
 

 

 

 

OAK AND PINE PHYSIOLOGICAL RESPONSES TO RESOURCE AVAILABILITY 

 

A Dissertation 

by 

CAITLYN ELIZABETH COOPER  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Georgianne Moore 

Co-chair of Committee,    Jim Muir 

Committee Members, Jim Heilman 

 Cristine Morgan 

 Jason Vogel 

Head of Department, David Baltensperger 

 

May 2017 

 

Major Subject: Agronomy 

 

Copyright 2017 Caitlyn Elizabeth Cooper



 

ii 

 

ABSTRACT 

 

Large-scale drought and fire events result in extensive mortality and shifts in 

species’ ranges.  More research on responses to resource limitations is needed to predict 

species’ success following record disturbance events and in the face of predicted 

increases in weather-related extremes.  Therefore, the effects of resource availability 

were evaluated on 1) gas exchange and carbon allocation of three oak (Quercus) species 

in a controlled precipitation restriction experiment in College Station, TX, USA, and 2) 

loblolly pine (Pinus taeda L.) and oak recovery following the 2011 Bastrop County 

Complex Fire (BCCF), Bastrop, TX, USA. 

Bur (Quercus macrocarpa Michx.; QUMA), Shumard (Q. shumardii Buckley; 

QUSH), and live oak (Q. virginiana Mill.; QUVI) saplings were subjected to two 

watering treatments: 1) watered, which received the equivalent of average weekly 

precipitation and 2) droughted, in which precipitation was reduced by 100%.  Watered 

saplings displayed greater height increases, leaf water potential, and gas exchange rates 

than droughted saplings.  Species differed in gas exchange rates and carbon allocation 

patterns. Live oak was the most drought tolerant, exhibiting 57% greater photosynthesis 

rates than QUSH and QUVI.  Physiological changes associated with senescence and 

winter preparation affected foliar carbohydrate and phenolic content to a greater extent 

than water availability. 

Following the BCCF, differences in vegetation anatomy, physiology, and age 

were found to affect stand recovery and resource use.  Regenerating pines were shorter 
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and less dense in severely burned than moderately burned plots.  Gas exchange and 

pressure-volume results suggested loblolly pine seedlings preferred drought-avoidance 

strategies while resprouting oaks exhibited greater drought tolerance.  Mature pines had 

greater sap flux rates (Js) than oaks, but resprouting oaks had greater Js on average than 

the regenerating pines due to declines in pine seedling Js with reductions in shallow soil 

moisture.  Transpiration was greatest at the moderately burned stand (2.08 mm day-1), 

intermediate at the unburned stand (1.48 mm day-1), and least for the severely burned 

stand (0.46 mm day-1).  Results suggest light to moderate burns may enhance stand 

transpiration through competition release and increased irradiance, while severe fires 

reduce stand transpiration through reductions in vegetation density in the first five years 

after fire. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Natural disturbances are a regular part of ecosystem function, but extreme events 

are becoming more common (Easterling et al. 2000).  An increase in the intensity and 

duration of drought events along with rising global temperatures and decreased 

precipitation is likely to result in species’ range shifts and large-scale mortality events 

(Adams et al. 2009, Breshears et al. 2005).  According to Manion’s (1991) decline spiral 

model, drought may act as inciting factor that ultimately leads to mortality in trees that 

are already stressed by a predisposing factor such as poor edaphic condition or old age. 

Drought-induced tree mortality is an intricate process contingent on several interrelated 

mechanisms, and has been a hot topic in recent literature (McDowell et al. 2008, Van 

Mantgem et al. 2009, Breshears et al. 2009, Allen et al. 2010, Wang et al. 2012, 

Anderegg et al. 2016).  McDowell et al. (2008) suggested hydraulic failure, carbon 

starvation, or a combination of the two, may be major drivers of drought-induced 

fatality.  They hypothesized that hydraulic failure would occur during high intensity 

drought when the inadequate control of water loss results in embolism and irreversible 

desiccation.  Carbon starvation, on the other hand, was thought be the cause of mortality 

during prolonged drought.  Although these hypotheses have gained support, a lack of 

necessary evidence to rule out alternative explanations may be unwise (see Sala et al. 

2010 and references within).  It is important to note as well that the two hypotheses are 

not mutually exclusive and likely interact to drive mortality (McDowell et al. 2011, 
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Anderegg et al. 2012).  Allen et al. (2010) postulated a third mechanism that may prompt 

drought-induced mortality— cellular metabolism limitation.  Allen et al. (2010) 

suggested low tissue water potentials might limit cell metabolism and prevent production 

and movement of carbohydrates and plant secondary compounds needed to defend 

against biotic attack.  

Climate-induced tree mortality has been occurring in mesic regions as well as in 

semi-arid areas, suggesting a rise in temperature may be a greater driver than reductions 

in precipitation (Van Mantgem et al. 2009, Williams et al. 2013).  Increases in 

temperature and VPD may result in prolonged stomatal closure in isohydric species 

which may amplify carbohydrate limitations (Breshears et al. 2009).  Alternatively, 

greater evaporative demand may increase transpiration and risk of hydraulic failure in 

anisohydric species (Allen et al. 2010, Breshears et al. 2013).  Extended warm 

temperatures increase parasite and pathogen populations (Bentz et al. 2010, Dukes et al. 

2009), and weakened trees with a limited carbohydrate supply or multiple embolisms 

might succumb ultimately to these biotic agents (Desprez-Loustau et al. 2006). 

   A warmer, drier climate has resulted in increasing annual fire season length, fire 

frequency and size, and overall burned area in North American forests (Flannigan et al. 

2005, Miller et al. 2009).  Droughts and fire are intimately related.  Droughted trees are 

more vulnerable to mortality from secondary causes, and fuel is drier and more abundant 

due to drought-related leaf and limb loss (Brando et al. 2014).  Increases in large 

standing dead fuel loads as a result of fire suppression over the past century have led to 

greater fire size and severity as well (Pollet and Omi 2002, Miller et al. 2009).  Forest 
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fires alter resource availability through the consumption of vegetative cover, litter, and 

soil organic matter which can contribute to soil erosion and changes in the soil moisture 

regime (Kanarek 2013, Brown et al. 2014).  Vegetation loss coupled with decreases in 

stand transpiration can augment soil moisture and watershed discharge and raise the 

groundwater table (Kanarek 2013, Boggs et al. 2015).    An increase in light reaching the 

soil surface in conjunction with greater soil moisture is likely to promote regrowth. 

However, greater radiation levels reaching the forest floor will also result in greater soil 

temperatures that can actually inhibit regrowth and seedling establishment.  For 

example, loblolly pine (Pinus taeda L.) root growth decreased at temperatures greater 

than 25ºC in a study by Barney (1951).   

 Disturbances, such as droughts and wildfires, and the associated changes to 

resource availability can have differing effects among genera, species within the same 

genus, and individuals in different maturity states within the same species (Cavender-

Bares and Bazzaz 2000, Gracia et al. 2002, Johnstone and Kasischke 2005, Renninger et 

al. 2014, Moore et al. 2016).  For example, droughts in the southwestern USA in recent 

decades have been much more detrimental to pinyon pine (Pinus edulis Engelm.) than 

one-seed juniper (Juniperus monosperma (Engelm.) Sarg.).  Pinyon pine mortality was 

6.5 times greater than juniper mortality in a study by Mueller et al. (2005).  Additionally, 

larger pinyon pines (> 10 cm) experienced at least twice the mortality than small pinyon 

pines (Mueller et al. 2005).  Following the drought of 2011, the driest year on record for 

the state of Texas (Hoerling et al. 2013), Moore et al. (2016) found a greater proportion 

(70%) of dead angiosperms than gymnosperms (30%) in their plots across the state.  The 
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drought also affected larger trees to a greater degree than smaller trees.  Dead 

gymnosperms were on average 19% larger than live gymnosperms, and dead 

angiosperms were 17% larger than live angiosperms on average. 

 Forest fires also often favor the recovery of one species over another, with 

species displaying resprouting, serotinous cones, and/or prolific seeding characteristics 

typically experiencing greater success (Brose and Van Lear 1998, Outcalt 2000, Barton 

2002, Rodrigo et al. 2004, Pausas et al. 2004, Ilisson and Chen 2009).  However, 

reductions in fire frequency and an overall suppression of fire in general, have resulted 

in the replacement of open, park-like expanses of fire-tolerant species by closed-canopy 

forests characterized by shade-tolerant, fire-sensitive species (Nowacki and Abrams 

2008).  Although leaves and litter from fire-sensitive species are less flammable (Kreve 

et al. 2013), the increased density associated with fire suppression in such areas may 

result in fires that are more severe with greater mortality.  

One major reason for the different responses among species in relation to 

disturbance and resource availability is inherent differences in species’ anatomy, and 

subsequently physiology.  Oaks (Quercus spp.) vary in distribution relative to water and 

nutrient availability, but many are well adapted to xeric, nutrient poor sites (Bahari et al. 

1985, Abrams 1990, Johnson et al. 2009).  Oaks are among the most deeply rooting 

species in the world (Davis and Pase 1977, Hinckley et al. 1981, Abrams 1996) which 

helps them maintain high water potentials and gas exchange rates during drought (Kolb 

and Stone 2000, Querejeta et al. 2007).   Oaks are characterized by ring-porous 

sapwood.  They have wide diameter vessels in early-wood and more dispersed, narrow 
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vessels in late-wood (Abrams 1990, Steppe and Lemeur 2007, Taneda and Sperry 2008).  

The larger diameter early-wood vessels are able to move sap quickly, but are more prone 

to cavitation (Tyree and Dixon 1986, Cochard and Tyree 1990).  Water movement will 

continue through the narrow late-wood vessels when the larger vessels cavitate (Granier 

et al. 1994).  This anatomy allows rapid transpiration with high water availability, and 

sustained, although reduced, transpiration during drought (Abrams 1990).  Oaks 

frequently have low osmotic potential at full turgor (ΠFT) and at the turgor loss point 

(ΠTLP), relative water content at the turgor loss point (RWCTLP), and high capacitance at 

full turgor (CFT) and bulk elastic modulus (ε) (Parker et al. 1982, Bahari et al. 1985, 

Aranda et al. 1996), which are thought to further signify drought tolerance (Tyree and 

Hammel 1972, Schulte and Hinckley 1985, Bartlett et al. 2012).   

Similar to oaks, pines (Pinus spp.) cover a wide range globally and many species 

are known for their stress tolerance (Kolb and Robberecht 1996, Hacke et al. 2000, 

Cregg and Zhang 2001).  Many pine species are deep rooted as well, with some reaching 

depths over 7 m (Canadell et al. 1996).  Deep rooting may help some species maintain 

relatively stable water potentials during dry periods (Gyenge et al. 2003).  However, 

pines and other gymnosperms are frequently cited as maintaining water status by using 

drought avoidance strategies like reducing gas exchange when water availability 

decreases (McDowell et al. 2008, McCulloh et al. 2010, Choat et al. 2012).  In studies 

comparing oaks and pines, pines were more sensitive to vapor pressure deficits and 

decreases in soil moisture (Kolb and Stone 2000, Stoy et al. 2006, Ford et al. 2010, 

Meinzer et al. 2013, Renninger et al. 2015), and had lower leaf-level gas exchange rates 
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(Kolb and Stone 2000).  Active sapwood makes up a greater portion of the cross-section 

of non-porous species like pines compared to ring-porous species such as oaks (Phillips 

et al. 1996, Cermak and Nadezhdina 1998).  These larger sapwood areas and year-round 

gas exchange lead to greater annual water use in pines than co-occurring deciduous 

species (Ford et al. 2010, Renninger et al. 2015), even if they are more conservative with 

water use on a leaf-level basis. 

Variations in structure, growth strategies, and leaf habits within species in the 

same genus may result in large differences in success after resource alteration.  The 

Quercus genus, for example, encompasses species that exhibit a wide variety of 

anatomical and physiological characteristics (Cavender-Bares et al. 2004).  The two 

primary groups of Quercus found in North America, red oaks (section Lobatae) and 

white oaks (section Quercus), have distinct ecology, habitat preferences, and wood 

anatomy (Abrams 1990).  During drought events, red oak species exhibited lower 

drought avoidance and tolerance, mean net photosynthesis, leaf conductance, and leaf 

water potential than white oak species (Kleiner et al. 1992, Seidel 1972).  Within the red 

and white oak groups, drought response between species may differ greatly as well.  In a 

study by Ashton and Berlyn (1994), black oak (Quercus velutina Lam.) had the greatest 

stomatal response plasticity and lowest stomatal density while another member of the 

red oak group, northern red oak (Quercus rubra L.), had the lowest response plasticity 

and a high stomatal density.  Such differences likely contribute to the restriction of 

drought-prone northern red oak to mesic sites (Ashton and Berlyn 1994).   The white oak 

group includes some unique semi-evergreen species (e.g. Q. virginiana Mill., Q. ilex L., 
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and Q. geminata Small) that maintain leaves much longer and are reported to have 

greater transpiration and leaf specific conductivity than deciduous oak species 

(Cavender-Bares and Holbrook 2001).  

Different responses between species to disturbance and changes in resource 

availability may shift species composition at disturbed sites (Johnstone and Kasischke 

2005, Moser et al. 2010).  Within the state of Texas alone, we have experienced two 

record disturbance events in the last few years, the 2011 drought and the Bastrop County 

Complex Fire of 2011, the most destructive fire on record in Texas’ history (Rissel and 

Ridenour 2013).  More than 12950 ha and 1.8 million trees were burned in this fire 

(Rissel and Ridenour 2013).  Many areas experienced subsequent erosion and topsoil 

loss.  Nutrient loss was observed with decreases in pond pH and dissolved oxygen 

content (Brown et al. 2014).  Visual evidence of increased soil moisture in the burned 

areas includes new seeps and wetter lowlands.  Cardenas and Kanarek (2014) confirmed 

this by finding greater near-surface soil moisture in heavily burned areas of Bastrop 

State Park, where the majority of trees were killed, and lower near-surface soil moisture 

in areas that experienced low-severity burns and were still populated with pine trees.  

In the wake of these events, we recognize that more research on responses to 

resource limitations is necessary to predict species’ success following these incidents 

and in the face of increased weather-related extremes such as droughts and wildfires in 

the future.  Therefore, the aim of Chapter II was to examine tradeoffs between different 

drought stress responses of Shumard oak (Quercus shumardii Buckley), bur oak 

(Quercus macrocarpa Michx.), and live oak (Quercus virginiana Mill.) in a controlled 
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precipitation restriction experiment under rain-out shelters in College Station, TX, USA.  

Hypotheses included: 1) leaf-level gas exchange of droughted saplings would gradually 

decrease across the growing season with decreases in predawn leaf water potentials and 

soil moisture depletion (Galvez et al. 2011).  2) The three species would differ in their 

responses to water availability, with drought affecting the more mesic Shumard oak the 

most (Seidel 1972, Kleiner et al. 1992) and more xeric live oak the least (Bendevis et al. 

2010).  3) Soluble sugar, non-soluble sugar, and condensed tannin concentrations would 

vary with degree of water stress during drought.  They would likely increase in the early 

stages of drought as the consumption of carbohydrates for growth declines (Anuraga et 

al. 1993, Würth et al. 2005, Ayub et al. 2011).  However, after months of drought, 

limited carbon reserves will likely result in decreased concentrations of soluble sugar, 

starch, and CT (Gutbrodt et al. 2011, McDowell 2011).  4) Saplings recovering from the 

previous year’s drought will have gas exchange similar to that of their watered 

counterparts, since gas exchange rates have increased rather quickly following returns to 

favorable precipitation conditions in other studies (Owens and Schreiber 1992, Loik et 

al. 2007, Duan et al. 2013). 

 Chapters III and IV focused on pine and oak recovery following the 2011 

wildfire in Bastrop State Park, Bastrop, TX, USA.  The primary goal in Chapter III was 

to evaluate how ecological biotic and abiotic legacies might affect the recovery of 

regenerating loblolly pine seedlings.  The primary hypothesis tested was that resprouting 

oaks would have a greater advantage initially over pine seedlings in areas with greater 

resource limitations.  Resprouts have the advantage of utilizing remaining deep root 
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systems from mature top-killed trees, which will help them withstand drought and 

support rapid growth rates through the mobilization of carbohydrates from decaying root 

tissue (DeSouza et al. 1986, Castell et al. 1994). Shallow-rooted regenerating pine 

seedlings may not be competitive with these deep-rooted resprouts for water and 

nutrients.  Secondly, post oak (Quercus stellata Wangenh.) was hypothesized to be a 

better competitor than blackjack oak (Quercus marilandica Muenchh.), as a potential 

indicator of species dominance over time.  White oak species, such as post oak, are more 

tolerant to drought stress than red oak species, such as blackjack oak (Seidel 1972, 

Abrams et al. 1990, Kleiner et al. 1992, Vivin et al. 1993), although exceptions have 

been reported (Wuenscher and Kozlowski 1971, Bahari et al. 1985).   

The aim of the study described in Chapter IV was to determine how burn severity 

affected transpiration through alterations in stand structure and age in mixed pine/oak 

stands following the Bastrop County Complex Fire.  The first hypothesis was that pines 

would have higher Js than oaks (Phillips et al. 1996, Ford et al. 2010, Renninger et al. 

2015), which coupled with their large sapwood area (Cermak and Nadezhdina 1998), 

would result in greater transpiration in stands containing a greater number of pines.  

Resprouting oaks and young pines were hypothesized to have greater daily sap flux per 

unit sapwood than mature individuals of the same species (Yoder et al. 1994, Castell et 

al. 1994, Kolb and Stone 2000, Utsumi et al. 2010).  The final hypothesis was that stand 

level transpiration would decrease in sites with greater burn severities due to reductions 

in vegetation density and total sapwood area (Gharun et al. 2013, Nolan et al. 2014).    
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CHAPTER II 

PHYSIOLOGICAL RESPONSES TO PROLONGED DROUGHT DIFFER 

AMONG THREE OAK (QUERCUS) SPECIES 

 

Synopsis  

Plant physiological responses to water stress provide insights into which species 

may survive exceptional drought conditions.  This study examined how drought affected 

the physiology of three oak species: bur oak (Quercus macrocarpa Michx.; QUMA), 

Shumard oak (Quercus shumardii Buckley; QUSH), and live oak (Quercus virginiana 

Mill.; QUVI).  In June 2014, following a period of equal watering, three-year old 

saplings were subjected to two watering treatments: 1) watered (W), which received the 

equivalent of average weekly precipitation and 2) droughted (D), in which precipitation 

was reduced by 100%.  Changes in growth, leaf water potential, gas exchange, and foliar 

biochemistry (soluble and non-soluble sugar, phenolic, and N content) were monitored 

across the growing season (June – October 2014).  From 11 August– 14 September, I 

implemented a month-long short-term drought in W plots to observe recovery responses 

following re-watering.  Stress responses were evident after only one month of induced 

drought.  Watered saplings displayed 124% greater height increases, 48 and 21% greater 

pre-dawn and midday leaf water potential, respectively, and 39% greater photosynthesis 

rates in comparison to D saplings.  Live oak exhibited 57% greater photosynthesis rates 

on average but similar leaf water potential to QUMA and QUSH.  Droughted QUVI had 

gas exchange rates similar to those of W QUMA and QUSH, and W QUVI adjusted gas 
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exchange rates most to changes in water availability during short-term drought.  Species 

also differed in carbon allocation to carbohydrate and phenolic compounds.  Soluble and 

non-soluble sugar contents were apt to follow changes in soil moisture and gas exchange 

and tended to be greater in W saplings (5 and 11% for SS and NSS, respectively).  

Phenolic contents were not affected by changes in water availability, suggesting control 

by other factors is more important.  Decreases in sugar and phenolic contents in all 

individuals at the last measurement date imply physiological changes associated with 

senescence/winter preparation may trump differences in water availability at this time.  

Differences in species’ physiological responses to drought may result in stand 

composition shifts in the face of future climate alterations. 

 

Introduction 

Although drought-induced plant mortality depends on complex interactions 

among many physiological parameters (i.e., leaf water potential, gas exchange, 

carbohydrate contents), few drought studies document concurrent measurements on 

multiple factors over time.  Those that do often focus on a single species (Galvez et al. 

2011, Duan et al. 2013) undergoing sustained drought without the periodic pulses of 

precipitation that so often offer short reprieves from dry conditions (Sala et al. 1982, 

Loik et al. 2007).  Other studies focus on the linkage of soil water availability to multiple 

leaf level gas exchange parameters, but do not carry the relationship out further to see 

where accrued C is allocated which may be problematic when trying to assess tree health 

from a C storage view (Piper 2011).   
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The carbon starvation hypothesis (CSH) predicts that plant survival during 

drought is contingent on available stores of carbohydrates (McDowell et al. 2008).  

Carbon starvation is a valid mechanism capable of inducing mortality, but recent critics 

warn that prematurely accepting it as the most probable cause of drought-induced tree 

mortality in the absence of hydraulic failure or biotic agents, such as insects or 

pathogens, is unwise (Sala et al. 2010).   Sala et al. (2010) cited a lack of direct evidence 

that trees exposed to drought, but not killed by other mechanisms, ended up dying of 

carbon starvation.  Prior to drought-induced mortality, actual complete depletion of 

stored C reserves mortality has never been confirmed; severe depletion has been 

reported, but never a complete exhaustion (Guehl et al. 1993, Bréda et al. 2006, Arndt et 

al. 2008).  Multiple studies described results that are compatible with McDowell et al.’s 

(2008) hypothesis, but did not provide necessary evidence to rule out alternative 

explanations (Marshall and Waring 1985, Guehl et al. 1993, Bréda et al. 2006, Adams et 

al. 2009).  Water stress does not always lead to decreases in carbohydrate contents either 

(Muller et al. 2011, Piper 2011). Unchanged and increased levels of carbohydrates may 

occur, confirming further that identifying the ultimate cause of drought-induced 

mortality is complex.  Additionally, Sala et al. (2010) pointed out that the CSH 

assumption that plants will continue to operate at optimal levels of C mobilization and 

translocation under drought is likely incorrect in most instances. 

