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ABSTRACT 
 

Structural Design and Analysis of a Lightweight Composite Sandwich Space Radiator 

Panel. (December 2003) 

Sudharsan Mukundan, B.E., Bharathiar University, Coimbatore, India 

Chair of Advisory Committee: Dr. Ozden O.Ochoa  

 

The goal of this study is to design and analyze a sandwich composite panel with 

lightweight graphite foam core and carbon epoxy face sheets that can function as a 

radiator for the given payload in a satellite. This arrangement provides a lightweight, 

structurally efficient structure to dissipate the heat from the electronics box to the 

surroundings. Three-dimensional finite element analysis with MSC Visual Nastran is 

undertaken for modal, dynamic and heat transfer analysis to design a radiator panel that 

can sustain fundamental frequency greater than 100 Hz and dissipate 100 W/m2 and 

withstand launch loads of 10G. 

 

The primary focus of this research is to evaluate newly introduced graphite foam by 

Poco Graphite Inc. as a core in a sandwich structure that can satisfy structural and 

thermal design requirements. The panel is a rectangular plate with a cutout that can hold 

the antenna. The panel is fixed on all the sides. The objective is not only to select an 

optimum design configuration for the face sheets and core but also to explore the 

potential of the Poco foam core in its heat transfer capacity. Furthermore the effects of 

various parameters such as face sheet lay-up, orientation, thickness and material 

properties are studied through analytical models to validate the predictions of finite 

element analysis. The optimum dimensions of the sandwich panel are determined and 

structural and thermal response of the Poco foam is compared with existing aluminum 

honeycomb core. 
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CHAPTER I 

INTRODUCTION 
 

Composite materials, due to their high specific thermal, stiffness and strength properties, 

have always been enabling systems for spacecraft applications. They are excellent 

candidates for radiators for space borne electronic systems in order to reduce overall 

weight and to dissipate the heat rapidly from the source to the surrounding space. The 

trend for future satellites is compact packaging of electronic gadgets where heat removal 

must be rapid. The aim is to build spacecrafts with high power density combined with 

reduction in size and weight.  Since spacecraft applications demand low weight, high 

stiffness to weight ratio and high structural stability, sandwich panels with composite 

face sheets and a lightweight core are likely candidates to be used as spacecraft radiators. 

Earlier aluminum plates were used as heat sinks for many printed circuit board 

assemblies in space flight applications [1]. These plates also served as structural support 

providing the necessary in-plane stiffness in order to survive the vibration environment 

during spacecraft launch. Owing to the higher specific thermal conductivity and stiffness 

of composites than aluminum, sandwich composite panel have started replacing 

aluminum in spacecraft thermal management issues.  

 

Designing lightweight radiators or heat sinks has become increasingly important as 

payload weight increases more and more during each launch. Lightweight composite 

materials and foams can replace the aluminum radiators, which are heavy.  Another 

significant advantage of replacing aluminum by lightweight composite materials is the 

reduction of the thermal stresses due to low coefficient of thermal expansion of 

carbon/graphite foams. A special class of composite materials called the carbon–carbon 

composites, with low density and high thermal conductivity, is specifically suited to 

radiators as it offers improved performance for lower volume and mass [2].  

 

This thesis follows the style and format of Composite Structures. 
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The carbon-carbon composite radiator along with aluminum honeycomb core spreads 

heat across a larger surface area and reduces temperature of the electronics. But due to 

low through the thickness thermal conductivity of current carbon-carbon face sheet and 

aluminum honeycomb core, the panel restricts the amount of heat rejected to space in 

unit time. However high conductivity carbon/graphite foams as cores in sandwich 

panels, offers an increase in through the thickness thermal conductivity. This increases 

the heat dissipated to space as it is dissipated with ∆T4 relationship. 

 

1.1 Rationale 

 

The recent successful processing of high thermal conductivity carbon and graphite foams 

has stimulated interest in implementing these foams separately or as cores in sandwich 

panels with composite face sheets for thermal management applications such as 

radiators, batteries and electronic packaging. In addition, the heat generated from 

electronic devices during space flight operation, is a functional constraint and hence 

improved thermal management using lightweight graphite foams potentially may lead to 

better system performance.  

 

This thesis investigates the potential performance merits of using Poco graphite foam [3] 

as a core in a composite sandwich panel that will function as a radiator for the payload. 

The panel is analyzed for launch loads and heat transfer capabilities using the software 

MSC Visual Nastran for windows 2002 [4]. If the proposed design proves successful 

there could be a significant change in the construction of the radiators for future 

spacecraft and could lead to significant cost and weight reduction. 

 

1.2 Problem Description 

 

The radiator is a sandwich rectangular panel constrained on all the edges as it is secured 

at the top of the structure as shown in the Figure 1.1. The panel has composite face 
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sheets and a lightweight foam core. The panel contains a central cutout to hold the 

antenna. The design requirements are to have fundamental frequency greater than 100 

Hz, to dissipate 100 Watts/m2 of heat flux and withstand dynamic launch loads. The 

objective of this design is to select an optimum configuration that satisfies the above 

design requirements.  
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The parameters such as thickness of face sheets, core and their material properties are 

chosen to provide sufficient structural stiffness so that the fundamental frequency is 

more than 100 Hz. Then the analysis involves the application of launch loads on the 

panel to study the structural response and to ensure that the structural integrity is 

maintained. The stress characteristics are predicted on all the individual layers of the 

sandwich. The selected configuration of the sandwich panel is then analyzed by 

supplying heat flux of 100 W/m2 to the mid-plane of the core and allowing it to radiate 

to only one side. Finally a design methodology with the optimum core, facesheet 

parameters, is proposed to minimize the temperature of the electronics in the spacecraft. 
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CHAPTER II 

BACKGROUND 

 
2.1 Sandwich 

 
Composite materials consist of two or more constituent materials whose properties can 

be tailored to create unique mechanical, material and physical response for a variety of 

applications. Fiber-reinforced composite materials consist of high strength and or high 

modulus fibers that are the principal load carrying members and the matrix acts as a load 

transfer medium between the fibers.  

 

Sandwich [5] structures (beams, panels etc.) consist of a combination of different 

materials that are placed together so that the material properties of each one can be 

utilized for the structural advantage of the whole assembly. Sandwich panels generally 

consist of three significant components, two thin, stiff face sheets and a thick, light and 

weaker core. The bending stiffness and stiffness to weight ratio of the sandwich is 

greater than a single solid plate of same total weight and same material as that of the 

faces. As a result sandwich construction results in lower lateral deformations, higher 

buckling resistance and higher natural frequencies than do other constructions. 

 

The design principle of a sandwich composite is similar to that of an I-beam, which is an 

efficient structural shape because as much as possible of the material is placed in the 

flanges situated farthest from the center of bending and neutral axis. In a sandwich, the 

faces resemble the flanges and the core acts as the web. The faces act together to form an 

efficient stress couple or resisting moment, counteracting the external bending moment. 

The core resists shear and stabilize the faces against buckling or wrinkling. The selection 

of the adhesive that bonds the faces to the core is of critical importance as it must be 

strong enough to resist the shear and tensile stresses set up between them.  Typical 

sandwich [6] geometry is shown in the Figure 2.1. 
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Figure 2.1.  Typical geometry of sandwich panel.  
  

2.1.1 Face sheets 

 

The face sheets provide the flexural rigidity of the sandwich panel. It should also possess 

tensile and compressive strength. Since the carbon-epoxy composite has lower density 

than aluminum, significant weight savings can be realized by replacing them. The 

analysis of composite plates by Harris et al. [7] indicates that the sandwich plates with 

carbon epoxy face sheets have the lowest weight for different loading cases and that they 

are dimensionally more stable for a wide range of temperatures. 

 

2.1.2 Cores  

 

The purpose of the core is to increase the flexural stiffness of the panel. The core in 

general has low density in order to add as little as possible to the total weight of the 

sandwich construction. The core must be stiff enough in shear and perpendicular to the 

faces to ensure that face sheets are distant apart. In addition the core must withstand 

compressive loads without failure. The cores can be almost any material, but in general 

fall into the following four types. They are foam or solid core, honeycomb core, Web 
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core and Corrugated or truss core. In Web core and truss core construction, a portion of 

the in-pane and bending loads are also carried by the core elements.  

 

 

2.1.2.1 Aluminum Honeycomb 

 

They are available in variety of materials for sandwich structures. They range from low 

strength and stiffness applications to high strength and lightweight applications such as 

aircraft industries. They can be formed to any shape or curve without excessive heating 

or mechanical force. Honeycombs have very high stiffness perpendicular to the faces 

and the highest shear stiffness and strength to weight ratios of the available core 

materials. The most commonly used honeycombs are made of aluminum or impregnated 

glass or aramid fiber mats such as Nomex and thermoplastic honeycombs. The main 

drawback is high cost and difficulty in handling.  

 

Honeycombs are generally produced by extrusion followed by slicing to thickness. The 

slices are then gently stretched and expanded to form a sheet of continuous hexagonal 

cell shapes. Due to the bonded method of construction and due to the varying degree of 

pull, these hexagonal cells have different properties in the 00 and 900 directions of the 

material. The cells of the honeycomb structure can also be filled with rigid foams to 

increase the rigidity and thermal insulation of the foam. This also increases the bond area 

of the skins to the core. The most common types of honeycomb are Aluminum 

Honeycomb, Nomex Honeycomb and Thermoplastic honeycomb. 

 

2.1.2.2 Carbon and Graphite Foams  

 

Carbon foam is the enabling technology for a host of next generation products and 

components replacing the conventional materials from its use. High thermally 

conductive carbon foams were first reported in 1998 at Oak Ridge National Laboratory 
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[8] and are currently being developed for variety of uses including fire resistant ship 

decks and hulls, noise and impact mitigation for aircrafts, structural panels, thermal 

doublers, radiators for sport cars and spacecraft thermal management systems. 

 

Graphite foams are generally formed by heat-treating carbon foam to more than 20000C. 

This patented ORNL method for making the special graphite foam was licensed to Poco 

Graphite Inc., Decatur, Texas. Poco graphite Foam is a lightweight material that has 

exceptionally high thermal conductivity in through the thickness direction. It has 3 to 9 

times higher thermal conductivity than typical carbon foams and 10 times higher than 

metallic aluminum foam. Poco foam is derived from mesophase pitch, an intermediate 

phase in the formation of carbon and when heated above 2000ºC forms graphite. The 

reason for its exceptionally high thermal conductivity is that the precursor material 

combined with an efficient production method makes the ligaments, which are like 

honeycomb structure, a highly aligned graphitic nature rather than an amorphous one. 

 

It is known that decreasing the density of the material by foaming decreases thermal 

conductivity. Graphite has a layered structure that has a strong bond between the 

hexagonal carbon atoms in the plane but has only a weak bond between the planes. 

Therefore the thermal conductivity is extremely high in the plane but poor through the 

thickness. The graphite foams are derived from mesophase pitch precursor in which, the 

mesophase crystals align themselves along the cell walls as shown in Figure 2.2. This 

foam when graphitized at high temperatures of 28000C becomes highly aligned and 

defect free graphite structure. Pure graphite exhibits 1800 W/m-K along the X and Y 

axis of its planes but less than 5 W/m-K along the Z-axis [9]. Therefore foaming the 

graphite to about 25% density makes the material more isotropic by reorienting the 

hexagonal carbon atoms into spherical structures as they form the individual cell walls. 

As a result the conductivity drops to about 90 W/m-K along the X and Y-axis but soars 

to 150 W/m-K along the Z-axis. 

 



 9
 
 

 

Figure 2.2.  Highly graphitic microstructure of Poco foam. [8] 

 
Poco foam differs from conventional carbon foams in the sense that the ligaments are of 

a highly aligned graphitic nature rather than an amorphous one. This difference in its 

structure gives high dimensional stability, low coefficient of thermal expansion, 

relatively high modulus of elasticity and exceptionally high thermal conductivity. Due to 

its porous nature and high internal surface area, it has efficient heat transfer 

characteristics. It has high thermal diffusivity i.e. the ability to transport the heat quickly 

compared to absorbing the heat. Thus its low density, open porosity and high thermal 

characteristics make it a promising material for thermal management applications. 

 

• The density of the Poco foam is 0.55 g/cm3, which is 6% of copper and 20% of 

aluminum. 

• The Poco foam is three to nine times more thermally conductive than carbon 

foams (0.25 –70 W/m-0K) 

• The specific thermal conductivity of Poco foam is around 272 W/m-K in the out 

of plane direction and it is six times greater than copper and five times greater 

than aluminum. 
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2.2 Design Considerations in Sandwich Construction  

 

There are many plausible core and face sheet materials that can be selected for the 

sandwich construction. The components of the sandwich are bonded together using 

adhesives or mechanical fastenings such that they can act as a composite load bearing 

unit. The basic underlying concept of sandwich is that face sheets carry the bending 

stresses and the cores carry the shear stresses. The bending stiffness of the sandwich is 

very much higher than a solid structure having the same total weight and the same 

material as the facings.  

 

2.2.1 Structural Considerations 

  

As properties of honeycomb cores and face sheet materials are directional, it is vital to 

make sure that the materials are oriented along the optimum axis to take the best 

advantage. These structures are used to maximize stiffness at very low weights. The face 

sheets should be thick enough to withstand tensile and compressive stress induced by the 

mechanical loads. The overall structure should have high flexural and shear rigidity to 

avoid high deflections under heavy loads. The face sheets should have sufficient 

stiffness to provide higher fundamental frequency. The cores should have sufficient 

shear modulus to prevent buckling of the sandwich under load.  

 

2.2.2 Environmental Considerations 

 

The face sheets and the core should be highly resistant to degradation, moisture and 

humidity. As the sandwich panel is exposed to harsh environments in space, it should 

withstand sudden temperature variations and intermittent heating from the sun. 

Therefore temperature withstanding capability should be a vital factor for the selection 

of core and face sheet materials. The emmisivity and absorptivity values of the face 

sheets also determine the quantity of heat rejected to the space by radiation. As one of 
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the face sheets of the sandwich panel is continuously facing the outer space, the 

absorptivity value will determine the additional heat load on the panel from the sun apart 

from the heat load from electronics. 

