SCALABLE OS FINGERPRINTING:
CLASSIFICATION PROBLEMS AND APPLICATIONS

A Dissertation

by
ZAIN SARFARAZ SHAMSI

Submitted to the Office of Graduate and Professional Studies
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Dmitri Loguinov
Committee Members, Riccardo Bettati
Radu Stoleru
A. L. Narasimha Reddy
Head of Department, Dilma Da Silva

May 2017

Major Subject: Computer Science

Copyright 2017 Zain Sarfaraz Shamsi

ABSTRACT

The Internet has become ubiquitous in our lives today. With its rapid adoption and
widespread growth across the planet, it has drawn many research efforts that attempt to
understand and characterize this complex system. One such direction tries to discover the
types of devices that compose the Internet, which is the topic of this dissertation.

To accomplish such a measurement, researchers have turned to a techniqu@®alled
fingerprinting which is a method to determine the operating system (OS) of a remote host.
However, because the Internet today has evolved into a massive public network, large-scale
OS fingerprinting has become a challenging problem. Due to increasing security concerns,
most networks today will block many of the probes used by traditional fingerprinting tools
(e.g., Nmap), thus requiring a different approach. Consequently, this has given rise to
single-probe techniques which offer low overhead and minimal intrusiveness, but in turn
require more sophistication in their algorithms as they are limited in the amount of infor-
mation that they receive and many parameters can inject noise in the measurement (e.g.,
network delay, packet loss).

This dissertation focuses on understandingthe performance of single-probe
algorithms. We study existing methods,formalize current problemsin the field and
devisenew algorithmsto improve classificationaccuracyand automateconstructionof
fingerprintdatabaseswWe apply our work to multiple Internet-widescansand discover
that besidesgeneralpurposemachinesthe Internettoday has grown to include large
numbersof publicly accessibleperipheraldevices(e.g.,routers,printers,camerasind
cyber-physicabystemge.g.,lighting controllers,medicalsensors)We go on to recover
empirical distributionsof network delaysand loss, as well as likelihoods of usersre-
configuring their devices.With our developedtechniquesand results,we show that
single-probealgorithmsarean effective approach for accomplishing wide-scale network

measurements.

To my family.

ACKNOWLEDGMENTS

| must express my gratitude towards several people withdwdnwthis dissertation
could not have been completed. First and foremost is my agviy. Dmitri Loguinov,
who has been my patient guide from my first steps into this takieg and my navigator
for this journey during the past several years. Due to hisesyatic direction and sage
advice, | have learned how to solve research problems ussegeatific approach as well
as present my results to the academic community. He provigeavith the necessary
independence one must have as a doctoral student, but atsoction and supervision
when it was needed. | have seen him strive for perfection metstanding the most
minute details, and his passion for tackling difficult prerols has been infectious, leading
me to seek the same answers in my own work and bring forth neasidnd discoveries
that paved the way for this research to flourish. | will ceyabenefit from his teachings
for the rest of my career.

| am thankful to Dr. Daren Cline for his help with the matheiwat proofs required
for Chapter 5, as well as Dr. Riccardo Bettati, Dr. Radu $to#ad Dr. Narasimha Reddy
for serving on my committee and providing their insightfeetiback on my research.
This sentiment also extends to the anonymous reviewers AGM SIGMETRICS and
IEEE/ACM Transactions on Networking, who contributed \adile judgment and sugges-
tions for improving previous versions of this work.

Completing the various large scale Internet studies f& tbsearch required the help
of Willis Marti and the network security team at Texas A&M,wsll as Brad Goodman
and his IT team in our CSE department. They accommodated nhetk@ equipment,
technical support, and freedom required to conduct my nreasents for which | am

immensely grateful. My lab mates — Xiaoyong Li, Tanzir Ahm#&d Cui, and Di Xiao

played a significant part in this work as well. Besides cartdive conversations about
research, they helped me take breaks from the long hoursidy & the lab and enjoy
graduate student life.

While those mentioned above ensured this endeavor couldrbpleted, this journey
would have never begun if it were not for my family. My fatheho has my utmost respect
for showing me how success can be built from the ground up, othen, who instilled in
me the values of perseverance and education, and my wifeinspwed me to pursue my
ambitions, have formed the backbone on which this work stamtiey encouraged me to
ignite a spark, and have been instrumental in keeping thditfiteese past years. Their
unending love kept me going during all the ups and downs, heidl boundless support
made this goal look achievable even from its most distanttpdVithout them, this work
would certainly not exist.

Finally, | wish to acknowledggou, the reader. For it is people like you, scholars in
their fields, that | aspire to support in the never-endingspiirof knowledge with this
dissertation. If | can impart to you even a small bit of whaavé learned over the course

of writing this dissertation, | will consider my mission aceess. Thank you.

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee cangisff Professors Dmitri
Loguinov, Riccardo Bettati and Radu Stoleru of the Depantroé Computer Science and
Professor A.L. Narasimha Reddy of the Department of ElegtEEngineering.

The data analyzed for Section 3 was obtained from previdosteby Derek Leonard
[45]. Assistance and advice for the proofs presented ini@e&t was provided by Pro-
fessor Daren Cline of the Department of Statistics. All ottverk conducted for the

dissertation was completed by the student.
Funding Sources

Graduate study was supported by a graduate assistantstmgéxas A&M University.

Vi

TABLE OF CONTENTS

Page
ABSTRACT s, i
DEDICATION iii
ACKNOWLEDGMENTS s e s s s iv
CONTRIBUTORS AND FUNDING SOURCES vi
TABLE OF CONTENTS s e s, Vii
LIST OF FIGURES s st s, X
LIST OF TABLES s e Xi
1. INTRODUCTION s e s s 1
1.1 OVEIVIEW 1
1.2 Dissertation Structure e e 2
2. RELATED WORK s 5
2.1 Multi-Probe Techniques 5
2.2 Single Probe Algorithms 6
2.3 CommonDefenses 7
3. LARGE-SCALE OS CLASSIFICATION o .. 9
3.1 Introduction 9
3.1.1 Contributions and Ethical Implications 10
3.2 StochasticModel 11
3.21 Objectives 12
3.2.2 Network Features: Jitter 13
3.2.3 Network Features: LOSSo 16
3.2.4 UserFeatures 0 i e 19
3.25 FinalResult 21
3.2.6 Limitations 22
3.3 Classifier. 22
3.3.1 Features e e e e e e 23

3.3.2 StochasticTimers« . . v i 27

3.3.3 FingerprintDatabase 29
3.3.4 Hershel e 29
3.4 Simulations 30
3.4.1 Parameters e 30
342 Results 31
3.5 EXperiments 34
3.5.1 DatasetProperties 34
3.5.2 ClassificationOverview 39
353 Results e 41
354 WorldView e 43
3.5.5 Scrubbers 44
3.6 Conclusion e 46
. AUTOMATED DATABASE CREATION 47
4.1 Introduction e e 47
4.1.1 Motivationand Contributions 47
4.2 Background 49
4.3 OVEIVIEW o e e e 50
4.3.1 Terminology 50
4.3.2 Challenges 51
4.4 Database CreationUsingPlata 53
441 Prelminaries e e 53
4.4.2 MatrixConstruction. 54
4.4.3 Separation 56
444 Labeling. 57
45 OSFingerprintingDatabase 58
45.1 Classifier e 59
45.2 DataCollection 59
45.3 SeparatingFeatures oo 60
45.4 LabelClustering, 63
4.6 OptimizingPlata 65
4.6.1 Closed-Form Plata-HershelMatrix 66
4.6.2 Hershel+ 71
4.6.3 Closed-Form Plata-Hershel+ Matrix 74
4.7 InternetScan e e 78
4.7.1 ClassificationResults 78
4.7.2 OS Popularity and Confidence 80
4.8 ComparisonwithNmap 82
4.8.1 Agreement e e e 82
4.8.2 Disagreement e 85
4.9 Conclusion e 88

5. ITERATIVE LEARNING OF FEATURE DISTORTION B

5.1 Introduction 89
5.1.1 Contributions 90
5.2 Background 91
5.3 Learning from Observation 92
5.3.1 GeneralProblem 92
532 EMPrinciples 93
5.3.3 Fingerprint Popularity 94
5.3.4 DISCUSSION v v i e e e e 97
5.4 NetworkFeatures e 100
5.4.1 DistortionModel 100
542 Intuition e 103
543 Analysis. 105
544 DISCUSSION« v v i e e e e e e e 110
55 UserFeatures @ i e e e 114
5.5.1 DistortionModel 114
5.,5.2 lteration 116
5.,5.3 DISCUSSION. e e e 117
5.6 Complete System 119
5.6.1 ResetPackets 119
5.6.2 FinalModel 121
5.6.3 ScalingtheDatabase 122
5.6.4 Unknown Signatures 124
5.7 InternetMeasurement e 271
5.7 OVEIVIEW o e e 127
5.7.2 ClassificationResults 712
5.7.3 Network Distortion 129
5.7.4 UserDistortion 131
5.8 Conclusion e 133
6. SUMMARY AND FUTUREDIRECTIONS 134
6.1 Future Directions e 513
REFERENCES e 137

LIST OF FIGURES

FIGURE

11
2.1
3.1
3.2
3.3
3.4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

Dissertation structure.
Retransmission timeouts (RTOs) between SYN-ACK packet . . .
Effect of jitter on observed RTOs.
Generalized RTOs under packetloss.
RTO randomness in TCP/IP scheduler.
Received TTL and reverse path length.
Classifierfeatures.
Randomness of RTO features and elimination of dupkdat®lata.
Applying labels to database clusters.
Plataexample.
Features in Hershel)and Hershel+d).
OS popularity distributions.
Hershel+ classification confidence.
Database and distorted observations.
Delay features.
Recovery of delay parametersin.

ResultsinDy. e e e e

Recovered delay under 72% injection.

Internet delay distributions.

Internet packet-lossPMFs.,

Page

..o 111

... 123

126

Internet distributions;; andr;; (default values are shown with an asterisk). 132

LIST OF TABLES

TABLE Page
3.1 Snacktimeexample. 16
3.2 Samplesignatures. 24
3.3 Optiontransformations. 26
3.4 Enhancedfeaturevector. 27
3.5 Classification accuracy (percent) of isolated features 30
3.6 Classification accuracy (percent) in simulationg'éfsamples. 33
3.7 Top RTO counts99% oftotal). 35
3.8 Topwindow sizesyr% oftotal). 35
3.9 Initial TTL distribution (00% of total). 37
3.10 Breakdown 05.9M hostswithRSTs. 38
3.11 Top options string9f% oftotal). 38
3.12 Top MSSvalue®)g% oftotal). 39
3.13 Hershel's feature matchrate. 40
3.14 Top individual signatures{% oftotal). 41
3.15 Common families of operating systems. 41
3.16 Manual verification. A2
3.17 Top countries running webservers% of total). 43
3.18 Top ASes running webserve@{ oftotal). 43
3.19 Capability of OS obfuscationtools. 45
3.20 Scrubbed accuracy (percent) amongallOSes. 45
3.21 Scrubbed accuracy (percent) among Windows/Linux. 46

Xi

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

5.14

Database dimensions. 1

Top 5database signatures. 64
Accuracy on the Hershel database. 74
Accuracy onthe Platadatabase. 74
OS classification of the Internetdataset. 79
Internet subsample classification. 83
Hershel+ classification and features. 84
Nmap classificationand features. 87
Popularity of Nmap signatures. 88
Network distortioninscenari®;,. 98
Classificationresults iy, 101
Classification results of network EMIm,. 110
Network parametersof scenafig. 112
Classificationresultsify,. 113
Recovery oflossPMFsiR,. 114
User featuresofdatabaBg. 117
Patched userfeatures. 118
Parametersofscenag.o 119
Classificationresultsifs. 119
Recovery ofv andog, inDs. 120
Handlingof RST packets. 120
Injection classification summary. 125
Faulds classification at iteration 1 (left)yand 10 ®igh 128

Xii

1. INTRODUCTION

1.1 Overview

With the rapid growth of the Internet, our world has becomemnected grid of het-
erogenous devices which differ in hardware capabilityusgcawareness, software fea-
tures, and daily usage. Measuring the amount, type, and/toelud these devices, as well
the networks they connect to, has become an interesting tioai has gained traction in
the literature [28], [32], [42], [55], [61], [67], [77]. Toategorize the devices that compose
today’s networks, researchers have employed a technidjee €65 fingerprintingwhich
aims to determine the operating system of remote hosts tisaligresponses to external
stimuli.

While the signals used in OS fingerprinting can be based amankiprotocols such as
DNS [62], ICMP [4], [73] and DHCP [51], [78], our focus is oneTCP/IP stack. This
is because the TCP/IP implementation greatly differs not batween OS families (e.g.,
Linux, Windows and Mac), but also versions and patches os#mee OS (e.g., Windows
XP vs. Vista and Linux 2.4 vs. 3.0). This is explained by tleefiom allowed in selection
of certain default stack parameters, ambiguities in IETERF3], [81], [83] as well as a
lack of standardization for responses to malformed reguddte methods using TCP/IP
can be partitioned into three categoriebanner-grabbingvia plain-text protocols (e.g.,
telnet, HTTP, FTP) [92]multi-probetools that elicit OS-specific responses from various
non-standardized combinations of flags and/or unexpedadeuof protocol fields (e.qg.,
SinFP [6], [10], [38], [65], Nmap [73], [91], [104], SYNSCANLO5], Xprobe [120],
[121], pOf [122]), andsingle-probemethods that send only one legitimate SYN to each
host (Snacktime [7], RING [112]).

For usage at large scale over the Internet, banner-graliding longer considered

viable due to frequent removal of OS-identifying stringsdmministrators for security
purposes, high bandwidth overhead, and common interaatittnnon-platform-specific
application-layer software (e.g., apache, nginx). Mptwbe tools have their own chal-
lenges — heavy load on the target (e.g., over 100 packets iaplNmmassive complaints
about intrusive activity when used at wide scale, and redl@®uracy when firewalls
block auxiliary probes (e.g., UDP to a closed port, rainb@gglin TCP headers) or the
destination IP is load-balanced across a server farm (literent packets hit different
machines). As we show later in Section 4, multi-probe OSsdiaation over the public
Internet is a complex and poorly understood problem, wittade pitfalls and unintended
side-effects.
Thus, in this dissertation we focus on examining the schiabif OS fingerprinting to

millions of target hosts. With this goal in mind, the next sattion presents the structure

of the rest of this dissertation.
1.2 Dissertation Structure

Figure 1.1 shows the three main topics we will study in thiskw&ince our objective
is to examine the viability of OS fingerprinting on a largelecsuch as the Internet, we
require a classifier that is fast, low-overhead and doesrigger IDS systems and harass
network administrators. We turn to the methodology usedibgls probe classifiers,
which use only one outbound TCP SYN packet and require a nsgpfsom an active
port on the host. However, this approach introduces sewhi@lenges due to limited
features, loss of packets, and non-negligible queuing ancegsing delays encountered
in communication with the target.

To overcome these challenges, our first topic in Section 8rie=s our approach to
building a stochastic model to handle these obstacles. @edbmbine our models into a

classifier we calHersheland subject it to various scenarios in simulations to tesi¢tu-

Topic I:
A Scalable
Classifier

Topic ll:
Automated

Topic lll:
Iterative

Database Classification

Figure 1.1: Dissertation structure.

racy. This is accomplished by building a database of 116 @&st which were manually

installed within our lab or identified within our departmergtwork, and adding noise to
each signature. We show that our models can provide reliddsification even under ex-
treme scenarios (e.g., half of all responses are lost, pheisecond delays). Satisfied with
our results, we then use Hershel to classify 37M hosts frommi@nnet scan, showing the
distribution of devices we encountered in different costand AS regions of the world.

Finally, we also show that our classifier is robust againsttsoers that aim to confuse OS
classification.

To be adaptable to the ever-evolving Internet, we requirgemhniques to be versatile
and allow for different sizes and compositions of networKsus, for our next topic,
we target the issue of building a database flexible to the orétto be measured. Since
our previous effort of 116 stacks was a manual process thatswaceptible to human
error and poor repeatability, our goal in Section 4 is to tgvan automated, repeatable
process for building a database. We propose a novel unsapdrelustering algorithm
calledPlatato separate unique signatures and discard duplicate oneshtw how this
works by applying Plata to a scan of our university networld automatically create a
database of 420 OSes, which are labelled by a banner dowfrimadcompliant hosts.
We also update Hershel to correctly treat independenceeaetthe delays observed for
each packet, giving rise to a new classifier we call Hersh#&k. close out this section

by conducting a large Internet study to fingerprint 66 milliwebservers, the first such

effort to use an automatically built database, and compaour results with Nmap, a well
known multi-packet classifier.

The final topic builds on both the previous by building a coetelclassification sys-
tem that does away with user defined heuristics. For exarhigishel relies on assumed
probability distributions of noise observed in the Intérmeasurement, such as network
one-way delays, packet loss, popularity of each OS, and mselification of network
stacks. Section 5 develops an iterative classifier undéfxpectation-Maximization (EM)
framework called~aulds and shows that the OS fingerprinting problem can succégsful
be modeled under EM to leverage its convergence propedsag extensive simulations,
we also show that recovery of the true distributions of ols@noise is not only possible,
but results in much more precise classification. Finallycaeclude by conducting a mea-
surement where besides outputting the correct OS populaetobtain packet loss/delay
and feature modification probabilities from 63 million h®sicross the Internet — a study
from a unique perspective which opens up new angles fordateaneasurement in the

future.

2. RELATED WORK

Besides use in various applications of Internet measurefhéh [30], [52], [59], OS
fingerprinting is a well known approach used by network adstiators for securing their
networks. It has been used to discover vulnerable netwarkces [63], [100], detect
rogue systems and stealth intruders [1], defend agaimgttdased fragmentation attacks
[74], [97], and even expose botnets [56], [69]. It is alsodubg industry analysts to
understand trends in OS usage [5], [31] and market shargsasdly public tools [70],

[71]. Below we take a look at the previous work done in thigffiel
2.1 Multi-Probe Techniques

OS fingerprinting has roots imanner grabbingwhich relies on application-layer pro-
tocols (e.g., HTTP, SSH, SMTP, FTP, telnet) to provide auakilescription of the OS as
part of the communication sequence after successful hakdshWhile this worked well
in the 1990s, banner grabbing today faces many impedimiectading high overhead,
administrator ban on OS-identifying strings in respongeseric software (e.g., apache,
nginx) that can run on multiple platforms without exposihg underlying OS, and pur-
posefully incorrect banners that aim to mislead the varfoggerprinting tools.

The second wave of OS classification started in 1997 withdhease of Nmap [73],
which pioneered TCP/IP tricks that would elicit differemisponses from different im-
plementations. By default, it sends 1032 probes to the tangeluding a vertical port
scan and certain malformed packets that trigger populardi® as Snort [89]. Nmap
ideally expects the target to accept a TCP connection, SekliPIport unreachable on a
closed UDP port, and respond to a ping. Under bandwidthropéid settings for OS clas-
sification, Nmap requires no fewer than 38 different prolhesyever, due to mandatory

retransmission, this in practice corresponds to well 0@€rfdackets per host.

Due to its popularity, Nmap has received a great deal of tdtenn the literature,
which includes usage of neural networks to differentiatevben versions of the same OS
[91], detection of unknown devices [64], and techniqueséaiucing the number of sent
probes [35]. Additional work includes fuzzy matching [128pplication of formal testing
methods to the detection problem [38], and classificationguengthy observations (up
to 100K packets) of Initial Sequence Numbers (ISNs) from the TC&dee [65], [121].

Another direction in multi-packet classification uses &lakift in the kernel, which
can be derived from observing the timestamp option in stseahmeply packets [50] or
variation in timer frequency [17]. This approach requireeding a steady stream of re-
guests to discern the accurate skew, which can add up toeadaeyhead (i.e., thousands
of packets) and requires handling of randomness introdunctkek replies by OS schedul-
ing. Thus, while this approach has its uses in localized oty it is hardly scalable to
millions of targets.

Besides the amount of traffic generated by multi-packestovlarge scale-scans, an-
other problem is the prevalence of load balancers in therlatdoday. These devices,
commonly placed in front of servers, may disperse consezptiobes to different physi-
cal machines or perform certain elements of the handshakeslves, leading to jumbled
fingerprints. This can be avoided by scanning techniquesehaon one outgoing packet,

which we describe next.
2.2 Single Probe Algorithms

RING [112] and Snacktime [7] are the only tools that perforiassification using
temporal features from a single outbound prél#es shown in Fig. 2.1, each measurement
consists of a SYN packet, server processing délayeded to accept the connection, and

a stream of: SYN-ACK responses from the target OS, followed by an optigi@P reset

INmap [73] used to rely on temporal features, but later stdppgporting them due to classification
difficulties.

T RTO RTO2 RTOn R- RTO

—~——— ——— server
[X \ l X \ client
SYN-ACK; SYN-ACK3 SYN-ACKn
SYN-ACK> SYN-ACKn

Figure 2.1: Retransmission timeouts (RTOs) between SY M-p&ckets.

(RST) with its own RTO. RING uses the — 1 values in the RTO vector and presence
of the final RST packet in classification. Snacktime ignohesRST feature, but instead
uses the default TCP window size and TTL carried in the SYN<ACwhich allows it
to differentiate between 25 operating systems [7]. We amalis classification process
in more detail later in Section 3. A simplified version of Skime and extension to 98
signatures was offered in [45], [55]; however, no accurawlysis, modeling, or verified
improvement was provided.

Another tool with a related capability is pOf [122]. In addit to passive fingerprinting,
it can actively generate SYN packets and profile remote m&tatacks based on a set of
fixed features from the SYN-ACKs (i.e., window size, TTL, IRds, and TCP options);
however, it does not leverage the RTOs and by default is geitieose (i.e., sends eight
copies of the same SYN per target). The current version ciereitiate between 18

operating systems.
2.3 Common Defenses

There exist many approaches to thwart remote OS fingenpginfihe most basic tools
tweak Windows registry [20], [75] or implement plugins [#], [90] for the Unix packet-
mangling module Netfilter [68]. Their objective is to modife fixed features of departing

packets to no longer resemble those of the underlying hosimAar direction is to deploy

network honeypots [85], [110] or standalone systems [14&{ $poof arbitrary operating
systems and their services. Placing obfuscation into thweark gives rise to intermediate
devices known aBngerprint scrubber$gd4], [101].

While these techniques can effectively deal with statialeedields, they are not well
suited for distorting the temporal features of departingkess, which requires expensive
buffering of packets and per-flow state. Additionally, laxfktechnical support and possi-
bility for various side-effects (e.qg., disabling SACK in P@nay lead to significantly lower
throughput) raises questions about deployment of thesgitoproduction systems and/or
at large-scale. Nonetheless, we study the impact of thesblsers on our work in more

detail in Section 3.5.

3. LARGE-SCALE OS CLASSIFICATION*

3.1 Introduction

The Internet has been the target of numerous measuremeitsstwith the trend
recently shifting from covering a small subset of destimradi [77], [86] to scanning the
entire IP space [22], [42], [55], [87]. This allows reseahto enumerate live hosts,
detect vulnerabilities, and shed light on deployment of meatocols. Over the years,
network scanning has become progressively faster — frommthmed87] down to 30 days
[42], then one day [55], and now 45 minutes [29]. In conjunictivith these studies, low-
overhead OS fingerprinting can allow significantly bettedenstanding of the systems
researchers interact with and improve our general knoveedgut the Internet.

OS fingerprinting consists of two approachepassiveandactive The former [50],
[122] monitors ongoing communication (inbound and/or outfd) with remote hosts, but
does not generate traffic of its own. Unless each studiectdexoluntarily connects to
the measurement server, this technique is difficult to uselassifying each IP on the
Internet. The latter approach, which is our topic of interestively sends packets to
targets and infers their operating system from the colteeponses.

One important aspect that differentiates between the eaatigthods is the potential
maliciousness of probing traffic, where certain nonsehsiombinations of TCP flags
(e.g., SYN-FIN-RST-ACK) or intrusive actions (e.g., trgino delete the root directory
in HTTP fingerprinting [92]) may harm or crash the target. Adally, these packets
are easily detected and dropped by IDS [102], which leadstaptaints against research
institutions using these methods and possibly reducedacgof the results.

The second aspect is the amount of outbound traffic requiyetidoclassifier, which

*Reprinted, with permission, from "Hershel: Single-PadR& Fingerprinting” by Z. Shamsi, A. Nand-
wani, D. Leonard and D. Loguinov which appeared in [95] ar@].[&) 2016 IEEE.

9

ranges from a single SYN probe [7], [112] to lengthy multcket exchanges [65], [73],
[92], [105], [120]. Ideally, fingerprinting should be perfoed with no extra overhead
to scan traffic, which rules out techniques [73], [120] thgbext to reach the target on
multiple open ports, using different protocols (e.g., ICNIEP, UDP), and elicit responses
on closed ports. While LAN environments can tolerate higfffitt rates and may allow
multi-protocol access to each host, these conditions arerghy difficult to satisfy when
scanning the entire Internet.

The third aspect is the ability of the underlying estimatorcorrectly identify the
target OS under realistic network conditions and withoutgisetransmission. Since prior
single-packet techniques [7], [112] were mainly develofeedocal use, they are not well
provisioned to overcome high amounts of fluctuation and ile$smporal features. They
also lack resilience to OS tuning, which can be applied byws®ts in hopes of optimizing
network performance or obfuscating the default parametktise stack. Either way, the
modified OS features may exhibit little correlation to thosiginally present at the host,

which cripples estimation accuracy of existing tools.
3.1.1 Contributions and Ethical Implications

Given the many open issues in wide-scale fingerprinting ackimg performance anal-
ysis in the literature, our first goal is to formalize the exsttion problem in single-packet
OS classification and study the pitfalls of existing teclueis; We then develop a low-
overhead framework we caflershel for overcoming the various randomization effects
(i.e., queuing delays, packet loss, manual tuning) andyaipals proof-of-concept in a
measurement study that classifies every visible websenvgreointernet.

We next discuss the ethical implications of this work. Ouiinr@bjective is to bene-

fit researchers studying the Internet at wide scale and geavisolution to an interesting

Iwilliam J. Herschel invented forensic usage of fingerprints858.

10

mathematical problem. However, one may become concerm@gdntinuders can use our
algorithms for detection of vulnerable operating systent laetter tailor the attack pay-
load to particular configurations (e.g., patch levels) ef thrgets. As opposed to Nmap,
our techniques require no additional bandwidth during poainning, which makes them
completely stealthy against IDS and other security mositor

While hypothetically this may be true, we do not believe ¢hisrgreat cause for con-
cern. With modern botnets, large-scale port scanning cgpebfiermed in a highly de-
centralized fashion, with very little traffic originatingoin each hijacked IP. This affords
the attackers a luxury of using more verbose OS fingerpgrttiols (i.e., Nmap) and still
remaining undetected. Researchers, on the other handpacally constrained to a sin-
gle subnet whose generation of disruptive volumes of hightymalous traffic is bound to
attract negative attention.

Additionally, we are not aware of any evidence confirming Httackers are interested
in profiling discovered devices using only SYN packets. Restudies [124] show that
once an open port is found, bots either perform more externsating of the open service
or attempt all known exploits (some outdated by decadeshsigthe port without dis-
crimination. Eliminating Nmap from the picture and dirgdthteracting with the service
is much quicker and more informative in that context. We dfane do not see OS finger-

printing as a practical technique for increasing malicrass of the Internet ecosystem.
3.2 Stochastic Model

We assume a single-packet scanner similar to Snacktimegin2FL. While this ap-
proach has minimal intrusiveness, lowest transmissiomh@a&l, and non-malicious op-
eration, it also exhibits several fundamental challengdsese arise due to the complex
ways in which the RTOs can be modified by packet traversalsaonade-area networks,

scarcity of information about the target host containechingamples, and user tuning of

11

features, all of which has a strong influence on one’s alitgetect the underlying OS.

It should be noted that straightforward application of maeHearning methods [108]
to our problem is difficult. Experimentation with supportct@ machines, neural net-
works, and decision trees has led to the realization that pleeform poorly when the
measured samples contain missing data (i.e., the RTO \eatorrupted by packet loss).
Statistical imputation [34] is a common technique for degwith these problems; how-
ever, it requires knowingvhichfeatures are missing and ability to accurately reconstruct
the remaining(non-missing) features. In our case, lost packets go cdsiplannoticed
and additionally modify the following RTOs to produce fe&twectors that have little
resemblance to the original (see below).

Our contribution in this subsection is to formalize singkcket OS fingerprinting,
set forth clear goals for the classifier, study the impactetfwork delay and loss on the
measured samples, analyze the existing methods, andedtitérassumptions under which

the classification problem is tractable.
3.2.1 Objectives

Assume a databage = (1,2,..., M) of M > 1 known operating systems, where
each OSj has some vector-valued fingerprint collected during a-priori measurement
of the OS. The fingerprint consists of multiple features, chhwe partition into those
modified only by the network (e.g., RTOs) and those only byuber (e.g., TCP window
size). Suppose the former are described by some vectord the latter by another vector
u;. While the length o6; normally depends o that ofu, is constant across all operating
systems.

