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ABSTRACT

The Internet has become ubiquitous in our lives today. With its rapid adoption and

widespread growth across the planet, it has drawn many research efforts that attempt to

understand and characterize this complex system. One such direction tries to discover the

types of devices that compose the Internet, which is the topic of this dissertation.

To accomplish such a measurement, researchers have turned to a technique calledOS

fingerprinting, which is a method to determine the operating system (OS) of a remote host.

However, because the Internet today has evolved into a massive public network, large-scale

OS fingerprinting has become a challenging problem. Due to increasing security concerns,

most networks today will block many of the probes used by traditional fingerprinting tools

(e.g., Nmap), thus requiring a different approach. Consequently, this has given rise to

single-probe techniques which offer low overhead and minimal intrusiveness, but in turn

require more sophistication in their algorithms as they are limited in the amount of infor-

mation that they receive and many parameters can inject noise in the measurement (e.g.,

network delay, packet loss).

This dissertation focuses on understanding the performance of single-probe 

algorithms. We study existing methods, formalize current problems in the field and 

devise new algorithms to improve classification accuracy and automate construction of 

fingerprint databases. We apply our work to multiple Internet-wide scans and discover 

that besides general purpose machines, the Internet today has grown to include large 

numbers of publicly accessible peripheral devices (e.g., routers, printers, cameras) and 

cyber-physical systems (e.g., lighting controllers, medical sensors). We go on to recover 

empirical distributions of network delays and loss, as well as likelihoods of users re-

configuring their devices. With our developed techniques and results, we show that 

single-probe algorithms are an effective approach for accomplishing wide-scale network 

measurements.
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1. INTRODUCTION

1.1 Overview

With the rapid growth of the Internet, our world has become a connected grid of het-

erogenous devices which differ in hardware capability, security awareness, software fea-

tures, and daily usage. Measuring the amount, type, and behavior of these devices, as well

the networks they connect to, has become an interesting topic that has gained traction in

the literature [28], [32], [42], [55], [61], [67], [77]. To categorize the devices that compose

today’s networks, researchers have employed a technique called OS fingerprinting, which

aims to determine the operating system of remote hosts usingtheir responses to external

stimuli.

While the signals used in OS fingerprinting can be based on network protocols such as

DNS [62], ICMP [4], [73] and DHCP [51], [78], our focus is on the TCP/IP stack. This

is because the TCP/IP implementation greatly differs not only between OS families (e.g.,

Linux, Windows and Mac), but also versions and patches of thesame OS (e.g., Windows

XP vs. Vista and Linux 2.4 vs. 3.0). This is explained by the freedom allowed in selection

of certain default stack parameters, ambiguities in IETF RFCs [13], [81], [83] as well as a

lack of standardization for responses to malformed requests. The methods using TCP/IP

can be partitioned into three categories –banner-grabbingvia plain-text protocols (e.g.,

telnet, HTTP, FTP) [92],multi-probetools that elicit OS-specific responses from various

non-standardized combinations of flags and/or unexpected usage of protocol fields (e.g.,

SinFP [6], [10], [38], [65], Nmap [73], [91], [104], SYNSCAN[105], Xprobe [120],

[121], p0f [122]), andsingle-probemethods that send only one legitimate SYN to each

host (Snacktime [7], RING [112]).

For usage at large scale over the Internet, banner-grabbingis no longer considered

1



viable due to frequent removal of OS-identifying strings byadministrators for security

purposes, high bandwidth overhead, and common interactionwith non-platform-specific

application-layer software (e.g., apache, nginx). Multi-probe tools have their own chal-

lenges – heavy load on the target (e.g., over 100 packets in Nmap), massive complaints

about intrusive activity when used at wide scale, and reduced accuracy when firewalls

block auxiliary probes (e.g., UDP to a closed port, rainbow flags in TCP headers) or the

destination IP is load-balanced across a server farm (i.e.,different packets hit different

machines). As we show later in Section 4, multi-probe OS classification over the public

Internet is a complex and poorly understood problem, with certain pitfalls and unintended

side-effects.

Thus, in this dissertation we focus on examining the scalability of OS fingerprinting to

millions of target hosts. With this goal in mind, the next subsection presents the structure

of the rest of this dissertation.

1.2 Dissertation Structure

Figure 1.1 shows the three main topics we will study in this work. Since our objective

is to examine the viability of OS fingerprinting on a large scale such as the Internet, we

require a classifier that is fast, low-overhead and does not trigger IDS systems and harass

network administrators. We turn to the methodology used by single probe classifiers,

which use only one outbound TCP SYN packet and require a response from an active

port on the host. However, this approach introduces severalchallenges due to limited

features, loss of packets, and non-negligible queuing and processing delays encountered

in communication with the target.

To overcome these challenges, our first topic in Section 3 describes our approach to

building a stochastic model to handle these obstacles. We then combine our models into a

classifier we callHersheland subject it to various scenarios in simulations to test its accu-
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Figure 1.1: Dissertation structure.

racy. This is accomplished by building a database of 116 OS stacks, which were manually

installed within our lab or identified within our departmentnetwork, and adding noise to

each signature. We show that our models can provide reliableclassification even under ex-

treme scenarios (e.g., half of all responses are lost, multiple second delays). Satisfied with

our results, we then use Hershel to classify 37M hosts from anInternet scan, showing the

distribution of devices we encountered in different countries and AS regions of the world.

Finally, we also show that our classifier is robust against scrubbers that aim to confuse OS

classification.

To be adaptable to the ever-evolving Internet, we require our techniques to be versatile

and allow for different sizes and compositions of networks.Thus, for our next topic,

we target the issue of building a database flexible to the network to be measured. Since

our previous effort of 116 stacks was a manual process that was susceptible to human

error and poor repeatability, our goal in Section 4 is to develop an automated, repeatable

process for building a database. We propose a novel unsupervised clustering algorithm

calledPlata to separate unique signatures and discard duplicate ones. We show how this

works by applying Plata to a scan of our university network, and automatically create a

database of 420 OSes, which are labelled by a banner downloadfrom compliant hosts.

We also update Hershel to correctly treat independence between the delays observed for

each packet, giving rise to a new classifier we call Hershel+.We close out this section

by conducting a large Internet study to fingerprint 66 million webservers, the first such
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effort to use an automatically built database, and comparing our results with Nmap, a well

known multi-packet classifier.

The final topic builds on both the previous by building a complete classification sys-

tem that does away with user defined heuristics. For example,Hershel relies on assumed

probability distributions of noise observed in the Internet measurement, such as network

one-way delays, packet loss, popularity of each OS, and usermodification of network

stacks. Section 5 develops an iterative classifier under theExpectation-Maximization (EM)

framework calledFaulds, and shows that the OS fingerprinting problem can successfully

be modeled under EM to leverage its convergence properties.Using extensive simulations,

we also show that recovery of the true distributions of observed noise is not only possible,

but results in much more precise classification. Finally, weconclude by conducting a mea-

surement where besides outputting the correct OS popularity, we obtain packet loss/delay

and feature modification probabilities from 63 million hosts across the Internet – a study

from a unique perspective which opens up new angles for Internet measurement in the

future.

4



2. RELATED WORK

Besides use in various applications of Internet measurement [11], [30], [52], [59], OS

fingerprinting is a well known approach used by network administrators for securing their

networks. It has been used to discover vulnerable network services [63], [100], detect

rogue systems and stealth intruders [1], defend against target-based fragmentation attacks

[74], [97], and even expose botnets [56], [69]. It is also used by industry analysts to

understand trends in OS usage [5], [31] and market share analysis by public tools [70],

[71]. Below we take a look at the previous work done in this field.

2.1 Multi-Probe Techniques

OS fingerprinting has roots inbanner grabbing, which relies on application-layer pro-

tocols (e.g., HTTP, SSH, SMTP, FTP, telnet) to provide a textual description of the OS as

part of the communication sequence after successful handshakes. While this worked well

in the 1990s, banner grabbing today faces many impediments,including high overhead,

administrator ban on OS-identifying strings in responses,generic software (e.g., apache,

nginx) that can run on multiple platforms without exposing the underlying OS, and pur-

posefully incorrect banners that aim to mislead the variousfingerprinting tools.

The second wave of OS classification started in 1997 with the release of Nmap [73],

which pioneered TCP/IP tricks that would elicit different responses from different im-

plementations. By default, it sends 1032 probes to the target, including a vertical port

scan and certain malformed packets that trigger popular IDSsuch as Snort [89]. Nmap

ideally expects the target to accept a TCP connection, send ICMP port unreachable on a

closed UDP port, and respond to a ping. Under bandwidth-optimized settings for OS clas-

sification, Nmap requires no fewer than 38 different probes;however, due to mandatory

retransmission, this in practice corresponds to well over 100 packets per host.
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Due to its popularity, Nmap has received a great deal of attention in the literature,

which includes usage of neural networks to differentiate between versions of the same OS

[91], detection of unknown devices [64], and techniques forreducing the number of sent

probes [35]. Additional work includes fuzzy matching [120], application of formal testing

methods to the detection problem [38], and classification using lengthy observations (up

to 100K packets) of Initial Sequence Numbers (ISNs) from the TCP header [65], [121].

Another direction in multi-packet classification uses clock drift in the kernel, which

can be derived from observing the timestamp option in streams of reply packets [50] or

variation in timer frequency [17]. This approach requires sending a steady stream of re-

quests to discern the accurate skew, which can add up to a large overhead (i.e., thousands

of packets) and requires handling of randomness introducedin the replies by OS schedul-

ing. Thus, while this approach has its uses in localized networks, it is hardly scalable to

millions of targets.

Besides the amount of traffic generated by multi-packet tools in large scale-scans, an-

other problem is the prevalence of load balancers in the Internet today. These devices,

commonly placed in front of servers, may disperse consecutive probes to different physi-

cal machines or perform certain elements of the handshake themselves, leading to jumbled

fingerprints. This can be avoided by scanning techniques that rely on one outgoing packet,

which we describe next.

2.2 Single Probe Algorithms

RING [112] and Snacktime [7] are the only tools that perform classification using

temporal features from a single outbound probe.1 As shown in Fig. 2.1, each measurement

consists of a SYN packet, server processing delayT needed to accept the connection, and

a stream ofn SYN-ACK responses from the target OS, followed by an optional TCP reset

1Nmap [73] used to rely on temporal features, but later stopped supporting them due to classification
difficulties.
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Figure 2.1: Retransmission timeouts (RTOs) between SYN-ACK packets.

(RST) with its own RTO. RING uses then − 1 values in the RTO vector and presence

of the final RST packet in classification. Snacktime ignores the RST feature, but instead

uses the default TCP window size and TTL carried in the SYN-ACKs, which allows it

to differentiate between 25 operating systems [7]. We analyze its classification process

in more detail later in Section 3. A simplified version of Snacktime and extension to 98

signatures was offered in [45], [55]; however, no accuracy analysis, modeling, or verified

improvement was provided.

Another tool with a related capability is p0f [122]. In addition to passive fingerprinting,

it can actively generate SYN packets and profile remote network stacks based on a set of

fixed features from the SYN-ACKs (i.e., window size, TTL, IP flags, and TCP options);

however, it does not leverage the RTOs and by default is quiteverbose (i.e., sends eight

copies of the same SYN per target). The current version can differentiate between 18

operating systems.

2.3 Common Defenses

There exist many approaches to thwart remote OS fingerprinting. The most basic tools

tweak Windows registry [20], [75] or implement plugins [8],[9], [90] for the Unix packet-

mangling module Netfilter [68]. Their objective is to modifythe fixed features of departing

packets to no longer resemble those of the underlying host. Asimilar direction is to deploy
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network honeypots [85], [110] or standalone systems [115] that spoof arbitrary operating

systems and their services. Placing obfuscation into the network gives rise to intermediate

devices known asfingerprint scrubbers[84], [101].

While these techniques can effectively deal with static header fields, they are not well

suited for distorting the temporal features of departing packets, which requires expensive

buffering of packets and per-flow state. Additionally, lackof technical support and possi-

bility for various side-effects (e.g., disabling SACK in TCP may lead to significantly lower

throughput) raises questions about deployment of these tools in production systems and/or

at large-scale. Nonetheless, we study the impact of these scrubbers on our work in more

detail in Section 3.5.
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3. LARGE-SCALE OS CLASSIFICATION*

3.1 Introduction

The Internet has been the target of numerous measurement studies, with the trend

recently shifting from covering a small subset of destinations [77], [86] to scanning the

entire IP space [22], [42], [55], [87]. This allows researchers to enumerate live hosts,

detect vulnerabilities, and shed light on deployment of newprotocols. Over the years,

network scanning has become progressively faster – from 4 months [87] down to 30 days

[42], then one day [55], and now 45 minutes [29]. In conjunction with these studies, low-

overhead OS fingerprinting can allow significantly better understanding of the systems

researchers interact with and improve our general knowledge about the Internet.

OS fingerprinting consists of two approaches –passiveandactive. The former [50],

[122] monitors ongoing communication (inbound and/or outbound) with remote hosts, but

does not generate traffic of its own. Unless each studied device voluntarily connects to

the measurement server, this technique is difficult to use for classifying each IP on the

Internet. The latter approach, which is our topic of interest, actively sends packets to

targets and infers their operating system from the collected responses.

One important aspect that differentiates between the active methods is the potential

maliciousness of probing traffic, where certain nonsensical combinations of TCP flags

(e.g., SYN-FIN-RST-ACK) or intrusive actions (e.g., trying to delete the root directory

in HTTP fingerprinting [92]) may harm or crash the target. Additionally, these packets

are easily detected and dropped by IDS [102], which leads to complaints against research

institutions using these methods and possibly reduced accuracy of the results.

The second aspect is the amount of outbound traffic required by the classifier, which

*Reprinted, with permission, from "Hershel: Single-Packet OS Fingerprinting" by Z. Shamsi, A. Nand-
wani, D. Leonard and D. Loguinov which appeared in [95] and [96]. c© 2016 IEEE.
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ranges from a single SYN probe [7], [112] to lengthy multi-packet exchanges [65], [73],

[92], [105], [120]. Ideally, fingerprinting should be performed with no extra overhead

to scan traffic, which rules out techniques [73], [120] that expect to reach the target on

multiple open ports, using different protocols (e.g., ICMP, TCP, UDP), and elicit responses

on closed ports. While LAN environments can tolerate high traffic rates and may allow

multi-protocol access to each host, these conditions are generally difficult to satisfy when

scanning the entire Internet.

The third aspect is the ability of the underlying estimator to correctly identify the

target OS under realistic network conditions and without using retransmission. Since prior

single-packet techniques [7], [112] were mainly developedfor local use, they are not well

provisioned to overcome high amounts of fluctuation and lossin temporal features. They

also lack resilience to OS tuning, which can be applied by end-users in hopes of optimizing

network performance or obfuscating the default parametersof the stack. Either way, the

modified OS features may exhibit little correlation to thoseoriginally present at the host,

which cripples estimation accuracy of existing tools.

3.1.1 Contributions and Ethical Implications

Given the many open issues in wide-scale fingerprinting and lacking performance anal-

ysis in the literature, our first goal is to formalize the estimation problem in single-packet

OS classification and study the pitfalls of existing techniques. We then develop a low-

overhead framework we callHershel1 for overcoming the various randomization effects

(i.e., queuing delays, packet loss, manual tuning) and apply it as proof-of-concept in a

measurement study that classifies every visible webserver on the Internet.

We next discuss the ethical implications of this work. Our main objective is to bene-

fit researchers studying the Internet at wide scale and provide a solution to an interesting

1William J. Herschel invented forensic usage of fingerprintsin 1858.
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mathematical problem. However, one may become concerned that intruders can use our

algorithms for detection of vulnerable operating systems and better tailor the attack pay-

load to particular configurations (e.g., patch levels) of the targets. As opposed to Nmap,

our techniques require no additional bandwidth during portscanning, which makes them

completely stealthy against IDS and other security monitors.

While hypothetically this may be true, we do not believe there is great cause for con-

cern. With modern botnets, large-scale port scanning can beperformed in a highly de-

centralized fashion, with very little traffic originating from each hijacked IP. This affords

the attackers a luxury of using more verbose OS fingerprinting tools (i.e., Nmap) and still

remaining undetected. Researchers, on the other hand, are typically constrained to a sin-

gle subnet whose generation of disruptive volumes of highlyanomalous traffic is bound to

attract negative attention.

Additionally, we are not aware of any evidence confirming that attackers are interested

in profiling discovered devices using only SYN packets. Recent studies [124] show that

once an open port is found, bots either perform more extensive testing of the open service

or attempt all known exploits (some outdated by decades) against the port without dis-

crimination. Eliminating Nmap from the picture and directly interacting with the service

is much quicker and more informative in that context. We therefore do not see OS finger-

printing as a practical technique for increasing maliciousness of the Internet ecosystem.

3.2 Stochastic Model

We assume a single-packet scanner similar to Snacktime in Fig. 2.1. While this ap-

proach has minimal intrusiveness, lowest transmission overhead, and non-malicious op-

eration, it also exhibits several fundamental challenges.These arise due to the complex

ways in which the RTOs can be modified by packet traversal across wide-area networks,

scarcity of information about the target host contained in the samples, and user tuning of
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features, all of which has a strong influence on one’s abilityto detect the underlying OS.

It should be noted that straightforward application of machine-learning methods [108]

to our problem is difficult. Experimentation with support vector machines, neural net-

works, and decision trees has led to the realization that they perform poorly when the

measured samples contain missing data (i.e., the RTO vectoris corrupted by packet loss).

Statistical imputation [34] is a common technique for dealing with these problems; how-

ever, it requires knowingwhich features are missing and ability to accurately reconstruct

the remaining(non-missing) features. In our case, lost packets go completely unnoticed

and additionally modify the following RTOs to produce feature vectors that have little

resemblance to the original (see below).

Our contribution in this subsection is to formalize single-packet OS fingerprinting,

set forth clear goals for the classifier, study the impact of network delay and loss on the

measured samples, analyze the existing methods, and outline the assumptions under which

the classification problem is tractable.

3.2.1 Objectives

Assume a databaseD = (1, 2, . . . ,M) of M ≥ 1 known operating systems, where

each OSj has some vector-valued fingerprintyj collected during a-priori measurement

of the OS. The fingerprint consists of multiple features, which we partition into those

modified only by the network (e.g., RTOs) and those only by theuser (e.g., TCP window

size). Suppose the former are described by some vectorδj and the latter by another vector

uj. While the length ofδj normally depends onj, that ofuj is constant across all operating

systems.

As both vectors undergo random modification before being observed by the scanner,

the response of OSj to probe traffic is some random variable that is a function ofyj. Given

an observationx = (δ; u) from an Internet host, a typical estimation problem is to findthe
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most likely OSs(x) that could have produced that vector:

s(x) : = argmax
j∈D

p(yj|x) = argmax
j∈D

p(x|yj)p(yj)

p(x)

= argmax
j∈D

p(x|yj)p(yj), (3.1)

where notationp(x|y) refers to the probability (or conditional density, if more convenient)

of x given y. Observe that the probabilityp(x) that some OS inD has producedx is

constant for a given observation and can be omitted from the optimization. If the fraction

of Internet hostsp(yj) running OSj is unknown, it is common to set each value to1/M ,

which removes this term from the optimization as well.

The more interesting component of (3.1) is the probabilityp(x|yj) that OSj has pro-

duced the observation, or equivalently thatyj has become distorted intox. Before investi-

gating this metric further, observe that network and user modifications to the OS features

can be treated as independent, from which it follows that:

p(x|yj) = p(δ|δj)p(u|uj). (3.2)

This means that the two terms can be dealt with separately, which we do in the rest of

the section.

3.2.2 Network Features: Jitter

For single-packet techniques [7], [112] described in 2.2, the vector of temporal features

δj consists of individual RTOs generated by network stackj. Classification based onδj

is possible not only because some devices deviate from TCP algorithms (e.g., exponential

timer backoff), but also because RFCs that govern TCP retransmission [13], [81], [83] do

not specify the initial RTO or how many SYN-ACKs must be generated. As a result, a
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Figure 3.1: Effect of jitter on observed RTOs.

wide variety of unique RTO patterns exists.

For the time being, assume loss-free conditions. During collection of samplex, sup-

posed is the sum of propagation and transmission delays along the path from the server

back to the scanner. Note thatd is a constant due to the fixed size of SYN-ACKs. Now

defineQm to be a random queuing delay of them-th packet in the return path. As shown

in Fig. 3.1, the RTO vectorδj undergoes distortion that is independent of the forward path,

server think timeT , and propagation delayd:

δ(m) = δj(m) +Qm+1 −Qm, m = 1, 2, . . . , |δj| (3.3)

Defining OWD (one-way delay) jitterJm = Qm+1 − Qm and considering that the

gap between subsequent SYN-ACKs is sufficiently large (i.e., at least several seconds),

it follows that back-to-back packets arriving from the server are not likely to encounter

the same busy period of the queues they traverse. In that case, it is reasonable to assume

that sequenceQ1, Q2, . . . consists of independent and identically distributed (iid)random

variables. Furthermore, since the number of hops and congestion of the path is not affected
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by j, the distribution of eachQm does not depend on the OS being profiled. This leads to:

p(δ|δj) =















∏|δ|
m=1 f(δ(m)− δj(m)) |δ| = |δj|

0 otherwise

, (3.4)

wheref(.) is the PDF (probability density function) or PMF (probability mass function)

of OWD jitter, depending on whetherJm is treated as continuous or discrete. It should

also be noted thatV ar[Jm] = 2V ar[Qm], while f(.) is zero-mean and symmetric. For

certain models of OWD, jitter can be obtained in closed-form. For example, exponential

Qm produces the Laplace distribution with the same parameterλ and GaussianN(µ, σ2)

becomesN(0, 2σ2).

We next contrast (3.4) with the RTO classifier in Snacktime [7], which is a tool that is

the closest to our objectives and most advanced in single-packet OS fingerprinting. For

each RTOm, this method first computes the number of matching digits (limited to 6

decimal places of precision) between the sample and all known fingerprintsj:

Yjm = max(⌈− log10(max(|δ(m)− δj(m)|, 10−6))⌉, 0).

It then assigns scoreWj to OSj using the sum of these weights across all available

RTOs:

Wj =

|δ|
∑

m=1

Yjm. (3.5)

For the example in Table 3.1, which exemplifies the common pitfalls of Snacktime,

(3.5) scores six for the first OS and two for the second OS, indicating that jitter combina-

tion (0, 12) is more likely than(0.1, 0.1). Taking thelog of (3.4), our model can also be
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RTO1 (sec) Yj1 RTO2 (sec) Yj2 Wj

Observationδ 3.0 24.0
Fingerprintδ1 3.0 6 12.0 0 6
Fingerprintδ2 2.9 1 23.9 1 2

Table 3.1: Snacktime example.

reduced to optimizing a summation:

log p(δ|δj) =

|δ|
∑

m=1

log f(δ(m)− δj(m)); (3.6)

however, it differs from (3.5) in two important ways. First,thelog is applied to the distri-

bution functionf(.) rather than the jitter itself. Second, there is no loss of precision due to

rounding to the nearest integer or capping the jitter at10−6.

Nevertheless, while (3.4) is a good starting point, it does not work in real networks due

to the lacking robustness against packet loss. This is our next topic.

3.2.3 Network Features: Loss

The main problem with (3.4) is that loss-free conditions areimpossible to satisfy dur-

ing Internet scans. Besides congestion, routing loops, andvarious checksum violations,

the RTOs may be altered by the target server crashing or shutting down during the mea-

surement, which affects the tail of the RTO vector and appears similar to packet loss.

Since single-packet fingerprintingby definitioncannot retransmit SYN probes, OS detec-

tion must be performed using only the features available in observationx, which calls for

more sophistication in the model.

To exacerbate the situation, packet loss creates more dramatic changes to the RTO

vector than delay jitter. For example, consider a scenario with δj = (3, 6, 12), where

all delays are given in seconds. Even with a relatively largeE[Qm] = 100 ms, delay
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jitter remains small compared to each RTO. On the other hand,the loss of a single packet

produces one of four dissimilar combinations –(3, 6), (3, 18), (6, 12), or (9, 12) – while

that of two packets leads to six additional options –(3), (6), (9), (12), (18), or (21). The

RTO swing in these cases is significantly higher, which makesmappingx to the correct

OS more challenging.

We now examine how to model the combined probability that loss and jitter transform

δj into observationδ. This will allow us to solve such dilemmas as whetherδ = (3, 18) is

a more likely match to(3, 6, 12) with one lost packet or to some other signature(2.6, 17.9)

without any loss. To deal with these cases, we propose to generalize the concept of RTO.

First, letτj be a vector of|δj |+ 1 packet-transmission timestamps from OSj:

τj(m) =















0 m = 1

τj(m− 1) + δj(m− 1) m ≥ 2

(3.7)

andτ be the corresponding random vector observed inx after the packets have traversed

the network. Then, a generalized(m,m + k)-RTO is the distanceτj(m + k) − τj(m),

which is illustrated in Fig. 3.2 form = 1 andk = 2. Note thatk = 1 produces the usual

RTO and that all timestamps are given using local clocks (i.e., τj at the server andτ at the

client).

Now suppose setΓ(τ, τj) contains all subsets of size|τ | of integer sequence(1, 2, . . . , |τj |).

