NiMnO6 phases,127 

indicating that two new BNMO phases (called BNMO HLSC and BNMO LLSC hereafter) 

have been fabricated from the Bi-based double-perovskite Bi2NiMnO6 under well-

controlled growth conditions.  
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Figure 5.2 XRD θ-2θ patterns of the BNMO thin films with novel layered supercell 

structures and conventional pseudocubic structure. Typical θ-2θ scans of the BNMO thin 

films deposited on LAO (001) and STO (001) substrates at (a) high temperature and (b) 

low temperature, respectively. HLSC and LLSC mean high-temperature and low-
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temperature layered supercell, respectively, while PC indicates the pseudocubic structure. 

The “” indicates a minor phase Bi12MnO20.  

 

To further characterize the microstructure of both BMO and BNMO HLSC and 

LLSC, aberration-corrected scanning transmission electron microscopy (STEM) equipped 

with energy-dispersive X-ray spectroscopy (EDS) analysis was performed on both BMO 

and BNMO grown on LAO (001) (Figure 5.3 and 5.4). Figure 5.3(a) presents the STEM 

image of BMO HLSC in high angle annular dark-field (HAADF) mode taken from LAO 

[100] zone axis. The STEM image of BMO HLSC shows clear epitaxial layered stacking 

growth manner of BMO HLSC along the LAO (001) c-axis which consists of two 

sublattices. The bright sheets are composed of Bi-O (ZBi = 83) while the dark slabs are 

attributed to Mn-O (ZMn = 25) as the contrast of STEM HAADF image is proportional to 

Zn (Z is the atomic number.). High-resolution STEM image of BMO HLSC on atomic 

scale taken from LAO [100] and [110] zone axis in Figure 5.3(b) and (c) clearly shows 

the intergrowth of bright Bi-based slabs and dark Mn-based monolayers along the film 

out-of-plane direction. Figure 5.3(b) shows the zig-zag atom arrangement of two-layer-

thick Bi atoms and Figure 5.3(c) demonstrates the monolayer of Mn atoms which are 

aligned in a straight line. The STEM HAADF image of BMO LLSC is shown in Figure 

5.3(d) which also exhibits layered stacking of bright and dark layers alternatively along 

the out-of-plane direction. Similar to BMO HLSC, the bright layers are also attributed to 

Bi-based slabs and the dark layers are composed of Mn-O. The cation ratio for BMO 

HLSC and LLSC is estimated to be Bi/Mn = 1.76:1 and 2.44:1, respectively. Contrary to 

the two-layer-thick of Bi-O slabs of BMO HLSC, each bright slab of BMO LLSC contains 
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three layers of Bi atoms (Figure 5.3(e)), which is quite different from the well-known 

Aurivillius phases consisting of two-layer-thick of Bi-based slabs. Between the three-

layer-thick Bi-based slabs of LLSC are also one-layer-thick Mn atoms (Figure 5.3(f)).  

 

 

Figure 5.3 Microstructural characterization of the BMO layered supercell structures. (a) 

and (d) STEM HAADF images of BMO HLSC and LLSC along LAO [100] zone axis, 

respectively. The inset shows the corresponding selected area electron diffraction patterns 

of BMO HLSC and LLSC, respectively. (b) and (f) High-resolution STEM images of 
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BMO HLSC and LLSC taken from the LAO [100] and [110] zone axis, respectively, 

showing the Bi atoms at atomic resolution. (c) and (e) High-resolution STEM images of 

BMO HLSC and LLSC taken from the LAO [110] and [100] zone axis, respectively, 

showing the Mn atoms at atomic resolution.  

 

High-resolution STEM images in high-angle annular dark-field (HAADF) mode 

(along the substrate LAO [100] zone axis) in Figure 5.4(a) and (b) clearly demonstrate 

that both BNMO HLSC and LLSC grows in a layered stacking manner along the film out-

of-plane direction. Due to the in-plane film rotation of both BNMO HLSC and LLSC, 

only stripes with bright and dark contrast are observed in the HAADF STEM images from 

the substrate LAO [100] zone axis. It is believed that the in-plane film rotation is related 

to the strain relaxation which is caused by the high misfit of the two sublattices. Since the 

contrast of HAADF STEM images is proportional to Zn (Z is the atomic number.), the 

bright sheets of both BNMO HLSC and LLSC are ascribed to the Bi-O layers (ZBi = 83) 

while the dark layers between the bright slabs arise from Ni-Mn-O atoms (ZNi = 28, ZMn 

= 25). The Bi-based slabs for BNMO HLSC and LLSC consist of two-layer-thick and 

three-layer-thick Bi atoms which are later identified as Bi2Ox and Bi3Ox, respectively, 

while the Ni-Mn-O layers consist of one-layer-thick Ni and Mn atoms. The STEM 

HAADF image in Figure 5.4(a) and (b) reveals a periodicity of ~8.42 Å and ~6.97 Å along 

the out-of-plane direction for BNMO HLSC and LLSC, respectively. The inset high-

resolution HAADF STEM images obtained after tilting the film on the bottom right corner 

of Figure 5.4(a) and (b) clearly demonstrate the Bi atoms at atomic scale with zig-zag 

atom arrangement. The periodic selected area electron diffraction (SAED) pattern of both 
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BNMO HLSC and LLSC (the inset on the top right corner of Figure 5.4(a) and (b)) also 

proves the highly epitaxial growth of the BNMO LSC along the film out-of-plane direction.  

To better understand the microstructure of the two new BNMO LSC, high-

resolution energy-dispersive X-ray spectroscopy (EDS) elemental mapping was also 

performed on both BNMO HLSC and LLSC. The EDS composite color mapping and/or 

mapping for each element as well as the corresponding X-ray intensity profiles acquired 

from a local area along the horizontal axis for HLSC (Figure 5.4(c), (e) and (g)) and LLSC 

(Figure 5.4(d), (f) and (h)) confirms that the bright slabs consist of Bi atoms and the dark 

layers are composed of Ni and Mn for both layered structures. Ni and Mn cations cannot 

be well distinguished from each other by EDS because of their quite similar atomic 

numbers ((ZNi = 28, ZMn = 25)). Both the elemental EDS mapping results as well as the 

X-ray profiles have provided the elemental distribution for the BNMO LSC directly. The 

cation ratio for BNMO HLSC and LLSC is estimated to be Bi/(Ni+Mn) = 1.01:1 and 

1.81:1, respectively. The atomic resolution STEM images in Figure 5.4(c) and (d) 

demonstrate the Ni/Mn atoms on atomic scale which are densely arranged in the same line. 

The high-resolution STEM images in Figure 5.4(c) and (d) and X-ray profiles in Figure 

5.4(g) and (h) have also provided a clear picture of the interface microstructure where a 

thin transition layer is observed between the LAO substrate and the BNMO LSC thin film. 

The thin transition layer can be divided into two interlayers: interlayer 1 and interlayer 2. 

For interlayer 1, it is a perovskite-type structure with one or two unit cells while interlayer 

2 consists of a single layer of Bi atoms. An interesting phenomenon is that the Bi atoms 
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of interlayer 2 are densely stacked on the Bi atoms of interlayer 1 for both HLSC and 

LLSC.  

 

 

Figure 5.4 Microstructural characterization of the two new BNMO LSC. (a) and (b) 

HAADF STEM images of BNMO HLSC and LLSC along LAO [100] zone axis, 

respectively. The insets on the top right corner and bottom right corner in both (a) and (b) 

are the SAED pattern and high-resolution HAADF STEM image on atomic scale, 

respectively. (c) and (d) High-resolution HAADF STEM images of BNMO HLSC and 

LLSC along [100] and [110] zone axis, respectively. (e) and (g) EDS composite color 

mapping and X-ray profiles for Bi, Ni/Mn, La and Al along the horizontal axis for BNMO 

HLSC. (f) EDS mapping of Bi (L+M), Ni/Mn (K), La (K), Al (K), and composite color 

mapping for BNMO LLSC. (h) X-ray profiles for Bi, Ni/Mn, La and Al along the 

horizontal axis for BNMO LLSC. 