Drought-weakened trees are at greater risk of succumbing to insect attacks or 

disease outbreaks (Mattson and Haack 1987, Allen et al. 2010, Jactel et al. 2012). If 

foliar carbohydrate content and biochemistry shift during periods of drought, plant-



 

13 

 

herbivore interactions could shift as well, causing feedbacks between plant stress and 

vulnerability to herbivory.  Multiple studies have examined relationships between 

drought and plant carbohydrate contents (Arndt et al. 2001, Bréda et al. 2006, McDowell 

et al. 2008, Sala et al. 2010, Adams et al. 2009, Adams et al. 2013) or drought and plant 

secondary compounds for defense (Peñuelas et al. 2004, Llusià et al. 2006, Tharayil et 

al. 2011), but few have monitored both foliar carbohydrate contents and secondary 

compounds in relation to drought (Pääkkönen et al. 1998).  A variety of responses to 

drought have been reported for carbohydrate and secondary compound contents in tree 

and shrub species.  Some studies have reported decreases in carbohydrate contents with 

drought (Bréda et al. 2006, Adams et al. 2013), while others have reported increases 

(Galvez et al. 2011, Muller et al. 2011, Piper 2011).  Studies examining secondary 

defense compound production by trees have also found contradictory results, with some 

reporting increases in relation to drought (Hale et al. 2005, Tharayil et al. 2011) and 

others reporting decreases (Thomas and Schafellner 1999, Lavoir et al. 2009).   

Condensed tannins (CT) are plant polyphenolic secondary compounds that may 

act as a defense against herbivory (Forkner et al. 2004).  Condensed tannins are 

characterized by their astringency, high molecular weights, and ability to bind and 

precipitate proteins, warranting the moniker “protein-precipitable phenolics (PPP)” 

(Hagerman and Butler 1981). Condensed tannin consumption can result in reduced 

insect food consumption, growth, fecundity, and increased mortality (Klocke and Chan 

1982, Grayer et al. 1992, Roberts and Olson 1999, Littlefield et al. 2011).  Condensed 

tannins’ ability to bind with proteins can benefit ruminant wildlife and livestock by 
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enhancing protein digestion and preventing bloat which can prove fatal (Min et al. 2003, 

Min et al. 2005).  This improved protein efficiency would be especially helpful during 

times of drought when livestock and wildlife increase browse intake as little vegetative 

material is available from other sources (Holechek and Vavra 1983, Hall et al. 1992).  

High salivation rates and proline-rich salivary proteins increase condensed tannin 

tolerance of goats and other browsers.  When such browsers consume plants with 

moderate levels of condensed tannins, palatability appears to be independent of 

condensed tannnin presence and concentration (Waghorn 2008; Muir 2011).  Oaks and 

other tannin containing species make up a significant portion of browsers’ diets 

throughout the year (McMahan 1964, Bryant et al. 1979, Wright et al. 2002).  However, 

tannin contents above 5% of the ruminant diet can deter feeding and have negative 

effects on digestibility (Kumar and Vaithiyanathan 1990).  Therefore, diets containing 

high tannin browse must be combined with other feed-stuffs in order to dilute contents 

and reduce deleterious effects.  

This study compared the physiological responses of three oak species to summer 

drought in a controlled setting using rainfall manipulation.  In order to compare 

responses from oak species with a variety of characteristics, I conducted the study on 

one member of the red oak group (section Lobatae), Shumard oak (Quercus shumardii 

Buckley; QUSH), a mesic species, and two members of the white oak group (section 

Quercus), bur oak (Quercus macrocarpa Michx.; QUMA), a moderately xeric species, 

and live oak (Quercus virginiana Mill.; QUVI), a semi-evergreen, xeric species.  These 

Quercus species and others provide numerous services to livestock, wildlife, and 
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invertebrates including browse from leaves, twigs, and shoots, cover and shelter from the 

weather, and places to nest and roost, making their responses to drought and provision of 

services during such a time even more interesting to study (McMahan 1964, Bryant et al. 

1979, Wright et al. 2002, Russell and Fowler 2004, Ober 2011).  Specific objectives 

were to evaluate oak water potential, gas exchange, and C partitioning responses to:  

1) chronic drought across the growing season,  

2) short-term drought recovery during the current growing season and 

3) drought recovery following drought during the previous growing season. 

For the three species in this study, I examined tradeoffs between different drought stress 

responses and made inferences about how leaf carbon dynamics during drought may 

relate to the CSH, species phenology, and/or other biological and climatic factors. 

 

Materials and Methods 

Site Description 

This experiment was conducted on a remnant post oak savanna site (N 30°34″ W 

96°21″, 103 m elevation) in College Station, Texas.  The region has a mean annual 

temperature of 20.5 °C and receives an average 1018 mm precipitation annually (Volder 

et al. 2010, 2013).  Research infrastructure at the site included four permanent 9 × 18-m 

rainout shelters covered with clear polypropylene film and fine mesh shade cloth to 

prevent wind-blown precipitation from entering the two open ends of each shelter.  The 

open shelter sidewalls extending to 1.5 m above the ground surface, coupled with the 

breathable shade cloth, maintained shelter microclimatic conditions as close to ambient 
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as possible while excluding natural precipitation.  Precipitation was simulated in each 

shelter by an overhead irrigation system.  For a more detailed description of the shelter 

infrastructure see Volder et al. (2013).   

 

Long-Term Drought Experiment 

In March of 2012, QUMA, QUVI, and QUSH seedlings were planted in a 9 × 17 

grid pattern containing 153 trees per shelter at 1-m spacing.  The oak seedlings were 

positioned randomly in quarter shelters bordered by water oak (Quercus nigra L.).  Each 

quarter contained eight saplings per species for the three targeted oaks, along with bald 

cypress (Taxodium distichum (L.) Rich.), which was excluded from this study.   

The experiment was divided into two phases. Prior to Phase I, all individuals 

were treated alike.  Phase I took place March 2012 through May 2013 where seedlings 

received watering every other week.  Water was purified using reverse osmosis before 

application.  In June 2013, shelters were divided into paired plots receiving one of two 

treatments: 1) watered (W), receiving the equivalent of natural precipitation and 2) 

droughted (D), receiving 40% of natural precipitation levels.  Twice per month, water 

was applied to W plots in amounts equivalent to the total monthly precipitation received 

by the city of College Station, TX, USA (NWS 2014).  On occasion, watering was split 

into multiple consecutive days per month to allow the water to fully infiltrate the soil.  

From September 2013 to May 2014, all W and D plots received 100% local rainfall 

equivalent watering regardless of treatment in order to recover during the dormancy and 
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green-up period.  The trees were allowed to fully leaf out before reinitiating treatment in 

Phase II.    

Phase II began 14 June, 2014 (DOY 165), and continued until 1 October, 2014 

(DOY 274).  For the remainder of this chapter the arbitrary term “growing season” will 

be used to represent the time period from DOY 165 – 274.  During Phase II, I continued 

to deliver the equivalent of natural rainfall to W plots but stopped delivering water to D 

plots, effectively reducing simulated precipitation by 100%.  Water was last applied to D 

plots on 13 June, 2014.  In one of the four shelters, I applied a third treatment— 

“drought recovery” (Drec) wherein the equivalent of normal precipitation was applied to 

both the previously watered plot and the plot previously droughted in the 2013 growing 

season (Drec plot) in order to determine if prior drought treatment affected sapling 

physiology.  From 14 June until 1 October approximately 477 mm of water were applied 

to W plots.  The natural rainfall in College Station, TX, for the same time period was 

379 mm (NWS 2014).  A greater amount of simulated precipitation was applied from 14 

June to 1 October than natural precipitation in an effort to catch up with year-to-date 

rainfall totals after falling behind earlier in the year.  At the end of the experimental 

period, year-to-date (1 January to 1 October) simulated precipitation totaled 737 mm, 

while year-to-date natural precipitation totaled 769 mm.  

All measurements reported for this study took place during Phase II.  As saplings 

died during the years post establishment, they were replaced with individuals of the 

same species.  However, only individuals which were 3 years old in 2014 were sampled 
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during this study.  Saplings located within plot perimeters were also excluded as a buffer 

against edge effects.   

 

Short-Term Drought Recovery Experiment 

To test recovery responses from short-term drought in the watered saplings, 

water was withheld from the W plots beginning on DOY 223 (11 August, 2014) for 34 

days before applying water again on DOY 257 (14 September, 2014).  Between DOY 

224 and 254, ΨPD was reduced by 118% in the W plots. 

 

Measurements 

Soil Volumetric Water Content 

To monitor soil moisture, volumetric water content was logged (θ) every 2 hours 

by permanently installed EC-5 Dielectric Aquameter sensors (Decagon Devices, Inc., 

Pullman, WA) located at 10-, 30-, and 60-cm depths.  One sensor was installed at each 

of the three depths on both east and west sides of each half shelter for a total of six 

sensors per half shelter.  Volumetric water content at each depth for a half shelter was 

calculated by averaging the respective east and west sensors.   

 

Sapling Height and Diameter  

Height and stem diameter measurements were collected on all saplings in early 

June 2014 prior to re-implementing watering treatments in Phase II, and again in 

October 2014 at the end of the second growing season.  Stem diameter was measured at 
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the base of the saplings at ground level, and height was measured at the terminal bud.  I 

determined the percent increase of height and diameter from May to October for all 

individuals excluding those in half shelter perimeter rows and columns. 

 

Leaf Water Potential 

Beginning on DOY 169, I measured predawn (ΨPD) and midday (ΨMD) leaf water 

potential using a Scholander-type pressure chamber (PMS Instrument Company, Albany, 

OR USA) every 3 to 4 weeks no later than 5 days following a watering event to ensure 

that saplings had sufficient water to function at full capacity, except during the short-

term drought experiment.  Measurements were made between 500-700 h and 1100-1400 

h for ΨPD and ΨMD, respectively.  Within each shelter, measurements were collected on 

QUMA and QUSH leaves and QUVI twigs selected from the upper half of the canopy 

from two trees per species per plot.  QUVI twigs with an average of 4 leaves each rather 

than individual leaves were selected since the small diameter and short length of petioles 

of this species’ leaves makes measuring leaf water potential on a single leaf difficult.   

 

Midday Gas Exchange  

Leaf gas exchange measurements were performed using a LI-6400 infrared gas 

analyzer system (LI-COR Inc., Lincoln, NE, USA).  Rates of photosynthesis (A), 

transpiration (E), and stomatal conductance (g) were measured on relatively cloud-free 

days within 3 days of leaf water potential measurements on three trees per oak species 

per plot in each shelter.  Leaves selected for measurements were fully expanded, sun lit, 
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and located at the outer portions of branches in the upper half of the canopy.  All gas 

exchange measurements were made between 1100-1430 h at ambient temperature at a 

fixed PAR of 2000 µmol m-2 s-1, air flow of 500 µmol s-1, and CO2 of 400 µmol mol-1.  I 

took measurements after steady state conditions were reached, as indicated by stability 

of gas exchange parameters. 

 

Soluble Sugar 

Leaves were collected for soluble sugar, starch, CT, C, and N analyses within 

one week of midday gas exchange measurements.  Within each treatment plot in every 

shelter, one leaf from each of nine trees per species for QUMA and QUSH and seven 

leaves from each of nine QUVI trees were composited within species in order to accrue 

sufficient dry matter material to perform laboratory analyses.  I collected leaves from the 

upper half of the canopy and immediately placed them in a cooler.  Samples were dried 

at 105°C for 30 minutes to stop enzymatic activity and then dried to constant mass at 

75°C for 48 hours in a forced-air oven.  Following drying, leaves were ground in a sheer 

mill (Wiley Arthur H. Thomas Co., Philadelphia, PA, USA) and the samples stored at 

room temperature until analysis.   

Foliar soluble sugar (SS) contents were analyzed following the anthrone method 

described by Rose et al. (1991) and modified by Olano et al. (2006).  Soluble sugars 

were extracted from 60 mg of dried material with 3 ml of 80% ethanol in a water bath at 

80°C for 30 minutes.  The extract was centrifuged at 5,000 rpm for 10 minutes and the 

supernatant collected for sugar determinations.  This process was repeated twice for a 
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total of three extractions, and the supernatants were combined.  Three ml of anthrone 

reagent were added to 300 µl of combined supernatant and heated for 15 minutes at 

100°C.  After cooling to room temperature, sample sugar content was determined by 

measuring the absorbance at 620 nm on a microplate reader (BioTek Instruments, Inc., 

Winooski, VT, USA).  Absorbances were regressed against readings from a set of 

standard glucose solutions, and SS contents were calculated on a dry matter basis. 

 

Non-Soluble Sugar 

Following the extraction of soluble sugar, I evaporated any excess ethanol and 

added 3 ml of 35% perchloric acid to the dried material to extract non-soluble sugar.  

After samples were placed on a shaker table for 1 hour, the extract was centrifuged at 

5,000 rpm for 10 minutes.  Following the soluble sugar procedure above, 3 ml of 

anthrone reagent was added to 300 µl of the extract and heated at 100°C for 15 minutes.  

After cooling to room temperature, non-soluble sugar (NSS) content was determined by 

measuring the absorbance at 620 nm.  Absorbances were regressed against readings from 

a second set of standard solutions of glucose, and a correction factor of 0.9 was used to 

convert glucose equivalents to starch (Libby 1970).  Non-soluble sugar contents were 

calculated on a dry matter (DM) basis. 

 

Condensed Tannin Purification 

Following Naumann et al.’s (2014) modification of Wolfe et al.’s (2008) method, 

condensed tannins were purified for subsequent use as a standard from each species 
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using Sephadex LH-20 (GE Healthcare Bio-Sciences Corp., Piscataway, NJ).  Plant 

tissue (20 g DM) was extracted with 250 ml of 7:3 (v/v) acetone:water.  The aqueous 

portion containing CT was saved and residual acetone removed by evaporation under 

reduced pressure.  The extract, along with enough 1:1 (v/v) methanol:water to form a 

slurry, was mixed with Sephadex LH-20.  The slurry was washed with 1:1 (v/v) 

methanol:water repeatedly until the absorbance at 280 nm was negligible (absorbance ≤ 

0.10).  Condensed tannins bound to the Sephadex LH-20 were released by washing with 

7:3 (v/v) acetone:water.  Residual acetone was evaporated.  The aqueous portion 

containing CT was then frozen at -80 °C and lyophilized.  The purified CT were used to 

develop species-specific standards for the protein-precipitation assays (Wolfe et al. 

2008).  

 

Protein Precipitability 

Protein precipitability of CT was determined using the method described by 

Hagerman and Butler (1978).  Duplicate crude plant extracts were prepared from 

composite samples of each species by extracting 50 mg of plant tissue with 1 mL 1:1 

(v/v) methanol:water on an orbital shaker (G10 Gyrotory® shaker, New Brunswick 

Scientific Co., Inc., Edison, NJ) for 30 min followed by centrifugation for 5 min at 

16,070 x g.   

 To determine protein-precipitable phenolic (PPP) contents and the amount of 

protein bound by PPP, I combined 250 µl buffer A (0.20 M acetic acid, 0.17 M NaCl, 

pH 4.9), 50 µl bovine serum albumin (BSA) (5 mg ml-1 in buffer A), and 50 µl 1:1 (v/v) 
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methanol:water with 50 µl of supernatant from each crude extract and incubated the 

mixture at room temperature for 30 min before centrifuging at 16,070 x g for 5 min. I 

removed the supernatant by vacuum aspiration and washed the protein-phenolic pellet 

with 250 µl buffer A before re-centrifuging and aspirating.  The protein-phenolic pellet 

was then dissolved in 800 µl of SDS/TEA [sodium dodecyl sulfate (1% w/v)-

triethanolamine (5% v/v)] before adding 200 µl FeCl3 (0.01 M FeCl3 in 0.01 M HCl).  

Absorbances were read at 510 nm after 15 min and values were converted to PPP 

contents using standard curves developed for the individual species. 

 Naumann et al.’s (2014) method was used to determine the amount of protein 

bound by PPP.  The procedure was executed as described above, except the protein-

phenolic pellet was analyzed for N to quantify grams of precipitated protein per gram of 

PPP.  Instead of dissolving the protein-phenolic pellet in SDS/TEA, I dissolved the pellet 

in 500 µl of buffer A, and transferred the solution to a foil cup to dry.  A Vario MACRO 

C-N Analyzer (Elementar Americas, Inc., Mt. Laurel, NJ) was used to assay the dried 

protein-phenolic residue for percent N, which was multiplied by 6.25 (Van Soest 1994) 

to calculate protein bound by PPP.  Foliar percent N for the three species was also 

determined using the Vario MACRO C-N Analyzer. 

 

Statistical Analyses 

Statistical tests for treatment effects on leaf water potential, gas exchange, and 

biochemical parameters were performed using linear mixed-models (proc mixed 

procedure, SAS 9.4, SAS Institute Inc., Cary, NC, USA) with a repeated measures and 
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random effects covariance structure.  The effects of species, treatment, day of 

experiment, and their interactions were tested, and individual saplings within species in 

respective treatments and shelters were treated as subjects in models.  Models for testing 

growth variables did not include repeated measures statements or day of experiment 

since I analyzed percent increase of height and diameter between two points, June and 

October, rather than repeated monthly measurements.  Final model selection was based 

on corrected Akaike information criterion (AICC).  When significant effects were 

detected in the model, the LSMEANS statement in SAS was used to estimate means. 

Differences between means were adjusted using Tukey’s HSD post-hoc analysis.  

Differences were considered significant at P ≤ 0.05.   

Volumetric water content at 60-cm depth was tested as a covariate since slight 

differences in irrigation system application (i.e. amount of water applied by systems in 

individual shelters during a given watering period) (Figure 1) were observed.  When 60- 

cm depth θ affected response variables (based on lowest AICC) it was included in final 

models to adjust for differences in θ.    Most response variables, with the exception of 

PPP and NSS contents and protein bound by PPP, were affected by differences in θ, as 

evidenced by low AICC values.  These three response variables were analyzed with    

ANOVA models testing species, treatment, day of experiment, and their interactions as 

factors.  Greater AICC values for models including θ for NSS and PB which had 

treatment interactions (treatment x day and treatment x species x day for NSS and PB, 

respectively) suggest slight differences in θ within treatments were miniscule compared 

to overall treatment effects on these variables.  Treatment had no effect on PPP contents.
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Figure 1.   Average daily volumetric water content (θ; cm3 cm-3) at 60-cm depth for droughed and watered halves of each   

shelter from 14 June (DOY 165) to 1 October, 2014 (DOY 274).
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Figure 2. Average percent increase in a) height and b) diameter of droughted and 

watered bur oak (QUMA), live oak (QUVI), and Shumard oak (QUSH) saplings from 

June – October 2016.  Vertical lines represent standard errors.  Different uppercase 

letters (A) denote differences (P ≤ 0.05) among species within a particular treatment.  

Different lowercase letters (a) denote differences (P ≤ 0.05) between treatments within 

each species. 

 

 

 

Statistical testing of response variables within the drought-recovery shelter 

followed a similar procedure as above.  Individual saplings within species within a 

treatment (Drec vs. W) were treated as subjects within models.  Fully-reduced models 

(two-way ANOVA) with species, day of experiment, and their interaction as factors 
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were used to analyze response variables.  Models containing θ at 60 cm as a covariate 

had higher AICC values and were not utilized: treatment had no effect on any response 

variable. 

 

Results 

Height and Diameter 

On average, height and diameter increased by 23% and 25%, respectively, 

throughout phase II, but increases in W saplings were more than double that of D 

saplings.  In the D plots all three species had similar height growth, but in the W plots 

QUVI had faster height growth than QUMA and QUSH (Figure 2a) (treatment × species 

interaction).  Although diameter growth was greater on average in W plots, percent 

diameter increase was not significantly greater for any species (P = 0.07) or treatment (P 

= 0.10) (Figure 2b).  

 

Leaf Water Potential  

At the beginning of the experiment, all individuals displayed similar ΨPD and 

ΨMD (Figure 3) (treatment x day interactions).  By DOY 196, watering treatment effects 

were evident as D saplings had 0.45 MPa and 0.49 MPa, respectively, more negative 

ΨPD and ΨMD than W saplings.  The W saplings continued to have greater ΨPD and ΨMD 

than the D saplings until DOY 274.   The peak effect of the watering treatment occurred 

at DOY 224 when the ΨPD and ΨMD of D saplings were 1.11 MPa and 0.79 MPa, 

respectively, lower than those of the W saplings (Figures 1, 3).  As a result of the short- 
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Figure 3. Predawn (ΨPD) (a) and midday (ΨMD) (b) leaf water potential of droughted and 

watered saplings at multiple dates across the growing season. Vertical lines represent 

standard errors.  Different uppercase letters (A) denote differences (P ≤ 0.05) between 

treatments on each measurement date. Different lowercase letters (a) denote differences 

(P ≤ 0.05) among measurement dates within a particular treatment. 
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Figure 4. Net photosynthetic rates (A) of a) droughted and watered and b) bur oak 

(QUMA), live oak (QUVI), and Shumard oak (QUSH) saplings at multiple dates across 

the growing season and c) the interaction of species and treatment averaged across the 

growing season. Vertical lines represent standard errors.  Different uppercase letters (A) 

denote differences (P ≤ 0.05) between treatments (Fig. 4a) or species (Fig. 4b) on each 

measurement date and among species within a particular treatment (Fig. 4c).  Different 

lowercase letters (a) denote differences (P ≤ 0.05) among measurement dates within a 

particular treatment (Fig. 4a) or species (Fig. 4b) and treatments within each species 

(Fig. 4c). 
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term drought experiment, W saplings’ ΨPD and ΨMD values dipped (0.46 and 0.18 MPa), 

but were still greater than D saplings.  Following re-watering, W ΨPD and ΨMD recovered 

to pre-micro-drought levels.  Droughted saplings’ ΨPD and ΨMD rose toward the end of 

the experiment as well; on DOY 274, D and W saplings exhibited similar ΨPD and ΨMD.  

