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ABSTRACT

A multivariate time series could be partitioned either horizontally (over time) to in-
duce local stationarity or vertically (over the variables) to reduce dimension and the high
computational cost. Dimension reduction for a high-dimensional time series by linearly
transforming it into several lower-dimensional subseries (vertical partition) where any two
subseries are uncorrelated both temporally and cross-sectionally is of central importance
in the modern age of big data. It reduces the challenging multivariate estimation problem
with many parameters to that of a number of disjoint lower-dimensional problems with
much fewer parameters. A notable example in the previous studies is the dynamic orthog-
onal components (DOC) utilizing nonlinear optimization which works well for stationary
and low-dimensional time series data. First we reduce the computational burden of DOC
by connecting it to the time series principal components analysis (TS-PCA) method in
recent studies based on eigenanalysis of a positive-definite matrix. Next, we extend DOC
to nonstationary processes which can be divided into several nearly homogeneous seg-
ments. Consistency and joint asymptotic normality of the estimates of the Givens angles
parameterizing orthogonal matrices in each segment are established under some regularity
conditions. Applications to multivariate volatility modeling in finance are illustrated using

simulated and real datasets.
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1. INTRODUCTION

High-dimensional nonstationary time series data are often encountered in a variety of
fields, such as management of climate risks in agriculture ([44]), electrocardiogram anal-
ysis ([2]), electroencephalography (EEG) analysis ([30], [40]), macroeconomics analysis
([11], [36]), trading volatility analysis ([27]), bond price prediction ([50]), etc.

Fitting multivariate models to high-dimensional time series data is computationally ex-
pensive and will encounter convergence problems in optimization routine due to the large
number of parameters involved. For example, the standard multivariate volatility models
such as VEC-GARCH([13]) or BEKK([25]), formulate the conditional covariance matrix
in terms of linear combinations of the squares and cross products of the data and thus the
number of parameters contained in the coefficient matrix for a d dimensional time series
are O(d*) and will be problematic for large d.

Dimension reduction is thus of vital importance to the analysis of high-dimensional
time series data. In the following we will review some of the most popular dimension
reduction methods. Principal component analysis (PCA), developed by [45] and [31], ex-
plains the covariance structure of a set of variables through a few linear combinations of
them, called principal components (PCs), with decreasing variance. An integer r (r << d)
is chosen such that the first » PCs explain a high percentage of the total variation of the
data and dimensional reduction is achieved by analyzing the  PCs instead of the original
time series. For example, orthogonal GARCH (O-GARCH) [3] and generalized orthogo-
nal GARCH (GO-GARCH) models [51] use PCA of the covariance matrix to decorrelate
a multivariate series of asset returns cross-sectionally before applying volatility models to
the uncorrelted components separately. Canonical correlation analysis (CCA) ([32], [14])

finds linear combinations of variables such that the "predictability" of the transformed vari-



ables are maximized sequentially. "Predictability" is measured by the cross-correlation
between the current observation of the transformed variable with its own past. Factor
model ([46]) finds a canonical representation of the time series using a mall number of
common factors. The number of common latent factors is decided by the eigen-analysis
of the lagged sample covariance matrices. Independent component analysis (ICA) ([7])
projects a multivariate time series to a new space spanned by non-Gaussian independent
components. Similar to PCA, ICA also considers decorrelating the components cross-
sectionally, but with respect to their higher order moments. For example, Kurtosis or the
fourth-moment cumulant, is often applied to measure the non-Gaussianity in ICA. Dy-
namic factor models ([15], [28] and [23]) in spectral-domain, as analogues of PCA, have
been proposed to explain the serial correlations in the latent factors, where the factor load-
ings are derived from an eigen-analysis of the spectral density matrix.

It is ironic that most of these multivariate statistics techniques are applied almost ver-
batim to time series data without adequate accounting of the temporal dependence. This
problem can be solved by dynamic orthogonal component (DOC) method ([41]) which
decorrelates the time series both contemporaneously and serially. It finds an orthogonal
transformation matrix M such that it minimizes the sum of squares of the off-diagonal
entries of the first few lagged autocovariance matrices of the transformed series. Once
M is found, modeling a high-dimensional series is then reduced to analyzing a sequence
of univariate series which is much easier to model and predict, and then the univariate
results are combined and transformed back to a parsimonious model for the original high-
dimensional series.

The mixing matrix M in DOC is parameterized using the Givens angles and finding it
involves solving a non-convex optimization problem. This makes DOC computationally
expensive and hence not suitable for high-dimensional multivariate time series. However,

we show that the recent time series PCA (TS-PCA) method ([17]) which segments a high-



dimensional time series into several lower-dimensional decorrelated subseries, s of great
help in managing the computational bottle-neck. In the following the phrase decorrelated
subseries means that they are uncorrelated both contemporaneously and serially. In this
setting, the subseries are modelled separately using the DOC method by taking advantage
of the substantial dimension reduction. The TS-PCA method is based on an eigenanalysis
of a positive definite matrix defined as a quadratic function of the first few autocovariance
matrices, and can be viewed as a natural extension of the standard PCA for multiple time
series. As in PCA, it finds a time-invariant matrix transforming the series into several
decorrelated subseries, but unlike PCA the subseries have varying dimensions.

Covariance stationarity is a key assumption in developing the statistical theory of the
DOC methodology. However, for many real life examples the stationarity feature is often
violated, and it is common to consider classes of nonstationary models such as locally
stationary and piecewise stationary processes([1] and [19]). For example, [20] and [21]
have considered piecewise AR and GARCH models, respectively, and in [5] the nature of
nonstationarity is due to time-varying covariance matrices of multivariate time series.

The primary contribution of our work is to extend the stationary DOC methodology
in [41] to a high-dimensional nonstationary setup where the series can be segmented into
several locally stationary segments. We rely on a change point detection method in [18]
to divide the whole observed series into several nearly stationary segments, and then DOC
is applied to each segment separately. Our secondary contribution is to ease the computa-
tional burden of DOC for high-dimensional series and potentially replace the nonconvex
optimization in DOC by the eigenanalysis of a positive-definite function as in TS-PCA.
This second goal is nearly achieved by exploring the equivalence or close connection be-
tween DOC and TS-PCA both for in mean and in volatility [16, Section 5].

The outline of the dissertation is as follows: In Section 2 the key ideas and steps

of DOC and TS-PCA methods are reviewed. Also the connection between these two



methods are discussed. A methodology for time-varying DOC (TVDOC) is developed in
Section 3 for a class of multivariate piecewise stationary times series. Asymptotic prop-
erties of the estimators of the Givens angles of the mixing matrices for various segments
are derived under some regularity conditions on the underlying processes. The TVDOC
method is illustrated using simulation and real data where the important role of TS-PCA
is highlighted. Section 4 concludes the dissertation. The technical proofs and additional

information about the numerical examples are provided in the Appendix.



2. DOC AND TS-PCA FOR MULTIVARIATE STATIONARY TIME SERIES

2.1 Introduction

Fitting standard multivariate time series models such as vector autoregressive (VAR)
models to high-dimensional data is challenging statistically due to a large number of pa-
rameters. In the time-domain, dimension reduction methods such as canonical correlation
analysis [14], factor models [46], principal component analysis [3, 48, 9] and independent
component analysis [7] are based on the idea of finding instantaneous linear combinations
of the variables with simpler univariate time series structures. In the spectral-domain, ana-
logues of the principal component analysis (PCA) and factor models have been introduced
by [15], [28] and [23] for stationary and nonstationary time series, respectively, where
here linear combinations may involve current and lagged values of the observed multivari-
ate series.

Dimension reduction via time-invariant linear transformations of a multivariate time
series has the more ambitious goal of extending the classical PCA from sample data to the
(dependent) time series data setup. Its key task is to find a matrix so that the subseries of
the transformed (segmented, vertically partitioned) series are decorrelated [41, 17] in the
sense that they are uncorrelated both contemporaneously and serially. This more stringent
requirement is in contrast to some of the earlier approaches cited above, and those in fi-
nance like the orthogonal GARCH (O-GARCH) [3] and generalized orthogonal GARCH
(GO-GARCH) models [51] where PCA of the marginal (lag-zero) covariance matrix of
the data is used to decorrelate only cross-sectionally a multivariate series of asset returns.
Another related method is the independent component anslysis (ICA) which finds a matrix
such that the linearly transformed subseries are independent cross-sectionally [34].

More formally for any multivariate time series X; = (214, Z24,...,%4:) €ach d x d



autocovariance matrix has O(d*) unknown parameters. Even under the covariance sta-
tionarity assumption estimating all these covariance parameters simultaneously is a chal-
lenging statistical problem. The large number of covariance parameters can be reduced
considerably by assuming that the d-dimensional observed process X, is a time-invariant
linear transformation of ¢ decorrelated latent (unobserved) subseries sgi), 1=1,2,...,q,
of dimensions d;, 23:1 d; = d. This amounts to assuming that there exist an invertible
matrix M and a latent time series s, such that

X, =Ms,, s = (sgl), . ,si‘”)’ with cov(sgi),s(j)) =0, i#7, (2.1)

S

and the sgi)’s are referred to as the decorrelated subseries of X ;. In modeling volatility in

finance, one may require that certain transformations of sgl) ’s are decorrelated, i.e.

cov ((s{”). h(s)) =0, i # 22)

where h(-) is a function acting componentwise on its vector argument. Popular examples
of h(-) are the identity, square and Huber functions, see (2.4).