As both vectors undergo random modification before beingiesl by the scanner,
the response of Opto probe traffic is some random variable that is a functiop,0fsiven

an observation = (J; u) from an Internet host, a typical estimation problem is to fimel

12

most likely OSs(x) that could have produced that vector:

p(x|y;)p(y;)

s(x) : = argmax p(y;|r) = argmax
() jED (]|) jED p(flf)
= argmax p(z|y;)p(y;), (3.1)
j€D

where notation(z|y) refers to the probability (or conditional density, if mo@wenient)
of = giveny. Observe that the probability(z) that some OS irD has produced: is
constant for a given observation and can be omitted from pienczation. If the fraction
of Internet host®(y;) running OS; is unknown, it is common to set each valuelid/,
which removes this term from the optimization as well.

The more interesting component of (3.1) is the probability|y;) that OS; has pro-
duced the observation, or equivalently thahas become distorted into Before investi-
gating this metric further, observe that network and usedifitations to the OS features

can be treated as independent, from which it follows that:

p(xly;) = p(6]0;)p(ufuy). (3.2)

This means that the two terms can be dealt with separatelghwie do in the rest of

the section.
3.2.2 Network Features: Jitter

For single-packet techniques [7], [112] described in W& vector of temporal features
9, consists of individual RTOs generated by network stacklassification based af)
is possible not only because some devices deviate from Tgriims (e.g., exponential
timer backoff), but also because RFCs that govern TCP r&tnassion [13], [81], [83] do

not specify the initial RTO or how many SYN-ACKs must be gexted. As a result, a

13

AN/ — —— server
f h H ﬁ client
SYN — — —

d+Q; d+Q, | d+Q; |
LS 82

Figure 3.1: Effect of jitter on observed RTOs.

wide variety of unique RTO patterns exists.

For the time being, assume loss-free conditions. Durintgctbn of sampler, sup-
posed is the sum of propagation and transmission delays alongattefpom the server
back to the scanner. Note thais a constant due to the fixed size of SYN-ACKs. Now
define@,, to be a random queuing delay of theth packet in the return path. As shown
in Fig. 3.1, the RTO vecta¥; undergoes distortion that is independent of the forwart,pat

server think timel’, and propagation delay

5(m) :5j(m)+Qm+1 —Qm, m = 1727---7‘5j| (33)

Defining OWD (one-way delay) jitter,, = Q.,,.1 — @,, and considering that the
gap between subsequent SYN-ACKs is sufficiently large, (aeleast several seconds),
it follows that back-to-back packets arriving from the sgrare not likely to encounter
the same busy period of the queues they traverse. In thatit&sesasonable to assume
that sequencé@, (), . .. consists of independent and identically distributed (ia)dom

variables. Furthermore, since the number of hops and ctioged the path is not affected

14

by j, the distribution of eacly,, does not depend on the OS being profiled. This leads to:

B F(8(m) = 8;(m)) |6] = |9,
D015, = Ly F(6(m) = &;(m)) 9] ||7 3.4)

0 otherwise

where f(.) is the PDF (probability density function) or PMF (probatyilmass function)
of OWD jitter, depending on whethek,, is treated as continuous or discrete. It should
also be noted that'ar[J,,] = 2Var|[Q,,], while f(.) is zero-mean and symmetric. For
certain models of OWD, jitter can be obtained in closed-foFar example, exponential
Q.. produces the Laplace distribution with the same paramegard GaussiaiV (1, o2)
becomesV (0, 202).

We next contrast (3.4) with the RTO classifier in SnacktimeWhich is a tool that is
the closest to our objectives and most advanced in singlkep®S fingerprinting. For
each RTOm, this method first computes the number of matching digitsiféd to 6

decimal places of precision) between the sample and all krimgerprints;:
Y = max([—log;o(max(|d(m) — §;(m)|,107°))],0).

It then assigns scor@’; to OS; using the sum of these weights across all available
RTOs:
Kl

W= Yin (3.5)
m=1

For the example in Table 3.1, which exemplifies the commofalfgtof Snacktime,
(3.5) scores six for the first OS and two for the second OScatatig that jitter combina-

tion (0, 12) is more likely than(0.1,0.1). Taking thelog of (3.4), our model can also be

15

RTO, (sec) Y;; RTO,(sec) Y, W;

Observation 3.0 24.0
Fingerprinto, 3.0 6 12.0 0 6
Fingerprinto, 2.9 1 23.9 1 2

Table 3.1: Snacktime example.

reduced to optimizing a summation:

|9]
log p(816;) = > _ log f(3(m) — 6;(m)); (3.6)

however, it differs from (3.5) in two important ways. Firiglog is applied to the distri-
bution functionf(.) rather than the jitter itself. Second, there is no loss ofigien due to
rounding to the nearest integer or capping the jittei0af’.

Nevertheless, while (3.4) is a good starting point, it dagswvork in real networks due

to the lacking robustness against packet loss. This is odrtopic.
3.2.3 Network Features: Loss

The main problem with (3.4) is that loss-free conditionsiarpossible to satisfy dur-
ing Internet scans. Besides congestion, routing loopsvandus checksum violations,
the RTOs may be altered by the target server crashing orsgputbwn during the mea-
surement, which affects the tail of the RTO vector and appsanilar to packet loss.
Since single-packet fingerprintifay definitioncannot retransmit SYN probes, OS detec-
tion must be performed using only the features availabldseovationr, which calls for
more sophistication in the model.

To exacerbate the situation, packet loss creates more tcaomanges to the RTO
vector than delay jitter. For example, consider a scenaith ¥y = (3,6,12), where

all delays are given in seconds. Even with a relatively lakge,,] = 100 ms, delay

16

jitter remains small compared to each RTO. On the other hhedpss of a single packet
produces one of four dissimilar combination$3;6), (3, 18), (6,12), or (9, 12) — while
that of two packets leads to six additional option&3; (6), (9), (12), (18), or (21). The
RTO swing in these cases is significantly higher, which makappingx to the correct
OS more challenging.

We now examine how to model the combined probability thag kbosd jitter transform
d; into observatiord. This will allow us to solve such dilemmas as whethet (3,18) is
a more likely match td3, 6, 12) with one lost packet or to some other signati®é, 17.9)
without any loss. To deal with these cases, we propose tagéeresthe concept of RTO.

First, letr; be a vector ofd;| + 1 packet-transmission timestamps from @S

0 m=1
Ti(m) = (3.7)

Ti(m—1)+d§(m—1) m>2

andr be the corresponding random vector observed #@ifter the packets have traversed
the network. Then, a generalizéch, m + k)-RTO is the distance;(m + k) — 7;(m),
which is illustrated in Fig. 3.2 fom = 1 andk = 2. Note thatt = 1 produces the usual
RTO and that all timestamps are given using local clocks (i;&t the server and at the
client).

Now suppose sét(r, 7;) contains all subsets of size| of integer sequendg, 2, .. ., |7;]).
We can view each € I'(r, 7;) as a mapping of received packetsrito their position in
the original vector;, i.e.,y(m) = k means that the:-th received SYN-ACK was initially
in positionk. For the example in Fig. 3.2, we hay¢l) = 1 andvy(2) = 3. Assuming
no reordering of SYN-ACKSs, which is reasonable given attilsaseral seconds between

them, eachy is a vector of strictly increasing integers.

17

generalized (1,3)-RTO

server

SYN 7(1) 7(2)

Figure 3.2: Generalized RTOs under packet loss.

Armed with these definitions, we get:

E eF(T,Tj)p(’y)p(ﬂij’y) |7_| < |Tj|
plrlm) =17 , (38

0 otherwise

where the number of summation terms equals the number of teagslect|r| objects
from |7;| available options and (3.8) is non-zero only if the numbereakived packets
does not exceed that in the fingerprint. This is in contra$8i), where the two vectors
had to have equal length.

Again leveraging the large spacing between server resppngecan treat congestion
events affecting SYN-ACKs as independent, which allowstoregpproximate packet loss

as an iid Bernoulli process with some probabilitySince each loss combination is equally

likely, we get:

p(y) =¢™ (1 —g), (3.9)

which can be moved outside the summation in (3.8). To dedl mit|7;, v), which is the

probability to observe from OS; under loss patter, notice that the gap between each

18

adjacent pair of received packets is determined by the géned RTO:

7(m) = r(m = 1) = 7(y(m)) = 7 (v(m = 1)) + J,, (3.10)

wherem > 2 and generalized jittef! is given by:

Jrn = Qy(m) — Qyim—1)- (3.11)

Rearranging the terms in (3.10), define theh jitter sample under patternas:

R, = 7(m) = 7(m = 1) = 7(y(m)) + 75 (y(m = 1)). (3.12)

Noticing thatJ/, has the same distribution &g, yields:

I7|

p(rl7) = 1] F(B],)- (3.13)
m=2
We thus get fofr| < |7
7
p(rlm) =™ =)™ S T SR, (3.14)

~yel(r,75) m=2
which replace(d|d;) in (3.2).
3.2.4 User Features

OS tuning is common practice in the current Internet, witimetous online guides rec-
ommending optimizations to network settings [76], [109] automated software offering
tuning capabilities to the TCP/IP stack to achieve bettefopmance [27]. A number of

fixed header parameters in general-purpose kernels (entx, Windows) can be changed

19

through registry or using command-line tools. Unlike jitieduced noise, where small
distortions are generally more likely that large ones, tta@nndifference with OS tuning
is thatthere may be no correlation between the manually selecteetsaf the user and
those installed in the OS by defaukor example, TCP window size may be more likely
to jump from 8192 to 65535 than to 8193.

While accurate modeling of manual modification and humarcipsipgy is difficult,
it makes sense for the analysis to at least take into accoluetther a given feature under
user control has been changed. Supposerthas the probability of such modification in
featurem and assume that user tuning is applied independently toaeglable parame-
ter. Defining/;,, = 1{u(m)=u,(m); 10 be an indicator of the event that theth measured
feature matches the original of QSwe get:

|u

pluuy) = T [(1 —) i + (1 = L) | (3.15)

m=1

Besides user interference, vectgmay be modified by intermediate devices along the
path (e.g., NAT, IDS, fingerprint scrubbers [20], [84], [9(101], [115]), whose actions
can be clumped under the same umbrella of (3.15). Sinceringf@ackets for periods
of time comparable to RTO (i.e3 — 6 seconds) and per-flow state are expensive, it is
often safe to assume that these devices do not alter the RE&rpan significant ways
and thus leave enough features by which the OS can still beifigel. This underscores
the importance of having a robust RTO estimator.

The Snacktime algorithm for scoring user-modified featwas be generalized as a

sum of weights assigned to each match:

|u

W= wnlim= Y wn, (3.16)
m=1 I

m=1

20

which is added to the RTO scoi&; in (3.5) for a final result. One open issue, how-
ever, is selection of proper weights, which need to be sometwrelated with feature
volatility. Our model is much simpler sinee, directly provides this probability. To better
understand the difference between (3.15) and (3.16), asslatr,, > 0 for all m and

write:

log p(u|u;) = Z log(1 — m,) + Z log m,,. (3.17)

szl J"L:O

Form,, ~ 1, we getlog 7, =~ 0, the second term of (3.17) disappears, and our model
reduces to Snacktime with weights, = log(1—,,). However, in more realistic cases of
™ < 1,the second term of (3.17) becomes non-negligible and sémegole of balancing

non-matching features against those that do match. Snaekias no such mechanism.
3.2.5 Final Result

We now consolidate the various models into one formula. Goimg (3.14) and (3.15)
in (3.2) and (3.1), dropping terms that do not depend,@nd performing straightforward

manipulations, we get:

I7|

s(x) = argmax {p(yj)qm"_h| Z H f(R],

JED:|T|<|7;] ~el(r,75) m=2

X H 1—mn) H ﬂm}. (3.18)

J"L_l IJ’HL:O

Although (3.18) maximizes the OS-detection probabilitgenthe assumptions stated
above, its performance with a-priori-unknownr,,, f(.), andp(y;) is an open question.
We return to it later in the section; in the meantime, we oetlihe various remaining

issues.

21

3.2.6 Limitations

First, the SYN packet may be lost and never reach the targate $here is no way to
verify this, the host will automatically be considered nesponsive and will be excluded
from fingerprinting. Not much can be done to overcome thidemm unless SYN retrans-
mission is allowed. If we relax the single-packet assunmmptibe estimator will face the
problem of determining which of the SYNSs triggered which SASK response, without
which the RTOs cannot be computed correctly. This problembeasolved in the future
by encoding the retransmission attempt into the sourcegbdine SYN.

Second, our model allows only theetworkto modify the received RTOs; however,
this may not hold if users manage to alter SYN-ACK spacingrmdu©S tuning. This
is not of wide-spread concern as few optimization guidegetathe RTO pattern. With
enough effort, scrubbers and obfuscation tools can disnugt-SYN-ACK delays; how-
ever, we do not consider development of end-to-end mettwdsrhbat such approaches
a fruitful objective. A related problem arises with middiedes and caches that accept the
connection on behalf of the server [43], in which case anyefipgnting tool is bound to
classify only the visible side of the TCP stream (i.e., thedDfie middlebox).

Third, Hershel’'s accuracy may deteriorate if the netwotteljiprocess/,, becomes
non-iid or deviates from the predicted bounds, e.g., duegnificant kernel scheduling
latency during CPU overload. Similar issues may surfaceitvork loss depends o
users modify different operating systems with differeralbility, or there is correlation
in loss events within a single stream of SYN-ACKs. Solvingdé problems requires a

per-OS set of parametefg;, f;(.), 7,), Which is our focus in Section 5.
3.3 Classifier
Our next contribution is to enhance Snacktime’s featurdoredescribe a working

classifier based on the theory developed above, bring aessein RTO randomization

22

performed by certain OSes, and explain how to collect sigeatlatabases under these

conditions.
3.3.1 Features

Snacktime uses only two non-RTO features — TCP advertisadomt size and TTL;
however, additional parameters are readily available fiileenSYN-ACKSs. Following Ta-
ble 3.2, these include the Do Not Fragment (DF) flag in the Blke four different fields
from the RST packet (more on this below), the Maximum Segrereg (MSS) declared
by TCP, the order in which the OS assembles the option fiel T JOSYN-ACK RTOs
(SA-RTO), and the RST RTO (R-RTO). Some of these featureselfeexplanatory, but
others require additional elaboration.

First, it should be noted that the initial TTL cannot be restomcted exactly at the
receiver. We use the common technique of rounding this vafu® the nearest "likely"
boundary, which includes four values used by the OSes in atabaseD — 32, 64, 128,
and 255. Second, the reset features are quite rich. In TaBletf® binary flag RST
is 1 for the fingerprints that contain a reset packet, RA iaitis whether the RST has
the ACK bit set, RN is 1 if the ACK sequence is non-zero, and R8b6rds the window
of the reset packet. RST features represent peculiarifiedernal stack operation and
cannot be modified via OS tuning. However, fingerprint scaubpNAT/IDS, and kernel
recompilation can still change them.

Third, as seen in the table, support for TCP options diffexsvieen the operating
systems since no specific subset is required to be implech¢hd¢. More importantly,
users have the freedom to disable them as needed. As ception®are considered se-
curity risks (e.g., timestamps), they may be disabled bpulefalthough users can still
re-enable them. Certain devices (e.g., printers) do nowaDPT tweaking at all, while

newer versions of popular operating systems tend to supgeer choices. For example,

23

144

Operating system Win TTL DF Reset MSS OPT SA-RTO R-RTO
RST RA RN RW
Windows7 8192 128 1 1 0 1 0 1460 MNWST 3,6 12
Linux 2.6 5792 64 1 0 - - — 1460 MSTNW 3.8, 5.9, 12.1, 24, 48.2 -
Linux 2.0 32736 64 0 0 - - 1414 M 3, 6, 12, 24, 48, 96 -
Mac 0S10.3 33304 64 1 1 1 1 32768 1460 MNWNNT 2.92, 6, 12, 24 30
NetBSD4.0.1 32768 64 1 0 — — — 1460 MNWNNTSNN 2.92, 6, 12, 24 -
VxWorks 5.4.2 8192 64 0 1 1 1 8192 512 MNW 5.58, 24 45
Juniper Netscreen 8192 64 0 1 0 0 8192 1380 M 1.67,2,2,2,2,2,2,2 2

Table 3.2: Sample signatures.

(M =MSS, N =NOP, W =window scale, S = SACK, T = timestamp)

even though Windows 7/2008 provides registry keys to des&RIP timestamps, the mod-
ification does not work. Similarly, SACK can be disabled oiflthe entire TCP stack is
offloaded to the NIC [66].

What makes OPT a good feature is not the specific string, bugridne order in which
non-padding options appear his is illustrated in Table 3.3, where we progressivebr di
able various combinations of options and observe the ieguBYN-ACK packets. For
example, Windows XP supports four options MWTS. Turningwfproduces MTS inter-
spersed by NOPs as padding. Simplicity of implementatiahlacking reasons to reorder
the options suggests that this phenomenon likely existtharstacks.

As a result, OPT requires a more advanced classification thgn straight compari-
son. Specifically, a match is registered if the observed gampontains deasiblestring,
which we examine by taking an intersection of non-NOP ogtibetween: and each fin-
gerprint, followed by verification that the order of the ritgig letters is the same. For
example, MTW is a match to Linux, VxWorks, and Juniper in 8BI2, but not the other
OSes.

Fourth, the reset RTO (R-RTO) helps in resolving additi@mabiguities, such as be-
tween Mac OS 10.3 and NetBSD 4.0.1 in Table 3.2, which otlsiave identical SA-
RTO patterns. Additionally, we expand Snacktime’s defendasurement time limit from
65 seconds to 120, the latter of which is the MSL (Maximum Seginhifetime) of TCP
[83]. For instance without considering the 96-second RTQintix 2.0 in Table 3.2, it
might be hard to differentiate it from Linux 2.6.

Table 3.4 summarizes the features used in our classificationcompares them to
those in Nmap, pOf, and Xprobe [73], [105], [112], [120], 12 We have four novel

features and one match type (subset) never used in fingengrimefore.

25

9¢

Operating system All enabled Drop S Drop T DropW Drop ST Dray SDrop WT Drop all

Linux 2.6 MSTNW MNNTNW MNNSNW MST MNW MNNT MNNS M
Windows XP2003 MNWNNTNNS MNWNNT MNWNNS MNNTNNS MNW MNNT MNNS MNW
Windows7/2008 MNWST - - MST - - - -
FreeBSDS.2 MNWST MNWNNT - - - - MSE M
Solaris10 NNTMNWNNS NNTMNW - - - - - -

Table 3.3: Examples of transformations applied by the OS3B dptions (dashes indicate impossible cases).

Feature Description Appeared In

Win Receiver window [7], [73], [105], [120], [122]
TTL Time-to-live field [7], [73], [105], [120], [122]
DF Do Not Fragment [73] [105] [120], [122]
SA-RTO RTO sequence [7], [105], [112]

RST True if RST packet [112]

MSS Max segment size [73], [105], [122]
OPT TCP options (exact) [73], [122]

RA ACK bitin RST New
RN ACK seg# 0in RST New
RW Window in RST New

OPT TCP options (subset) New
R-RTO RTO of RST packet New

Table 3.4: Enhanced feature vector.

3.3.2 Stochastic Timers

Table 3.2 shows SA-RTOs from a single captured sample of BiehOwever, it turns
out that many kernels naturally exhibit significant RTO a#idn, sometimes by as much
as 50%. Two examples are shown in Fig. 3.3 using a 2D scatieppthe first two SA-
RTOs. For Server 2003 in subfigure (a), there are two dispaterns — the lower left
corner, with RTQ distributed in[2.2, 3.3] and RTQ frozen at 6.56, and the upper section,
with RTO, scattered in3.3,4.6] and RTQ in [9.5,9.8]. Furthermore, the two scenarios are
not equally likely as the bottom one occurs 68% of the timas hows that the temporal
model must take into account not just the possible RTO regiout also their likelihoods.

A similar picture emerges for Linux 2.6 in subfigure (b). Thagss of the RTO is
now concentrated on 11 distinct points, where RT@nges from 3 to 4.4 seconds and
RTO, from 6 to 6.2. Again, the popularity of individual points ismuniform, swinging
from 2% to 16%. Note that both cases in Fig. 3.3 have beenatetlefrom idle hosts
over a single-hop network consisting of one switewhjch makes this behavior part of the

fingerprint itself rather than an artifact of the samplingwoenment

27

10.5 T T T T : 6.3
| | gow o 6%@60
] T e ; ‘ ‘
: : : : : 6.2r------ R R, R ARRREEE,
L e e e s I ‘ ‘ ‘
o | S S e — S—
I B s S S B L
6.5>7@0»003()@77%”””3”””37 777777 6f--—-—----- ®---0 o;e——e— O--0--0
>% 25 3 35 4 45 5 35 3 3.5 4 45
RTO1 RTO1
(a) Windows Server 2003 (b) Linux 2.6

Figure 3.3: RTO randomness in TCP/IP scheduler.

Possible reasons for this fluctuation are the absence ofquerection RTO timers
during the SYN-ACK phase and discretization of retransioisslelays. What these ex-
amples show is that internal OS operation is a complex s&bichaystem that requires
measuring the RT@istribution(rather than a single snapshot) during creation of the sig-
nature database. This is necessary because such largeowarae not taken into account
by the jitter model, which normally assumes OWDs on the oocddens or hundreds of
milliseconds, with similarly sized jitter.

Our approach is to treat RTOs as random variables, unlike pork that has always
considered them deterministic. Specifically, supposg @&sw; unique types of behavior,
each occurring with probability;,, wherer = 1,2, ..., w;. We call each of these types a

subOSand assign it a separate RTO vectgr which updates (3.13) to:

p(rlm3.7) =Y Bip(tl7in,). (3.19)

r=1

A simpler technique is to measure each hosimes and let each obtained RTO vector

28

7;» be a subOS witl$;, = 1/w. In that case, (3.19) becomes:

w |7
p(7|75,7) %ZH R}..) (3.20)

r=1 m=2

where it} . is the generalized jitter of thei-th RTO under subO$ of OS j and loss-
patterny. Note that summations involving(r, 7;) remain the same since all subOSes
within a given OS send a fixed number of SYN-ACKs. They alsol@kldeterministic

user features, which keeps (3.15) unchanged.
3.3.3 Fingerprint Database

In order to produce an accurate fingerpriptthe OS must be measured in some iso-
lated testbed with low end-to-end delays and idle condstianthe server. To avoid loss-
related bias, each host must be sampled multiple times &rrdate the longest vector
of RTOs it produces, which should then be used to colledbss-free samples for the
database. Following these guidelines, we installed atyasiecommodity operating sys-
tems in our lab, determined the proper size of their RTO vectand collectedv = 50
clean fingerprints from each. We also captured a number oedddd devices found in
our department LAN.

While Snacktime ships with 25 signatures and [55] uses 98jatabase contains 116
network stacks. We can distinguish not only between diffecgerating systems (e.qg.,
Windows, Linux, FreeBSD), but also sometimes identify tiversions and patches (e.g.,

Windows Server 2003 with and without SP1, MacOS 10.3 vs Mat$§).

3.3.4 Hershel

Our classification method, which we chleérshe] builds upon (3.18) and (3.20), where
we treat allw = 50 subOSes as deterministic. Common sense suggests thatacsals

bers, and network devices are not likely to directly tweatividual RST features RA,

29

Win TTL DF OPT MSS RST
39.2 47 18 11 55 144

Table 3.5: Classification accuracy (percent) of isolatedufiess.

RN, and RW; instead, these fields (if modified at all) will beasltaneously replaced with
another set that comes from a different OS. We thus combifewRST values in Table
3.2 into one atomic feature for classification purposess fitakes vectos,; consist of six
fields — Win, TTL, DF, MSS, OPT, and aggregated RST. Table Bdvs the accuracy of
individual features across the entire database (all tedaaken uniformly randomly).
RTO vectorsr and 7; include timestamps of all SYN-ACKs and the first RST (if
present). To account for resets that might be injected bwdille/IDS after they time
out the connection, (3.8) and (3.15) require a revisioncBipally, if the measured vector
T contains a reset, but does not, the RST is removed fromprior to computing (3.8).
To account for the mismatch in the RST feature, (3.15) gelipliad by 74. In the oppo-
site case, i.eq; contains a RST, but does not, it is important to avoid mistaking packet
loss for changes in the RST feature and improperly pengliz{n|u;) with ws. Next, if
both vectors contain a reset packet, (3.15) gets hit witheeit; or 1 — 74 depending
on the match in (RA, RN, RW). Finally, if neither vector has 8Rthen (3.15) enjoys

multiplication by1 — 7.
3.4 Simulations

Our contribution in this subsection is to explain how to sekhe parameters of the

model and examine Hershel’'s accuracy in simulations in @mspn to Snacktime.
3.4.1 Parameters

For lack of a better assumption, we suppose that all OSegjaedly likely to appear

in the trace and set(y;,) = 1/M to be a uniform PMF. While it is possible to consider

30

multiple iterations and refine this value after each passréisulting system sometimes
exhibits instability and divergence into inferior stat&¥e analyze these stability issues
further in Section 5, but for now perform a single iteratiarour evaluation below.

We user,,, = 0.01 for RST and OPT, while keeping,, = 0.1 for the other features.
The rationale is that RST behavior and option ordering cathibaged only through kernel
source-code modifications and usage of aggressive intéateatkvices, neither of which
we believe is that common in today’s Internet compared tokstaning. For queuing
delay, we use a simple exponential distribution with CDF ¢~** whose mean is set to

0.5 seconds (rate = 2). This produces Laplace jitter density:

f(z) = ge—“. (3.21)

Note that usage ok = 2 is fairly pessimistic, with the majority of paths likely ex-
hibiting significantly smaller delays. For example, thisdabassumes 82% of the paths
produce over 100 ms queuing delays, 37% over 500 ms, and 14%!losecond. For
packet loss, we use Google’s study [18] to get 3.8%, which was their highest rate of
SYN-ACK loss.

3.4.2 Results

Our next goal is to examine Hershel’'s robustness in the poesef OWD jitter, packet
loss, and random feature modification by the user. We alsa@iassess the sensitivity
of results to our choices of default parameters above. Walatma FIFO queue between
the server and the client with a given delay distributioncliepacket is dropped by the
router with some probability,..,; and each feature is independently modified with another
probability 7,..;. Since these are per-packet and per-feature metrics pinaddkes sense
to examine the fractioy = E[(1 — grear)!™!](1 — 7,car)® Of all generated samples that do

not have any loss or feature modification, where the expgeote taken over al.

31

The distribution of popularity,..(y;) ~ j~ is set to Zipf with shape parameter
a = 1.2, which approximates the fact that some OSes are much morggrdpan others.
We do not attempt to make our assignment of inglég each physical OS such that its
Prea(y;) closely follows that in the Internet (which is unknown anyyainstead, the
simulation simply verifies performance of the proposedestor when the OS frequency
is highly non-uniform. For that purpose, random orderingQ8es in the database is
sufficient.

Table 3.6 shows classification accuracy for several saemafiinterest. We examine
three types of OWD with meap in the first column — Paretdé — (1 + x/8)~* with
a = 3andf = pu(a — 1), exponential with ratd /y, and uniform in[0, 2u]. We use
the original Snacktime since the simplified version from][@&rforms worse. Using just
the RTOs, Snacktime in the table starts at clos&3td, but then deteriorates beloWs
near the bottom. This amounts to essentially guessing &ithes 16 available options
(i.e.,1/116 = 0.86%). Augmented with Win and later TTL, Snacktime begins at aenor
healthy52 — 58%, but then eventually reduces to single digits.

The next six columns show Hershel with its defaul= 2. Classifying just based on
the RTO vector, Hershel doubles Snacktime’s accuracy irfiteethree scenarios (i.e.,
the first 12 rows of the table), triples it in the next one, and improvesayorder of
magnitude in the last one. As additional features are addexshel becomes even better,
with significant gains seen at the Win and OPT boundariess $hows that unlike DF,
option strings form an orthogonal dimension to Win/TTL. TM&S improves the result
further by 3% and the RST packet by an additiortab — 3%, with the impact mostly
limited to high-loss cases.