We can view eachγ ∈ Γ(τ, τj) as a mapping of received packets inτ to their position in

the original vectorτj , i.e.,γ(m) = k means that them-th received SYN-ACK was initially

in positionk. For the example in Fig. 3.2, we haveγ(1) = 1 andγ(2) = 3. Assuming

no reordering of SYN-ACKs, which is reasonable given at least several seconds between

them, eachγ is a vector of strictly increasing integers.
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Figure 3.2: Generalized RTOs under packet loss.

Armed with these definitions, we get:

p(τ |τj) =















∑

γ∈Γ(τ,τj)
p(γ)p(τ |τj, γ) |τ | ≤ |τj |

0 otherwise

, (3.8)

where the number of summation terms equals the number of waysto select|τ | objects

from |τj| available options and (3.8) is non-zero only if the number ofreceived packets

does not exceed that in the fingerprint. This is in contrast to(3.4), where the two vectors

had to have equal length.

Again leveraging the large spacing between server responses, we can treat congestion

events affecting SYN-ACKs as independent, which allows oneto approximate packet loss

as an iid Bernoulli process with some probabilityq. Since each loss combination is equally

likely, we get:

p(γ) = q|τj |−|τ |(1− q)|τ |, (3.9)

which can be moved outside the summation in (3.8). To deal with p(τ |τj, γ), which is the

probability to observeτ from OSj under loss patternγ, notice that the gap between each
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adjacent pair of received packets is determined by the generalized RTO:

τ(m)− τ(m− 1) = τj(γ(m))− τj(γ(m− 1)) + J ′
m, (3.10)

wherem ≥ 2 and generalized jitterJ ′
m is given by:

J ′
m = Qγ(m) −Qγ(m−1). (3.11)

Rearranging the terms in (3.10), define them-th jitter sample under patternγ as:

Rγ
jm = τ(m)− τ(m− 1)− τj(γ(m)) + τj(γ(m− 1)). (3.12)

Noticing thatJ ′
m has the same distribution asJm yields:

p(τ |τj , γ) =

|τ |
∏

m=2

f(Rγ
jm). (3.13)

We thus get for|τ | ≤ |τj|:

p(τ |τj) = q|τj |−|τ |(1− q)|τ |
∑

γ∈Γ(τ,τj)

|τ |
∏

m=2

f(Rγ
jm), (3.14)

which replacesp(δ|δj) in (3.2).

3.2.4 User Features

OS tuning is common practice in the current Internet, with numerous online guides rec-

ommending optimizations to network settings [76], [109] and automated software offering

tuning capabilities to the TCP/IP stack to achieve better performance [27]. A number of

fixed header parameters in general-purpose kernels (e.g., Unix, Windows) can be changed
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through registry or using command-line tools. Unlike jitter-induced noise, where small

distortions are generally more likely that large ones, the main difference with OS tuning

is thatthere may be no correlation between the manually selected values of the user and

those installed in the OS by default. For example, TCP window size may be more likely

to jump from 8192 to 65535 than to 8193.

While accurate modeling of manual modification and human psychology is difficult,

it makes sense for the analysis to at least take into account whether a given feature under

user control has been changed. Suppose thatπm is the probability of such modification in

featurem and assume that user tuning is applied independently to eachavailable parame-

ter. DefiningIjm = 1{u(m)=uj(m)} to be an indicator of the event that them-th measured

feature matches the original of OSj, we get:

p(u|uj) =

|u|
∏

m=1

[

(1− πm)Ijm + πm(1− Ijm)
]

. (3.15)

Besides user interference, vectoruj may be modified by intermediate devices along the

path (e.g., NAT, IDS, fingerprint scrubbers [20], [84], [90], [101], [115]), whose actions

can be clumped under the same umbrella of (3.15). Since buffering packets for periods

of time comparable to RTO (i.e.,3 − 6 seconds) and per-flow state are expensive, it is

often safe to assume that these devices do not alter the RTO pattern in significant ways

and thus leave enough features by which the OS can still be identified. This underscores

the importance of having a robust RTO estimator.

The Snacktime algorithm for scoring user-modified featurescan be generalized as a

sum of weights assigned to each match:

W ′
j =

|u|
∑

m=1

wmIjm =
∑

Ijm=1

wm, (3.16)
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which is added to the RTO scoreWj in (3.5) for a final result. One open issue, how-

ever, is selection of proper weights, which need to be somehow correlated with feature

volatility. Our model is much simpler sinceπm directly provides this probability. To better

understand the difference between (3.15) and (3.16), assume thatπm > 0 for all m and

write:

log p(u|uj) =
∑

Ijm=1

log(1− πm) +
∑

Ijm=0

log πm. (3.17)

Forπm ≈ 1, we getlog πm ≈ 0, the second term of (3.17) disappears, and our model

reduces to Snacktime with weightswm = log(1−πm). However, in more realistic cases of

πm ≪ 1, the second term of (3.17) becomes non-negligible and serves the role of balancing

non-matching features against those that do match. Snacktime has no such mechanism.

3.2.5 Final Result

We now consolidate the various models into one formula. Combining (3.14) and (3.15)

in (3.2) and (3.1), dropping terms that do not depend onj, and performing straightforward

manipulations, we get:

s(x) = argmax
j∈D:|τ |≤|τj|

{

p(yj)q
|τj |−|τ |

∑

γ∈Γ(τ,τj )

|τ |
∏

m=2

f(Rγ
jm)

×
∏

Ijm=1

(1− πm)
∏

Ijm=0

πm

}

. (3.18)

Although (3.18) maximizes the OS-detection probability under the assumptions stated

above, its performance with a-priori-unknownq, πm, f(.), andp(yj) is an open question.

We return to it later in the section; in the meantime, we outline the various remaining

issues.
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3.2.6 Limitations

First, the SYN packet may be lost and never reach the target. Since there is no way to

verify this, the host will automatically be considered non-responsive and will be excluded

from fingerprinting. Not much can be done to overcome this problem unless SYN retrans-

mission is allowed. If we relax the single-packet assumption, the estimator will face the

problem of determining which of the SYNs triggered which SYN-ACK response, without

which the RTOs cannot be computed correctly. This problem can be solved in the future

by encoding the retransmission attempt into the source portof the SYN.

Second, our model allows only thenetworkto modify the received RTOs; however,

this may not hold if users manage to alter SYN-ACK spacing during OS tuning. This

is not of wide-spread concern as few optimization guides target the RTO pattern. With

enough effort, scrubbers and obfuscation tools can disruptinter-SYN-ACK delays; how-

ever, we do not consider development of end-to-end methods to combat such approaches

a fruitful objective. A related problem arises with middleboxes and caches that accept the

connection on behalf of the server [43], in which case any fingerprinting tool is bound to

classify only the visible side of the TCP stream (i.e., the OSof the middlebox).

Third, Hershel’s accuracy may deteriorate if the network jitter processJm becomes

non-iid or deviates from the predicted bounds, e.g., due to significant kernel scheduling

latency during CPU overload. Similar issues may surface if network loss depends onj,

users modify different operating systems with different probability, or there is correlation

in loss events within a single stream of SYN-ACKs. Solving these problems requires a

per-OS set of parameters(qj , fj(.), πjm), which is our focus in Section 5.

3.3 Classifier

Our next contribution is to enhance Snacktime’s feature vector, describe a working

classifier based on the theory developed above, bring awareness to RTO randomization
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performed by certain OSes, and explain how to collect signature databases under these

conditions.

3.3.1 Features

Snacktime uses only two non-RTO features – TCP advertised window size and TTL;

however, additional parameters are readily available fromthe SYN-ACKs. Following Ta-

ble 3.2, these include the Do Not Fragment (DF) flag in the IP header, four different fields

from the RST packet (more on this below), the Maximum SegmentSize (MSS) declared

by TCP, the order in which the OS assembles the option fields (OPT), SYN-ACK RTOs

(SA-RTO), and the RST RTO (R-RTO). Some of these features areself-explanatory, but

others require additional elaboration.

First, it should be noted that the initial TTL cannot be reconstructed exactly at the

receiver. We use the common technique of rounding this valueup to the nearest "likely"

boundary, which includes four values used by the OSes in our databaseD – 32, 64, 128,

and 255. Second, the reset features are quite rich. In Table 3.2, the binary flag RST

is 1 for the fingerprints that contain a reset packet, RA indicates whether the RST has

the ACK bit set, RN is 1 if the ACK sequence is non-zero, and RW records the window

of the reset packet. RST features represent peculiarities of internal stack operation and

cannot be modified via OS tuning. However, fingerprint scrubbers, NAT/IDS, and kernel

recompilation can still change them.

Third, as seen in the table, support for TCP options differs between the operating

systems since no specific subset is required to be implemented [46]. More importantly,

users have the freedom to disable them as needed. As certain options are considered se-

curity risks (e.g., timestamps), they may be disabled by default, although users can still

re-enable them. Certain devices (e.g., printers) do not allow OPT tweaking at all, while

newer versions of popular operating systems tend to supportfewer choices. For example,
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Operating system Win TTL DF Reset MSS OPT SA-RTO R-RTO
RST RA RN RW

Windows7 8192 128 1 1 0 1 0 1460 MNWST 3, 6 12
Linux 2.6 5792 64 1 0 – – – 1460 MSTNW 3.8, 5.9, 12.1, 24, 48.2 –
Linux 2.0 32736 64 0 0 – – – 1414 M 3, 6, 12, 24, 48, 96 –
Mac OS10.3 33304 64 1 1 1 1 32768 1460 MNWNNT 2.92, 6, 12, 24 30
NetBSD4.0.1 32768 64 1 0 – – – 1460 MNWNNTSNN 2.92, 6, 12, 24 –
VxWorks5.4.2 8192 64 0 1 1 1 8192 512 MNW 5.58, 24 45
Juniper Netscreen 8192 64 0 1 0 0 8192 1380 M 1.67, 2, 2, 2, 2, 2, 2, 2 2

Table 3.2: Sample signatures.
(M = MSS, N = NOP, W = window scale, S = SACK, T = timestamp)
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even though Windows 7/2008 provides registry keys to disable TCP timestamps, the mod-

ification does not work. Similarly, SACK can be disabled onlyif the entire TCP stack is

offloaded to the NIC [66].

What makes OPT a good feature is not the specific string, but ratherthe order in which

non-padding options appear. This is illustrated in Table 3.3, where we progressively dis-

able various combinations of options and observe the resulting SYN-ACK packets. For

example, Windows XP supports four options MWTS. Turning offW produces MTS inter-

spersed by NOPs as padding. Simplicity of implementation and lacking reasons to reorder

the options suggests that this phenomenon likely exists in other stacks.

As a result, OPT requires a more advanced classification logic than straight compari-

son. Specifically, a match is registered if the observed sample x contains afeasiblestring,

which we examine by taking an intersection of non-NOP options betweenx and each fin-

gerprint, followed by verification that the order of the resulting letters is the same. For

example, MTW is a match to Linux, VxWorks, and Juniper in Table 3.2, but not the other

OSes.

Fourth, the reset RTO (R-RTO) helps in resolving additionalambiguities, such as be-

tween Mac OS 10.3 and NetBSD 4.0.1 in Table 3.2, which otherwise have identical SA-

RTO patterns. Additionally, we expand Snacktime’s defaultmeasurement time limit from

65 seconds to 120, the latter of which is the MSL (Maximum Segment Lifetime) of TCP

[83]. For instance without considering the 96-second RTO ofLinux 2.0 in Table 3.2, it

might be hard to differentiate it from Linux 2.6.

Table 3.4 summarizes the features used in our classificationand compares them to

those in Nmap, p0f, and Xprobe [73], [105], [112], [120], [122]. We have four novel

features and one match type (subset) never used in fingerprinting before.
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Operating system All enabled Drop S Drop T Drop W Drop ST Drop SW Drop WT Drop all
Linux 2.6 MSTNW MNNTNW MNNSNW MST MNW MNNT MNNS M
Windows XP/2003 MNWNNTNNS MNWNNT MNWNNS MNNTNNS MNW MNNT MNNS MNW
Windows7/2008 MNWST – – MST – – – –
FreeBSD8.2 MNWST MNWNNT – – – – MSE M
Solaris10 NNTMNWNNS NNTMNW – – – – – –

Table 3.3: Examples of transformations applied by the OS to TCP options (dashes indicate impossible cases).
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Feature Description Appeared In
Win Receiver window [7], [73], [105], [120], [122]
TTL Time-to-live field [7], [73], [105], [120], [122]
DF Do Not Fragment [73] [105] [120], [122]
SA-RTO RTO sequence [7], [105], [112]
RST True if RST packet [112]
MSS Max segment size [73], [105], [122]
OPT TCP options (exact) [73], [122]
RA ACK bit in RST New
RN ACK seq6= 0 in RST New
RW Window in RST New
OPT TCP options (subset) New
R-RTO RTO of RST packet New

Table 3.4: Enhanced feature vector.

3.3.2 Stochastic Timers

Table 3.2 shows SA-RTOs from a single captured sample of the OS; however, it turns

out that many kernels naturally exhibit significant RTO variation, sometimes by as much

as 50%. Two examples are shown in Fig. 3.3 using a 2D scatter plot of the first two SA-

RTOs. For Server 2003 in subfigure (a), there are two distinctpatterns – the lower left

corner, with RTO1 distributed in[2.2, 3.3] and RTO2 frozen at 6.56, and the upper section,

with RTO1 scattered in[3.3, 4.6] and RTO2 in [9.5, 9.8]. Furthermore, the two scenarios are

not equally likely as the bottom one occurs 68% of the time. This shows that the temporal

model must take into account not just the possible RTO regions, but also their likelihoods.

A similar picture emerges for Linux 2.6 in subfigure (b). The mass of the RTO is

now concentrated on 11 distinct points, where RTO1 ranges from 3 to 4.4 seconds and

RTO2 from 6 to 6.2. Again, the popularity of individual points is non-uniform, swinging

from 2% to 16%. Note that both cases in Fig. 3.3 have been collected from idle hosts

over a single-hop network consisting of one switch,which makes this behavior part of the

fingerprint itself rather than an artifact of the sampling environment.
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Figure 3.3: RTO randomness in TCP/IP scheduler.

Possible reasons for this fluctuation are the absence of per-connection RTO timers

during the SYN-ACK phase and discretization of retransmission delays. What these ex-

amples show is that internal OS operation is a complex stochastic system that requires

measuring the RTOdistribution(rather than a single snapshot) during creation of the sig-

nature database. This is necessary because such large variations are not taken into account

by the jitter model, which normally assumes OWDs on the orderof tens or hundreds of

milliseconds, with similarly sized jitter.

Our approach is to treat RTOs as random variables, unlike prior work that has always

considered them deterministic. Specifically, suppose OSj haswj unique types of behavior,

each occurring with probabilityβjr, wherer = 1, 2, . . . , wj. We call each of these types a

subOSand assign it a separate RTO vectorτjr, which updates (3.13) to:

p(τ |τj , γ) =

wj
∑

r=1

βjrp(τ |τjr, γ). (3.19)

A simpler technique is to measure each hostw times and let each obtained RTO vector
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τjr be a subOS withβjr = 1/w. In that case, (3.19) becomes:

p(τ |τj , γ) =
1

w

w
∑

r=1

|τ |
∏

m=2

f(Rγ
jrm), (3.20)

whereRγ
jrm is the generalized jitter of them-th RTO under subOSr of OS j and loss-

patternγ. Note that summations involvingΓ(τ, τj) remain the same since all subOSes

within a given OS send a fixed number of SYN-ACKs. They also exhibit deterministic

user features, which keeps (3.15) unchanged.

3.3.3 Fingerprint Database

In order to produce an accurate fingerprintτj , the OS must be measured in some iso-

lated testbed with low end-to-end delays and idle conditions at the server. To avoid loss-

related bias, each host must be sampled multiple times to determine the longest vector

of RTOs it produces, which should then be used to collectw loss-free samples for the

database. Following these guidelines, we installed a variety of commodity operating sys-

tems in our lab, determined the proper size of their RTO vectors, and collectedw = 50

clean fingerprints from each. We also captured a number of embedded devices found in

our department LAN.

While Snacktime ships with 25 signatures and [55] uses 98, our database contains 116

network stacks. We can distinguish not only between different operating systems (e.g.,

Windows, Linux, FreeBSD), but also sometimes identify their versions and patches (e.g.,

Windows Server 2003 with and without SP1, MacOS 10.3 vs MacOS10.4).

3.3.4 Hershel

Our classification method, which we callHershel, builds upon (3.18) and (3.20), where

we treat allw = 50 subOSes as deterministic. Common sense suggests that users, scrub-

bers, and network devices are not likely to directly tweak individual RST features RA,
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Win TTL DF OPT MSS RST
39.2 4.7 1.8 1.1 5.5 14.4

Table 3.5: Classification accuracy (percent) of isolated features.

RN, and RW; instead, these fields (if modified at all) will be simultaneously replaced with

another set that comes from a different OS. We thus combine all four RST values in Table

3.2 into one atomic feature for classification purposes. This makes vectoruj consist of six

fields – Win, TTL, DF, MSS, OPT, and aggregated RST. Table 3.5 shows the accuracy of

individual features across the entire database (all ties are broken uniformly randomly).

RTO vectorsτ and τj include timestamps of all SYN-ACKs and the first RST (if

present). To account for resets that might be injected by firewalls/IDS after they time

out the connection, (3.8) and (3.15) require a revision. Specifically, if the measured vector

τ contains a reset, butτj does not, the RST is removed fromτ prior to computing (3.8).

To account for the mismatch in the RST feature, (3.15) gets multiplied by π6. In the oppo-

site case, i.e.,τj contains a RST, butτ does not, it is important to avoid mistaking packet

loss for changes in the RST feature and improperly penalizing p(u|uj) with π6. Next, if

both vectors contain a reset packet, (3.15) gets hit with either π6 or 1 − π6 depending

on the match in (RA, RN, RW). Finally, if neither vector has a RST, then (3.15) enjoys

multiplication by1− π6.

3.4 Simulations

Our contribution in this subsection is to explain how to select the parameters of the

model and examine Hershel’s accuracy in simulations in comparison to Snacktime.

3.4.1 Parameters

For lack of a better assumption, we suppose that all OSes are equally likely to appear

in the trace and setp(yj) = 1/M to be a uniform PMF. While it is possible to consider
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multiple iterations and refine this value after each pass, the resulting system sometimes

exhibits instability and divergence into inferior states.We analyze these stability issues

further in Section 5, but for now perform a single iteration in our evaluation below.

We useπm = 0.01 for RST and OPT, while keepingπm = 0.1 for the other features.

The rationale is that RST behavior and option ordering can bechanged only through kernel

source-code modifications and usage of aggressive intermediate devices, neither of which

we believe is that common in today’s Internet compared to stack tuning. For queuing

delay, we use a simple exponential distribution with CDF1 − e−λx whose mean is set to

0.5 seconds (rateλ = 2). This produces Laplace jitter density:

f(z) =
λ

2
e−λ|z|. (3.21)

Note that usage ofλ = 2 is fairly pessimistic, with the majority of paths likely ex-

hibiting significantly smaller delays. For example, this model assumes 82% of the paths

produce over 100 ms queuing delays, 37% over 500 ms, and 14% over 1 second. For

packet loss, we use Google’s study [18] to setq = 3.8%, which was their highest rate of

SYN-ACK loss.

3.4.2 Results

Our next goal is to examine Hershel’s robustness in the presence of OWD jitter, packet

loss, and random feature modification by the user. We also aimto assess the sensitivity

of results to our choices of default parameters above. We simulate a FIFO queue between

the server and the client with a given delay distribution. Each packet is dropped by the

router with some probabilityqreal and each feature is independently modified with another

probabilityπreal. Since these are per-packet and per-feature metrics, it also makes sense

to examine the fractionχ = E[(1 − qreal)
|τj |](1 − πreal)

6 of all generated samples that do

not have any loss or feature modification, where the expectation is taken over allj.
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The distribution of popularitypreal(yj) ∼ j−α is set to Zipf with shape parameter

α = 1.2, which approximates the fact that some OSes are much more popular than others.

We do not attempt to make our assignment of indexj to each physical OS such that its

preal(yj) closely follows that in the Internet (which is unknown anyway); instead, the

simulation simply verifies performance of the proposed estimator when the OS frequency

is highly non-uniform. For that purpose, random ordering ofOSes in the database is

sufficient.

Table 3.6 shows classification accuracy for several scenarios of interest. We examine

three types of OWD with meanµ in the first column – Pareto1 − (1 + x/β)−α with

α = 3 andβ = µ(α − 1), exponential with rate1/µ, and uniform in[0, 2µ]. We use

the original Snacktime since the simplified version from [45] performs worse. Using just

the RTOs, Snacktime in the table starts at close to13%, but then deteriorates below1%

near the bottom. This amounts to essentially guessing across the116 available options

(i.e., 1/116 = 0.86%). Augmented with Win and later TTL, Snacktime begins at a more

healthy52− 58%, but then eventually reduces to single digits.

The next six columns show Hershel with its defaultλ = 2. Classifying just based on

the RTO vector, Hershel doubles Snacktime’s accuracy in thefirst three scenarios (i.e.,

the first 12 rows of the table), triples it in the next one, and improves byan order of

magnitude in the last one. As additional features are added,Hershel becomes even better,

with significant gains seen at the Win and OPT boundaries. This shows that unlike DF,

option strings form an orthogonal dimension to Win/TTL. TheMSS improves the result

further by3% and the RST packet by an additional0.5 − 3%, with the impact mostly

limited to high-loss cases.

Staying withλ = 2, observe that Hershel is quite insensitive to selection off(z).

Specifically, classification accuracy improvesnot whenλ equals1/µ or the PDF of real

delay matches (3.21), butasµ gets smaller or the tail of the delay gets lighter. This can
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OWD µ Snacktime Hershelλ = 2, q = 0.038 Hershel Hershel
distribution (sec) RTO +Win +TTL RTO +Win +TTL +DF +OPT +MSS +RST λ = 10 q = 0.1

qreal = 0, πreal = 0 (χ = 100%)
Pareto 0.5 12.6 51.8 58.3 22.1 81.4 86.2 88.5 96.2 99.72 99.72 94.62 99.69
Exp 0.5 12.8 51.8 58.3 21.9 82.6 86.9 89.4 96.5 99.92 99.94 96.21 99.82
Uniform 0.5 13.0 51.9 58.4 21.7 84.1 87.4 89.8 96.8 99.99 99.99 98.50 99.99
Pareto 0.1 16.3 56.9 62.9 33.1 93.0 94.9 96.7 99.0 99.99 99.99 99.69 99.99

qreal = 3.8%, πreal = 0 (χ = 84%)
Pareto 0.5 10.0 43.4 49.0 21.4 78.5 85.1 87.7 96.1 99.69 99.69 94.68 99.66
Exp 0.5 10.1 43.4 49.0 21.5 80.1 85.6 88.1 96.3 99.76 99.82 96.21 99.80
Uniform 0.5 10.3 43.4 49.0 21.7 81.1 86.4 89.0 96.7 99.96 99.96 98.50 99.96
Pareto 0.1 13.1 47.9 53.2 31.6 89.6 93.6 95.6 98.8 99.96 99.96 99.66 99.97

qreal = 3.8%, πreal = 10% (χ = 49%)
Pareto 0.5 10.0 39.9 44.4 21.4 72.7 77.7 78.6 91.4 94.93 95.37 90.13 95.25
Exp 0.5 10.1 39.9 44.4 21.5 73.8 78.3 79.1 91.6 95.02 95.55 91.78 95.34
Uniform 0.5 10.3 39.9 44.4 21.7 75.1 78.9 79.7 91.9 95.20 95.63 93.97 95.57
Pareto 0.1 13.1 44.3 48.5 31.6 83.8 87.3 87.7 95.0 96.54 96.92 96.67 96.87

qreal = 10%, πreal = 10% (χ = 34%)
Pareto 0.5 6.9 29.9 33.4 20.1 68.1 76.2 77.1 91.2 94.84 95.22 90.01 95.14
Exp 0.5 7.0 29.9 33.4 20.1 69.2 76.8 77.7 91.5 94.98 95.43 91.76 95.20
Uniform 0.5 7.2 29.9 33.4 20.1 70.4 77.4 78.3 91.7 95.13 95.51 93.82 95.46
Pareto 0.1 9.3 33.5 36.8 29.4 78.4 85.3 85.7 94.5 96.38 96.71 96.46 96.67

qreal = 50%, πreal = 50% (χ = 0.13%)
Pareto 0.5 0.82 2.37 2.49 10.4 23.7 28.1 35.6 53.7 56.65 59.95 58.95 60.23
Exp 0.5 0.83 2.37 2.49 10.5 24.1 28.4 35.9 53.8 56.74 60.12 60.40 60.31
Uniform 0.5 0.84 2.37 2.49 10.6 24.5 28.6 36.5 54.0 56.89 60.25 60.79 60.46
Pareto 0.1 1.11 2.90 2.95 14.4 28.3 32.0 40.5 56.8 59.45 62.68 64.84 63.06

Table 3.6: Classification accuracy (percent) in simulations of218 samples.
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be seen by contrasting the two Pareto cases (µ = 0.1 andµ = 0.5) and comparing Pareto,

exponential, and uniform cases (all withµ = 0.5). As the difference between the last three

scenarios is quite small, we conclude that the distributionof network jitter, as opposed to

its mean, generally has a minor effect on accuracy. Therefore, keeping the Laplace model

(3.21) appears reasonable.