 

A phenomenon observed for both BMO and BNMO HLSC and LLSC is that the 

film atoms cannot be resolved from the substrate LAO [100] zone axis because of the in-

plane atom rotation. The in-plane atom rotation is believed to result from the 

incommensurate matching between the Bi-based slabs and Mn-O/Ni-Mn-O layers. The 

large misfit between the two sublayers causes high strain energy which is released by in-

plane atom rotation in order to achieve stable layered stacking of the two sublayers. 
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Despite the in-plane atom rotation, the BMO and BNMO layered supercell structures are 

highly epitaxial along the film out-of-plane direction as proved by the dominant selected 

area electron diffraction pattern (SAED). The BMO and BMO HLSC and LLSC can be 

viewed as epitaxial layered stacking of two sublattices, i.e. lattice 1 of octahedra layer and 

sublattice 2 of Bi-based layer. Here, the BNMO LLSC was taken as an example for a 

detailed structural analysis of the misfit layered supercell structure as shown in Figure 5.5 

and 5.6. In order to obtain crystallographic information of BNMO LLSC, selected area 

electron diffraction tomography (EDT) analysis has been performed on BNMO LLSC. 

Figure 5.5 (a) and (b) shows the selected EDS patterns of sublattice 1 (encircled in green) 

and sublattice 2 (encircled in red). The sublattice 1 exhibits sharp reflections while the 

sublattice 2 is disordered with the presence of diffuse scattering lines along [001]*. Figure 

5(c) presents the reciprocal space of BNMO LLSC which shows the characteristic of the 

so-called misfit layered structure with two sublattices stacked along the c-axis but having 

a lattice mismatch in both in-plane directions. Sublattice 1 can be indexed a hexagonal cell 

with R-centering (hkl: h-k+l=3n) leading to the lattice parameters: a1 = b1  2.51 Å and c1 

 39.0 Å in agreement with the out-of-plane lattice distance measured by XRD (the first 

diffraction peak at 2θ = 6.81o being then indexed 003). Sublattice 2 is only made of diffuse 

scattering lines running along [001]* indicating the presence of stacking faults. Sublattice 

2 can also be indexed in a hexagonal cell with in-plane lattice parameters of a2 = b2  3.42 

Å. To express the relation linking sublattice 1 and sublattice 2, a modulation vector in the 

form q1=a2*+.b2* with = 0.72 and  = 0.85 should be considered.  
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Figure 5.5 Reciprocal space electron diffraction tomography (EDT) investigation of the 

BNMO LLSC. (a) and (b) Selected EDT patterns showing the sublattice 1 (in green) and 

sublattice 2 (in red). The sublattice 1 exhibits sharp reflections while the sublattice 2 is 

disordered with the presence of diffuse scattering lines along [001]*. (c) (hk0)* plane 

reconstructed from the EDT experiment performed by collecting patterns in zone with 

[001]*. Modulation vector q1=a2*+.b2* relating the sublattice 1 to the sublattice 2.  

 

The structure construction could not be performed because of the diffuse scattering 

as presented in the EDT pattern. But the structure of the two sublattices constituting 

BNMO LLSC can be reasonably guessed. For sublattice 1, it is mostly likely that it 

consists of MO6 edge-sharing octahedral layers, [MO2]∞ with M = Ni/Mn, separated by 

13.0 Å based on the previous work.184, 185, 186, 219 For sublattice 2, from the STEM-HAADF 

images (Figure 5.6(a) and (b)), the sublattice 2 contains blocks of three-layer-thick Bi-O, 

i.e. would have as a first guess a composition in the form [Bi3On] assuming this sublattice 
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is only occupied by Bi cations. The misfit layered supercell structure can be written as 

[Bi3On][MO2]x because of the in-plane mismatch between the two sublattices, where x 

represents the in-plane area difference between the two sublattices expressed as 

x=(a2/a1)
2~1.86. Regarding the cations’ content, from EDS analyses the Bi/(Ni+Mn) ratio 

is about 1.81. Regarding oxygen’s content, it is hard to estimate from the existing 

information. If sublattice 2 is only constituted by three Bi-O layers, the chemical formula 

for sublattice can be written as [Bi3O3+] if oxygen vacancy/extra oxygen is considered. 

The above analysis then leads to the chemical formula [Bi3O3+][MO2]1.86 for BNMO 

LLSC, where M = Ni and Mn.  

The above structural analysis by EDT, although not leading to a strict crystal 

structure of BNMO LLSC, has provided people a reasonable view of this kind of misfit 

layered structures. For the BMO and BNMO HLSC, they are composed of [Bi2O2+] slabs 

and Mn-O/Ni-Mn-O octahedra layers while BMO LLSC consists of [Bi3O3+] and Mn-O 

octahedra slabs.  

 

 

Figure 5.6 Structural analysis for BNMO LLSC. (a) High-resolution HAADF-STEM 

image of BNMO LLSC showing the in-plane shifts and out-of-plane mirroring of Bi-based 

slabs. The BNMO LLSC is composed of layered stacking of [Bi3O3+] and [MO2] along 
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the out-of-plane direction. (c) Fourier transform of the larger area STEM-HAADF image 

(b) showing the disorder related to the Bi-based stacking (sublattice 2).  

 

To explore the physical properties of the BMO and BNMO layered sueprcell 

structures, a physical properties measurement system with a vibrating sample 

magnetometer (VSM) option was used to measure the magnetic properties. Figure 5.7(a) 

shows that the in-plane (IP) and out-of-plane (OP) saturation magnetization of BMO 

HLSC at 300 and 1 T is 204 emu/cc and 178 emu/cc, respectively, with a similar coercive 

field of ~230 Oe along both IP and OP directions. For BMO LLSC, the magnetization 

behaviors are quite similar to each other with a saturation magnetization of ~190 emu/cc 

at 300 K and 1 T, and a coercivity of ~210 Oe (Figure 5.7(b)).  
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Figure 5.7 Room-temperature multiferroic properties of the 2D BMO layered supercell 

structures. In-plane (IP) and out-of-plane (OP) magnetization hysteresis (M-H) loops of 

the BMO (a) HLSC and (b) LLSC at 300 K. (c) Phase and (d) amplitude switching curves 

of the BMO HLSC as a function of the tip bias at room temperature.  

 

The temperature-dependent measurement (M-T curves, Figure 5.8) of BMO HLSC 

and LLSC both exhibit strong magnetizations even at 380 K revealing a ferromagnetic 

Curie transition temperature (TC) of at least 380 K. Based on the Kanamori-Goodenough 

rules, the strong magnetizations of both BMO HLSC and LLSC at 300 K may come from 

the superexchange coupling between the Mn3+ cations which form distorted MnO6 

octahedra (see XPS spectrum in Figure 5.9) which align between the Bi-O slabs in a 

straight line. Compared to the previously reported BiMnO3 both in bulk and thin film 
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forms, the magnetic properties of both BMO HLSC and LLSC are much better. The 

ferromagnetic transition temperature for bulk BiMnO3 with monoclinic structure is 105 K 

and for thin film BiMnO3 with pseudocubic structure, it is even lower depending on the 

substrate and growth conditions. The pseudocubic BiMnO3 thin film grown on LAO (001) 

substrate exhibits a low ferromagnetic Curie temperature of 50 K.86 The BMO novel 

layered supercell structures with strong magnetizations at room temperature and much 

higher ferromagnetic transition temperature prevail over the BMO conventional 

pseudocubic phase. With the presence of 6s2 lone pair electrons from the Bi3+ cations, 

ferroelectric ordering is expected to occur in the BMO layered supercell structures. To 

demonstrate the ferroelectric properties, piezoelectric force microscopy (PFM) analysis 

was performed on the BMO HLSC as shown in Figure 5.7(c) and (d). As proved by the 

sharp 180o phase change and amplitude change, obvious ferroelectric domain switch has 

occurred in the BMO HLSC at room temperature.  