Staying withA = 2, observe that Hershel is quite insensitive to selectiorf (af).
Specifically, classification accuracy improvest when A equalsl /. or the PDF of real

delay matches (3.21), bat 1« gets smaller or the tail of the delay gets lightdrhis can

32

€e

owD n Snacktime Hershel\ = 2,¢ = 0.038 Hershel| Hershel
distribution | (sec)| RTO +Win +TTL| RTO +Win +TTL +DF +OPT +MSS +RST A=10 | ¢=0.1
Greal = 0, Trear = 0 (X = 100%)
Pareto 0.5 12.6 51.8 58.3 221 814 86.2 88.5 96.2 99.72 99.72 94.62 99.69
Exp 0.5 | 128 51.8 58.3 | 21.9 826 8.9 894 96.5 99.92 99.94 | 96.21 99.82
Uniform 0.5 | 13.0 519 58.4 | 21.7 84.1 874 89.8 96.8 99.99 99.99 | 98.50 99.99
Pareto 0.1 | 16.3 56.9 629 |33.1 930 949 96.7 99.0 99.99 99.99 | 99.69 99.99
real = 38%; Treal = 0 (X = 84%)
Pareto 0.5 | 100 434 490 | 214 785 8.1 87.7 96.1 99.69 99.69 | 94.68 99.66
Exp 0.5 | 10.1 434 49.0 | 21.5 &80.1 85.6 88.1 96.3 99.76 99.82 | 96.21 99.80
Uniform 0.5 | 10.3 434 49.0 | 21.7 81.1 8.4 89.0 96.7 99.96 99.96 | 98.50 99.96
Pareto 0.1 | 13.1 479 53.2 [316 89.6 936 956 98.8 99.96 99.96 | 99.66 99.97
Greal = 38%7 Treal = 10% (X = 49%)
Pareto 0.5 | 10.0 399 444 | 214 727 777 786 914 9493 9537 | 90.13 95.25
Exp 0.5 | 10.1 399 444 | 21.5 73.8 783 79.1 91.6 95.02 95.55 | 91.78 95.34
Uniform 0.5 | 10.3 399 444 | 21.7 751 789 79.7 919 9520 95.63 | 93.97 95.57
Pareto 0.1 | 13.1 443 485 | 316 838 873 877 95.0 96.54 96.92 | 96.67 96.87
Qreal = 10%7 Treal = 10% (X = 34%)
Pareto 0.5 6.9 299 334 | 201 68.1 76.2 77.1 91.2 9484 95.22 | 90.01 95.14
Exp 0.5 7.0 299 334 | 20.1 69.2 76.8 777 91.5 9498 9543 | 91.76 95.20
Uniform 0.5 7.2 299 334 | 201 704 774 783 91.7 9513 95.51 | 93.82 95.46
Pareto 0.1 9.3 335 36.8 | 294 784 8.3 8.7 945 96.38 96.71 | 96.46 96.67
Qreal = 50%7 Treal = 50% (X = 013%)
Pareto 0.5 | 082 237 249 |104 237 281 356 53.7 56.65 59.95 | 58.95 60.23
Exp 0.5 | 0.83 237 249 | 105 24.1 284 359 53.8 56.74 60.12 | 60.40 60.31
Uniform 0.5 | 084 237 249 |106 245 286 365 54.0 56.89 60.25 | 60.79 60.46
Pareto 0.1 | .11 2.90 295 | 144 283 32.0 40.5 56.8 59.45 62.68 | 64.84 63.06

Table 3.6: Classification accuracy (percent) in simulatiof2'® samples.

be seen by contrasting the two Pareto cages (.1 andu = 0.5) and comparing Pareto,
exponential, and uniform cases (all wjth= 0.5). As the difference between the last three
scenarios is quite small, we conclude that the distributiometwork jitter, as opposed to
its mean, generally has a minor effect on accuracy. Thexekaeping the Laplace model
(3.21) appears reasonable.

To shed additional light on selection of parameters, thé c@xmn of the table re-runs
Hershel with all available features and= 10. While this slightly improves the = 0.1
case, this happens only und&’ packet loss and at the expense of significant reduction
in accuracy in other rows, which suggests thak shouldoverestimaterather tharun-
derestimatethe real network delay. To this end, our previous consemvahoice\ = 2
seems quite appropriate. The last column of the table iet@it = 2 and demonstrates
that the model is insensitive to selectionf We thus keepg = 3.8% for the Internet

classification below.
3.5 Experiments

Our contribution in this subsection is to apply Hershel toideascale Internet scan

and provide an assessment of the obtained classification.
3.5.1 Dataset Properties

We use Internet scan data from [45], which is based on a 204@of webservers in
[55]. These IPs were discovered by sending port-80 SYN pgadkem Windows Server
2008 (with all TCP options enabled) to every address in BGie @xperiment garnered
37.8M samples that contained at least one SYN-ACK, which we later feed koshel.
We start by examining occurrence of various features in Htasit and their mapping to
signatures irD. We qualitatively group them into four types — linux, windgvembedded
(routers, modems, cameras, hardware gadgets), and otBBr, (Bac, AlX, NetApp, Big-
IP, SunOS).

34

RTOs Hosts Sigs Group

3 9,639,810 27 all
2 9,070,991 16 windows, embedded
5 7,834,027 23 linux, embedded, other
4 5,066,940 16 unix, embedded
1 2,669,222 1 Dell printer
0 1,992,196 0 -
6 540,042 9 linux, embedded, other
19 202,733 2 embedded
18 162,442 0 -
17 110,335 0 -

Table 3.7: Top RTO count99% of total).

Window Hosts Sigs Group
5,792 10,143,772 4 linux
16,384 7,051,858 windows, embedded, other
8,192 4,266,370 17 windows, embedded
65,535 3,551,640 windows, other
5,760 2,643,274

(=}

embedded

5,840 981,136

16,000 781,225 embedded
4,096 775,473 embedded
1,024 758,230 embedded

ok Ot Ot W O O

2,800 677,211 TP-Link router

Table 3.8: Top window sizeST% of total).

To first step is to ensure that packet loss has not producaiditahworkable temporal
features in the dataset. Table 3.7 shows the number of bl&iRT Os per destination. It
is encouraging to see that the top four spots retain enodghmation for a meaningful
match and the most difficult case (i.e., single SYN-ACK)duelk in sixth place. While the
average number of received packets was 5, one host traadmiter 3M SYN-ACKs. We
next analyze sanity of the remaining features and buildtiotufor what to expect from
Hershel classification.

The scan contains a staggering 3,815 unique window sizak adir fingerprint col-

35

lectionD has only 51. While users tuning their stacks and scrubbedifymag the OS
signature are possible reasons, we also found that thetagewindow of SYN-ACKs
can be easily changed at the application layer by resiziagtitket buffer (i.e., calling
set sockopt with the SO RCVBUF option) before the connection is accepted. This
highlights the need for a flexible classifier that allows fieas to mismatch.

The good news is that the distribution of window size is higaskewed towards well-
known values, as seen in Table 3.8. The most common windomigsia to Linux variants,
while the most ambiguous is split across 17 operating systémerestingly, window size
5760 in position #5, which we later discovered belongs tordibuis absent not just from
ours, but also other fingerprinting databases (e.g., p0hbg). We come back to these
hosts later and examine how Hershel classifies them. Idealknown devices should be
mapped to the same OS family (i.e., Linux in this case).

Another peculiar case are 168K hosts with zero window sizechvin our database
corresponds to a single device related to building aut@naifihis particular stack forces
the sender to finish the 3-packet handshake (SYN, SYN-ACKK)A&nd wait for the
window to move before sending the first GET request. Immetliafter the sender’s
ACK, the window expands to 12,288 bytes. Closed receivedaws can be an artifact of
rate-limiting firewalls or site policies related to congestcontrol. One notable example
is a popular host craigslist.com that prior to 2006 was cetiqpg all TCP handshakes
with window size zero [58]. Other usage of this technique esfinom network tarpits [3],
which aim to slow down scanners by advertising small windowSYN-ACKs. All of
this suggests that the true window size may remain "hiddenmt\ the fingerprinting tool
for reasons unrelated to users, scrubbers, or TCP sockenhept

The TTL values of received packets are plotted in Fig. 3,4tayering 251 unique
points out of the 255 possible. A vast majority of the hosts @ustered on the values

just before the initial TTL defaults 64, 128, and 255. Fig}(B) shows the distribution of

36

A A

6‘4 128 192 255 0 5 10 15 20 25 30 35 40

hosts (millions)
hosts (millions)

TTL hop length
(a) received TTL (b) reverse distance

Figure 3.4: Received TTL and reverse path length.

TTL Hosts Sigs Group
64 26,275,301 70 linux, embedded, other
128 7,129,667 17 windows, embedded, other
255 4,214,927 22 linux, embedded, other
32 190,697 7 embedded

Table 3.9: Initial TTL distribution 100% of total).

reverse hop length for each host back to the scanner, cedddg subtracting the received
TTL from the nearest well-known initial value. This distution appears reasonable, with
less than 0.4% of the mass below 10 or above 30 hops. This stsghe number of non-
standard initial TTLs (if any) is small. Table 3.9 shows thstribution seen by Hershel
and the corresponding number of signature®in

A good number of hosts (69%) set the DF flag, indicating thegnd to perform
path-MTU discovery, which matches 45% of the signaturest @B87.8M responsive
targets, 5.9M (16%) send at least one reset packet (in adddithe SYN-ACKSs), which
is consistent with 56 OSes. The reset window (RW) deviatas tihat in the SYN-ACK
for 20.8% of the IPs and 8 fingerprintsTn

37

Feature Hosts Sigs Group
RA=1,RN=1 4,368,098 35 embedded, other
RA=0,RN=1 1,167,761 11 windows, embedded
RA= 0, RN=0 367,915 10 embedded
RA=1,RN=0 37,113 0 -

Table 3.10: Breakdown &f.9M hosts with RSTSs.

Options Hosts Sigs Group
MSTNW 13,156,171 8 linux

MNWNNT 6,214,837 18 embedded, other
MNWNNTNNS 5,579,866 12 windows, other
M 5,431,682 41 embedded

MNW 2,656,342 5 linux, embedded, other
MNWST 1,107,935 2 windows, unix
MNWNNTSEE 762,593 4 other
MNNSWNNNT 412,602 0o -

MST 370,699 1 Windows Vista/7
MNNSNW 339,215 1 Akamai linux

Table 3.11: Top options string84% of total).

Table 3.10 examines the interplay between RA and RN in resekgts. In the most
common scenario, hosts indicate that the ACK sequencei aatl correctly acknowl-
edge values one larger than transmitted by the scanner BiYhNepacket (which encodes
the destination IP); however, there are also 37K hosts (tast with broken implemen-
tations that indicate a valid ACK, but set the field to zeronBof our signatures exhibit
this behavior.

We have 21 unique combinations of optionsZim however, the dataset shows 264
different strings, with the top 10 provided in Table 3.11.m#ar to Table 3.8, a few
popular cases account for the majority of IPs and Linux vasidold a clear lead, but
now the most ambiguous combination splits across 41 embletieleces. While Akamai

currently reports 137K servers [2], it seems reasonablentiiétiple NICs and IP aliasing

38

MSS Hosts Sigs Group
1460 21,969,799 70 all

512 3,523,272 9 embedded
1452 3,512,626 2 embedded
1380 1,633,852 3 windows, embedded
1440 1,472,969 2 linux, embedded
1400 1,074,502 2 embedded
536 620,013 7 embedded
1448 562,961 0 -
1420 431,720 1 Avocent KVM switch
768 419,326 2 embedded

Table 3.12: Top MSS value83% of total).

can produce 339K samples in last row.

Practically every host (99.5%) supports the MSS optionhviigble 3.12 showing the
top 10 cases out of the 1,021 observed in the dataset. Theaowshon MSS 1460
does not provide much information about the OS, but the othkres appear useful at
partitioning the dataset into small groups. On the downsiéeeral-purpose OSes often
set the MSS as a function of the underlying data-link layer,(MSS = MTU — 40), which
creates some interesting dilemmas. For example, MSS 14BRdplace can be classified
as one of two embedded devices or as home computers withidd82MTUs commonly
seen over PPP links such as DSL. This emphasizes importaitershel’s probabilistic
matching (3.15) and explains the significantly smaller nand§ unique MSS values i

(i.e., only 20).
3.5.2 Classification Overview

We run Hershel on the scan dataset and obtain a non-zeraficktssn probability
for 37.4M devices. Before showing these results, we perfaditional sanity checks by
examining how often individual features of each IP matchexbe in the most-likely OS

suggested by Hershel.

39

Feature Fraction RST possibilities Fraction
Win 70.3% || Neither has RST 80.9%
TTL 95.2% || Both have RST, match 10.4%
DF 96.2% Missing RST 4.2%
MSS 70.6% || Both have RST, non-match 3.5%
OPT 99.4% || Bogus extra RST 1.0%

Table 3.13: Hershel's feature match rate.

Starting with the first two columns of Table 3.13, observe thimdow size is quite
volatile, with 30% of the decisions going to signatures vattlifferent window. This was
expected given the numerous reasons to modify this field lthtge amount of unique
values seen earlier. Additionally, these 30% cover unkndewices whose RTOs and other
features may match some OST7h but not the window size. Hershel remains robust in
these cases and simply identifies the closest signaturd bashe available information.
For example, 98.4% of Ubuntu cases with the unknown windo@05&re classified to
Linux 2.4/2.6. These 2.6M hosts account for 25% of all windoismatch.

TTL and DF both exhibit match rates over 95%, while MSS commemuch lower
at 71%. This is not surprising in light of its dependency oa MTU. The OPT string
proves extremely reliable, where 77.4% of the cases matattlgxand 22% are feasible
subsets/supersets of the original. The five possible cagedRBT packets are shown in
the other two columns of Table 3.13. Combining the first twwgowe can conclude that
91% of the hosts have a matching RST feature. The next rowmisking RSTs allows
us to ballpark network packet loss@t,; = 4.2%, not too far from the model’'s 3.8%. The
majority of non-matching combinations (RA, RN, RW), resgitate for 3.5% in the table,
are caused by RW. Some of this behavior was also expected simaking of window
size causes certain OSes to alter RW as well. Finally, we ¥eeflthe cases with extra
RST packets, which we suspect are injected by firewalls, N#Xeb, and other devices as

indication that they have expired the per-flow state.

40

(ON Count

Linux 2.6 /2.4 9,610,732
VxWorks embedded systems 4,179,583
Windows Server 2003 SP1 SP2 2,316,590
VxWorks 5.4.2 | Xerox embedded 1,890,585
Linux 2.6 / Debian / CentOS / SonicWall 1,196,143
Embedded Linux / Mikrotik routers 1,190,102
Windows Server 2008 SP1 SP2 R2/ Vista / 7,146,609
TP-Link / Iball / Huawei home routers 1,046,985
Windows Server 2003 / 2000 / XP SP1 1,001,343
Cisco / Scientific Atlanta cable modems 827,285

Table 3.14: Top individual signature$>(; of total).

Group Count

Linux 13,882,999
Embedded 13,590,803
Windows 7,561,839
Other 2,396,455

Table 3.15: Common families of operating systems.

3.5.3 Results

Having verified the general soundness of Hershel’s outpetskow it in Table 3.14.
Linux attracts the most classification decisions, accognfor nearly a quarter of the
webservers. This signature is quite unique, which makesi@atal lumping of unknown
devices or misclassified hosts into this category highlykeh}. In second and fourth place
is VxWorks, which is an embedded OS extensively used in repteodems, cameras, and
printers. Interestingly, Windows 2003 is third, well ab&erver 2008 in seventh position.
More Linux, home routers/modems, and Server 2003/XP makbaigemaining OSes.

Table 3.15 groups fingerprints by type. Linux not just takesfirst spot, but it dom-
inates all other types of unix combined by a factor of 6. Entdeeldsystems continue in

second place, while windows is firmly in third. Interestindghese results differ quite a bit

41

IPs Result Count

Consensus 429 Both correct 424
Neither correct 3
Indeterminate 2
Disagreement 571 Hershel correct 476
Snacktime correct 9
Neither correct 6
Indeterminate 80

Table 3.16: Manual verification.

from those in prior application of Snacktime to this dat4dS8{, with the most noticeable
difference being 9M hosts moving from windows to embeddeuis Ts not surprising as
Snacktime’s ability to overcome noise, packet loss, antufeacorruption is quite weak.
Further, as shown above, Microsoft OSes often share theowirsize and TTL with em-
bedded devices, making this distinction even more diffifmriSnacktime.

To better understand the difference between these methedsarry out comparison
using manual analysis of 1,000 random targets for which vwedmHTTP header from
a separate download process that grabbed the root page tofreglging IP (this was
done in real-time during the 2010 scan). Table 3.16 showsethdt. The first category
in the table breaks down 429 hosts on which both methods peothe same exact OS.
Out of these, 424 are correct matches, 3 incorrect, and 2amdaate. The last option
occurs for devices inadequately represented in the daggbas no resemblance to any
signature) or when multiple OSes appear to be probable, (@ug. to extensive packet
loss or missing/ambiguous "Server:" field in the HTTP resgomeader). Among the 571
disputed hosts, Hershel delivers 476 correct results aadkiime 9.

We can make a decision for 918 cases, out of which Hershetisracy is 98% and
Snacktime’s is 47%. The 9 cases where Hershel is wrong, batkEme is right, are
caused by bogus RSTs, which Snacktime ignores, but Helates tnto account. Overall,

we find that when the two methods disagree, Hershel is ovémivhgly more accurate.

42

Country Hosts Windows Linux Embedded Other

usS
CN
ES
JP
DE
GB
CA
IT
BR
T™W

16,187,542 16.1% 30.4% 172% 5.2%
2,345,462 54.1% 14.2% 14.6% 16.1%
1,620,920 41% 89.2% 55% 0.8%
1,614,724 11.3% 37.0% 35.8% 14.7%
1,043,699 19.9% 57.7% 15.7% 5.7%
862,571 32.1% 34.8% 25.0% 5.9%
849285 25.9% 45.3% 12.8% 14.7%
810,104 14.3% 53.3% 29.1% 1.7%
685,597 14.5% 52.8% 25.2% 5.3%
644,645 35.9% 47.2% 10.8% 5.3%

Table 3.17: Top countries running webservers/ of total).

AS Size Owner Hosts Windows Linux Embedded Other
7922 71.0M Comcast Cable 3,444,634 3.3% 6.2% 89.8% 0.3%
4134 109.7M Chinanet 988,397 50.7% 13.3% 15.9% 18.5%
3352 10.9M Telefonica de Espana 861,222 2.3% 92.0% 4.8% 0.5%
4837 54.5M CNC Group China 595,931 53.2% 9.4% 15.0% 21.7%

20001 5.7M Time Warner Cable 485,766 24% 1.5% 95.4% 0.3%
11351 4.9M Time Warner Cable 436,329 2.0% 1.1% 96.3% 0.2%
2914 7.7M NTT America 429,648 25.6% 20.6% 20.3% 33.1%
22773 11.9M Cox Comm. 426,807 4.8% 2.8% 90.8% 0.6%
7018 75.2M AT&T Services 373,068 31.0% 36.2% 18.9% 11.0%
7155 988K Viasat Comm. 370,821 39.0% 0.0% 60.9% 0.0%

Table 3.18: Top ASes running webserver®% of total).

3.5.4 World View

Next, we use the MaxMind GeolP database [23] to glean trem@3S usage around

the globe. Table 3.17 shows the top countries in the measumenThe US leads the

list, accounting for almost half of the discovered web sex\(ee., 16M out of 37M) and

exceeding China in second place by a factor of 8. The digtabwf OS popularity is

quite diverse, with only Italy and Brazil exhibiting similaectors. Interestingly, Linux

prevails over Windows in all countries except China; Spaimds out with 90% Linux,

43

far more than any other locale in the list; and the US has ttledst fraction of embedded
devices among the entries in the table.

Table 3.18 breaks down the data by AS, shedding additiogtatl ¢in the results. Home
access providersin the US (i.e., Comcast, Time Warner, @@dull of embedded devices,
likely consumer routers and modems. In combination, theB®l boxes represent 30%
of the discovered servers in the US, which helps explain iije percentage of embedded
stacks seen earlier. Similarly, Telefonica de Espanage lelecommunications provider
in Spain and South America, is responsible for 50% of Spanetbservers in our dataset.
This company is known for collaborations with RedHat andaaudtcomputing emphasis
[103]. Its 92% bias towards Linux is consistent with an earbbservation that Spain is
dominated by this operating system. China’s propensitatda/Windows may stem from
lax software-piracy laws, with 67% of its devices comingnfrowo ISPs in Table 3.18,

each replete with Microsoft OSes.
3.5.5 Scrubbers

While the Hershel’s main purpose is large-scale measurgembere OS scrubbing is
not likely to be prevalent, it still makes sense to examis@érformance in such scenarios.
Table 3.19 lists four obfuscators mentioned in existingréiture and available for testing.

The first is Linux iptables, part of the packet-filtering frework called netfilter [68].

It is commonly used to inspect packets, modify routing taplend configure the kernel
firewall. It has extensions that ‘mangle’ packets and chaegiin header fields; however,
the only ones of interest to Hershel are TTL and MSS. OSfesf2d] is a Windows
scrubber that thwarts fingerprinting tools by changing #gistry. It can modify Win,
TTL, MSS, and certain options (i.e., drop SACK and timestam@long similar lines,
TCP Optimizer [75] gives its users ability to change the séweeregistry values, in hopes

of improving TCP transfer speed. Finally, IPPersonalit9][®uilt on top of the netfilter

44

Tool Win TTL DF TCP Options MSS

Netfilter iptables - X - - X

OSfuscate X X - DropSand T X
SG TCP Optimizer X X - DropSand T X
IPPersonality X X X Replace orreorder X

Table 3.19: Capability of OS obfuscation tools.

Loss | Snacktime Hershel
(%) | Al RTO | -RST-RTO -RST RTO All RTO+RST
0.0 |99 126 0.0 11.8 22.1 36.6 47.6
3.8 | 7.8 10.0 0.0 114 214 34.8 45.3
10 5.2 6.9 0.0 10.9 20.1 31.9 41.8
50 | 0.6 0.8 0.0 6.0 104 15.6 20.5

Table 3.20: Scrubbed accuracy (percent) among all OSes.

framework, is the most sophisticated scrubber in the ligtah modify all Hershel features
except RST and RTO.

To evaluate performance against scrubbers, we simulatedtst-case scenario — IP-
Personality with an adversary who mimics the signature thighclosest RTO vector from
another OS family (i.e., windows, linux, embedded, othdigble 3.20 shows the result
using Pareto OWDsu(= 0.5 sec) and the Zipf setup from Table 3.6. Snacktime stays in
the single digits, showing performance slightly below tbausing just the RTOs. Her-
shel with only the fixed features from previous literature.(iall except RTO and RST)
produces the expected 0% match rate. Adding the RTO puskeasaay to 6-12%, but
this far from impressive — the RTO alone works better, achgpt0-22%. Employing all
Hershel features almost doubles the result; however, tileviener in this comparison is
the RST+RTO combination, which reaches as high as 47%.

Limiting the simulation to 26 Windows/Linux signatures thhe scrubber modifies

using the same rules produces a more challenging caseeaalthnTable 3.21. There is

45

Snacktime

RTO | -RST-RTO

RST+RTO

5.9 0.0
5.0 0.0
3.8 0.0
0.5 0.0

31.8
29.8
26.9

Hershel
-RST RTO All
5.0 14.6
4.7 141
4.5 129
2.2 6.2

12.0

41.7
39.4
35.7
16.3

Loss
(%) | All
0.0 |25
3.8 | 2.0
10 | 14
50 | 0.1
Table 3.21

: Scrubbed accuracy (percent) among Windows4.in

an accuracy reduction in all categories, but the scrubdmhent version of Hershel still

manages to correctly pinpoint over 41% of the samples trssuno loss.

3.6 Conclusion

In this section, we modeled the problem of single-packet @&efiprinting and de-

veloped novel approaches for tackling delay jitter, padtss, and user modification to

SYN-ACK features. Based on this theory, we created a claasiibin method called Her-

shel, that significantly increased the accuracy of exist@apniques, both in simulation

and the real Internet. We employed Hershel on a large Inteataset, obtaining classifi-

cation of 37.4M hosts, and broke down the results to show @§eusf different countries

and ASes. Finally, we also verified Hershel's robustnesstolbbers, showing that re-

spectable accuracy can still be maintained by ignoring thetded features.

46

4. AUTOMATED DATABASE CREATION*

4.1 Introduction

For classifiers such as Hershel to work, there must be a mabatestablishes sig-
natures for known types of behavior and builds a databagectimains all sufficiently
different specimens found in the wild. To keep results wpldte, new signatures must
be periodically acquired and merged into the existing degab This is often a manual
process that suffers from human error, poor repeatakiliyristic decisions, and database
compositions incompatible across different classificatieethods.

To overcome these problems, in this section we investiggteithms and models for
automated creation of clusters among the available sarglesnation of duplicates, and
assignment of labels to the resulting signatures. We neplaexthe issues involved and

our results.
4.1.1 Motivation and Contributions

Performance of each classifier depends on not only its iatexgorithms, but also
databasé@® and types of volatility experienced during measurementis makes compar-
ison between different approaches (e.g., Nmap [73], Simaek{7], pOf [122], Hershel)
fairly complicated, especially if they utilize incompdttsets of features, databases, or as-
sumptions on feature determinism. For example, considénadeM; with n signatures
and M, with m < n. It may appear that\1; is more powerful because i® is big-
ger; however, its classification accuracy may be lower dukedarger number of options
to choose from and/or less reliable decision-making. Addlly, the specific model of

distortionX (i.e., noise in certain features) applied during the expent may have a dra-

*Reprinted, with permission, from "Unsupervised Clustgrunder Temporal Feature Volatility in Net-
work Stack Fingerprinting" by Z. Shamsi and D. Loguinov whappeared in [93] and [94{C) 2017 IEEE.

47

matic impact on the result. In such cases, it is possibletatesorts to random guessing
and makes inferior choices to those/of,.

To capture these aspects, our first contribution is to preplat each classification
method be characterized by the number of signatidfés- ¢, X'), which we call thedi-
mension between which it can differentiate with probability atdead — ¢ under a given
noise modelt’. We also argue that databaBeshould be customized to each pgirX’)
to contain exactlyl(1 — ¢, X')-separable signatures. To determine the dimension and the
corresponding, our second contribution is to propose an algorithm we datiP which
disturbs each candidate signaturéiusingX’ and verifies that it can be matched to itself
with probability at leastt — e. Samples that fail to meet this criterion are eliminated and
classification decisions among other signatures are rigmittd in an iterative procedure
that stops when all remaining candidates @re- ¢, X')-separable. Assuming availabil-
ity of labels for a subset of initial candidates, we explamviPlata automatically assigns
them to thel generated clusters.

We apply these concepts to Hershel, which allows random @&vbar and provides
probabilities, rather than heuristic weights, for the rhadcross any pair of samples. We
focus on its temporal network features (i.e., delay jitsénce they are highly volatile and
fairly well-understood, but difficult to separate using mahanalysis.

This leads to our third contribution that consists of builylia Plata database using
9.7K webservers discovered in our campus network and gpaBiHTTP headers through
simhash [60] to label the elements®f Using only delay features, we show that Hershel
achieves 80%-separation under 500-ms random distortidrl@rsignatures. Adding de-
terministic header values, this number jumpg(®.8, X') = 398, which is 3.4 times larger
than the database we used in Section 3.

While Plata works well, its Monte Carlo simulations requaréarge amount of CPU

1The city of La Plata in Argentina pioneered fingerprint datsds in 1892.

48

time to compute the Hershel probabilities (i.e., over 24rkaising 16 cores). There-
fore, our fourth contribution is to build a closed-form moé the matrix produced by

Plata. This leads to an interesting discovery that Herslidl{independent and identically
distributed) jitter assumption is violated in practice,kimg the model disagree with sim-
ulations. We therefore create a novel classifier for tempeatures that relies on one-way
delay instead of jitter. We call the resulting method Helslad show that it is not only

more accurate, but also faster than Hershel after an apptemxpansion of integrals.
It also admits a closed-form representation of the entiagaPhatrix, which reduces the
separation time to just 12 minutes and boosts our databasendion to 420 separable
signatures. All of this forms our fifth contribution.

We finish the section by scanning the Internet on port 80 ampdlysqy Hershel+ to
the result. Among Internet-wide studies, this is the largegpulation to be fingerprinted
(i.e., 66M IPs), using the most extensive database (i.€. s#ghatures), and the first such
attempt with an automatically generatéd Compared to the scan dataset from 2010
that we used with the Hershel classification earlier, we fivad the number of Linux and
embedded devices has almost doubled, while that of Wind@assémained stable. We
compare some of our results with those of Nmap and discoveij@rrhaw in the operation
of the latter that surfaces in scenarios with non-ideal ngtweonditions (e.g., firewalls).
More importantly, however, we conclude that stochastienet effects do not impede the
use of temporal features, but they require a more carefalbdae construction process.
Our proposed framework of Plata and Hershel+ is a step in itleettbn of automated,

repeatable, and streamlined classification of massiveeiata
4.2 Background

The majority of efforts in stack fingerprinting [6], [7], [17[50], [65], [73], [105],

[112], [122] concentrate on introducing new features arsigies to further distinguish

49

between the OSes, thus improving the classification stepgber, they universally rely
on manual effort to construct databases. Since nearly #ikoh rely only on deterministic
features, database creation is fairly uncomplicated.

The closest related problem to ours is automatic discovidigedures that can be used
to differentiate one OS from another. For example, [15] pe@s a set of rules built from
sending out a large number of probes (i.e., 300K) to comddtiosts and randomly varying
header fields to detect patterns that produce OS-specifiomess. The authors show that
this method can reliably differentiate between three stgck., Windows XP, Linux 2.6,
and Solaris 9) in a LAN environment.

In [88], this idea is explored at a larger scale by increasirgnumber of network
stacks and applying a wider range of machine-learning dhgos from the Weka tool [40].
However, their results from scaling this approach to mageaiures are quite pessimistic
— the authors conclude that over-fitting to non-determimiseader fields, training bias
towards certain implementations, and lacking semantaxs te confusion for the learning

algorithms.
4.3 Overview

We start by defining the type of decisions we are facing andrntherent challenges.
While we later use examples from stack fingerprinting, theesaoncepts are applicable

to broader families of problems.
4.3.1 Terminology

Classifiers rely on vectors of distinctive features thantdg each specimen, either
uniquely or with some reasonably high probability. The fermase arises when the fea-
tures araleterministic meaning all inspections of a given system produce the sasugdtr
(e.g., the order of TCP options). The latter case occurs wierfeatures are inherently

randomdue to some non-deterministic processes running withispeeimen (e.g., SYN-

50

ACK retransmission delays). Features of either type magrgualadditional modification
due to influence of system owners or as byproduct of the meamnt process, in which
case we call thenaolatile (e.g., users tuning the TCP window size, queuing delaystaffe
ing packet spacing). All four types are illustrated in Figl(4).