To shed additional light on selection of parameters, the next column of the table re-runs

Hershel with all available features andλ = 10. While this slightly improves theµ = 0.1

case, this happens only under50% packet loss and at the expense of significant reduction

in accuracy in other rows, which suggests that1/λ shouldoverestimate, rather thanun-

derestimate, the real network delay. To this end, our previous conservative choiceλ = 2

seems quite appropriate. The last column of the table reverts toλ = 2 and demonstrates

that the model is insensitive to selection ofq. We thus keepq = 3.8% for the Internet

classification below.

3.5 Experiments

Our contribution in this subsection is to apply Hershel to a wide-scale Internet scan

and provide an assessment of the obtained classification.

3.5.1 Dataset Properties

We use Internet scan data from [45], which is based on a 2010 survey of webservers in

[55]. These IPs were discovered by sending port-80 SYN packets from Windows Server

2008 (with all TCP options enabled) to every address in BGP. The experiment garnered

37.8M samplesx that contained at least one SYN-ACK, which we later feed intoHershel.

We start by examining occurrence of various features in the dataset and their mapping to

signatures inD. We qualitatively group them into four types – linux, windows, embedded

(routers, modems, cameras, hardware gadgets), and other (BSD, Mac, AIX, NetApp, Big-

IP, SunOS).
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RTOs Hosts Sigs Group
3 9,639,810 27 all
2 9,070,991 16 windows, embedded
5 7,834,027 23 linux, embedded, other
4 5,066,940 16 unix, embedded
1 2,669,222 1 Dell printer
0 1,992,196 0 –
6 540,042 9 linux, embedded, other
19 202,733 2 embedded
18 162,442 0 –
17 110,335 0 –

Table 3.7: Top RTO counts (99% of total).

Window Hosts Sigs Group
5,792 10,143,772 4 linux
16,384 7,051,858 6 windows, embedded, other
8,192 4,266,370 17 windows, embedded
65,535 3,551,640 9 windows, other
5,760 2,643,274 0 –
5,840 981,136 3 embedded
16,000 781,225 5 embedded
4,096 775,473 5 embedded
1,024 758,230 4 embedded
2,800 677,211 1 TP-Link router

Table 3.8: Top window sizes (87% of total).

To first step is to ensure that packet loss has not produced totally unworkable temporal

features in the dataset. Table 3.7 shows the number of available RTOs per destination. It

is encouraging to see that the top four spots retain enough information for a meaningful

match and the most difficult case (i.e., single SYN-ACK) follows in sixth place. While the

average number of received packets was 5, one host transmitted over 3M SYN-ACKs. We

next analyze sanity of the remaining features and build intuition for what to expect from

Hershel classification.

The scan contains a staggering 3,815 unique window sizes, while our fingerprint col-
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lectionD has only 51. While users tuning their stacks and scrubbers modifying the OS

signature are possible reasons, we also found that the advertised window of SYN-ACKs

can be easily changed at the application layer by resizing the socket buffer (i.e., calling

setsockopt with the SO_RCVBUF option) before the connection is accepted. This

highlights the need for a flexible classifier that allows features to mismatch.

The good news is that the distribution of window size is heavily skewed towards well-

known values, as seen in Table 3.8. The most common window is unique to Linux variants,

while the most ambiguous is split across 17 operating systems. Interestingly, window size

5760 in position #5, which we later discovered belongs to Ubuntu, is absent not just from

ours, but also other fingerprinting databases (e.g., p0f, xprobe). We come back to these

hosts later and examine how Hershel classifies them. Ideally, unknown devices should be

mapped to the same OS family (i.e., Linux in this case).

Another peculiar case are 168K hosts with zero window size, which in our database

corresponds to a single device related to building automation. This particular stack forces

the sender to finish the 3-packet handshake (SYN, SYN-ACK, ACK) and wait for the

window to move before sending the first GET request. Immediately after the sender’s

ACK, the window expands to 12,288 bytes. Closed receiver windows can be an artifact of

rate-limiting firewalls or site policies related to congestion control. One notable example

is a popular host craigslist.com that prior to 2006 was completing all TCP handshakes

with window size zero [58]. Other usage of this technique comes from network tarpits [3],

which aim to slow down scanners by advertising small windowsin SYN-ACKs. All of

this suggests that the true window size may remain "hidden" from the fingerprinting tool

for reasons unrelated to users, scrubbers, or TCP socket options.

The TTL values of received packets are plotted in Fig. 3.4(a), covering 251 unique

points out of the 255 possible. A vast majority of the hosts are clustered on the values

just before the initial TTL defaults 64, 128, and 255. Fig. 3.4(b) shows the distribution of
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Figure 3.4: Received TTL and reverse path length.

TTL Hosts Sigs Group
64 26,275,301 70 linux, embedded, other

128 7,129,667 17 windows, embedded, other
255 4,214,927 22 linux, embedded, other
32 190,697 7 embedded

Table 3.9: Initial TTL distribution (100% of total).

reverse hop length for each host back to the scanner, calculated by subtracting the received

TTL from the nearest well-known initial value. This distribution appears reasonable, with

less than 0.4% of the mass below 10 or above 30 hops. This suggests the number of non-

standard initial TTLs (if any) is small. Table 3.9 shows the distribution seen by Hershel

and the corresponding number of signatures inD.

A good number of hosts (69%) set the DF flag, indicating they intend to perform

path-MTU discovery, which matches 45% of the signatures. Out of 37.8M responsive

targets, 5.9M (16%) send at least one reset packet (in addition to the SYN-ACKs), which

is consistent with 56 OSes. The reset window (RW) deviates from that in the SYN-ACK

for 20.8% of the IPs and 8 fingerprints inD.
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Feature Hosts Sigs Group
RA= 1, RN= 1 4,368,098 35 embedded, other
RA= 0, RN= 1 1,167,761 11 windows, embedded
RA= 0, RN= 0 367,915 10 embedded
RA= 1, RN= 0 37,113 0 –

Table 3.10: Breakdown of5.9M hosts with RSTs.

Options Hosts Sigs Group
MSTNW 13,156,171 8 linux
MNWNNT 6,214,837 18 embedded, other
MNWNNTNNS 5,579,866 12 windows, other
M 5,431,682 41 embedded
MNW 2,656,342 5 linux, embedded, other
MNWST 1,107,935 2 windows, unix
MNWNNTSEE 762,593 4 other
MNNSWNNNT 412,602 0 –
MST 370,699 1 Windows Vista/7
MNNSNW 339,215 1 Akamai linux

Table 3.11: Top options strings (95% of total).

Table 3.10 examines the interplay between RA and RN in reset packets. In the most

common scenario, hosts indicate that the ACK sequence is valid and correctly acknowl-

edge values one larger than transmitted by the scanner in theSYN packet (which encodes

the destination IP); however, there are also 37K hosts (lastrow) with broken implemen-

tations that indicate a valid ACK, but set the field to zero. None of our signatures exhibit

this behavior.

We have 21 unique combinations of options inD; however, the dataset shows 264

different strings, with the top 10 provided in Table 3.11. Similar to Table 3.8, a few

popular cases account for the majority of IPs and Linux variants hold a clear lead, but

now the most ambiguous combination splits across 41 embedded devices. While Akamai

currently reports 137K servers [2], it seems reasonable that multiple NICs and IP aliasing
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MSS Hosts Sigs Group
1460 21,969,799 70 all
512 3,523,272 9 embedded

1452 3,512,626 2 embedded
1380 1,633,852 3 windows, embedded
1440 1,472,969 2 linux, embedded
1400 1,074,502 2 embedded
536 620,013 7 embedded

1448 562,961 0 –
1420 431,720 1 Avocent KVM switch
768 419,326 2 embedded

Table 3.12: Top MSS values (93% of total).

can produce 339K samples in last row.

Practically every host (99.5%) supports the MSS option, with Table 3.12 showing the

top 10 cases out of the 1,021 observed in the dataset. The mostcommon MSS 1460

does not provide much information about the OS, but the othervalues appear useful at

partitioning the dataset into small groups. On the downside, general-purpose OSes often

set the MSS as a function of the underlying data-link layer (i.e., MSS = MTU – 40), which

creates some interesting dilemmas. For example, MSS 1452 inthird place can be classified

as one of two embedded devices or as home computers with 1492-byte MTUs commonly

seen over PPP links such as DSL. This emphasizes importance of Hershel’s probabilistic

matching (3.15) and explains the significantly smaller number of unique MSS values inD

(i.e., only 20).

3.5.2 Classification Overview

We run Hershel on the scan dataset and obtain a non-zero classification probability

for 37.4M devices. Before showing these results, we performadditional sanity checks by

examining how often individual features of each IP matched those in the most-likely OS

suggested by Hershel.
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Feature Fraction RST possibilities Fraction
Win 70.3% Neither has RST 80.9%
TTL 95.2% Both have RST, match 10.4%
DF 96.2% Missing RST 4.2%
MSS 70.6% Both have RST, non-match 3.5%
OPT 99.4% Bogus extra RST 1.0%

Table 3.13: Hershel’s feature match rate.

Starting with the first two columns of Table 3.13, observe that window size is quite

volatile, with 30% of the decisions going to signatures witha different window. This was

expected given the numerous reasons to modify this field and the large amount of unique

values seen earlier. Additionally, these 30% cover unknowndevices whose RTOs and other

features may match some OS inD, but not the window size. Hershel remains robust in

these cases and simply identifies the closest signature based on the available information.

For example, 98.4% of Ubuntu cases with the unknown window 5760 are classified to

Linux 2.4/2.6. These 2.6M hosts account for 25% of all windowmismatch.

TTL and DF both exhibit match rates over 95%, while MSS comes in much lower

at 71%. This is not surprising in light of its dependency on the MTU. The OPT string

proves extremely reliable, where 77.4% of the cases match exactly and 22% are feasible

subsets/supersets of the original. The five possible cases with RST packets are shown in

the other two columns of Table 3.13. Combining the first two rows, we can conclude that

91% of the hosts have a matching RST feature. The next row withmissing RSTs allows

us to ballpark network packet loss atqreal = 4.2%, not too far from the model’s 3.8%. The

majority of non-matching combinations (RA, RN, RW), responsible for 3.5% in the table,

are caused by RW. Some of this behavior was also expected since tweaking of window

size causes certain OSes to alter RW as well. Finally, we see 1% of the cases with extra

RST packets, which we suspect are injected by firewalls, NAT boxes, and other devices as

indication that they have expired the per-flow state.
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OS Count
Linux 2.6 / 2.4 9,610,732
VxWorks embedded systems 4,179,583
Windows Server 2003 SP1 SP2 2,316,590
VxWorks 5.4.2 / Xerox embedded 1,890,585
Linux 2.6 / Debian / CentOS / SonicWall 1,196,143
Embedded Linux / Mikrotik routers 1,190,102
Windows Server 2008 SP1 SP2 R2 / Vista / 71,146,609
TP-Link / Iball / Huawei home routers 1,046,985
Windows Server 2003 / 2000 / XP SP1 1,001,343
Cisco / Scientific Atlanta cable modems 827,285

Table 3.14: Top individual signatures (65% of total).

Group Count
Linux 13,882,999
Embedded 13,590,803
Windows 7,561,839
Other 2,396,455

Table 3.15: Common families of operating systems.

3.5.3 Results

Having verified the general soundness of Hershel’s output, we show it in Table 3.14.

Linux attracts the most classification decisions, accounting for nearly a quarter of the

webservers. This signature is quite unique, which makes accidental lumping of unknown

devices or misclassified hosts into this category highly unlikely. In second and fourth place

is VxWorks, which is an embedded OS extensively used in routers, modems, cameras, and

printers. Interestingly, Windows 2003 is third, well aboveServer 2008 in seventh position.

More Linux, home routers/modems, and Server 2003/XP make upthe remaining OSes.

Table 3.15 groups fingerprints by type. Linux not just takes the first spot, but it dom-

inates all other types of unix combined by a factor of 6. Embedded systems continue in

second place, while windows is firmly in third. Interestingly, these results differ quite a bit
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IPs Result Count
Consensus 429 Both correct 424

Neither correct 3
Indeterminate 2

Disagreement 571 Hershel correct 476
Snacktime correct 9
Neither correct 6
Indeterminate 80

Table 3.16: Manual verification.

from those in prior application of Snacktime to this dataset[55], with the most noticeable

difference being 9M hosts moving from windows to embedded. This is not surprising as

Snacktime’s ability to overcome noise, packet loss, and feature corruption is quite weak.

Further, as shown above, Microsoft OSes often share the window size and TTL with em-

bedded devices, making this distinction even more difficultfor Snacktime.

To better understand the difference between these methods,we carry out comparison

using manual analysis of 1,000 random targets for which we had an HTTP header from

a separate download process that grabbed the root page of each replying IP (this was

done in real-time during the 2010 scan). Table 3.16 shows theresult. The first category

in the table breaks down 429 hosts on which both methods produce the same exact OS.

Out of these, 424 are correct matches, 3 incorrect, and 2 indeterminate. The last option

occurs for devices inadequately represented in the database (i.e., no resemblance to any

signature) or when multiple OSes appear to be probable (e.g., due to extensive packet

loss or missing/ambiguous "Server:" field in the HTTP response header). Among the 571

disputed hosts, Hershel delivers 476 correct results and Snacktime 9.

We can make a decision for 918 cases, out of which Hershel’s accuracy is 98% and

Snacktime’s is 47%. The 9 cases where Hershel is wrong, but Snacktime is right, are

caused by bogus RSTs, which Snacktime ignores, but Hershel takes into account. Overall,

we find that when the two methods disagree, Hershel is overwhelmingly more accurate.
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Country Hosts Windows Linux Embedded Other
US 16,187,542 16.1% 30.4% 47.2% 5.2%
CN 2,345,462 54.1% 14.2% 14.6% 16.1%
ES 1,620,920 4.1% 89.2% 5.5% 0.8%
JP 1,614,724 11.3% 37.0% 35.8% 14.7%
DE 1,043,699 19.9% 57.7% 15.7% 5.7%
GB 862,571 32.1% 34.8% 25.0% 5.9%
CA 849,285 25.9% 45.3% 12.8% 14.7%
IT 810,104 14.3% 53.3% 29.1% 1.7%
BR 685,597 14.5% 52.8% 25.2% 5.3%
TW 644,645 35.9% 47.2% 10.8% 5.3%

Table 3.17: Top countries running webservers (71% of total).

AS Size Owner Hosts Windows Linux Embedded Other
7922 71.0M Comcast Cable 3,444,634 3.3% 6.2% 89.8% 0.3%
4134 109.7M Chinanet 988,397 50.7% 13.3% 15.9% 18.5%
3352 10.9M Telefonica de Espana 861,222 2.3% 92.0% 4.8% 0.5%
4837 54.5M CNC Group China 595,931 53.2% 9.4% 15.0% 21.7%
20001 5.7M Time Warner Cable 485,766 2.4% 1.5% 95.4% 0.3%
11351 4.9M Time Warner Cable 436,329 2.0% 1.1% 96.3% 0.2%
2914 7.7M NTT America 429,648 25.6% 20.6% 20.3% 33.1%
22773 11.9M Cox Comm. 426,807 4.8% 2.8% 90.8% 0.6%
7018 75.2M AT&T Services 373,068 31.0% 36.2% 18.9% 11.0%
7155 988K Viasat Comm. 370,821 39.0% 0.0% 60.9% 0.0%

Table 3.18: Top ASes running webservers (22% of total).

3.5.4 World View

Next, we use the MaxMind GeoIP database [23] to glean trends in OS usage around

the globe. Table 3.17 shows the top countries in the measurement. The US leads the

list, accounting for almost half of the discovered web servers (i.e., 16M out of 37M) and

exceeding China in second place by a factor of 8. The distribution of OS popularity is

quite diverse, with only Italy and Brazil exhibiting similar vectors. Interestingly, Linux

prevails over Windows in all countries except China; Spain stands out with 90% Linux,
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far more than any other locale in the list; and the US has the highest fraction of embedded

devices among the entries in the table.

Table 3.18 breaks down the data by AS, shedding additional light on the results. Home

access providers in the US (i.e., Comcast, Time Warner, Cox)are full of embedded devices,

likely consumer routers and modems. In combination, these 4.8M boxes represent 30%

of the discovered servers in the US, which helps explain the high percentage of embedded

stacks seen earlier. Similarly, Telefonica de Espana, a large telecommunications provider

in Spain and South America, is responsible for 50% of Spanishwebservers in our dataset.

This company is known for collaborations with RedHat and a cloud-computing emphasis

[103]. Its 92% bias towards Linux is consistent with an earlier observation that Spain is

dominated by this operating system. China’s propensity towards Windows may stem from

lax software-piracy laws, with 67% of its devices coming from two ISPs in Table 3.18,

each replete with Microsoft OSes.

3.5.5 Scrubbers

While the Hershel’s main purpose is large-scale measurement, where OS scrubbing is

not likely to be prevalent, it still makes sense to examine its performance in such scenarios.

Table 3.19 lists four obfuscators mentioned in existing literature and available for testing.

The first is Linux iptables, part of the packet-filtering framework called netfilter [68].

It is commonly used to inspect packets, modify routing tables, and configure the kernel

firewall. It has extensions that ‘mangle’ packets and changecertain header fields; however,

the only ones of interest to Hershel are TTL and MSS. OSfuscate [20] is a Windows

scrubber that thwarts fingerprinting tools by changing the registry. It can modify Win,

TTL, MSS, and certain options (i.e., drop SACK and timestamps). Along similar lines,

TCP Optimizer [75] gives its users ability to change the samefive registry values, in hopes

of improving TCP transfer speed. Finally, IPPersonality [90], built on top of the netfilter
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Tool Win TTL DF TCP Options MSS
Netfilter iptables – X – – X
OSfuscate X X – Drop S and T X
SG TCP Optimizer X X – Drop S and T X
IPPersonality X X X Replace or reorder X

Table 3.19: Capability of OS obfuscation tools.

Loss Snacktime Hershel
(%) All RTO -RST-RTO -RST RTO All RTO+RST
0.0 9.9 12.6 0.0 11.8 22.1 36.6 47.6
3.8 7.8 10.0 0.0 11.4 21.4 34.8 45.3
10 5.2 6.9 0.0 10.9 20.1 31.9 41.8
50 0.6 0.8 0.0 6.0 10.4 15.6 20.5

Table 3.20: Scrubbed accuracy (percent) among all OSes.

framework, is the most sophisticated scrubber in the list. It can modify all Hershel features

except RST and RTO.

To evaluate performance against scrubbers, we simulate theworst-case scenario – IP-

Personality with an adversary who mimics the signature withthe closest RTO vector from

another OS family (i.e., windows, linux, embedded, other).Table 3.20 shows the result

using Pareto OWDs (µ = 0.5 sec) and the Zipf setup from Table 3.6. Snacktime stays in

the single digits, showing performance slightly below thatof using just the RTOs. Her-

shel with only the fixed features from previous literature (i.e., all except RTO and RST)

produces the expected 0% match rate. Adding the RTO pushes accuracy to 6-12%, but

this far from impressive – the RTO alone works better, achieving 10-22%. Employing all

Hershel features almost doubles the result; however, the real winner in this comparison is

the RST+RTO combination, which reaches as high as 47%.

Limiting the simulation to 26 Windows/Linux signatures that the scrubber modifies

using the same rules produces a more challenging case outlined in Table 3.21. There is
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Loss Snacktime Hershel
(%) All RTO -RST-RTO -RST RTO All RST+RTO
0.0 2.5 5.9 0.0 5.0 14.6 31.8 41.7
3.8 2.0 5.0 0.0 4.7 14.1 29.8 39.4
10 1.4 3.8 0.0 4.5 12.9 26.9 35.7
50 0.1 0.5 0.0 2.2 6.2 12.0 16.3

Table 3.21: Scrubbed accuracy (percent) among Windows/Linux.

an accuracy reduction in all categories, but the scrubber-resilient version of Hershel still

manages to correctly pinpoint over 41% of the samples that sustain no loss.

3.6 Conclusion

In this section, we modeled the problem of single-packet OS fingerprinting and de-

veloped novel approaches for tackling delay jitter, packetloss, and user modification to

SYN-ACK features. Based on this theory, we created a classification method called Her-

shel, that significantly increased the accuracy of existingtechniques, both in simulation

and the real Internet. We employed Hershel on a large Internet dataset, obtaining classifi-

cation of 37.4M hosts, and broke down the results to show OS usage of different countries

and ASes. Finally, we also verified Hershel’s robustness to scrubbers, showing that re-

spectable accuracy can still be maintained by ignoring the scrubbed features.
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4. AUTOMATED DATABASE CREATION*

4.1 Introduction

For classifiers such as Hershel to work, there must be a process that establishes sig-

natures for known types of behavior and builds a database that contains all sufficiently

different specimens found in the wild. To keep results up-to-date, new signatures must

be periodically acquired and merged into the existing database. This is often a manual

process that suffers from human error, poor repeatability,heuristic decisions, and database

compositions incompatible across different classification methods.

To overcome these problems, in this section we investigate algorithms and models for

automated creation of clusters among the available samples, elimination of duplicates, and

assignment of labels to the resulting signatures. We next explain the issues involved and

our results.

4.1.1 Motivation and Contributions

Performance of each classifier depends on not only its internal algorithms, but also

databaseD and types of volatility experienced during measurement. This makes compar-

ison between different approaches (e.g., Nmap [73], Snacktime [7], p0f [122], Hershel)

fairly complicated, especially if they utilize incompatible sets of features, databases, or as-

sumptions on feature determinism. For example, consider methodM1 with n signatures

andM2 with m ≪ n. It may appear thatM1 is more powerful because itsD is big-

ger; however, its classification accuracy may be lower due tothe larger number of options

to choose from and/or less reliable decision-making. Additionally, the specific model of

distortionX (i.e., noise in certain features) applied during the experiment may have a dra-

*Reprinted, with permission, from "Unsupervised Clustering Under Temporal Feature Volatility in Net-
work Stack Fingerprinting" by Z. Shamsi and D. Loguinov which appeared in [93] and [94].c© 2017 IEEE.
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matic impact on the result. In such cases, it is possible thatM1 resorts to random guessing

and makes inferior choices to those ofM2.

To capture these aspects, our first contribution is to propose that each classification

method be characterized by the number of signaturesd(1 − ǫ,X ), which we call thedi-

mension, between which it can differentiate with probability at least 1 − ǫ under a given

noise modelX . We also argue that databaseD should be customized to each pair(ǫ,X )

to contain exactlyd(1 − ǫ,X )-separable signatures. To determine the dimension and the

correspondingD, our second contribution is to propose an algorithm we call Plata1, which

disturbs each candidate signature inD usingX and verifies that it can be matched to itself

with probability at least1 − ǫ. Samples that fail to meet this criterion are eliminated and

classification decisions among other signatures are redistributed in an iterative procedure

that stops when all remaining candidates are(1 − ǫ,X )-separable. Assuming availabil-

ity of labels for a subset of initial candidates, we explain how Plata automatically assigns

them to thed generated clusters.

We apply these concepts to Hershel, which allows random OS behavior and provides

probabilities, rather than heuristic weights, for the match across any pair of samples. We

focus on its temporal network features (i.e., delay jitter)since they are highly volatile and

fairly well-understood, but difficult to separate using manual analysis.

This leads to our third contribution that consists of building a Plata database using

9.7K webservers discovered in our campus network and passing all HTTP headers through

simhash [60] to label the elements ofD. Using only delay features, we show that Hershel

achieves 80%-separation under 500-ms random distortion on117 signatures. Adding de-

terministic header values, this number jumps tod(0.8,X ) = 398, which is 3.4 times larger

than the database we used in Section 3.

While Plata works well, its Monte Carlo simulations requirea large amount of CPU

1The city of La Plata in Argentina pioneered fingerprint databases in 1892.
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time to compute the Hershel probabilities (i.e., over 24 hours using 16 cores). There-

fore, our fourth contribution is to build a closed-form model for the matrix produced by

Plata. This leads to an interesting discovery that Hershel’s iid (independent and identically

distributed) jitter assumption is violated in practice, making the model disagree with sim-

ulations. We therefore create a novel classifier for temporal features that relies on one-way

delay instead of jitter. We call the resulting method Hershel+ and show that it is not only

more accurate, but also faster than Hershel after an appropriate expansion of integrals.

It also admits a closed-form representation of the entire Plata matrix, which reduces the

separation time to just 12 minutes and boosts our database dimension to 420 separable

signatures. All of this forms our fifth contribution.

We finish the section by scanning the Internet on port 80 and applying Hershel+ to

the result. Among Internet-wide studies, this is the largest population to be fingerprinted

(i.e., 66M IPs), using the most extensive database (i.e., 420 signatures), and the first such

attempt with an automatically generatedD. Compared to the scan dataset from 2010

that we used with the Hershel classification earlier, we find that the number of Linux and

embedded devices has almost doubled, while that of Windows has remained stable. We

compare some of our results with those of Nmap and discover a major flaw in the operation

of the latter that surfaces in scenarios with non-ideal network conditions (e.g., firewalls).

More importantly, however, we conclude that stochastic network effects do not impede the

use of temporal features, but they require a more careful database construction process.