All three species had similar ΨPD and ΨMD within their respective treatments. 

 

Midday Gas Exchange 

 On DOY 169, all individuals exhibited similar A, E, and g regardless of treatment 

(Figures 4a, 5a, 6) (treatment × day interaction for A and E, treatment × species × day 

interaction for g).  Similar to leaf water potential, W saplings demonstrated greater gas 

exchange approximately 1 month after initiating treatment (Phase II), and the full effect 

of treatment was seen around 2 months into the experiment. Species differences were 

evident within one month as well when QUVI began to pull away from the other two 

species (Figures 4b, 5b, 6).  By DOY 224, QUVI had at least 62% greater A and 53% 

greater E than QUMA and QUSH when the differences between D and W θ were 

greatest as well.  Stomatal conductance followed a similar trend.  Due to the month-long 

short-term drought (Figure 1), gas exchange decreased in W saplings to levels similar to 

those of D saplings on DOY 254 (Figures 4a, 5a, 6).  All species had similar gas 

exchange at DOY 254 as well (Figures 4b, 5b, 6). By DOY 274, A and g of watered 

saplings were back to pre- micro-drought levels, and QUVI had the greatest gas 

exchange rates again.  Watered E increased 22% after DOY 254, but did not reach pre-

micro-drought values.   
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Figure 5. Transpiration rates (E) of a) droughted and watered and b) bur oak (QUMA), 

live oak (QUVI), and Shumard oak (QUSH) saplings at multiple dates across the 

growing season and c) the interaction of species and treatment averaged across the 

growing season. Vertical lines represent standard errors.  Different uppercase letters (A) 

denote differences (P ≤ 0.05) between treatments (Fig. 5a) or species (Fig. 5b) on each 

measurement date and among species within a particular treatment (Fig. 5c).  Different 

lowercase letters (a) denote differences (P ≤ 0.05) among measurement dates within a 

particular treatment (Fig. 5a) or species (Fig. 5b) and treatments within each species 

(Fig. 5c). 
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Figure 6. Stomatal conductance rates (g) for treatment by species interactions of 

droughted and watered bur oak (QUMA), live oak (QUVI), and Shumard oak (QUSH) 

saplings at multiple dates across the growing season.  

 

 

 

Bur oak and QUSH gas exchange rates were usually similar in both treatments 

and were generally lower than those of QUVI within their respective treatments (Figures 

4c, 5c, 6).  Gas exchange rates of W QUMA and QUSH were also relatively unaffected 

by the micro-drought; these species typically had low gas exchange rates across the 

entire experiment.  Watered QUVI exhibited the greatest gas exchange rates, and D 

QUVI’s gas exchange rates were comparable to those of W QUMA and QUSH.   

 

Soluble Sugar 

 

I did not detect differences between D and W sapling SS across the growing 

season, but contents tended to follow increases and decreases in soil moisture content 

and gas exchange until DOY 274 (Figure 7a) (no treatment × day interaction).  Although  
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Figure 7. Soluble sugar (SS) content of a) droughted and watered and b) bur oak 

(QUMA), live oak (QUVI), and Shumard oak (QUSH) saplings at multiple dates across 

the growing season. Different uppercase letters (A) denote differences (P ≤ 0.05) 

between treatments (Fig. 7a) or among species (Fig. 7b) on each measurement date. 

Different lowercase letters (a) denote differences (P ≤ 0.05) among measurement dates 

within a particular treatment (Fig. 7a) or species (Fig. 7b). 
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gas exchange rates increased to pre-micro-drought levels following re-watering (Figure 

1), SS of W saplings decreased 24% to the lowest contents of the season.  Soluble sugar 

contents of D saplings also decreased 24% at this time.  Soluble sugar contents were 

greatest in QUSH, intermediate in QUVI, and lowest in QUMA across the entire 

experimental period (Figure 7b) (species × day interaction).   All three species reduced 

leaf SS contents at the end of the growing season. 

 

Non-Soluble Sugar 

Although significant differences between D and W saplings were only detected 

on DOY 224 (corresponding with peak water content and gas exchange differences), 

NSS contents tended to be greater in W saplings across the growing season (Figure 8a) 

(treatment × day interaction).  Non-soluble sugar contents dropped 48% in W saplings 

from DOY 224 to 254, likely as a result of low soil moisture at this time.  Plants often 

convert NSS to SS for use in osmotic adjustment and to sustain exports and metabolism 

during times of stress (Wang and Stutte 1992, Dickson and Tomlinson 1996, Arndt et al. 

2001).  Non-soluble sugars were also at their lowest contents in D saplings at this time.  

Non-soluble sugar contents remained low in both W and D saplings at DOY 274.  

QUMA generally had high NSS contents followed by QUSH and QUVI respectively, 

but differences between the species were significant only on DOY 224 (Figure 8b) 

(species × day interaction).   
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Figure 8. Non-soluble sugar (NSS) content of a) droughted and watered and b) bur oak 

(QUMA), live oak (QUVI), and Shumard oak (QUSH) saplings at multiple dates across 

the growing season. Different uppercase letters (A) denote differences (P ≤ 0.05) 

between treatments (Fig. 8a) or among species (Fig. 8b) on each measurement date.  

Different lowercase letters (a) denote differences (P ≤ 0.05) among measurement dates 

within a particular treatment (Fig. 8a) or species (Fig. 8b). 
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Figure 9. Protein-precipitable phenolic (PPP) content of a) droughted and watered and b) 

bur oak (QUMA), live oak (QUVI), and Shumard oak (QUSH) saplings at multiple dates 

across the growing season. Different uppercase letters (A) denote differences (P ≤ 0.05) 

between treatments (Fig. 9a) or among species (Fig. 9b) on each measurement date.  

Different lowercase letters (a) denote differences (P ≤ 0.05) among measurement dates 

within a particular treatment (Fig. 9a) or species (Fig. 9b). 
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Protein-Precipitable Phenolics 

 Protein-precipitable phenolic contents of D and W saplings followed a similar 

pattern across the entire experiment (Figure 9a) (no treatment × day interaction).  

Contents were high initially, dropped at DOY 196, increased again until DOY 254, and 

then declined again at the end at DOY 274.  Contents were greatest in QUMA and QUVI 

and least in QUSH on every measurement date (Figure 9b) (species × day interaction).  

 

 

 

Figure 10. Amount of protein bound (PB) by PPP for treatment by species interactions of 

droughted and watered bur oak (QUMA), live oak (QUVI), and Shumard oak (QUSH) 

saplings at multiple dates across the growing season.  
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Protein Bound by Protein-Precipitable Phenolics 

The amount of protein bound by PPP approximately followed the pattern of PPP 

content in reverse: increasing at DOY 196, decreasing to DOY 254, and then increasing 

again at DOY 274 (Figure 10) (treatment × species × day interaction).  Droughted and W 

saplings typically followed the same pattern within each species.  Similar to PPP 

content, amount of protein bound was normally greatest in QUMA, intermediate in 

QUVI, and lowest in QUSH.   

The PB:PPP ratio of D and W saplings followed a similar trend as protein bound 

across the experiment period (Figure 11a) (treatment × day interaction).  The PB:PPP 

ratio of all three species were similar on all measurement dates, except DOY 224 (Figure 

11b) (species × day interaction).  

 

Nitrogen Content 

 Nitrogen content did not follow any particular trend across the growing season 

(Figure 12) (treatment × species × day interaction).  Shumard oak had 2 mg g-1 greater N 

content on average than QUMA and QUVI.  On each measurement date, N content was 

similar between W and D saplings within each species. 

 

Drought-Recovery Experiment 

Individual saplings within the Drec treatment behaved similarly to their 

continuously W associates in gas exchange, ΨPD, and ΨMD (data not presented here).  At 

the initiation of phase II, individuals within the continuously W plot of this shelter had  
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Figure 11. PB:PPP ratio of a) droughted and watered and b) bur oak (QUMA), live oak 

(QUVI), and Shumard oak (QUSH) saplings at multiple dates across the growing season. 

Different uppercase letters (A) denote differences (P ≤ 0.05) between treatments (Fig. 11a) 

or among species (Fig. 11b) on each measurement date.  Different lowercase letters (a) 

denote differences (P ≤ 0.05) among measurement dates within a particular treatment (Fig. 

11a) or species (Fig. 11b). 
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Figure 12. Leaf percent N for treatment by species interactions of droughted and watered 

bur oak (QUMA), live oak (QUVI), and Shumard oak (QUSH) saplings at multiple dates 

across the growing season.  

 

 

 

greater heights and diameters than individuals in the plot converted from D to Drec.  

Although percent height and diameter increases across the 2014 growing season between 

W and Drec individuals were similar, Drec individuals remained shorter and smaller in 

diameter due to their previous drought exposure.  The larger overall size (height, 

diameter, crown area) of continuously W individuals may have contributed to the greater 

dry-down in the W plot than the Drec plot in this shelter (Figure 1).  Live oak’s 

photosynthesis rates were 55% greater than those of QUMA and QUSH on average, 

reflecting the results seen in the other three shelters.  E and g were also greater for 
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QUVI.  The three species did not differ in ΨPD or ΨMD.  Gas exchange and leaf water 

potential trends followed changes in θ over time.  Biochemical parameter values were 

similar to those of the continuously W individuals of the other shelters.    

 

Discussion 

Lack of Evidence for Carbon Starvation Hypothesis 

I found very little evidence to support the CSH following drought stress.  

Although expected reductions in growth, leaf water potential, and gas exchange in 

droughted saplings were documented (Hanson et al. 2001, Galvez et al. 2011, Duan et al. 

2013), these did not translate into substantial differences between D and W foliar 

carbohydrate and phenolic contents. There was little variation in SS and NSS across the 

growing season and no detectable drought effect except NSS differences on DOY 224. 

However, SS contents tended to follow soil moisture trends, and the decrease in D 

sapling NSS contents over time and large drop in W sapling NSS contents at DOY 254 

during the micro-drought could indicate shifts from NSS to SS.  As water stress 

progresses, the soluble: non-soluble sugar ratio can increase as a result of starch 

hydrolysis and increased carbon partitioning to sucrose and other low molecular weight 

compounds for osmoticum and metabolism needs (Wang and Stutte 1992, Dickson and 

Tomlinson 1996, Arndt et al. 2001).  Protein-precipitable phenolic contents appear to be 

even less affected by water availability differences than carbohydrate contents.  Contents 

were similar for D and W saplings on all measurement dates, and followed no 

discernable pattern.  Foliar N was also not affected by drought. Leaf photosynthetic 



 

42 

 

capacity is often correlated with leaf N content since photosynthetic machinery (i.e. 

thylakoids, Rubisco, and proteins utilized in the Calvin cycle) is largely composed of N 

(Evans 1989, Reich et al. 1991, Springer et al. 2005).  However, other studies have 

reported drought effects on photosynthesis with little to no change in leaf N content 

(Wilson et al. 2000, Xu and Baldocchi 2003) or even increases in leaf N with drought 

(Weih et al. 2011). 

Results, particularly those from the end of the season, suggest that species 

phenology in relation to climatic and seasonal changes may play a larger role in 

determining carbohydrate and phenolic compound contents.  Soluble sugar, NSS, and 

PPP contents decreased at the end of the season.  Concomitantly D sapling gas exchange 

rates and leaf water potentials increased.  These trends may be reflect a shift of 

carbohydrates towards root growth or storage at this time of the season (Isebrands and 

Nelson 1983, Loescher et al. 1990).  Increases in leaf water potential and gas exchange 

in D saplings at DOY 274 appear to indicate utilization of water at deeper soil depths.  

Multiple studies document deeper root penetration following drying of layers at the soil 

surface (Wan et al. 2002, Padilla and Pugnaire 2007, Padilla et al. 2007).  The greater 

rates of diameter increase than height increase in D saplings may also reflect that D 

saplings were allocating resources to root growth for water acquisition.  Multiple studies 

reported increased root:shoot ratios for plants growing in unfavorable conditions 

(drought, low nutrient supply) (Michelsen and Rosendahl 1990, Kozlowski and Pallardy 

2002, Leuschner et al. 2007). I measured θ in the plots only to a depth of 60 cm so I was 

not able to see changes in water availability below this depth.  Quercus spp. develop 
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deep root systems, so root depths past 60 cm for the saplings would not be unusual 

(Saunier and Wagle 1967, Kochenderfer 1973, Davis and Pase 1977, Hinckley et al. 

1981).    

The decrease in leaf SS and NSS contents later in the growing season could 

reflect translocation of carbohydrates to roots for necessary growth into deeper pockets 

of soil moisture (Lopes and Reynolds 2010).  Decreases in foliar sugar, starch, and 

secondary compounds are often seen in the fall in preparation for leaf senescence 

(Lindroth et al. 2002, Kandil et al. 2004, Keskitalo et al. 2005, Acero et al. 2010).  

Preferential carbon allocation to roots and subsequent growth in these species could 

happen at this time normally.  Root growth can take place throughout the year; Teskey 

and Hinckley (1981) noted that white oaks (Quercus alba L.) experienced a major period 

of root growth following leaf senescence while Kuhns et al. (1985) witnessed moderate 

to rapid black walnut (Juglans nigra L.) root growth at multiple depths between the 

initiation of senescence to complete leaf fall and during the winter.   

The decrease in PPP contents at the end of the season coupled with possible 

resource allocation to root growth may be explained by the growth-differentiation 

balance hypothesis (Loomis 1932, Herms and Mattson 1982) which predicts how plants 

balance resource allocation between growth-related and differentiation-related processes 

over a range of environmental conditions.  Differentiation processes, including anything 

that enhances the structure or function of existing cells (e.g. development of secondary 

compounds like condensed tannins or terpenes, trichomes, thicker cuticles, etc.), are 

thought to compete with growth processes for available photosynthate since 
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simultaneous full carbon allocation to all plant functions is not possible. Reductions in 

condensed tannins and other secondary compounds for defense may occur as growth 

rates increase (Coley 1988, Hemming and Lindroth 1999, Glynn et al. 2007). 

The lack of PPP content response to drought stress suggests some other climatic 

or biologic effect may act as a greater determinant, especially since PPP contents 

followed the same pattern throughout the season in both D and W treatments and all 

three species.  For example, differences in PPP contents across the experiment period 

may be due to the presence of insect herbivores, changes in solar radiation, and/or the 

time of day when leaves were harvested on each collection date.  Condensed tannins 

play many roles in protecting plants.  They can act as plant defenses against herbivory, 

increasing following defoliation (Osier and Lindroth 2001, Peters and Constabel 2002, 

Cooper et al. 2014) and reducing insect intake, growth, and fecundity (Schultz 1989, 

Kopper et al. 2002).  Condensed tannins also have allelopathic effects and reduce 

competition from neighboring species (Callaway and Ridenour 2004, Thelen et al. 

2005).  Condensed tannins and other phenolic compounds act as antioxidants to protect 

plants against high levels of PAR and UV radiation and photoinhibition as well (Close 

and McArthur 2002, Turtola et al. 2005, Mellway et al. 2009).  Abdala-Díaz et al. (2006) 

found phenolic compounds were two to four times greater in the summer, when daily 

integrated irradiance was greatest, than during the fall and winter.  They reported an 

exponential decrease in phenolic compounds and irradiance through November 

following a peak in June.  Summer phenolic compounds also followed a diurnal pattern, 

decreasing around 1200 – 1400 hrs (Abdala-Díaz et al. 2006).  Stress from 
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photoinhibition may drive leaf phenolic level adjustment to a greater degree than 

herbivory (Close et al. 2003).   

The amounts of protein bound by PPP and the subsequent ratio of PB:PPP 

followed the opposite pattern of PPP across the growing season.  Similar to PPP content, 

amount of protein bound can also be affected by a plants’ climatic and/or biotic 

environment.  Tannin activity (e.g. protein binding, antibacterial, and/or anthelmintic 

capability) depends more on tannin structure than abundance (Makkar et al. 1988, Kraus 

et al. 2003, Halbwirth 2010).  Reactivity can be affected by changes in hydroxylation 

pattern of the B-ring, stereochemistry, polymerization extent, substitution patterns, types 

of cross linkages between monomer units, etc. (Kraus et al. 2003).  In an experiment by 

Tharayil et al. (2011), red maple (Acer rubrum L.) litter grown under drought conditions 

combined with warming had condensed tannins with reduced chain lengths and greater 

proportions of hydrolysable tannins.  Although the integration of drought and warming 

resulted in double the content of condensed and hydrolysable tannins, the increase in 

glucosidase (protein) complexation capacity was five-fold, suggesting drought and 

warming increased tannin binding efficiency.   

Climate related effects on biosynthesis pathways may have caused shifts in PPP 

hydroxylation patterns and/or changes in other structural features that led to the 

differences in PB and PB:PPP across the growing season. Hydroxylation pattern at the 

B-ring is regarded as the most significant determinant of antioxidant activity (Halbwirth 

2010) and differences in light and temperature regimes bring about changes in tannin 

hydroxylation patterns (Jaakola et al. 2004, Jaakola and Hohtola 2010, Tharayil et al. 
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2011).  The number and position of hydroxyl groups affect light absorption; increasing 

hydroxyl groups at the A and B rings shifts absorbance towards higher wavelengths 

(Halbwirth 2010). Shifts in hydroxylation pattern alter tannin protein binding ability as 

well; larger prodelphinidin/procyanidin ratios can increase condensed tannin ability to 

bind proteins (Hagerman 1989, Aerts et al. 1999, Andersson et al. 2006). 

Had carbohydrate, nitrogen, and phenolic constituents been measured on a mass 

per leaf area basis rather than mass per grams of dry matter basis, results may have 

differed between treatments.  Some studies have reported increases in leaf mass per area 

(LMA, g cm-3) as a result of drought due to reductions in leaf expansion rates and the 

development of thick cell walls (Hernández et al. 2004, Poorter et al. 2009, Limousin et 

al. 2010).  However, others have reported no difference in LMA between droughted and 

well-watered trees or reduced LMA in droughted trees (Thomas and Gausling 2000, 

Gulías et al. 2002, Ogaya and Peñuelas 2006).  Plants have limited flexibility to adjust 

leaf morphology and anatomy after leaves have fully expanded (Poorter et al. 2009), and 

changes to leaf area may take long-term exposure to drought conditions over multiple 

years (Castro-Díez 1997, Limousin et al. 2010).  Therefore we may not have seen 

differences in leaf area between our W and D saplings as leaves were fully expanded 

when we began applying different watering treatments in June 2014 and D saplings had 

only been exposed to one prior drought period (June to September 2013). 
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Species Differ in Phenology and Drought Tolerance 

 The three species in this study differed not only in leaf level gas exchange but 

also in how photosynthate from gas exchange is allocated to growth, carbohydrates, and 

phenolic compounds.   Greater height growth in QUVI than QUMA and QUSH in the W 

treatment may reflect inherent growth rate differences between the species.  Live oak 

seedlings are reported to grow vigorously in well-watered conditions, and may grow 

over 1 m in the first year (Carey 1992).  Bur oak and QUSH have been reported to 

exhibit slow height growth rates on the other hand (Johnson 1990, Balok and St. Hilaire 

2002, Drunasky and Struve 2005). Although QUVI is classified as very drought tolerant 

(Gilman and Watson 1994, Bendevis et al. 2010), it reduces growth, leaf water potential, 

and gas exchange during times of low water availability (Cavender-Bares et al. 2007, 

Kukowski et al. 2013), though sometimes to a lesser degree than co-occurring species 

(Owens 1996, Bendevis et al. 2010).  Therefore, slow height and diameter growth by 

QUVI in D plots may be expected.    

The high QUVI gas exchange values are corroborated by other studies (Owens 

and Schreiber 1992, Cavender-Bares et al. 2007, Bendevis et al. 2010). In studies by 

Owens and Schreiber (1992) and Bendevis et al. (2010), QUVI A, E, and g were greater 

than those of co-dominant Ashe juniper (Juniperus ashei Buchh.) across the entire 

measurement period, regardless of precipitation pattern.  In the Owens and Schreiber 

(1992) study, QUVI trees were also well adapted to the extreme variability in 

precipitation events, taking advantage of available precipitation; A and E were six times 

greater during wet months.   Bendevis et al. (2010) reported a maximum QUVI A of 21.6 
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µmol m-2 s-1 similar to my QUVI mean A of 20.1 and 22.8 µmol m-2 s-1 at DOY 224 and 

274.  Live oak is capable of reaching much lower leaf water potentials than seen in this 

experiment (Cavender-Bares et al. 2007, Schwinning 2008).  Bur oak and QUSH gas 

exchange rates in this study were similar to those reported by Balok and St. Hilaire 

(2002); D and W plants had similar conductance and transpiration rates on many 

measurement dates and were lower than more drought tolerant species.   The relatively 

low QUMA and QUSH gas exchange rates across the growing season may also reflect 

sub-optimal water availability for these species. 