An important advantage of (2.1)-(2.2) is that regardless of the size of the dimension d,
modeling a high-dimensional series is reduced to the simpler task of modeling ¢ disjoint
(lower-dimensional) subseries. The vector of lower-dimensional models (forecasts) will
then be combined and transformed back to a parsimonious model (forecast) for the original
high-dimensional series X;. We note that whereas the classical PCA always ensures ex-
istence of an orthogonal matrix M and the principal components (PCs) for variables with

finite second moments, existence of IM and decorrelated subseries sgi)’s in (2.1) cannot be

guaranteed due to the additional and stringent requirement of decorrelation of sgi)’s over

time. In the recent literature, there are two important special cases of (2.1) depending on



whether all the latent subseries sgi)’s are required to be univariate or not.

First, when all d;’s are equal to one, then (2.1) reduces to the framework of dynamic
orthogonal components (DOC) in mean in [41] which is still more general than the clas-
sical PCA in that an orthogonal matrix M is found so that the cross-covariances between
any two pairs of univariate DOCs is zero. In this case, we denote a univariate DOC by
si+ to distinguish it from a low-dimensional subseries sgi). As noted earlier existence of
DOC:s is not ensured, however, when they exist as soon as the mixing matrix M is found,
they are computed using s, = M !X, and univariate ARMA or volatility models like the
GARCH(1,1) are fitted to each DOC s; 4, = 1, ..., d, separately. Even though existence
of M and univariate DOCs s;; cannot be guaranteed, still for practical reasons one may
choose an M so that the DOCs s;,’s are as close to being decorrelated as possible.

The orthogonal matrix M in DOC analysis [41, Section 2.3] is parameterized in terms
of the Givens angles and its estimation involves optimization of a nonconvex objective
function defined as the sum of squares of the off-diagonal entries of the first few lagged
autocovariance matrices of the transformed data. It is computationally expensive for di-
mensions as low as five and hence not suitable for high-dimensional time series which are
often encountered in business and economics. This computational challenge might be re-
duced considerably by relaxing the requirement that all the subseries be univariate. In fact,
when some of the d;’s are bigger than one, the setup in (2.1) reduces to the time series PCA
(TS-PCA) method in [17] which has the goal of segmenting a multivariate stationary time
series into several (lower-dimensional) decorrelated subseries. Unlike the DOC method
which finds M by solving a nonconvex optimization problem, the TS-PCA method relies
on eigenanalysis of a positive-definite matrix defined as a quadratic function of the first
few autocorrelation matrices, see (2.11). It is a natural extension of the standard PCA and

the DOC for multiple time series in that as in PCA and DOC it finds an orthogonal matrix

transforming a multivariate series into several decorrelated subseries, but unlike PCA and



DOC some of the subseries could have dimensions greater than one.

The vertical partitioning or the TS-PCA method seems ideal for managing the com-
putational bottle-neck encountered in modeling high-dimensional time series. Dividing
up a large computational problem into several smaller problems opens up the possibility
of parallel computing. In particular, solving the nonlinear optimization problem in DOC
[41, Section 2.6] can be reduced to solving many subproblems of much lower dimensions.
Moreover, after applying TS-PCA to a high-dimensional time series the mere existence
of low-dimensional (non-singleton) subseries is an indication that the time series is not in
DOC, while its leading to all one-dimensional subseries should be taken as the indication
that the time series is already in DOC. In the former case, the low-dimensional subseries
can be partitioned further using the DOC method by taking advantage of the substantial
dimension reduction.

In the following sections, we provide a brief review of DOC and TS-PCA methods
and discuss the connections between them. Recall that their goals are similar, but they use
different objective functions and optimization methods. They transform a multivariate sta-
tionary time series into decorrelated univariate series and decorrelated (low-dimensional)
subseries, respectively. The objective function of DOC is statistically meaningful and non-
convex in M while that of TS-PCA is less so but quadratic in M.

Let Y, be a multivariate stationary time series and J; be the information in its past his-
tory up to and including the current time ¢. The series can be decomposed as Y; = p; + ¢4,
where iy = F(Y|F;—1) is the conditional mean and e, is the serially uncorrelated noise.
Let ¥; = cov(Y}|F;_1) be the conditional covariance matrix of Y, and ¥, = cov(Y;) be
its unconditional (marginal) covariance matrix. The time-varying conditional covariance
matrix YJ; is also referred to as the volatility matrices of the returns of financial assets.
Developing simple and interpretable dynamic models for y; and ¥, is a key goal of multi-

variate time series analysis.



2.2 DOC for stationary time series

In [41] a DOC in mean for p; and a separate DOC in volatility for >); are introduced.
Here we work with X; = Y; — u; or take p; = 0 and focus on DOC in volatility for >3,
unless stated otherwise.

The goal of DOC in volatility is to find a nonsingular mixing matrix M such that the la-
tent time series {s; };_; enjoys quadratic orthogonality in the sense that the autocovariance

matrices

['(¢) =cov(s?,s? ), =0, +1,42,--- (2.3)

are diagonal and cov(s;;S;¢, Sit—¢Sj1—¢) = 0 fori # j and for all lags ¢ = 1,2,---. In
developing the DOC methodology, it is convenient to have the components of X ; uncor-
related at each time point. A way to do this is by setting z, = UX,, where U = A~'/?P’
and A, P are the diagonal matrix of eigenvalues and the orthogonal matrix of the eigen-
vectors of the sample covariance matrix of the data. Then, using (2.1) the latent vector of

DOC:s has the representation

ss=M7'X,=M"'U"z =Wz, where W= (UM)',

which implies that cov(s;) = W cov(z,)W’. Since cov (z;) = I, it follows that the sep-
arating matrix W is an orthogonal matrix provided that cov (s;) = I, which we assume
from here on. When the determinant of W is equal to one, its dy := d(d — 1) /2 free entries
can be reparameterized using the Givens angles [41, Section 2.3], conveniently collected
in a vector 6 of dimension p where its components take value in (—, 7]. From here on,
W is denoted by Wy and s; by s,(0) = Wyz,, to emphasize their dependence on the

vector @, see [41] for more details on the structure of Wy.



Given the time series data X;,¢ = 1,...,n or the zero-mean, uncorrelated z;,t =
1,...,n and a vector function h(-), the sample cross-covariance function of the compo-

nentwise transformed latent process is defined by
ThEO)(¢) = E{h(s,(0))h(s((0))'} — E{h(s:(8))}E{h(si_¢(6))}, £=0,1,2...,

where E() is the sample expectation operator. Ideally, one should choose 0 so that these
covariance matrices are as close to being diagonal as possible at all lags, but here for a
given positive integer m; we restrict attention to a prespecified set of lags ¢ € Ny := {0 <
¢ < my } which always includes the lag 0.

An objective function for estimating Wy or 6 in the modeling time-varying volatility
would naturally rely on the dynamic structure or cross-correlations which amounts to tak-
ing h(s) = s?, namely the square of the entries of the latent vector. However, since asset
returns usually exhibit heavy tails applying the following Huber’s function

s if |s| < ¢,
he(s) = 2.4)

2ls|lc — % if |s| > ¢,

to each s; ; would make the procedure more robust to outliers [41]. We use ¢ = 2.25 in our
computations in Section 4.

To define the objective function, we vectorize and arrange all the off-diagonal elements
of {TRE@)(0)|¢ € Ny} in the vector £,(0) = E{f(z;,0)} where f(z,, 8) is a vector with

entries

§(z1,0) = hi(s,(0) )by (s1-4()) — E{hi(s,(8))} E{h;(s,-(6))}, (2.5)

10



indexed by ¢ < j for £ = 0, and by @ # j for ¢/ > 0. Since the lagged cross-dependence
is typically strongest at lower lags, we use the following larger weights for the lower-lag

cross-covariance matrices:

5y LU/

= — /(do—{—d():[g )fOI‘EGNo,
So(1 — €/ No) teor

where |Ny| is the cardinality of the set Ny and I;.; denotes an indicator function. Arranging

these weights into the following diagonal matrix

@ :diag{gbfn'” a¢€17¢€2a"' 7¢(2a"' 7¢5|N0‘7"' ,gbé\N(ﬂ}’

the objective function is then defined as a quadratic form in the off-diagonal entries of the

cross-covariance matrices:

T (0) = £,(0)®f,(0). (2.6)

~

An estimator of @n is defined as its minimizer: 6,, = argmin,J,,(0). Finally, the separat-
ing matrix is estimated as Wy and the estimated DOC series is given by S = Wj 2.
There are three sources of nonuniqueness in estimating IM and s;, related to the scale,
sign and the order of the DOCs. These stem from the matrix product on the right hand
side of (2.1) where Ms, = MHH™!s,, for any invertible matrix H. The scale of DOCs
can be fixed by assuming cov(s;) = I, then taking H to be a signed permutation matrix
allows identification of the DOCs up to a signed permutation which is sufficient for fore-
casting purposes for several situations discussed in [41, Section 2.4]. In addition, since
the objective function is nonconvex its numerical optimization requires special attention
to avoid getting stuck at the local minima. A way to address this issue is to work with

several initial values in the high-dimensional parameter space as in [47].