Note that volatility and randomness are not the same — tmedioarises due to forces
externalto the object being classified, while the latter duenternal. This distinction is
important when internal disturbances exhibit substagtlafger variance than external,
or produce patterns that cannot be accounted for in theiNiylaodel alone. With this
in mind, we call classifiersimpleif they operate using only non-volatile deterministic
features (i.e., type-1in Fig. 4.1(a)) andmplexotherwise (i.e., types 2-4).

Consider an automaton that performs classification dewsmr measurementsusing
some databasP. We call the matching processembershigf it returns the probability
thatz € D, where determination of the most-likely match is not impatt One example
is intrusion detection that aims to decide whether payloadmalicious or benign against
a database of known exploits. We call the proddsstificationif the result must produce
the one signaturg € D with the highest similarity tac. Stack fingerprinting falls into
this category. In either case, the accuracy of the methosisisssed by the percentage of

correctly classified values under a particular model of tiitha
4.3.2 Challenges

We are now ready to describe the problem of crealhgAssume a measurement of
several, possibly duplicate, specimens. Membershipitirssare not overly concerned
with high-precision duplicate elimination as these haveeffect on accuracy, only on
speed and memory consumption. Simple identification dlassican construc® by re-
taining the observations with unique combinations of feeguwhich makes the problem

trivial. However, complex identification classifiers musttead ensurgeparabilityamong

51

volatile noise radius X;

H AN
AlEa |ﬁ
o A
deterministic] RN P
2] \ (<> I|
! O% | <> A
\ !
random 3 A ‘W O o , o
- L noise radius X
(a) types (b) separability

Figure 4.1: Classifier features.

the signatures, keeping only those that can be reliablindsished from each other under
various types of distortioA’. Inseparable specimensihdrop classification accuracy and
increase overhead, while offering no tangible benefit.

To visualize this better, Fig. 4.1(b) plots random featwif®ur hypothetical systems
— circles, squares, diamonds, and triangles — where each igca random observation
of the corresponding system. Assuming uniformly randons@aientered at each sam-
ple, distortionX’; keeps circles and diamonds separable, but not necessailgles and
squares. Dropping either of the last two leads to a sepaBabignature database. For
larger radius of noise (e.g, in the figure) the database may consist of only two separa-
ble signatures — diamonds and one of circles/squaregtesn

Our goal in this section is to study separation algorithmsvidatile and/or random
features, with application to inter-packet delays in widale stack fingerprinting. This
problem arises in single-packet techniques [7], [112] vehdassifier must heavily rely
on temporal features. The general appeal of these metholdsiés low bandwidth con-
sumption (i.e., no extra packets beyond those sent by theecka a reduced probability
of tripping IDS, no requirement that the target respond asedl ports or multiple pro-

tocols, and good scalability in Internet-wide classifioati However, unlike traditional

52

tools (e.g., Nmap [73]) that rely on deterministic featusesgle-packet classifiers require
prohibitively expensive manual effort to construct datdsaof non-trivial size. Since this

problem has not been studied before, we address it below.
4.4 Database Creation Using Plata

This subsection describes our technique for ensuring abpity between observations

with volatile/random features and building a database profeuch measurements.
4.4.1 Preliminaries

Traditional manual construction @ isolates each unique system and lets the clas-
sifier analyze it separately. In contrast, our frameworkiags a one-step measurement
process that remotely probes production syst8ms. . , S,, and builds the entire database
without knowing which ones are duplicates of each other. Wsvahese specimens to
exhibit feature randomness and aim to constfuthat is(1 — ¢)-separable under a known
volatility model X'.

To capture random behavior, each specirigmust be observed several times to es-
tablish a distribution of its behavior. L&X; be the corresponding random feature vector

whose probability mass function (PMF)

pi(8) == P(A; = 0) (4.1)

is built from observation. Note that= (dy, d, .. .) is a deterministic feature vector that
consists of multiple scalar values. Using a pair of initi@l®% (SYN-ACK retransmission
timeouts), Fig. 4.2(a) shows the distributionAf for two Xerox printers in our dataset.
Depending on the target jitter mod¥| these two hosts may very well be—¢)-separable;
however, doing so manually for hundreds of thousands oftp@rctlose to impossible. To

compound the issue, the majority of systems use randomngagith at least 3 dimensions

53

and some with over 20.

Classifiers that deal with random features must provide etiomp(J|é’, X') that pro-
duces aimilarity scorefor each pair of deterministic vectof& ¢’) under a given volatility
model X'. This metric estimates the likelihood th&thas been distorted td during re-
mote measurement. Then, similarity between two observstss(S;, S;) is given by

the following expectation

p(A] A, X) = ZZp 318, X)pi(8)p; (&) (4.2)

For a giveni, classifiers are typically concerned with findipthat produces the largest
value in (4.2). However, we are facing a different problemt ttequires normalization.
Let (&) = >°7_, p(AilA;, &) be the total similarity weight of systerfi; across all
available optiong. Depending on the classifier; may not always be 1. To handle such

cases, define

Ay PAA; X)
(DA, X) = () (4.3)
to be the probability tha$; gets classified aS;. Now suppose systents, . ,, are de-

ployed in a production environment (e.g., wide-area IrdBrand measured using remote
probing. Therefore, instead of seeing, the observer now samplés + ¢, where random
vectord is driven by the same distortion mod#&l. We are thus interested in identifying
the largest subset ¢, . . ., S, in which each system can be matched back to itself with

probability at least — ¢ under noiset’, i.e., E[q(A; + 0|A;, X)] > 1 —e.
4.4.2 Matrix Construction
We next describe our database-construction frameworlchwive call Plata. It starts

by building a confusion matrid/ = (1/;;), where each celM;; = E[q(A; + 0|A;, X)]

54

e I ;o 10.445(0.1910.36 1 0.00
; . . [0.05]0.49|0.44] 0.01
s E A T 012012 [0.72] 0.04
2 m: g " " i]0.07]0.05]0.000.88
&L 100 (-~ -t I :
N [LI 5 0.52 | 0.47 | 0.01
5oa%§o' s L» 0.130.82] 0.04
g . Josy| 0.05 | 0.00 | 0.95
0 I 1 1
0 20 40 60 0.95 | 0.05
d, (sec) 0.00 | 1.00

(a) random features

(b) matrix reduction

Figure 4.2: Randomness of RTO features and elimination plichtes in Plata.

and the expectation is taken overin general, classification decisions and vectonsay

be available only as output of some algorithm. For examplke féermer might be a C4.5

decision tree and the latter may require simulations of @ifipejueuing discipline. In

such cases, the only solution is to run Monte-Carlo simoegtithat repeatedly distofy;,

classify the resulting observations, and average thetreswolbtain an approximation to

Mz’j-

To this end, suppose we generateectorsd,, . . ., 0, by simulatingX. Using the PMF

in (4.1), we obtain the same number of instances from randmmMeA;, which we call

6%, ...,0r. Then, the approximate matrix is given by

T

-]

m=1
Since this expands to

T

Y 1 m /
M;; = . Z Zq(éi + 0|0, X)p; (),

m=1 ¢’

55

(4.4)

(4.5)

the overhead of constructinty/ is determined by the product of matrix sizen?, the
number of unique valueg, and complexity of computing(d|é’, X'), which typically is a

linear function of the combined vector lendth -+ |&'|.
4.4.3 Separation

Once complete, the diagonal df contains the probability of self-classification under
X. The next task is to iteratively eliminate specimens thapeise a significant frac-
tion of classification decisions to non-diagonal cells luthe target(1 — ¢)-separability is
achieved, i.e., all’\?[”- > 1 — e. At each step, Plata removes rawvith the smallest di-
agonal value and redistributes its probability weightdhremaining systems. The naive
approach is to re-run Monte-Carlo simulations and build & n&atrix with dimension
(n — 1) x (n — 1); however, this is extremely expensive, especially whés orders of
magnitude larger than.

The second option is to infer the new weights using a modeloarid a sequence of
approximations that produce a final matrix similar to thathia naive method. Consider
row i that needs to partition/;;, i.e., the probability to classify ask, among the other
columns. If we assume that in the absence of sydtedassification decisions follow the
remaining probabilities in rovi; the likelihood to classify!™ + 6,, asj # k now becomes

M;;/(1— M;:). Multiplying this by the weight being removed and addinghe turrent

M;;, we get the following transformation that keeps row sumatiirant

Note that if none ofi's classifications went to system) i.e., M, = 0, row i does
not change. This process continues until all diagonal whare abovd — ¢. The re-
maining systems at that stage are added to the databaseeanduimber establishes the

(1 — ¢, X)-dimension of the classifier. An example of this reductioogess is shown in

56

Fig. 4.2(b), where the rows are sorted in ascending ordétofor convenience of pre-
sentation. Setting = 0.2, there are three rows that violate separability constsaiiince
(S1, S2) are both similar t&3, but none of them resemblés, intuition suggests the initial
measurement may contain only two separable specimens: i&fteoval of the first row,
all diagonals receive a boost, bift;, S3) are still inseparable. Another iteration produces
the expected two vectors that match themselves with protya®io5 or better.

Note thatl — ¢ can be used as a tuning parameter — larger values reducerti®enu
of eventual vectors in the database, while smaller valuesgove more, but at the risk of
having more duplicates and poor classification accuracthogh onlyAZ;; is compared
againstl — e, the entire matrix needs to be recomputed after each iberafihis is nec-
essary in order to properly distribute the weights of eliatéd systems using (4.6). Thus,
the complexity of each step ig, repeated — d times, wherel := | D] is the size of the

final database.
4.4.4 Labeling

Once databas® is created, Plata needs to assign system-identifying datioethe
available signatures. Assume a process that collects mggfiom eachS; to the cor-
responding label; using some type of download (e.g., port-80 HTTP requestsl®
input, or other means, but possibly for a subset of the kngvetisnens. Incomplete la-
beling may occur due to bandwidth constraints, obfuscatifocertain systems by their
administrators, and generic software names (e.g., ap#uiepil to identify the underly-
ing system. Since labels might be available for hosts that baen discarded during the
matrix-separation step, we must again consider the emirg;s. . ., S,. To this end, we
classify each known specimen usigand produce a set of clustets, . . ., C,;, whered
is the(1 — ¢, X)-dimension of the database/classifier obtained earlierda P

To eliminate duplicate labels, a separate procedure chugitem into multiple cate-

57

label clusters database clusters

Lo —}@ Labeled
' J —) ‘

Lo
Iz | @ Labeled

3
) Lo/ L3/ La

L4
@ Labeled
Ls Ls / Ls

Figure 4.3: Applying labels to database clusters.

goriesLy, Lo, ... using some type of string-similarity matching. As shown ig.F4.3,
there is a directed edge between clusterandC; if there exists a systerfi; € C; such
that its labell; € L,. Note that this forms a bipartite graph in whi¢h may point to
multiple clusters”;. Plata leaves the specifics of choosing the right label foh €g to
the application. One option is to combine the labels of alhé@ghbors, as done in Fig.
4.3. Another option is to assign weights to edges (e.g.,léqulae number of correspond-
ing S;’s) and enforce some minimum frequency before a label isidensd valid. This
can be further extended to allow for majority voting. For rexde, 100 hosts with label
"Linux 2.4" and two with "Windows 7" mapping t@’; probably indicate the former is

more appropriate than the latter.
4.5 OS Fingerprinting Database

Plata is quite general and does not assume much beyondneasiésimilarity func-
tion p, algorithms to produce distortiah and ability to observe remote systems. We now

apply this framework to our problem of OS stack fingerprigtumder random/volatile

58

features.
45.1 Classifier

The database for single-packet fingerprinting tools hatveddrom 25 signatures in
[7] to 98 in [55], and eventually to the set of 116 signatureshwilt in Section 3, but the
correspondingl —e¢, X')-dimensions of the underlying classifiers remain unknovwmnfa®
manual construction dP in these tools has relied on separation only across detestioin
features (e.g., window size, TTL, RST bit) and never exachimav to determine whether
two hosts with the same fixed header values have sufficierdtindt RTO vectors. To
address this issue, we next apply Plata to temporal feabfissgle-packet classifiers and

build the first OS-fingerprinting database that is separatiess random/volatile features.
4.5.2 Data Collection

We scan our campus network (three /16 blocks) on port 80 taimlmbservations
Ay, ..., A, from responsive hosts;,...,S,. Since each); may be random due to
kernel-scheduling peculiarities, as in Fig. 4.2(a), wesi{grin gatheringy = 50 RTO
vectors from each host, which is typically enough to capwinatever variatiom\; may
exhibit. Additionally, to exclude lossy vectors from beiimgluded in the database, the
scanner continues until it receivessamples of the maximum length seen so far. Since
packet loss in our network is low, quick convergence folleviise average number of SYN
probes per responsive IP was 50.14.

As eachsS; is a public server, care needs to be exercised to not ovettiegdrget with
w back-to-back requests and cause unnecessary side-d#egtsrejected connections,
CPU overload). However, as it turned out, even conservatisecond inter-SYNs delays
were too small. One such problem surfaced with certain grsntwhose SYN-backlog
gueue [125] was smaller than When the queue was full, the printers terminated the old-

est ongoing sequence of SYN-ACKs and started a new one. dged the corresponding

59

A; to exhibit random truncation and presented difficultieshtamingw loss-free obser-
vations. We eventually settled on delaying SYN probes by #bnds, i.e., double the
TCP MSL (maximum segment life), which solved the problem.

The final caveat relates to OS kernel timing of RTOs. As we siaded earlier, some
hosts use a global timer that is independent of the SYN aninee to generate SYN-
ACKs for half-open connections. This causes the first RT@ @metimes the remaining
ones) to be randomized in some default range. In such cddsspiportant to capture
these effects in the database. We thus add random vafiabde240 seconds to avoid
SYNSs synchronization with any global clocks. Quiris uniform in [0, 3] seconds, but
other options are possible as well.

Along with the scan, a separate process opens a connect@actoresponsive host
and attempts to download its root page over HTTP. While bagradbing is not generally
considered reliable because any identification strings beayeplaced by OS-oblivious
names (e.g., apache) or altogether removed, it works foporpose since admins have
no incentive to obfuscate OS names behind our campus fireavadl Plata only needs a
subset ofSy, ..., S, to be labeled. This provides a fast, repeatable processebaires
no manual intervention.

We receive SYN-ACKSs from 9,879 IPs, assembidoss-free RTO vectors from =

9,701 hosts, and successfully complete a banner download9r594 of them.
4.5.3 Separating Features

Single-packet OS-fingerprinting tools use both deterrtiménd random features. For
eachsS;, we move the former into vectar; and the latter int@d\,. In general, Hershel treats
u; as volatile, which means it allows users to change TCP/IBdraalues without making
the OS fundamentally different. However, there is no evenately accurate model for

distortionX” applied by users to these features. We therefore limit dartsfto the better-

60

Grouping RING Snacktime IRLsnack Hershel

Deterministic only 28 209 209 344
Random only 23 52 50 117
Both 39 260 257 398

Table 4.1: Database dimensions.

understood network delay jitter and its volatility. If a liesdic noise modelt¥ becomes
available foru;, Plata can be used to compact duplicate hosts even further.

The simplest way to achieve separation on the determiriestitires is to combine;
with the size of RTO vectad;. Splitting the available hosts;, . . ., .S,, into clusters based
on the deterministic paifu;, |A;|) produces the first row of Table 4.1, with 28 signatures
for RING [112], 209 for Snacktime [7] and IRLsnack [55], ard3or Hershel. Note that
hosts within each cluster have same-length RTO vectors andext goal is to further
subdivide them into smaller groups that ate- ¢, X')-separable.

To decide onY, assume the objective is to achieve sufficient accuracygunternet-
wide scanning, where each; is disturbed by random queueing delays along the path
from the server back to the scanner. Due to constant SYN-A&dket size, fixed trans-
mission/propagation delays cancel out during RTO comjmutalt is thus sufficient to use
a FIFO-queue simulator that adds random delay jtitén each measurement, ensuring
that no packets are reordered. As Hershel is fairly inseedit the assumed model of
jitter, we use exponentially distributed queueing delayt wean 500 ms, which results
in 6 being zero-mean Laplace. If better knowledge of networkddwmns is acquiredd
can be modified accordingly.

We generate = 1K random noise vector, ..., , and add them to each observation
of A;, resulting inwr = 50K disturbed samples per host. We run Plata for each
candidate classifier using their similarity functipmnd compute (4.5), in which;(¢’) =

1/w. This creates one matrix/ for each unique combination of deterministic features,

61

14p------qmmmmm-- STt CTTTTTTITTTTTTA 14 p------qmmmmmmmmmmm o CTTTTTTITTTTTTA
(] SEEEEEEEREEEE oeeeee Fooee- G-+ (] Fooee- G-+
4+ gt TAS] | o i O
g B e - I R
& 11p------ %Qﬂ% ----- Conme §O5 8 agfee -6y &0 boooees :
N i i ™ SS: N i i
10} P SRR 4 0] ST TEREEE !
‘O@; : i +S4E :._ n¥ -835
. "'6+ﬁo&5' S oS, L oS,
8-“'é : : : : ! 8 : : : : !
2 25 3 35 4 4.5 2 25 3 35 4 4.5
51 (sec) 51 (sec)
(a) candidate hosts (b) (1 — €)-separable hosts

Figure 4.4: Plata example.

which is fed to Plata’s separation algorithm with— ¢ = 0.8. After all matrices are
compacted, we combine the surviving specimens into the diai@base®.

Going back to Table 4.1, the second row shows that RTO feaalame allow single-
packet tools to differentiate between 23-117 stacks urdecombinatior(e, X'). Hershel
more than doubles the dimension of its nearest competitdighwstems from its more so-
phisticated model fop(4|9’). Combining both deterministic and random features, Hérshe
ends up with 398 signatures, which is quite significant giherlimited scope of the initial
scan. Due to its higher accuracy and better separationyaltiie rest of this section stays
with Hershel as the underlying classifier for Plata.

To demonstrate how matrix reduction works in practice, merdive actual Windows
hosts in Fig. 4.4(a) withA;| = 2. While all of these OS kernels produce noisy RTOSs,
there are two distinct patterns. Fig. 4.4(b) shows the te$irlata separation, which suc-

cessfully extracts both patterns (Windows Server 2003 wwih different service packs)

out of the group and represents them using hgstsSs).

62

4.5.4 Label Clustering

Note that Plata does not specify how to assign labels toensist ; }. Besides ground-
truth obtained from device owners, which may be infeasiblddrge decentralized net-
works, some of this information can be collected autom#gic@ur approach is to proceed
along this route. Recall that HTTP headers contain the ergtring that sometimes
identifies the version of the web server and uniquely ties & particular OS (e.g., Win-
dows IIS). However, in other cases, the operating systenbeanferred only from the
HTML content of the page, as is the case with certain embeddeites (e.g., printers,
cameras). We thus combine the "Server:" field with the ettiréIL page and perform
clustering using simhash [60], which is a well-known tecjud for detecting similar web-
pages. This creates 515 clustéis Lo, . . ., which we match tal = 398 Hershel signatures
C1,...,Cyusing the procedure in Fig. 4.3.

The final step is to perform manual verification of label sgrdetermine which tags
in the HTML to use (e.g., head, title), and convert low-les@ftware versions to the corre-
sponding OS name (e.g., IS 7.5 to Windows Server 2008 R2th &iough coding effort
to account for the various formats, most of this can be autedngd 07], but we found it
easier to just show each page to a human and let them decidb wofthe found labels is
appropriate. Plata does this by sequentially renderingoage from eacli, and record-
ing the user’s response. Even for— oo, the number of unique clusters should remain
reasonably small.

Results reveal that our label clustering works quite well6 8ut of 398 signatures
(82%) receive a meaningful description. They are resptaddy 98% ofn = 9,701
measured hosts. Table 4.2 shows the top five most-populaatsigs on our campus,
where Plata successfully shrinks the most common Window® Rattern from 3,803

hosts down to 1. Heavy usage of Windows (43% of all serverd)Lanux (12%) is no

63

79

Banner Hosts Deterministic features Mean RTOs
Win TTL DF TCPoptions MSS RST

Windows Vista /7 / 8 / 2008 / 2012 3,803 8,192 128 1 MNWST 1,460 1,0,0,1 3,6,12

Ubuntu / Debian / CentOS / Sci. Linux 822 5,792 64 1 MSTNW 1,460 0,0,0,0 4.3,6,12,24.1,48.2

Windows2008 R2 /2012 394 8,192 128 1 MNWST 1,460 0,0,0,0 3,6

Ubuntu / Redhat / CentOS / SUSE 366 14,480 64 1 MSTNW 1,460 0,0,0,0 1.1,2,4,8,16

HP LaserJet Series 310 11,680 64 1 MNWNNT 1,460 0,0,0,0 3,6,12

Table 4.2: Top 5 database signatures gathered from our cascan
(Win = window size, TTL = time to live, DF = do not fragment, MSSnax segment size, RST = reset packet features).

surprise, but we also find a large amount of HP LaserJet psimdfifth place. The 398-
326=72 unlabeled cases belong to network elements that édtihto provide a banner or
supply one that contains no clue about the underlying OS.|dtter case often happens
with extremely rare devices for which we have only one barioanalyze. If Plata is
exposed to additional data collection and user input (@etside of our network), these
gaps can be eliminated. The main benefit of our frameworkaisahly a small fraction of
n (i.e.,72/9701 = 0.7%) requires further attention.

Note that using automated banners for labeling does limitatuility to distinguish
between OS versions. For example, the two Linux signaturdable 4.2 are likely from
different kernel versions. However, if the applicationuiggs more fine-granular labeling,
additional effort — installing each OS in a test environmantontacting the owner — is

needed in conjunction with Plata.
4.6 Optimizing Plata

While Plata works well, it bottlenecks on generatifhg and recomputing (5" +
0,,10', X) for each of ther random noise samples. This becomes especially noticeable
in large groups, such as Windows with 3.8K hosts. Using 16 ABjderon cores @ 2.8
GHz and 64 GB of RAM, a parallelized C++ implementation regsiiover 24 hours to
compute) . Although database creation is a one-time process, itlisissirable to have
faster and more scalable algorithms that can tackle langerti We address this next.

Analyzing (4.5), there are two obvious ways to reduce coriple- lowering r and
making functionp(.) faster. However, for Hershel, we can attempt to do even bette-
place Monte-Carlo simulations with a directly evaluateddeldhat produces the expected
probability thatS; gets classified aS; under random noisé. The rest of the subsection

treatsd = (6,,0-,...) as a vector consisting of scalar random variables, witheetsio

65

which all expectations are taken. Sinkg; := E[p(A,; + 0|A;, X)] can be written as

3OS ERG + 618, X)lpi(8)ps (), @.7)
) o’

construction of\/ in Plata requires only knowingf[p(d + 6|¢’, X')] for two deterministic,

same-length vectors o’.
4.6.1 Closed-Form Plata-Hershel Matrix

To understand and create context for the results that folesvbriefly review how
Hershel deals with delay jitter. Assuminfx) is the distribution (density or PMF) of
one-way jitter ana,,, = §,, — 0., is the error term in the-th RTO, the similarity between

two deterministic vectors is

191

p(0]8",) = T flem). (4.8)

m=1

Note that (4.8) treats error valugs,, e, ...) as iid random observations. For the
default model ofY’, recall from Section 3 that Hershel uses exponential ong-deday.
This produces Laplace jitter with densifyz) = (\/2)e~**!, where parametex should
conservatively reflect the amount of jitter anticipatedhe hetwork during actual mea-
surement (i.e.] /A should upper-bound the real mean). With this in mind, oull goto
derive the following expectation

|9]
Elp(s + 610",)] = B[T] f(em +62)] (4.9)

m=1

where eaclt,, is a random variable.

Given vectors) andd’, we are interested in how similar Hershel considers thear aft

66

the former undergoes random modification by the network pSse variablegd,, 05, . . .)

are iid Laplace with rate.. Note thaty; may not equal\ if separation is performed for
purposes other than future scanning of the Internet. Indhsé,. may be set to match
the environment in whiclb,, . .., S, are probed (e.g., 5-ms average jitter for a campus

network). Define,, = e~l*=| and consider the next result.

Theorem 1. For the Hershel classifier, the expected similarity betw&end andd’ is

Kl A
E[p(5+9|6’,X)]:<)\—M>5|H ! #“, (4.10)

4
m=1 hm A\ = 1
where

_2(Ab, — by A 1
gn = =p hm_bm(emux) (4.11)

Proof. Using (4.8),

191
Elp(6 +018")] = E| TT £ 6 + b = 3,

m=1

|9]
= 1 ELf (5 + 0 — 6,)] (4.12)

191

m=1
AL 191 o°
m=1" ~>

67

First assume # p. Given a constant < 0, we get

[e%) 0
/ o~ Netzl-ulzl g, _ / AMet2) bz g,
—00 —00

0

+ / e Mt mnz g, (4.13)

ere et —e et

:)\+,u+ A= 1 +)\+u'

Ac c

Whenc > 0, we have

00 —c
/ e—)\|c+z|e—u\z\dz _ / 6)\(c+z)+uzdz

o0 [e.e]

0
+/ e—)\(c-i-z)-‘ruzdz

+ / e Aer2)=hz g (4.14)
0

e—He e—)\c — eHe e—)\c

= - - .
A ©w—A A p

Combining the two cases, notice emergencg:jof

o0 —Ale] —ulel —ulel _ p=Ale]
[gty - ke e
oo A+ A—p

For the special cask = p, we obtain

o) \ e—)\|c\
/ eNetzlg=A=l g, — T |c|e= el
1
— <|c| + X)' (4.15)
Simplifying usingb,,, we get (4.10). O

68

The next logical step is to investigate whether mafvixbuilt using (4.10) matches
the Monte-Carlo versiod/. We consider a simple scenario wiff = 2, § = ¢, and
A = p = 10. This represents some diagonal c#};, i.e., similarity score of5; to itself,
for a deterministic\;. Settinge,, = 0 for all m, (4.10) produces 6.25, while Monte-Carlo
simulations yieIdMii = 6.7. The error increases with RTO vector length and is more
difficult to predict for off-diagonal values/;;.

Further analysis uncovers that the source of this biashiésershel’s assumption on
delay jitter. To illustrate this point, consider distogia two-RTO vectow usingd =
(01,65). From the queuing model of Hershel, consecutive Laplater jitalues can be
expressed using three iid exponential one-way deldy¥, 7, i.e., ¢, = Y — X and
0, = Z — Y. While we were reasonable in arguing tbéatY, Z are independent due to
the large gaps between SYN-ACKSs, the same logic unfortiyndtees not apply to jitter
because);, andf, share a common variablg. Fore,, = 0 and|é| = 2, the correct
expectation of (4.9) i[f(0:)f(62)]. On the other hand, Theorem 1 uses Hershel to
deduce the result aB[f(0,)]E[f(f2)] = A\?/16. We next expand the former term and

show that it deviates from the latter for all

Theorem 2. For . = X\ ande,, = 0, the expected Hershel similarity under dependent

two-RTO jitter(64, 65) is

292
432"

E[f(61)f(02)] = (4.16)

Proof. Considering jitter dependent, we must look at three separases. For the first

one, define

x1=E[f()f(J)| X >Y,Z >Y] (4.17)

69

and notice that event’ > Y, Z > Y happens with probability/4. Now observe

X1 _)\5/ / / (z—y) —)\z Y) —)\(:c-i-y—i-z dl'dZdy

2 2)\2
_\5 =3y, 2 7, —)5 = 4.18
A /0 e Myldy = A\ NG (4.18)
For the second case, we have
x2=E[f(1)f(J)|X <Y, Z<Y], (4.19)

where evenfX < Y, Z < Y also happens with probability/4. This leads to

Yo = A0 /OO /y /y e_)‘(y_x)e_)‘(y_z)e_)‘(”y“)dxdzdy
=\ / / e A dx / e~ A dzdy

_ —3/\yd —)‘_

_ . 4.2
4 0 12 (4.20)

The remaining two case¥ > Y > ZandZ > Y > X are identical to each other.

Without loss of generality, we use the former and define
Xz = E[f(1) (L)X >Y,Z <Y], (4.21)

which leads to

5/00/ / (z—y) —)\(y 2) —)\(m—i-y—i-z dZdyd.CL’
0 0 0
)\5/ e” / e Mydydx
0 0
)\2

)\3/ e (1 — (14 Ax)e)de = =—.
0 18

(4.22)

70

server time 0

T l 5! :
I—Hr % Y A N

a, Qs server
I
|
|
' .
| client
1

SYN Q, as;
A J
Y Y

client fime O

Figure 4.5: Features in Hershé) @nd Hershel+d).

Combing these cases with respective weight$, 1/4, and1/2, we get the overall

expectation in (4.16). O

Using A = 10 in (4.16) produces 6.7 observed in simulations. While weseaded in
correctly modeling\;; for two RTOs, doing the same faor# j and longer vectors is

very tedious.
4.6.2 Hershel+

We now show how the classification problem can be solved usinig one-way de-
lay (OWD). This requires a new model fpfd|é’, X') and additional constraints during
creation ofD. For hostS;, defineA; to be a random vector of SYN-ACK transmission
timestamps relative to the departure time of the first replyen, assuming that network
delays are negligible, the distribution of elements insidean be accurately obtained at
the measurement client by subtracting the RTT of the first SYOX from all observed
values.