 

2.3 Failure Modes of Sandwich Structures [6] 

 

Sandwich, despite its high stiffness, should also possess high strength. There are five 

different modes of failure of sandwich composites when loaded in bending. The 

structure will fail at the mode that occurs at the lowest load. They are 

 

Yielding or fracture of the tensile face 

 

This type of failure occurs when the normal tensile stresses due to the tensile loading 

exceeds the yield strength of the face sheet materials. This is shown in Figure 2.3. 

 

 

Figure 2.3.  Tensile fracture of face sheets of sandwich. 

 

Buckling or Wrinkling of the face 

 

This method of failure occurs due to the excessive compressive stresses, which causes 

instability in the face sheets. This is shown in Figure 2.4. 
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Figure 2.4.  Face sheet wrinkling. 

 
Failure of the core in shear  

 

Generally the failure occurs when the shear stress in the core exceeds the shear strength 

as shown in Figure 2.5. The shear strength of the core depends on the foam density, pore 

size and the heat treatment temperature. 

 

 

Figure 2.5. Shear failure in the core. 

 

The failure of the bond between the face and the core 

 

This failure occurs only when stresses at the interface (adhesive) are high enough to 

cause delamination. This is shown in Figure 2.6. 

 

 

Figure 2.6. Debonding phenomena. 
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2.4 Stress Distribution in a Sandwich Beam 

 

The stresses in general shear stresses vary parabolically through the thickness of the face 

and the core. The maximum normal stresses are related to the bending moment M and 

the distance from the centerline y and the maximum shear tresses are related to the shear 

force. If the faces are thinner and stiffer than the core, then the stresses can be treated as 

linear through the thickness of the face sheet and the core. This is shown in Figure 2.7. 

 

                 t                                   σf                               τf                                       

 

                                                                                                                                                                           
                                                                                                                                                                         

    c                                    σc                                τc                          
                                            

 

                                                    t 

 

 

 

 Figure.2.7. Approximate stress distribution in a sandwich beam. 
 

Where, σf and σc are the normal stresses in the face sheets and the core and τf and τc are 

the shear stresses in the face sheets and core. 

 

The mode by which a sandwich structure fails can be established for a given panel 

geometry and material properties by following the design variables. They are face 

thickness to span (t/l) and relative density of the core ratios (ρc/ρf).  It is found that face 

yield is a dominant fracture mechanism at high core densities and face wrinkling is the 

dominant failure mode at low core densities. 

 

2.5 Literature Review 
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Several researchers have put forth their models and contributed towards the development 

of sandwich panels for structural purposes. GLAST LAT (Large Area Telescope) 

technical document [1] describes the structural design and vibration analysis of all-

aluminum radiator panel. A baseline design with a minimum natural frequency and 

weight budget is provided and the optimum model is chosen. Alternate design options to 

increase the stiffness of the panel are also considered. 

 

Teti [2] has shown that carbon/carbon radiator panel with aluminum honeycomb core is 

a good combination of materials for sandwich structures to remove heat from the 

electronics and also act as a supporting structural member for the EO-1 spacecraft. A 

thermal balance test, technology validation test (ground test verification) and on-orbit 

test validation is performed and the results are presented. The pre-flight / experimental 

and flight analysis data for thermal conductivity is promising and is close to the reported 

value from the thermal model. The attempt to implement carbon /carbon radiator panel 

(CCRP) was a success and showed that the technology should be used extensively to 

solve high temperature thermal management applications. 

 

Klett et al. [9] recently produced the high thermal conductivity graphite foams that can 

be utilized to provide thermal management solutions to existing problems in spacecrafts 

and automobiles. It is clearly demonstrated that for weight sensitive thermal 

management applications or applications where transient conditions often occur, the 

graphitic foam can be superior in thermal properties to other existing materials. The 

various potential applications of graphitic foams such as heat sinks and heat exchangers 

are also discussed. It is also shown that computer chip heat sinks made of graphitic foam 

had a lesser equilibrium temperature and much lesser weight than that of the same set up 

with aluminum. It should be noted that specific thermal conductivity of graphitic foams 

is 6 times higher than that of copper. 
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Considerable amount of research has been focused on the modeling of sandwich 

structures and their free vibration response [10-13]. Many of the models proposed to 

date are based on three dimensional elasticity theory with approximations for the 

displacements, strains and or stresses through the thickness. These approximations 

reduce the problem from three-dimensional to two-dimensional one. Depending on the 

span to depth ratio, panels are referred to as beams (ratio greater than 10) or plates (ratio 

lesser than 10). 

 

Kant and Swaminathan [14] developed analytical formulations and solutions to the 

natural frequency analysis of simply supported composite and sandwich plates. It should 

be noted that Classical Laminate Plate Theory (CLPT) neglects the effect of out of plane 

strains. As the CLPT under predicts deformations and over predicts natural frequencies 

and buckling loads, developed higher order shear deformation theories are utilized to 

take into account the transverse shear and normal deformations for the displacement 

field.  

 

Kant et al. [15] proposed a complete set of variationally consistent equilibrium equations 

for the flexure of laminated composite plates and introduced the higher order flexure 

theory into the finite element formulation.  This theory is based on three-dimensional 

Hooke’s law and implements transverse normal and shear deformations. 

 

Reddy [16] developed a set of variationally consistent equilibrium equations for 

laminated composite plates. Reddy et al. [18] carried out free vibration analysis of 

isotropic, orthotropic and laminated plates. For laminated plates the results of his theory 

are found to be in close agreement to three-dimensional elasticity solutions.  

Ochoa et al. [18] have studied the effects of geometry, aspect ratio, boundary conditions, 

and stacking sequence on the free vibrations of laminated composite plates. The study 

ranges from thin to moderately thick laminates. The laminates are modeled using 

quadrilateral finite elements that take into account the transverse shear and normal 
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deformations for through the thickness effects. They also talk about the effects of 

orientation of the fibers on fundamental frequency for both symmetric and anti-

symmetric laminate. 

 

Ochoa et al. [19] conducted an experimental and analytical study of composite panels 

with multiple cutouts. The response of composites with multiple cutouts is examined 

under tensile loading. The parameters that govern the stress distribution are the stacking 

sequence, cutout diameter and cutout geometry. The parametric study provides the user 

the required knowledge to design optimum cutout geometry based on the mechanical 

requirements for a laminate. As the radiator panel has a central cutout, the conclusion, 

that the optimum cutout geometry would be a square and the identification of the 

localized high stresses due to cutout, is helpful in predicting the stresses. 

 

Swann [20] calculated the maximum temperature difference and the thermal stresses, 

between face sheets of the sandwich panel. A time dependent prescribed linear 

temperature source is placed at one side of the face and the other face is insulated. As the 

core consists of air spaces, not only conduction, but also radiation is incorporated in the 

heat balance equation. The result is a non-linear partial differential equation with 

variable coefficients. Assuming that the temperature at the faces of the sandwich is 

uniform, non-linear partial differential equations are reduced to non-linear ordinary 

differential equations.  

 

In conclusion, it can be stated that with regard to structural requirements any composite 

face sheets with a carbon, graphite or an aluminum honeycomb core will exceed the 

minimum vibration requirement and can sustain the static, dynamic loads developed 

during launch. Unfortunately, these panels, which are structurally efficient, may not 

satisfy the thermal requirements for the spacecraft. As the thermal conductivity of the 

core plays a vital role in dissipating the heat, the selection of the core is very important. 

Any combination of carbon epoxy composite face sheets with a high thermal 
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conductivity graphite foam core will be an optimum combination in the aspect of 

structural and thermal performance for the given thermal management application. 
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CHAPTER III 

FINITE ELEMENT MODELING OF SANDWICH PANEL 
 

The orthotropic nature of each layer of sandwich laminate is represented in MSC 

Nastran so that stacking sequence and material properties of the radiator panel can be 

properly incorporated into the analysis. The methodology is discussed in the following 

sections. 

 

3.1 Material Definition 

 
MSC Nastran supports composite material modeling through the following types of 

materials. They are  

 

• Orthotropic 2D and 3D 

• Anisotropic 2D and 3D 

 

Orthotropic 2D and anisotropic 2D material representations are available for plate 

elements of triangular and quadrilateral family with linear and parabolic shape functions. 

The orthotropic 2D and anisotropic 2D material definition utilized in MSC Nastran is 

presented in Figures 3.1 and 3.2. For orthotropic 3D, there is an additional direction 

(thickness) for which the material properties must be provided. 

 

It must be noted that 2D, 3D orthotropic and 2D anisotropic material representations do 

not support steady state and transient heat transfer analysis in MSC Nastran. As one of 

the foremost requirements is to study the heat transfer ablities of radiator panel, the 

above mentioned material types cannot be used to represent the finite element model of 

the panel. Therefore anisotropic 3D material type is implemented for this analysis. 

However orthotropic 2D material type is implemented for the parametric analysis of free 

vibration of plates and sandwiches. It should be noted that MSC Nastran needs a 
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complete elastic matrix for anisotropic materials and separate modulus in 1 

(reinforcement) and 2 (transverse) directions for the orthotropic materials. 

 

 

Figure 3.1.  Orthotropic 2D material definition. 

 

 

Figure 3.2.  Anisotropic 2D material definition. 
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On the other hand solid elements utilize orthotropic 3D and anisotropic 3D material 

type. The shape of the elements can be four to ten-noded tetrahedron, six to fifteen-

noded wedge and eight to twenty-noded brick (hexahedron). Since Orthotropic 3D 

material does not support heat transfer, anisotropic 3D material type is  used to model 

the composite sandwich panel in the present study. Figures 3.3 and 3.4 shows the 

material representation for orthotropic 3D and anisotropic 3D definition.  The 

orthotropic 3D material form, in extension to orthotropic 2D,  requires properties in three 

directions fiber, matrix and out of plane. But anisotropic 3D material needs an elastic 

matrix with 21 constants. The MAT 9 (Refer Appendix 1) entry is used to define an 

anisotropic material  property for all the types of  solid elements. Since ansisotropic 

material type is used to define an orthotropic material, it needs nine elastic constants. 

These constants are calculated using the formulae shown in the appendix. 

  

 

Figure 3.3.  Orthotropic 3D material definition. 
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Figure 3.4.  Anisotropic 3D material definition. 

 
3.2 Element Types 

 

The following element types from MSC Nastran are implemented for modeling 

composites used in radiator panel. They are  

 

3.2.1 2D Laminate Element 

 

It is similar to the plate element, except that this element is composed of one or more 

layers (lamina). Each layer can represent a different material. MSC Nastran for 

Windows supports up to 90 layers for a laminate. This element is used to define 

composite laminate with different thickness and orientation. Figure 3.5 shows  Nastran 

property definition for 2D laminate elements. This  element type is used in modeling the 

sandwich panel for the free vibration response of sandwich panel. 
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Figure 3.5.  2D laminate type element. 

 

3.2.2 3D Solid Element 

 

It is a volume element type which can be used to model any three dimensional structure. The 

element type used is three-dimensional eight noded hexahedron. The representation of the 3D 

eight noded hexahedron element is shown in Figure 3.6. As the material is chosen to be 3D 

anisotropic with regard to heat transfer analysis, the choice of the element type for all 

types of analysis needs to be 3D solid elements. 

 

 

Figure 3.6. Typical eight noded solid element. [21] 
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3.3 Modeling Classification 

 
The modeling of the sandwich composites has generally fallen into one of the three 

approaches depending on panel geometry and constituent materials. Accurate prediction 

of the general or overall instability modes requires adequate representation of the 

sandwich stiffness.  The prediction of the local failures on the sandwich also requires 

through the thickness modeling.  The first type of modeling adopts the standard 

plate/shell finite elements. This model is referred as layered shell model. The second 

approach is referred as layered shell/solid model and this incorporates 2 dimensional 

planar elements for the face sheets and 3 dimensional solid elements for the thick core. 

This model provides an accurate method for the modeling of sandwich and it depends on 

through the thickness modeling of the core material. The third approach is a full three-

dimensional finite element model that implements three-dimensional solid elements for 

both the face sheets and the core. 

  

3.3.1 Shell/Shell Representation 

 
This type of model uses the laminate type elements to model the sandwich structure. The 

sandwich structure with two face sheets and the core is modeled as three groups of 

layers. The first group of layers represents the composite laminate of the top face sheet. 

The next set of layers corresponds to middle core material and the final group of layers 

represents the laminate of the bottom face sheet. The number of groups of layers 

increases as the number of face sheets increase. This type of modeling usually gives an 

equivalent single layer approach result using classical laminate theory. The plate 

elements resist in plane shear and bending forces and can be used for any thin plates and 

shells. The laminate element type is similar to the plate element except that it is 

composed of many layers. This representation is implemented in the parametric free 

vibration analysis of the sandwich panel. 
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3.3.2 Shell/Solid Representation 

 
Two dimensional plane elements with multi-layers are used to model the face sheets and 

three-dimensional solid elements are used for the core. One of the demerits of this 

approach is the displacement field incompatibility between the shell and solid element. 

Care should be taken in selecting the compatible set of shell and solid elements. Solid 

elements do not have stiffness in the rotational degrees of freedom at the interface node, 

which means that only displacements may be transmitted but no moment forces through 

the interface. One of the methods of handling the transition is to use interpolation 

elements at the interface. These interpolation elements do not add stiffness to the model 

but transmit the loading to the adjacent element. 

 

3.3.3 Solid/Solid Representation 

 
This approach does not possess the problem of attaching the solid elements with the 

plate elements as this model uses three-dimensional solid elements to represent the face 

sheets and the core. It can be a four to ten noded tetrahedron, six to fifteen noded wedge 

and eight to twenty noded hexahedron. Therefore solid/solid representation is adopted 

herein to model the sandwich radiator panel. The face sheets and the core are models 

generated with solid elements.  

 

3.3.4 Defining the Layers and Stacking Sequence 

 
The most important characteristic of a composite material is its layered configuration. 

Each layer may be made of a different orthotropic material and may have its principal 

directions oriented differently. For laminated composites, the fiber directions determine 

layer orientation. Two methods are available to define the layered configuration. 
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• By specifying individual layer properties in fiber and matrix directions. 