Our proposed framework of Plata and Hershel+ is a step in the direction of automated,

repeatable, and streamlined classification of massive datasets.

4.2 Background

The majority of efforts in stack fingerprinting [6], [7], [17], [50], [65], [73], [105],

[112], [122] concentrate on introducing new features and designs to further distinguish
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between the OSes, thus improving the classification step; however, they universally rely

on manual effort to construct databases. Since nearly all ofthem rely only on deterministic

features, database creation is fairly uncomplicated.

The closest related problem to ours is automatic discovery of features that can be used

to differentiate one OS from another. For example, [15] proposes a set of rules built from

sending out a large number of probes (i.e., 300K) to controlled hosts and randomly varying

header fields to detect patterns that produce OS-specific responses. The authors show that

this method can reliably differentiate between three stacks (i.e., Windows XP, Linux 2.6,

and Solaris 9) in a LAN environment.

In [88], this idea is explored at a larger scale by increasingthe number of network

stacks and applying a wider range of machine-learning algorithms from the Weka tool [40].

However, their results from scaling this approach to more signatures are quite pessimistic

– the authors conclude that over-fitting to non-deterministic header fields, training bias

towards certain implementations, and lacking semantics lead to confusion for the learning

algorithms.

4.3 Overview

We start by defining the type of decisions we are facing and theinherent challenges.

While we later use examples from stack fingerprinting, the same concepts are applicable

to broader families of problems.

4.3.1 Terminology

Classifiers rely on vectors of distinctive features that identify each specimen, either

uniquely or with some reasonably high probability. The former case arises when the fea-

tures aredeterministic, meaning all inspections of a given system produce the same result

(e.g., the order of TCP options). The latter case occurs whenthe features are inherently

randomdue to some non-deterministic processes running within thespecimen (e.g., SYN-
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ACK retransmission delays). Features of either type may undergo additional modification

due to influence of system owners or as byproduct of the measurement process, in which

case we call themvolatile (e.g., users tuning the TCP window size, queuing delays affect-

ing packet spacing). All four types are illustrated in Fig. 4.1(a).

Note that volatility and randomness are not the same – the former arises due to forces

externalto the object being classified, while the latter due tointernal. This distinction is

important when internal disturbances exhibit substantially larger variance than external,

or produce patterns that cannot be accounted for in the volatility model alone. With this

in mind, we call classifierssimple if they operate using only non-volatile deterministic

features (i.e., type-1 in Fig. 4.1(a)) andcomplexotherwise (i.e., types 2-4).

Consider an automaton that performs classification decisions for measurementsx using

some databaseD. We call the matching processmembershipif it returns the probability

thatx ∈ D, where determination of the most-likely match is not important. One example

is intrusion detection that aims to decide whether payloadx is malicious or benign against

a database of known exploits. We call the processidentificationif the result must produce

the one signaturey ∈ D with the highest similarity tox. Stack fingerprinting falls into

this category. In either case, the accuracy of the method is assessed by the percentage of

correctly classified values under a particular model of volatility.

4.3.2 Challenges

We are now ready to describe the problem of creatingD. Assume a measurement of

several, possibly duplicate, specimens. Membership classifiers are not overly concerned

with high-precision duplicate elimination as these have noeffect on accuracy, only on

speed and memory consumption. Simple identification classifiers can constructD by re-

taining the observations with unique combinations of features, which makes the problem

trivial. However, complex identification classifiers must instead ensureseparabilityamong
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Figure 4.1: Classifier features.

the signatures, keeping only those that can be reliably distinguished from each other under

various types of distortionX . Inseparable specimens inD drop classification accuracy and

increase overhead, while offering no tangible benefit.

To visualize this better, Fig. 4.1(b) plots random featuresof four hypothetical systems

– circles, squares, diamonds, and triangles – where each point is a random observation

of the corresponding system. Assuming uniformly random noise centered at each sam-

ple, distortionX1 keeps circles and diamonds separable, but not necessarily triangles and

squares. Dropping either of the last two leads to a separable3-signature database. For

larger radius of noise (e.g.,X2 in the figure) the database may consist of only two separa-

ble signatures – diamonds and one of circles/squares/triangles.

Our goal in this section is to study separation algorithms for volatile and/or random

features, with application to inter-packet delays in wide-scale stack fingerprinting. This

problem arises in single-packet techniques [7], [112] whose classifier must heavily rely

on temporal features. The general appeal of these methods includes low bandwidth con-

sumption (i.e., no extra packets beyond those sent by the scanner), a reduced probability

of tripping IDS, no requirement that the target respond on closed ports or multiple pro-

tocols, and good scalability in Internet-wide classification. However, unlike traditional
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tools (e.g., Nmap [73]) that rely on deterministic features, single-packet classifiers require

prohibitively expensive manual effort to construct databases of non-trivial size. Since this

problem has not been studied before, we address it below.

4.4 Database Creation Using Plata

This subsection describes our technique for ensuring separability between observations

with volatile/random features and building a database on top of such measurements.

4.4.1 Preliminaries

Traditional manual construction ofD isolates each unique system and lets the clas-

sifier analyze it separately. In contrast, our framework assumes a one-step measurement

process that remotely probes production systemsS1, . . . , Sn and builds the entire database

without knowing which ones are duplicates of each other. We allow these specimens to

exhibit feature randomness and aim to constructD that is(1− ǫ)-separable under a known

volatility modelX .

To capture random behavior, each specimenSi must be observed several times to es-

tablish a distribution of its behavior. Let∆i be the corresponding random feature vector

whose probability mass function (PMF)

pi(δ) := P (∆i = δ) (4.1)

is built from observation. Note thatδ = (δ1, δ2, . . .) is a deterministic feature vector that

consists of multiple scalar values. Using a pair of initial RTOs (SYN-ACK retransmission

timeouts), Fig. 4.2(a) shows the distribution of∆i for two Xerox printers in our dataset.

Depending on the target jitter modelX , these two hosts may very well be(1−ǫ)-separable;

however, doing so manually for hundreds of thousands of points is close to impossible. To

compound the issue, the majority of systems use random vectors with at least 3 dimensions
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and some with over 20.

Classifiers that deal with random features must provide a functionp(δ|δ′,X ) that pro-

duces asimilarity scorefor each pair of deterministic vectors(δ, δ′) under a given volatility

modelX . This metric estimates the likelihood thatδ′ has been distorted toδ during re-

mote measurement. Then, similarity between two observed systems(Si, Sj) is given by

the following expectation

p(∆i|∆j,X ) =
∑

δ

∑

δ′

p(δ|δ′,X )pi(δ)pj(δ
′). (4.2)

For a giveni, classifiers are typically concerned with findingj that produces the largest

value in (4.2). However, we are facing a different problem that requires normalization.

Let πi(X ) :=
∑n

j=1 p(∆i|∆j,X ) be the total similarity weight of systemSi across all

available optionsj. Depending on the classifier,πi may not always be 1. To handle such

cases, define

q(∆i|∆j,X ) =
p(∆i|∆j,X )

πi(X )
(4.3)

to be the probability thatSi gets classified asSj . Now suppose systemsS1, . . . , Sn are de-

ployed in a production environment (e.g., wide-area Internet) and measured using remote

probing. Therefore, instead of seeing∆i, the observer now samples∆i+θ, where random

vectorθ is driven by the same distortion modelX . We are thus interested in identifying

the largest subset ofS1, . . . , Sn in which each system can be matched back to itself with

probability at least1− ǫ under noiseX , i.e.,E[q(∆i + θ|∆i,X )] ≥ 1− ǫ.

4.4.2 Matrix Construction

We next describe our database-construction framework, which we call Plata. It starts

by building a confusion matrixM = (Mij), where each cellMij = E[q(∆i + θ|∆j ,X )]
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Figure 4.2: Randomness of RTO features and elimination of duplicates in Plata.

and the expectation is taken overθ. In general, classification decisions and vectorsθ may

be available only as output of some algorithm. For example, the former might be a C4.5

decision tree and the latter may require simulations of a specific queuing discipline. In

such cases, the only solution is to run Monte-Carlo simulations that repeatedly distort∆i,

classify the resulting observations, and average the result to obtain an approximation to

Mij .

To this end, suppose we generater vectorsθ1, . . . , θr by simulatingX . Using the PMF

in (4.1), we obtain the same number of instances from random variable∆i, which we call

δ1i , . . . , δ
r
i . Then, the approximate matrix is given by

M̃ij =
1

r

r
∑

m=1

q(δmi + θm|∆j,X ). (4.4)

Since this expands to

M̃ij =
1

r

r
∑

m=1

∑

δ′

q(δmi + θm|δ
′,X )pj(δ

′), (4.5)
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the overhead of constructing̃M is determined by the product ofr, matrix sizen2, the

number of unique valuesδ′, and complexity of computingp(δ|δ′,X ), which typically is a

linear function of the combined vector length|δ|+ |δ′|.

4.4.3 Separation

Once complete, the diagonal of̃M contains the probability of self-classification under

X . The next task is to iteratively eliminate specimens that disperse a significant frac-

tion of classification decisions to non-diagonal cells until the target(1− ǫ)-separability is

achieved, i.e., allM̃ii ≥ 1 − ǫ. At each step, Plata removes rowk with the smallest di-

agonal value and redistributes its probability weights to the remaining systems. The naive

approach is to re-run Monte-Carlo simulations and build a new matrix with dimension

(n − 1) × (n − 1); however, this is extremely expensive, especially whenr is orders of

magnitude larger thann.

The second option is to infer the new weights using a model andbuild a sequence of

approximations that produce a final matrix similar to that inthe naive method. Consider

row i that needs to partitioñMik, i.e., the probability to classifyi ask, among the other

columns. If we assume that in the absence of systemk, classification decisions follow the

remaining probabilities in rowi, the likelihood to classifyδmi + θm asj 6= k now becomes

M̃ij/(1 − M̃ik). Multiplying this by the weight being removed and adding to the current

M̃ij , we get the following transformation that keeps row sums invariant

M̃ij = M̃ij +
M̃ij

1− M̃ik

M̃ik. (4.6)

Note that if none ofi’s classifications went to systemk, i.e., M̃ik = 0, row i does

not change. This process continues until all diagonal values are above1 − ǫ. The re-

maining systems at that stage are added to the database and their number establishes the

(1 − ǫ,X )-dimension of the classifier. An example of this reduction process is shown in
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Fig. 4.2(b), where the rows are sorted in ascending order ofM̃ii for convenience of pre-

sentation. Settingǫ = 0.2, there are three rows that violate separability constraints. Since

(S1, S2) are both similar toS3, but none of them resemblesS4, intuition suggests the initial

measurement may contain only two separable specimens. After removal of the first row,

all diagonals receive a boost, but(S2, S3) are still inseparable. Another iteration produces

the expected two vectors that match themselves with probability 0.95 or better.

Note that1 − ǫ can be used as a tuning parameter – larger values reduce the number

of eventual vectors in the database, while smaller values preserve more, but at the risk of

having more duplicates and poor classification accuracy. Although onlyM̃ii is compared

against1 − ǫ, the entire matrix needs to be recomputed after each iteration. This is nec-

essary in order to properly distribute the weights of eliminated systems using (4.6). Thus,

the complexity of each step isn2, repeatedn − d times, whered := |D| is the size of the

final database.

4.4.4 Labeling

Once databaseD is created, Plata needs to assign system-identifying labels to the

available signatures. Assume a process that collects mappings from eachSi to the cor-

responding labelli using some type of download (e.g., port-80 HTTP requests), oracle

input, or other means, but possibly for a subset of the known specimens. Incomplete la-

beling may occur due to bandwidth constraints, obfuscationof certain systems by their

administrators, and generic software names (e.g., apache)that fail to identify the underly-

ing system. Since labels might be available for hosts that have been discarded during the

matrix-separation step, we must again consider the entire setS1, . . . , Sn. To this end, we

classify each known specimen usingD and produce a set of clustersC1, . . . , Cd, whered

is the(1− ǫ,X )-dimension of the database/classifier obtained earlier by Plata.

To eliminate duplicate labels, a separate procedure clusters them into multiple cate-

57



L1 

L2 

L3 

L4 

L5 

Labeled  

L1 

Labeled  

L2 / L3 / L4 

Labeled  

L4 / L5 

C1 

C2 

C3 

label clusters database clusters 

Figure 4.3: Applying labels to database clusters.

goriesL1, L2, . . . using some type of string-similarity matching. As shown in Fig. 4.3,

there is a directed edge between clustersLk andCj if there exists a systemSi ∈ Cj such

that its labelli ∈ Lk. Note that this forms a bipartite graph in whichLk may point to

multiple clustersCj . Plata leaves the specifics of choosing the right label for eachCj to

the application. One option is to combine the labels of all in-neighbors, as done in Fig.

4.3. Another option is to assign weights to edges (e.g., equal to the number of correspond-

ing Si’s) and enforce some minimum frequency before a label is considered valid. This

can be further extended to allow for majority voting. For example, 100 hosts with label

"Linux 2.4" and two with "Windows 7" mapping toCj probably indicate the former is

more appropriate than the latter.

4.5 OS Fingerprinting Database

Plata is quite general and does not assume much beyond existence of similarity func-

tion p, algorithms to produce distortionθ, and ability to observe remote systems. We now

apply this framework to our problem of OS stack fingerprinting under random/volatile
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features.

4.5.1 Classifier

The database for single-packet fingerprinting tools has evolved from 25 signatures in

[7] to 98 in [55], and eventually to the set of 116 signatures we built in Section 3, but the

corresponding(1−ǫ,X )-dimensions of the underlying classifiers remain unknown. So far,

manual construction ofD in these tools has relied on separation only across deterministic

features (e.g., window size, TTL, RST bit) and never examined how to determine whether

two hosts with the same fixed header values have sufficiently distinct RTO vectors. To

address this issue, we next apply Plata to temporal featuresof single-packet classifiers and

build the first OS-fingerprinting database that is separableacross random/volatile features.

4.5.2 Data Collection

We scan our campus network (three /16 blocks) on port 80 to obtain observations

∆1, . . . ,∆n from responsive hostsS1, . . . , Sn. Since each∆i may be random due to

kernel-scheduling peculiarities, as in Fig. 4.2(a), we persist in gatheringw = 50 RTO

vectors from each host, which is typically enough to capturewhatever variation∆i may

exhibit. Additionally, to exclude lossy vectors from beingincluded in the database, the

scanner continues until it receivesw samples of the maximum length seen so far. Since

packet loss in our network is low, quick convergence follows– the average number of SYN

probes per responsive IP was 50.14.

As eachSi is a public server, care needs to be exercised to not overloadthe target with

w back-to-back requests and cause unnecessary side-effects(e.g., rejected connections,

CPU overload). However, as it turned out, even conservative1-second inter-SYNs delays

were too small. One such problem surfaced with certain printers, whose SYN-backlog

queue [125] was smaller thanw. When the queue was full, the printers terminated the old-

est ongoing sequence of SYN-ACKs and started a new one. This caused the corresponding
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∆i to exhibit random truncation and presented difficulties in obtainingw loss-free obser-

vations. We eventually settled on delaying SYN probes by 240seconds, i.e., double the

TCP MSL (maximum segment life), which solved the problem.

The final caveat relates to OS kernel timing of RTOs. As we speculated earlier, some

hosts use a global timer that is independent of the SYN arrival time to generate SYN-

ACKs for half-open connections. This causes the first RTO (and sometimes the remaining

ones) to be randomized in some default range. In such cases, it is important to capture

these effects in the database. We thus add random variableU to 240 seconds to avoid

SYNs synchronization with any global clocks. OurU is uniform in [0, 3] seconds, but

other options are possible as well.

Along with the scan, a separate process opens a connection toeach responsive host

and attempts to download its root page over HTTP. While banner grabbing is not generally

considered reliable because any identification strings maybe replaced by OS-oblivious

names (e.g., apache) or altogether removed, it works for ourpurpose since admins have

no incentive to obfuscate OS names behind our campus firewall, and Plata only needs a

subset ofS1, . . . , Sn to be labeled. This provides a fast, repeatable process thatrequires

no manual intervention.

We receive SYN-ACKs from 9,879 IPs, assemblew loss-free RTO vectors fromn =

9,701 hosts, and successfully complete a banner download from 9,594 of them.

4.5.3 Separating Features

Single-packet OS-fingerprinting tools use both deterministic and random features. For

eachSi, we move the former into vectorui and the latter into∆i. In general, Hershel treats

ui as volatile, which means it allows users to change TCP/IP header values without making

the OS fundamentally different. However, there is no even remotely accurate model for

distortionX applied by users to these features. We therefore limit our efforts to the better-
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Grouping RING Snacktime IRLsnack Hershel
Deterministic only 28 209 209 344
Random only 23 52 50 117
Both 39 260 257 398

Table 4.1: Database dimensions.

understood network delay jitter and its volatility. If a realistic noise modelX becomes

available forui, Plata can be used to compact duplicate hosts even further.

The simplest way to achieve separation on the deterministicfeatures is to combineui

with the size of RTO vector∆i. Splitting the available hostsS1, . . . , Sn into clusters based

on the deterministic pair(ui, |∆i|) produces the first row of Table 4.1, with 28 signatures

for RING [112], 209 for Snacktime [7] and IRLsnack [55], and 344 for Hershel. Note that

hosts within each cluster have same-length RTO vectors and our next goal is to further

subdivide them into smaller groups that are(1− ǫ,X )-separable.

To decide onX , assume the objective is to achieve sufficient accuracy during Internet-

wide scanning, where each∆i is disturbed by random queueing delays along the path

from the server back to the scanner. Due to constant SYN-ACK packet size, fixed trans-

mission/propagation delays cancel out during RTO computation. It is thus sufficient to use

a FIFO-queue simulator that adds random delay jitterθ to each measurement, ensuring

that no packets are reordered. As Hershel is fairly insensitive to the assumed model of

jitter, we use exponentially distributed queueing delays with mean 500 ms, which results

in θ being zero-mean Laplace. If better knowledge of network conditions is acquired,θ

can be modified accordingly.

We generater = 1K random noise vectorsθ1, ..., θr and add them to each observation

of ∆i, resulting inwr = 50K disturbed samples per hostSi. We run Plata for each

candidate classifier using their similarity functionp and compute (4.5), in whichpj(δ′) =

1/w. This creates one matrix̃M for each unique combination of deterministic features,
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Figure 4.4: Plata example.

which is fed to Plata’s separation algorithm with1 − ǫ = 0.8. After all matrices are

compacted, we combine the surviving specimens into the finaldatabaseD.

Going back to Table 4.1, the second row shows that RTO features alone allow single-

packet tools to differentiate between 23-117 stacks under this combination(ǫ,X ). Hershel

more than doubles the dimension of its nearest competitor, which stems from its more so-

phisticated model forp(δ|δ′). Combining both deterministic and random features, Hershel

ends up with 398 signatures, which is quite significant giventhe limited scope of the initial

scan. Due to its higher accuracy and better separation ability, the rest of this section stays

with Hershel as the underlying classifier for Plata.

To demonstrate how matrix reduction works in practice, consider five actual Windows

hosts in Fig. 4.4(a) with|∆i| = 2. While all of these OS kernels produce noisy RTOs,

there are two distinct patterns. Fig. 4.4(b) shows the result of Plata separation, which suc-

cessfully extracts both patterns (Windows Server 2003 withtwo different service packs)

out of the group and represents them using hosts(S3, S5).
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4.5.4 Label Clustering

Note that Plata does not specify how to assign labels to clusters{Lj}. Besides ground-

truth obtained from device owners, which may be infeasible for large decentralized net-

works, some of this information can be collected automatically. Our approach is to proceed

along this route. Recall that HTTP headers contain the "Server:" string that sometimes

identifies the version of the web server and uniquely ties it to a particular OS (e.g., Win-

dows IIS). However, in other cases, the operating system canbe inferred only from the

HTML content of the page, as is the case with certain embeddeddevices (e.g., printers,

cameras). We thus combine the "Server:" field with the entireHTML page and perform

clustering using simhash [60], which is a well-known technique for detecting similar web-

pages. This creates 515 clustersL1, L2, . . ., which we match tod = 398Hershel signatures

C1, . . . , Cd using the procedure in Fig. 4.3.

The final step is to perform manual verification of label sanity, determine which tags

in the HTML to use (e.g., head, title), and convert low-levelsoftware versions to the corre-

sponding OS name (e.g., IIS 7.5 to Windows Server 2008 R2). With enough coding effort

to account for the various formats, most of this can be automated [107], but we found it

easier to just show each page to a human and let them decide which of the found labels is

appropriate. Plata does this by sequentially rendering onepage from eachLk and record-

ing the user’s response. Even forn → ∞, the number of unique clusters should remain

reasonably small.

Results reveal that our label clustering works quite well – 326 out of 398 signatures

(82%) receive a meaningful description. They are responsible for 98% ofn = 9,701

measured hosts. Table 4.2 shows the top five most-popular signatures on our campus,

where Plata successfully shrinks the most common Windows RTO pattern from 3,803

hosts down to 1. Heavy usage of Windows (43% of all servers) and Linux (12%) is no
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Banner Hosts Deterministic features Mean RTOs
Win TTL DF TCP options MSS RST

Windows Vista /7 / 8 / 2008 / 2012 3,803 8,192 128 1 MNWST 1,460 1, 0, 0, 1 3, 6, 12
Ubuntu / Debian / CentOS / Sci. Linux 822 5,792 64 1 MSTNW 1,460 0, 0, 0, 0 4.3, 6, 12, 24.1, 48.2
Windows2008 R2 /2012 394 8,192 128 1 MNWST 1,460 0, 0, 0, 0 3, 6
Ubuntu / Redhat / CentOS / SUSE 366 14,480 64 1 MSTNW 1,460 0, 0, 0, 0 1.1, 2, 4, 8, 16
HP LaserJet Series 310 11,680 64 1 MNWNNT 1,460 0, 0, 0, 0 3, 6, 12

Table 4.2: Top 5 database signatures gathered from our campus scan
(Win = window size, TTL = time to live, DF = do not fragment, MSS= max segment size, RST = reset packet features).
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surprise, but we also find a large amount of HP LaserJet printers in fifth place. The 398-

326=72 unlabeled cases belong to network elements that either fail to provide a banner or

supply one that contains no clue about the underlying OS. Thelatter case often happens

with extremely rare devices for which we have only one bannerto analyze. If Plata is

exposed to additional data collection and user input (i.e.,outside of our network), these

gaps can be eliminated. The main benefit of our framework is that only a small fraction of

n (i.e.,72/9701 = 0.7%) requires further attention.

Note that using automated banners for labeling does limit our ability to distinguish

between OS versions. For example, the two Linux signatures in Table 4.2 are likely from

different kernel versions. However, if the application requires more fine-granular labeling,

additional effort – installing each OS in a test environmentor contacting the owner – is

needed in conjunction with Plata.

4.6 Optimizing Plata

While Plata works well, it bottlenecks on generatingθm and recomputingp(δmi +

θm|δ
′,X ) for each of ther random noise samples. This becomes especially noticeable

in large groups, such as Windows with 3.8K hosts. Using 16 AMDOpteron cores @ 2.8

GHz and 64 GB of RAM, a parallelized C++ implementation requires over 24 hours to

computeM̃ . Although database creation is a one-time process, it is still desirable to have

faster and more scalable algorithms that can tackle larger input. We address this next.

Analyzing (4.5), there are two obvious ways to reduce complexity – lowering r and

making functionp(.) faster. However, for Hershel, we can attempt to do even better – re-

place Monte-Carlo simulations with a directly evaluated model that produces the expected

probability thatSi gets classified asSj under random noiseθ. The rest of the subsection

treatsθ = (θ1, θ2, . . .) as a vector consisting of scalar random variables, with respect to
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which all expectations are taken. SinceMij := E[p(∆i + θ|∆j,X )] can be written as

∑

δ

∑

δ′

E[p(δ + θ|δ′,X )]pi(δ)pj(δ
′), (4.7)

construction ofM in Plata requires only knowingE[p(δ + θ|δ′,X )] for two deterministic,

same-length vectorsδ, δ′.

4.6.1 Closed-Form Plata-Hershel Matrix

To understand and create context for the results that follow, we briefly review how

Hershel deals with delay jitter. Assumingf(x) is the distribution (density or PMF) of

one-way jitter andem = δm− δ′m is the error term in them-th RTO, the similarity between

two deterministic vectors is

p(δ|δ′,X ) =

|δ|
∏

m=1

f(em). (4.8)

Note that (4.8) treats error values(e1, e2, . . .) as iid random observations. For the

default model ofX , recall from Section 3 that Hershel uses exponential one-way delay.

This produces Laplace jitter with densityf(x) = (λ/2)e−λ|x|, where parameterλ should

conservatively reflect the amount of jitter anticipated in the network during actual mea-

surement (i.e.,1/λ should upper-bound the real mean). With this in mind, our goal is to

derive the following expectation

E[p(δ + θ|δ′,X )] = E
[

|δ|
∏

m=1

f(em + θm)
]

, (4.9)

where eachθm is a random variable.

Given vectorsδ andδ′, we are interested in how similar Hershel considers them after
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the former undergoes random modification by the network. Suppose variables(θ1, θ2, . . .)

are iid Laplace with rateµ. Note thatµ may not equalλ if separation is performed for

purposes other than future scanning of the Internet. In thatcase,µ may be set to match

the environment in whichS1, . . . , Sn are probed (e.g., 5-ms average jitter for a campus

network). Definebm = e−|em| and consider the next result.