11



Existence of DOCs implies that the off-diagonal elements of TR(©)(¢) are zero for
¢ > 0, so that one may develop a Ljung-Box type test for their existence by testing
the hypothesis that all these off-diagonal elements are zero. Let h;;_, = h;(s;—,) and
p} () = corr{hy, hj;_¢} where h(-) is the square function for DOC in volatility. The

null and alternative hypothesis to test for the existence of DOCs are,

H, :pﬁj(é):o, foralli#j,£=0,1,2,--- m; (2.7)

. A h : s
H, :p};(£) #0, for somei# j,{=0,1,2,--- ,m. (2.8)
The test statistic used is
Qy(m) = n¥ic;p};(0)> + n(n + 2) 57, Sigpl (k)2 / (n — k), (2.9)

which under Hy, is asymptotically distributed as a x? distribution with d(d — 1)/2 +
md(d — 1) degrees of freedom [39]. The null hypothesis is rejected for larger values of the

test statistic.
2.3 TS-PCA for high-dimensional time series

Estimation of the mixing matrix in DOC involves nonlinear optimization, is compu-
tationally expensive and hence not suited for high-dimensional data [41]. In this section,
we review the computationally attractive TS-PCA method [17] involving eigenanalysis of
a suitable positive-definite matrix in the spirit of classical PCA. We discuss its potential
connection with and role in reducing the computational burden encountered in DOC anal-
ysis.

To describe the TS-PCA methodology, it is convenient to assume that the two time

12



series in (2.1) are standardized, namely

var(X;) =1I; and var(s;) =1,. (2.10)

For a pre-selected positive integer kg, consider the positive-definite matrix

k‘() k‘l
W, =Y To(k)To(k) =T+ > To(k)Ta(k)', (2.11)
k=0 k=1

where I',(k) = corr(X %, X;) is the cross-correlation matrix of the standardized time
series. In contrast to using nonconvex optimization in DOC, TS-PCA finds the mixing
matrix M in (2.1) by relying on the simpler task of eigenanalysis of the matrix W . Let
I', be the d x d orthogonal matrix of the eigenvectors of W,. Then, the matrix M is
identified as a column-permutation of an estimator of I',. The permutation is designed
to group the transformed series S; = f‘;X ¢+ into a number of decorrelated subseries of
lower dimensions so that the within-subseries correlations are significant while those of
the between-subseries are not. The following is the two-step TS-PCA procedure in [17,
Section 2.2]:

1. Find a consistent estimator of W, and let f‘x be the orthogonal matrix obtained
from its eigenanalysis (spectral decomposition).

2. Obtain the matrix M = (1\7[1, . ,Mq) by permutating the columns of I', so that
S = f‘;X + 1s segmented into ¢ decorrelated subseries as in (2.1).

As for a consistent estimator of W, it is known that for large dimensions d, the sample
autocovariance matrix I', (k) = LS (X — X) (X — X) with X = 157" X, is

not a consistent estimator for I, (k). Consider a regularized estimator such as the threshold
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estimator
by ~(k ~(k
T.(T.(k) = ORI | > ud)ijcroe g,

where u = A(log d/n)'/? is the threshold level and A > 0 is a tuning parameter, /(-) is the
indicator function and ffl;) represents the (i, j)-th entry of ' (k) [12]. Then, the threshold

estimator defined by
Wg:thres) =Ii+ Z Tu(To(k))Tu(Tu(K))',
k=1

is known to be consistent for W, [17, Lemma 8] for a suitable choice of the tuning param-
eter (m, ko, ), where m is the number of lags in the multiple null hypothesis in (2.12).
The consistent estimator above provides an estimator for M up to a regrouping of
its columns. Intuitively, the permutation in Step 2 is found by visually examining the
cross-correlograms of pairs of components of z, = f‘;X +, and putting in the same group
those components which have significant cross-correlations at all lags. This amounts to
obtaining M by rearranging the columns of I, according to the grouping suggested by the
cross-correlograms. Though the idea of visual inspection of pairwise cross-correlations is
not practical for high-dimensional time series, its core insight is used to develop automatic
permutation rules based on certain functionals of the cross-correlations. More precisely,
with p(k) as the lag-k cross-correlation between two component series of z;, we say these

two components are connected if the multiple null hypothesis
Hy : p(k)=0, forany k£ =0,£1,...,+m, (2.12)

is rejected. Evidently, connected components with significant cross-correlation should be-

long to the same group. Thus, the permutation in Step 2 starts with d groups of singletons,
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then two groups are combined if connected pairs in 2z, are split over two groups, and the
process is continued until all connected pairs are united in one group.
A method for identifying the connected pairs using cross-correlations p; ;(h) of the

series Z, for any pair (1 < i < j < d), is based on their maximum,

~

Ln(l,j) = maX‘l|§m|ﬁ1‘7j(Z)‘. (213)

The null hypothesis of significant cross-correlations would be rejected for the (i, j) pair
if this statistic is greater than a specified threshold. To avoid multiple tests for dy =
d(d — 1)/2 pairs, a ratio statistic is used to single out those pairs for which H, will be
rejected. It is based on the rearrangement in descending order: ﬁl > fzg > ... > ﬁdo and

defining 7 as
) L
7 =arg max ——, (2.14)

1<i<eor [

where ¢y € (0,1) is used to guard against dividing by 0. Once 7 is determined, the
pairs corresponding to the first 7 maximum cross-correlations are declared connected or
significantly cross-correlated and groups are formed based on these pairs.

An extension of TS-PCA to segment multivariate volatility processes in [17, Section

5] amounts to applying the above procedure to the target matrix:

W, = Y [E{X,X|I(B)}], (2.15)

BeBi—1

where B;_; is a w-class and the o-algebra it generate is F;_1 = 0(X_1, X2, ). The

target matrix W, is estimated by

n ko n
/\_ 1 / / / 2
B 5 o <
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see [26].
2.4 Connection between DOC and TS-PCA

The connection between DOC and TS-PCA is not evident and has not been studied.
The following result sheds some light on the possible connections between their objective

functions.

Lemma 1. Let { X} be a mean-zero stationary process satisfying X, = Ms,. Then,

(a)
cov(sy, si—¢) = MT,.(£)M'. (2.16)

(b) provided that { X} is Gaussian,we have

cov(s?,s? ;) = 2(MT.(£)M') o (MT,(£)M’), (2.17)

where o denotes the Hadamard product two matrices.

The equivalence between DOC in mean and TS-PCA is immediate from the iden-
tity in (A.1). However, if one could replace the Hadamard product in the identity (A.2)
by the usual matrix product, then the equivalence between DOC in volatility and TS-
PCA for volatility processes would be immediate. Unfortunately, this does not seem
to be possible mostly because of the following observation: A key difference between
DOC in volatility and TS-PCA in volatility lies in their assumptions on the latent pro-
cess s;. Recall that DOC assumes that cov(s?,s? ,) is diagonal for ¢ = 0,+1,+2,...,
and cov(s;;Stj, St—eiSt—e;) = 0 for i # jand ¢ = 1,2,...; while TS-PCA requires the
conditional covariance cov(s;|F;_1) to be block diagonal. Without any additional assump-
tion, these two sets of conditions do not nest each other. When s; follows the multivariate
GARCH model, as pointed out in Matteson and Tsay (2011), the assumption for DOC in

volatility implies that cov(s;|F;_1) is diagonal.
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Nevertheless, we provide further support on their close connections through a simula-
tion study reported in the Appendix. Furthermore, the recent papers by [33] on principal

component volatility (PCV) and the paper by [38] are closely related to this topic.
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3. DOC FOR NONSTATIONARY TIME SERIES

3.1 Introduction

The key assumptions in both TS-PCA and DOC methods are stationarity of the data
and existence of time-invariance of the linear transformations. For many real life exam-
ples, however, the stationarity feature is often violated for reasonably long time series. In
such situations, it is natural and common to work with locally homogeneous or piecewise
stationary processes ([1]). For example, [19] presented a class of nonstationary time series
models with evolutionary spectral representation which can be approximated arbitrarily
closely by AR models with time-varying coefficients. [20] considered piecewise AR pro-
cesses, and then piecewise GARCH and stochastic volatility models in [21]. [37] studied
structural breaks in spectral distribution of piece-wise stationary time series, and [5] con-
sidered change point detections in covariance matrices of nonstationary time series.

We extend the TS-PCA and DOC methods to the nonstationary setup where the se-
ries is composed of several locally homogeneous segments due to changes in its volatility
or other features. The key challenge is the identification of the change points or finding
the locally homogeneous intervals. A parametric approach to the problem will assume a
subjective global model for the series which may lack the flexibility to deal with sudden
changes, see [10]. A local parametric approach due to [43], which assumes that the volatil-
ity process is approximately constant locally but time-varying over longer stretch of time,
is ideal for the problem at hand. It allows developing a data-based method to select the
change-points, the ensuing intervals of homogeniety ([18]) and estimation of the mixing
matrices. Our proposed time-varying TS-PCA and DOC methods combines the merits
of the decorrelating methods restricted by stationarity assumption and the change point

detection method in [18] such that the TS-PCA or DOC could be applied to analyze the
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partitioned stationary segments of the data separately.
3.2 TVDOC for piece-wise stationary data

Stationarity assumption central to DOC analysis [41] may not be tenable in practice es-
pecially for asset returns where there could be drastic structural changes over time. Thus,
it is desirable to study and extend the DOC methodology to nonstationary data where the
mixing matrix is time-varying.