• By defining constitutive matrices that relate generalized forces and moments 

to generalized strains and curvatures (available only for specific solid 

elements). 

 

As MAT9 [Refer Appendix 1] entry, which is representing the anisotropic 3D material 

type, requires a 6 x 6 symmetric material matrix, the composite face sheet is modeled by 

providing the constitutive matrix. The matrix elements are calculated for each layer 

separately. The main advantages of the matrix approach are  

 

• It allows an aggregate composite material behavior. 

• A thermal load vector may be supplied. 

• The matrices may represent an unlimited number of layers. 

 

In the sandwich radiator panel the face sheets are of type T300/5208 carbon epoxy 

material. The lay-up of the face sheets is chosen to be 0/90 on one side of the core and 

90/0 on the other side of the core. The lay-up is said to be symmetric. The face sheets are 

of composite type with directional material properties. As discussed earlier the face 

sheets are modeled as a three dimensional anisotropic material using MSC Nastran for 

windows.  

 

3.4 Material Properties 

 
3.4.1 Face Sheet 

 
The elastic properties for T300/ 5208 carbon epoxy composite are obtained from public 

database [22].  
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Elastic Properties [Subscripts 1 – Reinforcement direction, 2 – Transverse 

direction] 

 

E11 = 181 Gpa, E22 = 10.27 Gpa, G12 = G13 = 7.17 Gpa, ν12 = 0.28 and ρ =1.61 g/cc. 

From the expression, ν12 / E2 = ν21 / E1, ν21 is calculated to be 0.016. From the 

expression, G23 = E22 / 2(1+ν23), G23  is found to be 3.64 Gpa. 

 

As the material input is in 3D anisotropic form, it is necessary to provide the properties 

of the composite in the through the thickness direction also. For any composite the 

thickness properties are difficult to obtain. Therefore it is customarily assumed that the 

matrix properties apply in the thickness direction. Therefore it can be said, 

 

E22 = E33, ν12 = ν13, and  ν21 = ν31 

 

The Poisson’s ratio ν23 for T300/5208 carbon epoxy composites is 0.42 [23]. 

ν23 = ν32 = 0.42 

 

Thermal Properties 

 
Coefficient of Thermal Expansion  

a11 = 0.018E-06 / 0C, a22 = 22.5 E-06 / 0C and a33 = 22.5 E-06 / 0C 

Specific Heat Capacity [24] 

Cp = 0.94 J/g-0K 

Thermal Conductivity [24] 

k11 = 2.069 W/m-0K,  k22 = 0.413 W/m-0K and k33 = 0.413 W/m-0K  
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Figure 3.7.  Material data form of face sheet T300/5208 carbon epoxy. [0] 

 

The material property data form for [0] lamina of T300/5208 carbon epoxy is shown in 

Figure 3.7. For the [90] lamina of the same material, the material data interchanges based 

on the orientation of the fibers. It is necessary to create a separate material type for the 

[90] lamina, due to modeling intricacies in MSC Nastran. 

 

3.4.2 Core 

 
The main focus of the research is to identify and use a core that has high thermal 

conductivity and low weight. With regard to high conductivity, Poco foam and Poco 

foam HTC are two of the potential choices for the core. Aluminum honeycomb, with its 

high stiffness and very low density, also makes a suitable choice as the core of the 

sandwich radiator panel. All the three core materials are presented in the following 

discussion. It is to be noted that Poco foam and Poco foam HTC possess isotropic elastic 

properties but directional thermal properties. The thermal conductivity in the out of 

plane direction is different from that of the in plane and it is significantly high. Therefore 

the graphite foam is treated as a 3D anisotropic material in MSC Nastran. 
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Poco Graphite foam [3] 

Elastic Properties 

E11 = E22 = E33 = 0.40 Gpa, G12 = 0.14 Gpa, ν12 = 0.4 and ρ =0.55 g/cm3. 

 

Thermal Properties  

Coefficient of Thermal Expansion  

a11 = 0.6E-06 / 0C, a22 = 0.6E-06 / 0C and a33 = -0.7E-06 / 0C 

Specific Heat Capacity 

Cp = 0.7 J/g-0K 

Thermal Conductivity 

k11 = k22 = 45 W/m-0K and k33 = 135 W/m-0K 

 

Poco foam HTC has the same elastic properties as that of the Poco foam but different 

thermal properties. However its density is 0.9 g/cm3. It is given as follows. 

 

Thermal Properties  

Coefficient of Thermal Expansion  

a11 = 1.03 E-06 / 0C,  a22 = 1.03 E-06 / 0C and a33 = -1.09 E-06 / 0C 

Specific Heat Capacity 

Cp = 0.7 J/g-0K 

Thermal Conductivity 

k11 = k22 = 70 W/m-0K and k33 = 245 W/m-0K 
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Aluminum Honeycomb is lightweight and structurally stiff but does not have as high 

a thermal conductivity as Poco products.  

 

Elastic Properties [25] [Refer Appendix 3] 

EL = 0.31 Gpa, EW = 0.26 Gpa and EZ = 1.39 Gpa, G12 = G13 = 0.1 Gpa, G23 = 0.40 Gpa, 

ν12 = 0.33 and ρ =3.68E-02 g/cm3. 

 

Thermal Properties 

Coefficient of Thermal Expansion [26] 

a11 = 23.76 E-06 / 0C,  a22 = 23.76 E-06 / 0C and a33 = 23.76 E-06 / 0C 

Specific Heat Capacity 

Cp = 0.92 J/g-0K 

Thermal Conductivity [Refer Appendix 3]  

k11 = 0.67 W/m-0K, k22 = 1 W/m-0K and k33 = 1.84 W/m-0K 

 

The Table 3.1 below summarizes the properties of all the core materials that will be used 

in MSC Nastran models. It should also be noted that the values shown in the table is 

compatible with the MSC Nastran system of unit requirements. 
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Table 3.1   

Material properties of sandwich cores.  

 

Classification Property 
Nastran 

Units 

Poco 

foam 

Poco 

foam 

HTC 

Aluminum 

honeycomb 

Elastic 

Properties 

Young’s 

Modulus  
    

 E11 PSI 5.8E04 5.8E04 3.77E04 

 E22 PSI 5.8E04 5.8E04 4.52E04 

 E33 PSI 5.8E04 5.8E04 2.01E05 

 Shear Modulus     

 G12 PSI 20720 20720 15000 

 G23 PSI 20720 20720 58000 

 G13 PSI 20720 20720 15000 

 
Poisson’s ratio 

ν 
 0.4 0.4 0.33 

Thermal 

Properties 

Expansion 

Coefficient 
    

 a11 in/in-R 3.4E-07 5.7E-07 1.32E-05 

 a22 in/in-R 3.4E-07 5.7E-07 1.32E-05 

 a33 in/in-R -3.9E-07 -5.9E-07 1.32E-05 
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Table 3.1 Continued 
 

 
Thermal 

Conductivity 
    

 k11
BTU/in-

sec-R 
0.0006 

0.0009

4 
8.8E-06 

 k22
BTU/in-

sec-R 
0.0006 

0.0009

4 
1.32E-05 

 k33
BTU/in-

sec-R 
0.0018 0.0033 2.42E-05 

 
Specific Heat 

Capacity (Cp) 

BTU/lbm

-R 
65.69 65.69 85.01 

Mass 

Properties 
Density (ρ) 

lbm-

sec2/inch
4

5.1E-05 
8.4E-

05 
3.45E-06 

 

 

3.5 Sandwich Panel Model 

 

Both the face sheets and the core are modeled as 3D anisotropic material. The sandwich 

mesh is built in such a way that the nodes at the interface of core and face sheets match 

against one another and they are merged together as a single node. A corner of the 

sandwich panel through the thickness is shown in Figure 3.8.  The top layer represents 

the [0] composite face sheet with T300/5208 carbon epoxy properties followed by the 

[90] face sheet of the same material. The core is represented with two elements through 

the thickness, as it is thick compared to the face sheets that are made of a single element. 
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Core elements will represent one of the three above-mentioned materials. The lay-up is 

symmetric on the other side. 

 

 

Figure 3.8.  Sandwich panel model with face sheets and core. (MSC Nastran) 

 

3.5.1 Cutout 

 

A cutout can be viewed as a boundary having a free edge with localized stress 

concentration. The model has a rectangle cutout in the middle to hold the antenna. The 

dimensions of the cut out is 7 x 9 inches with 7 parallel to the longer edge (46 inches) 

and 9 parallel to the shorter edge (34 inches) 

 

3.5.2 Antenna  

 
The antenna has no physical significance other than its mass contributing to the total 

weight of the panel. Therefore the mass of the antenna is attached as a nodal mass at the 

center and it is connected to the inner sides of the cutout using rigid elements. As rigid 

elements are ignored in heat transfer problems, they do not affect the analysis results. 
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Rigid element is a rigid link between one independent node and several dependent nodes 

with respect to certain degrees of freedom. Each of the rigid elements generates internal 

constraint equations or multi point constraints in MSC Nastran. The constraint equation 

is used to describe the motion of one dependent degree of freedom in a model as a linear 

combination of one or more other independent degrees of freedom. The independent 

degrees of freedom are specified at a single node and the dependent degrees of freedom 

are specified at an arbitrary number of nodes. The motion at a reference node is defined 

as a weighted average of the motions at a set of other nodes. The rigid elements are used 

to model connections that are stiff relative to the remainder of the structure in order to 

prevent numerical difficulties and often to simplify the model.  

 

3.6 Preliminary Design  

 
The space radiator panel is a sandwich material with T300/5208 carbon/epoxy face 

sheets and a foam and aluminum honeycomb core. The lay-up of the sandwich Panel is 

0/90/core/90/0. The thickness of the core is assumed to be 0.6 inch and the thickness of 

each face sheet is 0.02 inch. Its overall dimensions are as follows, panel 46X34 inches, 

center cutout 7X9 inches.  

 

The space radiator sandwich panel design constraints are fundamental frequency of more 

than 100Hz with the boundary edges fixed in all the degrees of freedom, dissipate heat 

flux of 100 W/m2, withstand static loads of 10G and dynamic launch loads acting during 

each stage of spacecraft. The Figure 3.9 below shows the complete sandwich panel 

modeled with 3D elements with the antenna modeled as mass and rigid elements at the 

cutout. 
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Figure 3.9.  Sandwich radiator panel with antenna at the cutout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 35
 
 

CHAPTER IV 

VIBRATION AND THERMAL CHARACTERISTICS OF 

SANDWICH RADIATOR PANEL 
 
4.1 Plate Theory 

 
The assumptions inherent in the analysis of a composite sandwich radiator panel in this 

effort are  

• body forces neglected 

• mid-plane symmetric  

• no hygrothermal effects, 

• without shear coupling terms and  

• subjected to a lateral load p (x, y) 

 

Then the equilibrium equations can be expressed as 
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After simplifying and neglecting the transverse shear deformation for preliminary design 

stage these equations result in the following governing differential equation for a 

sandwich plate subjected to bending. 
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In real life, many structures and products are subjected to dynamic loads. These dynamic 

effects may be due to natural vibrations or forced vibrations. As this problem focuses on 

the free vibration effects, it is of practical significance to discuss the natural vibration 

characteristics of composite plates and sandwiches. It is known that each structure has 

infinite natural frequencies and only a few of which are important such as the 

fundamental mode. At this frequency the structure may exceed the yield strength and its 

behavior changes drastically. Mathematically, these frequencies are non-trivial solutions 

called “Eigen” values of the homogeneous equations and the corresponding “Eigen” 

vector determines the mode shape of the structure. This study of natural frequency 

becomes more important when a forcing function excites the structure at its fundamental 

frequency. The largest amplitude of response will be in the mode shape whose natural 

frequency is closest to that of the forcing function. The source of vibration in a 

spacecraft is from the dynamic loads acting during various stages such as launch and 

descent. As the radiator sandwich panel is bound to experience such loads, it is 

necessary to determine its natural frequency. Therefore in the following sections, the 

natural frequency calculation of composite plates and sandwiches are presented. 

 

4.2 Free Vibration of a Simply Supported Rectangular Plate 

 

The governing differential equation for free vibration without in plane or lateral forces 

and subjected to dynamic loading [28] is given by  
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Converting the dynamic problem to a static problem by applying D’Alemberts principle 

and applying the boundary conditions for simply supported case, 

 

x= 0, a    w (x, y) = 0 and Mx = 0 
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y =0, b    w (x, y) = 0 and My = 0 

 

we get  
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The lowest or the fundamental frequency is obtained by substituting m=n=1 
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For an isotropic plate D11 = D12 = D66 = D22 = D. Therefore the fundamental frequency is 

given by 
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Where, 

a and b – length and width of the rectangular plate 

ρ - Density of the material of the plate 

w (x, y) – displacement function of the plate 

Mx, My – Moments about x and y-axis. 

D – Flexural stiffness of the isotropic plate 

Dxy – components of flexural stiffness modulus if the plate is orthotropic. 
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4.3 Parametric Study of Simply Supported Plates and Sandwiches. 
 

A simple parametric study of the fundamental frequency of isotropic, orthotropic, 

laminated and sandwich plates is undertaken. The dimensions of the plate are assumed to 

be the same as the radiator panel. The variations of the fundamental frequency are shown 

as a function of the thickness of the plates for different material types. In the case of 

orthotropic plates, it is shown as a function of the orientation of the fibers. These results 

are also supported with corresponding finite element models in MSC Nastran. The 

results of closed form model are in good agreement with finite element solution. The 

error percent is less than 2. It should be noted that 2D plate elements with orthotropic 

material properties are used to model the plates in MSC Nastran. In this analysis the 

following assumptions are made as part of solving the given problem. The assumptions 

are  

 

• The plate aspect ratio (a/h) is 80-100 where “a” is the length of the Plate and “h” 

is the thickness of the plate. 

• there are no transverse shear deformations (exz)  

• it is mid-plane symmetric. 

• there are no shear coupling terms. 

• there are no applied surface and in-plane forces 

• there are no hygrothermal effects  

• all the edges of the plate are simply supported. 