Theorem 1. For the Hershel classifier, the expected similarity betweenδ + θ andδ′ is

E[p(δ + θ|δ′,X )] =
(λµ

4

)|δ|
|δ|
∏

m=1















gm λ 6= µ

hm λ = µ

, (4.10)

where

gm =
2(λbµm − µbλm)

λ2 − µ2
, hm = bλm

(

|em|+
1

λ

)

. (4.11)

Proof. Using (4.8),

E[p(δ + θ|δ′)] = E
[

|δ|
∏

m=1

f(δm + θm − δ′m)
]

=

|δ|
∏

m=1

E[f(δm + θm − δ′m)] (4.12)

=
(λµ

4

)|δ|
|δ|
∏

m=1

∫ ∞

−∞

e−λ|em+z|−µ|z|dz.
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First assumeλ 6= µ. Given a constantc < 0, we get

∫ ∞

−∞

e−λ|c+z|−µ|z|dz =

∫ 0

−∞

eλ(c+z)+µzdz

+

∫ −c

0

eλ(c+z)−µzdz

+

∫ ∞

−c

e−λ(c+z)−µzdz (4.13)

=
eλc

λ+ µ
+
eµc − eλc

λ− µ
+

eµc

λ+ µ
.

Whenc ≥ 0, we have

∫ ∞

−∞

e−λ|c+z|e−µ|z|dz =

∫ −c

−∞

eλ(c+z)+µzdz

+

∫ 0

−c

e−λ(c+z)+µzdz

+

∫ ∞

0

e−λ(c+z)−µzdz (4.14)

=
e−µc

λ+ µ
+
e−λc − e−µc

µ− λ
+

e−λc

λ+ µ
.

Combining the two cases, notice emergence of|c|

∫ ∞

−∞

eλ|cm−z|eµ|z|dz =
e−λ|c| + e−µ|c|

λ + µ
+
e−µ|c| − e−λ|c|

λ− µ
.

For the special caseλ = µ, we obtain

∫ ∞

−∞

eλ|c+z|e−λ|z|dz =
e−λ|c|

λ
+ |c|e−λ|c|

= e−λ|c|
(

|c|+
1

λ

)

. (4.15)

Simplifying usingbm, we get (4.10).
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The next logical step is to investigate whether matrixM built using (4.10) matches

the Monte-Carlo versioñM . We consider a simple scenario with|δ| = 2, δ = δ′, and

λ = µ = 10. This represents some diagonal cellMii, i.e., similarity score ofSi to itself,

for a deterministic∆i. Settingem = 0 for all m, (4.10) produces 6.25, while Monte-Carlo

simulations yieldM̃ii = 6.7. The error increases with RTO vector length and is more

difficult to predict for off-diagonal valuesMij .

Further analysis uncovers that the source of this bias lies in Hershel’s assumption on

delay jitter. To illustrate this point, consider distorting a two-RTO vectorδ usingθ =

(θ1, θ2). From the queuing model of Hershel, consecutive Laplace jitter values can be

expressed using three iid exponential one-way delaysX, Y, Z, i.e., θ1 = Y − X and

θ2 = Z − Y . While we were reasonable in arguing thatX, Y, Z are independent due to

the large gaps between SYN-ACKs, the same logic unfortunately does not apply to jitter

becauseθ1 and θ2 share a common variableY . For em = 0 and |δ| = 2, the correct

expectation of (4.9) isE[f(θ1)f(θ2)]. On the other hand, Theorem 1 uses Hershel to

deduce the result asE[f(θ1)]E[f(θ2)] = λ2/16. We next expand the former term and

show that it deviates from the latter for allλ.

Theorem 2. For µ = λ and em = 0, the expected Hershel similarity under dependent

two-RTO jitter(θ1, θ2) is

E[f(θ1)f(θ2)] =
29λ2

432
. (4.16)

Proof. Considering jitter dependent, we must look at three separate cases. For the first

one, define

χ1 = E[f(J1)f(J2)|X > Y,Z > Y ] (4.17)
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and notice that eventX > Y,Z > Y happens with probability1/4. Now observe

χ1 = λ5
∫ ∞

0

∫ ∞

y

∫ ∞

y

e−λ(x−y)e−λ(z−y)e−λ(x+y+z)dxdzdy

= λ5
∫ ∞

0

e−3λyy2dy = λ5
2

(3λ)3
=

2λ2

27
. (4.18)

For the second case, we have

χ2 = E[f(J1)f(J2)|X < Y,Z < Y ], (4.19)

where eventX < Y,Z < Y also happens with probability1/4. This leads to

χ2 = λ5
∫ ∞

0

∫ y

0

∫ y

0

e−λ(y−x)e−λ(y−z)e−λ(x+y+z)dxdzdy

= λ5
∫ ∞

0

eλy
∫ ∞

y

e−2λdx

∫ ∞

y

e−2λdzdy

=
λ3

4

∫ ∞

0

e−3λydy =
λ2

12
. (4.20)

The remaining two casesX > Y > Z andZ > Y > X are identical to each other.

Without loss of generality, we use the former and define

χ3 = E[f(J1)f(J2)|X > Y,Z < Y ], (4.21)

which leads to

χ3 = λ5
∫ ∞

0

∫ x

0

∫ y

0

e−λ(x−y)e−λ(y−z)e−λ(x+y+z)dzdydx

= λ5
∫ ∞

0

e−2λx

∫ x

0

e−λyydydx

= λ3
∫ ∞

0

e−2λx(1− (1 + λx)e−λx)dx =
λ2

18
. (4.22)
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Figure 4.5: Features in Hershel (δ) and Hershel+ (a).

Combing these cases with respective weights1/4, 1/4, and1/2, we get the overall

expectation in (4.16).

Usingλ = 10 in (4.16) produces 6.7 observed in simulations. While we succeeded in

correctly modelingMii for two RTOs, doing the same fori 6= j and longer vectorsδ is

very tedious.

4.6.2 Hershel+

We now show how the classification problem can be solved usingonly one-way de-

lay (OWD). This requires a new model forp(δ|δ′,X ) and additional constraints during

creation ofD. For hostSi, defineAi to be a random vector of SYN-ACK transmission

timestamps relative to the departure time of the first reply.Then, assuming that network

delays are negligible, the distribution of elements insideAi can be accurately obtained at

the measurement client by subtracting the RTT of the first SYN-ACK from all observed

values.

Now suppose that the scanner finds a remote host on the Internet and obtains a vector
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of SYN-ACK arrival instances asA, which are relative to the transmission time of the

SYN. The main caveat here is that the forward SYN delay and server think time, which

we collectively callT , are not just unknown in the public Internet, but also likelynon-

negligible. Consequently, the classifier must consider alloptions forT in its decision

whether the observedA could have been produced by some known vectorAi. Delay

randomness is handled similar to (4.7), which means that it is again sufficient to consider

only deterministic pairs of delay vectors, i.e., by conditioning onA = a = (a1, a2, . . .)

andAi = a′ = (a′1, a
′
2, . . .). This is illustrated in Fig. 4.5. Supposing thatQm is them-th

OWD from the server to the client, we haveam = T + a′m +Qm.

With the new model, redefine the error asem = am−a′m and lets = minm{em} be the

largest possible value ofT when a system equipped witha′ is responsible for observation

a. Then, the similarity function becomes

p(a|a′,X ) = E
[

|a|
∏

m=1

fQ(em − T )
]

, (4.23)

wherefQ(x) is the density of OWD from modelX . AssumingfT (x) is the PDF ofT , this

leads to

p(a|a′,X ) =

∫ s

0

[

|a|
∏

m=1

fQ(em − x)
]

fT (x)dx. (4.24)

We apply Hershel’s exponential OWD withfQ(x) = λe−λx and additionally represent

T as a sum of two exponential variables (i.e., forward SYN delay and server think time),

which leads tofT (x) = ν2xe−νx, i.e., Erlang(2) distribution with some rateν and mean

2/ν. The OWD classifier (4.24) is more complex than Hershel’s as it requires numerical

integration of a computationally expensive product of shifted density functions. Our next

result shows that this can be avoided through additional derivations.
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Theorem 3. The closed form for(4.24)is

p(a|a′,X ) = 1s≥0ν
2λ|a|ψ

|a|
∏

m=1

e−λem , (4.25)

where1 is an indicator variable and

ψ =























1−e−(ν−λ|a|)s(1+(ν−λ|a|)s)
(ν−λ|a|)2 |a| 6= ν

λ

s2

2
|a| = ν

λ

. (4.26)

Proof. If s < 0, there existsm such thatem − T is less than zero. Since OWD cannot

be negative, the corresponding termfQ(em − T ) = 0. Consequently, we need to consider

only s ≥ 0, in which case allem are non-negative. Substituting the densities ofQ andT

into (4.24), we get

p(a|a′,X ) = 1s≥0

∫ s

0

[

|a|
∏

m=1

λe−λ(em−x)
]

ν2xe−νxdx

= 1s≥0ν
2λ|a|

[

|a|
∏

m=1

e−λem

]

∫ s

0

xe(λ|a|−ν)xdx.

Using WolframAlpha’s integral solver [117] yields (4.25).

Replacing Hershel’sp(δ|δ′,X ) with (4.25) and keeping the rest of the method un-

changed gives rise to a technique we call Hershel+. Our next step is to verify that its

accuracy is no worse than that of Hershel even when the assumed Erlang model forT ,

which usesν = 4 in all computation below, does not match the true distribution. To this

end, we use the simulation setup from Section 3.4, where the only new parameter isT .

In the first scenario, we keepT uniform in [0, 1] seconds, maintain zero packet loss, and

run both methods over Hershel’s original database with116 stacks. The result is shown
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Distribution of OWD Features used Hershel Hershel+
Pareto (mean =0.5) RTO only 22.1% 24.2%
Pareto (mean =0.1) RTO only 33.1% 33.3%
Uniform (mean =0.5) RTO only 21.7% 22.1%
Uniform (mean =0.5) All 99.9% 99.9%

Table 4.3: Accuracy on the Hershel database.

Distribution ofT Loss Hershel Hershel+
Exponential (mean =0.1) – 96.9% 97.6%
Pareto (mean =0.1) – 96.9% 97.4%
Pareto (mean =0.1) 3.8% 95.2% 95.8%
Pareto (mean =0.1) 10% 92.3% 92.9%

Table 4.4: Accuracy on the Plata database.

in Table 4.3. As the new model only changes the RTO classifier,the most important com-

parison involves the first three rows of the table, which confirm superiority of Hershel+.

In the second scenario, we fix the OWD to be uniform in[0, 1] and use the larger Plata

database. Table 4.4 shows that Hershel+ again edges out Hershel, despite its higher uncer-

tainty related toT .

4.6.3 Closed-Form Plata-Hershel+ Matrix

Armed with the new classifier, we revisit the issue of obtaining a Plata matrix without

Monte-Carlo simulations. To modelX , we disturb eachAi using a random OWD vector

V = (V1, V2, . . .), where allVi are iid exponential with rateλ. We additionally apply

noise to the forward SYN delay and server think time, which are collectively given by

an Erlang(2) random variableW with rateν. Note that we useλ andν from Hershel+,

although other options are possible.

Define matrixH = (Hij) to consist of all pairwise Hershel+ similarities between the
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signatures in the database under distortionV +W . This requires computing

ζ(a, a′) := E[p(a+ V +W |a′,X )] (4.27)

and settingHij = E[ζ(Ai, Aj)], where the second expectation is taken over random vari-

ables(Ai, Aj).

Theorem 4. Definev = (λ/2)|a|ν/4. Then,

ζ(a, a′) = v

∫ ∞

−∞

e−λ
∑

m |em+z|(1 + ν|z|)e−ν|z|dz. (4.28)

Proof. We first require the following Lemma.

Lemma 1. DefineZ =W − T , whereW andT are Erlang(2) with rateν. The density of

Z is then

f(z) =
ν

4
e−ν|z|(1 + ν|z|). (4.29)

Proof. Notice thatW −T has the same distribution asX+Y , whereX, Y are iid Laplace
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with the same rateν. Their convolution forz ≥ 0 produces

fX+Y (z) =

∫ ∞

−∞

fX(x)fY (x− z)dx

=
ν2

4

∫ ∞

−∞

e−ν|x|e−ν|x−z|dx

=
ν2

4

[

∫ 0

−∞

eνxeν(x−z)dx+

∫ z

0

e−νxeν(x−z)dx

+

∫ ∞

z

e−νxe−ν(x−z)dx
]

=
ν2

4

(e−νz

2ν
+ ze−νz +

e−νz

2ν

)

=
ν2

4

(2e−νz

2ν
+ ze−νz

)

=
ν2

4

(e−νz + νze−νz

ν

)

.

Combining with the symmetric casez < 0, we get (4.29).

Now we are ready to establish Theorem 4. The general form of this expectation is

ζ(a, a′) = E
[

|a|
∏

m=1

fQ(am + Vm +W − a′m − T )
]

= E
[

|a|
∏

m=1

fQ(em + Vm +W − T )
]

= E
[

|a|
∏

m=1

fQ(em + Vm + Z)
]

, (4.30)

whereZ = W − T . Note thatem can be negative as long as the sumem + Vm + Z ≥ 0.

Condition onZ = z and define

ζz(a, a
′) := E

[

|a|
∏

m=1

fQ(em + Vm + z)
]

=

|a|
∏

m=1

∫ ∞

dm

fQ(x− cm)fV (x)dx, (4.31)
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wherecm = −(em+z), fV (x) = λe−λx is the density of eachVm, and the integration range

starts atdm = max(cm, 0) to ensure the terms inside the densityfQ are non-negative. This

leads to

ζz(a, a
′) =

|a|
∏

m=1

∫ ∞

dm

λe−λ(x−cm)λe−λxdx

=

|a|
∏

m=1

λ

2
e−λ(2dm−cm). (4.32)

Since2max(x, 0)− x = |x|, this yields

ζz(a, a
′) = (

λ

2
)|a|e−λ

∑
m |cm|. (4.33)

UnconditioningZ and recallingcm = −(em + z),

ζ(a, a′) =

∫ ∞

−∞

ζz(a, a
′)fZ(z)dz

= (
λ

2
)|a|

∫ ∞

−∞

e−λ
∑

m |em+z|fZ(z)dz, (4.34)

which leads to (4.28) after invoking Lemma 1.

Note that (4.28) can be computed by splitting the integral into |a|+2 regions such that

|z| and |em + z| are conclusively resolved as being either positive or negative. Each of

these smaller integrals expands in closed-form; however, due to the large number of terms

involved and lacking structure, this result is difficult to represent symbolically. Algorith-

mically, however, this is simple to code using a bit-vector of size |a| + 1 that keeps track

of which of the terms(z, e1 + z, e2 + z, . . .) is positive. Moving from one interval to the

next flips one bit from 0 to 1 and switches to the correspondingintegral.

After verifying that (4.28) and its|a|+ 2 sub-integrals produce correct results, we run
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Plata separation overH instead ofM̃ and obtain 420 signatures, out of which 79 come out

unlabeled. Recalling Table 4.1, notice that Hershel+ increases the dimension of its prede-

cessor by 22 entries, indicating a more powerful classifier.Performance improvement is

remarkable as well – the runtime reduces from over 24 hours tojust 12 minutes. Added

benefits include higher accuracy of Hershel+ decisions and alleviation of uncertainty ifr

is large enough to keep Monte-Carlo results convergent.

4.7 Internet Scan

We now use Hershel+ to classify every visible webserver on the Internet against the

previously constructed Plata database.

4.7.1 Classification Results

In July 2015, we sent 2.7B SYN probes on port 80 to every IP address advertised in

BGP and obtained SYN-ACK responses from 66.4M hosts. This isalmost double the 37M

IPs used in the Hershel study. The scan lasted 6 hours and operated at 125K packets per

second.

Table 4.5 shows the Hershel+ output on the Internet data. We break down the result by

OS category, showing the 5 most-popular signatures in each.Not surprisingly, Linux still

dominates the webserver market. Although its top-5 signatures are separable at the feature

level, limitations of our banner-based labeling do not allow identification of the specific

version of these OSes. In second place, there is a large number of embedded devices,

mostly routers and printers. This finding agrees with those in previous measurements at

this scale [42], [55]. In third place, we combine hosts that map to a signature without a

useful banner and those with a zero probability of matching to anything inD. The former

category is responsible for 94% of these cases, where 79 "mystery" signatures inD catch

almost 12% of all Internet classification, despite being rare on our campus. Future work

will attempt to uncover their OS.
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Category OS / Device Hosts

Linux

Ubuntu / Redhat / CentOS 14, 551, 706
Ubuntu / Redhat / SUSE 2, 620, 566
Ubuntu / Debian / Redhat 2, 381, 733
Ubuntu / CentOS / SUSE 1, 831, 519
Ubuntu / Redhat / Sci. Linux 1, 413, 660

Total in category 25, 679, 480

Embedded

3Com Routers 2, 661, 835
Dell Laser / Xerox Printers 1, 985, 840
Embedded Linux 1, 869, 053
Cisco Embedded 1, 699, 418
Citrix Netscaler 1, 118, 748

Total in category 24, 447, 390

Unknown
No label in database 7, 936, 268
Zero probability of match 474, 585

Total in category 8, 410, 853

Windows

Windows7 / 8 / 2008 / 2012 2, 186, 229
Windows XP /2003 822, 130
Windows XP /2000 / 2003 791, 298
Windows2008 R2 /2012 701, 204
Windows2008 R2 /2012 427, 401

Total in category 7, 124, 444

Other

FreeBSD 480, 789
FreeBSD 107, 635
Novell Netware 37, 981
Mac OSX Server 35, 613
Solaris9 / Solaris10 35, 375

Total in category 752, 602

Table 4.5: OS classification of the Internet dataset.

Next, there is Windows in fourth place with 7M hosts. Unlike the previous categories,

we can identify the specific type of Windows from its IIS version in the HTTP header.

While it is by far the most popular desktop OS [70], its penetration of the webserver do-

main has been lagging behind Linux. This is in contrast to ourcampus scan, which was

dominated by Windows. One explanation for Unix prevalence is migration of online ser-

vices to enterprise clouds, which have traditionally favored Linux installations. Another

is the possibility that Linux distributions more commonly enable a webserver in their de-
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Figure 4.6: OS popularity distributions.

fault configurations or alias more IPs to the same physical server. And yet another is a

higher percentage of Unix computers not being protected by afirewall (either corporate or

host-level).

The table ends with 752K devices (1.1% of the total) in the "other" category that in-

cludes BSD, Mac, Novell, and Solaris. Compared to our previous large-scale fingerprint-

ing effort that used scans from July 2010, the table shows that Linux and embedded have

doubled their numbers (i.e., from 13-14M to 25-26M), Windows remained pretty much

unchanged (i.e., a slight drop from 7.5M to 7.1M), and the remaining group lost 68% of

its membership (i.e., from 2.3M to 752K). In summary, 99.3% of all IPs are successfully

classified and 87.3% have a label.

4.7.2 OS Popularity and Confidence

To better understand device deployment at different scales, we next examine the distri-

bution of cluster sizeW for each of the 420 signatures in our database. Fig. 4.6(a) shows

the CCDFP (W > x) using the initial campus scan. This plot is a close match to Pareto

tail (x/β)−α, whereα = 0.8 andβ = 1. Interestingly, the bottom 40% of the signatures

80



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Classified Host Probability

C
D

F

(a) CDF of topp(a|Aj ,X )

10
0

10
2

10
4

10
60

0.2

0.4

0.6

0.8

1

Ratio

C
D

F

(b) ratio top twop(a|Aj ,X )

Figure 4.7: Hershel+ classification confidence.

map to a single host each. In contrast to the well-known stacks in Table 4.2, these clusters

enjoy more esoteric items such as security cameras, room-temperature controllers, UPS

(uninterruptable power supplies), tape backup, humidity sensors, and even discontinued

oscilloscopes. Fig. 4.6(b) plots the same tail for the Internet scan, which is a good match

to the Weibull distributionexp(−(x/λ)k), wherek = 0.4 andλ = 45K. Each of the top-14

signatures accounts for at least 1M hosts and the top-17 are responsible for 60% of IPs.

The bottom 204 signatures match a combined 1% of the servers (i.e., 664K).

Another interesting issue is the amount of confidence with which Hershel+ selects

the best OS during classification. Assuminga is a measurement from some IP, (4.24)-

(4.25) can be used to obtain similarity scorep(a|Aj ,X ) for each OSj, the highest of

which is selected as the match after normalization. Fig. 4.7(a) plots the distribution of

this probability across all 66.4M IPs. Observe that almost no classifications occur with

less than 20% likelihood and over half the hosts fit some signature with probability at

least 65%. The far end of the CDF shows 7% of the IPs with a 100% match, which are

devices with truly unique combinations of features. In the same vein, to determine if the

second-best match follows closely the top signature and howoften the classifier might
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be "guessing," Fig. 4.7(b) shows the CDF for the ratio of the two highest probabilities.

In 17% of the cases, the second-best match is pretty close, i.e., within a factor of 1.2.

Afterwards, the curve sharply rises and yields over 68% of IPs with a decisive winner (i.e.,

ratio 2:1 or better).

4.8 Comparison with Nmap

Since ground-truth for millions of Internet hosts is difficult to obtain, we next perform

comparison against Nmap v6.49 [73]. During the scan, we randomly selected 1% of re-

sponsive hosts and invoked Nmap to fingerprint them as soon asthe first SYN-ACK was

received. Real-time execution was needed to minimize the possibility they left the network

and other hosts appeared in their place (e.g., due to DHCP). We used Nmap’s least-verbose

mode to limit the traffic and complaints from target networks; however, this still resulted in

80 sent and 60 received packets per IP, as well as several notifications to campus network

administrators about intrusive activity coming from our subnet. The complaints identified

Nmap by name, which raises questions how often IDS tools not just detect, but drop its

traffic.

Out of 664K IPs, Nmap was successful for only 481K (i.e., 72%). To rule out host de-

parture, we verified that an overwhelming majority (99.8%) of the attempted IPs returned

at least one reply to Nmap probes. The failed cases include responses unknown to the

database and firewall obstruction of non-SYN packets. We uniformly subsampled these

481K IPs, excluded roughly 12% for which Hershel+ returned "unknown," and ended up

with 603 cross-labeled samples for further manual analysis.

4.8.1 Agreement

We first investigate how well Nmap and Hershel+ agree on the classification of the

selected subset of hosts. Comparison with Nmap is far from straightforward since its stack

names are human-created and rather fine-granular. The most detailed category in our Plata
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Category Category match String match Total
Linux 301 (98.6%) 25 (8.1%) 305
Embedded 158 (75.5%) 34 (16.2%) 209
Windows 82 (95.3%) 82 (95.3%) 86
Other 3 (100%) 3 (100%) 3

Total 544 (90.2%) 144 (23.8%) 603

Table 4.6: Internet subsample classification.

database is Windows, while the majority of other hosts are marked with just the name

of the OS and/or device. Thus, it makes sense to separately consider whether Hershel+

matches the exact signature string of Nmap or just the category.

Table 4.6 shows the result of this process, where we group hosts based on Hershel+

classification. In the category match, we achieve over 98% agreement in Linux, 95% in

Windows, and 100% in "other." With embedded systems, Nmap often claims the host is

running Linux, whereas we have a specific (non-Linux) devicename from the banner.

Without tedious manual effort, it is difficult to know if Nmaphas been exposed to these

devices and whether it can reliably identify them. With thatsaid, we still mark these cases

as a mismatch, which drops the agreement rate to 75%.

As for OS strings, lower numbers were expected due to the difference in how the

databases are labeled. The biggest drop occurs in Linux, where ourD consists of just

distribution names (e.g., Ubuntu, Redhat, SUSE), while Nmap provides both major and

minor kernel versions (e.g., Linux 2.6.18-22). Nevertheless, there are 25 matching signa-

tures for which both methods can identify only the Linux family. For embedded systems,

Nmap produces a large variety of device names, many absent from our campus. Finally,

the Windows group keeps the same 95% consensus rate since all82 agreed-upon cases are

exact string matches.
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Vector Win TTL DF TCP options MSS RST SYN-ACK arrival (sec) Label
D1 8,192 128 1 MNWST 1,464 1, 0, 0, 1 0.00, 2.99, 9.00, 21.00 Windows7 / 2008 R2
S1 8,192 128 1 MNWST 1,464 1, 0, 0, 1 0.22, 3.22, 9.22, 21.22
S2 8,192 64 1 MNWST 1,460 0, 0, 0, 0 0.18, 3.17, 9.17

D2 16,384 128 0 MNWNNTNNS 1,380 0, 0, 0, 0 0.00, 2.65, 9.21 Windows2000 / 2003
S3 16,384 128 0 MNWNNTNNS 1,460 0, 0, 0, 0 0.21, 2.67, 9.22
S4 16,384 128 0 MNWNNTNNS 1,370 0, 0, 0, 0 0.21, 3.07, 9.63

Table 4.7: Hershel+ classification and features.
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4.8.2 Disagreement

We now analyze the peculiar case of the four Windows hosts from Table 4.6 where

Nmap and Hershel+ disagree. We call these observationsS1, . . . , S4. Table 4.7 shows their

features and the corresponding database signaturesD1−D2 for the Hershel+ classification.