Now suppose that the scanner finds a remote host on the Ihgerd@btains a vector

71

of SYN-ACK arrival instances asl, which are relative to the transmission time of the
SYN. The main caveat here is that the forward SYN delay angesehink time, which
we collectively callT’, are not just unknown in the public Internet, but also liketyn-
negligible. Consequently, the classifier must considepptions for7" in its decision
whether the observed could have been produced by some known veetor Delay
randomness is handled similar to (4.7), which means thatagain sufficient to consider
only deterministic pairs of delay vectors, i.e., by coratitng onA = a = (ay,as,...)
andA; = d' = (da),d},...). Thisis illustrated in Fig. 4.5. Supposing th@}, is them-th
OWD from the server to the client, we hawg = T + a), + Q.

With the new model, redefine the errorgs= a,, — a,, and lets = min,,{e,,} be the
largest possible value @f when a system equipped withis responsible for observation
a. Then, the similarity function becomes

|al

plald’, X) E[H folem] (4.23)

wherefq(x) is the density of OWD from modet. Assumingfr(z) is the PDF off’, this

leads to

|al

plald’, X) /“‘[folem] fFr(2)dz. (4.24)

We apply Hershel's exponential OWD witfa)(z) = Ae~** and additionally represent
T as a sum of two exponential variables (i.e., forward SYN ylalad server think time),
which leads tofr(z) = v*ze™"?, i.e., Erlang(2) distribution with some rateand mean
2/v. The OWD classifier (4.24) is more complex than Hershel's asquires numerical
integration of a computationally expensive product oftghifdensity functions. Our next

result shows that this can be avoided through additionalatésns.

72

Theorem 3. The closed form fo(4.24)is

|al

plala’, X) = 1or? Ay TT e, (4.25)

m=1

wherel is an indicator variable and

1—e~w=AaDs(14(y—\al|)s
B (u—)(\|(;|L)(2 D) |a| #
b — . (4.26)

- o] =

>R

VA
[V)

>R

Proof. If s < 0, there existsn such thate,, — 7' is less than zero. Since OWD cannot
be negative, the corresponding tefp(e,, — 1') = 0. Consequently, we need to consider
only s > 0, in which case alk,, are non-negative. Substituting the densitie§)adnd T
into (4.24), we get

s lal

plald, X) = 1320/ [H)\e_’\(em_x)} vize Y dx
0 m=1

|al

= 1szov2)\|a‘ [H e_)‘em}/ zeMNa=)7 g
0

m=1
Using WolframAlpha'’s integral solver [117] yields (4.25). O

Replacing Hershel's(d|d’, X') with (4.25) and keeping the rest of the method un-
changed gives rise to a technique we call Hershel+. Our rteptis to verify that its
accuracy is no worse than that of Hershel even when the assknteng model forT’,
which uses’ = 4 in all computation below, does not match the true distrinutiTo this
end, we use the simulation setup from Section 3.4, wherenhereew parameter ig".

In the first scenario, we ke€p uniform in [0, 1] seconds, maintain zero packet loss, and

run both methods over Hershel’s original database withstacks. The result is shown

73

Distribution of OWD Features used Hershel Hershel+

Pareto (mean 8.5) RTOonly 22.1% 24.2%
Pareto (mean 9.1) RTOonly 33.1% 33.3%
Uniform (mean =0.5) RTOonly 21.7% 22.1%
Uniform (mean =0.5) All 99.9% 99.9%

Table 4.3: Accuracy on the Hershel database.

Distribution of T’ Loss Hershel Hershel+
Exponential (mean 9.1) - 96.9% 97.6%
Pareto (mean 8.1) - 96.9% 97.4%
Pareto (mean 9.1) 3.8% 95.2% 95.8%
Pareto (mean 9.1) 10% 92.3% 92.9%

Table 4.4: Accuracy on the Plata database.

in Table 4.3. As the new model only changes the RTO clasdifienmost important com-
parison involves the first three rows of the table, which cam&uperiority of Hershel+.
In the second scenario, we fix the OWD to be unifornj(inl] and use the larger Plata
database. Table 4.4 shows that Hershel+ again edges outaHatespite its higher uncer-

tainty related td".
4.6.3 Closed-Form Plata-Hershel+ Matrix

Armed with the new classifier, we revisit the issue of obtagna Plata matrix without
Monte-Carlo simulations. To modéf, we disturb eachd; using a random OWD vector
V = (W, Va,...), where allV; are iid exponential with rata. We additionally apply
noise to the forward SYN delay and server think time, which eollectively given by
an Erlang(2) random variablé” with rater. Note that we use andv from Hershel+,
although other options are possible.

Define matrixH = (H,;) to consist of all pairwise Hershel+ similarities betweeea th

74

signatures in the database under distoriion 1//. This requires computing
C(a,d’) :=E[pla+V +W|d, X)] (4.27)

and settingd,; = E[((A;, A;)], where the second expectation is taken over random vari-

ables(A4;, A;).

Theorem 4. Definev = ()\/2)!%lv /4. Then,
((a,a) = v/ e A Xmlem P2l (1 4y 2])e P d2. (4.28)

[e.9]

Proof. We first require the following Lemma.

Lemma 1. DefineZ = W — T', wherelV andT are Erlang(2) with ratev. The density of

Z is then
F(2) = %e—vlzlu +ulz)). (4.29)

Proof. Notice thati’ —T" has the same distribution a5+ Y, whereX, Y are iid Laplace

75

with the same rate. Their convolution forz > 0 produces

Frav(z) = / " () (e — 2)de

V2 [

_ / 6—V\x\6—u\x—z|dl,
4 J
V2 0

_ 7 |:/ 6Vxeu(x—z)dx + / 6—l/xel/(x—z)dl,
4 —00 0

4 v 2v
B V2(26—Vz N —yz) B 1/2 (e—uz —I—VZE_VZ)
4 2u = 4 v
Combining with the symmetric case< 0, we get (4.29). O

Now we are ready to establish Theorem 4. The general form®&#pectation is

_ lal

((a,d)=FE H folam + Vi + W —al, —T)}

“m=1
|
= E HfQ(eerVerW—T)}
“m=1
|

= B[] falem + Vi + 2)]. (4.30)

m=1

whereZ = W — T. Note thate,, can be negative as long as the seyp+ V,,, + Z > 0.

Condition onZ = z and define

|a|

C(a,d) = E[H folem + Vin + z)]

|al

=11 /doo fo(z = em) fv(x)da, (4.31)

m

76

wherec,, = —(e,,+2), fv(z) = Ae ** is the density of eacl,,, and the integration range
starts atl,,, = max(c,,, 0) to ensure the terms inside the dengityare non-negative. This

leads to

h/ —)\(1’ cm) —)\xdx
°)\

)\(2d7n C'nL) X (432)

Since2 max(z,0) — x =

A
C:(a,a') = (5) e onl (4.33)
UnconditioningZ and recalling:,, = —(e,, + 2),

(0, / Co(a,) f2(2)dz

G [eBakepy gz (4.34)

which leads to (4.28) after invoking Lemma 1. 0J

Note that (4.28) can be computed by splitting the integral i + 2 regions such that
|z| and|e,, + z| are conclusively resolved as being either positive or negatach of
these smaller integrals expands in closed-form; howewertathe large number of terms
involved and lacking structure, this result is difficult &present symbolically. Algorith-
mically, however, this is simple to code using a bit-vectbsiae |a| + 1 that keeps track
of which of the termgz, e; + z,e5 + 2, ...) is positive. Moving from one interval to the
next flips one bit from 0 to 1 and switches to the corresponditegral.

After verifying that (4.28) and it§:| + 2 sub-integrals produce correct results, we run

77

Plata separation ovéf instead of\/ and obtain 420 signatures, out of which 79 come out
unlabeled. Recalling Table 4.1, notice that Hershel+ i®es the dimension of its prede-
cessor by 22 entries, indicating a more powerful classiff@rformance improvement is
remarkable as well — the runtime reduces from over 24 houpsstdl2 minutes. Added
benefits include higher accuracy of Hershel+ decisions dadiaion of uncertainty ifr

is large enough to keep Monte-Carlo results convergent.
4.7 Internet Scan

We now use Hershel+ to classify every visible webserver enlibernet against the

previously constructed Plata database.
4.7.1 Classification Results

In July 2015, we sent 2.7B SYN probes on port 80 to every IPextdadvertised in
BGP and obtained SYN-ACK responses from 66.4M hosts. Thibnest double the 37M
IPs used in the Hershel study. The scan lasted 6 hours andtegeat 125K packets per
second.

Table 4.5 shows the Hershel+ output on the Internet data.rééktmown the result by
OS category, showing the 5 most-popular signatures in é@dohsurprisingly, Linux still
dominates the webserver market. Although its top-5 sigeatare separable at the feature
level, limitations of our banner-based labeling do notwalidentification of the specific
version of these OSes. In second place, there is a large murhleenbedded devices,
mostly routers and printers. This finding agrees with thosprevious measurements at
this scale [42], [55]. In third place, we combine hosts thajprno a signature without a
useful banner and those with a zero probability of matchingrtything inD. The former
category is responsible for 94% of these cases, where 7%émysignatures irD catch
almost 12% of all Internet classification, despite being @m our campus. Future work

will attempt to uncover their OS.

78

Category | OS/ Device Hosts
Ubuntu / Redhat / CentOS 14, 551, 706
Ubuntu / Redhat / SUSE 2,620, 566
Linux Ubuntu / Debian / Redhat 2,381,733
Ubuntu / CentOS / SUSE 1,831,519
Ubuntu / Redhat / Sci. Linux 1,413,660
Total in category 25,679,480
3Com Routers 2,661,835
Dell Laser / Xerox Printers 1,985, 840
Embedded Embedded Linux 1,869, 053
Cisco Embedded 1,699,418
Citrix Netscaler 1,118,748
Total in category 24,447,390
No label in database 7,936, 268
Unknown | Zero probability of match 474,585
Total in category 8,410,853
Windows7 /8 /2008 / 2012 2,186,229
Windows XP /2003 822,130
Windows | Windows XP /2000 / 2003 791,298
Windows2008 R2 /2012 701,204
Windows2008 R2 /2012 427,401
Total in category 7,124,444
FreeBSD 480, 789
FreeBSD 107,635
Other Novell Netware 37,981
Mac OSX Server 35,613
Solaris9 / Solaris10 35,375
Total in category 752,602

Table 4.5: OS classification of the Internet dataset.

Next, there is Windows in fourth place with 7M hosts. Unlike forevious categories,
we can identify the specific type of Windows from its IIS versiin the HTTP header.
While it is by far the most popular desktop OS [70], its peatdn of the webserver do-
main has been lagging behind Linux. This is in contrast togampus scan, which was
dominated by Windows. One explanation for Unix prevalerscenigration of online ser-
vices to enterprise clouds, which have traditionally faebtinux installations. Another

is the possibility that Linux distributions more commonlyable a webserver in their de-

79

[0 [TR . ©)N S 4
LL LL
(@] (@]
O O
o @)
10 ffffffffffffffffffffffffffffffffff —
O Data N\ o OData | "\ o
_a||—Pareto fit —s||—Weibull fit| | |
10 0 1 2 3 4 10 2 4 6 8
10 10 10 10 10 10 10 10 10
Hosts Hosts
(a) campus (b) Internet

Figure 4.6: OS popularity distributions.

fault configurations or alias more IPs to the same physiaakese And yet another is a
higher percentage of Unix computers not being protectedflvg\aall (either corporate or
host-level).

The table ends with 752K devices (1.1% of the total) in thé&gdt category that in-
cludes BSD, Mac, Novell, and Solaris. Compared to our previarge-scale fingerprint-
ing effort that used scans from July 2010, the table showtd ihax and embedded have
doubled their numbers (i.e., from 13-14M to 25-26M), Windokgmained pretty much
unchanged (i.e., a slight drop from 7.5M to 7.1M), and theaiemng group lost 68% of
its membership (i.e., from 2.3M to 752K). In summary, 99.3P4lbIPs are successfully

classified and 87.3% have a label.
4.7.2 OS Popularity and Confidence

To better understand device deployment at different scalesiext examine the distri-
bution of cluster sizéV for each of the 420 signatures in our database. Fig. 4.6(aysh
the CCDFP(W > x) using the initial campus scan. This plot is a close match tetBa

tail (x/5)~“, wherea = 0.8 and = 1. Interestingly, the bottom 40% of the signatures

80

0.8 -1 - r e s
|_|_ 06 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
=)
o 0.4F------am e -
0.2F i s
0 ‘ 1 1 1
0O 02 04 06 08 1 _
Classified Host Probability Ratio
(a) CDF of topp(a|A;, X) (b) ratio top twop(a|A;, X)

Figure 4.7: Hershel+ classification confidence.

map to a single host each. In contrast to the well-known stacKable 4.2, these clusters
enjoy more esoteric items such as security cameras, rompet@ture controllers, UPS
(uninterruptable power supplies), tape backup, humidtyssrs, and even discontinued
oscilloscopes. Fig. 4.6(b) plots the same tail for the meéscan, which is a good match
to the Weibull distributiorexp(—(x/\)*), wherek = 0.4 and\ = 45K. Each of the top-14
signatures accounts for at least 1M hosts and the top-17#ap®nsible for 60% of IPs.
The bottom 204 signatures match a combined 1% of the seliverH664K).

Another interesting issue is the amount of confidence witlickvitHershel+ selects
the best OS during classification. Assumings a measurement from some IP, (4.24)-
(4.25) can be used to obtain similarity scor@|A;, X') for each OSj, the highest of
which is selected as the match after normalization. Fig(ad.@lots the distribution of
this probability across all 66.4M IPs. Observe that almastiassifications occur with
less than 20% likelihood and over half the hosts fit some sigaavith probability at
least 65%. The far end of the CDF shows 7% of the IPs with a 10@&6m which are
devices with truly unique combinations of features. In thme vein, to determine if the

second-best match follows closely the top signature and ditewn the classifier might

81

be "guessing," Fig. 4.7(b) shows the CDF for the ratio of thie highest probabilities.
In 17% of the cases, the second-best match is pretty clasewithin a factor of 1.2.
Afterwards, the curve sharply rises and yields over 68% sfih a decisive winner (i.e.,

ratio 2:1 or better).
4.8 Comparison with Nmap

Since ground-truth for millions of Internet hosts is difficto obtain, we next perform
comparison against Nmap v6.49 [73]. During the scan, weaantygl selected 1% of re-
sponsive hosts and invoked Nmap to fingerprint them as sotmedsst SYN-ACK was
received. Real-time execution was needed to minimize tksipihity they left the network
and other hosts appeared in their place (e.g., due to DHGPus@H Nmap’s least-verbose
mode to limit the traffic and complaints from target netwotkswever, this still resulted in
80 sent and 60 received packets per IP, as well as severatainbins to campus network
administrators about intrusive activity coming from oubsat. The complaints identified
Nmap by name, which raises questions how often IDS toolsusttdetect, but drop its
traffic.

Out of 664K IPs, Nmap was successful for only 481K (i.e., 72¥6)rule out host de-
parture, we verified that an overwhelming majority (99.8%the attempted IPs returned
at least one reply to Nmap probes. The failed cases inclusfgnses unknown to the
database and firewall obstruction of non-SYN packets. Weoumly subsampled these
481K IPs, excluded roughly 12% for which Hershel+ returnekhown," and ended up

with 603 cross-labeled samples for further manual analysis
4.8.1 Agreement

We first investigate how well Nmap and Hershel+ agree on tassdication of the
selected subset of hosts. Comparison with Nmap is far froag$tiforward since its stack

names are human-created and rather fine-granular. The etaged category in our Plata

82

Category Category match String match Total

Linux 301 (98.6%) 25 (8.1%) 305
Embedded 158 (75.5%) 34 (16.2%) 209
Windows 82(95.3%) 82(95.3%) 86
Other 3 (100%) 3 (100%) 3
Total 544 (90.2%) 144 (23.8%) 603

Table 4.6: Internet subsample classification.

database is Windows, while the majority of other hosts areketawith just the name
of the OS and/or device. Thus, it makes sense to separatefydey whether Hershel+
matches the exact signature string of Nmap or just the catego

Table 4.6 shows the result of this process, where we grougs lhased on Hershel+
classification. In the category match, we achieve over 98géesmgent in Linux, 95% in
Windows, and 100% in "other." With embedded systems, Nmggnaflaims the host is
running Linux, whereas we have a specific (non-Linux) devieene from the banner.
Without tedious manual effort, it is difficult to know if Nmapas been exposed to these
devices and whether it can reliably identify them. With thaid, we still mark these cases
as a mismatch, which drops the agreement rate to 75%.

As for OS strings, lower numbers were expected due to therdifice in how the
databases are labeled. The biggest drop occurs in Linuxiendu& D consists of just
distribution names (e.g., Ubuntu, Redhat, SUSE), while plim@vides both major and
minor kernel versions (e.g., Linux 2.6.18-22). Nevertks)eghere are 25 matching signa-
tures for which both methods can identify only the Linux fgmFor embedded systems,
Nmap produces a large variety of device names, many absentdur campus. Finally,
the Windows group keeps the same 95% consensus rate siBeegjieed-upon cases are

exact string matches.

83

¥8

Vector Win TTL DF TCP options MSS RST SYN-ACK arrival (sec) hed

Dy 8,192 128 1 MNWST 1,464 1,0,0,1 0.00,2.99,9.00,21.00 Windows7 /2008 R2
S1 8192 128 1 MNWST 1,464 1,0,0,1 0.22,3.22,9.22,21.22

So 8,192 64 1 MNWST 1,460 0,0,0,0 0.18,3.17,9.17

Dy 16,384 128 0 MNWNNTNNS 1,380 0,0,0,0 0.00,2.65,9.21 Windows2000 / 2003
S 16,384 128 0 MNWNNTNNS 1,460 0,0,0,0 0.21,2.67,9.22

Sy 16,384 128 0 MNWNNTNNS 1,370 0,0,0,0 0.21,3.07,9.63

Table 4.7: Hershel+ classification and features.

4.8.2 Disagreement

We now analyze the peculiar case of the four Windows hosts ffable 4.6 where
Nmap and Hershel+ disagree. We call these observatigns. , S,. Table 4.7 shows their
features and the corresponding database signatyre$), for the Hershel+ classification.
Notice thatS; is an easy classification decision because the RTT is sm&ll<i 220 ms)
and D; matches all of its features. Fok, Hershel+ prefers the same OS, overcoming
a change in TTL/MSS and a loss of the RST packet at 21 sec. Eavther two hosts,
both matching taD,, the only discrepancy is the MSS, which is a highly volatikddi
that depends on the MTU. Judging from the OPT and RTO feattiresiccuracy of these
decisions is not in doubt.

To explain the Nmap outcome for these IPs, we need to revieualassification tech-
nique. Suppose vectdt = (R, ..., R;) consists of indicator variables such thigt= 1
iff probe ¢ elicits a response from the network stack. We sglinto several groups — a
regular SYN to an open porfy), four TCP packets with extra flags (i.e., ECN, null, rain-
bow, ACK) to an open portR, — R5), three TCP packets to closed pori& (— Rg), and
UDP/ICMP probes &y — Ry). For cases witlR;, = 1, supposé;; records thg-th feature
of that packet, wheré}; = () indicates a missing optional header field. A combination of
vector R and corresponding matrik constitutes a signatue = (R, F).

Suppose a match iR; carries weightv; and that in featuré’;; some other weight;;.
Then, Nmap computes similarity between an observabi@amd a signaturé’ = (R', F’)

from the database using the following

l
> it Yilp—pwi + RiR; Y-, Zijlp,—y wij)
Zﬁzl(Ylwl + RZR; Ej Zijwij)

, (4.35)

where variableZ;; = 1 iff field j in packet: is non-empty in both the observation and

85

database (i.e£; # 0, F}; # 0) andY; = R, for i € [6,8] and 1 otherwise. The last rule
ignores closed-port tests unleBscontains a response to them. All signatuéésvith at
least 0.85 similarity are reported as likely matches.

This algorithm has no provisions for packet loss, which nsakéncreasingly unreli-
able as more probes are blocked. The issue is compoundee logaige of large weights
w; > w;;, which ensure that a mismatch in a feature carries littlesichgompared to that
in the receipt/non-receipt of a packet. As a result, presafdirewalls skews the score
towards signature$’ that originally had fewer responses, regardless of thgir Empty
features causg;; = 0 to remove the corresponding weight; from consideration, grav-
itating the classifier towards results with more frequertuoence off). Finally, if the
target does not respond to a given closed-port testYi.e=, 0, the denominator no longer
contains the associated weight This allows Nmap to matclk; = 0 and R, = 1 with
no penalty for6 < i < 8.

Armed with this insight, consider in Table 4.8 the Nmap feasuwfS; — Sy, as well
as their best matches — a network boot card, modem jail-bigakvare, a decade-old
OpenBSD 4.3, and an ancient D-link switch — whétescores over 85% with both,
and D,. From the table, notice that Nmap sampled the same SYN &=aas Hershel+,
meaning they contacted similar network stacks. For ineaplie reasons, the database
allows () for mandatory values (e.g., Win, TTL, DF), where all fourreeg D, — D,
contain at least one such case.

Based on Table 4.8, it is pretty clear that Nmap decisionb@agily influenced by the
R vector and empty fields. Indeed, iPXE/Tomato have no feattiredn common withsS;,
OpenBSD 4.3 matchesS, only in three fairly generic fields TTL/DF/MSS, and D-Link
agrees withS;/S, in just the DF bit. We thus find no evidence to suggest that Nmap
signaturesD; — D, are statistically probable, let alone better than the He#shesult in

Table 4.7. In factpD; and S, are conclusively different stacks judging from their ordgr

86

.8

Vector Ry Fiji=Win Fj5=TTL Fi3=DF F4,=TCP OptiOﬂS Fi5 =MSS (RQ, L ,Rlo) Label

D, 1 0 0 0 0 0 0000 111 00 iPXE 1.0.0+

Dy 1 0 0 0 0 0 0000 111 01 Tomatol.28

S 1 8,192 128 1 MNWST 1,464 0000 000 00

Ds 1 0 64 1 MNNSNWNNT 1,460 1000 100 11 OpenBSD4.3

So 1 8,192 64 1 MNWST 1,460 1000 100 11

Dy 1 0 64 0 0 0 000011101 D-Link DWL-624
S3 1 16,384 128 0 MNWNNTNNS 1,460 0000 000 01

Sy 1 16,384 128 0 MNWNNTNNS 1,370 0000 111 01

Table 4.8: Nmap classification and features.

Signature Subsample Total

Tomatol.28 132 21.8%) 105,525 (21.9%)
OpenBSD4.3 91 (15.0%) 64,050 (13.3%)
D-Link DWL-624 12 (1.9%) 6,454 (1.3%)
iPXE 1.0.0+ 6 (0.9%) 5,723 (1.1%)

Table 4.9: Popularity of Nmap signatures.

of non-NOP TCP options (i.e., MSWT vs MWST).

From a broader perspective, Table 4.9 shows the number ¢f farswhich Nmap
decides thatD,; — D, exceed the 85% threshold. Remarkably, Tomato appears in 21%
of the cases and OpenBSD in 13%. These results raise questimut Nmap’s ability
to provide meaningful classification, not just in the fouseawe dissected, but generally
in wide-area networks, wherR is easily distorted by IDS, host-level packet filters, and

network firewalls.
4.9 Conclusion

In this section, we introduced a novel unsupervised clugjalgorithm called Plata,
which can be used to separate gathered signatures acctwdingwn noise model, elim-
inate duplicates, and allow user tuning of the separaldégired. We applied Plata to
a scan of our university campus, capturing 420 unique sigest labelled them auto-
matically, and used our new automatically built databasactmomplish the largest OS
fingerprinting effort ever achieved in the wild. We conclddegy comparing our results
with Nmap, showing that Hershel+ classification from usiagtja single probe agrees

with Nmap in most cases, and provides more accurate reautsses where they do not.

88

5. ITERATIVE LEARNING OF FEATURE DISTORTION

5.1 Introduction

Now that we have built a scalable classifier in Hershel+ andraéwork for construct-
ing an automated database with Plata, in this section weowrattention to solving the
existing issues remaining in our system, as well as lookirspae measurement applica-
tions of our work. One point of concern is that Hershel+ hasyrauilt-in assumptions
that may be violated in practice, which in turn may affectci@ssification accuracy and
overall performance on such basic metrics as the fractidheofnternet running a partic-
ular stack. Our motivation is to understand these limitagiand offer novel avenues for
increasing both the classification accuracy and amountfofrimation that can be recov-
ered from responses to a SYN packet.

Assume a database of known fingerprirts- (x,...,x,) and an observatior’ =
(x},...,x},) from a large number of Internet hosts. Suppose veetet («q,...,a,)
specifies the distribution gfopularityamong the known OSes, i.ey; is the fraction of
hosts using fingerprint;. Deciding which OS generated eaghis generally hindered
by presence distortionduring observation, which adds random delays to packetpsdr
some of them, and modifies header fields.

Hershel+ relies on a-priori knowledge of not onlybut also additional parametetsf
distortion — the probability of change in each TCP/IP featamd distributions of network
delay, packet loss, and server think time. While the undgglynodel in Hershel+ is more
robust to distortion than those in prior approaches [7]2]lits performance does depend
on how wella and# can be estimated ahead of time. Unfortunately, extractidhase
parameters from prior Internet scans and Hershel+ deassfar from simple. In fact,

using the fraction of previous classifications that went ®:@s a substitute far; may

89

lead to unstable states and inferior results comparedymgtavith the default parameters,

as we discovered in Section 3.
5.1.1 Contributions

As the Internet is highly heterogeneous and constantlyewpl even if(«,) could
be estimated by monitoring routers and/or using end-tore@adsurement between strate-
gically positioned hosts (e.g., PlanetLab), it is unclebether conditions observed in the
past or along certain paths can yield meaningful predistadyout the specific network be-
ing fingerprinted (e.g., a corporate LAN is very differemrfr the public Internet). Instead,
we argue that, 0) should be theutputof the classifier rather than tteput Doing so
allows the unknown parameters to be customized to a spebiiereationk’, i.e., reflect
the OS composition of the network being analyzed and it®dish properties.

To accomplish this objective, we derive a non-paramettiicregor for (o, 6) in Her-
shel+ under the theoretical framework of Expectation-Maxation (EM) [24], [41]. We
call this approach Fauldsnd show that its iterative refinement of unknown distrito,
followed by reclassification ok’, can significantly improve the accuracy of Hershel+.
Additionally, as the algorithm recovers badih, 0), it provides important network charac-
terization results for OS popularity, as well as distribas of delay, header-modification
probabilities, and packet loss experiencedkhy

Throughout the section, we provide a combination of simaiet and discussion of
the various caveats. For example, lettifigoe the forward latency and be the reverse
SYN-ACK delay, one of the properties of active OS fingerpnigts that it cannot observe
these variables individually. Instead, they are alwaygptemiinto a summatiofi + A
that is carried ink’. We show that under certain conditions Faulds can sucdbsdécon-

volve these distributions without having any a-priori knedge about them and explain

IHenry Faulds was a Scottish scientist who proposed the faila forensic fingerprint-identification
method in 1880.

90

the rationale behind this seemingly impossible act.

We perform a fresh Internet scan and show new EM-guidedititzdson decisions of
Faulds. We not only update the OS-popularity veetpwhich shows non-trivial changes
compared to Hershel+, but also provide estimated distdbatof one-way return delay,

forward latency, and one-way SYN-ACK packet loss acrosSM3vebservers.
5.2 Background

Characterizing Internet packet loss and delay is a longdatg problem in computer
networks [12], [25], [80], [119], where availability of restic models can fuel protocol
development, provide theoretical insight, and improveusations. Besides traditional
usage in congestion control (e.g., retransmission-tinn@ng, stability analysis), knowl-
edge of delay/loss are important in research of many modgphcations (e.g., content
distribution networks, video streaming, VoIP, cloud cortipgj).

One patrticularly hard issue is estimating one-way path gnogs, especially at large
scale. Perhaps the simplest approach is to measure rapmktameters [123] and then
infer their one-way counterparts using certain assumptiblowever, path asymmetry and
the influence of the remote server on the measured parareagerdelay in the reply) may
lead to bias in the result [47], [79], [114]. An alternatie2to deploy a measurement plat-
form that allows control of both sides of a connection (€dgnetLab [82], IDmaps [33],
CDNs [44], [48], [116]). Clock-synchronization issueswithstanding [39], this leads to
accurate estimation, but requires a significant effort titdiibhe underlying infrastructure
and extrapolate the measurements to other parts of theéttérhe final technique places
an observer inside routers that monitor ongoing connestjid@]; however, this does not
make estimation any less expensive.

Other broader, but related, topics include distance measemt using coordinate sys-

tems [16], [21], [57], [72], [98], [106], involvement of DNfr estimation of round-trip

91

delay/loss between remote servers [37], [54], [113], andiegtion of EM to various

networking problems (e.g., tomography [14], [19], [99]111, flow sampling [26], [53]).
5.3 Learning from Observation
5.3.1 General Problem

Suppose the OS database consists bf 1 known stackgwy, . . . ,w,), each with some
vector-valued fingerprink; = (z;1, z4,...). These contain a combination of features,
including temporal information about the SYN-ACK retranssion timer of each OS and
default header values used for incoming connections. Euabsume a set of observations
x' = (xi,...,x,,), where eack’ = (7, 7,, . ..) is also a vector. Note that is typically
obtained by scanning the Internet and eliciting responsas &very live server. For the
type of OS fingerprinting considered here, i.e., singleébprahis is done using a SYN
probe to every IP address in BGP and collection of SYN-ACISJIR from the contacted
servers.