 

4.3.1 Aluminum 2024-T3 Isotropic Plate 

 

Plate Dimensions: All units are in English system. 

a = 46 inches, b = 34 inches, h= 0.51inches, Aspect ratio (a/h)=90.20               
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Material Properties:      

Young’s Modulus (E) = 1.06E07   Psi 

Mass Density (Weight Density/Gravity)(ρm)  = 0.000258 lb–sec2/inch4

Poisson’s Ratio (ν) = 0.3 

The fundamental frequency of an isotropic plate in radians per unit time is given by  
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Where D=E*h3/ (12*(1-ν2)) 

The fundamental frequency (Fn) is found to be 65.65Hz. The variation of the frequency 

with the thickness of the plate is shown in Figure 4.1. 
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Figure 4.1.  The variatio
Thickness of the plate (Inches)
 

n of the fundamental frequency with the thickness of the 

isotropic plate.  
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4.3.2 T300/5208 Carbon/Epoxy Composite Plate 

 

Lay-ups 

 

Multi-layered specially orthotropic plate 0/90/90/0 or [0/90]s scenario is considered. 

 

Material Properties 

 

E11= 21E6 psi                                            

                        E22=1.76E6 psi 

                        G12= 0.65E6 psi 

                        ν12 =0 .21 

                        ν21 = 0.0176 

ρm = 0.000155 lb. –sec2/inch4 

 

The fundamental frequency of a specially orthotropic plate [33] is given by the following 
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Where m = cos (θ) and n = sin (θ) 

 

The fundamental frequency value for the lay-up is found to be 

 

0/90/90/0 ω11 =343.48   Fn =54.64 

 

 

4.3.3 Sandwich Plate with Two Identical Face Sheets of T300/5208 Carbon/Epoxy 

and a Foam Core 

 
Lay-up considered:  [0/90/core/90/0] 

Face Sheet Properties 

 

E11= 21E7 psi                                            

                        E22=1.76E7 psi 

                        G12= 0.65E7 psi 

                        ν12 =0 .21 
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                        ν21 = 0.0176 

ρm = 0.000155  lb–sec2/inch4    

  tf (Thickness of each face sheet) = 0.005 inch 

Core Properties 

 

Ec = 1.7E7 psi 

Gc = 10000psi 

νC= 0.4 

ρm = 2.24638E-6 lb–sec2/inch4    

hc (Thickness of the core) = 0.5 inch 

 

The fundamental frequency of a specially orthotropic plate is given by the equation 4.10. 
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The Non-dimensional frequency is given by 
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The fundamental frequency determined from the calculation is shown in Table 4.1. The 

variations of the fundamental frequency with the parameters of the sandwich are shown 

in Figures 4.2, 4.3 and 4.4. The plot provides the fact that the stiffness is directly 

proportional to the thickness of the core. It is understood that the stiffness increases by 

keeping the face sheets apart. A non-dimensional parameter (hc / tf) is plotted against the 

frequency in figure 4.3. It provides that face sheet stiffnesses are vital in providing the 
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overall stiffness of the sandwich. Figure 4.4 shows the variation of the fundamental 

frequency with the individual face sheet thicknesses. 

 

Table 4.1 

Non-dimensional fundamental frequency for sandwich plate. 

 
Thickness of the 

Face Sheet (tf) in 

inches Lay-up 

Height of 

the Core 

(hc) in 

inches tf1 tf2 

ω11 in 

Radians 

per unit 

time 

Fn in 

Hertz 

Non- 

dimensional 

frequency 

(W ) 

0/90Core/90/0 0.5 0.005 0.005 1014.381 161.379 21.1815 
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Figure 4.2.  The variatio

core. (hc) (keeping
 Thickness of the core (Inches)
n of the fundamental frequency with the thickness of the 

 the thickness of the face sheet (tf) as constant) 



 44
 
 

 

N
on

-d
im

en
si

on
al

 
Fr

eq
ue

nc
y 

(R=hc/tf) 

Figure 4.3.  The variation of the non-dimensional frequency with the parameter R.  
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nesses. (tf1 and tf2) (core thickness (hc) is constant) 
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4.4 Sandwich Panel Design 

 
The closed form solution of section 4.3 illustrates the effect of plate geometry, aspect 

ratio, support conditions and lamina stacking sequence on the natural frequencies of 

specially orthotropic fiber reinforced composite plates and sandwiches. Both the material 

properties and the support conditions are not representative of the radiator design. 

Herein, the actual materials for the face sheet and the core are incorporated into the 

analysis. The material of the face sheets is T300/5208 carbon epoxy. The elastic and 

thermal properties of T300/5208 carbon epoxy [22] composite are shown in Table 4.2.  

 

Table 4.2 

Properties of T300/5208 carbon epoxy. 

 
Elastic Properties 

[22] Young's Modulus E11 2.63E07 Psi 

  E22=E33 1.49E06 Psi 

 Shear Modulus G12=G13 1.04E06 Psi 

  G23 5.28E05 Psi 

 Poisson’s Ratio ν12=ν13 0.28  

  ν23 [23] 0.42  

 Density ρ 0.00015 lbm-sec2/inch4

Thermal 
Properties 

Thermal 
Conductivity [24] K11 2.77E-05 Btu/in-sec-R 

  K22=K33 5.54E-06 Btu/in-sec-R 

 
Coefficient of 

Thermal 
Expansion [22] 

A11 1E-08 In/in-R 

  A22=A33 1.25E-05 In/in-R 

 Specific Heat 
Capacity [24] CP 86.94 Btu/lbm-R 
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The material choices of the core are Poco foam products and aluminum honeycomb. The 

material properties can be found in Table 3.1 

 

4.4.1 Basic Approach 

 

One of the foremost design criteria for the radiator panel is the natural frequency. It 

should be above 100 Hz to sustain the vibration during the launch and descent of 

spacecraft.  Aluminum is extensively used as face sheets in sandwich panels, however in 

the current proposed design, carbon/epoxy layers are used as face sheets. The laminate 

thickness that satisfies stiffness requirement is also a design variable and needs to be 

determined. Furthermore additional variables such as stacking sequence, and number of 

layers are also incorporated in the design. Through parametric studies via finite element 

analysis, various lay-ups are considered to identify the appropriate one for the radiator 

panel. 

 

The parametric study of section 4.3 on free vibrations of the sandwich panel suggests 

that [0/90/core/90/0] lay-up has a fundamental frequency greater than 100 Hz with the 

given dimensions for the sandwich face sheets and core. This baseline design indicates 

that [0/90/core/90/0] lay up can be considered as a candidate for the radiator panel. Since 

[0/90/core/90/0] sandwich lay-up is specially orthotropic and symmetric, it has no 

bending coupling nor shear and torsion coupling. Therefore for the above-mentioned 

lay-up, a finite element model is set up in MSC Nastran with the material properties of 

appropriate face sheets and core of table 4.2 and 3.1. The most efficient sandwich panel 

response depends on thin face sheets that are separated far enough with a thick core. 

Increasing the stiffness and thickness of the panel leads to a weight increase thus care 

should be taken in selecting the density of the core as well as its thickness. It is also 

necessary to select the material systems that meet the thermal requirements. This 

demands a rigorous optimization of the sandwich parameters such as core and face sheet 

thicknesses, lay-up and orientation to satisfy the required design criteria and to bring out 
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the best lay-up for the radiator panel. Much of optimization for the radiator panel is 

presented in the chapter on Numerical Results and Discussions. 

 

4.4.2 Support Conditions  

 
For the models, the sandwich radiator panel is fully constrained (displacements and 

rotations) on all the four edges. Even though, in service environment it is to be mounted 

with certain spacing of bolts to provide the required stability during launch and descent, 

an assumption to fully constrain all the edges is made for analysis purposes. The edge 

constraints influence greatly the natural frequencies and their corresponding mode 

shapes. The numbers 1 to 6 represents the translation and rotational degrees of freedom.  

The Nastran model with the support conditions is shown in the Figure 4.5. 
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4.5 Static and Dynamic Characteristics of Radiator Panel 

 
 
The governing differential equation for the bending of a composite material plate with 

mid plane symmetry, without bending-twisting coupling and transverse shear 

deformation (classical plate theory) and subjected to laterally distributed load p (x, y) is 

as given by equation 4.14. 
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Pagano [29] provides an exact solution to the problem of a rectangular orthotropic 

sandwich plate subjected to a laterally distributed load.  

 

A general governing equation used in the structural analysis is given in equation 4.15. 

 

[M]{u (t)} + [B]{u (t)} +  [K]{u (t)} = {P (t)}                                                           (4.15) 

 

The above equation is a general one that includes inertia, damping forces and load can 

be changed with respect to time. But in static analysis load does not change with respect 

to time, inertia forces and damping are not considered and therefore the above equation 

reduces to 

 

[K]{u} = {P}                                                                                                               (4.16) 

where   [K]: stiffness matrix 

  {u}: node displacement vector 

  {P}: load vector 
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The linear static analysis is the most basic type of analysis in which the displacement or 

stress is directly proportional to load or force applied and it is independent of time. Some 

examples of static loadings are 

 

• A time invariant dead load (like a building load) 

• Enforced displacement and 

• Steady state temperature field. 

 

The loadings can be independent or more often combined with each other as multiple 

loading that reduces the time taken and improves the solution efficiency. Once the 

displacements are computed, MSC Nastran uses these to compute element forces, 

stresses, reaction forces and strains.  

 

4.5.1 Static Loading  

 
The sandwich radiator panel with its antenna mass is subjected to a static loading of 

“10g” in the direction perpendicular to the plane of the panel. The objective of static 

loading is to define the resulting load distribution throughout the structure. When 

performing static analysis with load factors, inertial (“g”) forces are applied to the 

structure. Inertial forces in all three axes can be applied simultaneously including sign 

combinations. The linear static analysis in MSC Nastran provides the stresses and strains 

in the sandwich panel. Since the panel dimensions are in inches, the equivalent loading 

in English system of units is given by 

 

   1g = 386.4 inch/sec2

 Therefore  10g = 3864 inch/sec2
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4.5.2 Dynamic Loading 

 

Payloads and spacecraft are designed to maintain structural integrity and degree of 

functionality to ensure successful operation during all phases of the expected life cycle. 

The design of Space flight components in general should consider static and dynamic 

loads to be encountered during assembly, testing, transportation, launch, ascent, space 

operations, extraterrestrial operations, descent and landing. 

 

4.5.2.1 Requirements 

 

• Load Regimes 

 

For a spacecraft or a payload, there is a need for a thorough understanding of its 

operation and performance to ensure complete definition of load requirements. 

1. During the design process all the load regimes to which the structure is 

exposed should be evaluated. 

2. If the structure has multiple load configurations during its mission, the 

individual load configurations are identified 

3. Within each load regime, each source of loading is identified. Different load 

sources that can occur simultaneously shall be coupled together. 

 

• Requirements for payloads 

 

Evaluation of loads for the payload is an iterative process. First, the preliminary 

design loads are incorporated for the initial sizing of the structure. Then a 

mathematical model of the structure is developed and a preliminary load cycle is 

performed. Based on the resulting load values, the initial structure sizing values 

need to be adjusted. Subsequent load cycles are needed to assess the changes in 

design, launch vehicle and payload mathematical models, and forcing functions. 
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1. Preliminary Design Loads: This load data set is used for the initial sizing of 

structural elements to begin the load analysis process. The structural elements 

comprises of the primary structure and the components. 

2. Development of mathematical models for loads: A mathematical model for 

the payload is developed using finite element methods and it is then coupled 

with launch vehicle to perform one or more cycles of analysis in order to 

update the loads in the payload. The model may be a reduced version of the 

finite element model using static or dynamic reduction methods or a model 

specifically developed for load analysis. This approach will be aimed at 

producing accurate dynamic predictions. (Frequencies, mode shapes and 

stresses) 

3. Forcing Functions:  Forcing functions associated with each event in a 

launch vehicle are provided by Launch Vehicle Organization and are 

intended to yield load responses. 

4. Load Cycles:  A minimum of two load cycles, one a preliminary load cycle 

and the other verification load cycle that uses test-verified models, are 

performed on the launch vehicle. 

5. Load Combinations:  In many cases the loads produced by different 

environments can occur simultaneously and theses loads can be coupled to 

define the limit load. In a shuttle the most common types of load 

combinations are transient loads with random vibration loads due to liftoff 

and transient loads with thermal loads due to landing. 

6. Verification of the payload mathematical model:  This procedure shall be 

performed to ensure the safety and accuracy of the model for stress and 

deflection predictions. 

 

The requirements for spacecraft have similar design parameters to be evaluated as in 

design of payloads. However the spacecraft configuration may change as deployments 

and separations occur and the structure may be different. 
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4.5.2.2 Load Regimes 

 
Typical load regimes for payload and spacecraft are  

 

Lift off and Ascent  

 

This environment may vary depending on the type of launch vehicle used. This may 

include engine ignition, launch pad release, liftoff, maximum dynamic pressure, 

maximum acceleration, separations, engine shutdowns and thrust oscillations. The major 

induced source for the dynamic loading is from the propulsion system operation. Some 

of the basic types of flight environments that generate dynamic loads on payload are  

 

• Low frequency dynamic response,  

• High frequency random vibration environment and 

• High frequency acoustic pressure environment 

 

Space Operations 

 

Space Operations may induce mechanical and thermal loads on the structure. Some of 

the possible sources for mechanical loading are rotating machinery, deployment and 

robotics activity. Thermally induced loads may result from internal heat sources and 

radiators. 

 

Descent and Landing 

 

This event is a transient loading environment where payloads and spacecraft will be 

subjected to static and dynamic loading. Descent maneuvers, landing gear impact, 

thermal loadings resulting from orbit operations and post-landing loads shall be 

considered 
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4.5.3 Designing for Random Vibration 

 
The fundamental nature of random vibration and fatigue must be understood clearly in 

order to design, develop and produce cost effective and lightweight structures that are 

capable of operating in various environments with high degree of reliability. The 

dynamic load path must be examined when it passes through the structure to make sure 

there is no failure at weak locations. The characteristic of random vibration is non-

periodic and it can be considered as a series of overlapping sinusoidal curves. In this 

environment all the exciting frequencies within a given bandwidth are excited at the 

same time.  