 

 

Figure 5.8 Magnetizations of BMO (a) HLSC and (b) LLSC as a function of temperature 

cooled under zero magnetic field (ZFC) and an in-plane magnetic field of 1000 Oe (FC), 

respectively. 
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Figure 5.9 The XPS spectra of (a) and (c) Bi 4f; (b) and (d) Mn 2p3/2 for BMO HLSC and 

LLSC, respectively. 

 

Figure 5.10(a) and (b) shows the magnetization hysteresis loops of the BNMO 

LSC measured at 300 K by applying a magnetic field of 1 T parallel (in-plane, IP) and 

perpendicular (out-of-plane, OP) to the film plane, respectively. Figure 5.10(a) shows that 

the IP and OP magnetizations of BNMO HLSC at 300 K and 1 T are 817 emu/cc and 685 

emu/cc, respectively, with a coercive field of ~253 Oe for both IP and OP directions. The 

magnetizations of BNMO LLSC at 300 K and 1 T are 147 and 80 emu/cc, respectively, 

with a coercivity of ~243 Oe, along the IP and OP directions (Figure 5.10(b)). The 

ferroelectric response of the BNMO LSC is characterized by piezoelectric force 



152 
 

microscope (PFM) taking the BNMO LLSC as an example. As shown in Figure 5.10(c) 

and (d), BNMO LLSC also exhibits sharp 180o phase change as well as amplitude change 

indicating obvious ferroelectric domain switching in BNMO LLSC. The BNMO layered 

supercell structures showing both strong ferromagnetic and ferroelectric responses are 

proved to be desired multiferroic materials with unique 2D layered structures at room 

temperature.  

 

 

Figure 5.10 Room-temperature multiferroic properties of the 2D BNMO LSC. 

Magnetization hysteresis (M-H) loops of the BNMO (a) HLSC and (b) LLSC at 300 K 

along both in-plane (IP) and out-of-plane (OP) directions. (c) Phase and (d) amplitude 

switching curves of the BNMO LLSC as a function of the tip bias at room temperature 

showing the ferroelectric domain switching behavior.  
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The magnetization behaviors of both BNMO HLSC and LLSC at different 

temperatures (300 K, 100 K and 10 K) are quite similar with nearly the same 

magnetization value and coercivity (Figure 5.11 (a) and (c)). The temperature-dependent 

magnetizations of BNMO HLSC and LLSC measured with and without an in-plane 

magnetic field of 1000 Oe applied parallel to the film plane both show high magnetization 

value even at 380 K, indicating that the magnetic transition temperature (TC) of both 

BNMO HLSC and LLSC is above 380 K (Figure 5.11 (b) and (d)). In addition, the BNMO 

LLSC exhibits a sharp magnetization increase at around 100 K, indicating that another 

ferromagnetic ordering has occurred due to the mixed valence states of Ni and Mn cations 

in the BNMO LLSC (see XPS in Figure 5.12(c) and (d)).  
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Figure 5.11 (a) and (c) Temperature-dependent magnetizations of BNMO HLSC and 

LLSC at 10 K, 100 K and 300 K along the in-plane direction, respectively. (b) and (d) 

Magnetizations of BNMO HLSC and LLSC as a function of temperature cooled under 

zero magnetic field (ZFC) and an out-of-plane magnetic field of 1000 Oe (FC), 

respectively.  

 

Both BNMO HLSC and LLSC exhibit highly anisotropic characteristics in the 

magnetic response with strong magnetizations. And in particular, the BNMO HLSC shows 

extraordinarily high magnetizations along both IP (817 emu/cc) and OP (685 emu/cc) 

directions at room temperature. The XPS spectra of BNMO HLSC indicate that the 

valence state for Ni and Mn may be +2 and +4, respectively (Figure 5.12(a) and (b)). The 

extraordinarily strong magnetizations of BNMO HLSC may be a result of 

ferromagnetically coupled Ni2+ (t2g
6, eg

2) having half-filled eg orbitals and Mn4+ (t2g
3, eg

0) 
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having empty eg orbitals based on the Goodenough-Kanamori rules for 180o 

superexchange couplings. Moreover, the Ni2+ and Mn4+ cations might have been 

alternatively ordered between the Bi-based layers along the horizontal direction forming 

Ni2+-O-Mn4+-O-Ni2+-O-Mn4+-O-Ni2+-O-… chains in order to enable the ferromagnetic 

superexchange interactions. The large space between the neighboring Bi-based layers 

(~2.94 Å) may have weakened the structural influence of the Bi 6s2 lone pairs to the 

NiO6/MnO6 octahedra and may have enhanced the ferromagnetic coupling between Ni2+ 

and Mn4+ cations. Compared to the HLSC, the LLSC sample exhibits much lower 

magnetizations despite that it also has a 2D anisotropic layered structure. The reason may 

lie in that both Ni and Mn cations between the Bi-based slabs show mixed valence states 

(Figure 5.12(c) and (d)). From the XPS spectra of BNMO LLSC, the Ni cations may have 

mixed valence states of +2 and +3 while the Mn cations are +3 and +4 mixed. By the 

Goodenough-Kanamori rules, several possible antiferromagnetic routes may exist in 

BNMO LLSC besides the ferromagnetic coupling of Ni2+ (t2g
6, eg

2) and Mn4+ (t2g
3, eg

0) 

such as: (1) Ni2+(t2g
6, eg

2)-Ni2+(t2g
6, eg

2); (2) Ni2+(t2g
6, eg

2)-Mn3+(t2g
3, eg

1); (3) Ni3+(t2g
5, 

eg
2)-Mn3+(t2g

3, eg
1); and (4) Mn3+(t2g

3, eg
1)-Mn3+(t2g

3, eg
1).  
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Figure 5.12 The XPS spectra of (a) and (c) Ni 2p3/2; (b) and (d) Mn 2p3/2 for BNMO HLSC 

and LLSC, respectively.  

 

With different compositions and structures, different physical properties, i.e. 

magnetic response, are expected. Figure 5.13 (a) and (b) summarizes the varied saturation 

magnetizations and coercive fields of the BMO and BNMO layered supercell structures, 

indicating tunable magnetic response by tuning the film composition and structure. In 

particular, a saturation magnetization value of 817 emu/cc for BNMO HLSC along the in-

plane direction shows that the magnetic response can be highly enhanced by incorporating 

Ni cations into the BMO HLSC, substituting part of the Mn cations, forming strong 

ferromagnetic Ni2+-O-Mn4+ ordering. Furthermore, the optical response of the BMO and 
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BNMO films is measured to characterize the tunability of physical properties by varying 

the compositions and structures. Figure 5.13(c) and (d) shows the tunable optical 

transmittance and band of the BMO and BNMO thin films with either layered or 

pseudocubic structures.  

 

 

Figure 5.13 Tunable physical properties of the BMO and BNMO thin films with different 

structures. (a) Saturation magnetization, (b) Coercivity, (c) Transmittance, and (d) Band 

gaps.  

 

The growth of BMO and BNMO HLSC and LLSC can be viewed as the alternated 

stacking of two sublattices of Bi2Ox/Bi3Ox slabs and MnO6/NiO6 and MnO6 octahedra 

layers epitaxially along the out-of-plane direction. Because of the difference in lattice 
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parameters, the two sublattices are misfit (incommensurate) along the in-plane direction. 