The goal of the classifier is then to determine for eaththe most-likely fingerprint
in the database. This task is complicated by presence afrticst that randomly modifies
the original features of the system. This typically inva\aechange in the temporal rela-
tionship between the packets (e.g., queuing delays), rahod\some features (e.g., loss
of RST packets), and rewriting of TCP headers in an efforfttiinaize and/or obscure the
end-system.

Define«; = p(w;) to be the fraction of hosts with OSand leta = (ay, ..., a,) be
the corresponding vector. Suppadsgenotes the distribution of distortion apty|w;, 0) is
the probability that the fingerprint of signaturbas been changed injounderf. On the
other hand, assumgw;|y, 0, «) is the probability that an observed veciowas produced

by a host running O$%, conditioned on distortion modél and popularitye. Then, the

92

classifier must determine for eaglthe one database entuwy with the largest

X0 a) (1)

(wZ|X 0,a) =
where

x;|0, @) Zaép ilwe, 0) (5.2)

Analysis of (5.1) in our earlier sections assumed thatas uniform (i.e.q; = 1/n)
and# was known ahead of time (e.g., exponential one-way delajfs nvean 500 ms).
Therefore, bothy; and denominatqr(x’|0, «) were independent éfand could be omitted
from the optimization, leaving only(x/|w;, #) as the target. In contrast, our goal here
is to estimate botla and# dynamically as the classifier is running, which should both
increase its accuracy and yield interesting Internetaittarization results as byproduct
of classification. Before reaching this objective, a graduald-up of formalization is
needed. This subsection deals with estimatinghe next one covers network distortion,

and the one after that focuses on modification to fixed headtuifes.
5.3.2 EM Principles

SupposeX («, #) is a random variable that models the feature vector obsédreeda
uniformly selected system on the Internet. Note that rarmss inX («, 0) arises due to
both selection of the host and feature distortion duringeolzgtion. Then, knowing the

distribution of X («, 6) allows us to write a set of (generally non-linear) equations

m

P(X(a,0) =y, —nllféoaz w—y, = P(yelf,), (5.3)
=1

93

i.e., one equation for each unique vegyoifrom the domain oX(«,). Extraction ofa
and# from (5.3) commonly involves the Expectation-MaximizatiiM) method, which

is a technique that solves this system using fixed-poirdtitem [24], [41]. At every step,

it maximizes the expected log-likelihood function conalited on the parameters obtained
during the previous iteration— 1.

Assuming (5.3) iddentifiable(i.e., each combinatiofw, §) produces a different dis-
tribution for X(«, 8)), EM can accurately recover the unknown parameters [1t@htl-
fiability is equivalent to (5.3) having a unique solution ¢) for any valid distribution of
observations, which is a strong condition; however, EM $® aisable irpartially identifi-
ablecases wheréy,) is a locally-stable maximum for which common-sense knogéed
about the system allows selection of the initial state irsetenough proximity. If not,
multiple restarts and/or other heuristics (e.g., simalaanealing) can be deployed as
well.

Stability, convergence, and numerical computation of EMarmultiple fixed points
is a topic beyond our scope, but it should be noted that as dsntipe number of non-
redundant equations is larger than the number of unknowiahtas, EM works well for

many problems in practice.
5.3.3 Fingerprint Popularity

For now, we treap(x’|w;,) as a black-box classifier (e.g., Snacktime, Hershel, Her-
shel+), which does not attempt to estiméteand focus on determining. This is the
simplest (and only) case where (5.3) forms a linear systemwnal the unknown parame-
ters. It has a unique solution as long as the rank of the mattixelementsA,;, = p(y¢|w;)
isn.

Throughout the section, superscripts applied to parasetéar to the iteration number

during which they are estimated, e.@},approximatesy; during step. Now notice that a

94

sensible estimate of popularity for @% the average probability with which observations

map to this fingerprint, conditioned on the previous estiwdtpopularity, i.e.,
altt = Zp wilx}, 0, a) (5.4)

Note that this is markedly different from updating the p@pity vector using the frac-
tion of classification decisions that go to each OS, whichhiewn ashard EM and com-
monly used in clustering algorithms suchkameans [49]. In fact, all previous fingerprint-
ing tools [7], [10], [73], [120], [122] can be viewed as parfung one iteration of hard
EM, i.e., outputting the fraction of classifications thaldmg to each O%); as an estimate
of its popularityq;.

It is not difficult to see that forn — oo, fixed points of recurrence (5.4) are solutions
to (5.3). Additionally, there is a stronger result. Whilastfairly well-known, its proof

methodology is needed for later parts of the section.

Theorem 5. For a classifier with fixed, (5.4) represents the EM algorithm for recovering

the popularity vector.

Proof. For a given set of observatioss= (x1, ..., x,,), define thdikelihood function of

« With respect to observatiox' as

m n

p(X/|97 a) = H “9 a H Zazp |w27 (5.5)

7j=1 =1

Direct computation of the Maximum Likelihood Estimator (H).for p(x’'|0, «) is
often impossible due to the complex shape of the functiostebd, EM introduces hidden
variables, which help simplify (5.5), and applies maxintiza to theexpectedikelihood
function, conditioned on the current estimate of unknowrapeeters. To this end, define

hidden variables = (z,...,2y,) to specify which OS produced each observatign

95

Note that the dataset of paiftx), 1), ..., (x),, z»)) is calledcomplete as opposed to

justx’, which isincomplete Then, thecomplete likelihood functiois given by

m

p(j: 210, @) = | [p(xjles, O)p(z;le)

1 j=1

p(x', 210, a) :=

I
— 3 s

s, P, 0). (5.6)

<.
Il
,_.

It is often more convenient to work with summations, in whaase the above is re-

placed with

log p(x’, 2[0,) = Y _(log s, + log p(x]|w, , 0))
=1

<
Il

n

NE

(log o + ¢ij) 1=, (5.7)

j=1 i=1

<
Il

wherec;; := log p(x’;|w;,) is a constant that can eventually be removed from optintrati
since it does not depend @n Now, the E-step takes the expectation of (5.7) with respect

to z, conditioned on the previous valueSand the available observations, producing

Q(ala) := E.[logp(x', 20, a)[x', 0, 0]

n

NE

(log e + ¢;5) E[1.,=ix', 0, a']

1 =1

<.
Il

(log a; + ¢ij) B; (5.8)

K

NE
M:

1=1

<.
Il
,_.

where

aip(x|ws, 6)
Bloi=pwilx, 0,a") = =5 i . 5.9
3= Pl 0,00 = o o B) 5.9)

96

The M-step maximizes (5.8) with respect to the unknown patanw and entails

solving

9Q(ala’)
e =0 (5.10)

n—1

Note that we can reduce the number of unknown variables usjng 1 — > """ o,

whichyieldsfort =1,2,...,n—1
m t t
Z(Q . ﬂ) — 0. (5.11)
Q; (679
Defininge = >, B;,;/an, we get

1 m
o =~ > 8. (5.12)
j=1

From normalizatior) " , o; = 1, it follows thatc must bern and that additionally

(5.12) applies ta = n. We therefore get (5.4). O

5.3.4 Discussion

We now address the question of whether (5.4) is sufficienaébireving good classifi-
cation on its own and how much of the accuracy depends on kupthie exact distortion
modeld. If the majority of the benefit is already obtained from resdng «, the extra
computational cost and modeling effort involved in estimgt may be unnecessary. For
discussion purposes, we use a set of toy databases thatsathgphe demonstration of the
intended effects. Note that the same conclusions applyrgedalatasets, but finding the
corresponding scenarios may be more time-consuming.

To accomplish this, we use the simulation setup describeBertion 3.4. For the

scenario we call;, there are four different cases for the distribution of foiveeverse

97

Case Forward latency One-way delay Loss
Distribution Mean| Distribution Mean

S11 || Erlang(2) 0.5 | Exp 0.5 | 0.038

S12 Pareto 0.5 | Pareto 05| 05

S13 || Reverseexp 1.5| Erlang(2) 05| 0.1

S14 || Pareto 0.1 | Uniform 0.1 0.5

Table 5.1: Network distortion in scenariq.

delays and packet-loss probability. These are shown ineTaldl and discussed in more
detail next.

The first row matches exactly the assumed paramétersiershel+. The second row
uses Pareto delays with mean 500 ms and 50% loss, emulaghty wolatile network
conditions. The next row uses a shiftexverse-exponentidbrward latency with CDF
e M272) defined for—oco < z < 2, which tests contrary-to-intuition examples where
larger delays are more likely than smaller. We emploey 2 and truncate this distribution
at zero, obtaining the average SYN delay of 1.5 sec. The st i the table exam-
ines smaller average delays than the assumed ndbisheHershel+, but couples it with
substantial loss.

Our first databas®, contains truncated signatures of Linux 3.2), Windows Server
2003 (v;), and Novell Netwareu(s). We retain the first two retransmission timeouts
(RTOs), remove all fixed header features, and obtain therfimigés in Figure 5.1(a). Note
that these Linux and Windows signatures are pretty closadb ether, albeit not identical;
however, they are quite different from Novell. The first #ndistortionsS;; — S;3 applied
to this database are illustrated in the remaining subfigureere we show 200 points per
plot and remove observations with lost packets.

Definep' to be the fraction of correct classifications for a given mdttiuring iteration
t, wheret = oo represents the convergence point of the underlying estinfasually 20-

40 iterations). If the method does not perform iteratiorty r is meaningful. We consider

98

10 T T 10
Bl e B aa5
o E E o s
[. 8 o--sha-p
ON ' ' ON =
= VT] = 4 X%x% :
@ X A |inux @ X ><X>>§%§(>%<>><< :% 4 Linux
P O O Windows 2= - Fadt e He -4 o Windows|
x Novell < Novell
0 : ‘ 0 : ‘
0 2 4 6 0 2 4 6
RTO 0 (sec) RTO 0 (sec)
(a) databas®, (b) caseSy;
T T
3 apto--ooenoo] 3 R
o~ AQO} 4 o o~ Ad 4 0O
(@ T S S oL o sl O gl T e
= - — -
14 A Linux 14 A Linux
© Windows| © Windows|
x| * Novell < Novell
4 6 0 2 4 6
RTO 0 (sec) RTO 0 (sec)
(c) caseSio (d) caseSis

Figure 5.1: Database and distorted observations.

three techniques — Hershel+, hard EM with multiple iteragicand soft EM in (5.4), all
using the same functiop(x’;|w;,) and starting from uniform popularity! = 1/n. Note

that the former two methods estimateising

1 m
O = 3 L ol 00 (5.13)
j=1
Results of this process witlh = 2'® observations are shown in Table 5.2. In the
first row, Hershel+ performs quite well, achievipf = 67%. Since Novell Netware is

an easy-to-separate signature from the other two, Hershebversy; pretty accurately;

99

however, it is utterly confused about the frequency of thepotwo stacks. Applying hard
EM increases accuracy, but full reconstructiomastill proves difficult. Application of
(5.4) solves this issue.

Swapping(ay, as), the second simulation in Table 5.2 shows that Hershel+seres
tially guessing between Linux and Windows, while hard EM isled into divergence,
where it drops accuracy from 48% to 6%. While (5.4) is immumelivergence in this
case, its estimate af suffers from non-negligible errors. The next two cases @t#ble
are even more difficult. They show that EM can be driven inferior states when the
assumed greatly deviates from that of the underlying network. Intfapplication of
(5.4) not only fails to obtain vectoks that resemble the true distribution, but also harms
performance of the system, i.% < p'.

It is interesting that hard-EM techniques, universallyduseprior work [7], [10], [73],
[120], [122], may generally be unsuitable for charactezihe fraction of hosts running
each OS, especially if is highly skewed. Additionally, EM iteration is meaningfuhly
whend is either known a-priori, or can be accurately extractedhftbe collected obser-

vations. We investigate the latter direction next.
5.4 Network Features
5.4.1 Distortion Model

Our goal in this subsection is to estimate unknown distarparameters inside
p(x}|wi, 0). Let featuresx; = (d;,u;) consist of network components (i.e., delay3
and user-modified header values (iie), Since our classification assumes that distortion

is applied to each subvector independently, it follows that

P |wi, 0) = p(d|ws,) p()|ws, 0,), (5.14)

100

Case| « Hershel+ | Hard EM | EMin (5.4) |
pl 041 poo a® poo a™®
S11 | 0.90(0.67 0.59/ 0.95 0.95| 0.95 0.89
0.05 0.35 0.00 0.06
0.05 0.06 0.05 0.05
Si1» | 0.05[0.48 0.45/ 0.06 0.98/ 0.89 0.11
0.90 0.41 0.00 0.82
0.05 0.12 0.02 0.07
Si13 | 0.90(0.45 0.37/0.09 0.01] 0.10 0.11
0.05 0.51 0.88 0.79
0.05 0.12 0.11 0.10
S | 0.3] 0.60 0.65/0.33 0.97/ 0.34 0.81
0.6 0.23 0.00 0.13
0.1 0.12 0.03 0.05

Table 5.2: Classification results .

d; d;, d;s server

O
(%)
—

client
SYN jll . j’2

Figure 5.2: Delay features.

wheref,, 0, are the network/user distortion models, respectively.heedchem contains
multiple PMFs (probability mass functions) that we elalb®ran below. Since in this
subsection we consider only the network component, we assuaty (1 |w;, 6,) = 1 for
alli, j, i.e., all observed user features are the same and thuserfeatch all fingerprints.
To understand the notation involved in expanding the firstioiain (5.14), we present

a re-illustration of RTOs in Figure 5.2, where a host withwaak signatured; generates

101

an observationd). Measurement begins with a random forward lateiigywhich has
some unknown distributioriy(7) = P(T; = 7). This includes the time needed for the
SYN packet to reach the server and for it to process the régéésng the return path,
one-way delay$A 1, Aj,, .. .) are iid random variables with another unknown distribution
fa(6) = P(Aj, =9). InpracticeT; andA;, are continuous variables, but it is convenient
to discretize them into small bins and directly work with P8F

Database feature vectots consist of departure timestamps from the server, where
dy = 0 for all 7. Note thatd; ., — d;, is ther-th retransmission timeout (RTO) of the
stack, which is what we considered in Hershel. However He#sbwitched to usage of
absolute timestamps, as it identified these as having certain modeling advantages
independence between delays after conditioningd’gnand we retain this approach. To
handle packet loss, assume thatis a random vector that maps the received packets in
observationj to their order on the server, i.ey;(r) = k means that the-th received
packet was originally in positioh. In Figure 5.2, for example, we have = (1, 3). Then,
if the j-th observation comes from a system with fingerpxintit follows that

d;, :Tj+dgm(r)+Aﬁ, r=1,2,...,|d}]. (5.15)

As in our earlier sections, we keep the assumption of no ezorg due to the large

spacing between the packets (often several seconds), whigles;(r + 1) > ~;(r).

Letting I'(7, j) be the set of all monotonic loss vectors that start With packets and

102

finish with |d}|,

p(dj|wi, 04) = ZfT p(dj|wi, 7, 64)

—ZfT S (w77, 00)
~v€T'(4,5)
|df]

=> fr(r) Y HfA — 7 —di), (5.16)

vET'(i,5)

wherep; () is the probability to observe loss pattermnder|d;| transmitted packets. To
avoid clutter, we omit here the formulas for handling randsignaturesi; in Hershel+,
which require an extra summation over all possible sub-G®esnormalization by the
corresponding weights, but keep this functionality in tleele. For lack of a better as-
sumption, Hershel+ uses binomjal~), Erlang(2)f+(7), and exponentiafa (), all with
some fixed parameters. Singeencapsulates the set of these distributions, our next goal

is to recover them using EM iteration.
5.4.2 Intuition

We start with a heuristic explanation of the proposed upttataulas, which is fol-
lowed by a more rigorous treatment. Recall tfigtr) is an estimate o (7; =) during
iterationt. Then, one obvious approach is to set this value to the aggpagpability
that each observationhas experienced a forward latencyconditioned on the previous

estimates of unknown parameters, i.e.,
1 m
7)== P(T; = 7|d;, 0, o). (5.17)

Jj=1

Next, each database signature witbriginal packets admit®* —1 unique loss patterns

v, Wwherek goes as high as,,., = 21. Estimating the probability;(~) for each possi-

103

ble option~ is likely to produce too many unknown variables in (5.3) aead to poor
convergence of EM. Instead, suppose tha(@llpatterns of losing packets out of: are
equally likely and define the probability of this event toh€’), wherek = 1,2, ... k-
The resulting reduction in the number of unknown varialdesignificant — from roughly
QFmaztl — AM 10 jUSt Kpag (kmaz — 1)/2 = 210. Despite its simplicity, the framework
of usingq,(¢) allows quite a bit more general scenarios than the traditina Bernoulli
model we used in Section 3 and 4.

To update distribution, (¢), our approach involves computing the probability that ob-
servations experienced lossiqfackets out ok transmitted, normalized by the probability
that the original host serit packets in the first place. To express this mathematicadly, d

fineY; to be the number of SYN-ACKSs originated by the host in obssong/. Then, we

get
]i_;’_l(g) Z] 1P(k|9)1|d9‘:k’—é7 (5.18)
> o P(Yj = k|0g, ') 1jay <k
from which the estimated probability of patteyrcan be expressed as
G, (Idi] = 7))
pi(7) = = (5.19)

|d.|
(1])
Finally, updates to PMF (9) involve computing the probability that one-way delay of

each received packet equalsnormalized by the total number of packets collected during

the scan, i.e.,

|dj]

t+1 E 128 IP(j5:6|d979§l?at)

A (0) = ST (5.20)

104

5.4.3 Analysis

To make the framework outlined above usable, our next tas éxpand it into an

explicit recurrence using the distributions containedjin.e., (f%, f4,q.). Let

Oijryr = iy — T = di () (5.21)

be the one-way delag ;, conditioned oril; = 7, loss patterny, signaturev;, and obser-

vationj. For brevity of notation, suppose refers to five nested summations, where

1JTYS
i goes from 1 to, 5 rolls from 1 to m, 7 moves over all bins of the PMF(7), y iterates
over all monotonic loss vectors If(i, j), ands travels from 1 tgd’|. If some of the vari-
ables are absent from the subscript, the corresponding atem@mitted from the result.

With this in mind, define

|
pij’Y = Oéff%(T)pf(’y) H fi(éijT“ﬂ')7 (522)
r=1
o
Hiry = (Wi, T, y]d), 05,) = = — (5.23)

= i
Zi’r*y pijT’y
and consider the next result.

Theorem 6. Under network distortion, estimato(5.4), (5.17) (5.18) and(5.20)can be

105

written as

of"t = Z Bijrry (5.24)
JTy
NG Zﬁmw (5.25)
ijy
Z“ 5t 1|d’_|:]9_g Id,-\:k
t igry Pigry~ld; |di
g (l) = (5.26)
’ Zijm 52¢j771\d§\éld¢|=k
Zi"r s it"r 16ij7’y5:6
fa(d) = = (5.27)

225 |dj|

Proof. We start with the recurrence @en Keeping distortion limited to network features,

(5.4) becomes

b i op(dj|wi,)
b oma p(djlogef)

Jj=1

With the help of (5.16), we get

|
d/|w279d ZfT pz HfA zgr’yr (528)
which leads to
p(d) |w;, 0) = Z Dijrr (5.29)

and, leveraging (5.2) for the denominator of (5.28),

ot = Z 2oy Piry 1 S Bl (5.30)

Zu—y ngr’y Ty

106

Moving on to the forward latency, notice that (5.17) becomes

1y = L PTG (i)
T P(d]6, o)

J=1

_ li > oip(df|ws, 7, 05) f1(7)
m = p(dj]65, o)

.
_ % 3 Zvipgv =3 (5.31)

j=1 Eiﬂ"y pij’r’y ijy

Next, the probability that the host in observatipsentk packets is

P(Y; —]{j‘@ﬁl,()ét = Zp Wi|d;7‘9§l7at)1|di‘:k

d |w2,¢9d,04)1|d| —k
Z (6o . (5.32)

Using this, the numerator of (5.18) expands to

zm: i aip(dflwi, Og, o) Ljar =k ja; 1=k
p(d}|05, at)

Jj=1

=X Bijry iy =k—t,|ds|=k- (5.33)

1Ty
Applying the same logic to the denominator of (5.18), we §e2§). Finally, updates
to one-way delay admit the following interpretation
Zi’r*y png’Yl(sijT'ys:&
p(dj|05, o)
= Z 5ij’r’y]-5ij.msz67 (534)

LTy

P(Ajs = 6]d}, 05, a') =

which is a sum of match probabilities over all signaturesyérd latencies, and loss pat-

terns that result in one-way delayn the s-th received packet. Adding the two summations

107

overj, s and dividing by the total number of observed packets, we®27|. O

While the result of Theorem 6 may appear daunting due to thebeu of nested sum-
mations, its implementation in practice can be done witteligxtra overhead compared
to Hershel+. Specifically, usage of (5.16) in (5.1) foriall already requires five nested
loops. In the inner-most loop of that algorithm, (5.27) adds increment to a hash ta-
ble that maintains the PMF of one-way delay. Updates in (5(246) are performed
much less frequently and, in comparison, consume negéiginputation time. The only
caveat is that Hershel+ can be optimized to remove the outemation in (5.16) when
fris Erlang(2) andfA is exponential, as we described in Section 4.6.2. This ambr,con
the other hand, requires a hash-table lookup for both bigians. This makes its single

iteration similar in speed to unoptimized Hershel+.
Theorem 7. Iteration (5.24)(5.27)is the EM algorithm for recoverinf,, «).

Proof. AssumeH,; = (z;,1j,7;) are the hidden variables that specify for observation
j its true OS, forward latency, and loss pattern, respegtivéiurther supposé! =
(Hy,...,H,,) is the collection of hidden variables for the entire measw@et. Then,

the complete likelihood function is given by

p(d', H|ba, @) == [[p(d}, H|0a,)
7j=1
= [p(d|H;. 04,)p(H;|0a,), (5.35)
7j=1
where
||
p(d;»\[-[j, Oa,) = H fA(d;'r — T —dz; ;) (5.36)
r=1
p(H;|04,) = az, fr(Tj)p=; (75)- (5.37)

108

Define
||

Pijry = i fr(T HfA — 7 —dipm)- (5.38)

Following the proof of Theorem 5, the log-likelihood exparid

logp(d', H|04, @) ==Y _log(p, j.1,.,)

= Z Z log(pij’r’y)1Zj=i,Tj=7'7'yj:’y- (539)

j=1 iry

The expected log-likelihood function is then given by

Q(edv awfiv at) = Z log(pijT’y)p(wiv T, 7|d;'7 927 O‘t)

Ty

= Z log(pijfr’y)ﬁfjrv‘ (540)

Ty

Taking partial derivatives with respectdgand fr(7), we get a set of equations similar
to (5.10)-(5.11). Their solution is trivially given by (312(5.25). A more interesting case

is the loss PMF. Using substitution

gk =1)=1= a(0), (5.41)

in (5.40), we getfor = 0,1, ...,k — 2 that

9Q(0a, |0y, 0") > Lias | =k—eldil=k
01 (£) a0/ T

1\d’| 1|d\ k
- Z . (5.42)

LTy

109

Case| p!' | p™ a™

S || 0.67| 0.95] 0.90, 0.05, 0.05
S12 || 0.48| 0.91 0.05, 0.90, 0.05
S1z || 0.45] 0.95| 0.90, 0.05, 0.05
S14 || 0.60| 0.85| 0.30, 0.60, 0.10

Table 5.3: Classification results of network EMIIR.

Settingc to be the second summation in (5.42) and equating the deevatzero, we

get

1 k
qe(0) = p Z Liar|=k—e,|di|=k <€) ﬁfjm- (5.43)

Ty

Since the PMF;, must add up td, it follows that

k—1 k ¢
c= Z Z 1‘d3\:k_£,\di|:k / 5ijT’Y

0=0 ijry

k
Ty
Using this in (5.43) and canceling) yields (5.26). Note that derivation of (5.27) is

very similar. We omit it for brevity. O

5.4.4 Discussion

We revisit earlier simulations on dataget, run (5.24)-(5.27) over the same input, and
show the resultin Table 5.3. Compared to Table 5.2, the e@fM estimator significantly
improves the accuracy of classification and veetpespecially in the bottom two rows.
Note thatS;, and.S;4 contain 43% of the observations with just one packet, iexq RTOs.

In methods that rely on RTO, these samples would be eitheartled as impossible to

classify or assigned to a uniformly random signature. Intiast, (5.24)-(5.27) manages

110

0.08

0.06
LL
=0.04
o

0.02

T T T T
' '|—actual
------ 1------a-------r| O estimated|
Moo]
0 0.2 0.4 0.6 0.8 1
seconds

Recalling (5.15), wherg); + A, are always measured together, it may not be obvious

—actual
o estimated

seconds
(a) reverse exgr (caseS:3)

(c) Paretofr (caseSi4)

T T T
i . |—actual
o estimated

seconds
(b) Erlang(2)fa (caseS;3)

—actual
o estimated|

0.5 1
seconds
(d) uniform fa (caseSi4)

Figure 5.3: Recovery of delay parameterdin

111

to do much better because it learns distributiofis fa, «) and makes the best decision
possible under these difficult conditions. The accuracystifreated delay distributions is
shown in Figure 5.3. With the exception of noise at the poarftdiscontinuity of each

density, functiong2°, f° match the true parameters quite well.

howT" can be separated fros and why the result in Figure 5.3 is possible. Indeed, this
is reminiscent of the classical deconvolution problemegiwbservation$ X; + Y;}7 ,
whereX; ~ Fx(z) andY; ~ Fy (z) are iid, determine the individual distributiof%;, Fy-.

Deconvolution is generally unsolvable unless eithgror Fy is known ahead of time.

Case| Delay fr, fa qs qa

So1 || Same a$Ho BinT(3, 0.3) BinT(4, 0.3)
Soo || Same a®H3 BinT(3, 0.7) BinT(4, 0.7)
Sos || Same aHo BinT(3, 0.1) BinT(4, 0.8)
Soq4 || Same a2 | RevBin(3, 0.1)| RevBin(4, 0.1)

Table 5.4: Network parameters of scenasio

While our problem is similar, there is a crucial differenc&M can see the same value
T}; coupled with multiple instances @;,, forr = 1,2, ..., |d}|. Aslong asgi(k — 1) <

1 (i.e., packet loss leaves at least two packets in enoughmaigms) andn — oo,
deconvolution is possible in our setting, but up to a locasbift, i.e., one of the estimated
distributions may be shifted left by a constant and the otigét by the same amount. If
we know that one of them starts at zero, it is possible to deter the shift after the fact.
Furthermore, if both estimated densitig¥, f° already begin at zero, no correction is
needed. This is the case in Figure 5.3 and later in our Inteasa.

Since all signatures i; had three packets, it was easy to figure out the number of
them lostin eackl’;, which led tog;° being perfectly accurate, regardless of whether (5.26)
was used or not. In a more interesting database, which welgalLinux is augmented
with a fourth packet that follows after a 3-second RTO. Toezkpent with different loss
patterns, define Bin(k, p) to be a binomial distribution truncated to the range: — 1].
Since the loss of alk packets cannot be observed, we avoid generating this cake in
simulator. Additionally, suppose RevBin p) is thereverse binomial distributiothat has
the following property: ifX ~ BinT(k,p) andY = k — 1 — X, thenY ~ RevBin(k, p).
With this in mind, consider scenaris, in Table 5.4. The first two rows have iid loss at
30% and 70%, respectively. The next case applies 10% losgriatares with 3 packets
(i.e., Windows, Novell) and 80% loss to those with 4 (i.enux). The final row uses

reverse-binomial loss for all;.

112

Case| « Hershel+ | EM o, fr, fa | fUlEM |
pl Oél poo a® poo a®

S | 0.90| 0.76 0.68/ 0.70 0.63 | 0.91 0.90
0.05 0.25 0.31 0.05
0.05 0.07 0.05 0.05

S99 | 0.90(0.42 0.33] 0.14 0.10 | 0.92 0.90
0.05 0.38 0.88 0.05
0.05 0.29 0.02 0.05

So3 | 0.90(| 0.45 0.34| 0.13 0.06 | 0.97 0.90
0.05 0.47 0.84 0.05
0.05 0.19 0.10 0.05

Sos |1 0.90(| 0.45 0.36/ 0.10 0.06 | 0.90 0.90
0.05 0.46 0.90 0.05
0.05 0.18 0.04 0.05

Table 5.5: Classification results .

Table 5.5 shows classification results for three methods rshéét, the partial EM
framework without loss updates (5.26), and the full aldgoritirom Theorem 6. Not sur-
prisingly, Hershel+ again struggles to recowereven when its classification accuracy is
pretty high. Omission of (5.26) does create challenges &otigd EM, where in all four
cases it produces worse results than Hershel+. On the atinel; the full algorithm im-
proves accuracy and delivers the exaatespite complex underlying network conditions.
The corresponding distributiong® are shown in Table 5.6. They all match ground-truth
g, With high precision.