In this section, we propose a time-varying DOC (TVDOC) methodology for multi-
variate piecewise stationary data generalizing the stationary DOC. It relies on a change
point detection method, reviewed in Section 3.2, to divide the whole series into a number
of locally homogeneous segments, and then stationary DOC technique is applied to each
segment separately.

For simplicity, we consider the case where the original series X is standardized with
E(X,;) = 0 and cov(X;) = I, has only one change point at the known time point kg (7).
It is straightforward to generalize the results to the multiple change points situation. Let
us denote the two stationary segments by X ,51) = X, ift < ko(n) and X Ez) = X, if
ko(n) + 1 <t < n, and their angle parameters for each segment by 6, and s,(8;), respec-
tively. Recall that s,(6;) = Wy, X ,Ei) for i = 1,2, and that in TVDOC we estimate 6; by
minimizing the two separate objective functions 7 (8;) = f(8;)®,.f(8;),i = 1,2,
where as before, f@(0;) = Ef(X,,0;) and f(X,,8;) is the vector that stacks up all
the off-diagonal elements in the lagged autocovariance matrices cov(s?(0;),s? ,(6;)). Set

6 = (67,65, 3(0) = (f1(6,), f(8,)'), and let
©@={#2<j<d1<i<j—1, where® e (—m,nl},

be the parameter space and © be a sufficiently large compact subset of ©.
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3.3 Asymptotic properties of TVDOC

In this section, we establish strong consistency of the estimator 8 = (9/1, 9/2)’ in the
TVDOC setup under the Conditions C1-C4 which are similar to those in [41]. Then,
the joint asymptotic normality for (9/1, 9/2)’ is proved using the concept of near-epoch-
dependence for triangular array of random variables. In what follows, 8, = (6, 0;,)’
stands for the true value of the parameter. With suitable modifications, our theoretical
results are still valid when the Huber’s function is used.

C1. There exists unique minimizer 8y; € © for 7 (0),i = 1,2.

C2. The process X Ei) is stationary and ergodic with F|| X S) ||> < oo fori=1,2.

C3. supE|[s;(8)*]]2 < co and sup E|| =" X ]|? < .

0c® 0c®
C4. Wy,, has a unique continuous inverse.

Theorem 1. (Strong Consistency) Under Conditions C'1 — (4, 0 =% 0y as n — .

To establish the joint asymptotic normality for (éll, 9/2)’ , we introduce the concept of
near-epoch-dependence for triangular array of random variables, which is one of the most
general concepts of weak temporal dependence for nonlinear models. Its origin can be
traced to as far back as [35] and it has been widely used in the econometrics literature, see

e.g. [52], [4], and [22] among others.

Definition A triangular array of random variables {X, ;} is Lo-near-epoch-dependent

(Lo-NED) on a triangular array of random variables {U,, ., } if for & > 0,
SUPSUPHXn,t - E[Xn,tlUn,t—k; te 7Un,t+k]|| < U(k)a
n t

and v(k) — 0as k — oo.

Definition A sequence dy is of size —\ if 5 = O(k~*~¢) for some € > 0.
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The following assumptions are imposed to facilitate our theoretical derivations.

C5. lim,, 4 o %

C6. Let s, = s:(001) if t < ko(n) and s, = s.(B02) if t > ko(n). Then, for some

= ¢, for a positive constant c.

r > 2, {s,+} is a triangular array of mean zero random vectors that is Lo-NED of size -1
on an a-mixing base {U,,;} of size —r/(r — 2) and supsng\ |sp4][*7 < o0.

C7. Let §(8o) = (7 (001)', /2 (602’ lim var(y/(680)) = Vo = diag (V1 1, V)
for some positive definite matrix V.

C8. There exists a weakly consistent estimator Vn = diag(\A/'Ll, VQ,Q) for V, namely
\Afn—Vog()asn—Hxx

For i = 1,2, note that f)(8,) is continuously differentiable with respect to 8; on ©.

We denote its matrix gradient by ) (6;) and define the matrices
Gi=F9(0,)0,V;;®,F(0;), H;=F9(0,)0,F"(6;),

and

A, = diag(G;'?, G5 *)diag(Hy, Hs).

Theorem 2. (Asymptotic Normality) Under Conditions C1 — C8, as n — o0,

(91 —6,) D
A, X /n — N (09y,15,), where p :=d(d —1)/2.

(62— 65)

Some remarks on the assumptions are in order: Assumption C5 controls the two seg-
ment lengths so that both grow to infinity. Assumption C6 allows for general serial cor-
relation in s,,; and it accounts for potential heteroscedasticity across different segments
of the latent process. Similar conditions have been considered in the change-point detec-

tion literature, see e.g. [4] and [8]. Assumption C7 ensures the existence of a positive
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definite asymptotic covariance matrix for §(6y). As {s,:} is Lo-NED of size -1, it can
be shown that f()(0,,) and f)(0y,) are asymptotically uncorrelated, which implies the
asymptotic independence between 6, and .. Assumption C8 requires the existence of
a consistent covariance estimator for V, which can be constructed based on the classical
kernel-window estimation.

We note that, in practice, the change point ky(n) is unknown and needs to be estimated
from the data as described in the next subsection. Let /%(n) be a consistent estimator such
that

n~Hk(n) — ko(n)] = o,(1). (3.1)

Then following the arguments in Corollary 1 of [8], we expect that the conclusion in

Theorem 4 remains valid if ko(n) is replaced by k(n).
3.4 Change point detection

Identification of change points or segmenting a nonstationary series into locally homo-
geneous intervals is an important step in the development of TVDOC. There are diverse
change point detection methods in the literature. A parametric approach which usually as-
sumes a subjective global model for the series may lack the flexibility to deal with sudden
changes [10].

We rely on a local parametric approach due to [43] as implemented by [18, Section
2] which assumes that the volatility process is approximately constant locally but time-
varying over longer stretch of time. For our goals here, it leads to an ideal data-based and
sequential testing method to detect the change-points. More specifically, for a given ¢ one
starts with a set of K candidate intervals of increasing lengths of the form I, ;, = (t —my, t]
with my, = mya®, 1 < k < K, with prespecified my and a multiplier a« > 1. The short-
est interval I; is always accepted due its smaller modeling bias relative to others. Next,

for a longer interval I, with & = 1,..., K which nests the previously accepted inter-
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val I; 1, the focus will be on testing the status of the new time points in the interval
Jix = [t — my,t — my_1] as potential change points. A log-likelihood ratio test in [18]
is used to sequentially screen all the new time points in the interval J; ;. One accepts the
interval [, if all the time points are found to be insignificant as potential change point.
The procedure is then continued in the next longer interval until either a change point is
detected or the longest interval I; i is reached. Otherwise, the procedure terminates and
the last accepted interval is selected.

The choice of m, is delicate and it is recommended to be chosen small as compared
to the sample size so that smaller candidate intervals are constructed to capture all poten-
tial change points. In our experience, we found satisfactory results when m, was around

(1/8) of the sample size, and for fixed a = 1.25 and K = 5 as suggested in [18].
3.5 Simulation and data analysis

In this section, we illustrate the TVDOC method and compare its performance with
DOC, PCA and TVPCA using simulated and real datasets with dimensions ranging from
d = 3 to 135. The latter high-dimensional dataset highlights the important role of TS-
PCA as a tool to vertically partition a high-dimensional time series into lower-dimensional

decorrelated subseries suitable for further analysis by the DOC method.
3.5.1 A simulation study

Using a simulation experiment we illustrate the TVDOC methodology and assess its
performance relative to DOC and other methods when the assumption of stationarity or
constant mixing matrix is violated.

We consider the GARCH(1, 1) — ¢, model for each volatility component s;;,i =

1,2,--- ,d, where t,(0,1) denote the standardized Student-¢ distribution with v degrees
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of freedom. The multivariate volatility model for the original time series of innovations is:

e = MSt = MVZ}/QGt,
V, =diag{c?, -, 0%}, e S t,,(0,1), (3.2)

/ 2 2 2
Et — MVtM 5 O—it — w, + Oéisi’t_l + 5i0i,t—17

where w; > 0, and oy, B; > 0 to ensure positiveness of the variances. It is further assumed
that ; > 2 and o; + 5; < 1, to ensure second order stationarity and ergodicity of the
process see [29, Theorem 2.5].

In each simulation experiment for series of length n = 1000, 2000, the DOCs sgl), =
1,...,n/2, and s§2),t = n/2 +1,...,n, are simulated as in (3.2) with v; = 6,w; =
0.01,; = 0.09,8; = 0.90 for « = 1,2. Two fixed d x d mixing matrices M; and M,
are constructed whose entries are iid draws from a standard normal distribution (these
matrices are presented in the Appendix). We set M; = M, for the first n/2 observations
and M; = M, for the rest, denote the first segment of the series as X §1) and the second as
XIEQ), then Xgi) = Misii) fori=1,2.

We use the following Amari metric [6] to assess the performance or accuracy of an
estimator ﬁl with the true M;:

— d 9 d 4
s Sy = 33 (Bl ) s (Sl )
where m;; = (Mli/l\l_l)ij and d is the dimension of a square matrix. It takes values be-
tween 0 and d — 1, and is equal to zero if and only if M; and Ml represent permutations of
the same components. The metric is invariant to permutation and scaling of the matrices,
and is thus ideal for comparing various estimated mixing matrices.