Carbon allocation from photosynthate differed between the three species.  For 

example, SS contents were greatest in QUSH, intermediate in QUVI, and lowest in 

QUMA while PPP contents were the opposite— highest in QUMA, intermediate in 

QUVI, and lowest in QUSH.  Live oak appears to allocate more carbon to height growth 

than the other two species while likely maintaining moderate leaf carbohydrate and 

chemical defense compounds.  Shumard oak and QUMA had reduced height growth 

rates, so these species may have maintained greater accumulation of SS and NSS in 

leaves rather than translocating carbohydrates to shoots and branches for growth.  Balok 

and St. Hilaire (2002) reported QUMA leaves were some of the thinnest and had some 

of the least epicuticular wax contents while QUSH had moderately thick leaves with 

some of the greatest epicuticular wax contents of the species they studied.  Greater wax 

contents often reduce insect feeding and movement, and increase insect falling 

frequency (Eigenbrode 2004, Gentry and Barbosa 2006, Znidarcic et al. 2008).  The 

waxy coating on QUSH leaves may help compensate for the reduced PPP contents and 
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amounts of PB by PPP were seen in this species. Oaks produce leaves with high amounts 

of hydrolysable tannins (Grundhöfer et al. 2001, Salminen et al. 2004).  Hydrolysable 

tannins are more effective than condensed tannins at deterring insect and mammal 

herbivory in some studies (Rossiter et al. 1988, Barbehenn et al. 2006) and, at contents 

over 97.7 mg tannic acid equivalent per g of dry leaves, led to 70% cattle mortality in a 

study by Garg et al. (1992).  QUSHs may rely on greater amounts of these compounds or 

others for defense to a greater extent than condensed tannins.  Live oak leaves are thick 

and have waxy coatings as well that may help deter herbivores (Knapp and Carter 1998, 

Cavender-Bares and Pahlich 2009).  The moderate PPP contents and amounts of PB by 

PPP may serve as an additional defense for QUVI that must retain its leaves for most of 

the year.     

 

Similarities between W and Drec Saplings 

Leaf gas exchange can recover within a couple days after precipitation pulses, 

possibly explaining why leaf water potential and gas exchange values of individuals 

undergoing the post-drought recovery (Drec) treatment did not differ from the 

continuously watered saplings.  Loik et al. (2007) reported that photosynthesis, 

transpiration, conductance, and water potential of big sagebrush (Artemisia tridentata 

Nutt.) and antelope bitterbrush (Purshia tridentata (Pursh.) DC) increased within one 

day of an experimental water pulse addition and were greatest within 2-3 days.  In a 

study by Sala et al. (1982), pre-dawn and mid-day leaf water potential of blue grama 

(Bouteloua gracilis (H.B.K.) Griffiths) exhibited a quick response to watering, 
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recovering to pre-drought levels after 3 days, while the response of stomatal conductance 

was a little slower, reaching values characteristic of non-stressed conditions after 7 days.   

Foliar SS, NSS, and PPP contents were similar among Drec and W saplings.  

Although Drec and W saplings in the same shelter were exposed to different conditions 

prior to the experiment period discussed here (phase II), these species produce new 

leaves each year that, as seen in my results, may change composition fairly quickly as 

compounds are assembled and translocated to other tissues (Lindroth et al. 2002, 

Landhäusser and Lieffers 2003, Martinez-Trinidad et al. 2009).      

 

Conclusions 

 I found little evidence to support that reductions in foliar carbon-based 

compounds (SS, NSS, PPP) occur with drought although I only monitored individuals 

for one growing season (approximately 5 months).  Notably drought in Texas often 

occurs in a highly episodic manner from year-to-year, suggesting that carbon-based 

defense allotment by these oaks against herbivory is not inducible in response to variable 

drought.  Phenology, other climatic, or biotic effects may have greater prevalence in 

driving foliar carbon allocation and translocation.  Species varied in tolerance to drought 

and carbon allocation to growth, SS, NSS, and PPP.  Of the three species studied, the 

differences in gas exchange following alterations to water supply suggest QUVI may be 

best equipped to succeed during long-term drought conditions dotted with periodic 

precipitation pulses.  Differences between species foliar N, carbohydrate and PPP 

contents, and ability of PPP to bind protein may affect species utilization by insects and 
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browsing mammals as well, which may be of particular significance during drought 

events when little plant material is available from other sources. 
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CHAPTER III 

THE TORTOISE AND THE HARE: WILL RESPROUTING OAKS WIN THE RACE 

AGAINST REGENERATING PINES FOLLOWING A SEVERE WILDFIRE? 

 

Synopsis 

Post-fire shifts in species composition and growth are driven in part by 

alterations in resource availability.  This study tested how loblolly pine (Pinus taeda L.) 

seedlings and resprouting oaks (Quercus stellata Wangenh. (post oak) and Q. 

marilandica Muenchh. (blackjack oak)) responded to various stresses following a 

catastrophic wildfire in the Lost Pines region in Bastrop County, TX, USA.  General 

plant responses (heights, diameters, and density) and stress indicators (leaf water 

potential, gas exchange, pressure-volume parameters, and leaf biochemistry) were 

monitored along resource availability gradients (three burn severities and three soil 

types) in the summers of 2015 and 2016.  Pines were 95% shorter and 137% less dense 

in severely burned plots than moderately burned plots in 2015.  In 2016 pines were still 

less numerous (190% less) in severely burned plots but were similar in size to those in 

moderately burned plots.  Pines consistently had high midday leaf water potential and 

low photosynthesis, transpiration, and conductance rates when compared to co-occurring 

oaks.  Pines also tended to have greater osmotic potential at full turgor (ΠFT) (20%), 

turgor loss points (ΠTLP) (22%), relative water content at the turgor loss point (RWCTLP) 

(4%), and bulk modulus of elasticity (55%) than oaks.  Pines additionally had lower 

capacitance at full turgor (CFT) (49%) and capacitance at turgor loss point (CTLP) (32%) 
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than oaks.  Loblolly pine leaf-level gas exchange and pressure-volume results suggest 

this species prefers a drought-avoidance strategy.  Low stomatal conductance and gas 

exchange rates in pine seedlings may reflect greater stomatal control which could reduce 

cavitation risks.  Alternatively, lower gas exchange rates may have arisen from reduced 

access to water resources by seedlings’ shallow roots. Gas exchange and pressure-

volume parameters of the oaks reflect greater drought tolerance than pine, with post oak 

being the more tolerant of the two oak species.  Post oak increased gas exchange, CFT, 

and CTLP and decreased ΠFT, ΠTLP, and RWCTLP as burn severity increased.  Increased 

capacitance and reductions in ΠTLP extend leaf turgidity and functionality and likely 

contributed to the maintenance of post oak stomatal conductance and gas exchange in 

the more exposed severely burned areas.  Differences in foliar nutrient and phenolic 

contents between oaks and pines may reflect differences in leaf-level gas exchange 

capability of the two genera.  Results suggest loblolly pine regeneration may be slower 

in more severely burned areas, and that differences in strategies among the three species 

may shift stand composition to oak dominance in parts of this region following a 

wildfire.   

 

Introduction 

Fire has historically favored pines in environments exposed to repeated 

disturbances (Glitzenstein et al. 1995, Barton 1999, Rodríguez-Trejo and Fulé 2003, 

Pausas 2015).  Prior to European settlement, fire was widespread and occurred 

frequently (Abrams 1992, Denevan 1992, Brose et al. 2001).  Frequent, low-intensity 
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fire favors the survival and growth of young pines and maintains pine dominance in 

mixed-forest stands (Waldrop et al. 1992, Gilliam and Platt 1999, Pollet and Omi 2002), 

while severe crownfire often results in a shift from pine- to a more oak-dominated forest, 

oak-shrubland, or grassland (Barton 2002, Savage and Mast 2005, Strom and Fulé 

2007).  Non-serotinous pines are more likely to struggle with regeneration following 

severe fire, so recovery of these species is not always successful and is more likely to 

require assistance (seedling planting and protection) (Retana et al. 2012, Carnicer et al. 

2014).  This combination of factors can be quite detrimental to maintaining unique 

mixed pine/oak ecosystems, including but not limited to the pine-mixed hardwood 

forests in the southeastern United States of America (USA) (Myers 1985, Frost 1993, 

Van Lear et al. 2005), the Mediterranean basin (Castro et al. 2004, Pausas et al. 2008), 

and the Sierra Occidental in north-central Mexico (Fulé and Covington 1998). 

One such unique pine-oak ecosystem is the “Lost Pines” region located in 

Bastrop, Fayette, and Caldwell counties in central Texas, USA.  The Lost Pines 

Ecoregion constitutes the western-most range of loblolly pine (Pinus taeda L.) in the 

USA.   This 34,400 ha patch of pine-dominated forest was isolated from the East Texas 

Piney Woods ecoregion by over 160 km during the Pleistocene (Bryant 1977, Al-

Rabab’ah and Williams 2004).  The loblolly pines from this disjunct area are frequently 

exposed to harsh environmental conditions, receiving 250 to 500 mm less rainfall 

annually than the pines in east Texas (Manogaran 1975, Bilan et al. 1977), so they are 

often thought to be hardier than loblolly pines from other provenances.  Multiple studies 

confirm the resilience of the loblolly pines from the Lost Pines region.  For example, 
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individuals from the Lost Pines provenance experienced lower mortality rates than those 

of other provenances in several studies (Goddard and Brown 1959, Rahman et al. 2003, 

Smith et al. 2014).  Lost Pines seedlings have greater transpiration and conductance 

under well-watered conditions (Bongarten and Teskey 1986, Wakamiya-Noborio et al. 

1999) and decrease gas exchange to a greater degree under drought conditions compared 

to loblolly pines from other provenances (Bilan et al. 1977, Seiler and Johnson 1988, 

Wakamiya-Noborio et al. 1999), all of which may help them withstand the dry 

conditions characteristic of the region.  However, some studies have shown no 

differences in drought responses between Lost Pines individuals and those from other 

provenances, while others have suggested Lost Pines individuals are actually less 

drought-resistant than those from other areas (Bongarten and Teskey 1986, Retzlaff et al. 

2001, Yang et al. 2002). 

The thick bark of older loblolly pine trees provides some protection against light 

to moderate burn severity, but overall the species has limited tolerance to fire.  

Historically, due to this limited tolerance, loblolly pine was generally outcompeted by 

longleaf pine (Pinus palustris Mill.) and shortleaf pine (Pinus echinata Mill.) in sites 

exposed to regular fire regimes (Schultz 1997, Stewart 2015).  Intense logging and fire 

prevention in the early 1900s allowed loblolly pine to expand past moist fringes and into 

more upland sites throughout its natural range (Schultz 1997).  Loblolly pines do not 

produce serotinous cones or have a grass stage like longleaf pine which provides fire 

immunity, but they do possess the limited ability to sprout from dormant buds along the 

stem following top-kill by fire or clipping (Shelton and Cain 2002, Will et al. 2013).  
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Seedlings will therefore not resprout if fire kills dormant buds or if they are severed near 

the ground below the cotyledons (Schultz 1997, Shelton and Cain 2002).   

The Bastrop County Complex Fire ignited on September 4, 2011, and was the 

most destructive fire in recorded Texas history.  The combination of extreme summer 

drought, high temperatures, low relative humidity, live fuel moistures below historic 

lows, and strong wind gusts caused by a tropical storm contributed to prime conditions 

for a devastating fire (Hoerling et al. 2013, Rissel and Ridenour 2013).  More than 

12950 ha and 1.8 million trees were burned (Rissel and Ridenour 2013).  Pine mortality 

was 100% in severely burned areas and many of the less burned areas also saw high 

stress-related tree mortality.  Many areas experienced subsequent erosion and topsoil 

loss.  Nutrient loss and export to nearby ponds was observed with decreases in the pH 

and dissolved O2 content of local water bodies (Brown et al. 2014).   

Prior to the Bastrop County Complex Fire, the region was dominated by loblolly 

pine with some areas having a significant contribution from oaks. Data from FIREMON 

plots suggest pine composed 75% of the combined overstory and mid-story tree basal 

area of Bastrop State Park prior to the wildfire, while hardwoods and juniper made up 

about 24% and 1%, respectively, on average (G Creacy, personal communication).  In 

the years following the fire, post oak (Quercus stellata Wangenh.) and blackjack oak 

(Quercus marilandica Muenchh.) resprouts cropped up and are thriving, indicating that 

some areas that were previously pine-dominated may be on a trajectory toward 

becoming oak-dominated woodland or savanna (personal observations).  These biotic 

“ecological legacies” persisting from the pre-fire ecosystem are likely to have major 
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effects on vegetation recovery and succession post-disturbance (Clements 1916, Turner 

and Dale 1998, Franklin et al. 2002, Johnstone et al. 2016). Prolific resprouting of 

Gambel oak (Quercus gambelii Nutt.), alligator juniper (Juniperus deppeana Steud.), 

New Mexico locust (Robinia neomexicana A. Gray) (Strom and Fulé 2007) and 

silverleaf oak (Quercus hypoleucoides) (Barton 2002) quickly outpaced pine 

regeneration in previous studies, and it appears as if a similar situation may occur in 

some areas within the Lost Pines.  Resprouting species have the advantage of utilizing 

remaining deep root systems from mature top-killed trees.  These deeper root systems 

not only help resprouts withstand drought, but also support their rapid growth rates 

through the mobilization of carbohydrates from decaying root tissue (DeSouza et al. 

1986, Castell et al. 1994, Del Tredici 2001). Shallow-rooted regenerating pine seedlings 

may not be competitive with these deep-rooted resprouts for water and nutrients.  On the 

other hand, pine seedlings have the advantage of photosynthesizing and growing during 

the fall and winter while resprouting deciduous trees are dormant (Schultz 1997).  A 

shift to an oak-dominated stable state could have substantial effects on ecosystem 

functions (Strom and Fulé 2007).  Areas with light-to-moderate burn severities may 

retain pine dominance better than those where the fire was more severe (Gilliam and 

Platt 1999, Pollet and Omi 2002, Savage and Mast 2005).  

Differences in leaf level gas exchange and hydraulic properties between pines 

and resprouting oaks may play a large role in species success following disturbance.  

Resprouts often have greater gas exchange rates (e.g. photosynthesis, transpiration, 

stomatal conductance) than mature plants of the same species (DeSouza et al. 1986, 
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Reich et al. 1990, Castell et al. 1994) and non-sprouting individuals from other species 

(Thomas and Davis 1989).  These greater gas exchange rates, however, may come with 

greater risk, especially during drought.  A global analysis by Pausas et al. (2016) 

suggested non-sprouters were more resistant to dehydration-induced cavitation than 

resprouters.  Many resprouting species, including oaks, are classified as drought tolerant, 

while pines, including loblolly, are often drought avoiders.  Oaks have larger leaves, 

large diameter vessels with high hydraulic conductivity, and operate with small “safety 

margins”, exhibiting progressively more negative leaf water potentials (while 

maintaining relatively high gas exchange) with increasing water stress and evaporative 

demand (Abrams 1990, Cavender-Bares and Bazzaz 2000, David et al. 2007, McCulloh 

et al. 2010).  Pines have small evergreen leaves, use small diameter tracheids to transport 

water, and utilize larger hydraulic safety margins than many angiosperms (McDowell et 

al. 2008, McCulloh et al. 2010, Choat et al. 2012).  Oaks are less sensitive to vapor 

pressure deficits and decreases in soil moisture (Kolb and Stone 2000, Stoy et al. 2006, 

Ford et al. 2010, Meinzer et al. 2013, Renninger et al. 2015), have greater leaf-level gas 

exchange rates (Kolb and Stone 2000), and reach maximum photosynthesis rates at 

lower levels of sunlight than pines (Kramer and Decker 1944, Kramer and Clark 1947).  

Oaks are also described as frequently having low osmotic potential at full turgor (ΠFT), 

turgor loss points (ΠTLP), relative water content at the turgor loss point (RWCTLP), and 

high capacitance at full turgor (CFT) as well as bulk elastic modulus (ε) (Parker et al. 

1982, Bahari et al. 1985, Aranda et al. 1996), all of which further signify drought 

tolerance (Tyree and Hammel 1972, Schulte and Hinckley 1985, Bartlett et al. 2012). 
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Within the Quercus genus, however, leaf morphology and whole-plant structure 

varies greatly along with species’ ability to cope with water stress (Abrams 1990, 

Dickson and Tomlinson 1996).  White oak species, such as post oak, are more tolerant to 

drought stress than red oak species, such as blackjack oak (Seidel 1972, Abrams et al. 

1990, Kleiner et al. 1992, Vivin et al. 1993), although exceptions have been reported 

(Wuenscher and Kozlowski 1971, Bahari et al. 1985).  Contrasting morphology and 

physiological responses to water availability may not necessarily benefit one genera or 

species over another, however, since shifts in conditions will also change which species 

is favored at different times (Zweifel et al. 2009, Ford et al. 2010, Renninger et al. 

2015).  

In addition to biotic legacies, modifications of the physical environment by 

disturbance may affect regeneration success.  Leaf chemical composition following 

disturbance may reflect resource availability to both resprouting and non-sprouting 

species and their degree of stress. Leaves from resprouts and young non-sprouting 

individuals often have greater nutrient (e.g. nitrogen (N), phosphorus (P), potassium (K), 

etc.) contents than mature leaves from the same species (Oechel and Hastings 1983, 

Reich et al. 1990, Castell et al. 1994).  Fire may alter plant tissue C:N ratios due to 

changes in nutrient availability in burned soil (Ojima et al. 1994, Nardoto et al. 2006).  

Nitrogen volatilizes at relatively low temperatures and is therefore lost in greater 

amounts than P, K and Ca that volatilize at higher temperatures (> 500 ºC) (Boerner 

1982, Caldwell et al. 2002); however, the availability of N remaining in the soil may be 

greatly increased following fire (Daubenmire 1968, Klopatek et al. 1990, Grogan et al. 
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2000, Turner et al. 2007) which may contribute to enhanced growth after fire 

(Christensen and Muller 1975, Ojima et al. 1994, Brockway and Lewis 1997).  Plant 

secondary compound contents, such as condensed tannins (protein-precipitable 

phenolics; PPP), may also reflect stress conditions experienced by regenerating and 

resprouting plants due to photoxidation, high levels of PAR, and UV radiation (Fleck et 

al. 1998, Close and McArthur 2002, Turtola et al. 2005, Abdala-Díaz et al. 2006, 

Mellway et al. 2009) following canopy removal or herbivory (Bryant et al. 1983, Coley 

and Barone 1996, Boege and Marquis 2005).  Climatic stress is reported to increase 

production of PPP and their reactivity (e.g. protein binding ability) (Tharayil et al. 2011). 

 

Objectives 

The goal of this study was to evaluate how ecological biotic and abiotic legacies 

might affect loblolly pine recovery following the Bastrop County Complex Fire.  As an 

early indicator of post-fire success, I compared differences in size and photosynthesis 

rates among species to varying stress response indicators across soil type and burn 

severity gradients.  The stress response indicators evaluated included gas exchange, 

pressure volume parameters, and leaf biochemistry (N, C, and PPP content).  I used soil 

type as a surrogate for soil water and nutrient limitation, as well as burn severity, which 

correlates strongly with loss of topsoil and associated nutrients (Neary et al. 1999, 

González-Pérez et al. 2004). The primary hypothesis tested was that resprouting oaks 

acting as the proverbial “hare” would have a greater advantage initially over pine 

seedlings, the “tortoise” in this case, in areas with greater resource limitations. A 
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secondary hypothesis tested was that post oak would be a better competitor than 

blackjack oak, as a potential indicator of species dominance over time. Results will 

provide insight into loblolly pine responses to severe fires and help guide replanting and 

vegetation management decisions in the Lost Pines region. 

 

Materials and Methods 

Site Description 

This study was conducted within Bastrop State Park and the Griffith League 

Ranch, Bastrop County, Texas.  Fire suppression over the past century resulted in heavy 

fuel loads and dense thickets of yaupon holly (Ilex vomitoria Sol. ex Aiton) and other 

shrubs (Brown et al. 2013, Brown et al. 2014).  Dominant overstory species include 

loblolly pine, post oak, blackjack oak, and eastern red cedar (Juniperus virginiana L.).  

Yaupon holly, American beautyberry (Callicarpa americana L.), and farkleberry 

(Vaccinium arboreum Marshall) are common understory species.  Soils in the study 

areas consist of sands and sandy loams from the Patilo-Demona-Silstid and Axtell-Tabor 

associations with some exposed areas of gravel or clay on steep, eroded slopes (Baker 

1979).  Temperatures in the area typically range from 12.7 – 26.5ºC annually, and the 

region receives around 820 mm of annual precipitation.   

Following the Bastrop County Complex Fire, the Texas Parks and Wildlife 

Department (TPWD) mapped burn severities in Bastrop State Park using satellite 

imagery and ground validation.  The burn severity classification used severity ratings 

developed by the U.S. Department of the Interior based on pre-fire vegetation density, 



 

62 

 

degree of ground cover and soil organic matter consumption, changes to soil surface 

color, and structural aggregate stability (Parson et al. 2010, Cardenas and Kanarek 

2014).  Within the park, measurements were taken in areas classified by TPWD as 

“moderately” and “severely” burned.  I wanted to extend leaf-level measurements into 

“lightly” burned areas as well, but these areas in in the park typically had intact, mature 

oaks and pines.  In order to examine physiology of resprouting oaks and regenerating 

pine seedlings across a range of disturbance severities, additional plots were chosen to 

monitor leaf-level gas exchange and pressure-volume parameters at the Griffith League 

Ranch within an area which received a prescribed burn approximately one year prior to 

the Bastrop County Complex Fire (Brown et al. 2014).  Following the prescribed fire 

and thinning of trees along the roadway for a firebreak against future fire (R Denison, 

personal communication), numerous blackjack and post oak resprouts and pine seedlings 

were growing in the area.  Based on visual inspection of sites, herbaceous regrowth, and 

description of the prescribed fire, this area was classified as “lightly” burned.        