Notice thatS1 is an easy classification decision because the RTT is small (i.e.,≈ 220 ms)

andD1 matches all of its features. ForS2, Hershel+ prefers the same OS, overcoming

a change in TTL/MSS and a loss of the RST packet at 21 sec. For the other two hosts,

both matching toD2, the only discrepancy is the MSS, which is a highly volatile field

that depends on the MTU. Judging from the OPT and RTO features, the accuracy of these

decisions is not in doubt.

To explain the Nmap outcome for these IPs, we need to review its classification tech-

nique. Suppose vectorR = (R1, . . . , Rl) consists of indicator variables such thatRi = 1

iff probe i elicits a response from the network stack. We splitR into several groups – a

regular SYN to an open port (R1), four TCP packets with extra flags (i.e., ECN, null, rain-

bow, ACK) to an open port (R2 − R5), three TCP packets to closed ports (R6 − R8), and

UDP/ICMP probes (R9−R10). For cases withRi = 1, supposeFij records thej-th feature

of that packet, whereFij = ∅ indicates a missing optional header field. A combination of

vectorR and corresponding matrixF constitutes a signatureΦ = (R,F ).

Suppose a match inRi carries weightwi and that in featureFij some other weightwij.

Then, Nmap computes similarity between an observationΦ and a signatureΦ′ = (R′, F ′)

from the database using the following

∑l
i=1(Yi1Ri=R′

i
wi +RiR

′
i

∑

j Zij1Fij=F ′

ij
wij)

∑l

i=1(Yiwi +RiR
′
i

∑

j Zijwij)
, (4.35)

where variableZij = 1 iff field j in packeti is non-empty in both the observation and
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database (i.e.,Fij 6= ∅, F ′
ij 6= ∅) andYi = Ri for i ∈ [6, 8] and 1 otherwise. The last rule

ignores closed-port tests unlessΦ contains a response to them. All signaturesΦ′ with at

least 0.85 similarity are reported as likely matches.

This algorithm has no provisions for packet loss, which makes it increasingly unreli-

able as more probes are blocked. The issue is compounded by the usage of large weights

wi ≫ wij, which ensure that a mismatch in a feature carries little impact compared to that

in the receipt/non-receipt of a packet. As a result, presence of firewalls skews the score

towards signaturesΦ′ that originally had fewer responses, regardless of theirFij . Empty

features causeZij = 0 to remove the corresponding weightwij from consideration, grav-

itating the classifier towards results with more frequent occurrence of∅. Finally, if the

target does not respond to a given closed-port test, i.e.,Yi = 0, the denominator no longer

contains the associated weightwi. This allows Nmap to matchRi = 0 andR′
i = 1 with

no penalty for6 ≤ i ≤ 8.

Armed with this insight, consider in Table 4.8 the Nmap features ofS1 − S4, as well

as their best matches – a network boot card, modem jail-breakfirmware, a decade-old

OpenBSD 4.3, and an ancient D-link switch – whereS1 scores over 85% with bothD1

andD2. From the table, notice that Nmap sampled the same SYN features as Hershel+,

meaning they contacted similar network stacks. For inexplicable reasons, the database

allows ∅ for mandatory values (e.g., Win, TTL, DF), where all four entries D1 − D4

contain at least one such case.

Based on Table 4.8, it is pretty clear that Nmap decisions areheavily influenced by the

R vector and empty fields. Indeed, iPXE/Tomato have no featuresFij in common withS1,

OpenBSD 4.3 matchesS2 only in three fairly generic fields TTL/DF/MSS, and D-Link

agrees withS3/S4 in just the DF bit. We thus find no evidence to suggest that Nmap

signaturesD1 − D4 are statistically probable, let alone better than the Hershel+ result in

Table 4.7. In fact,D3 andS2 are conclusively different stacks judging from their ordering
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Vector R1 F11 = Win F12 = TTL F13 = DF F14 = TCP options F15 = MSS (R2, . . . , R10) Label
D1 1 ∅ ∅ ∅ ∅ ∅ 0000 111 00 iPXE 1.0.0+
D2 1 ∅ ∅ ∅ ∅ ∅ 0000 111 01 Tomato1.28
S1 1 8,192 128 1 MNWST 1,464 0000 000 00

D3 1 ∅ 64 1 MNNSNWNNT 1,460 1000 100 11 OpenBSD4.3
S2 1 8,192 64 1 MNWST 1,460 1000 100 11

D4 1 ∅ 64 0 ∅ ∅ 0000 111 01 D-Link DWL-624
S3 1 16,384 128 0 MNWNNTNNS 1,460 0000 000 01
S4 1 16,384 128 0 MNWNNTNNS 1,370 0000 111 01

Table 4.8: Nmap classification and features.

8
7



Signature Subsample Total
Tomato1.28 132 (21.8%) 105, 525 (21.9%)
OpenBSD4.3 91 (15.0%) 64, 050 (13.3%)
D-Link DWL-624 12 (1.9%) 6, 454 (1.3%)
iPXE 1.0.0+ 6 (0.9%) 5, 723 (1.1%)

Table 4.9: Popularity of Nmap signatures.

of non-NOP TCP options (i.e., MSWT vs MWST).

From a broader perspective, Table 4.9 shows the number of hosts for which Nmap

decides thatD1 − D4 exceed the 85% threshold. Remarkably, Tomato appears in 21%

of the cases and OpenBSD in 13%. These results raise questions about Nmap’s ability

to provide meaningful classification, not just in the four cases we dissected, but generally

in wide-area networks, whereR is easily distorted by IDS, host-level packet filters, and

network firewalls.

4.9 Conclusion

In this section, we introduced a novel unsupervised clustering algorithm called Plata,

which can be used to separate gathered signatures accordingto known noise model, elim-

inate duplicates, and allow user tuning of the separabilitydesired. We applied Plata to

a scan of our university campus, capturing 420 unique signatures, labelled them auto-

matically, and used our new automatically built database toaccomplish the largest OS

fingerprinting effort ever achieved in the wild. We concluded by comparing our results

with Nmap, showing that Hershel+ classification from using just a single probe agrees

with Nmap in most cases, and provides more accurate results in cases where they do not.
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5. ITERATIVE LEARNING OF FEATURE DISTORTION

5.1 Introduction

Now that we have built a scalable classifier in Hershel+ and a framework for construct-

ing an automated database with Plata, in this section we turnour attention to solving the

existing issues remaining in our system, as well as looking at some measurement applica-

tions of our work. One point of concern is that Hershel+ has many built-in assumptions

that may be violated in practice, which in turn may affect itsclassification accuracy and

overall performance on such basic metrics as the fraction ofthe Internet running a partic-

ular stack. Our motivation is to understand these limitations and offer novel avenues for

increasing both the classification accuracy and amount of information that can be recov-

ered from responses to a SYN packet.

Assume a database of known fingerprintsx = (x1, . . . ,xn) and an observationx′ =

(x′
1, . . . ,x

′
m) from a large number of Internet hosts. Suppose vectorα = (α1, . . . , αn)

specifies the distribution ofpopularityamong the known OSes, i.e.,αi is the fraction of

hosts using fingerprintxi. Deciding which OS generated eachx′
j is generally hindered

by presence ofdistortionduring observation, which adds random delays to packets, drops

some of them, and modifies header fields.

Hershel+ relies on a-priori knowledge of not onlyα, but also additional parametersθ of

distortion – the probability of change in each TCP/IP feature and distributions of network

delay, packet loss, and server think time. While the underlying model in Hershel+ is more

robust to distortion than those in prior approaches [7], [112], its performance does depend

on how wellα andθ can be estimated ahead of time. Unfortunately, extraction of these

parameters from prior Internet scans and Hershel+ decisions is far from simple. In fact,

using the fraction of previous classifications that went to OS i as a substitute forαi may

89



lead to unstable states and inferior results compared to staying with the default parameters,

as we discovered in Section 3.

5.1.1 Contributions

As the Internet is highly heterogeneous and constantly evolving, even if(α, θ) could

be estimated by monitoring routers and/or using end-to-endmeasurement between strate-

gically positioned hosts (e.g., PlanetLab), it is unclear whether conditions observed in the

past or along certain paths can yield meaningful predictions about the specific network be-

ing fingerprinted (e.g., a corporate LAN is very different from the public Internet). Instead,

we argue that(α, θ) should be theoutputof the classifier rather than theinput. Doing so

allows the unknown parameters to be customized to a specific observationx′, i.e., reflect

the OS composition of the network being analyzed and its distortion properties.

To accomplish this objective, we derive a non-parametric estimator for (α, θ) in Her-

shel+ under the theoretical framework of Expectation-Maximization (EM) [24], [41]. We

call this approach Faulds1 and show that its iterative refinement of unknown distributions,

followed by reclassification ofx′, can significantly improve the accuracy of Hershel+.

Additionally, as the algorithm recovers both(α, θ), it provides important network charac-

terization results for OS popularity, as well as distributions of delay, header-modification

probabilities, and packet loss experienced byx′.

Throughout the section, we provide a combination of simulations and discussion of

the various caveats. For example, lettingT be the forward latency and∆ be the reverse

SYN-ACK delay, one of the properties of active OS fingerprinting is that it cannot observe

these variables individually. Instead, they are always coupled into a summationT + ∆

that is carried inx′. We show that under certain conditions Faulds can successfully decon-

volve these distributions without having any a-priori knowledge about them and explain

1Henry Faulds was a Scottish scientist who proposed the first usable forensic fingerprint-identification
method in 1880.
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the rationale behind this seemingly impossible act.

We perform a fresh Internet scan and show new EM-guided classification decisions of

Faulds. We not only update the OS-popularity vectorα, which shows non-trivial changes

compared to Hershel+, but also provide estimated distributions of one-way return delay,

forward latency, and one-way SYN-ACK packet loss across 63.5M webservers.

5.2 Background

Characterizing Internet packet loss and delay is a long-standing problem in computer

networks [12], [25], [80], [119], where availability of realistic models can fuel protocol

development, provide theoretical insight, and improve simulations. Besides traditional

usage in congestion control (e.g., retransmission-timer tuning, stability analysis), knowl-

edge of delay/loss are important in research of many modern applications (e.g., content

distribution networks, video streaming, VoIP, cloud computing).

One particularly hard issue is estimating one-way path properties, especially at large

scale. Perhaps the simplest approach is to measure round-trip parameters [123] and then

infer their one-way counterparts using certain assumptions. However, path asymmetry and

the influence of the remote server on the measured parameter (e.g., delay in the reply) may

lead to bias in the result [47], [79], [114]. An alternative is to deploy a measurement plat-

form that allows control of both sides of a connection (e.g.,PlanetLab [82], IDmaps [33],

CDNs [44], [48], [116]). Clock-synchronization issues notwithstanding [39], this leads to

accurate estimation, but requires a significant effort to build the underlying infrastructure

and extrapolate the measurements to other parts of the Internet. The final technique places

an observer inside routers that monitor ongoing connections [36]; however, this does not

make estimation any less expensive.

Other broader, but related, topics include distance measurement using coordinate sys-

tems [16], [21], [57], [72], [98], [106], involvement of DNSfor estimation of round-trip
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delay/loss between remote servers [37], [54], [113], and application of EM to various

networking problems (e.g., tomography [14], [19], [99], [111], flow sampling [26], [53]).

5.3 Learning from Observation

5.3.1 General Problem

Suppose the OS database consists ofn ≥ 1 known stacks(ω1, . . . , ωn), each with some

vector-valued fingerprintxi = (xi1, xi2, . . .). These contain a combination of features,

including temporal information about the SYN-ACK retransmission timer of each OS and

default header values used for incoming connections. Further assume a set of observations

x′ = (x′
1, . . . ,x

′
m), where eachx′

j = (x′j1, x
′
j2, . . .) is also a vector. Note thatx′ is typically

obtained by scanning the Internet and eliciting responses from every live server. For the

type of OS fingerprinting considered here, i.e., single-probe, this is done using a SYN

probe to every IP address in BGP and collection of SYN-ACKs/RSTs from the contacted

servers.

The goal of the classifier is then to determine for eachx′
j the most-likely fingerprint

in the database. This task is complicated by presence of distortion that randomly modifies

the original features of the system. This typically involves a change in the temporal rela-

tionship between the packets (e.g., queuing delays), removal of some features (e.g., loss

of RST packets), and rewriting of TCP headers in an effort to optimize and/or obscure the

end-system.

Defineαi = p(ωi) to be the fraction of hosts with OSi and letα = (α1, . . . , αn) be

the corresponding vector. Supposeθ denotes the distribution of distortion andp(y|ωi, θ) is

the probability that the fingerprint of signaturei has been changed intoy underθ. On the

other hand, assumep(ωi|y, θ, α) is the probability that an observed vectory was produced

by a host running OSi, conditioned on distortion modelθ and popularityα. Then, the
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classifier must determine for eachj the one database entryωi with the largest

p(ωi|x
′
j , θ, α) =

αip(x
′
j |ωi, θ)

p(x′
j |θ, α)

, (5.1)

where

p(x′
j|θ, α) =

n
∑

ℓ=1

αℓp(x
′
j |ωℓ, θ). (5.2)

Analysis of (5.1) in our earlier sections assumed thatα was uniform (i.e.,αi = 1/n)

andθ was known ahead of time (e.g., exponential one-way delays with mean 500 ms).

Therefore, bothαi and denominatorp(x′
j |θ, α) were independent ofi and could be omitted

from the optimization, leaving onlyp(x′
j |ωi, θ) as the target. In contrast, our goal here

is to estimate bothα andθ dynamically as the classifier is running, which should both

increase its accuracy and yield interesting Internet-characterization results as byproduct

of classification. Before reaching this objective, a gradual build-up of formalization is

needed. This subsection deals with estimatingα, the next one covers network distortion,

and the one after that focuses on modification to fixed header features.

5.3.2 EM Principles

SupposeX(α, θ) is a random variable that models the feature vector observedfrom a

uniformly selected system on the Internet. Note that randomness inX(α, θ) arises due to

both selection of the host and feature distortion during observation. Then, knowing the

distribution ofX(α, θ) allows us to write a set of (generally non-linear) equations

P (X(α, θ) = yℓ) = lim
m→∞

1

m

m
∑

j=1

1x′

j
=yℓ

= p(yℓ|θ, α), (5.3)
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i.e., one equation for each unique vectoryℓ from the domain ofX(α, θ). Extraction ofα

andθ from (5.3) commonly involves the Expectation-Maximization (EM) method, which

is a technique that solves this system using fixed-point iteration [24], [41]. At every stept,

it maximizes the expected log-likelihood function conditioned on the parameters obtained

during the previous iterationt− 1.

Assuming (5.3) isidentifiable(i.e., each combination(α, θ) produces a different dis-

tribution forX(α, θ)), EM can accurately recover the unknown parameters [118]. Identi-

fiability is equivalent to (5.3) having a unique solution(α, θ) for any valid distribution of

observations, which is a strong condition; however, EM is also usable inpartially identifi-

ablecases where(α, θ) is a locally-stable maximum for which common-sense knowledge

about the system allows selection of the initial state in close-enough proximity. If not,

multiple restarts and/or other heuristics (e.g., simulated annealing) can be deployed as

well.

Stability, convergence, and numerical computation of EM under multiple fixed points

is a topic beyond our scope, but it should be noted that as longas the number of non-

redundant equations is larger than the number of unknown variables, EM works well for

many problems in practice.

5.3.3 Fingerprint Popularity

For now, we treatp(x′
j |ωi, θ) as a black-box classifier (e.g., Snacktime, Hershel, Her-

shel+), which does not attempt to estimateθ, and focus on determiningα. This is the

simplest (and only) case where (5.3) forms a linear system around the unknown parame-

ters. It has a unique solution as long as the rank of the matrixwith elementsAiℓ = p(yℓ|ωi)

is n.

Throughout the section, superscripts applied to parameters refer to the iteration number

during which they are estimated, e.g.,αt
i approximatesαi during stept. Now notice that a
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sensible estimate of popularity for OSi is the average probability with which observations

map to this fingerprint, conditioned on the previous estimate of popularity, i.e.,

αt+1
i =

1

m

m
∑

j=1

p(ωi|x
′
j, θ, α

t). (5.4)

Note that this is markedly different from updating the popularity vector using the frac-

tion of classification decisions that go to each OS, which is known ashard EM and com-

monly used in clustering algorithms such ask-means [49]. In fact, all previous fingerprint-

ing tools [7], [10], [73], [120], [122] can be viewed as performing one iteration of hard

EM, i.e., outputting the fraction of classifications that belong to each OSωi as an estimate

of its popularityαi.

It is not difficult to see that form → ∞, fixed points of recurrence (5.4) are solutions

to (5.3). Additionally, there is a stronger result. While itis fairly well-known, its proof

methodology is needed for later parts of the section.

Theorem 5. For a classifier with fixedθ, (5.4)represents the EM algorithm for recovering

the popularity vectorα.

Proof. For a given set of observationsx′ = (x1, . . . ,xm), define thelikelihood function of

α with respect to observationx′ as

p(x′|θ, α) :=
m
∏

j=1

p(x′
j|θ, α) =

m
∏

j=1

n
∑

i=1

αip(x
′
j |ωi, θ). (5.5)

Direct computation of the Maximum Likelihood Estimator (MLE) for p(x′|θ, α) is

often impossible due to the complex shape of the function. Instead, EM introduces hidden

variables, which help simplify (5.5), and applies maximization to theexpectedlikelihood

function, conditioned on the current estimate of unknown parameters. To this end, define

hidden variablesz = (z1, . . . , zm) to specify which OS produced each observationx′
j .
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Note that the dataset of pairs((x′
1, z1), . . . , (x

′
m, zm)) is calledcomplete, as opposed to

justx′, which isincomplete. Then, thecomplete likelihood functionis given by

p(x′, z|θ, α) :=
m
∏

j=1

p(x′
j , zj |θ, α) =

m
∏

j=1

p(x′
j|zj , θ)p(zj|α)

=
m
∏

j=1

αzjp(x
′
j|ωzj , θ). (5.6)

It is often more convenient to work with summations, in whichcase the above is re-

placed with

log p(x′, z|θ, α) =
m
∑

j=1

(logαzj + log p(x′
j|ωzj , θ))

=
m
∑

j=1

n
∑

i=1

(logαi + cij)1zj=i, (5.7)

wherecij := log p(x′
j |ωi, θ) is a constant that can eventually be removed from optimization

since it does not depend onα. Now, the E-step takes the expectation of (5.7) with respect

to z, conditioned on the previous valuesαt and the available observations, producing

Q(α|αt) := Ez[log p(x
′, z|θ, α)|x′, θ, αt]

=

m
∑

j=1

n
∑

i=1

(logαi + cij)E[1zj=i|x
′, θ, αt]

=
m
∑

j=1

n
∑

i=1

(logαi + cij)β
t
ij, (5.8)

where

βt
ij := p(ωi|x

′
j , θ, α

t) =
αt
ip(x

′
j |ωi, θ)

∑n

ℓ=1 α
t
ℓp(x

′
j|ωℓ, θ)

. (5.9)
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The M-step maximizes (5.8) with respect to the unknown parameterα and entails

solving

∂Q(α|αt)

∂αi

= 0. (5.10)

Note that we can reduce the number of unknown variables usingαn = 1 −
∑n−1

i=1 αi,

which yields fori = 1, 2, . . . , n− 1

m
∑

j=1

(βt
ij

αi

−
βt
nj

αn

)

= 0. (5.11)

Definingc =
∑m

j=1 β
t
nj/αn, we get

αi =
1

c

m
∑

j=1

βt
ij . (5.12)

From normalization
∑n

i=1 αi = 1, it follows that c must bem and that additionally

(5.12) applies toi = n. We therefore get (5.4).

5.3.4 Discussion

We now address the question of whether (5.4) is sufficient forachieving good classifi-

cation on its own and how much of the accuracy depends on knowing the exact distortion

modelθ. If the majority of the benefit is already obtained from recoveringα, the extra

computational cost and modeling effort involved in estimating θ may be unnecessary. For

discussion purposes, we use a set of toy databases that allowsimple demonstration of the

intended effects. Note that the same conclusions apply to larger datasets, but finding the

corresponding scenarios may be more time-consuming.

To accomplish this, we use the simulation setup described inSection 3.4. For the

scenario we callS1, there are four different cases for the distribution of foward/reverse
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Case Forward latency One-way delay Loss
Distribution Mean Distribution Mean

S11 Erlang(2) 0.5 Exp 0.5 0.038
S12 Pareto 0.5 Pareto 0.5 0.5
S13 Reverse exp 1.5 Erlang(2) 0.5 0.1
S14 Pareto 0.1 Uniform 0.1 0.5

Table 5.1: Network distortion in scenarioS1.

delays and packet-loss probability. These are shown in Table 5.1 and discussed in more

detail next.

The first row matches exactly the assumed parametersθ in Hershel+. The second row

uses Pareto delays with mean 500 ms and 50% loss, emulating highly volatile network

conditions. The next row uses a shiftedreverse-exponentialforward latency with CDF

e−λ(2−x), defined for−∞ < x ≤ 2, which tests contrary-to-intuition examples where

larger delays are more likely than smaller. We employλ = 2 and truncate this distribution

at zero, obtaining the average SYN delay of 1.5 sec. The last case in the table exam-

ines smaller average delays than the assumed modelθ in Hershel+, but couples it with

substantial loss.

Our first databaseD1 contains truncated signatures of Linux 3.2 (ω1), Windows Server

2003 (ω2), and Novell Netware (ω3). We retain the first two retransmission timeouts

(RTOs), remove all fixed header features, and obtain the fingerprints in Figure 5.1(a). Note

that these Linux and Windows signatures are pretty close to each other, albeit not identical;

however, they are quite different from Novell. The first three distortionsS11 −S13 applied

to this database are illustrated in the remaining subfigures, where we show 200 points per

plot and remove observations with lost packets.

Defineρt to be the fraction of correct classifications for a given method during iteration

t, wheret = ∞ represents the convergence point of the underlying estimator (usually 20-

40 iterations). If the method does not perform iteration, only ρ1 is meaningful. We consider
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Figure 5.1: Database and distorted observations.

three techniques – Hershel+, hard EM with multiple iterations, and soft EM in (5.4), all

using the same functionp(x′
j|ωi, θ) and starting from uniform popularityα0

i = 1/n. Note

that the former two methods estimateα using

αt+1
i =

1

m

m
∑

j=1

1argmaxi p(ωi|dj ,θ,αt)=i. (5.13)

Results of this process withm = 218 observations are shown in Table 5.2. In the

first row, Hershel+ performs quite well, achievingρ1 = 67%. Since Novell Netware is

an easy-to-separate signature from the other two, Hershel+recoversα3 pretty accurately;
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however, it is utterly confused about the frequency of the other two stacks. Applying hard

EM increases accuracy, but full reconstruction ofα still proves difficult. Application of

(5.4) solves this issue.

Swapping(α1, α2), the second simulation in Table 5.2 shows that Hershel+ is essen-

tially guessing between Linux and Windows, while hard EM is misled into divergence,

where it drops accuracy from 48% to 6%. While (5.4) is immune to divergence in this

case, its estimate ofα suffers from non-negligible errors. The next two cases in the table

are even more difficult. They show that EM can be driven into inferior states when the

assumedθ greatly deviates from that of the underlying network. In fact, application of

(5.4) not only fails to obtain vectorsα that resemble the true distribution, but also harms

performance of the system, i.e.,ρ∞ ≪ ρ1.

It is interesting that hard-EM techniques, universally used in prior work [7], [10], [73],

[120], [122], may generally be unsuitable for characterizing the fraction of hosts running

each OS, especially ifα is highly skewed. Additionally, EM iteration is meaningfulonly

whenθ is either known a-priori, or can be accurately extracted from the collected obser-

vations. We investigate the latter direction next.

5.4 Network Features

5.4.1 Distortion Model

Our goal in this subsection is to estimate unknown distortion parametersθ inside

p(x′
j |ωi, θ). Let featuresxi = (di,ui) consist of network components (i.e., delaysdi)

and user-modified header values (i.e.,ui). Since our classification assumes that distortion

is applied to each subvector independently, it follows that

p(x′
j |ωi, θ) = p(d′

j |ωi, θd)p(u
′
j |ωi, θu), (5.14)
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Case α Hershel+ Hard EM EM in (5.4)
ρ1 α1 ρ∞ α∞ ρ∞ α∞

S11 0.90 0.67 0.59 0.95 0.95 0.95 0.89
0.05 0.35 0.00 0.06
0.05 0.06 0.05 0.05

S12 0.05 0.48 0.45 0.06 0.98 0.89 0.11
0.90 0.41 0.00 0.82
0.05 0.12 0.02 0.07

S13 0.90 0.45 0.37 0.09 0.01 0.10 0.11
0.05 0.51 0.88 0.79
0.05 0.12 0.11 0.10

S14 0.3 0.60 0.65 0.33 0.97 0.34 0.81
0.6 0.23 0.00 0.13
0.1 0.12 0.03 0.05

Table 5.2: Classification results inD1.
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Figure 5.2: Delay features.

whereθd, θu are the network/user distortion models, respectively. Each of them contains

multiple PMFs (probability mass functions) that we elaborate on below. Since in this

subsection we consider only the network component, we assume thatp(u′
j |ωi, θu) = 1 for

all i, j, i.e., all observed user features are the same and thus perfectly match all fingerprints.