It is proposed here that the in-plane lattice mismatch between the two sublattices leads to 

high strain energy and in-plane atom rotation of the films occurs to alleviate the high 

energy state to achieve the stable 2D layered structures. To demonstrate the growth 

process of the BMO and BNMO layered structures formed by layer stacking, BNMO 

HLSC is taken as an example here to illustrate the growth mechanism. First, lattice match 

may play an important role in facilitating the growth of Bi-based layered structures. As 

shown by the high-resolution STEM image, the in-plane Bi-Bi distance (~3.96 Å) in the 

first initial unit cell with Bi(Ni/Mn)Ox perovskite structure (interlayer 1) can well match 

with that of La-La distance (3.79 Å) of the LaAlO3 substrate which is indispensable for 

epitaxial thin film growth. Following the growth of interlayer 1, interlayer 2 with one layer 

of Bi atoms is stacked on interlayer 1. Notably, the Bi atoms of interlayer 2 directly stack 

onto the Bi atom interstitial of interlayer 1 with tight Bi-Bi bonding and Bi atoms’ zig-zag 

arrangement formed. By comparing the structural difference of the BNMO layered 

structures and pseudocubic phase, it is believed that the formation of the zig-zagged Bi-

Bi arrays with tight Bi-Bi bonding in the BNMO layered structures is critical in achieving 

the following alternated stacking of Bi-based slabs and Ni-Mn-O octahedra layers. The 

interlayer 2 with zig-zagged Bi arrangement might have served as both “interruption layer” 

(interrupt the cube-on-cube growth of the pseudocubic phase) and “seed layer” (a template 

for the growth of the layered structure). The formation of interlayer 2 might be achieved 

only under appropriate growth thermodynamics and kinetics which is controlled by the 

deposition parameters such as substrate temperature and partial oxygen pressure. From the 
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comparison study of BNMO HLSC and LLSC, it is found that the growth of the Bi-based 

layered structures is very sensitive to the substrate temperature which significantly 

influences the diffusion kinetics of the adatoms and structures of the films. The Bi atoms 

have faster diffusion kinetics at higher temperature and only Bi-based slabs with two-

layer-thick of Bi atoms can be structurally stable under the certain thermodynamics at 

higher temperature. At low temperatures, the Bi atoms have lower diffusion rate and Bi-

based slabs with three-layer-thick Bi atoms can be thermodynamically stable. Thirdly, to 

create Bi-based layered structures the ionic radius of the two cations lying between the Bi-

based slabs should be close to each other in order to enable the formation of octahedron 

layers. The approach for creating BNMO layered structures and the design rules proposed 

above are likely to be extendable to a wide range of Bi-based double-perovskite systems 

with significant composition flexibility allowing the realization of other novel 2D layered 

structures with potential applications as multiferroic memory, thermoelectric materials, 

etc.  

 

5.5 Conclusion 

To conclude, novel Bi-based layered supercell structures of BMO and BNMO 

HLSC and LLSC have been fabricated by one-step self-assembled growth from single-

perovskite BiMnO3 and double-perovskite Bi2NiMnO6, respectively. Microstructural 

characterizations show that the layered supercell structures grow epitaxially along the out-

of-plane direction by alternative layered stacking of Bi2Ox/Bi3Ox slabs and Mn-O/Ni-Mn-

O octahedra layers. Robust multiferroic properties have been demonstrated for the novel 
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layered supercell structures at room temperature. The creation of the new BMO and 

BNMO layered supercell structures has provided people very important clues of designing 

new 2D layered structures and will stimulate further exploration of new single-phase 

multiferroic materials.  
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CHAPTER VI  

SELF-ASSEMBLED LAYERED SUPERCELL STRUCTURE OF BI2ALMNO6 

WITH STRONG ROOM-TEMPERATURE MULTIFERROIC PROPERTIES 

 

6.1 Overview 

Room-temperature (RT) multiferroics, possessing ferroelectricity and 

ferromagnetism simultaneously at RT, hold great promise in miniaturized devices 

including sensors, actuators, transducers, and multi-state memories. In this work, we 

report a novel 2D layered RT multiferroic system with self-assembled layered supercell 

structure consisting of two mismatch-layered sub-lattices of [Bi3O3+] and [MO2]1.84 

(M=Al/Mn, simply named as BAMO), i.e., alternative layered stacking of two mutually 

incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick 

Al/Mn-O octahedra slab along the out-of-plane direction. Strong room-temperature 

multiferroic responses, e.g., ferromagnetic and ferroelectric properties, have been 

demonstrated and attributed to the highly anisotropic 2D nature of the non-ferromagnetic 

and ferromagnetic sublattices which are highly mismatched. The work demonstrates an 

alternative design approach for new 2D layered oxide materials that hold promises as 

single-phase multiferroics, 2D oxides with tunable bandgaps, and beyond.  

 

6.2 Introduction 

Complex oxides have drawn extensive research interest motivated by their 

fascinating physical properties as well as their enormous potentials for technological 
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applications. Up to date, ferroelectricity,244 piezoelectricity,245 single-phase 

multiferroicity,7, 74 magnetoresistance,40, 246, 247 high-temperature superconductivity,248, 249, 

250 and many other intriguing phenomena have been discovered in complex oxides. 

Multiferroics, in particular, room-temperature (RT) multiferroics, possessing ferroelectric 

and ferromagnetic ordering simultaneously in a single phase, have received significant 

attention owing to their potential applications in data storage, spin valves, and tunnel 

magnetoresistance sensors. However, single-phase multiferroics are scarce because of the 

drastically different orbital requirements for ferroelectricity (requiring empty d-orbital) 

and ferromagnetism (coming from partially filled d-orbitals).44  

Combining two cations possessing ferroelectric and ferromagnetic ordering 

respectively into one phase is one of the effective routes towards creating single-phase 

multiferroic materials. BiFeO3, a well-known Bi-based room-temperature multiferroic 

material with perovskite structure, is one such multiferroic material with its ferroelectricity 

coming from the Bi3+ 6s2 lone-pair electrons and (anti)ferromagnetism from the Fe3+ 

cation.7, 47 Bi-based double-perovskites (Bi2BB’O6, B and B’ are transition metal cations), 

e.g., Bi2FeMnO6 and Bi2NiMnO6,
184, 185, 219 are also widely studied in the exploration of 

single-phase multiferroic materials because of their long-range ferro/ferri-magnetically 

ordered B and B’ cations as well as the desired ferroelectricity from the lone-pair electrons. 

Despite the prior success of Bi-based multiferroic materials which all have conventional 

pseudocubic phases, the antiferromagnetic nature and/or relatively weak room-

temperature magnetism have limited their practical applications. Based on these findings, 

Bi-based perovskites with the Bi 6s2 lone-pair electrons giving rise to ferroelectricity and 
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magnetic cations in one phase provide a very important clue for designing new 

multiferroic materials. 

Layered complex oxides with commensurate or incommensurate sublayered 

structures present new functionalities such as thermoelectric properties, multiferroics, and 

ionic conductors.165, 251 Taking advantages of recent advances in high-quality thin film 

growth techniques, new oxide layered structures have been demonstrated by artificially 

controlling the stacking sequence of layers precisely via molecular beam epitaxy.252 In 

parallel, self-assembled layered oxide growth represents another powerful approach for 

creating new layered material structures with desired physical properties.184 For example, 

starting from a target with the composition of Bi2FeMnO6 using pulsed laser deposition 

(PLD), one can selectively grow either a conventional double perovskite structure with 

poor multiferroic properties or a self-assembled layered supercell structure 

Bi3Fe2Mn2O10+δ (BFMO) with room-temperature multiferroic properties.184, 185, 219 In this 

work, we demonstrate a new class of self-assembled layered supercell (LSC) oxide 

structures with a non-magnetic B site cation. Such LSC structures were deposited from a 

Bi2AlMnO6 (BAMO) target via PLD with well controlled deposition parameters. The 

BAMO LSC can be fabricated on various substrates and buffer layers (e.g., SrTiO3 (001), 

LaAlO3 (001), CeO2 (001) buffer, and La0.7Sr0.3MnO3 (001) buffer). With a non-magnetic 

B site cation (in this case, Al), the new LSC system exhibits robust ferromagnetic and 

piezoelectric response at room temperature. This demonstrates the potential of fabricating 

new Bi-based LSC oxides with room-temperature multiferroicity beyond the limited 
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ferro/ferri-magnetic B or B’ cations and may provide a facile route to the fabrication of 

many other new layered structures.  