 

4.5.3.1 Random Vibration Input Curve  

 

One of the different types of curves that can be used to show the random vibration input 

requirements is the Power Spectral Density (PSD) curve. This is shown in log-log scale 

with power spectral density (G2/Hz) along the vertical axis and frequency (Hz) along the 

horizontal axis. It should be noted that acceleration is represented as root mean square 

(RMS) and it is the area under the random vibration curve. The figure 4.6 shows the 

shaped random vibration input curve for the sandwich radiator panel. 

Normal and In-plane to mounting Surface (X, Y and Z-axis) 
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Figure 4.6.  Power spectral density levels. 

 

4.5.3.2 Dynamic Load Set Calculation 

 
Once the fundamental frequency of the radiator panel is predicted, the Power Spectral 

Density value is obtained from the above graph. The estimate of static accelerations due 

to random vibration loads based on Power Spectral Density (PSD) is called as NRV 

(Random Vibration) load set. The procedure to calculate these dynamic loads is shown 

in the Table 4.3.  The table is self explanatory in the method of calculation. The load 

regimes considered for the calculation of random vibration loads are “lift off” and 

“landing”. The other load regimes such as “on orbit deployment and assembly” and 

“space operations” are neglected, as they do not contribute to dynamic loads. The inertia 

load cases for the “lift off” and “landing” are in accordance with Launch Vehicle 

Organization standards. 
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Table 4.3 

Random vibration load set calculation for radiator panel 

 
NRV load Set Calculation 

Magnification Factor (Q) Sqrt (Fn)    

Lowest Natural Frequency, (Fn) 

First Mode 

of the 

panel. 

   

PSD (X, Y) at Fn 
From Fig. 

4.7. 
   

PSD (Z) at Fn 
From Fig. 

4.7. 
   

NRVxy=3*sqrt(PI/2*Q*Fn*PSD)

(Random Vibration Loads) 

Calculated 

using above 

values 

   

NRVz=3*sqrt (PI/2*Q*Fn*PSD) 

(Random Vibration Loads) 

Calculated 

using above 

values 

   

Inertia Load Cases in G’s 

[Launch Vehicle Organization 

Standards] 

Event Nx Ny Nz 

Transient Lift –0ff 6.6 4.2 5 

 Landing 7.2 5.9 6.3 

Quasi-static Ascent    

 On-orbit    

 Descent    

Load Sets in G’s  X Axis Y Axis Z Axis 

Set 1  Nx+NRVx Ny Nz 

Set 2  Nx Ny+NRVy Nz 

Set 3  Nx Ny Nz+NRVz 
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The Table 4.3 provides three sets of random vibration loads in all the three directions. 

The sandwich radiator panel is subjected to each load set and the stress and deformation 

characteristics are predicted using MSC Nastran. It is to be noted that fundamental 

frequency of the panel will vary with the type of core and dynamic loads are based on 

the lowest mode of the structure as mentioned in the Table 4.3. The following Figure 4.7 

shows the load entry form at MSC Nastran. As the values of load sets are required in 

inch /sec2, it is necessary to convert the load set in G’s to inch / sec2.  

 

 

Figure 4.7. Dynamic load set for radiator panel. 

 

4.6 Heat Transfer Analysis of Radiator Panel 

 

Composite structures after fabrication operate in a variety of thermal environments that 

may directly impact on performance. These thermal effects are a result of temperature 

variations and heat flux additions and are directly related to the thermal properties of the 

constituents. Composite sandwich structures should be carefully analyzed and designed 

to meet very close thermal tolerances for structures that are critically important like 

communication satellite antennas, reflectors or any other terrestrial systems. 
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The thermal state affects the stress-strain behavior of composite materials since the 

properties of the individual constituents vary with temperature and generate residual 

stresses. The thermal effects are most noticeable in matrix and less in fibers as they are 

less sensitive to environment. The thermal behavior of a lamina is characterized by its 

two principal coefficients of thermal expansion (CTE), α1 and α2. 1 and 2 denote the 

longitudinal and transverse material coordinate directions. A lamina undergoes thermal 

deformation when subjected to a change in temperature ∆T. The linear thermal strains in 

the principal material axes of the lamina are 
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These thermal strains can be transformed to global co-ordinates ex, ey and es by the 

transformation matrix. When a multidirectional laminate is subjected to mechanical and 

thermal loading, any kth lamina in the laminate is under a state of stress [σ]k
x, y and 

deformation [ε]k
x, y.  The strain relation is given in the equation 4.18. 
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Where [S]k
x,y [σ]k

x.y are the strains produced by the existing stresses in the lamina. The 

following relation given in equation 4.19 can obtain the stresses in any layer in a 

laminate with respect to global co-ordinate axis. 
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4.6.1 Radiator Problem Definition 

 

The radiator panel, apart from structural requirements, is also required to dissipate 100 

watts/m2 to space from the electronics box during flight. The setup for the radiator panel 

is shown in Figure 4.8, where the coolant passes through the electronics box takes the 

heat from it and transfers it to the core at the midplane. Therefore the performance of the 

radiator is tested by placing the heat load at the mid-plane of the core and allowed to 

conduct and radiate on one side of the panel, while the other side is not exposed. The 

corresponding model is presented in the Figure 4.9. 

 

Electronics Box 

 

Figure 4.8. Schematic representation of the heat removal sys
box. 

 
 

Sandwich Panel
 

Pipes carrying 
the coolant 

tem from the electronics 
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Top face sheet exposed to space for     
radiation 

Heat addition to the 
mid-plane of the core 

 

Figure 4.9. Schematic representation of heat loads modeled in MSC Nastran. 

 

The ambient temperature of the space is assumed to be 2500 Kelvin if the radiator panel 

is at International Space Station or 40 Kelvin, if it is radiating to deep space [27].  But in 

this case it is assumed to be 2500 Kelvin. The emmisivity and absorptivity of the surface 

exposed to radiation is assumed to be 0.8. The radiator panel consists of sandwich 

composite with two carbon epoxy face sheets on either side of the core. The choice of 

the core is made by extensive heat transfer analysis both steady state and transient. The 

core that satisfies the thermal requirements with better performance is determined. The 

lay-up that satisfied the structural requirements in section 5.1 is considered for thermal 

analysis to verify that it is able to satisfy the thermal requirements of the radiator panel. 

As the face sheet thicknesses are very small, it is assumed that the face sheets will not 

conduct heat significantly. Therefore much of the design and analysis is dependent on 

the material and the thickness of the core. 

 

 

 



 60
 
 

4.6.2 Core Materials and Support Conditions 

 

Poco Graphite Inc. offers two thermal management materials Poco foam and Poco foam 

HTC. Both are cellular graphite foams that have very high thermal conductivity in the 

out of plane direction. Poco foam HTC has higher strength and thermal conductivity 

than the Poco foam. However, its higher density increases the weight of the system and 

might incidentally reduce the performance of the system. Aluminum Honeycomb is also 

a potential choice for the core of the radiators. It is very lightweight and has high 

stiffness characteristics. The thermal conductivity of aluminum honeycomb is lesser than 

its parental aluminum due to the hexagonal arrangement of cells. The sandwich panel is 

supported on all sides. The boundary conditions for the thermal problem will be similar 

to the vibration. All the nodal degrees of freedom on the thickness of the panel are fixed. 

 

4.6.3 Thermal Modeling using MSC Nastran 

 

MSC Nastran is the widely used code for structural analysis of components. This 

program also has a thermal analysis part, which is based on the “Finite Element method” 

(FE). The primary function of the radiator panel is to dissipate the 100 W/m2 of heat flux 

from the electronics box to space. The heat flux load is defined at the mid-plane of the 

core and it is allowed to conduct through the sandwich and radiate to the surrounding 

space through one side of the composite panel. Since the other side of the composite 

panel is not exposed, it is not able to radiate. The choices that are available in MSC 

Nastran to define the heat flux load on the panel are; specifying it as nodal load or 

specifying it as element load. Heat flux and heat generation can be defined on both 

nodes and elements The units for the nodal heat generation and heat flux are both 

expressed in terms of power units instead of the more traditional units used by the 

element heat generation and heat flux. The difference is due to the fact that nodes have 

neither a volume nor an area whereas the element has.  As shown in the figure 4.12, the 

heat generation and heat flux loads can vary with time. 
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4.6.3.1 Thermal Units  

 

The nodal and elemental loads have the following units for temperature, heat generation 

and heat flux in MSC Nastran. This is shown in Figure 4.10. 

 

Elemental Loads 

Temperature oC, oK, oF, oR 

Heat Generation W/m3, Btu/sec-in3

Heat Flux W/m2, Btu/sec-in2

Nodal Loads 

Temperature oC, oK, oF, oR

Heat Generation W, Btu/sec 

Heat Flux W, Btu/sec 

 
Figure 4.10.  MSC Nastran units for heat loads. [21]  

 

For the problem at hand, the heat flux loads are specified as nodal loads at the mid plane 

of the core by selecting all the nodes at that plane. The number of nodes at the mid-plane 

of the core is 3686. As the panel is modeled in inches, the heat flux loads assume the 

form BTU/sec. The total heat flux of 100 W/m2 after conversion becomes 2.657E-5 

BTU/sec on a single node. The units of temperature in this problem are in Rankin. This 

is because the unit of Stefan Boltzmann constant is expressed either in W/m2/K4 or 

BTU/h-ft2-R4. This load form with the nodal load is shown in Figure 4.11. 
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Figure 4.11. Nodal heat load form in MSC Nastran. 

 

4.6.3.2 Radiation to Space  

 

This problem involves radiation only on one side of the composite panel. The radiation 

to space is considered to be a boundary condition that involves radiant exchange 

between a panel and a blackbody space. The parameters that are required for the 

radiation to space are as follows 

 

• The absorptivity and emmisivity of the radiating surface, 

• Ambient temperature of space and  

• Radiation view factor between surface and space, which is generally equal to 

one. 

 

The absorptivity and emmisivity can be both temperature dependent and the ambient 

temperature can also vary with time. In this analysis, the absorptivity and emmisivity is 

assumed to be 0.8 and ambient temperature of the space is assumed to be 2500K. The 

relationship that involves radiation is defined to be  
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)**(** 44
ambs TATviewfactorq −= εσ                                                                        (4.20) 

 

q = net heat energy involved in W/m2 

ε = Emmisivity of the radiating surface 

A = Absorptivity of the radiating surface 

Ts = Temperature of the element at the radiating surface. 

Tamb = Temperature of the ambient space and  

σ = Stefan Boltzmann constant which has the value 5.668E-8 W/m2/K4 or 0.1714E-8 

BTU/h-ft2-R4. The constant is calculated to be 3.31E-15 BTU/sec-in2-R4 and is used in 

the analysis. 

 

The equation is inherently non-linear due to the presence of the fourth power in the 

radiation term. MSC Nastran applies Newton-Raphson iteration scheme for the solution 

of these non-linear equations. 

 

 

 

One side 
of face 
sheet 
radiating 
to space  

Heat Flux added to 
the mid-plane  

 

Figure 4.12.  Sandwich panel with heat flux and radiation. (MSC Nastran) 
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The side view of the radiator panel in Figure 4.12 identifies the nodal heat loads at the 

mid plane of the core as dots with the values next to it. The radiation is only on one side 

of the panel shown with arrow marks. A steady state heat transfer analysis is performed 

in Nastran with this model. Since it is steady state analysis, temperature does not depend 

on time where in transient heat transfer analysis, heat input is given as function of time. 

This is discussed at the later part of this chapter. 

 

4.6.4 One Dimensional Steady State Heat Transfer  

 
Temperature distribution in the sandwich panel 
 
 
              Ambient Space 2500K  

                           Outer Surface of the face sheet [0] is exposed to radiation 

 

Tbot 

                                                               Tsurf 
        0                                                                                                                                  tf 
        90                                                                                                                                tf       
Q1 
 
 Core                                                                                                                                tc 
 
Q2                                                                                                                                            
 
       90 
       0 
Tcore 
                                                                                                         

Heat Input (Qinput) 100 W/m2 

 

Figure 4.13. One-dimensional analytical model for temperature field. 
 

To begin with, assume the sandwich panel has heat load input in the middle and both the 

sides are exposed to radiation. The schematic of one-dimensional thermal model is 

shown in the Figure 4.13. 
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Qinput = Q1 + Q2.                                                                                                          (4.21) 

 

Since Qinput = 100 W/m2. Due to symmetry, Q1=Q2=50 W/m2. As the cross sectional 

area of the radiator panel is approximately 1 m2, the heat input (Qinput) is 100 W. 

 

Q1 = Qconduction + Qradiation                                                                                                                                           (4.22) 

 

Q1 = (Tcore –Tsurf)/ ((tc / (2*Kcore)) + (tf / Kfs)) + ε *A* σ *(T4
surf –T4

ambient)               (4.23) 

 

Where σ = Stefan Boltzmann Constant 

 A = Area of the panel 

 ε = Emmisivity of the surface (assumed to be 0.8) 

 

There are two unknowns in this equation Tcore and Tsurf.  

For steady state heat transfer Qconduction = Qradiation  

 

So considering the radiation part alone, 

 

Qradiation = ε *A* σ *(T4
surf –T4

ambient)                                                                          (4.24) 

Here Qradiation = 50 Watts 

 

The panel is 46X34 inches and it has a cut out of 7X9 inches.  

Area = ((46*34 – 7*9)*0.02542) = 0.96839 m2.   

 

Stefan Boltzmann constant (σ) = 5.67e-8 Watts/m2-k4

 

Tsurf = [(Qradiation / (ε *A*σ)) + (Tambient) 4] 1/4                                                              (4.25) 

Tsurf = [50/ (0.8*0.96839*5.67e-8) + 2504 ] 1/4                                                            (4.26) 

Tsurf = 266.50°K                                                                                                      (4.27) 
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Conduction in the face sheets (Through the thickness) 

 

Qconduction = 50Watts. The thermal conductivity utilized for this calculation is that of the 

matrix because the through the thickness direction is dominated by matrix. 