To understand the notation involved in expanding the first factor in (5.14), we present

a re-illustration of RTOs in Figure 5.2, where a host with network signaturedi generates
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an observationd′
j . Measurement begins with a random forward latencyTj, which has

some unknown distributionfT (τ) = P (Tj = τ). This includes the time needed for the

SYN packet to reach the server and for it to process the request. Along the return path,

one-way delays(∆j1,∆j2, . . .) are iid random variables with another unknown distribution

f∆(δ) = P (∆jr = δ). In practice,Tj and∆jr are continuous variables, but it is convenient

to discretize them into small bins and directly work with PMFs.

Database feature vectorsdi consist of departure timestamps from the server, where

di1 = 0 for all i. Note thatdi,r+1 − dir is ther-th retransmission timeout (RTO) of the

stack, which is what we considered in Hershel. However Hershel+ switched to usage of

absolute timestampsdir as it identified these as having certain modeling advantages(i.e.,

independence between delays after conditioning onTj), and we retain this approach. To

handle packet loss, assume thatγj is a random vector that maps the received packets in

observationj to their order on the server, i.e.,γj(r) = k means that ther-th received

packet was originally in positionk. In Figure 5.2, for example, we haveγj = (1, 3). Then,

if the j-th observation comes from a system with fingerprintωi, it follows that

d′jr = Tj + d′i,γj(r) +∆jr, r = 1, 2, . . . , |d′
j|. (5.15)

As in our earlier sections, we keep the assumption of no reordering due to the large

spacing between the packets (often several seconds), whichimplies γj(r + 1) > γj(r).

Letting Γ(i, j) be the set of all monotonic loss vectors that start with|di| packets and
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finish with |d′
j |, the Hershel+ network classifier can be summarized by

p(d′
j |ωi, θd) =

∑

τ

fT (τ)p(d
′
j |ωi, τ, θd)

=
∑

τ

fT (τ)
∑

γ∈Γ(i,j)

pi(γ)p(d
′
j|ωi, τ, γ, θd)

=
∑

τ

fT (τ)
∑

γ∈Γ(i,j)

pi(γ)

|d′

j |
∏

r=1

f∆(d
′
jr − τ − di,γ(r)), (5.16)

wherepi(γ) is the probability to observe loss patternγ under|di| transmitted packets. To

avoid clutter, we omit here the formulas for handling randomsignaturesdi in Hershel+,

which require an extra summation over all possible sub-OSesand normalization by the

corresponding weights, but keep this functionality in the code. For lack of a better as-

sumption, Hershel+ uses binomialpi(γ), Erlang(2)fT (τ), and exponentialf∆(δ), all with

some fixed parameters. Sinceθd encapsulates the set of these distributions, our next goal

is to recover them using EM iteration.

5.4.2 Intuition

We start with a heuristic explanation of the proposed updateformulas, which is fol-

lowed by a more rigorous treatment. Recall thatf t
T (τ) is an estimate ofP (Tj = τ) during

iteration t. Then, one obvious approach is to set this value to the average probability

that each observationj has experienced a forward latencyτ , conditioned on the previous

estimates of unknown parameters, i.e.,

f t+1
T (τ) =

1

m

m
∑

j=1

P (Tj = τ |d′
j , θ

t
d, α

t). (5.17)

Next, each database signature withk original packets admits2k−1 unique loss patterns

γ, wherek goes as high askmax = 21. Estimating the probabilitypi(γ) for each possi-
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ble optionγ is likely to produce too many unknown variables in (5.3) and lead to poor

convergence of EM. Instead, suppose that all
(

k

ℓ

)

patterns of losingℓ packets out ofk are

equally likely and define the probability of this event to beqk(ℓ), wherek = 1, 2, . . . , kmax.

The resulting reduction in the number of unknown variables is significant – from roughly

2kmax+1 = 4M to just kmax(kmax − 1)/2 = 210. Despite its simplicity, the framework

of usingqk(ℓ) allows quite a bit more general scenarios than the traditional iid Bernoulli

model we used in Section 3 and 4.

To update distributionqk(ℓ), our approach involves computing the probability that ob-

servations experienced loss ofℓ packets out ofk transmitted, normalized by the probability

that the original host sentk packets in the first place. To express this mathematically, de-

fineYj to be the number of SYN-ACKs originated by the host in observation j. Then, we

get

qt+1
k (ℓ) =

∑m
j=1 P (Yj = k|θtd, α

t)1|d′

j |=k−ℓ
∑m

j=1 P (Yj = k|θtd, α
t)1|d′

j |≤k

, (5.18)

from which the estimated probability of patternγ can be expressed as

pti(γ) =
qt|di|

(|di| − |γ|)
(

|di|
|γ|

) . (5.19)

Finally, updates to PMFf t
∆(δ) involve computing the probability that one-way delay of

each received packet equalsδ, normalized by the total number of packets collected during

the scan, i.e.,

f t+1
∆ (δ) =

∑m
j=1

∑|d′

j |

s=1 P (∆js = δ|d′
j, θ

t
d, α

t)
∑m

j=1 |d
′
j|

. (5.20)

104



5.4.3 Analysis

To make the framework outlined above usable, our next task isto expand it into an

explicit recurrence using the distributions contained inθtd, i.e.,(f t
T , f

t
∆, q

t
k). Let

δijτγr = d′jr − τ − di,γ(r) (5.21)

be the one-way delay∆jr conditioned onTj = τ , loss patternγ, signatureωi, and obser-

vationj. For brevity of notation, suppose
∑

ijτγs refers to five nested summations, where

i goes from 1 ton, j rolls from1 tom, τ moves over all bins of the PMFfT (τ), γ iterates

over all monotonic loss vectors inΓ(i, j), ands travels from 1 to|d′
j |. If some of the vari-

ables are absent from the subscript, the corresponding sumsare omitted from the result.

With this in mind, define

ptijτγ := αt
if

t
T (τ)p

t
i(γ)

|d′

j |
∏

r=1

f t
∆(δijτγr), (5.22)

βt
ijτγ := p(ωi, τ, γ|d

′
j, θ

t
d, α

t) =
ptijτγ

∑

iτγ p
t
ijτγ

(5.23)

and consider the next result.

Theorem 6. Under network distortion, estimators(5.4), (5.17), (5.18), and(5.20)can be
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written as

αt+1
i =

1

m

∑

jτγ

βt
ijτγ, (5.24)

f t+1
T (τ) =

1

m

∑

ijγ

βt
ijτγ, (5.25)

qtk(ℓ) =

∑

ijτγ β
t
ijτγ1|d′

j |=k−ℓ,|di|=k
∑

ijτγ β
t
ijτγ1|d′

j
|≤|di|=k

, (5.26)

f t
∆(δ) =

∑

ijτγs β
t
ijτγ1δijτγs=δ

∑

j |d
′
j|

. (5.27)

Proof. We start with the recurrence onα. Keeping distortion limited to network features,

(5.4) becomes

αt+1
i =

1

m

m
∑

j=1

αt
ip(d

′
j|ωi, θ

t
d)

p(d′
j |θ

t
d, α

t)
.

With the help of (5.16), we get

p(d′
j |ωi, θ

t
d) =

∑

τγ

f t
T (τ)p

t
i(γ)

|d′

j |
∏

r=1

f t
∆(δijτγr), (5.28)

which leads to

αt
ip(d

′
j |ωi, θ

t
d) =

∑

τγ

pijτγ (5.29)

and, leveraging (5.2) for the denominator of (5.28),

αt+1
i =

1

m

m
∑

j=1

∑

τγ p
t
ijτγ

∑

iτγ p
t
ijτγ

=
1

m

∑

jτγ

βt
ijτγ. (5.30)
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Moving on to the forward latency, notice that (5.17) becomes

f t+1
T (τ) =

1

m

m
∑

j=1

p(d′
j |τ, θ

t
d, α

t)p(τ |θtd)

p(d′
j |θ

t
d, α

t)

=
1

m

m
∑

j=1

∑

i α
t
ip(d

′
j |ωi, τ, θ

t
d)f

t
T (τ)

p(d′
j|θ

t
d, α

t)

=
1

m

m
∑

j=1

∑

iγ p
t
ijτγ

∑

iτγ p
t
ijτγ

=
1

m

∑

ijγ

βt
ijτγ. (5.31)

Next, the probability that the host in observationj sentk packets is

P (Yj = k|θtd, α
t) =

n
∑

i=1

p(ωi|d
′
j , θ

t
d, α

t)1|di|=k

=

n
∑

i=1

αt
ip(d

′
j|ωi, θ

t
d, α

t)1|di|=k

p(d′
j |θ

t
d, α

t)
. (5.32)

Using this, the numerator of (5.18) expands to

m
∑

j=1

∑

i α
t
ip(d

′
j |ωi, θ

t
d, α

t)1|d′

j |=k−ℓ,|di|=k

p(d′
j |θ

t
d, α

t)

=
∑

ijτγ

βt
ijτγ1|d′

j |=k−ℓ,|di|=k. (5.33)

Applying the same logic to the denominator of (5.18), we get (5.26). Finally, updates

to one-way delay admit the following interpretation

P (∆js = δ|d′
j, θ

t
d, α

t) =

∑

iτγ p
t
ijτγ1δijτγs=δ

p(d′
j |θ

t
d, α

t)

=
∑

iτγ

βijτγ1δijτγs=δ, (5.34)

which is a sum of match probabilities over all signatures, forward latencies, and loss pat-

terns that result in one-way delayδ in thes-th received packet. Adding the two summations
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overj, s and dividing by the total number of observed packets, we get (5.27).

While the result of Theorem 6 may appear daunting due to the number of nested sum-

mations, its implementation in practice can be done with little extra overhead compared

to Hershel+. Specifically, usage of (5.16) in (5.1) for alli, j already requires five nested

loops. In the inner-most loop of that algorithm, (5.27) addsone increment to a hash ta-

ble that maintains the PMF of one-way delay. Updates in (5.24)-(5.26) are performed

much less frequently and, in comparison, consume negligible computation time. The only

caveat is that Hershel+ can be optimized to remove the outer summation in (5.16) when

fT is Erlang(2) andf∆ is exponential, as we described in Section 4.6.2. This approach, on

the other hand, requires a hash-table lookup for both distributions. This makes its single

iteration similar in speed to unoptimized Hershel+.

Theorem 7. Iteration (5.24)-(5.27)is the EM algorithm for recovering(θd, α).

Proof. AssumeHj = (zj , Tj , γj) are the hidden variables that specify for observation

j its true OS, forward latency, and loss pattern, respectively. Further supposeH =

(H1, . . . , Hm) is the collection of hidden variables for the entire measurement. Then,

the complete likelihood function is given by

p(d′, H|θd, α) :=
m
∏

j=1

p(d′
j , H|θd, α)

=

m
∏

j=1

p(d′
j |Hj, θd, α)p(Hj|θd, α), (5.35)

where

p(d′
j |Hj, θd, α) =

|d′

j |
∏

r=1

f∆(d
′
jr − τj − dzj ,γj(r)) (5.36)

p(Hj|θd, α) = αzjfT (Tj)pzj (γj). (5.37)
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Define

pijτγ = αifT (τ)pi(γ)

|d′

j |
∏

r=1

f∆(d
′
jr − τ − di,γ(r)). (5.38)

Following the proof of Theorem 5, the log-likelihood expands to

log p(d′, H|θd, α) :=
m
∑

j=1

log(pzj ,j,Tj,γj)

=
m
∑

j=1

∑

iτγ

log(pijτγ)1zj=i,Tj=τ,γj=γ . (5.39)

The expected log-likelihood function is then given by

Q(θd, α|θ
t
d, α

t) =
∑

ijτγ

log(pijτγ)p(ωi, τ, γ|d
′
j, θ

t
d, α

t)

=
∑

ijτγ

log(pijτγ)β
t
ijτγ. (5.40)

Taking partial derivatives with respect toαi andfT (τ), we get a set of equations similar

to (5.10)-(5.11). Their solution is trivially given by (5.24)-(5.25). A more interesting case

is the loss PMF. Using substitution

qk(k − 1) = 1−
k−2
∑

ℓ=0

qk(ℓ), (5.41)

in (5.40), we get forℓ = 0, 1, . . . , k − 2 that

∂Q(θd, α|θ
t
d, α

t)

∂qk(ℓ)
=

∑

ijτγ

1|d′

j |=k−ℓ,|di|=k

qk(ℓ)/
(

k

ℓ

) βt
ijτγ

−
∑

ijτγ

1|d′

j |=1,|di|=k

qk(k − 1)
βt
ijτγ. (5.42)
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Case ρ1 ρ∞ α∞

S11 0.67 0.95 0.90, 0.05, 0.05
S12 0.48 0.91 0.05, 0.90, 0.05
S13 0.45 0.95 0.90, 0.05, 0.05
S14 0.60 0.85 0.30, 0.60, 0.10

Table 5.3: Classification results of network EM inD1.

Settingc to be the second summation in (5.42) and equating the derivative to zero, we

get

qk(ℓ) =
1

c

∑

ijτγ

1|d′

j |=k−ℓ,|di|=k

(

k

ℓ

)

βt
ijτγ. (5.43)

Since the PMFqk must add up to1, it follows that

c =
k−1
∑

ℓ=0

∑

ijτγ

1|d′

j
|=k−ℓ,|di|=k

(

k

ℓ

)

βt
ijτγ

=
∑

ijτγ

1|d′

j |≤k,|di|=k

(

k

ℓ

)

βt
ijτγ. (5.44)

Using this in (5.43) and canceling
(

k

ℓ

)

yields (5.26). Note that derivation of (5.27) is

very similar. We omit it for brevity.

5.4.4 Discussion

We revisit earlier simulations on datasetD1, run (5.24)-(5.27) over the same input, and

show the result in Table 5.3. Compared to Table 5.2, the derived EM estimator significantly

improves the accuracy of classification and vectorα, especially in the bottom two rows.

Note thatS12 andS14 contain 43% of the observations with just one packet, i.e., zero RTOs.

In methods that rely on RTO, these samples would be either discarded as impossible to

classify or assigned to a uniformly random signature. In contrast, (5.24)-(5.27) manages
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Figure 5.3: Recovery of delay parameters inD1.

to do much better because it learns distributions(fT , f∆, α) and makes the best decision

possible under these difficult conditions. The accuracy of estimated delay distributions is

shown in Figure 5.3. With the exception of noise at the pointsof discontinuity of each

density, functionsf∞
T , f

∞
∆ match the true parameters quite well.

Recalling (5.15), whereTj +∆jr are always measured together, it may not be obvious

howT can be separated from∆ and why the result in Figure 5.3 is possible. Indeed, this

is reminiscent of the classical deconvolution problem: given observations{Xi + Yi}
m
i=1,

whereXi ∼ FX(x) andYi ∼ FY (x) are iid, determine the individual distributionsFX , FY .

Deconvolution is generally unsolvable unless eitherFX or FY is known ahead of time.
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Case DelayfT , f∆ q3 q4
S21 Same asS12 BinT(3, 0.3) BinT(4, 0.3)
S22 Same asS13 BinT(3, 0.7) BinT(4, 0.7)
S23 Same asS12 BinT(3, 0.1) BinT(4, 0.8)
S24 Same asS12 RevBin(3, 0.1) RevBin(4, 0.1)

Table 5.4: Network parameters of scenarioS2.

While our problem is similar, there is a crucial difference –EM can see the same value

Tj coupled with multiple instances of∆jr, for r = 1, 2, . . . , |d′
j |. As long asqk(k − 1) <

1 (i.e., packet loss leaves at least two packets in enough observations) andm → ∞,

deconvolution is possible in our setting, but up to a location shift, i.e., one of the estimated

distributions may be shifted left by a constant and the otherright by the same amount. If

we know that one of them starts at zero, it is possible to determine the shift after the fact.

Furthermore, if both estimated densitiesf∞
T , f

∞
∆ already begin at zero, no correction is

needed. This is the case in Figure 5.3 and later in our Internet scan.

Since all signatures inD1 had three packets, it was easy to figure out the number of

them lost in eachd′
j , which led toq∞k being perfectly accurate, regardless of whether (5.26)

was used or not. In a more interesting database, which we callD2, Linux is augmented

with a fourth packet that follows after a 3-second RTO. To experiment with different loss

patterns, define BinT(k, p) to be a binomial distribution truncated to the range[0, k − 1].

Since the loss of allk packets cannot be observed, we avoid generating this case inthe

simulator. Additionally, suppose RevBin(k, p) is thereverse binomial distributionthat has

the following property: ifX ∼ BinT(k, p) andY = k − 1 −X, thenY ∼ RevBin(k, p).

With this in mind, consider scenarioS2 in Table 5.4. The first two rows have iid loss at

30% and 70%, respectively. The next case applies 10% loss to signatures with 3 packets

(i.e., Windows, Novell) and 80% loss to those with 4 (i.e., Linux). The final row uses

reverse-binomial loss for allωi.
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Case α Hershel+ EM α, fT , f∆ full EM
ρ1 α1 ρ∞ α∞ ρ∞ α∞

S21 0.90 0.76 0.68 0.70 0.63 0.91 0.90
0.05 0.25 0.31 0.05
0.05 0.07 0.05 0.05

S22 0.90 0.42 0.33 0.14 0.10 0.92 0.90
0.05 0.38 0.88 0.05
0.05 0.29 0.02 0.05

S23 0.90 0.45 0.34 0.13 0.06 0.97 0.90
0.05 0.47 0.84 0.05
0.05 0.19 0.10 0.05

S24 0.90 0.45 0.36 0.10 0.06 0.90 0.90
0.05 0.46 0.90 0.05
0.05 0.18 0.04 0.05

Table 5.5: Classification results inD2.

Table 5.5 shows classification results for three methods – Hershel+, the partial EM

framework without loss updates (5.26), and the full algorithm from Theorem 6. Not sur-

prisingly, Hershel+ again struggles to recoverα, even when its classification accuracy is

pretty high. Omission of (5.26) does create challenges for partial EM, where in all four

cases it produces worse results than Hershel+. On the other hand, the full algorithm im-

proves accuracy and delivers the exactα despite complex underlying network conditions.

The corresponding distributionsq∞k are shown in Table 5.6. They all match ground-truth

qk with high precision.

Besides aiding fingerprinting, ability of EM to estimateone-waydistributions of delay

and loss (conditioned on at least one packet surviving) may open up interesting angles to

Internet measurement and help with end-to-end sampling of these parameters in scenarios

that do not have a suitable infrastructure of cooperating receivers.
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Case Vector k = 3 k = 4

S21 qk (0.35, 0.45, 0.19) (0.24, 0.41, 0.27, 0.08)
q∞k (0.35, 0.45, 0.19) (0.24, 0.41, 0.27, 0.08)

S22 qk (0.04, 0.29, 0.67) (0.01, 0.10, 0.35, 0.54)
q∞k (0.04, 0.29, 0.67) (0.01, 0.10, 0.35, 0.54)

S23 qk (0.73, 0.24, 0.03) (0.00, 0.04, 0.26, 0.69)
q∞k (0.73, 0.24, 0.03) (0.00, 0.04, 0.26, 0.69)

S24 qk (0.03, 0.24, 0.73) (0.00, 0.05, 0.29, 0.66)
q∞k (0.03, 0.24, 0.73) (0.00, 0.05, 0.29, 0.66)

Table 5.6: Recovery of loss PMFs inD2.

5.5 User Features

5.5.1 Distortion Model

Our goal in this subsection is to expand the second factor in (5.14) and develop an

estimator for its distortion model. This is done in isolation from the network features, i.e.,

usingp(d′
j|ωi, θd) = 1 for all i, j. Assumeb ≥ 1 user features, where each observation

j provides a constant-length vectoru′
j = (u′j1, . . . , u

′
jb). These include the TCP window

size, IP TTL (Time to Live), IP DF (Do Not Fragment flag), TCP MSS (Maximum Seg-

ment Size), and TCP options, for a total ofb = 5 integer-valued fields. Since RST features

depend on network loss, we delay their discussion until the next subsection. Note that

each field may be allocated a different number of bits and the number of available options

av for u′jv may depend onv.

Modification to user features, which we model with a set of distributionsθu, can be

accomplished by manually changing default OS parameters (e.g., editing the registry),

using specialized performance-tuning software, requesting larger/smaller receiver kernel

buffers while waiting on sockets (i.e., usingsetsockopt), and deploying network/host

scrubbers [20], [84], [90], [101], [115] whose purpose is toobfuscate the OS of protected

machines. Besides intentional feature modification, distortion θu may also accommodate
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unknown network stacks that build upon a documented OS, but change some of its features

(e.g., new versions of embedded Linux customized to a particular device).

Prior work in OS fingerprinting is mostly rule-based, and omits formally modeling

user volatility entirely [7], [73], [120], [122]. In Hershel, we introduced a model which

assumed thatuiv can stay the same with some probabilityπv and change to another integer

with probability1−πv. While this approach works well in certain cases, it has limitations.

Besides the fact thatπv is generally unknown, binary decision-making fails to create a

distribution over the available choices. For example,πv = 0.9 assumes thateachof the

65,534 non-default window sizes may occur with probability0.1. Instead, a more balanced

approach would be to assume a uniform distribution over the distortion possibilities and

assign them probability(1 − πv)/(av − 1). Second, it is likely that certain devices are

modified less frequently than others (e.g., due to firmware restrictions in printers) and in-

dividual distortions are OS-specific, which implies thatπv should depend oni. Finally, the

existing methods have no way of tracking the location and probability mass of distortion,

which does not have to be uniform in practice (e.g., non-default window size 57 bytes is

less likely than 64K).

To overcome these problems, assume thatπiv(y) is the probability that featurev of OS

i is modified to becomey, which gives rise to a set ofnb distributions that comprises our

user-distortion modelθu. Then, the proposed classifier can be summarized by

p(u′
j |ωi, θu) =

b
∏

v=1

πiv(u
′
jv), (5.45)

where modification to features is assumed to be independent.Note that doing otherwise

does not appear tractable at this point (i.e., estimation ofcovariance matrices produces too

many variables for EM to handle).
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5.5.2 Iteration

We begin by discussing under what conditions the problem is identifiable, despite hav-

ing a large number of unknown distributions. Assumeφiv := πiv(uiv) is the probability

with which featurev stays the same for OSi. Because we do not know ahead of time the

reasoning of the user for changing the features or the new values of modified fields, the

estimation problem forπiv is unsolvable unless enough of the probability mass remainsat

the original location, i.e.,φiv is above some threshold. From common sense, it is likely

thatφiv ≥ 0.5 holds among the general population of Internet hosts; however, EM con-

verges under even weaker conditions – as long asφiv is the largest value in each PMFπiv.

Coupling this with an initial state that satisfies the same constraint leads to discovery of a

unique solution in (5.3).

We define the estimator for user distortion as the probability to observey in featurev

across all matches against OSi, i.e.,

πt+1
iv (y) =

∑m
j=1 p(ωi|u

′
j , θ

t
u, α

t)1u′

jv=y
∑m

j=1 p(ωi|u′
j, θ

t
u, α

t)
. (5.46)

To simplify this expression, define

ptij := αt
ip(u

′
j |ωi, θ

t
u, α

t) = αt
i

b
∏

v=1

πt
iv(u

′
jv), (5.47)

βt
ij := p(ωi|u

′
j , θ

t
u, α

t) =
ptij

∑n
i=1 p

t
ij

. (5.48)

The next result follows from substitution of (5.47)-(5.48)into (5.4) and (5.46), as well

as earlier proofs of Theorems 5 and 6.
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OS Win TTL DF OPT MSS
Linux 5,792 64 1 MSTNW 1,460
Windows 16,384 128 0 MNWNNTNNS 1,380
Novell 6,144 128 1 MNWSNN 1,460

Table 5.7: User features of databaseD3.

Theorem 8. Under user distortion, estimators(5.4)and (5.46)can be written as

αt+1
i =

1

m

m
∑

j=1

βt
ij , (5.49)

πt+1
iv (y) =

∑m
j=1 β

t
ij1u′

jv
=y

mαt+1
i

. (5.50)

Furthermore, this is the EM algorithm for recovering(θu, α).

5.5.3 Discussion

To evaluate the result of Theorem 8, we construct a new databaseD3, shown in Table

5.7, by switching from RTOs to user features (in the OPT string, M stands for MSS, N for

NOP, S for SACK, T for timestamp, and W for window scale). Notethat this Windows

signature ties Novell in TTL, while Linux does the same in DF and MSS. For simplicity

of presentation, we use simulation scenarios withφiv = φv for all i, whereφv is the

probability with which featurev stays at the default value. This replaces matrixφiv with a

vectorφv, which is easier to follow across the different tables.

The initial PMFsπ0
iv of EM are set up to include 90% of the mass on the default

value and split the remainder uniformly across the viable alternatives. Since the order of

non-NOP options cannot be changed without rewriting the TCP/IP stack of the OS, we

initializeπ0
i4 to allow only candidates compatible with the originaldi4. For example, MST

is feasible for Linux, but not the other two signatures in Table 5.7. Note that any single

option (M, S, W) and the empty set are valid for all three OSes.
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Vector Win TTL DF OPT MSS
u
′′
1 5,793 128 0 M 1,461

u
′′
2 16,386 32 1 M 1,382

u
′′
3 6,147 64 0 M 1,463

Table 5.8: Patched user features.