We conduct simulation experiments to assess the performance of the following four
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methods for estimating the mixing matrix IM; for dimensions d = 5, 10 where the change-
point is known to be ky = n/2 + 1. We note that for TVPCA (time-varying PCA) and
TVDOC methods, the mixing matrices 1\711 and 1\712 are estimated separately for the two
segments X El) and X EZ), while the PCA and DOC method are applied to the whole series
X, obtaining a single mixing matrix denoted by M. The notation TVDOC(k) or DOC(k)
in Table 3.1 corresponds to using Ny = {0,1,--- , k} or including the first k lags in the
objective function (2.6). Table 3.1 shows the means and standard deviations of the Amari
errors based on 10000 runs of the simulation experiments. The Amari error here is the
distance between the matrices M; and M, and their estimated counterparts 1\711, M2 for
TVPCA and TVDOC. However, for the PCA and DOC the Amari error is computed not-
ing that A(M;, M;) = A(M;, M), = 1,2.

It can be seen from Table 3.1 that TVDOC method outperforms DOC/PCA/TVPCA

d=5 d=10
n=1000 n=2000 n=1000 n=2000

A(M;, M) | A(My, M) | A(M;, M;) | A(M,, My) | A(My, M) | A(M,, My) | AM;, My) | A(M,, M)

PCA 1.39(0.18) | 1.89(0.22) | 1.43(0.13) | 1.93(0.18) |3.27(0.32) | 3.95(0.44) | 3.24(0.29) | 4.02(0.40)
DOC(1) 121(0.16) | 1.72(0.16) | 1.18(0.22) | 1.69(0.15) | 3.21(0.27) | 3.36(0.45) | 3.18(0.26) | 3.20(0.36)
DOC(2) 127(0.19) | 1.72(0.15) | 1.19(0.18) | 1.74(0.16) | 3.21(0.27) | 3.38(0.52) | 3.25(0.24) | 3.21(0.39)
DOC(3) 1.23(0.17) | 1.77(0.15) | 1.18(0.18) | 1.74(0.18) | 3.30(0.29) | 3.46(0.52) | 3.21(0.30) | 3.29(0.47)
TVPCA 131(023) | 1.79(021) | 1.29(0.26) | 1.83(0.21) | 2.93(0.28) | 3.20(0.29) | 3.01(0.33) | 3.32(0.29)
TVDOC(1) | 0.69(0.16) | 0.72(0.17) | 0.51(0.11) | 0.51(0.10) | 2.18(0.29) | 2.19(0.32) | 1.57(0.24) | 1.55(0.24)
TVDOC(2) | 0.80(0.20) | 0.81(0.18) | 0.55(0.13) | 0.58(0.15) | 2.34(0.30) | 2.42(0.28) | 1.75(0.24) | 1.77(0.29)
TVDOC(3) | 0.83(0.19) | 0.84(0.19) | 0.59(0.16) | 0.61(0.16) | 2.45(0.28) | 2.49(0.29) | 1.90(0.25) | 1.87(0.27)

Table 3.1: Mean (SD) of the values of the Amari error between the true and estimated
mixing matrices of indicated methods, dimensions and sample sizes.

algorithms for different choices of the dimension d and the sample size n. For exam-
ple, when d=5 and n=1000, the Amari measure of 0.69 for TVDOC(1) is about 49.6% of
the measure for PCA, 52.7% for TVPCA and 57.1% for DOC(1). The smaller averages
and standard deviations of the Amari metric for the TVDOC estimator indicate its mixing

matrix estimator is less biased and more stable than the other methods. The better perfor-
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mance of the TVDOC indicates that, for the analysis of nonstationary multivariate time
series, it is plausible to divide the whole time span into several homogeneous segments

and then apply DOC to each segment separately.
3.5.2 Real data analysis

We illustrate the details of implementing TVDOC and TS-PCA methods by analyzing
two real datasets of dimensions 3 (Example 1) and 135 (Example 2), respectively.

Example 1. First, we consider a three-dimensional time series of the daily log returns
in percentage of the S&P 500 Index, Cisco System and Intel Corporation stocks from Jan-
uary 2, 2007 through January 2, 2012, with n = 1259 observations. This dataset is a shorter,
but a more recent segment of the same three series analyzed in [41] and includes data for

2008, the year of financial crisis. The return series plotted in Figure 3.1 show presence of

(a) SP500

2007 2008 2009 2010 2011 2012
year

(b) Cisco

0.1
0.0- Y
01

2007 2008 2009 2010 2011 2012
year

(c) Intel

0.1
0.0-

-0.1-

2007 2008 2009 2010 2011 2012
year

Figure 3.1: Daily log returns of (a) S&P 500 Index, (b) Intel Corporation stock and (c)
Cisco Systems stock. The vertical lines indicate the locations of the two change points.
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volatility clusters where the volatilities generally move together, and as might be expected
there is increased volatility in the fourth quarter of 2008 in each series due to the financial
crisis. We note that the three series are pairwise correlated and their (contemporaneous)
sample correlations are about 0.5. It is expected and we show that TVDOC outperforms
DOC in such a dataset with changing volatility and a nonstationary pattern.

In applying the TVDOC to the data we use the method in [18] for detecting change
points in the series. As noted earlier the number of detected change points depends on
the tuning parameter m,. For example, it segments the time series into two parts over the
time ranges from 1 to 610 and 611 to 1259 when m, = 200, while reducing m, to 150 it
divides the series into three segments over the time ranges 1 to 290, 291 to 656 and 657 to
1259. Note that for the latter segmentation the middle segment has larger volatility while
the other two seem reasonably homogeneous.

A VAR (3) model, with order selected using the AIC with the upper bound of 5, is fit-
ted to the whole series to prewhiten it. Let its residual series be denoted by €; and divided
into three segments €, €, and €3, respectively. The multivariate Ljung-Box statistics
and the p-values for €;; and éit in Table 3.2 reveal that, indeed, the VAR(3) model has
removed the serial correlation, but significant serial correlation remains in the squared
residuals in each segment, indicating conditional heteroscedasticity.

Next, for each €;;,7 = 1,2, 3, we check whether it is already DOC in volatility. In Ta-
ble 3.2, the observed DOC test statistics Qg(éit, 10) for the three segments are very large
relative to a x? with 63 degrees of freedom, indicating that €; ; are not DOC in volatility.
Thus, one may model them as linear combinations of their respective DOCs, namely as
€, = M;s; . To this end, we first decorrelate €, ; using z; ; = Ai_ I/Qf’;éi,t, where Ai and
P, are the diagonal matrix of eigenvalues and the orthogonal matrix of eigenvectors of
their sample covariance matrices, and apply DOC to z;; by estimating the mixing matrix

M; and the DOCs §; ;. For example, the Ljung-Box type test statistic Q3(s7,, 10) = 95.34
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m

segment] 5 10 15 20
; 6221 | 103.81 | 146.23 | 186.81
1 0.05 | 015 | 024 | 035
52 64.69 | 126.75 | 179.66 | 200.99
Lt 0.03 | 0.0l | 0.01 | 0.14
. 58.68 | 98.69 | 140.1 | 180.58
€1t 0.08 | 025 | 036 | 047
2 2442 | 5336 | 69.91 | 80.74
Lt 0.99 1 1 1

segment2 5 10 15 20
; 4931 | 98.85 | 142.41 | 206.43
2t 0.3 025 | 031 0.09
52 210.11 | 390.44 | 585.29 | 717.24
2t 0 0 0 0
. 3093 | 7032 | 104.8 | 1634
2 095 | 094 | 097 | 0.38I
o 4334 | 93.89 | 155.93 | 216.16
2t 0.54 | 0.37 0.1 0.03

segment3 5 10 15 20
; 7499 | 111.52 | 160.69 | 191.73
3¢ 0 0.06 | 006 | 026
52 211.65 | 308.34 | 352.35 | 377.32
3t 0 0 0 0
. 65.51 | 103.99 | 152.43 | 183.76
3¢ 0.02 | 015 | 0.14 | 041
o 4898 | 91.74 | 118.61 | 132.15
3t 032 | 043 | 0.84 1

Table 3.2: Ljung-Box statistics and p-values for (a) the residual and the squared residuals
of the fitted VAR(3) and (b) the standardized residual and their squares of the fitted DOC-
GARCH(1, 1) — ¢t model for S&P 500 Index, Cisco and Intel stock’s daily percentage log-
returns.
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indicates that é%’t is already DOC in volatility. Finally, we apply the GARCH(1,1) — ¢
model in (3.2) to each DOC in each segment, i.e. 5;,,%, k = 1,2,3. Denoting the esti-
mated GARCH residuals for each segment as €, ¢, it can be seen from Table 3.2 that this
TVDOC-GARCH(1, 1) — ¢ model has successfully decorrelated the original time series
X;.

Next, we use Figure 3.2 to compare the performances of TVDOC, DOC, O-GARCH

aaaaaaaa
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Figure 3.2: Conditional standard deviation fitted using 4 different models, TVDOC-
GARCH, DOC-GARCH, O-GARCH and DCC-GARCH for S&P 500 Index daily per-
centage log returns.