Besides aiding fingerprinting, ability of EM to estimatee-waydistributions of delay
and loss (conditioned on at least one packet surviving) npeyap interesting angles to
Internet measurement and help with end-to-end samplingeskt parameters in scenarios

that do not have a suitable infrastructure of cooperatingivers.

113

Case| Vector k=3 k=4

So1 qk (0.35, 0.45, 0.19) (0.24, 0.41, 0.27, 0.08)
qp° (0.35, 0.45, 0.19) (0.24, 0.41, 0.27, 0.08)
S99 qr (0.04, 0.29, 0.67) (0.01, 0.10, 0.35, 0.54)
qp° (0.04, 0.29, 0.67) (0.01, 0.10, 0.35, 0.54)
S93 qk (0.73, 0.24, 0.03) (0.00, 0.04, 0.26, 0.69)
qp° (0.73, 0.24, 0.03) (0.00, 0.04, 0.26, 0.69)
So4 qr (0.03, 0.24, 0.73) (0.00, 0.05, 0.29, 0.66)
qp° (0.03, 0.24, 0.73) (0.00, 0.05, 0.29, 0.66)

Table 5.6: Recovery of loss PMFs in,.

5.5 User Features
5.5.1 Distortion Model

Our goal in this subsection is to expand the second factob.itdj and develop an
estimator for its distortion model. This is done in isolatioom the network features, i.e.,
usingp(d}|w;, 0s) = 1 for all 4, 7. Assumeb > 1 user features, where each observation
j provides a constant-length vectaf = (v}, ..., u},). These include the TCP window
size, IP TTL (Time to Live), IP DF (Do Not Fragment flag), TCP BIfvlaximum Seg-
ment Size), and TCP options, for a totabof 5 integer-valued fields. Since RST features
depend on network loss, we delay their discussion until #ad subsection. Note that
each field may be allocated a different number of bits and timeber of available options
a, for v}, may depend on.

Modification to user features, which we model with a set ofridbationsd,, can be
accomplished by manually changing default OS parametegs, (@diting the registry),
using specialized performance-tuning software, reqgugsérger/smaller receiver kernel
buffers while waiting on sockets (i.e., usisgt sockopt), and deploying network/host
scrubbers [20], [84], [90], [101], [115] whose purpose i®bduscate the OS of protected

machines. Besides intentional feature modification, distof, may also accommodate

114

unknown network stacks that build upon a documented OS Hautge some of its features
(e.g., new versions of embedded Linux customized to a peaticlevice).

Prior work in OS fingerprinting is mostly rule-based, and tniormally modeling
user volatility entirely [7], [73], [120], [122]. In Hershewe introduced a model which
assumed that;, can stay the same with some probabitityand change to another integer
with probability1 — 7,,. While this approach works well in certain cases, it hastiatons.
Besides the fact that, is generally unknown, binary decision-making fails to teea
distribution over the available choices. For example= 0.9 assumes thagachof the
65,534 non-default window sizes may occur with probab@ity. Instead, a more balanced
approach would be to assume a uniform distribution over th®dion possibilities and
assign them probabilityl — «,)/(a, — 1). Second, it is likely that certain devices are
modified less frequently than others (e.g., due to firmwastictions in printers) and in-
dividual distortions are OS-specific, which implies thashould depend on Finally, the
existing methods have no way of tracking the location andbglodity mass of distortion,
which does not have to be uniform in practice (e.g., nonwefaindow size 57 bytes is
less likely than 64K).

To overcome these problems, assume thdt,) is the probability that feature of OS
1 is modified to become, which gives rise to a set oft distributions that comprises our

user-distortion modél,,. Then, the proposed classifier can be summarized by

p(u s, 0,) wa o) (5.45)

where modification to features is assumed to be independiie that doing otherwise
does not appear tractable at this point (i.e., estimatimoweériance matrices produces too

many variables for EM to handle).

115

5.5.2 lteration

We begin by discussing under what conditions the probletestifiable, despite hav-
ing a large number of unknown distributions. Assume := m;,(u;,) iS the probability
with which featurev stays the same for OS Because we do not know ahead of time the
reasoning of the user for changing the features or the newesalf modified fields, the
estimation problem for;, is unsolvable unless enough of the probability mass renains
the original location, i.e.¢;, is above some threshold. From common sense, it is likely
that¢;, > 0.5 holds among the general population of Internet hosts; hew&M con-
verges under even weaker conditions — as long;as the largest value in each PM;,.
Coupling this with an initial state that satisfies the samest@int leads to discovery of a
unique solution in (5.3).

We define the estimator for user distortion as the probglidiobserve; in featurev

across all matches against @%.e.,

o E;nzl p(wi|u;> efm O‘t)lu;u:y

Tt (y) = - (5.46)
W) = S e B,)
To simplify this expression, define
b
pl; == alp(ulwi, 0, a") = of [[=l (u),), (5.47)
v=1
o
t / t t v
ij ::p(wi|u'79u7a) = n . (548)
’ ’ i Pl

The next result follows from substitution of (5.47)-(5.48)o (5.4) and (5.46), as well

as earlier proofs of Theorems 5 and 6.

116

(OX) Wwin TTL DF OPT MSS

Linux 5792 64 1 MSTNW 1,460
Windows || 16,384 128 0 MNWNNTNNS 1,380
Novell 6,144 128 1 MNWSNN 1,460

Table 5.7: User features of databd3e

Theorem 8. Under user distortion, estimato(s.4) and (5.46)can be written as

1 m
aftt=—% B (5.49)
j=1
Zm:1 ﬁf'lu’,. =Y
T (y) = = ma;; . (5.50)

)

Furthermore, this is the EM algorithm for recoverii,, «).

5.5.3 Discussion

To evaluate the result of Theorem 8, we construct a new ds¢dbg shown in Table
5.7, by switching from RTOs to user features (in the OPT gtrivi stands for MSS, N for
NOP, S for SACK, T for timestamp, and W for window scale). Ntitat this Windows
signature ties Novell in TTL, while Linux does the same in DlaMSS. For simplicity
of presentation, we use simulation scenarios with = ¢, for all i, where¢, is the
probability with which feature stays at the default value. This replaces matgjxwith a
vectorg,, which is easier to follow across the different tables.

The initial PMFs7) of EM are set up to include 90% of the mass on the default
value and split the remainder uniformly across the vialteraatives. Since the order of
non-NOP options cannot be changed without rewriting the TCBtack of the OS, we
initialize =¥, to allow only candidates compatible with the origidal. For example, MST
is feasible for Linux, but not the other two signatures inl&ah7. Note that any single

option (M, S, W) and the empty set are valid for all three OSes.

117

Vector| Win TTL DF OPT MSS
u/ 5793 128 O M 1,461
ul 16,386 32 1 M 1,382
uff 6,147 64 0 M 1,463

Table 5.8: Patched user features.

We use two models for generating the alternatives for eatth fidne first one, which
we call RAND, picks uniformly from the space of possible \edwbserved in our Internet
scan, except OPT is limited to compatible subsets/sumeo$éhe original. We have 5695
candidates for Win, four for TTL, two for DF, 266 for OPT, and8R for MSS. Decisions
are made independently for each featurand each observatiofny which models users
"tweaking" their OS without coordinating with each othesbaring a common objective.
Even though RAND can generate 13.1 billion unique combametir’;, only a small subset
is encountered by the classifier in our examples below.

The second model, which we call PATCH, selects an altereatctor of features
for each OSu; and switches the individual;, to u; with probability ¢,, again indepen-
dently for eachv. This represents deployment of software patches that ehang of the
features to an updated value. The probability for a hostéawsltiple patches is the prod-
uct of correspondingl — ¢,)’s. For example, modification to both Win and OPT affects
(1 — ¢1)(1 — ¢,4) fraction of hosts. Vectora; are non-adversarial and do not attempt to
confuse the classifier. We construct them by flipping the D, fktting OPT to M, and
addingi to all remaining fields (modulo the maximum field value). Tasult is presented
in Table 5.8.

Our next scenari®; is detailed in Table 5.9 and the corresponding outcome iteTab
5.10. Due to the differences in treatment of non-defaultuies, Hershel+ is slightly
inferior to the first iteration of EM. However, both are muchnae than the last iteration.

It should be noted that the second c&se modifies Win, TTL, and MSS in 100% of the

118

Case| Model | Feature stay prob, Popularitya
Ss1 | RAND | (0.3, 0.2, 0.5, 0.4, 0.4) (0.90, 0.05, 0.05)
Ss2 | RAND | (0.0, 0.0, 0.1, 0.2, 0.0) (0.90, 0.05, 0.05)
Ss3 | PATCH | (0.2,0.2,0.2,0.2,0.2) (0.7,0.2,0.1)

Table 5.9: Parameters of scenasip

Case| Hershel+ EM

' pt | p™

Ss1 0.76 0.79| 0.96
S32 0.29 0.32| 0.91
S33 0.31 050 1

Table 5.10: Classification results ipy.

samples. Identifiability in such conditions is helped byftat that OPT is constrained to a
subset of the original string, which makes a certain fractibrandomly generated values
feasible for only one OS. This allows EM to learn to ignore fWI'TL, MSS) and focus
decisions on (DF, OPT). Furthermore, when guessing iswadhlEM uses its knowledge

of « to correctly pick the most-likely OS. It is also interestitigat S35 is classified with
100% accuracy once EM gets a grasp on the new values in Tabén8.their probability

of occurrence.

To estimate vecton! in the classifier, we use a weighted average of feature non-

modification across all OSes, i.e, = Y " al¢!,. The result, together with the final

estimate oty, is shown in Table 5.11. Both are an excellent match to thapaters of the

simulation.
5.6 Complete System
5.6.1 Reset Packets
Because loss of RST packets causes the corresponding ataete(i.e., ACK/RST

flags, ACK sequence number, window size) to be wiped outetisedlependency between

119

Case a™ (0

S31 | (0.90, 0.05, 0.05) (0.30, 0.20, 0.50, 0.40, 0.40)
S32 | (0.90, 0.05, 0.05) (0.00, 0.00, 0.10, 0.20, 0.00)
Sss | (0.70, 0.20, 0.10) (0.20, 0.20, 0.20, 0.20, 0.20)

Table 5.11: Recovery af andg, in Ds.

RST present Action Multiplier ¢
d; | d;

yes | yes - 7T;'t,lwrl(u;‘,bﬂ)
yes | no ignore RST ind;. ; bJrl(u;.J,Jrl
no yes — 1

no no — 1

Table 5.12: Handling of RST packets.

distortion applied by the network and the user. As a reshil$, ¢ase should be handled
separately. The first modification needed is to increaseeihgth of network vectord;
andd’; to accommodate the RST timestamp. The second change isoia iRET header
values into user features. Since RST fields are unmodifiabliependently of each other
, they can be combined into a single integer and appendedetovestorsu; and u’ in
positionb + 1.

There are four possible scenarios for handling RST pacKéisy are shown in Table
5.12, each with a certain probabiligy; that must be factored into the formulas developed
earlier. When both the observation and candidate signatntin a RST, the only mul-
tiplier needed is the probability that the received featuegches that of the original OS.
If the sampled OS has a RST, but the signature does not, tisabes a possible injec-
tion from an intermediate device (e.g., IDS after expiriogmection state, scrubbers). In
this case, it is likely meaningless to use the temporal chariatics of the RST, which
is why we omit it fromd’; before computing the loss and delay probabilities. However

multiplication by}, (u;,+1) is still warranted since we must assign proper weights to

120

this mismatch. The third row of the table corresponds to eatibss, which is handled
automatically inpl(~), i.e., no additional actions or multipliers are needed.afynthe

last row is identical to the setup assumed earlier.
5.6.2 Final Model

We now combine the developed network, user, and RST modelsiringle frame-

work. First, redefine (5.22) as

|dj]

ngr'y = CZ] H 7Tw jU fT pz H fA ZJT“/T (551)

This allows us to compu still via (5.23), as well as reuse (5.24)-(5.27); however,

ZJT"/

(5.50) requires an update to

Z] 1 sz—yZT'y 1Ty

t+1)

T (y) =

(5.52)

wherev = 1,2,...,b+ 1. The final classifier, which we cafaulds is applied after EM

has converged and is given by
p(wi|X;'79007 OO Zﬂz]fw (553)

It is fairly straightforward to generalize our earlier résuo cover the complete model.

We thus present the next theorem without proof.

Theorem 9. Under both network and user distortion, estimat{ét23)(5.27) (5.51)
(5.52)is the EM algorithm for(9, «).

121

5.6.3 Scaling the Database

Due to the large number of features it combines, Faulds ismaltenged by the pre-
vious toy databases. We therefore switch to a more reafistiof signatures — our Plata
database. To keep continuity in the notation, we call thialokeseD, and note that it con-
tains 420 stacks, among which some have the same exact RT® &ad others overlap in
all user features. We constructed this database to ensureéghatuses were sufficiently
unique under delay distortion, but packet loss and user fications were not taken into
account. As a result, the database contains a number oé&tiiat would be difficult to
distinguish under the types of heavy distortion considénetthis section. Nevertheless,
these tests should indicate how well Faulds scales to lal@@bases and whether its re-
covery of the unknown parametefs, 0) is affected by an increased uncertainty during
the match.

We set popularityy to the Zipf distribution with shape parameter 1.2 and cardin
usingm = 2'® observations, which gives us 64K samples from the most cam@®and
just 49 from the least. We borrow the delay from cage(i.e., reverse exponential with
mean 1.5 sec, Erlang(2) with mean 0.5) and packet loss frash, (i.e., reverse-binomial
with probability 0.1). Finally, we use RAND with stay probbty ¢, = 0.8 for all v.

The first iteration of Faulds produces a respectable- 0.42. This is gradually im-
proved with each step, until convergence to a more impregSiv= 0.70. To make sense
out of >, we sort all signatures in rank order from the most populdahédeast and plot
the result in Figure 5.4(a). This is a strong match in the16f; while the random noise
in the tail is explained by the scarcity of these OSes in theeplation (i.e., below 250
samples each). For comparison, the outcome of Hershelsjdagied in part (b). Next,
subfigures (c)-(d) show estimatesfgfand fo. Despite an overall 30% classification mis-

match, these PMFs are no worse than previously observedjimd=b.3, which indicates

122

=
(@]
o

—actual —actual

o estimated

o estimated

=
=
SN

fraction of samples
)
N

O] R EESRE——.
10
10° 10t 102
rank of OS rank of OS
(a) Fauldsxy (b) Hershel+
0.08 T 0.06 T
—actual —actual
0.06 e estimated o estimated
' O s Bt St
LL LL
= 0.04 [------mmrome e =
o o
' 0.02]------fgt--mmmmmboomme oo
0.02 A Rt
0 : 0 D
0 4
seconds seconds
(c) Fauldsfr (d) Fauldsfa

Figure 5.4: Results ib,.

that incorrect decisions overwhelmingly went to signasuséth similar RTO vectors as
the true OS.

Instead of scrutinizing 21 different loss PMFs, suppose arefute a single metric —
the fraction of packets dropped within the entire obseoveti, conditioned on at least

one packet surviving. To this end, define during step

k—1
Ly =) lgi(0) (5.54)
(=1
to be the average number of lost replies in signaturesithckets. Then, taking the ratio

123

of all dropped packets to the total transmitted yields thgeeted loss rate

oo i a§L|tdi\
o Yol

)

(5.55)

Recall that the simulation allowed packet loss to affect asth — 1 packets in an OS
with |d;| = k. Therefore, its ground-truth packet loss should reprefensame quantity
as (5.55). Traces show th#i.1% of the packets were dropped, which matches quite well
againstys,. = 69.3%.

Sinceg, = 0.8 was a constant in this simulation, it makes sense to compagainst

feature-modification estimates averaged across all fieldsath OSes, i.e.,

b+1 n

. 1 . 1 b+1 .
Blo) = 577 Z =701 ij ; 010 (5.56)

Results show thak'[¢;°] = 0.802, which is again very close to the actual value. While
there is some variation in individual,, it is of little concern due to the small number of

samples seen by Faulds from these OSes.
5.6.4 Unknown Signatures

We recognize that having a database that knows all devicdbeointernet is near
impossible. Therefore, infiltration of samples from unkmasignatures inte’, which we
call injections is inevitable in practice. Understanding the impact oktheases is our
next topic.

Suppose’; is produced by some unknown @S&hat does not belong to the database.
If x/; is so different from the known signatures thak’|0*, o') = 0, i.e., it matches each
OS with probability 0, its injection into the observationlv@ontribute nothing to updates
of (af,6") and thus will have no impact on classification decisions. roleoto achieve

a flat-out mismatch of this type, either delay., must be negative for atl, 7,y or the

124

New size Injected ot | p | p, | Elo]
378 (90%) 7,089 (2.8%)| 0.88| 0.91] 0.10| 0.80
336 (80%)| 49,648 (19.0%) 0.87 | 0.89| 0.11 | 0.74
294 (70%)| 60,058 (22.9%) 0.87 | 0.89| 0.11| 0.73
210 (50%)| 91,408 (34.9%) 0.91| 0.91| 0.11| 0.72
126 (30%)| 189,293 (72.2%) 0.95| 0.93| 0.17 | 0.60

Table 5.13: Injection classification summary.

product in (5.51) must be smaller than the precision of fltmgpoint arithmetic.

For injections withp(x[0*, ') > 0 the situation is less clear-cut. In some cases,
may be close to an existing signaturg which makes injections minimally different from
distorted instances of;. As a result, they do not negatively impact EM or its convamge
point. On the other hand, itis also possible thaits a potential match to multiple unrelated
OSes and the amount of distortion needed to make them appearsamuch greater than
the underlying. If the volume of injections is high, how likely is EM to taitiie PMFs
wt, of multiple OSes and introduce bias into distributions ofagi#oss to the point of
impacting classification accuracy foon-injectedsamples?

We do not consider encountering of adversarial injectiares, (special signatures
crafted to cause maximum harm for a given database andfeast be likely in practice
and instead focus on evaluating the effect of random subs®ival fromD,. Specifically,
assume the simulator produces distorted observationg alid20 network stacks; how-
ever, Faulds has access to only some of the original sigggt&or the next simulation, we
use Paretg; and fA, both with mean 0.1 seconds, iid packet loss at 10%¢and 0.8.

Define p! to be the classification accuracy among non-injected oksiens during
stept and consider Table 5.13, which shows the shrunk databasensimber of injected
samples among: = 2!® observations, and the output of Faulds. The result showis tha
removal of signatures does not carry a significant negath@act on accuracy of clas-

sification for the known OSes. In fact. slightly rises as the database shrinks since it

125

05 T T T I 05 T T T I
|| —actual '|—actual
______ 3------a-------rl O estimated|; Af--mmomross---a-------r O estimated|

__

--

I I
i I |
000000000

o

1 & 0 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
seconds seconds

@ fr (b) fa

Figure 5.5: Recovered delay under 72% injection.

becomes easier to classify among fewer options. Packepfssalso appears immune,
except in the last row where 72% =f contains observations from unknown OSes. This
loss of accuracy is explained by matches that now require packet loss to be feasible.
Finally, the feature-stay probability in the last colummhie most affected, which was also
expected due to the increased header-field mismatch.

Figure 5.5 shows the two delay PMFs estimated by Faulds idagterow of Table
5.13. Recovery is quite good, except for a slight bumg inbetween 200 and 400 ms.
This shows that removing 70% of the signature®iystill leaves enough unique RTO vec-
tors to produce highly accurate results. In the actual iatiethowever, we do not expect
injection conditions to be anywhere near these levels lsday contains an array of ma-
jor network stacks (e.g., Windows, Unix), printer firmwaeeq(., HP, Lexmark, Brother),

Cisco equipment, and various derivative implementatibastun on embedded devices.

126

5.7 Internet Measurement
5.7.1 Overview

To experiment with Faulds, we conducted a port-80 SYN scaallGP-reachable
IPv4 addresses on the Internet in December 2016. Of the P8Bdntacted, we gathered
responses from 67.6M hosts (compared to 66.4M in our prevscan, the Internet web-
server population appears to have reached saturationgarde-scale classification, such
as the one attempted here, Faulds produces a huge volummwhation in the form of
various PMFs and estimates. Due to limited space, we presént brief review of the
obtained results and leave more detailed analysis (inotuaitempts to uncover injections
and correct for them) for future work. We start with veatgithen examine parameters of

network distortiord,;, and finish with those of user modificatiér).
5.7.2 Classification Results

Define classification to be successful for sampiethe denominator of (5.1) is non-
zero, i.e.,p(x;|0", ') > 0. Using the Hershel+ database, Faulds successfully clegsifi
63.5M hosts (i.e., 94%). From a pure statistical point otwitne remaining 4.1M devices
should be assigned to the OS with the highest But it is also likely these cases come
from unknown stacks or observations with too much packet, ioswhich case excluding
them from classification might be prudent as well, which isapproach below.

The left side of Table 5.14 shows the top ten OSes after oraie of Faulds. As the
database of Hershel+ is auto-generated and does not cdimigranular details about
individual OS versions, many signature names appear sirhibavever, these often corre-
spond to different kernel versions and/or physical deviddse dominance of Linux and
embedded devices in Table 5.14 matches the statistics weé fawur previous studies in
Section 3 and Section 4; however, a more interesting restiieiamount of change occur-

ring in the classification as Faulds goes through its itenati The right side of Table 5.14

127

8¢T

oS al Count

Ubuntu / Redhat / CentOS | 0.227 | 14,662,315
Ubuntu / Redhat / SUSE 0.108| 8,388,020
Windows 7 /8/2008/2012| 0.048| 2,938,499
Embedded Linux 0.033| 2,401,181
Ubuntu / Debian / Embedded0.028 | 1,848,388
Embedded Linux 0.025| 1,672,805
Ubuntu / Redhat / Sci. Linux 0.019| 1,320,081
Windows XP /2003 0.018| 1,190,617
3Com Routers 0.015| 1,013,943
Cisco Embedded 0.013 991,881

oS al? Count | Change
Ubuntu / Redhat / CentOS 0.226 | 14,639,486 —0.002
Ubuntu / Redhat / SUSE 0.102| 6,669,700, —0.20
Embedded Linux 0.067| 4,384,225 0.82
Windows 7 /8/2008 /2012 0.045| 2,948,567, 0.003
Cisco Embedded 0.022| 1,497,269 0.51
Ubuntu / Redhat / Sci. Linux | 0.018| 1,148,008 —0.13
3Com Routers 0.018| 1,128,655 0.11
Embedded Linux 0.017| 1,057,361, —-0.37
Dell Laser / Xerox WorkCenters 0.015 982,973 0.15
Ubuntu / Debian / Embedded | 0.013 844,958| —0.54

Table 5.14: Faulds classification at iteration 1 (left) afdright).

0 0
30 90 150 210 270 330 390 30 90 150 210 270 330 390
milliseconds milliseconds
@ fr (b) fa

Figure 5.6: Internet delay distributions.

shows thev vector after 10 steps. With the exception of two signatutese is significant
movement in the list, including embedded Linux in third piasi increasing its member-
ship by 82%, Cisco gaining 51%, 3Com 11% and Windows XP/2@d3atetely dropping
off the top-ten. There is even more shuffle further down teg Which underscores the

importance of using proper algorithms for estimating
5.7.3 Network Distortion

Figure 5.6(a) shows the recovered distributfgnusing bin size 30 ms. Interestingly,
32% of delays are in the first bin, which likely representg igérvers that immediately
send back the first SYN-ACK. A relatively large number (i38%) of cases belong to the
120-180 ms range, which may indicate OS scheduling delaystnivial CPU load on the
server, longer forward paths, and involvement of variouskbad databases to set up the
connection. Overall, we obtaifi[T] = 111 ms, 41% of the samples below 60 ms, 90%
below 180 ms, and 99.4% below 420 ms.

Figure 5.6(b) plots the distribution of one-way delay The massive peak at 30-60 ms

consolidates 81% of the observations and likely correspaodixed propagation delays

129

0.6

04r

PMF

0.2r

shared by many Internet paths leading back to our clienth Wj\A] = 83 ms, 90% of the

values below 120 ms, and 98.5% below 420 ms, the real Intdrstetrtiond,; does appear

I I [
i— ~ |Ilestimated
7777777 | | 1 |[binomial fit||
| IH B
0 1 2
packets lost

(@) g3 (loss 12%)

I
Ml estimated
[Ibinomial fit

2
packets

3
lost

4

(¢) g5 (loss 15%)

packets lost

(b) ¢4 (loss 6.8%)

T I I
| M estimated
,,,,,, -~ Ibinomial fit]
L on
1 2 3

I
' IMestimated

packets lost
(d) ¢6 (loss 1.0%)

Figure 5.7: Internet packet-loss PMFs.

quite different from that assumed by Hershel+.

To examine packet loss, defim¢ = >"" | al14,— to be the estimated fraction of
observations that use an OS wilpackets. The top values éfare four (3° = 0.42,
112 stacks inDy), six (ng° = 0.31, 80 stacks), threenf° = 0.07, 72 stacks), and five
(ne° = 0.04, 54 stacks). Figure 5.7 examines the recovered loss PMFRkdese values of

k, each fitted with an iid binomial model and accompanied byatrerage loss rate° /i

130

from (5.54). First, it is interesting that the loss rate isehegeneous, ranging from 1%
in g5 to 15% ings. This phenomenon may be inherent to the signatures that onegch

k (e.g., certain printers cut the SYN-ACK sequence when timgjrSYN backlog queue
overflows) or their location on the Internet, which suggébtse is an extra benefit to
estimatingg, independently for different. If injection of unknowns were responsible for
the increased loss rategpandgs, we would not expect to see a binomial-like distribution.
Instead, an abnormally large spike/at 1 or 2 would be more likely.

Second, the binomial fit in Figure 5.7 is not perfect, but ibwh a similar decaying
trend. Therefore, the iid loss assumption in Hershel+ mayelsonable, but with one
correction that allows for heterogeneous values acroidifts. Third, computing (5.55)
for the Internet scan yields an average loss rate of 3.7% i$hiery close to the assumed
model of Hershel+, whosg,,., = 3.8% comes from a 2009 Google study of SYN-ACK
retransmission rates at their servers [18]. Apparentlytiegic number remains in effect

for the Internet even today.
5.7.4 User Distortion

Faulds produced20 x 6 = 2520 distributions of user features, among which we
highlight several interesting cases, focusing on the twatmolatile fields — Win and
MSS — and limiting all PMFs to values above the 1% likeliho&hce MSS sometimes
depends on the MTU of the underlying data-link layer andémmeling protocol (e.g.,
IPv6), this field may experience fluctuation even if the OSsdoet allow explicit means
for changing this value.

We expected devices with firmware restrictions that preusat access to the configu-
ration of SYN-ACK parameters to exhibit high,. One example is shown in Figure 5.8(a)
for the Dell printer from Table 5.14. Among 982K occurrenoeghe Internet, this device

keeps the default window with probability 1. Intuition alsaggests that general-purposes

131

16384~ 14480* 1460*
10° 1440 10°

LL 1460 LL
E 10? 1400 E 10%
17898
1452
2684728960
102 1072 ~ 1
WIN MSS WIN MSS
(a) Dell printer (982K) (b) Ubuntu Linux (6.6M)
10° e 1460 10° 4380 120
8190*
14600
& &
E 10 14480 1452 E 10 1360*
1365
|5632 | 1428
1072 1072
WIN MSS WIN MSS
(c) CentOS (762K) (d) Citrix Netscaler (28K)

Figure 5.8: Internet distributions; andr;; (default values are shown with an asterisk).

OSes are more susceptible to modification and/or existehakeonatively patched ver-
sions. An example of this is Ubuntu in Figure 5.8(b). Whildétbfeatures show variation,
the default values dominate. A more diverse case is Cent@®rfeise Linux) in part
(c), which has 29% of its samples with larger windows and 3% winaller. In subfigure
(d), Citrix Netscaler (data-center load-balancer) hasritginal combination (8190, 1360)
overshadowed by (4380, 1460). We conjecture that our Pttdbdse most likely captured
a non-standard version of this stack. Since this is an imhgn@perty of any database, it
is important to allow great flexibility in the match processtcommodate such scenarios.

Faulds does exactly that.

132

Computing (5.56), we obtaify[¢S°] = 0.89, which confirms the accuracy of the as-
sumed value in Hershel+ (i.e., 0.9); however, sampling tis&ibutions in Figure 5.8
or using them in classification is only possible by introshgei!, and iteratively refining
(6, at). As the first method to implement this functionality, Faytdses way for scalable,
low-overhead Internet characterization, robust devieatification, and better modeling

of distortion experienced by the numerous hardware atsifaxind on the Internet.
5.8 Conclusion

In this section, we developed novel theory and algorithmarfiproving OS-classification
accuracy in single-probe fingerprinting, measuring ong-iméernet path properties, and
extracting latent distributions of feature distortion.mBiations showed exceptional ro-
bustness of our EM techniques against various types of nasseell as injection of un-
known devices. Applied to Internet scans, this methodolayy be used to characterize

stack popularity, network delays, packet loss, and hetong probabilities.

133

6. SUMMARY AND FUTURE DIRECTIONS

In this dissertation, we tackled the problem of large sc&@di@gerprinting, a direction
which is largely unexplored in the current literature. lhaerto build fast, low overhead
algorithms that are required to measure a sizeable netwm@Kpcused on classification
using a single TCP packet.

We first developed stochastic theory of single-packet OSfiminting, and created a
classifier calledHershelbased on our formulation. Using simulations, we showeddbat
algorithm is accurate even under extremely noisy condstiand conducted a study where
we successfully classified the OS of 37M Internet hosts.