We use two models for generating the alternatives for each field. The first one, which

we call RAND, picks uniformly from the space of possible values observed in our Internet

scan, except OPT is limited to compatible subsets/supersets of the original. We have 5695

candidates for Win, four for TTL, two for DF, 266 for OPT, and 1082 for MSS. Decisions

are made independently for each featurev and each observationj, which models users

"tweaking" their OS without coordinating with each other orsharing a common objective.

Even though RAND can generate 13.1 billion unique combinationsu′
j, only a small subset

is encountered by the classifier in our examples below.

The second model, which we call PATCH, selects an alternative vector of featuresu′′
i

for each OSωi and switches the individualuiv to u′′iv with probabilityφv, again indepen-

dently for eachv. This represents deployment of software patches that change one of the

features to an updated value. The probability for a host to use multiple patches is the prod-

uct of corresponding(1 − φv)’s. For example, modification to both Win and OPT affects

(1 − φ1)(1 − φ4) fraction of hosts. Vectorsu′′
i are non-adversarial and do not attempt to

confuse the classifier. We construct them by flipping the DF flag, setting OPT to M, and

addingi to all remaining fields (modulo the maximum field value). The result is presented

in Table 5.8.

Our next scenarioS3 is detailed in Table 5.9 and the corresponding outcome in Table

5.10. Due to the differences in treatment of non-default features, Hershel+ is slightly

inferior to the first iteration of EM. However, both are much worse than the last iteration.

It should be noted that the second caseS32 modifies Win, TTL, and MSS in 100% of the
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Case Model Feature stay probφv Popularityα
S31 RAND (0.3, 0.2, 0.5, 0.4, 0.4) (0.90, 0.05, 0.05)
S32 RAND (0.0, 0.0, 0.1, 0.2, 0.0) (0.90, 0.05, 0.05)
S33 PATCH (0.2, 0.2, 0.2, 0.2, 0.2) (0.7, 0.2, 0.1)

Table 5.9: Parameters of scenarioS3.

Case Hershel+ EM
ρ1 ρ1 ρ∞

S31 0.76 0.79 0.96
S32 0.29 0.32 0.91
S33 0.31 0.50 1

Table 5.10: Classification results inD3.

samples. Identifiability in such conditions is helped by thefact that OPT is constrained to a

subset of the original string, which makes a certain fraction of randomly generated values

feasible for only one OS. This allows EM to learn to ignore (Win, TTL, MSS) and focus

decisions on (DF, OPT). Furthermore, when guessing is involved, EM uses its knowledge

of α to correctly pick the most-likely OS. It is also interestingthatS33 is classified with

100% accuracy once EM gets a grasp on the new values in Table 5.8 and their probability

of occurrence.

To estimate vectorφt
v in the classifier, we use a weighted average of feature non-

modification across all OSes, i.e.,φt
v =

∑n

i=1 α
t
iφ

t
iv. The result, together with the final

estimate ofα, is shown in Table 5.11. Both are an excellent match to the parameters of the

simulation.

5.6 Complete System

5.6.1 Reset Packets

Because loss of RST packets causes the corresponding user features (i.e., ACK/RST

flags, ACK sequence number, window size) to be wiped out, there is dependency between
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Case α∞ φ∞
v

S31 (0.90, 0.05, 0.05) (0.30, 0.20, 0.50, 0.40, 0.40)
S32 (0.90, 0.05, 0.05) (0.00, 0.00, 0.10, 0.20, 0.00)
S33 (0.70, 0.20, 0.10) (0.20, 0.20, 0.20, 0.20, 0.20)

Table 5.11: Recovery ofα andφv in D3.

RST present Action Multiplier ζtij
d
′
j di

yes yes – πt
i,b+1(u

′
j,b+1)

yes no ignore RST ind′
j πt

i,b+1(u
′
j,b+1)

no yes – 1
no no – 1

Table 5.12: Handling of RST packets.

distortion applied by the network and the user. As a result, this case should be handled

separately. The first modification needed is to increase the length of network vectorsdi

andd′
j to accommodate the RST timestamp. The second change is to record RST header

values into user features. Since RST fields are unmodifiable independently of each other

, they can be combined into a single integer and appended to user vectorsui andu′
j in

positionb+ 1.

There are four possible scenarios for handling RST packets.They are shown in Table

5.12, each with a certain probabilityζ tij that must be factored into the formulas developed

earlier. When both the observation and candidate signaturecontain a RST, the only mul-

tiplier needed is the probability that the received featurematches that of the original OS.

If the sampled OS has a RST, but the signature does not, this indicates a possible injec-

tion from an intermediate device (e.g., IDS after expiring connection state, scrubbers). In

this case, it is likely meaningless to use the temporal characteristics of the RST, which

is why we omit it fromd′
j before computing the loss and delay probabilities. However,

multiplication byπt
i,b+1(uj,b+1) is still warranted since we must assign proper weights to
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this mismatch. The third row of the table corresponds to packet loss, which is handled

automatically inpti(γ), i.e., no additional actions or multipliers are needed. Finally, the

last row is identical to the setup assumed earlier.

5.6.2 Final Model

We now combine the developed network, user, and RST models into a single frame-

work. First, redefine (5.22) as

ptijτγ = αt
iζ

t
ij

b
∏

v=1

πt
iv(u

′
jv)f

t
T (τ)p

t
i(γ)

|d′

j |
∏

r=1

f t
∆(δijτγr). (5.51)

This allows us to computeβt
ijτγ still via (5.23), as well as reuse (5.24)-(5.27); however,

(5.50) requires an update to

πt+1
iv (y) =

∑m

j=1 1ujv=y

∑

τγ β
t
ijτγ

mαt+1
i

, (5.52)

wherev = 1, 2, . . . , b + 1. The final classifier, which we callFaulds, is applied after EM

has converged and is given by

p(ωi|x
′
j, θ

∞, α∞) =
∑

τγ

β∞
ijτγ. (5.53)

It is fairly straightforward to generalize our earlier results to cover the complete model.

We thus present the next theorem without proof.

Theorem 9. Under both network and user distortion, estimator(5.23)-(5.27), (5.51)-

(5.52)is the EM algorithm for(θ, α).
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5.6.3 Scaling the Database

Due to the large number of features it combines, Faulds is notchallenged by the pre-

vious toy databases. We therefore switch to a more realisticset of signatures – our Plata

database. To keep continuity in the notation, we call this databaseD4 and note that it con-

tains 420 stacks, among which some have the same exact RTO vector and others overlap in

all user features. We constructed this database to ensure that signatures were sufficiently

unique under delay distortion, but packet loss and user modifications were not taken into

account. As a result, the database contains a number of entries that would be difficult to

distinguish under the types of heavy distortion consideredin this section. Nevertheless,

these tests should indicate how well Faulds scales to largerdatabases and whether its re-

covery of the unknown parameters(α, θ) is affected by an increased uncertainty during

the match.

We set popularityα to the Zipf distribution with shape parameter 1.2 and continue

usingm = 218 observations, which gives us 64K samples from the most common OS and

just 49 from the least. We borrow the delay from caseS13 (i.e., reverse exponentialT with

mean 1.5 sec, Erlang(2)∆ with mean 0.5) and packet loss fromS24 (i.e., reverse-binomial

with probability 0.1). Finally, we use RAND with stay probability φv = 0.8 for all v.

The first iteration of Faulds produces a respectableρ1 = 0.42. This is gradually im-

proved with each step, until convergence to a more impressiveρ∞ = 0.70. To make sense

out ofα∞, we sort all signatures in rank order from the most popular tothe least and plot

the result in Figure 5.4(a). This is a strong match in the top-100, while the random noise

in the tail is explained by the scarcity of these OSes in the observation (i.e., below 250

samples each). For comparison, the outcome of Hershel+ is displayed in part (b). Next,

subfigures (c)-(d) show estimates offT andf∆. Despite an overall 30% classification mis-

match, these PMFs are no worse than previously observed in Figure 5.3, which indicates
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Figure 5.4: Results inD4.

that incorrect decisions overwhelmingly went to signatures with similar RTO vectors as

the true OS.

Instead of scrutinizing 21 different loss PMFs, suppose we compute a single metric –

the fraction of packets dropped within the entire observation x′, conditioned on at least

one packet surviving. To this end, define during stept

Lt
k =

k−1
∑

ℓ=1

ℓqtk(ℓ) (5.54)

to be the average number of lost replies in signatures withk packets. Then, taking the ratio
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of all dropped packets to the total transmitted yields the expected loss rate

ptloss =

∑n

i=1 α
t
iL

t
|di|

∑n
i=1 α

t
i|di|

. (5.55)

Recall that the simulation allowed packet loss to affect at mostk − 1 packets in an OS

with |di| = k. Therefore, its ground-truth packet loss should representthe same quantity

as (5.55). Traces show that70.1% of the packets were dropped, which matches quite well

againstp∞loss = 69.3%.

Sinceφv = 0.8 was a constant in this simulation, it makes sense to compare it against

feature-modification estimates averaged across all fields and all OSes, i.e.,

E[φt
v] =

1

b+ 1

b+1
∑

v=1

φt
v =

1

b+ 1

b+1
∑

v=1

n
∑

i=1

αiφ
t
iv. (5.56)

Results show thatE[φ∞
v ] = 0.802, which is again very close to the actual value. While

there is some variation in individualφiv, it is of little concern due to the small number of

samples seen by Faulds from these OSes.

5.6.4 Unknown Signatures

We recognize that having a database that knows all devices onthe Internet is near

impossible. Therefore, infiltration of samples from unknown signatures intox′, which we

call injections, is inevitable in practice. Understanding the impact of these cases is our

next topic.

Supposex′
j is produced by some unknown OSω that does not belong to the database.

If x′
j is so different from the known signatures thatp(x′

j|θ
t, αt) = 0, i.e., it matches each

OS with probability 0, its injection into the observation will contribute nothing to updates

of (αt, θt) and thus will have no impact on classification decisions. In order to achieve

a flat-out mismatch of this type, either delayδijτγ must be negative for alli, τ, γ or the
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New size Injected ρ1∗ ρ∞∗ p∞loss E[φ∞
v ]

378 (90%) 7,089 (2.8%) 0.88 0.91 0.10 0.80
336 (80%) 49,648 (19.0%) 0.87 0.89 0.11 0.74
294 (70%) 60,058 (22.9%) 0.87 0.89 0.11 0.73
210 (50%) 91,408 (34.9%) 0.91 0.91 0.11 0.72
126 (30%) 189,293 (72.2%) 0.95 0.93 0.17 0.60

Table 5.13: Injection classification summary.

product in (5.51) must be smaller than the precision of floating-point arithmetic.

For injections withp(x′
j |θ

t, αt) > 0 the situation is less clear-cut. In some cases,ω

may be close to an existing signatureωi, which makes injections minimally different from

distorted instances ofxi. As a result, they do not negatively impact EM or its convergence

point. On the other hand, it is also possible thatx′
j is a potential match to multiple unrelated

OSes and the amount of distortion needed to make them appear asx′
j is much greater than

the underlyingθ. If the volume of injections is high, how likely is EM to taintthe PMFs

πt
iv of multiple OSes and introduce bias into distributions of delay/loss to the point of

impacting classification accuracy fornon-injectedsamples?

We do not consider encountering of adversarial injections (i.e., special signatures

crafted to cause maximum harm for a given database and classifier) to be likely in practice

and instead focus on evaluating the effect of random subset removal fromD4. Specifically,

assume the simulator produces distorted observations using all 420 network stacks; how-

ever, Faulds has access to only some of the original signatures. For the next simulation, we

use ParetofT andf∆, both with mean 0.1 seconds, iid packet loss at 10%, andφv = 0.8.

Define ρt∗ to be the classification accuracy among non-injected observations during

stept and consider Table 5.13, which shows the shrunk database size, number of injected

samples amongm = 218 observations, and the output of Faulds. The result shows that

removal of signatures does not carry a significant negative impact on accuracy of clas-

sification for the known OSes. In fact,ρt∗ slightly rises as the database shrinks since it
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Figure 5.5: Recovered delay under 72% injection.

becomes easier to classify among fewer options. Packet lossp∞loss also appears immune,

except in the last row where 72% ofx′ contains observations from unknown OSes. This

loss of accuracy is explained by matches that now require more packet loss to be feasible.

Finally, the feature-stay probability in the last column isthe most affected, which was also

expected due to the increased header-field mismatch.

Figure 5.5 shows the two delay PMFs estimated by Faulds in thelast row of Table

5.13. Recovery is quite good, except for a slight bump inf∆ between 200 and 400 ms.

This shows that removing 70% of the signatures inD4 still leaves enough unique RTO vec-

tors to produce highly accurate results. In the actual Internet, however, we do not expect

injection conditions to be anywhere near these levels becauseD4 contains an array of ma-

jor network stacks (e.g., Windows, Unix), printer firmware (e.g., HP, Lexmark, Brother),

Cisco equipment, and various derivative implementations that run on embedded devices.
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5.7 Internet Measurement

5.7.1 Overview

To experiment with Faulds, we conducted a port-80 SYN scan ofall BGP-reachable

IPv4 addresses on the Internet in December 2016. Of the 2.8B IPs contacted, we gathered

responses from 67.6M hosts (compared to 66.4M in our previous scan, the Internet web-

server population appears to have reached saturation). In large-scale classification, such

as the one attempted here, Faulds produces a huge volume of information in the form of

various PMFs and estimates. Due to limited space, we presentonly a brief review of the

obtained results and leave more detailed analysis (including attempts to uncover injections

and correct for them) for future work. We start with vectorα, then examine parameters of

network distortionθd, and finish with those of user modificationθu.

5.7.2 Classification Results

Define classification to be successful for samplej if the denominator of (5.1) is non-

zero, i.e.,p(xj |θ
t, αt) > 0. Using the Hershel+ database, Faulds successfully classified

63.5M hosts (i.e., 94%). From a pure statistical point of view, the remaining 4.1M devices

should be assigned to the OS with the highestα∞
i . But it is also likely these cases come

from unknown stacks or observations with too much packet loss, in which case excluding

them from classification might be prudent as well, which is our approach below.

The left side of Table 5.14 shows the top ten OSes after one iteration of Faulds. As the

database of Hershel+ is auto-generated and does not containfine-granular details about

individual OS versions, many signature names appear similar; however, these often corre-

spond to different kernel versions and/or physical devices. The dominance of Linux and

embedded devices in Table 5.14 matches the statistics we found in our previous studies in

Section 3 and Section 4; however, a more interesting result is the amount of change occur-

ring in the classification as Faulds goes through its iterations. The right side of Table 5.14
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OS α1 Count
Ubuntu / Redhat / CentOS 0.227 14,662,315
Ubuntu / Redhat / SUSE 0.108 8,388,020
Windows 7 / 8 / 2008 / 2012 0.048 2,938,499
Embedded Linux 0.033 2,401,181
Ubuntu / Debian / Embedded0.028 1,848,388
Embedded Linux 0.025 1,672,805
Ubuntu / Redhat / Sci. Linux 0.019 1,320,081
Windows XP / 2003 0.018 1,190,617
3Com Routers 0.015 1,013,943
Cisco Embedded 0.013 991,881

−→

OS α10 Count Change
Ubuntu / Redhat / CentOS 0.226 14,639,486 −0.002
Ubuntu / Redhat / SUSE 0.102 6,669,700 −0.20
Embedded Linux 0.067 4,384,225 0.82
Windows 7 / 8 / 2008 / 2012 0.045 2,948,567 0.003
Cisco Embedded 0.022 1,497,269 0.51
Ubuntu / Redhat / Sci. Linux 0.018 1,148,008 −0.13
3Com Routers 0.018 1,128,655 0.11
Embedded Linux 0.017 1,057,361 −0.37
Dell Laser / Xerox WorkCenters 0.015 982,973 0.15
Ubuntu / Debian / Embedded 0.013 844,958 −0.54

Table 5.14: Faulds classification at iteration 1 (left) and 10 (right).

1
2
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Figure 5.6: Internet delay distributions.

shows theα vector after 10 steps. With the exception of two signatures,there is significant

movement in the list, including embedded Linux in third position increasing its member-

ship by 82%, Cisco gaining 51%, 3Com 11% and Windows XP/2003 completely dropping

off the top-ten. There is even more shuffle further down the list, which underscores the

importance of using proper algorithms for estimatingα.

5.7.3 Network Distortion

Figure 5.6(a) shows the recovered distributionfT using bin size 30 ms. Interestingly,

32% of delays are in the first bin, which likely represents idle servers that immediately

send back the first SYN-ACK. A relatively large number (i.e.,38%) of cases belong to the

120-180 ms range, which may indicate OS scheduling delays, non-trivial CPU load on the

server, longer forward paths, and involvement of various backend databases to set up the

connection. Overall, we obtainE[T ] = 111 ms, 41% of the samples below 60 ms, 90%

below 180 ms, and 99.4% below 420 ms.

Figure 5.6(b) plots the distribution of one-way delayf∆. The massive peak at 30-60 ms

consolidates 81% of the observations and likely corresponds to fixed propagation delays
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Figure 5.7: Internet packet-loss PMFs.

shared by many Internet paths leading back to our client. WithE[∆] = 83 ms, 90% of the

values below 120 ms, and 98.5% below 420 ms, the real Internetdistortionθd does appear

quite different from that assumed by Hershel+.

To examine packet loss, defineηtk =
∑n

i=1 α
t
i1|di|=k to be the estimated fraction of

observations that use an OS withk packets. The top values ofk are four (η∞4 = 0.42,

112 stacks inD4), six (η∞6 = 0.31, 80 stacks), three (η∞3 = 0.07, 72 stacks), and five

(η∞5 = 0.04, 54 stacks). Figure 5.7 examines the recovered loss PMFs forthese values of

k, each fitted with an iid binomial model and accompanied by theaverage loss rateL∞
k /k
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from (5.54). First, it is interesting that the loss rate is heterogeneous, ranging from 1%

in q6 to 15% inq5. This phenomenon may be inherent to the signatures that map to each

k (e.g., certain printers cut the SYN-ACK sequence when theirtiny SYN backlog queue

overflows) or their location on the Internet, which suggeststhere is an extra benefit to

estimatingqk independently for differentk. If injection of unknowns were responsible for

the increased loss rate inq3 andq5, we would not expect to see a binomial-like distribution.

Instead, an abnormally large spike atℓ = 1 or 2 would be more likely.

Second, the binomial fit in Figure 5.7 is not perfect, but it shows a similar decaying

trend. Therefore, the iid loss assumption in Hershel+ may bereasonable, but with one

correction that allows for heterogeneous values across differentk. Third, computing (5.55)

for the Internet scan yields an average loss rate of 3.7%. This is very close to the assumed

model of Hershel+, whoseploss = 3.8% comes from a 2009 Google study of SYN-ACK

retransmission rates at their servers [18]. Apparently this magic number remains in effect

for the Internet even today.

5.7.4 User Distortion

Faulds produced420 × 6 = 2520 distributions of user features, among which we

highlight several interesting cases, focusing on the two most volatile fields – Win and

MSS – and limiting all PMFs to values above the 1% likelihood.Since MSS sometimes

depends on the MTU of the underlying data-link layer and/or tunneling protocol (e.g.,

IPv6), this field may experience fluctuation even if the OS does not allow explicit means

for changing this value.

We expected devices with firmware restrictions that preventuser access to the configu-

ration of SYN-ACK parameters to exhibit highφiv. One example is shown in Figure 5.8(a)

for the Dell printer from Table 5.14. Among 982K occurrenceson the Internet, this device

keeps the default window with probability 1. Intuition alsosuggests that general-purposes
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Figure 5.8: Internet distributionsπi1 andπi5 (default values are shown with an asterisk).

OSes are more susceptible to modification and/or existence of alternatively patched ver-

sions. An example of this is Ubuntu in Figure 5.8(b). While both features show variation,

the default values dominate. A more diverse case is CentOS (enterprise Linux) in part

(c), which has 29% of its samples with larger windows and 3% with smaller. In subfigure

(d), Citrix Netscaler (data-center load-balancer) has itsoriginal combination (8190, 1360)

overshadowed by (4380, 1460). We conjecture that our Plata database most likely captured

a non-standard version of this stack. Since this is an inherent property of any database, it

is important to allow great flexibility in the match process to accommodate such scenarios.

Faulds does exactly that.
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Computing (5.56), we obtainE[φ∞
v ] = 0.89, which confirms the accuracy of the as-

sumed value in Hershel+ (i.e., 0.9); however, sampling the distributions in Figure 5.8

or using them in classification is only possible by introducingπt
iv and iteratively refining

(θt, αt). As the first method to implement this functionality, Fauldspaves way for scalable,

low-overhead Internet characterization, robust device identification, and better modeling

of distortion experienced by the numerous hardware artifacts found on the Internet.

5.8 Conclusion

In this section, we developed novel theory and algorithms for improving OS-classification

accuracy in single-probe fingerprinting, measuring one-way Internet path properties, and

extracting latent distributions of feature distortion. Simulations showed exceptional ro-

bustness of our EM techniques against various types of noise, as well as injection of un-

known devices. Applied to Internet scans, this methodologycan be used to characterize

stack popularity, network delays, packet loss, and header-tuning probabilities.
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6. SUMMARY AND FUTURE DIRECTIONS

In this dissertation, we tackled the problem of large scale OS fingerprinting, a direction

which is largely unexplored in the current literature. In order to build fast, low overhead

algorithms that are required to measure a sizeable network,we focused on classification

using a single TCP packet.

We first developed stochastic theory of single-packet OS fingerprinting, and created a

classifier calledHershelbased on our formulation. Using simulations, we showed thatour

algorithm is accurate even under extremely noisy conditions, and conducted a study where

we successfully classified the OS of 37M Internet hosts.

Next, we turned our attention to building a scalable database of OSes to use with

Hershel. We developed a framework calledPlata, which is able to automatically create a

database from a network scan using a novel unsupervised clustering algorithm. We used

Plata on our university campus to discover signatures for 420 OSes, provided an improved

version of our classifier (Hershel+) and showed its viability in an Internet measurement of

66M target hosts.

Finally, we took aim at one possible shortcoming of Hershel –the assumptions of

volatility it makes for each noisy parameter. We derived a new algorithm using Expectation-

Maximization calledFaulds to recover the unknown distributions of network one-way

delay, packet loss and user feature modification, using the classification process itself.

After showing its reliability in simulations, we used Faulds to recover network-wide de-

lay distributions, packet loss probabilities and likelihoods of stack tuning performed by

administrators across the Internet.
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6.1 Future Directions

Network stack fingerprinting has well-known pitfalls (e.g., scrubbers [20], [90], [84],

[101], [115], traffic intercepts by middleboxes [43], load-balancers, RST injection by

IDS), but nevertheless it is fascinating that a single SYN packet can elicit so much in-

formation about the target. With our algorithm for automated construction of databases

and robust classification (i.e., Plata, Hershel+ and Faulds), our goal is to make single-

packet tools a legitimate competitor for use over the publicInternet. However, despite

the recent developments in this field, there are still many open problems and avenues for

improvement, which we discuss next.

From our classification efforts, we showed that Hershel+ andFaulds are tolerant of

samples gathered from unknown devices on the Internet, either by discarding them if they

are a complete non-match, or matching them to the closest possible signature. Future

work can focus on more reliable detection of unknown stacks among the observations,

and automatic generation of database signatures for them. This would require research to

continue on discerning the separation of a "tweaked" sampleversus an unknown one, and

the impacts of such observations on the final accuracy.

Once this detection is possible, it leads to the next question which is whether the en-

tire Internet dataset can be used to build a OS fingerprint database. We have considered

this direction; however, Plata matrix construction has quadratic complexity and signature

separation is even worse (i.e.,n3). The largest cluster in the Internet dataset formed after

separation on the user features still contains over 50K RTO vectors, which will take Plata

weeks to separate. Additionally, collection of loss-free samples from each IP not only re-

quires pestering hosts with 3.3B additional packets, but also consumes a large amount of

time that may result in host departure and incomplete measurement. Finally, presence of

non-trivial delayT during database construction violates the current assumptions that the
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initial fingerprints are clean, with currently unknown consequences.

This train of thought also gives rise to another question, which is whether Plata’s dis-

tortion modelX can include the additional types of disturbance we observe in single-probe

fingerprinting. Including packet loss seems like a viable direction as Plata can handle this

transparently in the Monte-Carlo version; however, deriving a Hershel+ matrix in closed-

form requires additional research. Including user modification would require incorporat-

ing some knowledge from the gathered labels (e.g., windows,linux, printer), as our results

from Faulds show that these parameters are dependent on the class of the device. To this

end, additional data mining from the Faulds classification would be required to build real-

istic user modification distributions.

Finally, now that we have accomplished multi-iterative classification on features ob-

tained from a single-packet using Faulds, the next logical step to investigate is whether we

can increase accuracy by abandoning the single-packet assumption and sending multiple

packets to each target IP. Future work would need to assess the viability of this approach on

Internet scale, and find the correct balance that would make the target host elicit enough

responses without triggering IDS and harassing network administrators. Furthermore, a

new database with a new distortion model would also be required. For example,X may

be extended to include blocking of ICMP/UDP packets as done by a firewall, censorship

of certain invalid flag combinations known to IDS, emulationof load-balancers, and fin-

gerprint obfuscation by scrubbers found on the Internet.
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