 

Qconduction = Kmatrix *A (Tbot – Tsurf) / tf                                                                         (4.28) 

50 = 0.4135*0.96839 (Tbot – 266.50) / (0.2*0.0254)                                                (4.29) 

Tbot = 183.68 + 0.63425 =267.13°K                                                                           (4.30) 

 

Conduction in the core (Through the thickness) 

 

Qconduction = 50Watts 

Qconduction = Kcore *A (Tcore – Tbot) / tc                                                                                                                (4.31) 

50 =135*0.96839 (Tcore – 267.13) / (0.3*0.0254)                                                       (4.32) 

Tcore = 267.13+0.0025 = 267.13°K                                                                            (4.33) 

 

The above calculation is based on the assumption that the panel is radiating on both the 

sides of the composite panel. Therefore preliminary calculations can be made for the 

panel with one side radiation. This calculation yields a reasonable good estimate of the 

temperature at the surface that is radiating.  

 

If only one side of the panel is radiating, then a reasonable approximation for a steady 

state heat transfer analysis would be to radiate the 100 watts of heat to the space instead 

of 50 watts. This calculation is shown below. Considering again the radiation part alone, 

 

Qradiation = ε *A* σ *(T4
surf –T4

ambient)                                                                       (4.34) 
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So here Qradiation = 100 Watts 

Tsurf = [(Qradiation / (ε *A*σ)) + (Tambient) 4] ¼                                                               (4.35) 

Tsurf = [100/ (0.8*0.96839*5.67E-8) + 2504 ] ¼                                                           (4.36) 

Tsurf = 280.41°K                                                                                                      (4.37) 

 

The surface temperature calculated with above assumptions has good agreement with the 

surface temperature from Nastran after the steady state heat transfer analysis. The one 

dimensional steady state heat transfer calculation not only provides the temperature 

distribution in the panel but also proves the fact that through the thickness variation is 

very much dependent on the thermal conductivity of the material. The above calculation 

provides us an interesting fact that there is no difference in temperature between the Tbot 

and Tcore. Tbot is the surface temperature at the core and Tcore is the mid-plane temperature 

of the core.  

 

4.6.5 Thermal Stresses [6] 

 

An estimate of thermal stresses is made by approximating the sandwich panel to be a 

beam. For a beam that is made of single ply isotropic material or a unidirectional 

composite material, the equation 4.38 gives the total stress that includes both mechanical 

and thermal loads. 

 

( ) TEMM
I
ZPP

A
TT

x ∆−+++= ασ )(1                                                                 (4.38) 

Where 
 
P = Mechanical Load and  

M = External Moment applied. 

PT = Thermal load. 

MT= moments induced due to thermal loads. 
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Z = Section Modulus 

I = Moment of Inertia. 

 

Now consider the sandwich panel rigidly fixed on all the sides, i.e. the panel cannot 

expand on heating. Since the displacement is zero, the strain is also zero. 

 

00 ==
dx
du

xε                                                                                                                (4.39) 

 

The governing differential equation  

 

dx
du

EAPP T 0=+   yields                                                                                            (4.40) 

 

P = -PT                                                                                                                         (4.41) 

 

Assuming there is no beam bending Mb= 0 and because of uniform heating MT= 0, the 

stress equation 4.38 becomes 

 

TEx ∆−= ασ                                                                                                               (4.42) 
 
 
In general, the thermal analysis of any structure is very involved due to the 

complications in calculating the thermal strains, the non-homogeneous boundary 

conditions and anisotropic material behavior of the structure. Therefore the 

generalization that there will be no thermal stresses if the structure is free to expand and 

if the structure is held rigidly, thermal stress from equation 4.42 can always be made. 

Considering the Poisson ratio effects, the worst case stress is )1( 2νασ −∆−= TEx . As 

a preliminary design and to find out if thermal stresses affect the stability of the 

structure, this calculation for the largest value of E and highest value of ∆T will provide 
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the maximum value of thermal stress that the structure can withstand. The reference 

temperature is assumed to be 2940K. The temperature difference (∆T) is obtained from 

steady state temperature discussed in section 4.6.4. The unit of temperature in equation 

4.44 is rankine. 

 

Case 1: When both the face sheets are exposed to radiation 

 

Thermal Stress (σ) in the core is given by the equation 4.44. 

 

(σ) Core max = - ((E Core) * (α) Core * (∆T) max / (1- ν2)                                                 (4.43) 

 

                  = - (5801.6 * 1.11e-06 * (480.8 – 529.2) / (1 – 0.42)                                    

              

                  = 0.37 Psi 

 

Case 2: When one of the face sheets is exposed to radiation 

 

Thermal Stresses (σ) in the core is given by the following formula 

 

(σ) Core max = - ((E Core) * (α) Core * (∆T) max / (1- ν2) 

 

                  = - (5801.6 * 1.11e-06 * (504.7– 529.2) / (1 – 0.42) 

 

                  = 0.19 Psi 

 

To evaluate the thermal stresses in the face sheets, the panel is analyzed in a commercial 

code Laminator, a product based on Classical laminate plate theory. The results of the 

code Laminator and their stress comparisons with Nastran are discussed in the final 

chapter Numerical Results and Discussion 
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4.6.6 Transient Heat Transfer Problem 

 
In the steady state heat transfer analysis, there was no time dependency factor involved 

in solving the equations. The most general form of steady state heat balance is given by 

equation 4.44. 

 

[ ]{ } [ ]{ } { } {NPTuRuK abs +=++ 4 }

}

                                                                              (4.44) 

 

This equation is inherently non-linear due to the presence of the radiation term or 

temperature dependent properties and boundary conditions. MSC Nastran for Windows 

performs simulation of linear, non-linear, steady state and transient thermal systems with 

relative ease due to its adaptive solution strategy. This equation pertains to non-linear 

steady state heat balance equation, as it does not involve time factor. In order to predict 

the time effect on the performance of the radiator panel, transient heat transfer analysis is 

performed on this problem. This analysis will provide us an estimate for the time taken 

for the radiator panel to attain steady state, that is, after which whatever heat is supplied 

in is dissipated to the surrounding space. This necessitates knowing the general form of 

non-linear transient heat balance given by the equation 4.45 

 

[ ] [ ]{ } [ ]{ } { } {NPTuRuKB abs
u +=+++⎭
⎬
⎫

⎩
⎨
⎧ •

4                                                                  (4.45) 

 

Where, 

[K]- Heat Conduction Matrix 

[R]- Radiation Exchange Matrix 

{u}- Vector of unknown temperatures 

Tabs- Temperature offset from absolute, used in radiation 

{P} – Vector of constant applied heat flows 

{N} – Vector of temperature dependent heat flows 

[B] – Heat capacity matrix 



 71
 
 

{ }- du/dt •
u

 

This equation, due to its transient behavior, must be integrated with time. The time 

integration is performed using the Newmark’s numerical method. Non-linear iterations 

are also required for the solution of this equation.  

 

Analysis condition in Nastran 

 

Transient analysis requires certain conditions to be input before the run time. The total 

solution time needs to be specified by the user. The user provides the initial time step 

and the total number of time steps and Nastran calculates the total solution time. The 

actual time step used by Nastran may be different than that of the user as it employs 

adaptive solution strategy. To avoid errors in convergence or inaccurate results, correct 

estimate of the time step is required.  

 

The Nastran form with the analysis conditions pertaining to transient analysis of radiator 

panel is shown in Figure 4.14. 

 

 
Figure 4.14. Transient analysis form in MSC Nastran. 
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To verify the results of transient analysis from Nastran, an analytical model is built in 

Maple 8.0 [28]. To simplify the calculation, only core is considered for the transient 

analysis. The core materials are Poco foam and aluminum honeycomb. A plot has been 

generated between surface temperature and time. As this involves the assumption of 

using core alone, the surface temperature from the analytical model can be compared 

with the results from Nastran. 

 

4.6.7 Orbit Analysis of Radiator Panel in Space 

Orbits: 

 

Low Earth Orbit (LEO) 

This orbit has maximum altitude <1852 Km 

 

Geosynchronous orbit (GEO) 

 

This orbit has very low inclination and altitude of 36000 km. The period matches the 

rotation of the earth and therefore the space object appears to be at the same spot from 

the earth. 

 

Middle Earth Orbit (MEO) 

 

It has an altitude less than GEO and greater than that of the LEO. 

 

Molniya 

 

This orbit is highly inclined and elliptical. 

 

Out of the above-mentioned four orbits, LEO and GEO are considered to be important. 

The radiator panel apart from dissipating the heat from the electronics receives various 

heat loads from the environment. They are categorized as following. 
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a) Solar:  This refers to heat flux received from the sun. This is given by 

A*α*(Solar constant) 

b) Albedo: It is the percentage of heat flux that is reflected back to space 

from the earth and it is dependent on the altitude. It is given by 

A*α*(Albedo) 

c) Earth’s IR: This heat load is emitted by the earth with much higher 

wavelength and cannot be avoided by thermal coatings since the same 

coating would prevent the radiation of heat loads from the electronics. 

Therefore this heat load can create a heavy back load on radiators. This is 

given by 

A*ε*(IR) 

 

Total heat load in LEO = A*α*(Solar constant) + A*α*(Albedo) + A*ε*(IR)    (4.46) 

Total heat load in GEO = A*α*(Solar constant)                                                    (4.47) 

 

The equations 4.46 and 4.47 give an idea on the parameters to be taken care in choosing 

the orbit. It is of interest to investigate the behavior of the core material to the incident of 

heat loads from the sun. A simple flat plate representing the radiator panel is built in 

Thermal desktop version 4.5 [31]. The panel follows the LEO. The analysis in general 

compares the performance of Poco foam and Aluminum honeycomb material, as they 

are considered to be potential choices of the core material. It is to be noted that 

aluminum honeycomb material has the same specific heat capacity as that of aluminum. 

The following assumptions are made to carry out the analysis.  

 

• The radiator panel mass is assumed to be 25 Kg. 

• Specific heat capacity Cp of Aluminum = 900 J/kg-K 

• Specific heat capacity Cp of Poco foam = 700 J/kg-K 

• Density of Aluminum = 2770 Kg/m3 

• Density of Poco foam =550 Kg/m3 
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From the analysis the maximum temperature experienced by the two materials due to the 

environment loads are predicted. This prediction is a good measure of the efficiency of 

the core material to draw the heat from the electronics box assembly. 
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CHAPTER V 

NUMERICAL RESULTS AND CONCLUSIONS 

 

5.1 Finite Element Modal Results of Plates and Sandwich Composites 

 

In the previous chapters, a baseline radiator panel design, where finite element models 

were setup through material, element selection and application of boundary conditions to 

parametrically study the free vibration and thermal response of the sandwich panel, is 

proposed and discussed. Therefore it is indeed important to discuss and interpret the 

finite element analysis results of the radiator panel that is implemented in critical areas 

of spacecraft. It is also essential to evaluate the heat transfer capabilities of the core of 

the radiator panel. The selection of the core material, as discussed, is an important factor 

in the thermal aspect of the radiator. This is well established in the finite element 

analysis results of the sandwich radiator panel with different types of core. Apart from 

the existing setup for thermal model, a distinct approach is proposed to clearly identify 

the efficiency of the radiator and to select the material of the core. As the design and 

optimization of the sandwich panel proceed sequentially, at first the free vibration results 

of the panel are presented. Then based on the fundamental frequency results, 

optimization of the parameters such as thickness, lay-up and orientation is performed 

and then with the optimized model the static, dynamic and thermal analysis results of the 

radiator panel are presented. In section 4.3, a parametric study on the free vibrations of 

isotropic, orthotropic plates and sandwich configurations is discussed. In that section it is 

assumed to have pinned edges for the sandwich panel. This assumption is only for 

validation purposes and does not represent the true conditions of the radiator panel. The 

closed form solution is presented in section 4.3 using Maple version 8.0 [28] along with 

graphical representation of the variation of the fundamental frequency with parameters 

of sandwiches. It is necessary to compare the numerical values from closed form 

solution with MSC Nastran results. In the Figures 5.1-5.3, the mode shapes of the plates 
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and sandwiches that are considered for parametric study are presented here. A 

comparison of two solution forms is also presented in Table 5.1. 

 

Mode shapes of plates and sandwiches 

 

           

Figure 5.1. Isotropic plate.                                    Figure 5.2. Specially orthotropic                         

laminate [0/90/90/0].  

   

 

Figure 5.3.  Sandwich plate [0/90/core/90/0]. 
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Table 5.1 

Modal comparison between MSC Nastran and analytical solution. 

 

Plate 

Configuration 
Material 

Boundary 

condition 

Thickness of 

the plate 

(Inches) 

CLPT 

Equation 

MSC 
Nastran 

 
% 

Error 

Isotropic Plate 
Aluminum  

2024 – T3 

All edges 

pinned 
0.51 65.655 65.241 <1 

Specially 

Orthotropic 

Plate 

[0/90/90/0] 

T300/5208  

carbon epoxy 

All edges 

pinned 
0.51 54.645 54.539 <1 

Face 

 sheet 
Core 

Face 

sheet 
Core 

Sandwich Plate 

[0/90/core/90/0] 
T300/520

8 carbon 

epoxy 

Foam 

core 

All edges 

pinned 
0.005 0.5 

161.379 163.064 <2 

 

5.2 Free Vibration Results of Sandwich Radiator Panel 

 

It is clear from the Table 5.1 that MSC Nastran predictions are in good agreement with 

the closed form solution for the given material properties, boundary conditions and all 

the parameters such as thickness of the face sheets and core considered. The table also 

suggests that [0/90/core/90/0] lay-up is considered to provide sufficient stiffness to the 

panel. Even though the face sheets are of carbon/epoxy and core is of foam type, the 

elastic and thermal properties need to be updated for the three dimensional analysis. 

Unlike the parametric study, the three dimensional model has a cut out in the middle and 

has an antenna mass in it. This demands an increase in the thickness of the face sheets 

and therefore with the updated properties of T300/5208 carbon epoxy face sheets and 

core materials of Poco foam and aluminum honeycomb, the following lay-up and 

thicknesses are considered for further analysis. 
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Lay-up considered – [0/90/core/90/0] 

Thickness of each face sheet – 0.1 inch 

Thickness of the core – 0.6 inch 

Material of the face sheet – T300/5208 carbon epoxy 

Material of the core – Poco foam, Poco foam HTC and Aluminum honeycomb 

 

Table 5.2 

Modal results of sandwich panel with different types of core. 