 

Plot Surveys 

Heights, diameters, and densities of naturally-regenerating loblolly pine 

seedlings and resprouting blackjack and post oaks were measured in 150 m2 plots in 

Bastrop State Park in two burn severity classifications, moderate and severe, within three 

soil types: Edge (fine, mixed, active, thermic Udic Paleustalf), Jedd (fine, mixed, 

semiactive, thermic Ultic Paleustalf), and Padina (loamy, siliceous, active, thermic 

Grossarenic Paleustalf) soils (Soil Survey Staff 2016).  Each soil type by burn severity 
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combination was replicated three times.  Measurements were conducted in July 2015 (n 

= 18 plots) and July 2016 (n = 18 plots) for a total of 36 plots surveyed. The Padina 

series is characterized by very deep fine sand (165 – over 250 cm), while the Edge and 

Jedd sandy loams are typically more shallow, approximately 150 and 75 cm, 

respectively.   Of the three, Padina has the greatest water storage capacity but may drain 

quickly which could exacerbate drought (Hacke et al. 2000).  As such, we may expect 

establishment to be easiest on Padina sites although individuals may still experience 

stress in these sites during drought which may ultimately limit recovery.  Sites in the 

Padina soil type were selected for further leaf gas exchange comparisons since it appears 

the least ‘stressful’ of the three soil types.  Narrow plots (50 m long and 3 m wide) were 

established in order to avoid edge effects from adjacent patches classified as other burn 

severities and to capture possible burn heterogeneity within a particular burn severity 

classification.  I took height and diameter measurements of all loblolly pine, blackjack 

oak, and post oak individuals falling within a plot while documenting the number of 

individuals of each species within the plot.  Height was measured at the terminal bud, 

and diameter was measured at the ground surface.  Most oak resprouts had multiple 

stems, so I measured the diameter of the three largest stems and the height of the tallest 

individual stem for each resprouting individual.   

 

Leaf Biochemical Analyses 

Within each plot leaf samples were collected for N, C, and condensed tannin (CT) 

analyses in both 2015 and 2016.  Leaves and needles were collected from the outer 
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portions of branches in the upper half of the canopy.  If the number of individuals falling 

within the plot was insufficient to gather an adequate quantity of material, the sampling 

boundary was expanded and leaves were collected from seedlings and resprouts within 5 

m of the plot’s center line (10-m width).  Following collection, leaf material was dried at 

75ºC for 48 hours in a forced-air oven, and then ground it in a sheer mill and stored it at 

room temperature until it was analyzed.   A Vario MACRO C-N Analyzer (Elementar 

Americas, Inc., Mt. Laurel, NJ) was used to determine percent N and C of the ground leaf 

material. 

Condensed tannins were purified to create standards for all three species by 

following Naumann’s (2014) modification of the method described by Wolfe et al. 

(2008).  Ground plant tissue (20 g DM) was extracted with 250 ml of acetone:water (700 

ml l-1), retaining the aqueous portion containing CT and removing residual acetone by 

evaporation under reduced pressure.  The extract was mixed, along with enough 

methanol:water (500 ml l-1) to form a slurry, with Sephadex LH-20 (GE Healthcare Bio-

Sciences Corp., Piscataway, NJ), and repeatedly washed with methanol:water (500 ml l-

1) until the absorbance at 280 nm was negligible (absorbance ≤ 0.10).  An acetone:water 

(700 ml l-1) wash was used to release CT bound to the Sephadex, followed by 

evaporation of residual acetone by air stream/vacuum.  The aqueous portion containing 

CT was frozen at -80 °C and lyophilized.  Purified CT were then used to develop 

species-specific standards for the protein-precipitation assays.  

Hagerman and Butler’s (1978) scaled down method was modified to determine 

protein precipitability of CT.  Duplicate crude plant extracts for each species within a 
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plot were prepared by extracting 50 mg of plant tissue with 1 mL methanol:water (500 

ml l-1) on a G10 Gyrotory® shaker (New Brunswick Scientific Co., Inc., Edison, NJ) for 

30 min followed by centrifugation at 16,070 x g for 5 min.  To determine protein-

precipitable phenolic (PPP) contents and the amount of protein bound (PB) by PPP, 50 

µl of supernatant from crude plant extracts were combined with 250 µl buffer A (0.20 M 

acetic acid, 0.17 M sodium chloride, pH 4.9), 50 µl bovine serum albumin (BSA) (5 mg 

ml-1 in buffer A), and 50 µl methanol:water (500 ml l-1) and the solution was incubated 

at room temperature for 30 min prior to centrifuging at 16,070 x g for 5 min. The 

supernatant was removed using vacuum aspiration and the protein-phenolic pellet 

washed with buffer A (250 µl) before re-centrifuging and aspirating again.  The protein-

phenolic pellet was dissolved in 800 µl of sodium dodecyl sulfate (10 g l-1)-

triethanolamine (50 ml l-1) (SDS/TEA) before adding 200 µl FeCl3 (0.01 M FeCl3 in 

0.01 M HCl).  After 15 minutes, the absorbance was read at 510 nm.  Absorbances were 

translated to PPP contents via external standards for each species. 

 Following Naumann et al.’s (2014) method to determine the amount of protein 

bound by PPP, the procedure was performed as described above, but the protein-

phenolic pellet was analyzed for N to quantify precipitated protein.  Rather than 

dissolving the protein-phenolic pellet in SDS/TEA, the pellet was dissolved in 500 µl of 

buffer A and the solution was transferred into a foil cup to dry.  A Vario MACRO C-N 

Analyzer (Elementar Americas, Inc., Mt. Laurel, NJ) was subsequently used to analyze 

the dried protein-phenolic residue for percent N, which was then multiplied by 6.25 (Van 

Soest 1994) to calculate the amount of protein bound by PPP. 
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Leaf-Level Physiological Measurements 

Gas exchange, leaf water potential, and pressure-volume measurements were 

conducted on leaves from blackjack and post oak resprouts and loblolly pine seedlings in 

three burn severities (lightly, moderately, and severely burned) in June and early July 

2016.  Gas exchange and midday leaf water potential measurements were performed 15 

to 17 June, and pressure-volume measurements were completed 6 – 8 July, 2016.  

Measurements were conducted at three plots (replications) within each burn severity.  

Moderate (n = 3 plots) and severe (n = 3 plots) leaf-level physiology sites were located 

at Bastrop State Park and corresponded with the locations of 2016 height and diameter 

stand survey plots in the Padina soil (Moderate x Padina and Severe x Padina).  Lightly 

burned (n = 3) leaf-level physiology plots were established in Padina soil as well at the 

Griffith League Ranch.  At each site, I conducted midday gas exchange measurements 

(930 – 1430 hrs) with an open-flow gas analyzer system (LI-6400, Li-Cor, Lincoln, NE, 

USA) on leaves or fascicles of needles from the upper half of the canopy of each of two 

individuals of both oak species and loblolly pine, respectively.  Gas exchange 

measurements were conducted on fully expanded sunlit leaves at ambient temperature 

and fixed PAR of 2000 µmol m-2 s-1, air flow of 500 µmol s-1, and CO2 of 400 µmol mol-

1.  Measurements were collected after steady state conditions were reached, as indicated 

by stability of gas exchange parameters.  Midday leaf water potential measurements 

were taken on leaves and fascicles using a Scholander-type pressure chamber (PMS 

Instrument Co., Corvallis, OR, USA) immediately after gas exchange measurements.   



 

67 

 

Pressure-volume curve analyses were conducted on leaves and fascicles from the 

same individuals used in gas exchange measurements.  Leaves were collected before 

sunrise and stored them in a dark insulated container until pressure-volume curves were 

completed.  I used the bench dry method for pressure-volume measurements (Tyree and 

Hammel 1972) with non-rehydrated leaves (Kubiske and Abrams 1991).  Following 

pressure-volume curves, oak leaf areas were measured using a leaf area meter (LI-3100) 

and pine fascicle areas were measured using needle length and fascicle diameter (Grace 

1987, Svenson and Davies 1992).   Leaf and fascicle dry mass were measured following 

drying for 48 hours at 70ºC.    From pressure-volume curves I was able to calculate leaf 

osmotic potential at full turgor (ΠFT) and at the turgor loss point (ΠTLP), relative water 

content at the turgor loss point (RWCTLP), capacitance at full turgor (CFT) and at the 

turgor loss point (CTLP), and bulk elastic modulus (ε) (Koide et al. 2000). 

 

Statistical Analyses 

Statistical tests were performed for effects of burn severity and soil type on 

loblolly pine and oak resprout height, diameter, density, leaf nutrient, biochemical 

parameters (PPP, PB, and PB:PPP), leaf-level gas exchange, and pressure-volume 

parameters using linear mixed-models (proc mixed procedure, SAS 9.4, SAS Institute 

Inc., Cary, NC, USA).  The effects of severity, soil type, species, and their interactions 

were tested for height, diameter, density, and leaf nutrient and biochemical parameters.  

Data from 2015 and 2016 were included together for leaf nutrient and biochemical 

parameters, so in those models “year” was considered a random effect.  Replication 



 

68 

 

within soil type × burn severity was considered random as well.  To better explain 

observed growth differences between 2015 and 2016, I analyzed the effects of soil type, 

burn severity, species, and their interactions within each year, respectively, and in a 

second analysis compared the effects of soil type, burn severity, and year on the growth 

of each species. 

Gas exchange and pressure-volume parameters were only monitored during 

summer 2016 across different burn severities on Padina soil, so “year” and soil type 

were not included in the model for these parameters.  Replication within burn severity 

was considered a random effect within the model.  

Differences were considered significant at P ≤ 0.05 unless otherwise noted.  

When effects were detected in the model, I used the LSMEANS statement in SAS to 

estimate means. Differences between means were adjusted using Tukey’s HSD post-hoc 

analysis.   

 

Results 

Variations in Oak and Pine Responses to Resource Alterations 

The post-fire landscape contains both pine recruits and resprouting oaks, but 

differences in soil type, and especially burn severity, appear to play a large role in 

driving regeneration patterns.  Interactions between soil type and other variables were 

not frequent, suggesting the three species respond fairly well to growing in all soil types 

that were surveyed.  All three species tolerate moderately acidic conditions, shallow 

topsoils, and low nutrient availability (Ware et al. 1992, Abrams 1996, Schultz 1997, 
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Table 1. Average number of blackjack and post oak resprouts and loblolly pine seedlings 

in each burn severity x soil type combination in 2015 and 2016.  Within each year, 

different uppercase letters (A) denote differences (P ≤ 0.05) among species within a burn 

severity x soil type interaction. Different lowercase letters (a) denote differences (P ≤ 0.05) 

within a species between the various burn severity x soil type interactions, in each year 

respectively. 

 
2015 

 Moderate   Severe    

 Edge Jedd Padina Edge Jedd Padina SEM 

Blackjack oak 2.7 B,a 3.3 A,a 1.3 A,a 1.3 A,a 5.0 A,a 3.7 A,a 5.0 

Post oak 2.3 B,a 1.0 A,a 4.7 A,a 3.7 A,a 3.0 A,a 0.7 A,a 5.0 

Pine 41.0 A,a 21.0 A,ab 14.3 A,ab 7.0 A,b 3.0 A,b 4.3 A,b 5.0 

2016 

 Moderate   Severe    

 Edge Jedd Padina Edge Jedd Padina SEM 

Blackjack oak 3.7 A,a 6.7 A,a 1.7 A,a 4.0 A,a 2.7 A,a 3.7 A,a 4.4 

Post oak 0.3 A,a 1.3 A,a 2.7 A,a 1.3 A,a 0.3 A,a 3.3 A,a 4.4 

Pine 19.0 A,ab 8.0 A,ab 23.3 A,a 0.7 A,ab 0.3 A,b 0.3 A,b 4.4 

 

 

Clark and Hallgren 2003), which may explain this uniformity across different soil types. 

Growing conditions have been relatively mesic since the fire, and substantial drought has 

not been observed over the life span of the seedlings/resprouts.  In the 12-mo period 

prior to the 2015 plot surveys, the region received approximately 1067 mm of  

precipitation (SRCC 2017).  The region received approximately 1549 mm of 

precipitation in the 12-mo period prior to the plot surveys in 2016 (SRCC 2017).   

In both 2015 and 2016, considerably more pine seedlings were found in 

moderately burned plots than severely burned plots, with many severely burned plots 

having no pine regeneration at all (Table 1).  The ratios of pines in moderately burned  
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Figure 13. Blackjack and post oak resprout and loblolly pine seedling heights across soil 

types and burn severities in 2015 and 2016.   Within the respective year, different 

uppercase letters (A) denote differences (P ≤ 0.05) among species within each burn 

severity or soil type and different lowercase letters (a) denote differences (P ≤ 0.05) 

between burn severities or soil types for a particular species. 

 

 

 

plots to severely burned plots were on average over 5:1 and 37:1 in plots measured in 

2015 and 2016, respectively.   Burn severity had a greater effect on pine presence than 

soil type.  All soil types within a particular burn severity had similar numbers of pine 

individuals.  Oak presence was not affected by variations in burn severity or soil type, 

supporting the hypothesis that oaks may have a greater advantage over pines in areas 

with greater resource limitations after fire.  However, oak growth was affected by burn  
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Figure 14. Comparison of blackjack and post oak resprout and loblolly pine seedling 

heights between 2015 and 2016 across soil type x burn severity combinations.   Within 

each species, different uppercase letters (A) denote differences (P ≤ 0.05) between years 

within each burn severity x soil type combination and different lowercase letters (a) 

denote differences (P ≤ 0.05) between burn severity x soil type combinations in a 

particular year. 

 

 

 

severity.  In 2015, blackjack oaks and post oaks tended to be 42% and 47% taller, 

respectively, in severely burned plots than moderately burned plots (Figure 13, Figure 

14).  However for the pines, the opposite was true.  The shortest pines with the smallest 

diameters were found in the severely burned plots in 2015 (Figure 13, Figure 14, Table 

2), which was especially true in the severely burned x Padina soil combination.  This  
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Table 2. Blackjack oak, post oak, and loblolly pine diameters (cm) within soil type and burn severity combinations in 2015 

(species x severity x soil type interaction (P ≤ 0.05)) and 2016 (species x severity x soil type interaction (P = 0.32)).  Within 

2015, different uppercase letters (A) denote differences (P ≤ 0.05) among species within each burn severity x soil type 

interaction. Different lowercase letters (a) denote differences (P ≤ 0.05) within a species between the various burn severity x 

soil type interactions in 2015.  

 
2015 

 Moderate      Severe      

 Edge SEM Jedd SEM Padina SEM Edge SEM Jedd SEM Padina SEM 

Blackjack 

oak 

4.65 A,a 0.52 5.13 A,a 0.49 4.34 A,a 0.61 4.98 A,a 0.54 5.25 A,a 0.53 4.40 A,a 0.53 

Post oak 2.40 A,a 0.71 4.98 A,a 0.49 3.92 A,a 0.52 5.35 A,a 0.59 4.23 AB,a 0.59 4.91 A,a 0.58 

Pine 4.30 A,a 0.46 4.77 A,a 0.67 4.62 A,a 0.51 2.58 B,ab 0.62 2.32 B,ab 0.86 1.08 B,b 0.77 

2016 

 Moderate      Severe      

 Edge SEM Jedd SEM Padina SEM Edge SEM Jedd SEM Padina SEM 

Blackjack 

oak 

5.48 0.55  6.18 0.51 5.02 0.66 5.06  0.55 6.13  0.62 5.08 0.57 

Post oak 5.50 1.20 5.98 0.74 4.02 0.61 6.26 0.77 4.63 1.24 5.17 0.59 

Pine 6.45 0.51 7.30 0.64 5.23 0.54 5.60 1.45 9.24 1.99 5.22 1.97 
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was likely because I only found pines in one of the three plots measured within this 

combination in 2015, and none of the individuals there were over 0.5 m tall or 1 cm in 

diameter.  Therefore it appears that the pines within the severely burned areas may have 

 

 

  

 

Figure 15. Blackjack and post oak resprout and loblolly pine seedling a) leaf protein-

precipitable phenolic (PPP) content, b) amount of protein bound (PB) by PPP, c) PB:PPP 

ratio, and d) C:N ratio.   Different uppercase letters (A) denote differences (P ≤ 0.05) 

among species for PPP contents, amount of protein bound, and PB:PPP ratios.  For C:N 

ratios, different uppercase letters (A) denote differences (P ≤ 0.05) among species within 

each burn severity, and different lowercase letters (a) denote differences (P ≤ 0.05) 

between burn severities for a particular species.  
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experienced resource limitations that slowed their establishment and growth, again 

supporting the first hypothesis.  Pine C:N ratios seem to support this.  Pine foliar C:N 

ratios were greater in severely burned plots which could indicate N limitation (Figure 

15).   The reduction in heights within the oaks in the moderately burned plots in 2015 

likely resulted from the competition for resources with the numerous pine seedlings in 

these plots (Table 1). 

However, by 2016, any differences in growth between the three species within 

the different burn severities and soil types had disappeared (Figure 13, Figure 14, Table 

2).  All species within each burn severity x soil type combination had similar heights and 

diameters at that time.  Pines still maintained dominance in moderately burned plots, 

while oaks maintained dominance in severely burned plots.  Although pine numbers in 

severely burned areas continued to remain low in the 2016 plots (190% less than 

moderate plots), their growth suggested they were quite healthy (Figure 13, Figure 14, 

Table 2). 

Some leaf-level physiological properties appear strongly related to differences in 

site “quality” post-fire, even though any effect of resource limitation on species growth 

as a result of severity appears to have dissipated by 2016.  For example, burn severity 

seemed to have conflicting effects on gas exchange and leaf hydraulic properties of the 

three species.  Pines tended to increase ΨMD and decreasing gas exchange as burn 

severity increased, while post oaks displayed reversed responses, lowering ΨMD and 

increasing gas exchange with greater severity (Figure 16).  Pine pressure-volume 

analyses also revealed a preference for more conservative water use strategies than co- 
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Figure 16. Blackjack and post oak resprout and loblolly pine seedling a) midday leaf 

water potential (ΨMD), b) net photosynthetic rates (A), c) transpiration rates (E), and d) 

stomatal conductance rates (g) across burn severities, e) and specific leaf area.   For 

graphs a-d, different uppercase letters (A) denote differences (P ≤ 0.05) among species 

within each burn severity, and different lowercase letters (a) denote differences (P ≤ 

0.05) between burn severities within a particular species. Differences between species 

specific leaf areas are represented by different uppercase letters (A). 
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Figure 17. Blackjack and post oak resprout and loblolly pine seedling a) osmotic 

potential at full turgor (ΠFT), b) relative capacitance at full turgor (CFT), and c) leaf area 

specific capacitance at full turgor (CFT*).   For graphs a and b, different uppercase letters 

(A) denote differences (P ≤ 0.05) among species within each burn severity, and different 

lowercase letters (a) denote differences (P ≤ 0.05) between burn severities within a 

particular species. Differences between species CFT*, are represented by different 

uppercase letters (A). 

 

 

 

occurring oaks, especially in sites with greater burn severity.  Although not statistically 

different from the pines in less drastically burned areas, severely burned pines tended to 

have higher ΠFT, ΠTLP, and RWCTLP, and lower CFT and CTLP (Figure 17, Figure 18).  

Leaf pressure-volume variables have been associated with hydraulic capability, and in 

this study they seem to have some relationship with leaf level gas exchange.  For 
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example, A was positively correlated with CFT* in oaks and pines (P ≤ 0.05 in post oak 

and pine, P = 0.06 in blackjack oak).  CTLP values were positively correlated with E in 

oak (P ≤ 0.05 in post oak, P = 0.06 in blackjack oak).  Pine E and CTLP were both low 

but may not be related (P = 0.28).   

 

 

 

Figure 18. Blackjack and post oak resprout and loblolly pine seedling a) osmotic 

potential at turgor loss point (ΠTLP), b) relative water content at turgor loss point 

(RWCTLP), c) capacitance at turgor loss point (CTLP), and d) bulk elastic modulus (ε).   

For graphs a-c, different uppercase letters (A) denote differences (P ≤ 0.05) among 

species within each burn severity, and different lowercase letters (a) denote differences 

(P ≤ 0.05) between burn severities within a particular species. Differences between 

species’ bulk elastic moduli are represented by different uppercase letters (A). 
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Several fundamental differences were documented between the physiologies of 

the different genera that appeared to hold true no matter the regenerating environment.  

For example, pines consistently had high ΨMD across all three burn severities (Figure 

16). Blackjack oaks and post oaks usually had similar ΨMD, except in the lightly burned 

areas where blackjack oaks had lower ΨMD than post oaks.  Additionally, rates of 

photosynthesis (A), transpiration (E), and stomatal conductance (g) were generally 

greater for oaks than pines, along with specific leaf area (Figure 16).  Pines continuously 

had low gas exchange rates in all burn severities. Differences between oaks and pines 

carried over into the pressure-volume variables (Figure 17, Figure 18).  Oaks tended to 

have lower ΠFT, ΠTLP, RWCTLP, and ε than pines.  CFT and CTLP was usually greater for 

the two oak species, but CFT on a leaf area basis (CFT*) was greater for the pines.   