 

6.3 Experimental  

Sample preparation. Pulsed laser deposition (PLD, Lambda Physik, KrF, λ = 248 

nm) was employed to fabricate the high-quality epitaxial BAMO layered thin films on 

both single-crystal LaAlO3 (001) and SrTiO3 (001) substrates from the Bi2AlMnO6 target. 

To prepare the Bi2AlMnO6 target, stoichiometric ratio of Bi2O3, Al2O3, and MnO2 

powders were mixed, pressed into a pellet, and sintered at 750 oC for 3 hours in air. The 

substrate temperature ranged from 400 to 700 oC and a dynamic oxygen pressure of 

20~200 mTorr was maintained during depositions. The buffer layer La0.7Sr0.3MnO3 

(LSMO) and CeO2 was deposited at 750 oC and 700 oC, respectively, in 200 mTorr of 

oxygen. After deposition, the films were in-situ annealed at 400 oC for 1 hour in 500 Torr 

of oxygen before cooling down to room temperature.  

XRD, TEM, STEM HAADF and ABF imaging, AFM imaging, EDS, and XPS. 

The microstructures of the fabricated BAMO samples were characterized by high-

resolution X-ray diffraction (HRXRD, PANalytical Empyrean), transmission electron 

microscopy (TEM, FEI Tecnai G2 F20), high resolution scanning transmission electron 

microscopy (HRSTEM), and atomic force microscopy (AFM). The HRSTEM images 

both in high angle annular dark-field (HAADF) mode and annular bright-field (ABF) 

mode were obtained using a FEI Titan G2 80-200 STEM with a Cs probe corrector 

operated at 200 kV and a modified FEI Titan STEM TEAM 0.5 with a convergence semi-
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angle of 17 mrad operating at 200 kV, respectively. For high-resolution energy-dispersive 

X-ray spectroscopy (EDS) profiling, a FEI TitanTM G2 80-200 STEM with a Cs probe 

corrector and ChemiSTEMTM technology (X-FEGTM and SuperXTM EDS with four 

windowless Si drift detectors) operated at 200 kV was used. To obtain the surface 

topography image, a Bruker Dimension Icon AFM with high resolution (Z < 0.1 nm, XY 

< 1 nm) was used to scan the surface of the sample with an area of 5 m  5 m. The film 

composition was analyzed by EDS in a JEOL JSM-7500F scanning electron microscope. 

X-ray photoelectron spectroscopy (XPS) measurement was done by an Omicron XPS 

system with Argus detector using Omicron’s DAR 400 X-ray source.  

Precession electron diffraction tomography (PEDT). Precession electron 

diffraction (PED) patterns were obtained using a JEOL 2010 (200 kV) transmission 

electron microscope (TEM) equipped with a side-mounted Gatan Orius CCD camera and 

a Nanomegas Digistar PED unit. The data collection was performed on a cross-sectional 

sample prepared from a ~100 nm film using the tomography approach.193 In such a case, 

the rotation axis is mostly limited to the out-of-plane direction to avoid shadowing the 

film by the substrate. 88 PED patterns were recorded in the tilt range from -44.5 to +34.8 

degrees with a precession angle of 1.2 degree. The data were processed using the programs 

PETS194 and Jana2006195.  

Magnetic and electrical property measurement. To measure the magnetic 

properties, a commercial Physical Properties Measurement System (Quantum Design, 

PPMS 6000) with vibrating sample magnetometer (VSM) option was employed. The out-

of-plane and in-plane magnetizations were measured by applying a magnetic field of 1 T 



166 
 

perpendicular and parallel to the film plane, respectively. For the field-cooling (FC)/zero-

field cooling (ZFC) measurements, the samples were cooled down from 380 K to 10 K 

with/without a magnetic field, respectively, and the magnetizations were recorded during 

the heating cycle from 10 K to 380 K. For electrical property measurements, 30 nm thick 

La0.7Sr0.3MnO3 (LSMO) was firstly deposited on STO substrate at 750 oC under 200 

mTorr of oxygen before depositing the BAMO thin film. The piezoelectric properties were 

measured at ambient conditions with a conductive Pt-Ir coated Si tip (model: SCM-PIT) 

via a Bruker Dimension Icon AFM with high resolution (Z < 0.1 nm, XY < 1 nm).  

 

6.4 Results and discussion 

X-ray diffraction (XRD) was first conducted to investigate the BAMO thin films 

grown on both STO (001) and LAO (001) substrates. As shown in Figure 6.1(a) and (b), 

a set of dominant (00l)-type diffractions exist besides the peaks from the substrates in the 

θ-2θ scans, indicating that the new BAMO thin film grows along the out-of-plane direction 

in a highly textured manner on both STO (001) and LAO (001) substrates. This single set 

of thin film diffraction peaks (2θ = 6.73o, 13.40o, 20.10o, 27.00o, 33.90o, 40.93o,…, 

corresponding to the out-of-plane d-spacing of 13.13 Å, 6.60 Å, 4.41 Å, 3.30 Å, 2.64 Å, 

2.20 Å,…, respectively) with a large out-of-plane d-spacing do not fit the diffraction 

patterns of any known crystalline materials in the database, suggesting the formation of a 

new crystalline structure. More interestingly, this new BAMO thin film can also grow on 

La0.7Sr0.3MnO3 (LSMO) and CeO2 buffered STO (001) substrates, respectively, as shown 
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in Figure 6.1(c) and (d), indicating that the new BAMO thin film could be integrated on 

other substrates with proper buffer layers.  

 

 

Figure 6.1 XRD patterns of the self-assembled BAMO layered supercell structure. θ-2θ 

scans of BAMO layered thin films fabricated on LAO (a), STO (b), LSMO-buffered STO 

(c), and CeO2-buffered STO (d) substrates, respectively. 

 

Aberration-corrected scanning transmission electron microscopy (STEM) coupled 

with energy-dispersive X-ray spectroscopy (EDS) and high-resolution atomic force 

microscopy (AFM) were adopted to further investigate the microstructure of the BAMO 

LSC as shown in Figure 2. High-resolution STEM images taken in high-angle annular 

dark-field (HAADF) mode along the substrate [100] zone axis in Figures 6.2(a) and Figure 
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6.3 clearly demonstrate the layered stacking growth of BAMO LSC along the out-of-plane 

direction both on STO (001) and LAO (001) substrates.  

 

 

Figure 6.2 Microstructural charaterization of the BAMO layered supercell structure. (a) 

STEM HAADF image of BAMO LSC along the STO [100] zone axis. The inset shows 

the SAED pattern. (b-c) High-resolution STEM HAADF (b) and ABF (c) images showing 

the layered oxide supercell with a three-atom-thick Bi-based slab and one single Al/Mn 

based layer. (d) EDS profile showing Bi, Al and Mn along the [001] direction. (e) AFM 

surface topography image indicating the high surface quality of the BAMO LSC. 

 

The satellite diffraction dots in the selected area electron diffraction (SAED) 

pattern taken along the [100] zone axis (the inset at the top right corner of Figure 6.2(a)) 

again confirm the large out-of-plane d-spacing and the highly epitaxial nature of BAMO 

LSC on both substrates. In the STEM HAADF mode, the image intensity is proportional 

to the Zn (Z is the atomic number and 1.5  n  2). The bright layers of the BAMO LSC 

are ascribed as Bi-based slabs (ZBi = 83) while the dark layers in-between contains Al and 

Mn (ZAl = 13, ZMn = 25). Because of the minor in-plane rotation between the film and the 

substrate, and, the limited probe resolution, only the layers of Bi-based slabs can be 

resolved along the STO [100] zone axis. By tilting the BAMO LSC film slightly off from 
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the substrate [100] zone axis under both HAADF and ABF modes, atomic columns of Bi 

can be resolved where each bright/dark sheet consists of three layers of Bi columns(and 

also oxygen columns but oxygen columns are not resolvable in the STEM images). The 

composition of BAMO LSC is also identified by high-resolution EDS profile along the 

film out-of-plane direction (Figure 6.2(d)) which shows the presence of Al and Mn 

between the Bi-based slabs. The EDS composition analysis reveals that the cation atomic 

ratio in the BAMO LSC is Bi/Al+Mn = 1.64:1 (see Table 6.1). Both the STEM HAADF 

and ABF images reveal a periodicity of ~13.2 Å along the film out-of-plane direction 

(Figure 6.2(b) and (c)) in agreement with the d-spacing measured by XRD. The AFM 

topography image acquired from an area of 5 m  5 m reveals a surface roughness of 

0.76 nm showing high surface quality of the BAMO LSC (Figure 6.2(e)).  