 

 Units 
Aluminum 

Honeycomb 

POCO 

Foam 

POCO 

Foam 

HTC 

Properties Young's  
Modulus (E) E11 PSI 3.77E+04 5.80E+04 5.80E+04 

  E22  4.52E+04 5.80E+04 5.80E+04 
  E33  2.01E+05 5.80E+04 5.80E+04 
       

 Shear  
Modulus (G) G12 PSI 15000 20720 20720 

  G23  58000 20720 20720 
  G13  15000 20720 20720 

 Poisson's  
Ratio (ν) ν12  0.33 0.4 0.4 

       
 a11, a22 in/in-R 1.32E-05 3.40E-07 5.70E-07 
 

Expansion 
Coefficient (a) a33  1.32E-05 -3.90E-07 -5.90E-07 

 K11 Btu/in-sec-R 2.47E-05 0.0006 0.00094 

 

Thermal 
Conductivity 

(K) K22  1.65E-05 0.0006 0.00094 

  K33  4.39E-05 0.0018 0.0033 

 (Cp) Btu/lb-R 0.2151 0.17 0.17 

 

Specific 
Heat Capacity 

(Cp)  J/g-K 0.9 0.7 0.7 
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Table 5.2 Continued 

       
 Density (p) ρ lb-sec2/inch4 3.45E-06 5.10E-05 8.42E-05 

      MODAL 
ANALYSIS Mode 1  Hz 220 173.96 164.17 

       
 Mode 2  Hz 414 341.83 310.11 
       
 Mode 3  Hz 532 400.78 363.61 

Weight of radiator panel  Kg 16.881 24.37 29.62 

 

It is evident from Table 5.2 that aluminum honeycomb due to it high stiffness, has the 

highest fundamental frequency compared to Poco foam cores. Also the weight of the 

panel suggests that aluminum core sandwich panel weighs much less than Poco foam 

core panel. At this stage, it is difficult to suggest the material of the core since the 

radiator panel needs to be analyzed for its thermal loads. But the above results show the 

need for optimization of the parameters of the sandwich, as excess stiffness is associated 

with it. 

 

5.2.1 Structural Optimization and Vibration Results of Radiator Panel 

 

As found in the Table 5.2, the panel with the above mentioned lay-up and thickness has 

excess rigidity associated with it meaning higher fundamental frequency. Since the 

requirement suggests that fundamental frequency of the radiator panel be above 100 Hz, 

it is necessary to select the proper orientation and thickness of the components of the 

sandwich to be just able to meet the fundamental frequency requirement. But the lay-ups 

mentioned in the previous section provide fundamental frequency that is much greater 

than 100 Hz and therefore the need for optimization. In this section, the structural 

optimization is discussed and the optimized panel meeting the structural requirements is 

presented. The radiator panel with different combination of lay-up and orientation is 

analyzed in MSC Nastran and the modal results are presented as follows. This is shown 

in Table 5.3. 



 80
 
 

Table 5.3 

Fundamental frequencies of cross-ply lay-ups for radiator panel. 

 

Lay-up Classification 
Fundamental mode 

(MSC Nastran) 

0/0/core/0/0 Symmetric laminate 147.47 Hz 

0/90/core/90/0 
Symmetric Cross ply 

laminate 
173.96 Hz 

90/0/core/0/90 
Symmetric Cross ply 

laminate 
188.07 Hz 

90/90/core/90/90 Symmetric Laminate 180.05 Hz 

0/90/core/0/90 
Anti symmetric cross ply 

laminate 
180.37 Hz 

90/0/core/90/0 
Anti symmetric cross ply 

laminate 
180.38 Hz 

 

 

This panel in Table 5.3 utilizes Poco foam properties for the core of the radiator panel. 

Even though [90/0/core/0/90] provides higher stiffness, it is not phenomenal. Further the 

optimization is pursued by changing the stacking sequence of the face sheets.  

 

Thickness of the face sheet - 0.01 inch (reduced by order of 10) 

Thickness of the core – 0.6 inch 

Material of core – Poco foam 

Material of face sheet – T300/5208 carbon epoxy 

 

The following lay-ups are shown in Table 5.4. 
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Table 5.4 

Fundamental frequencies of angle ply lay-ups for radiator panel. 

 

Lay-up Fundamental frequency 

0/90/core/90/0 111 Hz 

15/-15/core/-15/15 109 Hz 

45/-45/core/-45/45 104 Hz 

60/-60/core/-60/60 108 Hz 

75/-75/core/-75/75 112 Hz 

90/90/core/90/90 117 Hz 

90/0/core/0/90 114 Hz 

 

Thus the optimum stacking sequence from the Table 5.4 is cross-ply with the same 

number of 0o and 90o plies. Incidentally it is also proven that an angle ply laminate is 

never better than a cross –ply or unidirectional laminate in the aspect of increasing the 

stiffness [31]. Based on the results, it can be stated that changing the orientation does not 

give a good chance or reducing the weight of the panel.  The increase in the fundamental 

frequency due to the change in orientation of the fibers is not substantial. (< 10 Hz). 

Therefore the optimized lay-up for the composite face sheets is remained as 

0/90/core/90/0. This configuration provides fundamental frequency greater than 100 Hz.  

 

After determining the optimized stacking sequence for the face sheets of the radiator 

panel, it is necessary to find out the optimized thickness. The following lay-up with Poco 

foam is considered for the analysis. The lay-up represents the thickness of 

0/90/core/90/0. All units are in inches. 

 

• 0.01/0.01/1.0/0.01/0.01  
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The fundamental frequency is found to be 116 Hz. The weight of the panel is 15 Kg. 

This lay-up is assumed to be the optimized for Poco foam core until further analysis. 

Knowing the fact that the density of the aluminum honeycomb is much less compared to 

Poco foam, the weight of the optimized panel with aluminum honeycomb core is 

expected to be very low. Now with aluminum honeycomb core, the following 

configuration is considered for the analysis. 

 

• .01 / 0.01 / 1.0 / 0.01 / 0.01  

 

The fundamental frequency is found to be 148 Hz.  This shows that there is much scope 

for optimization to provide the best lay-up. Now the following lay-up is considered. 

 

• 0.01 / 0.01 / 0.6 / 0.01 / 0.01  

 

The fundamental frequency for this lay-up is very close to 100 Hz. Therefore proceeding 

with a higher thickness, consider 

 

• 0.01 / 0.01 / 0.7 / 0.01 / 0.01  

 

The fundamental frequency is found to be 116 Hz. It is very close to the optimized panel 

with aluminum honeycomb as core of the sandwich. The weight of the panel is found to 

be 2.27 Kilograms. Now the optimized panels for Poco foam and aluminum honeycomb 

are compared. It is clear that the thickness of the core with Poco foam should be less 

than the thickness of the core with aluminum honeycomb to have an optimized model. 

Hence 

• 0.02 / 0.02 / 0.5 / 0.02 / 0.02  

 

lay-up is considered. The fundamental frequency is 91 Hz.  To make it above 100 Hz, 
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• 0.02 / 0.02 / 0.6 / 0.02 / 0.02 

 

lay-up is considered. The fundamental frequency is 111 Hz and the weight of the panel 

is 11.30 Kilograms. As Poco foam HTC is denser than Poco foam, the fundamental 

frequency of the same panel with foam HTC will be lesser than the one with Poco foam 

but still meeting the requirement of 100 Hz.  

 

Table 5.5 

Fundamental frequencies of the optimized radiator sandwich panel. 

 

Lay-up 

Thickness 

of the face 

sheets and 

core 

Core 

Material 

Boundary 

Conditions

Fundamental 

frequency 

(Hz) 

Weight of 

the 

sandwich 

panel 

(Kg) 

[0/90/core/90/0] 

[0.01 / 0.01 

/ 0.7 / 0.01 

/ 0.01] 

Aluminum 

Honeycomb

All sides 

fixed 
116 2.27 

[0/90/core/90/0] 

[0.02 / 0.02 

/ 0.6 / 0.02 

/ 0.02] 

 

Poco foam 
All sides 

fixed 
111 11.30 

[0/90/core/90/0] 

[0.02 / 0.02 

/ 0.6 / 0.02 

/ 0.02] 

 

Poco foam 

HTC 

All sides 

fixed 
104 16.55 
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The modal results for optimized panels with different cores are presented in Table 5.5. 

The mode shapes of the above-determined optimized panels are presented in the 

following section. 

 

5.2.2 Free Vibration Mode Shapes 

 

 

Figure 5.4. Fundamental mode shape of the Poco foam sandwich radiator panel. 

 
 As the mode shapes of the radiator panel with cores of Poco HTC and aluminum 

honeycomb take the same profile as of Figure 5.4, it is not presented here. It should be 

noted that the fundamental frequency for the panel varies with the stiffnesses of the core. 

Aluminum honeycomb has higher elastic properties compared to Poco foam and Poco 

foam HTC and therefore it is reflected in a high fundamental frequency of the panel. As 

the density of the aluminum honeycomb is lesser than Poco foam, the panel is expected 

to have very low weight among the three cores. The Table 5.5 suggests that aluminum 

honeycomb core panel provides the best configuration with least weight among the 

cores. But it is of interest to know that if the panel with aluminum honeycomb core will 

be able meet the thermal requirements since Poco products possess high thermal 
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conductivity. This summarizes the vibration results of the panel with different types of 

cores. With the results, it is understood that Poco products do not perform better than 

aluminum honeycomb. 

 

5.3 Static and Dynamic Analysis of Sandwich Radiator Panel 

  
The selected radiator panels have satisfied the requirements for fundamental frequency 

and therefore it is now necessary for the panel to withstand the stresses due to static and 

dynamic gravitational loads experienced during launch and descent of the spacecraft. 

The source and the calculation of dynamic loads are discussed in detail in the section 

4.5.3. As the dynamic loads exceed the static load of 10G, it is more reasonable to 

predict the stress and deformation characteristics of the radiator panel for dynamic loads. 

The dynamic loads are calculated based on the fundamental frequency of the panel. The 

random vibration loads for the sandwich panel with three types of cores on all the co-

ordinate directions can be found in Tables 5.6, 5.7 and 5.8. 

 

5.3.1 Dynamic Load Sets  

 

These dynamic loads are different for each panel as they depend on the fundamental 

frequency and they are higher for stiffer panel. These are provided as static body loads to 

the panel in inch/sec2 in accordance with the units in MSC Nastran. 

 

Table 5.6 

Dynamic loads for sandwich panel with Poco foam as core. 

 
Load Sets (g’s) X Axis Y Axis Z Axis 

Set 1  32.95 5.90 6.30 

Set 2 7.90 30.95 6.30 

Set 3 7.90 5.90 31.35 
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Table 5.6 Continued 

 Load Sets (in/sec2) X Axis Y Axis Z Axis 

Set 1  12733.33 2279.76 2434.32 

Set 2 3052.56 11960.53 2434.32 

Set 3 3052.56 2279.76 12115.09 

 

Table 5.7 

Dynamic loads for sandwich panel with Poco foam HTC as core. 

Load Sets (g’s) X Axis Y Axis Z Axis 

Set 1  32.15 5.90 6.30 

Set 2 7.90 30.15 6.30 

Set 3 7.90 5.90 30.55 

Load Sets (in/sec2) X Axis Y Axis Z Axis 

Set 1  12423.11 2279.76 2434.32 

Set 2 3052.56 11650.31 2434.32 

Set 3 3052.56 2279.76 11804.87 

 

Table 5.8 

Dynamic loads for sandwich panel with aluminum honeycomb as core. 

Load Sets (g’s) X Axis Y Axis Z Axis 

Set 1  33.62 5.90 6.30 

Set 2 7.90 31.62 6.30 

Set 3 7.90 5.90 32.02 

Load Sets (in/sec2) X Axis Y Axis Z Axis 

Set 1  12991.53 2279.76 2434.32 

Set 2 3052.56 12218.73 2434.32 

Set 3 3052.56 2279.76 12373.29 
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The dynamic loads are in sets of three and it is realized that third load case that has 

higher load in the Z-axis can cause higher stresses on the panel. Therefore the stress 

characteristics of the third load set are shown in the Figures 5.5, 5.6, 5.7 and 5.8. The 

individual face sheet and core stress distribution are also shown. The stresses are then 

compared to their material ultimate strength for failure and results are tabulated. 

 

5.3.2 Stress Distribution  

 

 

Figure 5.5.  VonMises stress distribution of face sheet [0] for launch load set 3. 

Inset Element stress located close to cutout and away from the cutout 
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Figure 5.6. VonMises stress distribution of face sheet [90] for launch load set 3. 

Inset Element stress located close to cutout and away from the cutout 

 
 

 

Figure 5.7. VonMises stress distribution of Poco foam core for launch load set 3. 

Inset Element stress located close to cutout and away from the cutout 
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Figure 5.8. VonMises stress distribution of honeycomb core for launch load set 3. 

Inset Element stress located close to cutout and away from the cutout 

 

Table 5.9 

Stress distribution summary. 

Face sheets 

(T300/5208 

carbon epoxy) 

Cores 
Dynamic 

Load Set 3 

(VonMises 

Stresses) 
[0] 

(PSI) 

[90] 

(PSI) 

Poco 

foam 

(PSI) 

Poco 

foam 

HTC 

(PSI) 

Aluminum honeycomb 

(PSI) 

Range 
(500-

4000) 

(500-

7000) 
(10-50) (10-50) (10-50) 

Element 

Maximum 
5231 9036 63 66 78 

Compressive 

strength [32] 195 
Material 

Allowable 
218000 [22] 435 [3] 855 [3] 

Shear Strength 

[32] 
139 
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The stress distribution summary Table 5.9 indicates that the stresses in the face sheets 

and the core are well within the limits.  Therefore it can be stated that the stresses due to 

static and dynamic loads will not cause failure to the sandwich radiator panel. 