Additionally, oak leaves had greater PPP contents and bound more protein (PB) per g 

DM than pine needles (Figure 15). Protein binding efficiency (g PB: g PPP) was similar 

among the three species, however. 

 

Blackjack Oaks and Post Oaks Diverge in Leaf-Level Characteristics 

Leaf-level gas exchange and pressure volume parameter analyses revealed 

disparities in post oak and blackjack oak responses to differences in burn severity. 

Results suggest that post oak is a better competitor than blackjack oak, supporting the 

second hypothesis. Post oaks generally had high gas exchange rates in all burn severities, 

but blackjack oaks reduced all three gas exchange parameters to rates similar to those of 

the pines at the severely burned sites (Figure 16).  Blackjack oak gas exchange tended to 
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decrease with burn severity, while post oak seemed to respond oppositely, exhibiting the 

greatest gas exchange rates within severely burned sites.  Blackjack oaks also appeared 

to exhibit leaf hydraulic traits associated with water conservation with increasing burn 

severity, increasing ΠFT, ΠTLP, and RWCTLP and decreasing CFT and CTLP like pine as 

burn severity increases (Figure 17, Figure 18).  Again, post oaks seemed to tolerate high 

severity burning, exhibiting pressure-volume characteristics associated with drought 

tolerance in these sites.  Post oaks’ lowest ΠFT, ΠTLP, and RWCTLP occurred in the 

severely burned sites along with their greatest CFT and CTLP.  Post oak leaves also tended 

to have the greatest percent N, while blackjack oak leaves were intermediate between the 

other two species.  Leaf level gas exchange and pressure volume properties give the 

impression that post oaks may be better competitors than blackjack oaks, particularly in 

severely burned areas.  However, these diverging leaf-level characteristics may not 

ultimately determine how successful the two species will be in the future, since there 

were no differences between the number of individuals, heights or diameters of 

blackjack and post oak in any soil type x burn severity combination in 2015 or 2016. 

 

Discussion 

Evidence of Canopy Dominance Shifts in Severely Burned Areas 

Results indicated that oaks may overtake pine regeneration in some areas of the 

Lost Pines region after the fire.  For seedlings and resprouts, survival and growth are 

bottlenecks in species’ progress to canopy occupancy (Denslow 1987, Kobe 1999, 

Montgomery and Chazdon 2002). It appears that site conditions in severely burned areas 
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may have been unfavorable for the natural regeneration of loblolly pines, resulting in 

lower densities and slower recovery of pines in severely burned plots.  Other studies 

have reported similar results.  For example, following a wildfire in a mixed pine-oak 

forest of black pine (Pinus nigra J.F. Arnold) and Portuguese oak (Quercus faginea 

Lam.), oaks resprouted immediately and dominated the landscape during the first few 

years post-fire regardless of site conditions.  In contrast, pine establishment occurred 

early in mesic plots but was delayed many years in xeric conditions (Gracia et al. 2002).  

Retana et al. (2002) reported that black pine and Scots pine (Pinus sylvestris L.) had 

almost disappeared from burned plots three years after wildfire and predicted that in 30 

years 77 – 93% of plots dominated previously by those two species would be dominated 

by resprouting oak species. 

 High soil and air temperatures in severely burned areas reduce growth and 

survival of germinating pine seedlings (Barney 1951, Kramer 1957, Marx and Bryan 

1971), possibly explaining low numbers and small sizes of pine individuals growing in 

severely burned plots.  Greater radiation levels reaching the ground level in these 

exposed areas may have resulted in soil temperatures warm enough to inhibit seedling 

establishment and growth.  Daily minimum temperatures 5 cm below the surface at the 

severely burned site were 25.1 ± 0.3 ºC, 27.7 ± 0.3 ºC, and 26.5 ± 0.3 ºC for June, July, 

and August respectively.  Daily maximum temperatures at that depth for June, July, and 

August were 39.9 ± 0.8 ºC, 47.0 ± 1.0 ºC, and 40.4 ± 1.3 ºC, respectively.  Daily 

minimum temperatures at 30-cm depth were 27.3 ± 0.3 ºC, 30.8 ± 0.2 ºC, and 29.0 ± 0.4 

ºC for June, July, and August, suggesting temperatures were likely stressful across the 
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entire root zone for the young pines.  In a study by Barney (1951) loblolly pine root 

growth decreased at temperatures greater than 25 ºC.  Kramer (1957) reported that as 

long as night-time air temperatures did not exceed 17 ºC, 1-year old seedlings exposed to 

30 ºC day-time temperatures had the best height growth rates.  However, the lesser the 

temperature difference between night and day, the slower seedlings grew. 

Resprouting oaks in severely burned areas were also likely exposed to greater 

levels of radiation and warm soil temperatures post-fire than patches with some over-

story remaining, but were able to use existing root systems to their advantage, which 

may be another reason why I did not see reduced growth in oaks in severely burned 

plots.  Kanarek (2013) reported greater initial near-surface soil moisture available to 

surviving plants and new colonizers in severely burned areas of Bastrop State Park 

where the majority of trees were killed than in areas that experienced low-severity burn.  

However, live vegetation removal, coupled with a reduction of organic matter to further 

shade the surface and increase water holding capacity, can lead to rapid drying of upper 

soil and moisture stress to young plants with shallow root systems (Knapp 1985, 

Hoffman 1996).   

 Therefore, non-sprouting pines are at multiple disadvantages: struggling to grow 

roots in suboptimal soil temperatures while coping with potential drought.  Loblolly pine 

seedlings have been reported to produce less numerous roots and root systems shorter in 

length with slower growth rates than hardwood species of the same age (Kozlowski and 

Sholtes 1948, Lee and Jose 2003).  For example, Kozlowski and Scholtes (1948) 

reported that 1-year old loblolly pines had 30% less roots and 2.5 times shorter roots 
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than similar aged white oaks.  Post oak and blackjack oak growth rates are also relatively 

slow compared to other oak species and are often shorter in stature (Johnson and Risser 

1973, Stahle and Hehr 1984).  These species not only grow but thrive in areas with rocky 

terrain and relatively steep slopes and under xeric conditions, which may help them 

establish on the exposed rocky hillside conditions in some of the study plots (Abrams 

1996, Clark and Hallgren 2003). Oaks are among the most deeply rooting species in the 

world (Davis and Pase 1977, Hinckley et al. 1981, Abrams 1996) so it is likely that the 

mature root systems of the Bastrop resprouts had access to deep soil moisture sources.  

Although I did not measure root depths of the oaks or pines, I observed reductions in sap 

flux in pine seedlings with little change in resprouting oaks during drought which 

provides evidence of potential disparities between rooting depths of the two genera 

during this stage of regeneration (Chapter IV). 

Hindrances to loblolly seed dispersal that may shift species dominance must also 

be considered. Loblolly pine seedfall usually starts in October, and most of the seeds 

have been released by the end of December (Grano 1973).  Seed germination begins 

around March when daytime temperatures range between 18 - 27ºC (Baker and Langdon 

1990).  The Bastrop County Complex Fire ignited on September 4, 2011, before pines 

could release seeds for the year.  Following the combustion of most of the organic matter 

in severely burned patches there were likely very few seeds remaining to germinate from 

the previous year.  Seed dispersion ranges from 61 to 91 m downwind from a seed 

source and only 23 to 30 m in other directions (Baker and Langdon 1990).  Therefore, it 

may take several years before seeds are dispersed into the interior of large severely 
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burned patches.  This is likely part of the reason so few pine individuals were found in 

the plots.  By the time other pines establish themselves, the microclimate may be too 

greatly altered by the resprouting oaks for successful pine regeneration. 

Following the dispersal and establishment problems faced by pines, contrasting 

gas exchange and pressure-volume characteristics may have an effect on which species 

will ultimately win the race. The pines in this study consistently had low gas exchange 

rates, while the oaks more often than not had higher gas exchange rates.  Many studies 

have reported lower gas exchange rates in loblolly pine than co-occurring hardwoods, 

particularly under conditions of low soil moisture (Kolb and Stone 2000, Springer et al. 

2005, Poyatos et al. 2008, Renninger et al. 2015).  Drought-avoidance strategies are 

reported in many conifer species (McDowell et al. 2008, Choat et al. 2012).  Low gas 

exchange in pine seedlings in this study may reflect not only fundamental leaf-level 

differences between the genera, but also reduced access to resources by the shallow roots 

of these young individuals.  Oaks continue gas exchange when leaf water potential is 

near or lower than -3.0 MPa (Ni and Pallardy 1991, Poyatos et al. 2008).  Post and 

blackjack oaks are more drought tolerant than other oak species (Pastor and Post 1986, 

Abrams 1996), exhibiting greater gas exchange and allowing greater decreases in leaf 

water potential prior to stomatal closure at times of low soil moisture (Seidel 1972, Ni 

and Pallardy 1991).   

Variability of oak and pine leaf-level properties carried over into the pressure-

volume variables, with pines continuing to exhibit traits associated with drought-

avoidance.  Pines tended to have greater ΠFT, ΠTLP, RWCTLP, and ε than oaks, hinting at 
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the drought-avoidance strategy of the species, like gas exchange.  Other studies report a 

coordination of gas exchange behaviors and pressure-volume parameters (Bahari et al. 

1985, Sperry 2000, Brodribb and Holbrook 2003, Brodribb et al. 2003). Stomatal 

behavior depends on the interactions between soil and atmospheric water deficits as well 

as how well the vascular system supplies water.  Stomata are thought to regulate water 

lost through transpiration to prevent water potential from falling below a threshold value 

that may cause xylem cavitation, reducing both xylem and leaf conductivity (Bond and 

Kavanagh 1999).  This “threshold” may be determined by ΠTLP, as ΠTLP is considered to 

dictate the Ψsoil below which plants are unable to take up water to recover from wilting 

(permanent wilting point).  ΠTLP has been measured for decades when assessing species 

drought tolerance (Tyree and Hammel 1972, Schulte and Hinckley 1985).  Turgor loss 

impacts structural integrity of cells, metabolism, and performance of the plant as a whole 

(Lawlor and Cornic 2002).  Plants with low ΠTLP have an extended range of leaf 

turgidity and functionality, so they are able to maintain stomatal conductance, gas 

exchange, hydraulic conductance and growth at lower soil water potentials (Kubiske and 

Abrams 1991, Pita and Pardos 2001, Brodribb et al. 2003). Therefore, ΠTLP can be used 

to quantify drought tolerance, with those species exhibiting lower ΠTLP, like our oaks, 

having greater drought tolerance, while species with high ΠTLP, like our pines, are more 

likely drought avoiders, reducing gas exchange during times of low water availability.  

Other parameters derived from pressure-volume analyses, including RWCTLP, ΠFT, ε, 

and capacitance have been correlated with drought tolerance as well (Kubiske and 

Abrams 1991, Clifford et al. 1998, Niinemets 2001), and many may interact with ΠTLP, 
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although Bartlett et al. (2012) suggested some have a greater role in determining ΠTLP 

than others.  Regardless, the loblolly pines in this study exhibited gas exchange and 

pressure volume characteristics associated with a drought-avoidance strategy that could 

reduce the risk of cavitation, but may slow recovery in severely burned areas where 

pines are already at a disadvantage from seed dispersal struggles, resprouting biotic 

legacies, and rapid soil dry-down. 

Although dissimilarities in the species foliar biochemistry may simply result 

from innate differences between genera, nutrient and phenolic contents appear to follow 

other leaf-level results from the study.  It is not surprising that the oak species, which 

tended to have greater photosynthesis rates than loblolly pine, also had greater leaf N, 

and that post oaks had greater leaf N contents than blackjack oaks.  Leaf photosynthetic 

capacity is often correlated with leaf N content due to high proportion of N composing 

photosynthetic machinery (i.e. thylakoids, Rubisco, and proteins utilized in the Calvin 

cycle) (Evans 1989, Reich et al. 1991, Springer et al. 2005).  Other studies comparing 

gas exchange of deciduous species against pines have reported greater photosynthesis 

and leaf N contents in the deciduous species (Reich et al. 1995, Springer et al. 2005).  

Protein-precipitable phenolic contents and amounts of protein bound were greater in 

oaks than pines.  Oak leaves contain substantial amounts of phenolic compounds, 

including both hydrolysable and condensed tannins (Forkner et al. 2004, Salminen et al. 

2004, Tharayil et al. 2011) characterized by the ability to bind large amounts of protein 

(Makkar et al. 1988, Tharayil et al. 2011).  In addition to their ability to bind protein and 

enhance ruminant nutrition, CT prevent photo-oxidation and protect plants against high 
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levels of PAR and UV radiation (Close and McArthur 2002, Turtola et al. 2005, Abdala-

Díaz et al. 2006, Mellway et al. 2009).  High levels of these compounds in post oak and 

blackjack oak could contribute to maintenance of relatively high gas exchange in 

individuals growing in exposed severely burned sites after canopy removal.  Pines are 

known to contain protein-precipitating CT as well (Tiarks et al. 1989, Kraus et al. 2003), 

but terpenes are often produced to a greater degree (Litvak and Monson 1998, Kanerva 

et al. 2008).  Terpenes, like phenolics, also protect against UV radiation and protect 

against reactive oxygen species (Zavala and Ravetta 2002, Peñuelas et al. 2005, Gil et al. 

2012). 

 

Post Oak’s Competitive Ability 

Between the two oak species in this study, blackjack oak seems to be the more 

conservative, decreasing gas exchange and exhibiting pressure-volume parameters 

associated with drought avoidance in more severely burned areas. Unlike blackjack oak 

and loblolly pine, post oak displayed its greatest gas exchange rates in severely burned 

sites.  Pressure-volume parameters exhibited by post oak in these sites provide further 

evidence for this species’ ability to thrive in severely burned areas where exposure to 

high atmospheric demand and exposed soil may limit the recovery of more sensitive 

species.  Post oaks had their lowest ΠFT, ΠTLP, and RWCTLP and highest capacitance in 

the severely burned sites in conjunction with their greatest A, E, and g.  Nitrogen 

contents were greater in post oak than blackjack oak leaves, and were likely related to 

the greater photosynthetic rates in post oak.  Johnson and Risser (1974) also reported 
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that post oak leaves had greater N contents than blackjack oak leaves, and they had 

greater P which is also thought to limit photosynthesis when tissue quantities are low 

(Reich et al. 2009).  These species differences accumulated suggest post oak is the 

“hare”, while blackjack oak tends to show characteristics more similar to pine in many 

instances.  Although post oak and blackjack oak densities, heights, and diameters were 

similar in both measurement years, blackjack’s responses in the severely burned plots 

indicate this species is not as tolerant of site alteration as post oak and may not fare as 

well in the future. 

 

Oak and Pine Co-Existence Up to This Point 

Prior to the 2011 fire, oaks and pines co-existed in the Lost Pines environment, 

although pines were the more prevalent species.  The Lost Pines are frequently cited for 

their drought hardiness. This resilience (Bongarten and Teskey 1986, Wakamiya-

Noborio et al. 1999, Smith et al. 2014) is likely more a function of drought avoidance 

than drought tolerance, which is a strategy employed by many conifers (McDowell et al. 

2008, Choat et al. 2012).  Pines from this region have greater gas exchange rates than 

loblolly pines from more mesic regions when soil moisture levels are high, but conserve 

water and close stomata when soil moisture is low (Bilan et al. 1977, Wakamiya-

Noborio et al. 1999).  Compared to other loblolly pines, these have deeper root systems 

(van Buijtenen et al. 1976) and slower growth rates (Bongarten and Teskey 1987, Yang 

et al. 2002, Smith et al. 2014).  The needles of the Lost Pines are typically short and 

stout with thick cuticles, deep stomatal pits, and few stomata per unit of surface area, all 
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of which enhance their drought hardiness compared to seedlings from East Texas (Knauf 

and Bilan 1974, Bongarten and Teskey 1986).  All of these characteristics contributed to 

the success of this species in the Lost Pines area prior to the fuel-accumulating 

management that led to the severity of the Bastrop County Complex Fire.  Following the 

fire, post oak and blackjack oak resprouts out-number pines in much of the severely 

burned area and appear to utilize more drought-tolerant water use strategies which may 

extend the oaks’ lead in those patches even more.  However, it appears that pines will 

retain dominance in less-severely burned spaces, and physiological differences between 

the genera may actually foster co-existence.  Loblolly pines are fairly shade intolerant 

(Teskey and Shrestha 1985, Schultz 1997), so they may utilize the time when oaks are 

dormant for growth and catching up to height gains the oaks made during the growing 

season.     

 

Conclusions 

 Intense fire behavior like that seen in the Bastrop County Complex Fire may 

limit recovery of pine species like loblolly pine which are not adapted to severe fire 

events.  The pines in this study appear to be recovering well under light to moderate burn 

conditions, but may require supplemental planting from additional sources to re-populate 

severely burned areas if park managers and landowners in the region seek to maintain 

pine-dominated stands.  The three species included in this study exhibit unique gas 

exchange and pressure volume parameter responses to varying burn severity in addition 

to dissimilarities in leaf chemistry, all of which may play a role in stand recovery and 
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composition following wildfire.  The drought-avoidance strategies of loblolly pine 

appear to have worked well in maintaining pine dominance prior to the fire.  However, 

greater gas exchange, drought-tolerant pressure-volume characteristics, and access to 

deeper soil moisture may allow oaks to out-pace pine recovery in severely burned 

patches.  Local managers will need to continue to monitor regrowth over time and, in 

particular, closely examine species performance in relation to drought since results 

suggest changes in water availability may have different effects on the species studied. 

More frequent but less severe controlled burns may likewise favor some species over 

others, and comparisons of burn frequency intervals may provide best management 

practices.  
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CHAPTER IV 

COMPARISON OF TRANSPIRATION ACROSS BURN SEVERITIES IN 

RECOVERING MIXED LOBLOLLY PINE AND OAK STANDS IN THE LOST 

PINES REGION OF TEXAS 

 

Synopsis 

Alterations to resource availability can cause shifts in stand structure and species 

composition following wildfires.  In turn, changes to species makeup and distribution 

and shifts to younger, actively growing vegetation may modify stand transpiration and 

the amount of water available to other parts of the hydrologic cycle.  Following the 

Bastrop County Complex Fire in the Lost Pines eco-region, near Bastrop, TX, USA, 

transpiration was monitored in mixed loblolly pine (Pinus taeda L.)/ oak (Quercus 

stellata Wangenh., Quercus marilandica Muenchh.) stands across multiple burn 

severities.  An unburned, control stand (mature pines and oaks) was identified at the 

Griffith League Ranch north of the city of Bastrop, while moderately burned (mature 

pines and oaks) and severely burned stands (pine seedlings and oak resprouts) were 

selected in Bastrop State Park.  Transpiration was estimated for approximately 5 months 

using sap flux sensors in five pine and oak trees at the unburned and moderate sites, 10 

oak resprouts, and three pine seedlings at the severely burned plot.  From 27 May 27 to 

12 October, 2016, pines had 31% and 39% greater average sap flux rates (Js) than oaks 

at the unburned and moderately burned stands, respectively.  Regenerating pines at the 

severely burned site started the experimental period with greater Js than the resprouting 
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oaks, but sap flux quickly decreased as shallow soil moisture was depleted.  Young pines 

did not recover to pre-drought levels and had 9% lower sap flux on average than the 

oaks at the severely burned stand.  Mature pines were not affected by drought periods 

and maintained greater Js than mature oaks on most days.  Pine transpiration made up 

75% and 86% of unburned and moderate stand daily transpiration, respectively.  By 

contrast, oak transpiration dominated at the severely burned stand, contributing over 

95% of daily transpiration.  Transpiration was greatest at the moderately burned stand 

(2.08 mm day-1), intermediate at the unburned stand (1.48 mm day-1), and least for the 

severely burned stand (0.46 mm day-1).  Although resprouting oaks exhibited the greatest 

Js and pine seedlings had high Js rates as well, the reduction in total sapwood area after 

the severe fire resulted in low daily transpiration.  Results suggest light to moderate 

burns may enhance stand transpiration through reductions in competition and increased 

irradiance, while severe fires reduce stand transpiration through reductions in vegetation 

density.  Oaks will likely retain greater numbers at the severely burned stand and 

continue to dominate stand transpiration. 

 

Introduction 

A warmer, drier climate has resulted in increasing annual fire season length, fire 

frequency and size, and overall burned area in North American forests (Flannigan et al. 

2005, Miller et al. 2009).  As a result of fire suppression over the past century, increases 

in large standing dead fuel loads have led to greater fire size and severity (Pollet and 

Omi 2002, Miller et al. 2009).  Alterations to resource availability (e.g. light, soil 
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nutrients, soil moisture) post-fire, in particular after high severity fires, can result in a 

shift in stand structure and species composition which may be different from the pre-fire 

environment (Barton 2002, Savage and Mast 2005, Strom and Fulé 2007, Moser et al. 

2010, Johnstone and Kasischke 2005).  In turn, shifts in species composition, 

distribution, and vegetation age can change the amount of water available to other parts 

of the hydrologic cycle through alterations in transpiration.  The “Lost Pines” area in 

central Texas provides an opportunity to examine possible long-term shifts in vegetation 

structure and species composition following such a wildfire, and how these shifts will 

additionally modify water use.  Prior to the 2011 Bastrop County Complex Fire, the 

over-story vegetation of the region predominantly consisted of loblolly pine (Pinus taeda 

L.).  However, post oak (Quercus stellata Wangenh.) and blackjack oak (Quercus 

marilandica Muenchh.) have rapidly resprouted across much of the post-fire landscape, 

suggesting shifts to oak-dominated woodlands or savannas rather than pine-dominated 

stands could occur in some patches. 