 

 

Figure 6.3 (a) STEM HAADF image of BAMO LSC along the LAO [100] zone axis. (b) 

Selected area electron diffraction pattern of the BAMO LSC grown on LAO (100) 

substrate. 
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Table 6.1 Cation ratio in the BAMO LSC with the STO substrate ratio as a reference. 
 

Spectrum 

Bi-Al-Mn-O Film SrTiO3 Substrate 

Bi Al Mn Bi/Al 

(atom %) 

Bi/Mn 

(atom %) 

Bi/Al+Mn 

(atom %) 

Sr Ti Sr/Ti 

(atom %) 

1 2.93 0.99 0.85 2.9596 3.44706 1.59239 15.46 15.61 0.99039 

2 2.97 0.97 0.86 3.06186 3.45349 1.62295 15.53 15.77 0.98478 

3 3.05 1.06 0.88 2.87736 3.46591 1.57216 15.9 15.9 1 

4 2.95 0.96 0.84 3.07292 3.5119 1.63889 15.68 15.77 0.99429 

5 2.96 0.99 0.77 2.9899 3.84416 1.68182 15.54 15.61 0.99552 

6 2.99 1.07 0.85 2.79439 3.51765 1.55729 16 16.07 0.99564 

7 2.95 1.02 0.82 2.89216 3.59756 1.60326 15.71 15.8 0.9943 

8 2.97 0.9 0.88 3.3 3.375 1.66854 15.77 16.1 0.9795 

9 2.98 0.95 0.82 3.13684 3.63415 1.68362 15.71 15.94 0.98557 

10 2.9 0.95 0.8 3.05263 3.625 1.65714 15.57 15.67 0.99362 

11 2.97 0.93 0.87 3.19355 3.41379 1.65 15.91 16.17 0.98392 

12 2.77 0.98 0.84 2.82653 3.29762 1.52198 14.79 14.97 0.98798 

13 2.89 0.97 0.79 2.97938 3.65823 1.64205 15.6 15.7 0.99363 

14 2.94 0.88 0.83 3.34091 3.54217 1.7193 15.83 15.96 0.99185 

15 2.98 1.01 0.79 2.9505 3.77215 1.65556 15.73 15.87 0.99118 

16 2.96 0.98 0.88 3.02041 3.36364 1.5914 15.94 16.19 0.98456 

17 2.95 1.01 0.84 2.92079 3.5119 1.59459 15.72 15.88 0.98992 

18 2.98 0.92 0.82 3.23913 3.63415 1.71264 15.95 16.01 0.99625 

18 2.93 0.92 0.76 3.18478 3.85526 1.74405 15.69 15.87 0.98866 

20 3.01 0.97 0.74 3.10309 4.06757 1.76023 15.92 16.2 0.98272 

Average Film 3.0448365 3.579418 1.643493 Substrate 0.990214 
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The crystal structure of the new BAMO LSC has been investigated further by 

precession electron diffraction tomography (PEDT) in order to obtain crystallographic 

information from an area corresponding to the entire film thickness. From PEDT (Figure 

6.4(a)) the reciprocal space of BAMO LSC presents the characteristic of a so-called misfit 

layered structure with two sublattices stacked along a common direction (c-axis) but 

having a lattice mismatch in both in-plane directions. One sublattice (further denoted 1) 

exhibits sharp reflections as can be evidenced in the PEDT patterns presented in Figure 

6.4(c) (encircled in green) and in the (h0l)* section of the reciprocal space reconstructed 

from PEDT data (Figure 6.4(d)). Sublattice 1 can be indexed considering a hexagonal cell 

with a R-centering (hkl: h-k+l=3n) leading to the lattice parameters: a1 = b1  2.92 Å and 

c1  39.4 Å in agreement with the out-of-plane lattice distance measured by XRD (the first 

diffraction peak at 2θ = 6.73o being then indexed 003). The second sublattice (further 

sublattice 2) is only made of diffuse scattering lines running along [001]* (see PEDT 

patterns encircled in red in Figure 6.4(c)) indicating the presence of stacking faults. 

Sublattice 2 (in red in Figure 6.4) can also be indexed in a hexagonal cell with in-plane 

lattice parameters: a2 = b2  3.96 Å. The out-of-plane lattice parameter and the possible 

conditions limiting the reflections cannot be obtained due to the presence of diffuse 

scattering. Notice that the [100]* direction of sublattice 2 is almost aligned with the [110]* 

direction of the sublattice 1 (Figure 6.4(a)). The misfit layered supercell structure adopted 

by BAMO is further attested by the presence of rows of satellites reflections originating 

from the interactions between the two sublattices. They are clearly visible in the (h0l)* 

section of Figure 6.4(d).  
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Figure 6.4 Reciprocal space PEDT investigation of the BAMO layered supercell structure. 

(a) (hk0)* plane reconstructed from the PEDT experiment performed by collecting 

patterns in zone with [001]*. (b) Modulation vector q1=a2*+.b2* relating the 

sublattice 1 to the sublattice 2. (c) Selected PEDT patterns showing the sublattices 1 (in 

green) and 2 (in red). The sublattice 1 exhibits sharp reflections while the sublattice 2 is 

disordered with the presence of diffuse scattering lines along [001]*. (d) (h0l)* reciprocal 

space section reconstructed for the sublattice 1 where the R-centering is evidenced. In this 

section, the sublattice 2 (in red) is almost not visible but the satellites reflections/diffuse 

lines (black arrows) are strong. 

 

Despite the fact that the perfect structure solution could not be achieved due to the 

diffuse scattering present in the PEDT patterns, the information obtained from PEDT on 

the two sublattices’ parameters provides precious hints on the overall crystal structure. 

First, the PEDT results clearly suggest the incommensurate nature between two sublattices, 

i.e., the Bi-O slabs and the Al/Mn-O slabs. More specifically, to express the relation 

linking the sublattice 1 to the sublattice 2 (Figure 6.4(b)), one shall consider a modulation 

vector in the form q1=a2*+.b2* with ≠. Assuming a R lattice centering for both 

sublattices, this actually leads to a limited number of possible super-space groups (SSG) 

with the necessity to consider a (3+2)-d incommensurately modulated structure. Hence, 

after examination of the Stokes tables,253 the selected SSG is R3(,,0)(--,,0)0 with a 
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second modulation vector in the form q2=(--a2*+.b2*. Second, based on the PEDT 

and high-resolution STEM analysis above, the specific structure of the two sublattices 

constituting the BAMO LSC can be reasonably deduced. For sublattice 1, it is most likely 

that the in-plane parameter of 2.92 Å signs the presence of MO2 layers similar to that 

observed in LiCoO2 (R-3m, a ~ 2.82 Å and c ~ 14.05 Å).254 This structure can be used as 

a starting point to build a model for sublattice 1 (Figure 5) that would consist of MO6 

edge-sharing octahedral layers, [MO2]∞ with M = Al/Mn, separated by 13.1 Å. For 

sublattice 2, with in-plane parameters of 3.96 Å, it could be related to the Bi-Bi distances 

found in many Bi-based layered oxides such as Aurivillius phases. From the STEM-

HAADF images (Figure 6.2), sublattice 2 contains blocks of three-layer-thick Bi-O, i.e. 

would have a composition in the form [Bi3On] assuming this sublattice is only occupied 

by Bi cations. In Figure 6.5(a), using the R3(,,0)(--,,0)0 SSG with c2 = c1 = 

39.4 Å (see Table 6.2 in supplementary information), the bismuth stacking is modeled so 

that bismuth atoms face each other in two consecutive three-layer-thick Bi-based slabs. In 

Figure 6.5(b), using the same SSG with c1 = 39.4 Å and c2 = 78.8 Å (see Table 6.3 in 

supplementary information), it is possible to construct another stacking type where 

bismuth atoms do not face each other in two consecutive three-layer-thick Bi-based slabs. 