([3]) and DCC ([24]) models by fitting them to the three segments of the series, separately.
Figure 3.2 shows the results for the fitted conditional standard deviations for the S&P 500
series, while Figure 3.3 shows the results for the estimated conditional correlations be-
tween the S&P 500 Index and Intel Corporation returns, respectively. A rolling window

correlation estimator with a 6-month window is also plotted for comparison.
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It can be seen from Figure 3.2 that for the conditional standard deviation estimation

Cond Corr by OGARCH Cond Corr by DOC Cond Corr by TVDOC

Cond Corr by DCC
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Figure 3.3: Conditional correlations fitted using 4 different models, TVDOC-GARCH,
DOC-GARCH, O-GARCH and DCC-GARCH for S&P 500 Index and Intel Corporation
daily percentage log returns. A rolling window correlation estimator with a 6-month win-
dow is plotted with brown solid lines.

on the first and second segments of data, the performances of the four models are simi-

lar to each other. Figure 3.2 also shows that on the third segment, the O-GARCH model

performs worse than the other three in the sense that it fails to capture the large volatil-
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ity. For the fitted correlations, the results for TVDOC and DOC are comparable and they
outperform the other two. For example, in the second segment, it can be seen from Fig-
ure 3.3 that the correlations estimated using TVDOC and DOC match up closely with the
rolling window correlation estimator (viewed as a proxy for the true correlation). How-
ever, the conditional correlation fitted by DCC is oscillating slightly around zero and it
doesn’t match up with the rolling window estimator. Figure 3.3 also shows that, for the
third segment, the correlations estimated by TVDOC and DOC match up with the rolling
window estimator more closely than the other two methods.

Next, we illustrate the use of TS-PCA in partitioning vertically a high-dimensional
macroeconomic time series and highlight its potential role in DOC analysis.

Example 2. We apply the TS-PCA to FRED-MD [42], a large monthly macroeco-
nomic data available at research.stlouisfed.org/econ/mccracken. The lat-
est available version is from January 01, 1959 to August 01, 2015, with n = 680 obser-
vations for d = 135 series, with some missing values. The dimension of the series here is
much larger than d = 25 in Example 4 in [16]. We present results for various choice of
the tuning parameters (A, ko, m) appearing in TS-PCA. The tuning parameter A seems to
have the most influence on the number of non-singleton subseries as seen in Table 3.3.

We also assess the impact of kg by fixing A = 2, m = 25 and varying k( from 1 to 5.
The resulting subseries with more than 1 components are shown in the Appendix where
it can be seen that its impact is minimal, only for £y = 3 a four-dimensional subseries

appears in the list.
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A | Time Grouping
1| o014 {115,127}, {116,126}, {122,130},
' {118,124,129}, {125,128},
o {61,125}, {64,126}, {75,128},
' {86,127}, {89,129},
3 011 {17,96}, {37,111}, {47,108}, {56,112},
) {77,106,109,110}, {100,103}, {105,113}
{32,67}, {46,74},
4012 {59,65,66,68,69}, {71,87}
s|o10 {31,39}, {33.41}, {36,38}, {37,108},
' {40,42,65,66,67,68,69,70,71,72}, {107,110}

Table 3.3: Computation times (in minutes) and the non-singleton subseries from applying
TS-PCA to the FRED-MD data, with ky = 5, m = 25 fixed and varying A from 1 to 5.
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4. SUMMARY AND CONCLUSIONS

4.1 Challenges

We have extended the stationary DOC analysis to the high-dimensional nonstation-
ary setup, and have explored the connections between the DOC and the TS-PCA methods.
Computationally, TS-PCA is much faster than DOC, but its objective function is less statis-
tically interpretable than that in DOC. Nevertheless, TS-PCA has the potential to overcome
the computational bottle-neck encountered in optimizing the DOC’s nonconvex objective

function.
4.2 Further study

A number of problems remain unsolved for our proposed method. The first one is
that of existence of the mixing matrix M for a given a high dimensional data series X
or establishing a valid test for deciding when it exists. Only after the test shows that the
series could be grouped into lower-dimensional subseries, one can apply TS-PCA method
to preprocess the data. If it cannot be grouped, then the second question is, how to design
an alternative method to reduce the data dimension and then make it possible to apply the
DOC model? The third problem is that of studying the impact of estimating the change

points on our asymptotic results.
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APPENDIX A

SUPPLEMENTARY MATERIALS

A.1 DOC vs TS-PCA

We illustrate that DOC (in mean and volatility) and TS-PCA are closely related to each
other, such a connection is helpful in replacing the challenging nonconvex optimization
problem in DOC by the simpler eigenanalysis of the two target positive-definite matrices
for TS-PCA in mean and volatility. It is easier to see that DOC in mean and TS-PCA in
mean are doing nearly the same thing, but using different objective functions. However,
connecting the TS-PCA for volatility processes in [16, Section 5] to DOC in volatility does
not seem straightforward. A good starting point might be to apply TS-PCA directly to s?.

First, we assess the tendency of TS-PCA in mean in segmenting a high-dimensional
time series into lower-dimensional subseries. To this end, we simulate multivariate time
series data which are DOC in mean. We use the VAR(2) model s; = C's;_1 + Cys;_o + €
to generate the d-dimensional orthogonal component s; of length n = 500 where e, is a
d-dimensional white noise N (04,1;), and C}, Cy are given diagonal matrices. Then we
simulate data X; = Ms; using a d X d mixing matrix M generated with entries drawn iid
from a standard normal distribution.

For d = 5,10, the simulated coefficient matrices and the mixing matrix are, respec-

tively,

Cl1 = diag(—0.458,0.007, —0.366, —0.242, —0.149),

C2 = diag(0.296,0.263,0.392,0.632, 0.246),

—0.59 0.14 0.06 048 0.22
1.59  1.10 077 044 —0.96
M = |-232 -041 -0.81 035 -110],
0.63 0.05 —084 —0.34 1.22

—-2.25 —-0.24 -0.24 1.85 0.07
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and

Cl1 = diag(—0.009,0.039,—0.185, —-0.053,0.0159, —0.114, —0.076, —0.17, —0.222, —0.308),
C2 = diag(0.259,0.593,0.186,0.509,0.274,0.329,0.251,0.2661, 0.298, 0.228),
078 016 014 -10 087 2.07 0.20 1.02  —-0.61 —0.56
-0.68 -0.11 226 003 -129 024 095 -092 -1.03 1.56
0.71 -0.17 —-094 -121 -145 -0.04 -0.15 091 -1.33 -0.78
-087 051 -1.20 -086 2.07 -0.65 0.10 -1.11 0.67 —1.49
M - 0.18 —0.58 0.81 033 —-1.08 —-226 025 003 —-0.22 0.58

156 031 -1.50 -141 1.15 -0.60 0.03 058 097 -0.83
-2.02 -0.64 -0.03 -0.66 -0.26 -0.95 -043 144 —-0.08 -0.47
-031 -0.24 059 0.34 1.56 -1.70 -0.19 131 -0.01 -0.41

258 056 064 -1.32 -0.07 0.09 -0.13 069 264 —1.35

1.55 0.81 0.89 0.61 —-0.37 -—-124 1.25 0.57 —-0.65 —-1.30

To compare the performance of DOC in volatility and TS-PCA for volatility processes
in [16], we simulate from the GARCH(1,1) — ¢, model for each component s;;,7 =
1,2,--- ,d, with length n = 500, where ¢,(0,1) denote the standardized Student-t dis-
tribution with v degrees of freedom. The two mixing matrices M in (A.1) and (A.1) are
used to simulate the data X; = Ms; for the dimensions d = 5, 10, respectively. TS-PCA
in volatility is applied to obtain the estimate S; of s;. Then we fit a GARCH(1,1) model
to each of the component series of s; and calculate the residuals €;. The simulation is
repeated 1000 times and the tuning parameters for TS-PCA in Volatility are set at m = 25,
A = 2 and ky = 5. The simulation results reported in Table A.1, the average time cost for
the methods during each simulation, the Amari error between the estimated and the true
M for both the TS-PCA and DOC method. It can be seen from Table A.1 that DOC has
smaller Amari errors than the TS-PCA while its time cost is larger than that of TS-PCA.

We also compare the 1-step ahead out-of-sample prediction performances between TS-

PCA and DOC. For volatility methods, during each of the 1000 simulations, we repeat the
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mean volatility

AM,M) | Time [ MSE | AM,M) [ Time |  MSE
d=5

TSPCA | 1.29(0.13) | 0.04 | 5.14(2.32) [ 1.44(0.04) | 0.51 | 127.29(200.11)
DOC | 0.56(0.19) | 0.38 | 4.91(2.15) [ 0.92(0.21) | 0.45 | 97.72(100.49)
d=10
TSPCA [ 3.41(0.19) | 0.07 [ 10.62(2.87) [ 3.47(0.19) | 1.18 | 176.02(120.34)
DOC [ 2.06(0.34) | 6.45 | 10.49(3.08) [ 2.59(0.31) | 6.76 | 179.84(124.56)

Table A.1: The Amari error between the estimated and the true M, the time cost (in sec-
ond), as well as the 1-step ahead out-of-sample prediction mean squared error for the
TS-PCA and DOC methods.

following steps 1 to4 for k =1,2,--- , 5:

Step 1: Apply TS-PCA or DOC to estimate M and §; so that X, = MS, for t =
1,2,--- T — k.

Step 2: In TS-PCA, fit GARCH(1,1) to the m-th segmented subseries égm) if it is uni-

variate and BEKK(1,1) otherwise which is defined as,
cov(3!™|Fi_1) = AgAl + A8 Al + Bicov(s\™) | Fi_) B,

In DOC, fit GARCH(1,1) to each component of s;.