The switch to younger vegetation, both resprouts and non-sprouting pine 

seedlings, serves as the first visual indication of change to the stand structure and results 

in greater gas exchange and water use per unit leaf area than mature trees remaining in 

less severely burned areas (Castell et al. 1994, Utsumi et al. 2010).  Greater water use in 

young individuals and resprouts is associated with greater sapwood and leaf area indices 

and stomatal conductance per unit leaf area than older individuals (Magnani et al. 2000, 

Roberts et al. 2001, Vertessy et al. 2001, Ewers et al. 2005, Delzon and Loustau 2005).  

Increases in pressure gradient with gravity and greater hydraulic resistance in older, 
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taller trees may play a role in reducing water use as well (Ryan and Yoder 1997, Koch et 

al. 2004).  Although average daily transpiration and sap flow per unit area can be similar 

or even lower in individual resprouts compared to mature trees, in some cases, stand-

level transpiration by resprouts can actually be greater due to greater total sapwood area 

in regenerating stands (Ffolliott et al. 2003, Buckley et al. 2012).  Due to a reduction in 

competition, water availability can initially increase for individuals regenerating in these 

severely burned areas, aiding increases in transpiration (Cardenas and Kanarek 2014).  

Shifts in species composition may alter stand water use to a greater degree than 

shifts in age within a single species (Asbjornsen et al. 2007, Hadley et al. 2008, Bradford 

et al. 2014).  For example, angiosperms and gymnosperms in the same stand often differ 

in amounts of sapwood area, hydraulic conductance, and transpiration (Tyree and Ewers 

1991, Brodribb and Field 2000, Moore et al. 2004).  Most of the sap flow in trees with 

ring-porous sapwood, such as oaks, occurs in younger xylem rings, although significant 

flow in the older rings remains (Granier et al. 1994, Poyatos et al. 2007, Gebauer et al. 

2008).  In diffuse porous and non-porous trees, like pine, the sapwood area occupies a 

greater portion of the stem cross-sectional area and is composed of narrow conduits that 

are more resistant than the large vessels of ring-porous trees (Cermak and Nadezhdina 

1998).  Differences in rooting depth and root anatomy may also lead co-occurring 

angiosperms and gymnosperms to access water from different parts of the soil profile 

(Jackson et al. 1999, Schwinning 2008, Renninger et al. 2015).  Angiosperms and 

gymnosperms vary in conductance, photosynthesis, and transpiration responses to 

alterations in water availability and evaporative demand, with gymnosperms, like pines, 
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often utilizing more conservative water use strategies during times of low water 

availability (Irvine et al. 1998, Choat et al. 2012).  Oak species, on the other hand, 

exhibit small safety margins, progressively lowering leaf water potentials while 

maintaining relatively high gas exchange (Abrams 1990, David et al. 2007, Pinto et al. 

2012).  Although pines often use conservative water use strategies during drought, they 

capitalize on soil moisture increases; pines have greater conductance and 

evapotranspiration than co-occurring hardwood species following precipitation events 

(Poyatos et al. 2008, Zweifel et al. 2009, Renninger et al. 2015).  Some studies reported 

greater sap flux in pines than hardwoods as well (Phillips et al. 1996, Ford et al. 2010, 

Renninger et al. 2015). 

Following the Bastrop County Complex Fire, we have the unique opportunity to 

monitor physiological differences between young and mature individuals of oak and 

pine, two genera known to differ in water use strategies across multiple burn severities.  

Multiple studies have evaluated sap flux responses of oaks and pines, with several 

studies including both genera (Phillips et al. 1996, Phillips et al. 2003, Poyatos et al. 

2005, Poyatos et al. 2008, Renninger et al. 2015).  Less is known about sap flux and 

transpiration responses between mature trees and resprouts after fire (Utsumi et al. 2010, 

Buckley et al. 2012, Gharun et al. 2013, Nolan et al. 2014, Nolan et al. 2015), especially 

for oaks (Ffolliott et al. 2003).  This study adds to the body of knowledge by examining 

transpiration of mature oaks and pines along with resprouting oaks and pine seedlings 

across multiple burn severities. 
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Objectives 

 The primary aim of this study was to determine how burn severity affects 

transpiration through alterations in stand structure and age in mixed pine/oak stands 

following the Bastrop County Complex Fire.  Stand transpiration should change with 

shifts in pine and oak proportions post-fire.  Pines were hypothesized to have higher Js 

than oaks, which coupled with their large sapwood area, would result in greater 

transpiration in stands containing a greater number of pines.  The second hypothesis of 

the study was that resprouting oaks and young pines would have greater daily sap flux 

per unit sapwood than mature individuals of the same species.  Finally, stand level 

transpiration was hypothesized to decrease in sites with greater burn severities due to 

reductions in vegetation density and total sapwood area.      

   

Materials and Methods 

Site Description 

This study was conducted at Bastrop State Park (N30°6’43.992”, 

W97°15’38.016”) and the Griffith League Ranch (N30°12’20.2”, W97°14’03.3”), 

Bastrop County, Texas, USA, within the “Lost Pines” eco-region.  The “Lost Pines” 

represents the western-most range of loblolly pine in the United States, isolated from the 

East Texas Piney Woods ecoregion by over 160 km during the Pleistocene (Bryant 1977, 

Al-Rabab’ah and Williams 2004).  Loblolly pine, post oak, blackjack oak, and eastern 

red cedar (Juniperus virginiana L.) are the dominant overstory species in the region.  

Common understory species include yaupon holly (Ilex vomitoria Sol. ex Aiton), 
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American beautyberry (Callicarpa americana L.), and farkleberry (Vaccinium arboreum 

Marshall).   Temperatures typically range from 12.7 – 26.5ºC annually, and the area 

receives around 820 mm of precipitation each year. 

The Bastrop County Complex Fire ignited in the region on September 4, 2011, 

and was the most destructive fire in recorded Texas history (Rissel and Ridenour 2013).  

More than 12,950 ha and 1.8 million trees were burned, including 96% of Bastrop State 

Park (Rissel and Ridenour 2013).  Pine mortality was 100% in severely burned areas and 

many of the lesser burned areas also saw high stress-related tree mortality.  Following 

the Bastrop County Complex Fire, the Texas Parks and Wildlife Department mapped 

burn severities in Bastrop State Park using satellite imagery and ground validation 

following classifications developed by the U.S. Department of the Interior (Cardenas and 

Kanarek 2014).  Within Bastrop State Park, two plots were established to monitor sap 

flux and micrometeorological conditions in areas classified as 1) “moderately” and 2) 

“severely” burned.  A third unburned “control” plot was established at the Griffith 

League Ranch located north of the city of Bastrop.  All three plots were circular with a 

15-m radius (area = 707 m2).  Soils of the area consist primarily of sands and sandy 

loams from the Patilo-Demona-Silstid and Axtell-Tabor associations with some exposed 

areas of gravel or clay on steep, eroded slopes (Baker 1979).  All three sites were 

established in areas classified as Padina fine sandy loam (loamy, siliceous, active, 

thermic Grossarenic Paleustalf) to prevent differences in water availability that may 

occur with variation in soil texture and depth to the argillic horizon (Hacke et al. 2000, 

Fernandez-Illescas et al. 2001). 
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Sap Flux and Sapwood Area Measurements 

Sap flux density (Js) was continuously measured using thermal dissipation 

sensors (Granier 1987) constructed using the method described by Phillips et al. (1996) 

starting in June 2015 until October 2016.  This method utilizes an upper probe 

containing a constantan heating element and a lower reference probe.  At both the 

unburned and moderately burned sites, two sensor pairs were installed in each of five 

mature pine trees and five mature post oak trees for a total of 20 sensor pairs per site.  

Sensors were installed on the north and south sides of trees and inserted in the outer 20 

mm of active xylem at 1.5-m height. At the severely burned site, one sensor pair was 

installed in each of ten resprouting post oaks (6) and blackjack oaks (4) for a total of 10 

oak sensor pairs.  I also installed sensors in three pine seedlings at the severely burned 

site. Due to the resprouts and pine seedlings’ smaller stature (diameter <5 cm and height 

< 3m), on these sensors were installed in the outer 10 mm of active sapwood and at 

~0.45 m above the ground surface.  Data were collected every 30 s, averaged over 30-

min intervals, and stored on a Campbell CR10X datalogger (Campbell Scientific Inc., 

Logan, UT, USA).  Temperature differences between heated and reference probes were 

converted to Js (kg m-2 s-1) using Granier’s (1987) empirical calibration equation 

[equation 1]:  

𝐽𝑠 = 0.119 (
𝛥𝑇𝑀− 𝛥𝑇

𝛥𝑇
)

1.231

= 0.119𝐾1.231    (1) 

where ΔTM  is the maximum temperature difference when sap flux is assumed to be 0, 

and ΔT is the actual difference in temperature.  Daily total sap flux density (kg m-2 day-1) 

was calculated as the sum of all Js measured in a 24-h period. 
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Figure 19. Distribution of tree and resprout diameters in the three 707 m2 sap flux plots. 
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 A full stand survey was conducted in all three sap flux plots.  In the unburned 

and moderately burned sap flux plots, I measured all saplings and trees with diameter at 

breast height (DBH) greater than 5 cm (Figure 19).  Unlike in the unburned and 

moderate plots, I measured the diameter at the base of the stem (~0.1 m) (Keeley and 

Zedler 1978, Cipollini and Whigham 1994) of all severe site resprouts and seedlings 

with stems greater than 1 cm (Figure 19).  Diameters were used to calculate cross-

sectional area.  The unburned plot had the largest number of trees (n = 52) and basal area 

(A = 2.72 m2).  Although the severely burned site had numerous resprouting oaks (n = 

39) with multiple stems per clump (5 on average > 1 cm) and a few individuals of other 

species (n = 6), the overall basal area (A = 0.294 m2) was smaller than the other sites.  

Sapwood area was determined in the control and moderately burned plots using cores 

retrieved at 1.5-m height and immersed in safranin-fucsin dye (McDowell et al. 2002, 

Gebauer et al. 2008).  Due to the size and age of the oak resprouts and pine seedlings at 

the severely burned site, sapwood area was assumed to be 100% of the seedling’s cross-

section area minus bark depth (Moore et al. 2004). Other studies have reported little to 

no heartwood in similar sized seedlings (Dean and Long 1986, Wullschleger et al. 1998).  

All trees with sensors at the moderate and unburned sites had a sapwood radius greater 

than the sensor depth of 2 cm (Clearwater et al. 1999).  Sapwood area (As) of the 

remaining trees in the plot was calculated using linear regression equations developed  

from total basal area and sapwood area from cored individuals, assuming a constant 

active sapwood depth in all stem directions (Figure 20, Table 3).  Data from the 
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moderately burned and unburned sites were combined within oak and pine species, 

respectively, to develop models applicable to remaining trees within each species.  

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

  

Figure 20. Regression equations used to calculate sapwood areas for a) oak and b) pine 

individuals in the unburned and moderately burned stands. 
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Table 3. Distribution of sapwood area (As) (m
2) among species in each 707 m2 sap flux 

plot. 

  

Unburned 

Plot 

Moderate 

Plot 

 Severe 

Plot 

Oak 0.24 0.25 0.22 

Farkleberry 0.01   
Yaupon 0.02   
Willow baccharis   0.01 

Pine 1.14 1.02 0.01 

Eastern redcedar 0.22 0.01   

Angiosperms 0.27 0.25 0.23 

Gymnosperms 1.36 1.03 0.01 

Total 1.63 1.28 0.24 

 

 

 

 

For pines, As = 0.69A + 8.74 (r2 = 0.98), where As is sapwood area and A is basal area, 

both in m2.  For oaks, As = 0.31A + 14.31 (r2 = 0.96).  The oak regression equation was 

used to estimate sapwood area of other angiosperms in the moderate and unburned 

stands, and the pine regression equation was applied to other gymnosperms (Moore et al. 

2004). 

Some studies have highlighted that sap flux rates are not uniform across the 

entire sapwood area due to changes in conduction with changes in wood proprieties, age, 

and depth (Phillips et al. 1996, Cermak and Nadezhdina 1998, Nadezhdina et al. 2002, 

Ford et al. 2004, Poyatos et al. 2007).  Hence, to avoid overestimations of stand 

transpiration, radial profile corrections were applied to Js measurements (Delzon et al. 

2004, Ford et al. 2004).  I monitored Js across sapwood profiles at multiple depths in the 

two largest pine (DBH = 62.8 and 52.1, As = 2076.2 cm2 and 1411.0 cm2, respectively) 

and oak (DBH = 32.1 and 23.9, As = 272.6 cm2 and181.9 cm2, respectively) trees for a 
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minimum of 9 days in the unburned site.  In oak trees, profile sensors were installed at 

four depths: 1, 2, 3, and 4 cm into the xylem.  For the pines, sensors were installed every 

2 cm from 2 - 14 cm and 2 - 16 cm into the xylem for the first and second tree 

respectively. The radial profile sensors used were an adapted version of James et al. 

(2002) variable length probes.  To correct for differences in conductance across the  

 

 

Figure 21. Radial sap flux measurements used to correct daily Js.  Relative flux was 

calculated by normalizing the value at a given depth, Ji, to the value in the outer 1 cm, 

Ji=1. Relative depth was calculated by normalizing the depth of each measurement, Li, to 

the total sapwood depth, Lsapwood, measured via core sampling. 
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radial profile in mature oaks and pines at the moderate and unburned stands, correction 

factors were calculated using the following equation developed according to the radial 

profile measurements (Figure 21) [equation 2]: 

𝐽𝑖

𝐽𝑜
= 2.657 (

𝐿𝑖

𝐿𝑜
)

3

− 6.818 (
𝐿𝑖

𝐿𝑜
)

2

+ 4.022 (
𝐿𝑖

𝐿𝑜
) + 0.455  (2) 

where Ji/Jo is the ratio of sap flux in the ith depth to sap flux of the outer profile sensor 

and Li/Lo is the ratio of the ith sapwood depth to the total sapwood depth.  I divided 

cross-sectional sapwood area for each tree in the moderate and unburned stands into 5 

sections where Li/Lo corresponded to 20% increments relative to the total sapwood 

depth.  Within each stand the correction factor Ji/Jo was applied to adjust the sectional  

sap flux per unit area (kg m-2) relative to the average outer Js from the 2-cm Granier 

probes for oak and pine, respectively. Daily total sap flux (kg m-2 day-1) for each section 

was calculated by summing Js values in a 24-h period.  

Daily pine transpiration (mm) for a stand was then calculated using the daily sap 

flux total for each sapwood section and multiplied by the total pine sapwood area (m2) in 

that section divided by the total stand area (707 m2).  Daily oak transpiration was 

similarly calculated.  Transpiration of species without sensors (e.g. eastern redcedar, 

yaupon, etc.) was calculated using the estimated sapwood area of that particular species 

and the adjusted daily sap fluxes of pine for gymnosperm species and oaks for 

angiosperm species (Moore et al. 2004).  Sapwood from species other than oak and pine 

made up 15%, <1%, and 4% of the total sapwood area at the unburned, moderately 

burned, and severely burned sites, respectively.  Daily total transpiration for the stand 

was determined by summing the daily transpiration of all individuals in the stand.  In the 
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severely burned stand, daily total sap flux was assumed to be homogeneous across the 

entire cross-section of the resprouts and seedlings. Hence, Js was multiplied by the total 

sapwood area and divided by the plot area to calculate transpiration of each species.  

Similar to the moderate and unburned stands, the daily sap flux of resprouting oaks was 

used to calculate sap flux for other angiosperm species in the plot. 

 

Stand Microclimate Measurements 

Each site was equipped with a TR-525 tipping bucket rain gauge (Texas 

Electronics, Inc., Dallas, TX, USA) to monitor rainfall daily totals (mm day-1) and 

events, while relative humidity (%) and air temperature (oC) were measured with a 

Vaisala INTERCAP® HMP60 (Vaisala Inc., Boulder, CO, USA) probe.  Soil 

temperature (oC) was also measured at the three stands at the soil surface, below the 

litter layer, and at 5, 10, and 30 cm below the soil surface. Three thermocouple sensors 

each were installed at both the soil surface and litter layer and two sensors were installed 

at each soil profile depth for a total of 12 soil temperature sensors at every site.  A 

CR10XTCR (Campbell Scientific Inc., Logan, UT, USA) was used to provide a 

temperature reference for the soil temperature type T thermocouples.  Soil temperature, 

air temperature, relative humidity, and rainfall were measured every 30 seconds and 

averaged over 30 minutes by the site datalogger.  Air temperature and relative humidity 

data were used to estimate vapor pressure deficit (VPD) (Murray 1967, Howell and 

Dusek 1995).  VPD in kPa was computed as:  

𝑉𝑃𝐷 = 𝑒∗(𝑇𝑖)(1 −
𝑅𝐻𝑖

100
)            (3) 



 

105 

 

where  e∗(𝑇𝑖) = 0.611 exp[
17.27∗𝑇𝑖

𝑇𝑖+237.3
]    (4) 

In which e*(Ti) is the saturated vapor pressure in kPa for temperature Ti in ºC and RHi is 

the air relative humidity in % for the ith 30-min period of each day.  Vapor pressure 

deficit was then averaged among all measurements in a 24-h period.    

 

Statistical Analyses 

Statistical tests for effects of burn severity and species interactions on daily Js 

and transpiration were performed using linear mixed-models (proc mixed procedure, 

SAS 9.4, SAS Institute Inc., Cary, NC, USA).  The effects of severity, species, and their 

interactions were tested for Js and transpiration.  I focused on data from DOY 148 (27 

May) to 286 (12 October) for analyses because sap flux sensors in pines at the severely 

burned site were not installed until May 2016.  This time span (DOY 148 to 286) also 

represents the bulk of the growing season.  In the models, “day” was considered random 

while species and severity were fixed effects.  When significant effects were detected in 

the model, the LSMEANS statement in SAS was used to estimate means. Differences 

between means were adjusted using Tukey’s HSD post-hoc analysis.  Differences were 

considered significant at P ≤ 0.05. Additionally, non-linear (exponential) equations were 

used to determine the effects of VPD on daily sap flux rates.  Model fits were evaluated 

based on coefficient of determination (r2) and P-values.  Daily VPD values from 1 to 24 

July and 1 to 12 August were examined in greater detail with respect to effects on 

regenerating pine sap flux at the severely burned site when shallow soil moisture was 

depleted.  
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Figure 22. Daily total sap flux (kg m-2 day-1) of oaks and pines within a) unburned, b) 

moderately burned, and c) severely burned stands along with d) average daily VPD and 

total daily rainfall from 1 April to 12 October, 2016.  Daily total sap flux represents that 

of Jo at the outer 2 cm and 1 cm of sapwood for the mature trees and regenerating 

seedlings and resprouts, respectively.  Periods of shallow soil moisture dry down are 

shaded. 
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Results 

Sap Flux Differs Among Species and Burn Severities 

 Pine sap flux (Js; kg m-2 day-1) was greater than that of oaks in the unburned and 

moderately burned stands by 31 and 39%, respectively, on average from 27 May to 12 

October, supporting the first hypothesis (Figures 22a and b, 23a).  Pine and oak Js tended  

 

 

Figure 23. Comparison of a) average daily total sap flux (Js; kg m-2 day-1) and b) average 

daily transpiration (mm day-1) for oaks and pines within the three burn severity stands 

along with c) average total daily transpiration for each of the three stands for the period 

of 27 May to 12 October, 2016. Different uppercase letters (A) denote differences (P ≤ 

0.05) between species within each burn severity, while different lowercase letters (a) 

denote differences (P ≤ 0.05) among burn severities within a particular species for 

panels a and b.  Differences in daily transpiration among stands are represented by 

uppercase letters. 

 



 

108 

 

 

to maintain their relative proportions at these two sites, although they were inclined to  

drop to similar levels on rainy days (Figure 24a and b).  Unlike the young pines at the 

severely burned site, Js of mature pines at these stands was not affected by summer dry 

periods.  Following the wet spring of 2016, regenerating pines at the severely burned site 

had greater Js than the resprouting oaks, but sap flux quickly decreased to levels below 

the oaks as soil moisture in the upper soil layers was depleted (Figure 22c, Figure 24c).  

Excluding a brief reprieve after rains in the last week of July, pine Js was on average 

53% lower than resprouting oak Js from 1 July to 12 August.  Although shallow soil 

moisture recovered after rains in middle to late August, regenerating pine Js did not  

return to pre-drought levels and remained nearly equal to oak Js throughout the later part 

of the growing season.  The decreases in pine Js with shallow soil moisture led to 9% 

lower sap flux on average than the oaks at the severely burned stand during the time 

period of 27 May – 12 October (Figure 23a).     

Within both species, daily Js tended to increase as burn severity increased and 

was generally greater in younger individuals of each species, confirming the second 

hypothesis.  The resprouting oaks had 52 and 82%, respectively, greater daily Js than the 

mature oaks at the moderately burned and unburned stands from 27 May – 12 October 

(Figure 23a).  Oaks at the moderately burned site had 34% greater Js than those at the 

unburned site.  Daily sap flux of the regenerating pines of the severe stand and mature 

pines at the moderately burned stand were similar on average, but pines in these stands 

had at least 42% greater daily Js than those at the unburned stand. 

At high VPD levels Js increased in some of the species by burn severity  
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Figure 24. Relative differences between pine and oak daily total sap flux (kg m-2 day-1) 

within a) unburned, b) moderately burned, and c) severely burned stands along with d) 

average daily VPD and total daily rainfall from 1 April to 12 October, 2016.  Relative 

differences for each site were calculated as daily pine Js minus daily oak Js divided by 

mean pine Js.  Periods of shallow soil moisture dry down are shaded. 