Next, we turned our attention to building a scalable datab#E#sOSes to use with
Hershel. We developed a framework calRi@dta, which is able to automatically create a
database from a network scan using a novel unsupervise@ichgsalgorithm. We used
Plata on our university campus to discover signatures for@&es, provided an improved
version of our classifieH{ershel+ and showed its viability in an Internet measurement of
66M target hosts.

Finally, we took aim at one possible shortcoming of Hershéhe-assumptions of
volatility it makes for each noisy parameter. We derivedw akgorithm using Expectation-
Maximization calledFauldsto recover the unknown distributions of network one-way
delay, packet loss and user feature modification, using leeesification process itself.
After showing its reliability in simulations, we used Fasiltb recover network-wide de-
lay distributions, packet loss probabilities and likelldg of stack tuning performed by

administrators across the Internet.

134

6.1 Future Directions

Network stack fingerprinting has well-known pitfalls (e.gcrubbers [20], [90], [84],
[101], [115], traffic intercepts by middleboxes [43], lohdlancers, RST injection by
IDS), but nevertheless it is fascinating that a single SYNkp&a can elicit so much in-
formation about the target. With our algorithm for autondlatenstruction of databases
and robust classification (i.e., Plata, Hershel+ and Faululs goal is to make single-
packet tools a legitimate competitor for use over the pulbliernet. However, despite
the recent developments in this field, there are still margnggroblems and avenues for
improvement, which we discuss next.

From our classification efforts, we showed that Hershel+ Bawdlds are tolerant of
samples gathered from unknown devices on the Internegrdighdiscarding them if they
are a complete non-match, or matching them to the closesilpessignature. Future
work can focus on more reliable detection of unknown stackeray the observations,
and automatic generation of database signatures for themwbuld require research to
continue on discerning the separation of a "tweaked" sanggus an unknown one, and
the impacts of such observations on the final accuracy.

Once this detection is possible, it leads to the next questiaich is whether the en-
tire Internet dataset can be used to build a OS fingerpriatodase. We have considered
this direction; however, Plata matrix construction hasdyaac complexity and signature
separation is even worse (i.@3). The largest cluster in the Internet dataset formed after
separation on the user features still contains over 50K Ra€&ovs, which will take Plata
weeks to separate. Additionally, collection of loss-fraenples from each IP not only re-
quires pestering hosts with 3.3B additional packets, &d abnsumes a large amount of
time that may result in host departure and incomplete measemt. Finally, presence of

non-trivial delay?’ during database construction violates the current assangathat the

135

initial fingerprints are clean, with currently unknown cegsences.

This train of thought also gives rise to another questioricivis whether Plata’s dis-
tortion modelX can include the additional types of disturbance we obsersagle-probe
fingerprinting. Including packet loss seems like a viablecion as Plata can handle this
transparently in the Monte-Carlo version; however, degva Hershel+ matrix in closed-
form requires additional research. Including user modifcawould require incorporat-
ing some knowledge from the gathered labels (e.g., windibmss, printer), as our results
from Faulds show that these parameters are dependent olasiseof the device. To this
end, additional data mining from the Faulds classificatiou be required to build real-
istic user modification distributions.

Finally, now that we have accomplished multi-iterativessification on features ob-
tained from a single-packet using Faulds, the next logiegl ® investigate is whether we
can increase accuracy by abandoning the single-packahatisn and sending multiple
packets to each target IP. Future work would need to assesgthility of this approach on
Internet scale, and find the correct balance that would makéearget host elicit enough
responses without triggering IDS and harassing networkimdtrators. Furthermore, a
new database with a new distortion model would also be redquiFor exampleX may
be extended to include blocking of ICMP/UDP packets as dgne tirewall, censorship
of certain invalid flag combinations known to IDS, emulatmiioad-balancers, and fin-

gerprint obfuscation by scrubbers found on the Internet.

136

[1]

REFERENCES

H. Abdelnur, R. State, and O. Festor, “Advanced NetwarigErprinting,” inProc.
RAID, Sep. 2008, pp. 372—-389.

[2] Akamai. [Online]. Available:

[3]

[4]

http://www.akamai.com/html/about/facts_figures.html.

L. Alt, R. Beverly, and A. Dainotti, “Uncovering NetworKarpits with Degreaser,”

in Proc. ACM ACSACDec. 2014, pp. 156-165.

O. Arkin, “A Remote Active OS Fingerprinting Tool usin@MP,” USENIX login
vol. 27, no. 2, pp. 14-19, 2002.

[5] ATInternet, “Operating Systems Barometer,” Aug. 20f@nline]. Available:

[6]

http://www.atinternet.com/uploads/Operating- Systefngust-2014.pdf.

P. Auffret, “SinFP, Unification of Active and Passive Qagng System
Fingerprinting,”Journal in Computer Virologyvol. 6, no. 3, pp. 197-205, Nov.
2010.

[7] T. Beardsley, “Snacktime: A Perl Solution for Remote Q8derprinting,” Jun.

[8]

[9]

[10]

2003. [Online]. Available: http://www.planb-securitgtiwp/snacktime.html.

R. Beck, “Passive-Aggressive Resistance: OS Fingetrgvasion,’Linux Journal

vol. 2001, no. 89, Aug. 2001.

D. B. Berrueta, “A Practical Approach for Defeating Nm@@&-Fingerprinting,”
2003. [Online]. Available: http://nmap.org/misc/defemhap-osdetect.html.

R. Beverly, “A Robust Classifier for Passive TCP/IP Fengrinting,” in Proc.
PAM, Apr. 2004, pp. 158-167.

137

http://www.akamai.com/html/about/facts_figures.html
http://www.atinternet.com/uploads/Operating-Systems-August-2014.pdf
http://www.planb-security.net/wp/snacktime.html
http://nmap.org/misc/defeat-nmap-osdetect.html

[11] R. Beverly and A. Berger, “Server Siblings: Identifgishared IPv4/IPv6

Infrastructure via Active Fingerprinting,” iRroc. PAM Mar. 2015, pp. 149-161.

[12] J. Bolot, “End-to-End Packet Delay and Loss Behavidhia Internet,” inProc.

ACM SIGCOMM Sep. 1993, pp. 289-298.

[13] R. Braden, “Requirements for Internet Hosts — Commaitnon Layers,1ETF
RFC 1122 Oct. 1989.

[14] T. Bu, N. Duffield, F. Presti, and D. Towsley, “Network fography on General
Topologies,” inProc. ACM SIGMETRICSJun. 2002, pp. 21-30.

[15] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kan§ong, and A. Blum,
“FiG: Automatic Fingerprint Generation,” iRroc. NDS$SFeb. 2007, pp. 27-42.

[16] Y. Chen, K. H. Lim, R. H. Katz, and C. Overton, “On the St of Network
Distance Estimation SIGMETRICS Performance Evaluation Revigal. 30,
no. 2, pp. 21-30, Sep. 2002.

[17] Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, and L. Qiu, “O$Berprinting and
Tethering Detection in Mobile Networks,” iBroc. ACM IMG 2014, pp. 173-180.

[18] H. K. J. Chu, “Tuning TCP Parameters for the 21st Cerjtdryl. 2009. [Online].

Available: http://www.ietf.org/proceedings/75/slidepm-1.pdf.

[19] M. Coates and R. Nowak, “Network Loss Inference Usingddsat End-to-End
Measurement,” ifProc. ITC Conference on IP Traffic, Modeling and Management

Sep. 2000, pp. 1-9.

[20] A. Crenshaw, “OSfuscate,” 2008. [Online]. Available:

http://www.irongeek.com/i.php?page=security/code.

[21] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “VivaldiD®centralized Network
Coordinate System,” iRroc. ACM SIGCOMMAug. 2004, pp. 15-26.

138

http://www.ietf.org/proceedings/75/slides/tcpm-1.pdf
http://www.irongeek.com/i.php?page=security/code

[22] D. Dagon, N. Provos, C. P. Lee, and W. Lee, “Corrupted DR¢Solution Paths:
The Rise of a Malicious Resolution Authority,” Proc. NDS$SFeb. 2008.

[23] Maxmind GeolP Databases. [Online]. Available: htigiel/.maxmind.com/geoip/.

[24] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihddrom Incomplete
Data via the EM Algorithm,Journal of the Royal Statistical Societyol. 39,
no. 1, pp. 1-38, 1977.

[25] A. B. Downey, “Using PATHCHAR to Estimate Internet Lifkharacteristics,” in
Proc. ACM SIGCOMMAug. 1999, pp. 241-250.

[26] N. Duffield, C. Lund, and M. Thorup, “Estimating Flow Digutions from
Sampled Flow Statistics,” iRroc. ACM SIGCOMMAug. 2003, pp. 325-336.

[27] T. Dunigan, M. Mathis, and B. Tierney, “A TCP Tuning Daenj’ in Proc.
ACM/IEEE Supercomputinglov. 2002, pp. 1-16.

[28] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A.dafderman, “A Search
Engine Backed by Internet-Wide Scanning,Rroc. ACM CCS$Oct. 2015, pp.
542-553.

[29] Z. Durumeric, E. Wustrow, and J. Halderman, “ZMap: Hastérnet-wide scanning

and its Security Applications,” iRroc. USENIX SecurityAug. 2013, pp. 605-620.

[30] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weavad &. Paxson,
“Examining How the Great Firewall Discovers Hidden Circuention Servers,” in

Proc. ACM IMG Oct. 2015, pp. 445-458.

[31] Ericsson, “Ericsson Mobility Report,” Nov. 2016. [Gné]. Available:

https://www.ericsson.com/mobility-report.

[32] X. Feng, Q. Li, Q. Han, H. Zhu, Y. Liu, J. Cui, and L. Sun,ctve Profiling of
Physical Devices at Internet Scale,”Pnoc. IEEE ICCCN Aug. 2016, pp. 1-9.

139

http://dev.maxmind.com/geoip/
https://www.ericsson.com/mobility-report

[33] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitg &. Zhang, “IDMAPS: A
Global Internet Host Distance Estimation Servid€EE/ACM Transactions on

Networking vol. 9, no. 5, pp. 525-540, Oct. 2001.

[34] P. Garcia-Laencina, J.-L. Sancho-Gomez, and A. FrgsgéVidal, “Pattern
Classification with Missing Data: A ReviewNeural Computing and Applications

vol. 19, no. 2, pp. 263-282, Mar. 2010.

[35] L. G. Greenwald and T. J. Thomas, “Toward undetectedadjpgy system
fingerprinting,” inProc. USENIX WOQOTAug. 2007, pp. 1-10.

[36] Y. Gu, L. Breslau, N. Duffield, and S. Sen, “On Passive OVey Loss
Measurements Using Sampled Flow StatisticsPioc. IEEE INFOCOM Apr.
2009.

[37] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estiing Latency between
Arbitrary Internet End Hosts,” iffroc. ACM IMW Nov. 2002, pp. 5-18.

[38] S. Guogiang and D. Lee, “Network Protocol System Fipgeting: A Formal
Approach,” inProc. IEEE INFOCOM Apr. 2006, pp. 1-12.

[39] O. Gurewitz, I. Cidon, and M. Sidi, “One-way Delay Esttion Using
Network-Wide MeasurementdEEE Transactions on Information Theory

vol. 52, no. 6, pp. 2710-2724, Jun. 2006.

[40] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemaand |. H. Witten, “The
WEKA data mining software: An updateSIGKDD Explorationsvol. 11, pp.
10-18, Jul. 2009.

[41] H. O. Hartley, “Maximum Likelihood Estimation from lioenplete Data,”

Biometrics vol. 14, no. 2, pp. 174-194, 1958.

140

[42] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopo@o8artlett, and
J. Bannister, “Census and Survey of the Visible InternatPrioc. ACM IMG Oct.
2008, pp. 169-182.

[43] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. HaeyJland H. Tokuda, “Is
It Still Possible to Extend TCP?” iRroc. ACM IMG Nov. 2011, pp. 181-194.

[44] C. Huang, A. Wang, J. Li, and K. Ross, “Measuring and Hathg Large-Scale
CDNs,” in Proc. ACM IMC Oct. 2008, pp. 15-29.

[45] IRL Fingerprinting Dataset. [Online]. Available:

http://irl.cs.tamu.edu/projects/sampling/.

[46] V. Jacobson, R. Braden, and D. Borman, “TCP Extensionsifgh Performance,”

IETF RFC 1323May 1992.

[47] M. Kalman and B. Girod, “Modeling the Delays of Succes$y-Transmitted
Internet Packets,” ifProc. IEEE ICME Jun. 2004, pp. 2015-2018.

[48] E. Katz-Bassett, H. Madhyastha, V. Adhikari, C. ScdttSherry, P. V. Wesep,
T. Anderson, and A. Krishnamurthy, “Reverse TraceroutePrioc. USENIX

NSD}, Apr. 2010, pp. 219-234.

[49] M. Kearns, Y. Mansour, and A. Ng, “An Information-Thetic Analysis of Hard
and Soft Assignment Methods for Clustering,"Rnoc. Uncertainty in Artificial

Intelligence 1997, pp. 282—293.

[50] T. Kohno, A. Broido, and K. C. Claffy, “Remote physicace fingerprinting,”
IEEE Transactions on Dependable and Secure Compwimig2, no. 2, pp.
93-108, May 2005.

[51] E. Kollmann, “Chatter on the Wire: A Look at DHCP TraffifOnline]. Available:

http://myweb.cableone.net/xnih/download/chattergdpdf.

141

http://irl.cs.tamu.edu/projects/sampling/
http://myweb.cableone.net/xnih/download/chatter-dhcp.pdf

[52] M. Kuhrer, T. Hupperich, J. Bushart, C. Rossow, and TizHtGoing Wild:
Large-Scale Classification of Open DNS ResolversPiaoc. ACM IMG Oct.
2015, pp. 355-368.

[53] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data Streamingadkithms for Efficient
and Accurate Estimation of Flow Size Distribution,”ftoc. ACM SIGMETRICS
Jun. 2004, pp. 177-188.

[54] D. Leonard and D. Loguinov, “Turbo King: Framework foatge-Scale Internet

Delay Measurements,” iRroc. IEEE INFOCOM Apr. 2008, pp. 430-438.

[55] D. Leonard and D. Loguinov, “Demystifying Service Desery: Implementing an
Internet-Wide Scanner,” iRroc. ACM IMG Nov. 2010, pp. 109-122.

[56] Z. Li, A. Goyal, Y. Chen, and V. Paxson, “Automating Agals of Large-Scale
Botnet Probing Events,” iRrroc. ACM ASIACCSMar. 2009, pp. 11-22.

[57] H. Lim, J. C. Hou, and C.-H. Choi, “Constructing Intetr@@ordinate System
Based on Delay Measurement,”imoc. ACM IMG Oct. 2003, pp. 129-142.

[58] J. Lippard, “Craigslist no longer uses TCP window siz@.6[Online]. Available:
http://lippard.blogspot.com/2006/07/craigslist-rmmgdjer-uses-tcp-window.html/.

[59] M. Luckie, R. Beverly, T. Wu, and M. Aliman, “Resiliencé# Deployed TCP to
Blind Attacks,” inProc. ACM IMG Oct. 2015, pp. 13-26.

[60] G. S. Manku, A. Jain, and A. D. Sarma, “Detecting Near [ngtes for Web
Crawling,” in Proc. WWWMay 2007, pp. 141-149.

[61] J. Matherly, “Shodan Search Engine.” [Online]. Availe: https://www.shodan.io.

[62] T. Matsunaka, A. Yamada, and A. Kubota, “Passive OS &ipanting by DNS
Traffic Analysis,” inProc. IEEE AINA 2013, pp. 243-250.

142

http://lippard.blogspot.com/2006/07/craigslist-no-longer-uses-tcp-window.html/
https://www.shodan.io

[63] C. McNab,Network Security Assessment: Know Your Netwof®'Reilly Media,
Inc., 2007.

[64] J. Medeiros, A. Brito, and P. Pires, “A Data Mining Bas&uialysis of Nmap
Operating System Fingerprint Database,Pioc. IEEE CISISSep. 2009, pp. 1-8.

[65] J. P. Medeiros, A. Brito, and P. M. Pires, “An Effectiv€P/IP Fingerprinting
Technigue Based on Strange Attractors ClassificatiorProt. Data Privacy

Management and Autonomous Spontaneus Sec8ety. 2009, pp. 208—-221.
[66] Microsoft Support. [Online]. Available: http://supg.microsoft.com/kb/2525390.

[67] A. Mirian, Z. Ma, D. Adrian, M. Tischer, T. Chuenchujgphon, T. Yardley,
R. Berthier, J. Mason, Z. Zakir Durumeric, and J. A. Haldemian
Internet-Wide View of ICS Devices,” iRroc. IEEE Privacy, Security, and Trust

ConferenceDec. 2016.

[68] D. Napier, “IPTables/NetFilter — Linux’s Next Genarat Stateful Packet Filter,”
SysAdmin Magazineol. 10, pp. 8-16, Nov. 2001.

[69] A. Nappa, Z. Xu, M. Z. Rafique, J. Caballero, and G. Gu, b€sprobe: Towards
Internet-Scale Active Detection of Malicious Servers,Pioc. NDSSFeb. 2014,

pp. 1-15.

[70] NetApplications, “Market Share Statistics for IntetiTechnologies.” [Online].

Available: http://netmarketshare.com/.
[71] Netcraft Web Server Survey. [Online]. Available: httpews.netcraft.com/.

[72] T.S. E. Ng and H. Zhang, “Predicting Internet Networls@aince with
Coordinates-Based Approaches,Rroc. IEEE INFOCOM Jun. 2002, pp.
170-179.

[73] Nmap. [Online]. Available: http://nmap.org/.

143

http://support.microsoft.com/kb/2525390
http://netmarketshare.com/
http://news.netcraft.com/
http://nmap.org/

[74] J. Novak and S. Sturges, “Target-Based TCP Stream Bedmg,” Sourcefire Inc.,
Tech. Rep., Aug. 2007.

[75] SpeedGuide TCP Optimizer. [Online]. Available:

http://www.speedguide.net/downloads.php.

[76] Oracle, “Operating System Tuning.” [Online]. Availab
http://docs.oracle.com/cd/E12839 01/web.1111/e1/@&14uning.htm.

[77] J. Padhye and S. Floyd, “On Inferring TCP Behavior,Piroc. ACM SIGCOMM
Aug. 2001, pp. 287-298.

[78] I. Papapanagiotou, E. Nahum, and V. Pappas, “Smargshes. Laptops:
Comparing Web Browsing Behavior and the Implications focl@ag,” in Proc.

ACM SIGMETRICSJun. 2012, pp. 423-424.

[79] A. Pathak, H. Pucha, Y. Zhang, C. Hu, and Z. M. Mao, “A Ma&a&snent Study of
Internet Delay Asymmetry,” ifProc. PAM Apr. 2008, pp. 182-191.

[80] V. Paxson, “End-to-end Internet Packet DynamicsPmc. ACM SIGCOMM
1997, pp. 139-152.

[81] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Compufili¢P’s Retransmission
Timer,” IETF RFC 6298 Jun. 2011.

[82] PlanetLab. [Online]. Available: http://www.plan&tb.org/.
[83] J. Postel, “Transmission Control ProtocdBETF RFC 793 Sep. 1981.

[84] G. Prigent, F. Vichot, and F. Harrouet, “IpMorph: fingeinting spoofing
unification,” Journal in Computer Virologyvol. 6, no. 4, pp. 329-342, Nov. 2010.

[85] N. Provos, “A Virtual Honeypot Framework,” iRroc. USENIX SecurifyAug.
2004, pp. 1-14.

144

http://www.speedguide.net/downloads.php
http://docs.oracle.com/cd/E12839_01/web.1111/e13814/os_tuning.htm
http://www.planet-lab.org/

[86] N. Provos and P. Honeyman, “ScanSSH - Scanning thenetéor SSH Servers,”
in Proc. USENIX LISADec. 2001, pp. 25-30.

[87] Y. Pryadkin, R. Lindell, J. Bannister, and R. Govind&mn Empirical Evaluation
of IP Address Space Occupancy,” USC/ISI, Tech. Rep. I1SIZDR4-598, Nov.
2004.

[88] D. Richardson, S. Gribble, and T. Kohno, “The Limits afithmatic OS
Fingerprint Generation,” iProc. ACM AlSecOct 2010, pp. 24-34.

[89] M. Roesch, “Snort — Lightweight Intrusion Detectiorr fdetworks,” inProc.

USENIX LISANov. 1999, pp. 229-238.

[90] G. Roualland and J.-M. Saffroy, “IP Personality.” [@rd]. Available:

http://ippersonality.sourceforge.net/.

[91] C. Sarraute and J. Burroni, “Using Neural Networks t@tove Classical
Operating System Fingerprinting Techniquddgctronic Journal of SADIO
vol. 8, no. 1, Mar. 2008.

[92] S. Shah, “An Introduction to HTTP Fingerprinting,” M&p04. [Online].

Available: http://net-square.com/httprint_paper.html

[93] Z. Shamsi and D. Loguinov, “Unsupervised ClusteringdegnTemporal Feature
Volatility in Network Stack Fingerprinting,” ifProc. ACM SIGMETRICSJun.
2016, pp. 127-138.

[94] Z. Shamsi and D. Loguinov, “Unsupervised ClusteringdlenTemporal Feature
Volatility in Network Stack Fingerprinting [EEE/ACM Transactions on
Networking 2017 (to be published).

145

http://ippersonality.sourceforge.net/
http://net-square.com/httprint_paper.html

[95] Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov, fsfeel: Single-Packet
OS Fingerprinting, IEEE/ACM Transactions on Networkingol. 24, no. 4, pp.
2196-2209, Aug. 2016.

[96] Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov, fsfeel: Single-Packet
OS Fingerprinting,” inrProc. ACM SIGMETRICSJun. 2014, pp. 195-206.

[97] U. Shankar and V. Paxson, “Active Mapping: Resistin@pSIEvasion Without
Altering Traffic,” in Proc. IEEE SPMay 2003, pp. 44—61.

[98] P. Sharma, Z. Xu, S. Banerjee, and S.-J. Lee, “Estimgatietwork Proximity and
Latency,”ACM SIGCOMM pp. 39-50, Sep. 2006.

[99] M.-F. Shih and A. O. Hero, “Unicast-Based Inference @tWork Link Delay
Distributions with Finite Mixture Models,JEEE Transactions on Signal

Processingvol. 51, no. 8, pp. 2219-2228, Aug. 2003.

[100] B. Skaggs, B. Blackburn, G. Manes, and S. Shenoi, “Netwulnerability
Analysis,” inProc. IEEE MWSCASAug. 2002, pp. 493—-495.

[101] M. Smart, G. R. Malan, and F. Jahanian, “Defeating TERtack Fingerprinting,”
in Proc. USENIX Securifydun. 2000, pp. 229-240.

[102] Snort IDS. [Online]. Available: http://www.snortg

[103] RedHat Customer Case Study. [Online]. Available:

https://www.redhat.com/cms/managed-files/Telefortidd-compressed_0.pdf.

[104] G. Taleck, “Ambiguity Resolution via Passive OS Fing@nting,” in Proc. RAID
Sep. 2003, pp. 192-206.

[105] G. Taleck, “SYNSCAN: Towards Complete TCP/IP Fingarpng,” CanSecWest
Apr. 2004.

146

http://www.snort.org
https://www.redhat.com/cms/managed-files/Telefonica_EN-compressed_0.pdf

[106] L. Tang and M. Crovella, “Virtual Landmarks for the émhet,” inProc. ACM IMG
Oct. 2003, pp. 143-152.

[107] THC-RUT Fingerprint Database. [Online]. Available:

https://www.thc.org/thc-rut/thcrut-os-fingerprints.

[108] S. Theodoridis and K. Koutroumbdattern Recognitiordth ed. Academic
Press, 2009.

[109] B. Tierney, “TCP Tuning Guide for Distributed Applitans on Wide Area
Networks,”"USENIX & SAGE Loginvol. 26, no. 1, pp. 33-39, Feb. 2001.

[110] C. Valli, “Honeyd — A OS Fingerprinting Artifice,” ifProc. Australian Computer,

Network and Information Forensics Conferenbi®v. 2003.

[111] Y. Vardi, “Network Tomography: Estimating Source-4d@ation Traffic Intensities
from Link Data,” Journal of the American Statistical Associatj@ol. 91, no. 433,

pp. 365-377, Mar. 1996.

[112] F. Veysset, O. Courtay, O. Heen, and I. R. Team, “Newl &d Technique for
Remote Operating System Fingerprinting,” Apr. 2002. [@a]i Available:
http://www.ouah.org/ring-full-paper.pdf.

[113] A.Y.Wang, C. Huang, J. Li, and K. Ross, “Queen: EstimpPacket Loss Rate
Between Arbitrary Internet Hosts,” iRroc. PAM Apr. 2009, pp. 57-66.

[114] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush, “A Measuent Study on the
Impact of Routing Events on End-to-End Internet Path Peréwrce,” inProc.

ACM SIGCOMM Aug. 2006, pp. 375-386.

[115] K. Wang, “Frustrating OS Fingerprinting with Morpl2004. [Online]. Available:

http://hackerpoetry.com/images/defcon-12/dc-12-gmegtions/Wang/dc-12-wang.pdf.

147

https://www.thc.org/thc-rut/thcrut-os-fingerprints
http://www.ouah.org/ring-full-paper.pdf
http://hackerpoetry.com/images/defcon-12/dc-12-presentations/Wang/dc-12-wang.pdf

[116] Z. Wen, S. Triukose, and M. Rabinovich, “Facilitatifgcused Internet
Measurements,” iffroc. ACM SIGMETRICSJun. 2007, pp. 49-60.

[117] Wolfram Alpha, “Computational Knowledge Engine.”riine]. Available:

http://www.wolframalpha.com.

[118] C. F. J. Wu, “On the Convergence Properties of the ENb#ithm,” The Annals of
Statisticsvol. 11, no. 1, pp. 95-103, Mar. 1983.

[119] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measuent and Modelling of
the Temporal Dependence in Packet LossPioc. IEEE INFOCOM Mar. 1999,
pp. 345-352.

[120] F. V. Yarochkin, O. Arkin, M. Kydyraliev, S.-Y. Dai, YHuang, and S.-Y. Kuo,
“Xprobe2++: Low Volume Remote Network Information GatheyiTool,” in

Proc. IEEE/IFIP DSNJun. 2009, pp. 205-210.

[121] M. Zalewski, “Strange Attractors and TCP/IP SequeNaenber Analysis,” Apr.

2001. [Online]. Available: http://lcamtuf.coredump.ogivtcp!.

[122] M. Zalewski, “pOf v3: Passive Fingerprinter,” 2012x1jline]. Available:

http://Icamtuf.coredump.cx/pOf3.

[123] A. Zeitoun, C.-N. Chuah, S. Bhattacharyya, and C. Dian AS-level Study of
Internet Path Delay Characteristics,”noc. IEEE GLOBECOWNNov. 2004, pp.
1480-1484.

[124] Y. G. Zeng, D. Coffey, and J. Viega, “How Vulnerable &heprotected Machines
on the Internet?” ifProc. PAM Mar. 2014, pp. 224-234.

[125] X. Zhang, J. Knockel, and J. Crandall, “Original SYNn&ing Machines Hidden
Behind Firewalls,” inProc. IEEE INFOCOM Apr. 2015, pp. 720-728.

148

http://www.wolframalpha.com
http://lcamtuf.coredump.cx/newtcp/
http://lcamtuf.coredump.cx/p0f3

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Overview
	Dissertation Structure

	RELATED WORK
	Multi-Probe Techniques
	Single Probe Algorithms
	Common Defenses

	LARGE-SCALE OS CLASSIFICATION
	Introduction
	Contributions and Ethical Implications

	Stochastic Model
	Objectives
	Network Features: Jitter
	Network Features: Loss
	User Features
	Final Result
	Limitations

	Classifier
	Features
	Stochastic Timers
	Fingerprint Database
	Hershel

	Simulations
	Parameters
	Results

	Experiments
	Dataset Properties
	Classification Overview
	Results
	World View
	Scrubbers

	Conclusion

	AUTOMATED DATABASE CREATION
	Introduction
	Motivation and Contributions

	Background
	Overview
	Terminology
	Challenges

	Database Creation Using Plata
	Preliminaries
	Matrix Construction
	Separation
	Labeling

	OS Fingerprinting Database
	Classifier
	Data Collection
	Separating Features
	Label Clustering

	Optimizing Plata
	Closed-Form Plata-Hershel Matrix
	Hershel+
	Closed-Form Plata-Hershel+ Matrix

	Internet Scan
	Classification Results
	OS Popularity and Confidence

	Comparison with Nmap
	Agreement
	Disagreement

	Conclusion

	ITERATIVE LEARNING OF FEATURE DISTORTION
	Introduction
	Contributions

	Background
	Learning from Observation
	General Problem
	EM Principles
	Fingerprint Popularity
	Discussion

	Network Features
	Distortion Model
	Intuition
	Analysis
	Discussion

	User Features
	Distortion Model
	Iteration
	Discussion

	Complete System
	Reset Packets
	Final Model
	Scaling the Database
	Unknown Signatures

	Internet Measurement
	Overview
	Classification Results
	Network Distortion
	User Distortion

	Conclusion

	SUMMARY AND FUTURE DIRECTIONS
	Future Directions

	REFERENCES