These two models are equivalent for the [MO2]∞ layers (sublattice 1) but differ for the 

three-layer-thick Bi-based slabs. Locally both configurations are found explaining the 

presence of diffuse lines affecting only sublattice 2 (Figure 6.5(c)).  
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Figure 6.5 Structural models for the BAMO layered system. Details of a STEM-HAADF 

[100]STO/[100]sublattice2 image showing two consecutive blocks of the three-layer-thick Bi-

based subsystem. In (a) Bi atoms face each other from one block to the other. This situation 

is well reproduced with our first model (c2 = 39.4 Å). In (b) Bi atoms are shifted by 1/3 

along b. This situation is well reproduced with our second model (c2 = 78.8 Å). Along this 

[100]STO direction, the [MO2] layers (sublattice 1), represented in green, does not project 

along a direction permitting to resolve the M-M distances. (c) Fourier transform of the 

larger area STEM-HAADF image showing the disorder related to the Bi-based stacking 

(sublattice 2).  

 

Table 6.2 Positional parameters of the misfit layered BAMO structure (model 1). 

Sublattice 2: [Bi3O3] 

Cell parameters: a2=b2=3.96 Å, c2=39.4 Å   α=β=90°, γ=120° 

Wave vectors: q1=0.7a*+0.87b*           q2=-1.57a*+0.7b* 

SSG: R3(σ1,σ2,0)0(-σ1-σ2, σ1,0)0   

atom occupancy x y z 

Bi1 1 0 0 0 

Bi2 1 0.6667 0.3333 -0.08 
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Table 6.2 Continued.  

atom occupancy x y z 

Bi3 1 0.3333 0.6667 0.08 

O1 1 0.6667 0.3333 0 

O2 1 0 0 0.0586 

O3 1 0 0 -0.0586 

 

Sublattice 1: [(Mn/Al)O2] 

Cell parameters: a1=b1=2.907 Å, c1=39.4 Å   α=β=90°, γ=120°  

Wave vectors: q1=-0.377a*-0.469b*         q2=-0.846a*+0.377b* 

SSG: X3(σ1,σ2,0)0(σ1+σ2, -σ1,0)0 with X=(0;0;1/3;2/3;1/3) (0;0;2/3;1/3;2/3)  

atom occupancy x y z 

(Mn/Al)1 1 0 0 0.1667 

O4 1 0.6667 0.3333 0.1944 

O5 1 0.3333 0.6667 0.1389 

 

W2 is a permutation matrix255 which interchanges in five-dimensional space the 

coordinate axes (x1 and x2) and (x4 and x5) and then leads to the relationship between the 

cell parameters of the sublattice 2 and sublattice 1:  

𝑊2 = 

(

 
 

0 0 0
0 0 0
0 0 1

    
1̅ 0
0 1
0 0

1 0 0
0 1 0

    
0 0
0 0)
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Table 6.3 Positional parameters of the misfit layered BAMO structure (model 2). 

Sublattice 2: [Bi3O3] 

Cell parameters: a2=b2=3.96 Å, c2=78.8 Å   α=β=90°, γ=120° 

Wave vectors: q1=0.7a*+0.87b*           q2=-1.57a*+0.7b* 

SSG: R3(σ1,σ2,0)0(-σ1-σ2, σ1,0)0   

atom occupancy x y z 

Bi1_1 1 0 0 0 

Bi1_2 1 0 0 0.5 

Bi2_1 1 0.6667 0.3333 -0.04 

Bi2_2 1 0.6667 0.3333 0.46 

Bi3_1 1 0.3333 0.6667 0.04 

Bi3_2 1 0.3333 0.6667 0.54 

O1_1 1 0.6667 0.3333 0 

O1_2 1 0.6667 0.3333 0.5 

O2_1 1 0 0 0.0293 

O2_2 1 0 0 0.5293 

O3_1 1 0 0 -0.0293 

O3_2 1 0 0 0.4707 
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Table 6.3 Continued.  

Sublattice 1: [(Mn/Al)O2] 

Cell parameters: a1=b1=2.907 Å, c1=39.4 Å   α=β=90°, γ=120° 

Wave vectors: q1=-0.377a*-0.469b*         q2=-0.846a*+0.377b* 

SSG: X3(σ1,σ2,0)0(σ1+σ2, -σ1,0)0 with X=(0;0;2/3;2/3;1/3) (0;0;1/3;1/3;2/3) 

atom occupancy x y z 

(Mn/Al)1 1 0 0 0.1667 

O4 1 0.6667 0.3333 0.1944 

O5 1 0.3333 0.6667 0.1389 

 

𝑊2 = 

(

 
 

0 0 0
0 0 0
0 0 2

    
1̅ 0
0 1
0 0

1 0 0
0 1 0

    
0 0
0 0)

 
 

 

 

Figure 6.6 and 6.7 presents the crystal structure model 1 and model 2, respectively, 

which provide a base structure of the BAMO layered structure with the two sublattices 

stacked alternatively along the c axis. 
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Figure 6.6 Crystal structure model 1 for BAMO misfit layered structure. In this model, Bi 

atoms face each other from one block to the other. 
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Figure 6.7 Crystal structure model 2 for BAMO misfit layered structure. Bi atoms are 

shifted by 1/3 along b from one block to the other. 

 

Because of the in-plane mismatch (i.e., incommensurate nature) between the two 

sublattices, the misfit layered supercell structure can be written as [Bi3On][MO2]x, where 

x represents the in-plane area difference between the two sublattices expressed as 
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x=(a2/a1)
2~1.84. Regarding the cations’ content, from EDS analyses the Bi/(Al+Mn) ratio 

is about 1.64 (see Table 6.1) in agreement with the Bi/M ratio of 1.63 expected from our 

models. Regarding oxygen content, considering formal valences of +3 for all cations (see 

XPS spectra in Figure 6.8), one can estimate that the oxygen content of sublattice 2 is 

close to O3.58, i.e. sublattice 2 cannot only be constituted by three Bi-O layers but extra 

oxygen atoms need to be incorporated leading to the proposed chemical formula 

[Bi3O3+][MO2]1.84.  
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Figure 6.8 The XPS spectra of (a) Bi 4f, (b) Al 2p, and (c) Mn 2p3/2 for the BAMO LSC. 
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The growth mechanism for the new Bi-based 2D layered supercell structure 

created from BAMO, though still under investigation, leads to the stabilization of a 2D 

composite structure256 resembling the misfit layered cobalt oxides.257 While possessing an 

equivalent [MO2] sublattice, the second three-atom-thick Bi-based sublattice shall differ, 

notably, by its oxygen content. In addition the BAMO LSC is described in a trigonal 

crystal system with a lattice mismatch existing in both in-plane directions. With the 

creation of the new BAMO thin film having such an anisotropic LSC structure, one would 

expect highly anisotropic physical properties. The room-temperature multiferroic 

response of the 2D BAMO LSC was measured by the vibrating sample magnetometer 

(VSM) option in a physical property measurement system for ferromagnetic properties 

and piezoelectric force microscope (PFM) for ferroelectric response. The saturated in-

plane (IP) and out-of-plane (OP) magnetizations under 1 T magnetic field were measured 

to be ~250 emu/cc and ~170 emu/cc at 300 K, demonstrating strong room-temperature 

magnetization and highly anisotropic magnetic properties (Figure 6.9(a)). The coercive 

field both along the IP and OP directions is determined to be ~237 Oe. The field-dependent 

magnetization measurement of the BAMO LSC shows quite similar magnetization 

behaviors at 10 K, 100 K, and 300 K, indicating a much higher Curie transition 

temperature than 300 K (Figure 6.9(b)).  
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Figure 6.9 Room-temperature multiferroic properties of the 2D BAMO LSC. (a) In-plane 