 

 

combinations but decreased in others (Figure 25).    When comparing the two species at 

the moderate and unburned sites, pine Js was better explained by changes in VPD than  
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Figure 25. Effects of average daily VPD on total daily sap flux of a) pines and b) oaks at 

the unburned, moderately burned and severely burned stands.  The effects of shallow soil 

moisture on the relationship of Js with VPD are illustrated for pines at the severely 

burned site (c).      

 

 

 

oaks and stabilized at greater Js values.  At the severely burned stand, however, changes 

in VPD explained more variation in oak Js (r
2 = 0.80) than pine Js (r

2 = 0.20).  Severely 

burned pines experienced greater fluctuations in Js across the range of VPD, going from 

values greater than those of the moderately burned pines to values more similar to those 

of the unburned pines.  These regenerating pines were also much more sensitive to high 

VPD than their counterparts at the moderate and unburned stands.  Results indicated that 

the regenerating pines at the severely burned site may have strong stomatal control, 
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allowing them to reduce gas exchange during dry, hot days.  However, the period of time 

when shallow soil moisture was depleted corresponded with the highest observed VPDs 

(Figure 22, 25).  These soil moisture constraints may have curbed pine Js more than the 

high VPD levels.  Unlike the regenerating pines, resprouting oaks continued to increase 

Js with increasing VPD.  They did not plateau, suggesting they continue to keep stomata 

open for gas exchange at even greater levels of VPD than experienced in this study. 

 

Altered Stand Transpiration Post-Fire 

 Stand transpiration in unburned and moderately burned sites was dominated by 

pine water use during the period of 27 May 27 – 12 October supporting the first 

hypothesis (Figure 26a and b, 23b).  At the unburned site, pine transpiration made up 

75% of the stand’s daily transpiration while oak transpiration only made up 11%.  There 

were more oaks (n = 22) than pines (n = 13), but the pines were large and therefore had 

considerable amounts of sapwood.  Five of the pines were in the 45 to 55-cm DBH class 

and I recorded one individual (62.8 cm) in the 55 to 65-cm class.  Transpiration from 

species other than oak and pine contributed more to the stand transpiration of the 

unburned site than at the other two stands (Figure 26).  Together the total sapwood area 

from these other species (i.e. eastern red cedar, yaupon holly, and farkleberry) (0.25 m2) 

was just slightly more than that of the oaks (0.24 m2) in the stand.  At the moderately 

burned stand, pine (n = 24) and oak (n = 17) transpiration made up 86 and 14% of the 

daily stand transpiration, respectively.  Daily transpiration from oaks was 148 and 145% 

less than pines due to 130 and 120% lower sapwood and 31 and 39% lower Js per unit  
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Figure 26. Daily transpiration (mm day-1) of oaks, pines, and other species within the a) 

unburned, b) moderately burned, and c) severely burned stands from 1 April to 12 

October, 2016.  D) Total daily transpiration compared among stands.  Periods of shallow 

soil moisture dry down are shaded. 
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sapwood at the unburned and moderately burned sites, respectively.  Although the total 

sapwood area was 24% greater in the unburned than the moderately burned stand, the 

unburned stand’s total transpiration was 34% lower (Figure 23c), likely due to lower 

conductivity in the older trees in this stand coupled with the greater light availability and 

evaporative demand at the more open moderately burned site.   

Transpiration was 0.46 mm day-1 on average at the severely burned site from 27 

May to 12 October, 2016.  Transpiration at the unburned and moderately burned stands 

was much greater, however: 1.48 and 2.08 mm day-1 on average. Unlike the unburned 

and moderate stands, oak transpiration made up over 95% of total daily stand 

transpiration at the severely burned stand.  In this stand, I recorded very few individuals 

of other species, pine or otherwise, so their contribution to the stand transpiration was 

negligible.  In fact, daily transpiration from pines at the site was less than 0.02 mm on 

average, which was more than 200% less than oak transpiration each day.  Sapwood area 

of oaks in the severely burned stand was fairly similar to that of the oaks in the other two 

stands (Table 3) and oak daily Js was 52 and 82% greater on average than the moderately 

burned and unburned stands, respectively, but the overall reduction in total sapwood area 

at the severely burned stand after the fire translated to 1.02 and 1.62 mm less 

transpiration day-1 on average than the sites with mature trees (Figure 23c).     
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Discussion 

Severe Fire Alters Stand Transpiration 

 The high daily Js of individual resprouts and seedlings did not translate into high 

amounts of daily transpiration by the severely burned stand due to its low total sapwood 

area.  Reductions in plant density and sapwood area commonly lead to reductions in 

stand transpiration (Morikawa et al. 1986, Aussenac and Granier 1988, Whitehead and 

Kelliher 1991, Nolan et al. 2014).  Other studies have reported significant reductions in 

stand-level transpiration in severely burned areas compared with intact, unburned stands 

and stands experiencing lower burn severity (Gharun et al. 2013, Nolan et al. 2014).  

Nolan et al. (2014) reported that transpiration of unburned stands was approximately 1.4 

to 1.7 mm day-1 while transpiration of severely burned stands was around 0.4 mm day-1, 

similar to the results from our unburned (1.48 mm day-1) and severely burned (0.46 mm 

day-1) stands.  Unburned stands in the Nolan et al. (2014) study had 43% to 57% greater 

sapwood area than severely burned stands.  Following mechanical thinning, Morikawa et 

al. (1986) and Jiménez et al. (2008) also reported greater sap flux rates for individual 

trees but reduced stand-level transpiration in comparison to un-thinned stands. 

As indicated above, stands with greater total sapwood areas often have greater 

stand transpiration.  However, it appears that 42% greater daily pine Js and 34% greater 

daily oak Js extrapolated across the stand resulted in greater transpiration in the 

moderately burned stand compared to the unburned stand, although the moderate stand 

had less sapwood.  Nolan et al. (2015) also reported light to moderate burning increased 

transpiration and therefore decreased the amount of water available to other parts of the 
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hydrologic cycle after fire.  Severe fires are known to result in enhanced runoff and 

stream flow though, at least in the early years of recovery (Hibbert 1971, Lindley et al. 

1988, Jones and Post 2004, Kunze and Stednick 2006, Silins et al. 2009).  For example, 

Campbell et al. (1977) reported 28, 20, and 5 mm annual runoff on average for the first 

three years after a fire in severely, moderately, and unburned watersheds respectively. 

The number of runoff events was greater for the severely burned watershed (n = 25) as 

well compared to the unburned watershed (n = 6).  Reductions in stand transpiration 

following severe fires may be short lived.  Cerda (1998) reported a decrease in overland 

flow from 45% of precipitation in the first year after a wildfire to less than 6% nearly six 

years after the fire. As regenerating burned stands approach full canopy, they may use 

more water than unburned old growth stands (Kuczera 1987, Vertessy et al. 2001).  This 

could be a possibility for the severely burned stand in several years as long as resprout 

densities remain high.  However, when this severely burned stand reaches maturity its 

site water balance may differ from a similar aged pine dominated stand.  Given that 

mature oak Js was lower than mature pine Js in the other two sites, a conversion to oak 

dominated stands in severely burned areas could result in increases in streamflow and 

greater water availability to other vegetation over a longer term. 

 

Sap Flux Related to Tree Age and Abiotic Constraints 

The lower daily Js in trees at the unburned site compared to those at the 

moderately burned and severely burned sites could be related in part to reductions in 

water use and slower growth by the older, larger trees at the unburned site.  Water use by 
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trees often decreases with age due to declines in sapwood and leaf area indices and 

stomatal conductance in older trees (Magnani et al. 2000, Roberts et al. 2001, Vertessy 

et al. 2001, Ewers et al. 2005, Delzon and Loustau 2005, Martínez-Vilalta et al. 2007).  

Older individuals often have lower whole-tree leaf-specific hydraulic conductance and 

leaf-level gas exchange than young trees in the same species (Ryan et al. 1997, 

Niinemets 2002, Rust and Roloff 2002, Drake et al. 2010).  Some of the age-related 

decline in water use can be attributed to increases in pressure gradient with gravity and 

hydraulic resistance associated with taller heights in older trees (Ryan and Yoder 1997, 

Koch et al. 2004), although other characteristics such as leaf:sapwood area ratio may 

play a greater role (Becker et al. 2000).  

Greater daily sap flux in the moderate and severely burned stands was also likely 

related to reduced competition and subsequent increases in energy and water availability 

per individual tree at these sites in comparison with the densely vegetated unburned 

stand.  These increases in light and water availability may have been the dominant factor 

in increasing species specific daily sap flux in the burned sites.  For example, greater Js 

was recorded in oak trees at the moderately burned than unburned site, although the 

monitored individuals were similar in size: 25.03 ± 3.88 cm and 22.48 ± 2.68 cm DBH, 

for the moderately burned and unburned stands, respectively.  Pines with sensors at the 

unburned site had lower daily Js as well but were larger in size, 52.22 ± 2.77 cm DBH, 

and likely older compared with those at the moderate site, 43.48 ± 2.13 cm DBH.  

Therefore we should not discount the possibility of age or size related decline in 

sapwood conductivity, but must also take increased water and light availability into 
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consideration when determining causes of greater Js and transpiration in the moderately 

burned stand.  Reductions in stand density have been linked to increased sap flux in 

individual trees (Morikawa et al. 1986, Medhurst et al. 2002, Martínez-Vilalta et al. 

2007, Asbjornsen et al. 2007).  This may be in part due to increases in sapwood area or 

leaf area (Shelburne et al. 1993, Medhurst et al. 2002).  However, Bréda et al. (1995) 

reported increases in sap flux and stand transpiration with density reductions without 

increased sapwood area or leaf area in a thinned stand.      

 Results suggest that regenerating pines at the severely burned site relied more on 

water in the upper soil layers than the resprouting oaks and mature trees of both species, 

and were therefore moisture limited during the hot, dry periods in the summer.  The 

severely burned site had the most water available of the three sites due to low total 

biomass and competition, but the shallow rooted pines were not as able to capitalize on 

this advantage as the deep-rooted resprouts.  The roots of regenerating pines are likely 

restricted to the upper few centimeters of soil, while the resprouting oaks have root 

systems remaining from mature trees.  Shallow-rooted seedlings and young trees become 

water limited more quickly than mature trees during drought periods (Donovan and 

Ehrleringer 1994, Cavender-Bares and Bazzaz 2000, Irvine et al. 2002, Anthoni et al. 

2002, Llorens et al. 2010).  Irvine et al. (2002), for example, reported similar findings 

when comparing sap flux of a 14 year-old Ponderosa pine (Pinus ponderosa P. Lawson 

& C. Lawson) stand with an older stand consisting of two age classes, 50 and 250 years 

old.  Both predawn water potential and daily transpiration declined steadily from July to 

October in the 14-year-old stand, but the old growth stand showed no decline although 
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the volumetric water content was lower over the top 80 cm of soil at that site.  Irvine et 

al. (2002) concluded that the trees at the old growth stand were getting most of their 

water from below 80 cm while the trees at the young stand were relying on soil moisture 

from the upper soil layers and also having to compete for that shallow soil moisture with 

co-occurring shrubs at the site.   

Pine seedling Js exhibited a downturn with high VPD levels.  However, the days 

when VPD was the greatest also corresponded with the time periods when shallow soil 

moisture was at its lowest.  Decreases in soil moisture are known to reduce Js and stand 

level transpiration and their responses to VPD (Pataki et al. 2000, Oren and Pataki 2001, 

Martínez-Vilalta et al. 2003, Holscher et al. 2005).  Pataki et al. (2000) and Holscher et 

al. (2005) reported much lower values of Js during drought than during periods of high 

soil moisture, even though VPD values were similar.  Oren and Pataki (2001) reported a 

strong exponential relationship between stand transpiration and VPD when soil moisture 

deficits were low (<10mm).  However, when soil moisture deficits were high (≥ 10mm), 

VPD did not account for variability in stand transpiration.  Effects were exacerbated by 

shallow rooting depths. 

Unlike the young pines, regenerating oaks were not affected by hot, dry 

conditions and kept increasing Js as VPD increased.  Resprouts have access to similar or 

even greater water reserves than the mature oaks given the lack of competition in the 

severe stand.  The resprouts have greater root:shoot ratios and lower leaf areas though 

(Utsumi et al. 2010, Schafer et al. 2014).  Other studies have documented increases in 

leaf-specific whole-plant hydraulic conductance manifested as greater stomatal 
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conductance in resprouts compared to mature trees, and attributed this to the reduction in 

leaf area without reductions in root system size (Kruger and Reich 1993, Schafer et al. 

2014).  The more favorable water supply to demand ratio in resprouts likely allowed 

them to continue gas exchange during conditions that were not optimal for their 

regenerating pine counterparts.  Oaks exhibit small safety margins, frequently operating 

close to cavitation (Tognetti et al. 1998, Taneda and Sperry 2008, Li et al. 2008).  

However, since Js of the resprouting oaks did not plateau under the high VPD conditions 

at the severely burned site, we can assume that they had enough water available to meet 

the evaporative demands imposed in this exposed environment and were not 

approaching cavitation limits. 

 

Differences Between Oaks and Pines 

Pines typically had greater daily Js than oaks at the moderately burned and 

unburned sites, and the regenerating pines at the severely burned stand had greater sap 

flux than the oaks when soil moisture was high.  Other studies also reported greater sap 

flux in pines than associated angiosperms (Phillips et al. 1996, Ford et al. 2010, 

Renninger et al. 2015).  Sterck et al. (2008) and Zweifel et al. (2007) found greater stem 

conductivity (Kp) in pines than oaks.  At the unburned site especially, a greater portion of 

the pine crowns were exposed than those of the oaks which could have contributed to the 

greater Js in pines at those sites.  Reduced irradiance on crowns of shorter trees resulted 

in decreased Js in other studies (Granier 1987, Köster et al. 1992, Jiménez et al. 2000).  

Although growth slows as trees mature, the pines at the moderately burned stand were 
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probably growing at a faster rate than the oaks there and using more water, which would 

contribute to greater Js in the pines.  Height and diameter growth of post oak and 

blackjack oak are usually slower than associated trees, so they are often over-shadowed 

by other trees, including other oak species (Stransky 1990).   

The amount of water lost through transpiration depends on both Js and the area of 

actively-conducting sapwood (Granier 1987).  Not only did the pines at the moderate 

and unburned stands have greater Js but they also had much larger sapwood areas than 

the oaks. Although maximum sap flow occurs close to the cambium and decreases 

toward the heartwood in both oaks (Granier et al. 1994, Poyatos et al. 2007, Gebauer et 

al. 2008) and loblolly pine (Phillips et al. 1996, Ford et al. 2004), active sapwood makes 

up a greater portion of the cross-section of non-porous species like pines compared to 

ring-porous species such as oaks (Cermak and Nadezhdina 1998).  This may therefore 

explain the large contributions from pine to stand transpiration in the moderate and 

unburned stands with large pine sapwood areas. 

 

Conclusions 

 Variations in sap flux and sapwood areas lead to differences in stand level 

transpiration following disturbance.  Young, actively growing oak resprouts and pine 

seedlings tended to have greater sap flux per unit sapwood area than older individuals of 

the same species, however pine seedlings were more limited by shallow soil moisture 

than mature trees with deeper root systems.  Less intense fire at the moderately burned 

site seemed to increase total stand water use, through increased water availability and 
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greater irradiance reaching a larger portion of the canopy, even though the total sapwood 

area there was slightly less than that of the unburned stand.  In contrast, severe fire 

reduced stand transpiration due to large reductions in total sapwood area.  Overall, it 

appears like there could be more water available to other parts of the hydrologic cycle in 

the severely burned plot and severely burned patches throughout the region for several 

years while stands recover.   

Although irradiance and VPD were high in these severely burned areas and 

enhanced daily Js and individual plant transpiration to some degree, it appeared that 

conditions associated with canopy removal inhibited loblolly pine seedling gas 

exchange, when these were associated with low availability of shallow soil moisture.  

Resprouting oaks, on the other hand, were not inhibited by VPD and have deep root 

systems, which may allow them to suppress pine recovery.  However, once regenerating 

pine root systems become more established and gain access to deeper soil moisture, they 

may have the advantage over oaks.   Differences in water use strategies between the two 

species, various plant ages, and anatomy should be taken into account when considering 

post-fire management for the Lost Pines region. 
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CHAPTER V 

CONCLUSIONS 

 

Disturbance events such as droughts and wildfires can result in large-scale 

mortality events and significant shifts in vegetation composition.  Following the 

substantial 2011 Texas drought, Bastrop County Complex Fire, and subsequent tree 

mortality after each of these events, we recognize the importance of increasing 

understanding of the interactions between physiological mechanisms and resource 

availability, among different genera and species within the same genus.  Identifying and 

understanding differences in physiological responses among species will help us predict 

which will be more successful following such events and guide landowners and natural 

resource managers in proper modes of action for remediation.   

 This region of the state supports drought-hardy species of oak as well as 

phenotypic variations of loblolly pine that more adapted to drought conditions than their 

eastern relatives.  As seen in chapters II and III, some oak species are more resilient than 

others and continue to exhibit high gas exchange rates under as stressful conditions 

while others use stress-avoidance strategies.  Stress avoidance strategies are not 

necessarily worse than stress tolerant strategies though, and may actually save 

individuals from hydraulic failure in longer drought situations.   

 Results from Chapter III suggest loblolly pine (Pinus taeda L.) may not be able 

to overcome competition post-fire in stands with resprouting oaks (Quercus stellata 

Wangenh., Quercus marilandica Muenchh.) if seedlings are exposed to frequent soil 
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moisture deficits.  The pine seedlings were smaller and less numerous in severely burned 

areas and exhibited stronger drought-avoidance tendencies in these areas.  This could 

limit their competitive ability during future dry periods when oak resprouts will likely 

continue to maintain moderate to high leaf-level gas exchange, expanding on their head-

start.  The fire had a bigger impact on plant abundance and competition than did soil 

type, and leaf-level physiology results in shallow soils were expected to be similar to 

those found in deeper Padina (loamy, siliceous, active, thermic Grossarenic Paleustalf) 

soil. However, the period of study had generally higher than normal rainfall.  More 

severe drought conditions in the future may impact plants growing on shallow Jedd 

(fine, mixed, semiactive, thermic Ultic Paleustalf) and Edge (fine, mixed, active, thermic 

Udic Paleustalf) soils more than deep Padina soil. 

 As seen in Chapter IV, differences in plant abundance and competition following 

wildfires can lead to differences in resource availability and use that may impact water 

tables and stream flow.  Results from the sap flux experiment indicate that severe, stand 

replacing fires lead to a decrease in stand level transpiration as plants recover to 

maturity.  Following overstory mortality, individual oak resprouts and pine seedlings at 

the severely burned site had more water available to them and experienced high VPD 

conditions which resulted in high sap flux rates per unit sapwood.  However, we can 

expect greater runoff from this area than the other two stands due to the large reduction 

in biomass at the site.  A switch from pine to oak dominance in severely burned patches 

may lead to long term alterations to water fluxes and ecosystem function in the region.  

At the moderately burned and unburned stands, mature pines contributed more to stand 
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transpiration than mature oaks due to greater sap flux rates per unit sapwood and greater 

sapwood areas.  Therefore, when the oak-dominated severely burned stand matures it 

may use less water than pine-dominated stands of similar ages.  Alterations to 

availability of water and other resources by the oak overstory may result in different 

understory plant associations than those that occurred under the previous pine-dominated 

regime. 

Future Research Directions 

Results from the long-term drought experiment expanded knowledge about foliar 

gas exchange and biochemistry differences between live (Quercus virginiana Mill.), bur 

(Quercus macrocarpa Michx.), and Shumard oak (Quercus shumardii Buckley), but also 

revealed the need to measure physiological responses from multiple plant parts.  Root 

and stem samples taken at the same time as leaf collections would likely help explain 

changes in leaf N, carbohydrates, and phenolics with both drought and seasonal patterns.  

Since oaks are typically deep rooted, future studies examining oak drought stress should 

monitor changes to shallow and deep soil moisture.  Both mature live oaks and bur oaks 

have been reported to produce roots greater than 10 m deep (Weaver and Kramer 1932, 

Jackson et al. 1999), and individuals of these species younger than 10 years old are 

known to have roots deeper than 100 cm (Holch 1931, Gilman and Harchick 2008).  The 

use of deeper soil moisture sensors in conjunction with destructive sampling will provide 

information about when plants switch from relying on shallow soil moisture to water 

deeper in the profile and if root growth into deeper pockets of moisture has occurred.  
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Continual monitoring of oak resprout and pine seedling growth and climate 

conditions will be needed to accurately predict long-term changes to ecosystem function 

and the hydrologic cycle in burned areas following the Bastrop County Complex Fire.  

Integration of transpiration and growth data with stream flow records for nearby 

Copperas and Alum Creeks in the coming years will help with long-term planning for 

changes in water availability.  This research on physiological differences between oaks 

and pines revealed differences in water use and highlighted interesting disparities, 

especially between oak resprouts and pine seedlings.  Results raised questions about 

rooting depths and architecture and how those might differ between burn severities.  

Information about root structure and hydraulic properties in future studies may help 

explain some of the leaf level gas exchange (Chapter III) and sap flux (Chapter IV) 

differences between oaks and loblolly pine.  Prescribed burns should also be utilized in 

Bastrop State Park and the Griffith League Ranch to further study oak and pine 

physiology and how burning on regular intervals may have led to different responses 

than the 2011 wildfire.  Prescribed burns could also be used to direct vegetation recovery 

in line with park and private land management goals in the region
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