Step 3: Make 1-step ahead prediction using the fitted models and transform back to get
C/O\V(XT_].C_H |~FT—I~:) = MCOV(@T_k_H |}—T—k>M/

Step 4: E(cov(X7—p+1|Fr—k)) = BE(X1—k+1 X 7_py1[F7—5)) = B(X 1 kt1 X 7_p11)5
thus X 7_j1 X7, is a good approximation of E(X r_j1 X7, |Fr—x). Now cal-

culate the mean squared error (MSE) between this approximated conditional covariance
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matrix and the predicted one by,

1 —_—~
ﬁHXT_kHX}_kH — COV(XT—k+1|JrT—k)||§'

Finally, calculate the average of the MSE for the 5 repeats. The method with the
smaller such average has better performance in predicting the conditional covariance. The
prediction procedures for the mean methods are similar. The only differences are that the
GARCH(1,1) is replaced by AR(p), BEKK(1,1) is replaced by VAR(p), with p selected by
AIC and back-transformation is replaced by X T kil = MSs7_y,. The prediction MSEs for
the simulated data mentioned above are listed in Table A.1. It can be seen that for most
of the cases, the out-of-sample prediction performance for DOC and TSPCA are similar.
When d = 5, the performance for DOC in volatility is better than that of TSPCA in volatil-
ity by having a smaller MSE.

Deeper connections between DOC and TS-PCA in volatility is revealed by the fol-
lowing surprising identity involving the covariance matrices of s? and X; and the mixing

matrix M.

Lemma 2. Let { X} be a mean-zero stationary process satisfying X, = Ms;. Then,

(a)
cov(sy, si_p) = MI',(h)M', (A.1)

(b) provided that { X} is Gaussian, we have
cov(s?,s? ) = 2(MT(h)M’) o (ML, (h)M'), (A.2)

where o denotes the Hadamard product two matrices.
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Proof. (a) The conclusion holds since for any 7 # 7,

d d
cov(sii,St—nj) = Esyisi_p; =E [(Z Mz‘,kXt,k> (Z Mj,kXth,k>]
k=1 =1

d d
= S5 MiuME (XX ion)

m=1 n=1

d d
= Z Z Mi,mMj,an(h)m,n

m=1n=1

= [(Miy,--- , Myg)To(h) (M1, -, M;q)].

(b) s, = MX, implies that s;; = ¢, M, » X, ;. Thus,

2 .2
Est,istfh, j

[/ 4 2 /4 2
E (Z Msztk> (Z Mj,kXt—h,k>
=1 =1

[ d d d d
E(D> Y MM X1 Xin > MM X p0Xing

Lm=1n=1 a=1 =1
d d d d
Z Z Z Mi,mMi,nMj,aMj,BEXt,mXt,nXt—h,aXt—h,B

1 n=1 a=1 =1

d d
Z Z Z Mi,mMi,nMj,an,ﬁ (EXt,th,nEXt—h,aXt—h,B

m=1n=1 a=1 =1

EXm X noEXin X npg+EX 0 XiongEX 10 X ha),

where the last equal is based on the conclusion stated in [15, Equation (2.3.8)]. Then we
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index | 2 3 4 5 22 | 23 | 56 | 57 | 58
count | 1 1 1 2 12 | 12 | 12 | 12 | 12
index | 59 | 60 | 65 | 67 | 69 | 70 | 79 | 80 | 84
count | 12 | 12 | 398 | 109 | 1 1 1 1 5
index | 102 | 124 | 125 | 126 | 127 | 131 | 133 | 134 | 136
count | 168 | 1 1 1 1 | 154 | 2 2 42

Table A.2: The index and the number of missing values in the FRED-MD data.

have,

2 2 _ 2 .2 2 B2
COV(St,hStfh,j) = Est,istfh,j _Est,iEstfh,j

d d d d
- Z Z Z Z Mivai»nMﬁaMJ}ﬁ(I‘x(O)m,nrxm)a,/ﬁ

m=1n=1 a=1 =1

+ To(h)mols (h)nﬁ+F (0)m.sT2(0)an)

d d d
o Z Z Z M ;M M oM (F(0)m,n T'2(0)a,8)

m=1n=1 a=1 =1

Thus, the conclusion holds. O]

A.2 More on FRED-MD in 3.5.2

There are 27 series in FRED-MD data that contain missing values, the index and num-
ber of missing values are shown in Table A.2. For each series, we replaced its missing val-
ues by the mean of its observed values, and have used the imputed series in the subsequent
analysis. In Section 4 of the paper, the TS-PCA method was applied to the FRED-MD

data for various choices of the tuning parameter A and fixed m = 25, kg = 5. Here, since
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ko | Time Grouping
{15,120}, {56,116,117},

o {61,123}, {91,125}

{17,126}, {60,128},
2|07 {76,121}, {92,127}
3 | 0.08 {65,128}, {71,125},

(83,119,122,126}, {87,127}

41 0.09 (65,128}

{61,125}, {64,126}, {75,128},
(86,127}, {89,129},

5 | 0.10

Table A.3: Computational times (in minutes) and the resulting non-singleton groups by
applying TS-PCA to the FRED-MD data, with A = 2, m = 25 and k, varying from 1 to 5.

d = 135 is reasonably large it of interest to assess the impact of &k, on the dimensions
of the subseries. We fix A = 2, m = 25 and vary ky from 1 to 5, the resulting subseries
with more than 1 components are shown in the Table A.3. It can be seen that, as in the
low-dimensional cases, the impact of kj is minimal in the sense that the non-univariate
subseries in the table have two components, except for &y = 1, 3 where four-component

and three-component subseries appear in the list.
A.3 Theorems

As f)(8;) is continuously differentiable with respect to 6;, its matrix gradient exists

and is denoted by F(0;) = %. Let () denote the a.s. limit of F()(8y,). Then [41,

Lemma A4 in supplementary material] implies ') exists and F') = E{:% F")(8)|o_q,, }.

Recall that §(0) = (f(0,), f?(0,)), then define G,, = agge(a). Let SO(d) be the
subgroup of O(d) with determinant 1. It is compact and closed under matrix multiplication

and inversion.

Lemma 3. Suppose {U,;} is an a-mixing sequence of size —r/(r — 2). If {X ,+} is Lo-

NED of size —\ on {U,,+} and supsup|| X ,,+|| < oo, then for any £ > 0, { X ,,; X .14} is
n t

Ly-NED on {U,, .} of size —\.
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Lemma 4. Under Conditions C1-C9,

G (0) — G()] “3 .

as n — oo for any Wy € SO(d).

Lemma 5. Under Conditions CI1-C9,

oG (0) a-s. 9G(0)
0 ' o0

(i) As n — oo,

(ii) There exists finite, point-wise, uniform bounds such that

< B, and Hag—gp)

<B
F

‘ ‘ G (6)
00

F

for any Wy € SO(d) and B,, “3 B asn — oo.
Lemma 6. Under Conditions C1-C9, asn — oo, sup |G,(0) — G(0)] =5 0.
WyeSO(d)

Theorem 3. (Strong Consistency) Under C'1 — C4, 0 =% 0y asn,n — ko(n) — oc.

Theorem 4. (Asymptotic Normality) Under C1 — C8, as n — oo,

0, —0
An X \/ﬁ (Al 1) 2} N(02d0712d0)7
(02— 0,)

where dy := d(d —1)/2.
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A.4 Proofs of the results in A.3

Proof of Lemma 3. Let F{X7" = 0(Uyt—m, ++ , Un.t+m) and note that,

| |Xn,tXn,t—Z - E[Xn,tXn,t—AF;jnT,Qg] | |
- ||Xn7tXn,t—€ - Xn,tE[th—A"T_fj:g—%] + Xn,tE[Xn,t—AHfg—zz]
— BX o | FEEX e F om0l + B X | FE R B[ X e FL0 ]

- E[Xn,tXn,t—f |fff$72e] | |

< XX it = X d B[ X oo F/ 0o/

+ X B[ X o FET o] = E[X | FER B[ X e FL o/

+ B FER B X el Fi ] — B[ X na X o F2 0o/l

< Xl [ X e = E[X ol Fm ol

+ X e[ X e = E[X | PR

+ |BEX | P X = Xong X oo FE 00|

< I Xngllvo(m + 0 + | X e—ello(m) + | E[X | F2 0 Xm0 = Xy Xl
< I Xnllv(m +0) + 2[[ X —el[v(m),

where we have used the fact that fffn"f - fffn’;b_%. Therefore, X, ; X, s is Lo-NED of

the same size as { X, ;} provided that supsup|| X, ;|| < oco. O
n t

Proof of Lemma 4. Denote diag(A, B) as the block diagonal matrices where the upper left

and lower right block are matrx A and B, respectively. Notice that

ko

L 0.0) . (1N 0f (@ 0) 1 N Of(x,0,)
Gn= =5 _dlag<k0; 0, ’n—kot:%;l 90, )

Define fV(6:) = L5 Fay,01), fV(0;) = Ef(xs,0,) for 1 < t < ko and

ko £ut=1
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f_T(L2)<92> = ﬁ2?=k0+1 f(xt792)7f(2)(02) = Ef(x,00) for kg +1 < t < n. It suf-

fices to show that as n — oo,

afn a.s. fl)(el) afn a.s. f2)(92)
00, 06, and 207 T ae,

As the proofs for both terms are similar, we consider only the first one. Denote the