(IP) and out-of-plane (OP) magnetization hysteresis (M-H) loops of the BAMO LSC at 

300 K. (b) Temperature-dependent magnetizations of the BAMO LSC at 10 K, 100 K and 

300 K along the in-plane direction. (c) Phase and (d) amplitude switching curves of the 

BAMO LSC as a function of the tip bias at room temperature. PFM OP (e) phase and (f) 

amplitude images of the BAMO LSC after +6 V writing over an area of 0.8  0.8 m2 

followed by a 0.4  0.4 m2 central area rewriting with the tip biased at -6 V, respectively.  
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The temperature-dependent measurement (M-T curves, Figure 6.10) also shows 

strong magnetizations even at 380 K revealing a ferromagnetic Curie transition 

temperature (TC) of at least 380 K which is consistent with the field-dependent 

magnetization measurement results at different temperatures. The magnetization property 

of the unique BAMO LSC is much better than that of the conventional pseudocubic 

Bi2FeMnO6 phase110, 184 with the saturation magnetization value ranging from ~0.8 emu/cc 

to 90 emu/cc (at 300 K and H = 3 to 10 kOe) and of the pseudocubic BiMnO3 phase86, 98 

with a low Curie transition temperature (105 K for bulk BiMnO3 and 50 K for BiMnO3 

thin film grown on LAO (001)). Compared to the reported Bi2FeMnO6 and BiMnO3 with 

pseudocubic structure, the much stronger magnetizations and higher Curie temperature of 

BAMO LSC indicate the obvious advantages of the anisotropic and unique 2D misfit 

layered structure of BAMO over the conventional pseudocubic ones.  
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Figure 6.10 Magnetizations of BAMO LSC as a function of temperature cooled under zero 

magnetic field (ZFC) and an out-of-plane magnetic field of 1000 Oe (FC), respectively. 

 

To gain more understanding of the magnetic properties of the BAMO LSC, X-ray 

photoelectron spectroscopy (XPS) measurement was performed on the BAMO LSC 

(Figure 6.8) and suggests that the main valence state of both Al and Mn cations may be 

+3.219 Another fact noteworthy is that the in-plane saturation magnetization value of the 

BAMO LSC (~250 emu/cc) is more than twice of that of the previously reported BFMO 

based layered supercell structure deposited on LAO (001) substrate (~110 emu/cc).184 The 

much stronger magnetization of the BAMO LSC may be due to the fact that the net 

magnetic moment from Mn3+ in BAMO LSC is not compensated by the nonmagnetic Al3+ 



186 
 

cations. For the case of BFMO based layered supercell structure, the interaction between 

the cations of Fe3+ and Mn3+ is complicated and the net magnetic moment came from the 

interplay between Fe3+ and Mn3+ in the Fe/Mn-O slab. Furthermore, for Bi-based materials, 

the Bi3+ with the electronic configuration of [Xe]4f145d106s26p0 forms strong covalent 

bonds with the surrounding oxygen anion, which shifts away the 6s2 lone pairs from the 

centrosymmetric position because of the Coulombian electrostatic repulsion. A localized 

lobe-like distribution of the lone pair electrons forms an electric dipole, breaking the 

spatial inversion symmetry and becoming the driving force for the ferroelectric structural 

distortion in Bi-based multiferroic materials.258 While requiring further investigations, the 

structural models presented above are non-centrosymmetric and compatible with the 

presence of ferroelectricity. To explore the ferroelectric properties of the BAMO LSC, 

PFM measurement was performed on the BAMO sample grown on La0.7Sr0.3MnO3 

(LSMO) buffer layer. Figure 6.9(c) and (d) shows the phase and amplitude switching 

curves of the BAMO LSC, respectively. The sharp 180o phase change and amplitude 

change indicate the obvious ferroelectric domain switching in BAMO LSC. Figure 6.9(e) 

and (f) demonstrates the out-of-plane phase and amplitude switching, respectively. The 

square box domain pattern was written by scanning the PFM tip with +6 V bias over an 

area of 0.8  0.8 m2 followed by a 0.4  0.4 m2 central area scan with the tip biased at 

-6 V. The distinct image contrast clearly shows the domain switching indicating the 

ferroelectric nature of the BAMO LSC. In addition, the transmission spectrum of BAMO 

LSC was also measured and a band gap value of ~2.83 eV is determined by the Tauc 

method (Figure 6.11). The band gap value is smaller than that of the reported BFMO 
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layered structure (3.27 eV)219 and similar to that of the BFO films with pseudocubic 

structure (2.77 eV)259.   

 

 

Figure 6.11 Transmission spectrum of BAMO LSC (a) and plot of (h)2 versus h for 

BAMO LSC (b). The optical band gap energy Eg is deduced from extrapolation of the 

straight line to (h)2 = 0.  
 

6.5 Conclusion 

In summary, a novel self-assembled 2D misfit layered structure has been designed 

and fabricated from a target with a Bi2AlMnO6 (BAMO) composition on single-crystal 

substrates SrTiO3 (001) and LaAlO3 (001), with or without CeO2 (001) and La0.7Sr0.3MnO3 

(001) buffer layers. The epitaxial BAMO misfit layered structure is self-assembly grown 

by alternative layered stacking of two sublattices, i.e., sublattice 1 of one-octahedra-thick 

[MO2]∞ layer (M = Al/Mn) and sublattice 2 of three-layer-thick [Bi3O3+] slabs as deduced 

from both STEM-HAADF image and PEDT analyses. Robust room-temperature 

multiferroic responses have been observed for this new misfit (incommensurate) layered 

structure with a non-magnetic B cation, which presents great potentials in terms of 
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composition flexibility in these new LSC systems. The study holds great significance 

towards many other new designs of novel single-phase materials from proper self-

assembly 2D layer mixing of two perovskites BiM’O3 (M’= Fe, Mn, Cr, Co, and non-

magnetic cations) for various functionalities ranging from multiferroics to thermoelectrics 

and layered oxides with wide band gaps. 
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CHAPTER VII  

SUMMARY AND FUTURE WORK 

 

In this dissertation, Bi-based 2D layered supercell structures have been designed 

and fabricated by pulsed laser deposition. The layered supercell structures are self-

assembled on single-crystal substrates of STO (001) and LAO (001) as well as buffer layer 

of CeO2 (001) through the intergrowth of Bi-based slabs (Bi2Ox, or Bi3Ox) and octahedral 

layers along the film out-of-plane direction and exhibit robust room-temperature 

multiferroic properties.  

The influence of CeO2 thickness to the growth and magnetic properties of 

BFMO322 SC was investigated and an optimal CeO2 thickness of ~6.7 nm is proved to be 

sufficient to trigger the growth of BFMO322 SC. The study of Fe/Mn molar ratio to the 

growth and physical properties of Bi-Fe-Mn-O layered supercell indicates that Mn plays 

a critical role in facilitating the growth of the layered supercell structures. Based on this 

finding, two novel Bi-based layered supercell with modulated structures have been 

designed and fabricated from both BiMnO3 and Bi2NiMnO6 under well-controlled 

deposition conditions. In addition, another new Bi-based layered supercell structure has 

been also fabricated from the newly designed Bi2AlMnO6. All these layered supercell 

structures exhibit strong room-temperature multiferroic response.  

The realization of the new Bi-based 2D layered supercell structures are of great 

significance to the design of new 2D materials with multiferroic response and other 

potential applications. The future research can be focused on the following aspects:  
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1. Elucidate the growth mechanism of the Bi-based layered supercell structures by 

both experimental and theoretical efforts;  

2. Explore the magnetic interaction mechanism of the Bi-based layered supercell 

structures;  

3. Explore new functionalities of the fabricated Bi-based layered supercell 

structures; 

4. Design and fabricate new Bi-based layered supercell structures with new 

functionalities;  

5. Incorporate the new Bi-based layered supercell structures in devices.  
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