(1, 7)-th element of f,sl)(Ql) as
fﬁ = @(Sf,i’ StQ—e,j) = ES?,iS?—Z,j - ES?,zEStQ—e,ja (A.3)

o) _, a5y

56, 56, it suffices to show it only for the first

To show the convergence

term in (A 3) since the proof for the second one is very similar. Defining f gt = s? 15,5 0>

then m =R f,(L’li)J’t. Notice that
1 #(1 /
Ofvase00) _ o [ (0525000 0w,
0010, oWy, 0010 |’
where
71
afT(L,i),j,t<91) _ 2 asf—e,j 4 g2 g as?,i
8W917Z‘/7j/ b 6W917,~/7]—/ t=4 8W91,i/,j/
d
3(Zp:1 Wo, jpTi—tp)” 2 3(Zp:1 WoyipTip)?
ey St . —|— St Z .
* 8W91,i/,j/ i 8W91,i/,j/

2 .y 2 .y
= 28381000 1(J =) + 2874 js0520,51(0 = 1),

and
oWy, 0Qap(01,4

i Q1,2(91,1,2) ce Qafl,b(el,afl,b)MQa+l,b(‘91,a+l,b) T Qdfl,d(‘gl,dfl,d»
a91,(1,17 a6’1,a,b
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1
512”( 1)

Obviously, is a measurable function of {s;}. Also notice that {s,;} is station-

ary and ergodic. Thus it follows from [49, TH 3.5.7] that {8”+t)} is stationary and
ergodic.
Since 57,81 T1—rj0 < 55t + 5(Si-05Ti-05)” < 551+ 5510, T 1T_g - then,

)

1 1 c2
Et@]—i_ Extgj/<oo

1
2
E|St7i8t_£,jxt_[7j | < 2 Est J0 + - 4 4

7
Similarly, E|s7 _, ;¢ 2] < 0o and thus E| 3"” al )|| < oo. Finally, it follows from

[49, TH 3.5.8] that

of"(61) a as. (9f()(91)

00, 00,
0
Proof of Lemma 5. Notice that
o

(01) OWa, iy 5

2 18,5t 1:%1:J1
9 fn At J ledl 5W91 i1 901,a0

(%iw 891 ab

. F5000)  OWa i 5 OWe, i
8W91,11,]1 8W01 12,72 ael,m,b ael,a,b

11,J1,82,J2

+ Z afnz]t 61 a W01,1131
8W91,Z17J1 ag%,a,b ‘

11,71

Notice also that

o211 (0) _ 23(83_z,j3t,ﬂt,j1(i =i1) + 57500, 1(J = 1))
aW@l,ilm aW91,i2,j2 aW@l,iz,]é .
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WLOG, consider only the first term, which could be further written as,

08¢, 0sti 2
t—£,54t01
8W917i27j2 8W917i27j2

= 4$t—€,j23t—f,jst,ixt,j11(i = 21)1(] = 22) + 2[L’t7j282_£7jl't7]‘11(2. = 21)1(2 = 22)

4 St_g’j8t7i$t7j11(ll = 21) + 2 1(2 = Zl)

Also we have,

92y,
ae%,a,b

82Qa,b (el,a,b)
aeia,b

= Q1,2(9171,2) T Qa—l,b(el,a—Lb) T Qd—l,d(el,d—l,d)-

o). . .
5751* is a measurable function of {s;}. Notice that
1,a,b

Thus

Holder’s Ineq c2
Elxi—j,81-0551i%t | < (Elzi—ejo " Elsi—oj*El sl Bl | )" < oo,

Similarly, Bz, ;,s? Thus, B2 fntid®)
imilarly, |z j,8; ,;7¢5,| < oo. Thus, |8‘,[,91’1_1’.71(9”,91

E| 82f7(53,j,t(91)
W, 11,5, We,

—| < oo and also we have
312,72

| < oo. The rest of the proof follows exactly from the proof of Lemma

11,91 112,72

A4 in the supplementary material for [41]. [

Proof of Lemma 6. By applying the results in Lemmas 4-5, the proof follows exactly from

the proof for Lemma AS in the supplementary material of [41]. [
Proof of Theorem 3. [41, Theorem 1] verifies that éi 2% @,;. Thus 0 2% 0. O

Proof of Theorem 4. For clarity, we drop the subscript n in {s,,;} in the proof below. Re-

call that §(0) = (f1V(8,), f?(6,)")" and let

Applying DOC to each segment to estimate 6, and @, is equivalent to solving the
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problem,

0=(01,0,)= argmin (T (0,) + TP (0:)) = argmin  §(0)'V,5(6),
(01,0:)cOxO (01,0:)cOxO

where 7 (8,) is the objective function for the i-th segment. Define

f(Xt,91) 0
(@) = x {1 <t <ko(n)}+ x 1{ko(n) <t <n}.

0 f(Xt702)

Then §(6) = £ >0, 6:(60) + 2= Sr ;1 9:(0). By the mean value theorem, we

have
9(0) = g(60) + G(0)(6 — 60) (A.4)

where G(0) := ag_(:ﬁ and 0 is between 6, and 6. Since G(6)'V,5(8) = 0, multiplying

both sizes of (A.4) by G (9)’ ¥, and rearranging the terms, we obtain

_ax

6 — 6= —(G(8)V,G(87) ' G(67) Vg (60). (A.5)
By Theorem 3, 8 “% 6,. By Lemma 6, we have sup,.@ |G(8) — G(8)] = 0 with
G(8) := E{Z¢:(0)}. Therefore we get
G(87) = G(60)| <IG(O") — G(6)| +1G(8) — G(B)]
< sup |G(6*) — G(6%)| + |G(") — G(6,)| “3 0.
0"c®

Let & := lim ®,, and define ¥ by replacing ®,, with ® in ¥,,. Then 0 — 0, has

n—o0

the same asymptotic distribution as that of —(G(0y)' VG (00)) 'G(0)¥g(0,). Denote
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B = diag(FW'®, F®)'®) and C = diag(FM' @FV FO'®F@). If \/ng(6,) converges

to N (0, Vy), then by (A.5),
(Vn(6; — 001), V(0 — 005)') — C'BVE/*N(0,1).

Notice that A,, — [BVOB'} /2 C under Assumption C8. Then the conclusion fol-

lows from the Slutsky’s theorem.
Below we prove that \/ng(6,) converges to N (0, V). By the Wold-device, it is equiv-

alent to show that for any b = (b, b)),

k()(’n) n
p V1 F(X1,000) + pr V1 > (X 6) (A.6)
ko(n) < n—ko(n) = |
converges to a normal distribution. Recall that for any p € {1,2,--- . d}, E's;,, = 0 and

2 _ a2 . _1 n 2
Es;, = 1, where s, denotes the pth component of s;. Define Fs7, == —; > ", s{ ;.

Then we have

ko(n)
’ 1 ~ ~
W3 (X, 04 k Z ST ool (st,st ., — Bs},Est,)
t=1 O t l+1 (p,gl)EH
ko(n)

qé{ Stpst lqg ) (Sip - 1) - (S?—&q - 1) - 1}

t {+1 (p,g,)EH

NG Z o) {(Es}, Bs?, —1)— (Esp, — 1) — (Es?, — 1) - 1}

(pa,0)EH
n 1 Folm)
1
= ¥ k(n)bf(”)ff\/‘z (1,1,1)(s2,2,, — 1,82, — 1,82 ,, — 1)
(p,g,l)EH t=0+1
— Vn Z b J(Bst, —1)(Bsi, — 1) (A.7)
(g, 0)EH

Let o), := 20\ which is bounded by C5. Since \/n(Es?, — 1) = Op(1) and

ko(n) “p,a.l>
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P,q,¢

(Eszq — 1) = op(1) under C6. Then v/n 3=, nen bV (Es?, —1)(Bs?, — 1) = op(1)

and (A.7) can be rewritten as,

ko(n)
(1,1,1)— Z Z bpqe St pSt0qg— LSt — 1,sp_,,— 1) +o(1).
t +1 (p,q,f)
Letting bt .l = kot )b( ; ¢» the second term of (A.6) can be similarly rewritten as,
(1,1, 1 Z > 0D (87,870, — 1,87, — 18t — 1) +o(1).

t ko(n)+1 (p,q,¢)

Define Z,; = 3, ,nen l;;%;yg(sf’psie’q - 1,87, — 1,87 ,, — 1) if t < ko(n) and
Znt = Y panen 51(374(sips§_£7q — 1,87, — 1,87 ,, — 1) if t > ko(n). Then (A.6) is
equal to (1,1, 1)\/%7 > i1 Zy:. By the continuous mapping theorem, it suffices to show
that - Zt 1 Z 4 1s asymptotically normal.

To this end, notice that F|Z,, ;| < Cr{lpe};c{E(sfpsf_aq)r, E(s7,)", 1} for some positive
constant C. Besides, E(s?,)" < oo and E(sf’s", ) < {E(s{")E(s{r, )}'/? < oo,
where we have used C6 and the Cauchy-Schwarz inequality. Thus, {Z,,;} has finite r-th
moment. By C6, {s,} is Lo-NED on {U,,;}. Applying Lemma 3, {Z,,;} is also L,-
NED on {U,.} with the same size as that for {s;,}. Therefore, by [22, Corollary 1],

\/iﬁ > i, Z,, converges to a normal distribution and the proof is thus completed. [
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