 

5.4 Heat Transfer Analysis of Radiator Panel 

 

The foremost and important function of this radiator sandwich panel is to dissipate the 

100 W/m2 of heat flux that is generated in the electronics box of the given payload. The 

method of loading along with environment and edge conditions are discussed in the 

section 4.6. The section 4.6.4 predicts one-dimensional steady state temperature and 

stress field and provides approximate numerical results. Now, it is of interest to 

determine the temperature distribution due to thermal loads supplied to the panel and 

compare the results with analytical predictions. The panel is first analyzed for steady 

state heat transfer to predict the temperature response of the radiator panel. The radiator 

panel with only one side exposed to radiation experiences temperature gradient all along 

the panel. The temperature gradient coupled with difference in thermal expansion 

coefficients between the core and face sheets generate thermal stresses due to boundary 

constraints. The temperature field existing in the face sheets and core is presented in the 

Figures 5.9, 5.10 and 5.11. 

 

When looking at temperature field, it is readily identified that the face sheets 0 and 90 

that are not exposed to radiation, are at higher temperatures than those that are exposed. 

It is also noted that the core, which receives the heat flux is also at higher temperature 

when compared to the face sheets. As the face sheets are order of 0.01 inch, temperature 

difference does not exist between the face sheets. This is also proved by a simple one-

dimensional temperature predictions presented in the section 4.6.4. It should be noted 

that temperature at the surface of the face sheet from one-dimensional calculation is in 

good agreement with the results from MSC Nastran. It is to be mentioned that 

temperatures at the elements around the free edges are predicted high compared to the 
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elements bounded. The temperatures that are presented here represent the elements, 

which are not affected by the cut out and free edges. The temperature distribution for the 

face sheets and Poco foam core only are presented and the rest of the temperatures 

tabulated.  

 

5.4.1 Temperature Distribution 

 

 

Figure 5.9. Temperature distribution of Poco foam core. (281.50K) 

 

 

Figure 5.10. Temperature distribution of face sheet [0] exposed to radiation. (281.30K) 
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The Figures 5.9 and 5.10 indicate that the temperature difference between the upper 

most face sheets and the core is negligible. The results of the panel with Poco foam HTC 

core are similar to the panel with Poco foam core. Therefore the results are not 

presented. The temperature distribution of aluminum honeycomb core is shown in the 

Figure 5.11. 

 

 

Figure 5.11. Temperature distribution of aluminum honeycomb core. (281.60K) 

 

The results of steady state heat transfer analysis predicting the temperature distribution 

in the panel due to heat loads of 100 W/m2 is tabulated. As proved in the one-

dimensional calculation, the Table 5.10 reflects the temperatures of the face sheets and 

the core with little difference in the temperature field through the thickness. 
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Table 5.10 

Steady state temperature distribution in the radiator panel. 

Temperature 

in Kelvin 

Face sheet 

[0] 

Exposed to 

Radiation 

Face sheet 

[0] not 

exposed to 

radiation 

Poco Foam 

and HTC 

core 

Aluminum 

Honeycomb 

core 

Range (277.8-283.3) (280.6-284.4) (281.2-281.9) (280.7-285) 

Element 

away from 

edge/cutout 

281.4 281.7 281.6 281 

Minimum 250 280 280.3 281.1 

Maximum 284.4 286.1 282 286.1 

 

5.4.2 Thermal Stress Distribution 

 

The temperature gradient existing in the panel coupled with difference in thermal 

expansion coefficients between the face sheets and core cause thermal stresses in the 

panel. These are summarized in the following Table 5.11. They are found to be well 

within the material allowable that are presented in Table 5.9.  
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Table 5.11 

Thermal stress field in the radiator panel. 

Stress in PSI 

 

Face sheet 

[0] 

 

Face sheet 

[90]  

Poco Foam 

and HTC 

core 

Aluminum 

Honeycomb 

core 

Range (700-1000) (700-1000) (1.3-5) 50-120 

Element 

away from 

edge/ cutout 

942 943 3 60 

Minimum 490 490 1.3 40 

Maximum 1600 1600 5 160 

 

 

The stress predictions of MSC Nastran are verified using a composite laminate software 

Laminator [30] which is a two-dimensional Classical Laminate Plate Theory 

formulation. The maximum temperature gradient found from MSC Nastran is used as 

thermal load input to the laminator and the corresponding stresses are compared. Care is 

taken in using the same set of boundary conditions in both the analytical tools to 

compare the numbers. The stress comparisons are shown in the Table 5.12. The table 

indicates a very good agreement of Nastran values with Laminator. This comparison is 

just to validate the results from MSC Nastran. 
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Table 5.12 

Thermal stress comparison with laminator.  

Analysis Tool Components 
X Normal 

Stress 

Y Normal 

Stress 

Laminator Face sheet [0] 1988 -1988 

 Face sheet [90] -1988 1988 

 
Poco foam 

core 
0.03 0.03 

MSC Nastran Face sheet [0] 1813 -1881 

 Face sheet [90] -1934 1857 

 
Poco foam 

core 
0.05 0.02 

 
 

5.4.3 Transient Heat Transfer Analysis 

 

Significant conclusions cannot be made from the steady state heat transfer analysis in 

regard to the performance of the radiator panel. Although the thermal conductivity of the 

Poco products are higher than aluminum honeycomb, the performance is not realized in 

the aspect of temperature field, as the thickness of the panel or the core is small. As 

discussed in the steady state heat transfer section 4.6.4, and presented in the temperature 

distribution summary Table 5.10, it is difficult to choose the most suitable core among 

Poco products and aluminum honeycomb. This is because the temperature field is more 

or less uniform in all the type of cores. Therefore it is essential to conduct a transient 

heat transfer analysis on the radiator panel to determine the performance of the cores. As 

discussed in the transient heat transfer section, it is to be mentioned that transient 

analysis depends on the material properties such as density and specific heat capacity of 

the components of radiator. It is known that there is a significant advantage for 

aluminum honeycomb in terms of density and specific heat capacity. A graph is 
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presented based on the transient analysis results from MSC Nastran. This is shown in 

Figure 5.12. This plot does not involve Poco foam HTC as the specific heat capacity is 

assumed to be same as Poco foam and not much difference exists in density. But 

parental aluminum material is included just to provide a reference of the behavior of the 

materials to thermal loads. 

 

Transient Heat Transfer Analysis
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Figure 5.12. Transient temperature plot of a node in core for non-optimized panel from 
MSC Nastran.  

 

The temperature in the Figure 5.12 is in Kelvin. The steady state temperature for all the 

three cores lies in the range (282.5-282.70K).  This temperature matches well with the 

steady state temperature output from MSC Nastran. It also indicates that steady state 

temperature is more or less the same for all the radiator panels with different core 

materials. But the time it takes to reach the steady state temperature varies based on the 
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specific heat and density of the material. Although aluminum and aluminum honeycomb 

have the same specific heat capacity, it differs significantly with density. This can be 

said that the aluminum panel will take more time to attain steady state. If the Poco foam 

and aluminum honeycomb curves are considered, it can be noticed that aluminum 

honeycomb attains stability faster than Poco foam.  This can be seen in the following 

calculation. The time taken to attain steady state for a transient heat transfer problem 

involving radiation is determined by the equation 5.1. 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= θ

Q
Ah

Ah
Cm

t i

i

p 1ln                                                                                                (5.1) 

 

The product of mass and specific heat capacity is an important factor to determine the 

time taken to reach steady state. This along with the total time taken is  in the Table 5.13. 

 

Table 5.13 

Transient analysis data for different core materials. 

 
Transient Analysis 

Parameters 
Poco foam 

Aluminum 

Honeycomb 

m*Cp  (J/0K) 17059 15548 

Total time (seconds) 60042 50037 

 

This analysis from MSC Nastran is verified by developing a simple mathematical model 

for transient heat transfer problem involving radiation using Maple software version 8.0 

[30]. In this model for calculation purposes, it is assumed that there are no face sheets in 

the radiator panel. This is a valid assumption because it is already proved in section 

4.6.4.1 that face sheets do not contribute much towards heat transfer. The material 

properties for the Poco foam and aluminum honeycomb are the same used before. The 
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temperature-time plot, which is shown in the Figure 5.13, has more meaning as it vividly 

shows a distinction between poco foam and aluminum honeycomb core. This distinction 

does not exist in the Figure 5.12 because the face sheets are not optimized and therefore 

the time taken to attain steady state is comparatively higher than shown in Figure 5.13. 

Although the plot from the Maple in Figure 5.13 does not involve the face sheets, it can 

be related to that of the plot from MSC Nastran, as the face sheets in the optimized panel 

are very thin and do not contribute much to the weight. 

 

 

Figure 5.13. Transient temperature plot of core for optimized panel. (assuming no face 

sheets) 

The temperature field in both cores is within the material limits. Therefore both core 

materials can be a good choice for the core of radiator panel. But it should also be 

noticed from the Figures 5.12 and 5.13 that at any given point of time before attaining 

steady state aluminum honeycomb experiences higher temperature than Poco foam.  

 

5.4.4 Orbit Analysis Results 

 

On orbit analysis of the radiator panel is of interest, as the heat received from the sun 

through radiation cannot be ignored. This analysis is done using Thermal desktop [31]. 
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The parameters and the assumptions of this model are discussed in the section 4.6.7. 

This study is performed for poco foam and aluminum. It is shown that for a given 

surface area and mass, poco foam reaches slightly higher temperature than aluminum. It 

should be noted that this analysis does not include the heat load of 100 W/m2
 from the 

electronics box. The heat loads for this model are obtained from the sun. The 

temperature-time plot for the two core materials can be found in the Appendix 2. The 

Table 5.14 summarizes the results of this analysis. 

 

Table 5.14 

Orbit analysis temperature at the core.  

Temperature in Kelvin Poco foam Aluminum 

Maximum Temperature 

(When facing the sun) 
322 315 

Minimum Temperature 

(When not facing the 

sun) 

264 270 

 

The temperatures in the table suggest that not much difference exists between the core 

materials when facing the sun. But it can be noted based on the surface temperatures, 

that aluminum honeycomb material can draw more heat from the electronics box 

assembly. Overall, heat transfer analysis of the radiator panel explores the suitability of 

the Poco foam and aluminum honeycomb. Based on the results of steady state analysis, 

it can be only stated that both the core materials satisfy the requirements. But from the 

transient graphs a clear understanding can be made on the heat extracting abilities of 

core materials from electronics box assembly. Still it is found difficult to choose the best 

material for the core because of the fact that the analysis does not reveal the temperature 

profile of the electronics box.  As, much focus is on the rapid removal of heat from the 

electronics box, the analysis can be concluded with the following distinct approach. 
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5.4.5 Electronics Box Approach 

 

A comprehensive heat transfer analysis including steady state, transient and on-orbit 

analysis has been formulated and their results presented. It is to be noted that 

temperature profile predicted so far is on the radiator side and it is essential to predict the 

temperature profile of the electronics box after the heat removal. In the heat transfer 

analysis it is assumed that heat load is applied at the mid-plane of the core and it is 

dissipated to the surroundings. But in the actual scenario, the heat from the electronics 

box is carried by a coolant to one edge of the panel and is assumed to pass through tubes 

existing at the core of the radiator panel. After passing the heat to the core, the coolant is 

re-circulated to the electronics box for the next cycle. Because of the pipes in the core, 

there needs to be a temperature gradient along the length of the core. It is well known in 

such cases that one edge of the core that receives the heat will be at a higher temperature 

than the other edge. Therefore it is reasonable to make the assumption of adding the heat 

flux load of 100 W/m2 at one edge of the core and exposing one of the face sheets to 

radiation. This approach does not add heat load at one edge but instead attaches the 

electronics box on one side of the core and heat energy of 100 W is allowed to generate 

in the electronics box. By this approach the core is needed to extract the heat from the 

electronics box and dissipate to the surroundings. With this approach it is of interest to 

know which of the core materials is able to extract more heat from the electronics box 

and be able to radiate to the surroundings. The temperature profile at the electronics box 

is plotted against time to find out the steady state temperature and the time required to 

attain that temperature. The material of the electronics box is assumed to be Beryllium 

copper alloy. The material property input is shown in Figure 5.14. The dimensions of the 

electronics box are assumed to be 34 X 1 X 0.6 inches. The material properties are in 

Nastran units, which are shown in Table 3.1. 
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Figure 5.14.  Material data form for beryllium copper alloy.  
 

The model set up with the representation of the electronics box in MSC Nastran is 

shown in Figure 5.15. 

 

 

Figure 5.15.  Electronics box model set up in MSC Nastran. 

   Red color represents the electronics box. 
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The model with the heat generation and radiation is shown in the Figure 5.16. It has the 

heat generation at the nodes in the electronics box and one side of the panel is exposed to 

radiation. A transient heat transfer analysis is performed on the model. 

 

 

Figure 5.16. Model of electronics box approach with heat generation and radiation. 

 
The time- temperature plot for a node in the electronics box is shown in the Figure 5.17. 
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Figure 5.17.  Time –temperature plot for a node of the electronics box. 

 

The plot reveals the true potential of Poco foam exhibiting its high thermal conductivity. 

It provides the fact that thermal conductivity of the core is an important parameter in 

deciding the temperature profile of the electronics box. The final steady state 

temperature of the electronics box after the analysis is given in the Table 5.15. 

 

Table 5.15 

Steady state temperature of the electronics box. 

Material of the core 
Steady state temperature at the 

electronics box (Kelvin) 

Poco foam 325 

Aluminum Honeycomb 495 
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The Table 5.15 indicates that the electronics box temperature is maintained very low 

with Poco foam core. The difference in the electronics box temperature is primarily due 

to the difference in the in–plane and through the thickness thermal conductivities 

between the cores. 

 

5.5 Conclusion 

 
To identify the optimum sandwich panel that can act as a radiator for the given payload, 

satisfying the design requirements, three-dimensional finite element models are 

developed using MSC Nastran and a comprehensive analysis is performed and the 

results presented. The optimum lay-up and orientation is carefully determined with the 

chosen material properties satisfying the vibration and static requirements. The modes, 

stress and temperature predictions using MSC Nastran is verified by developing simple 

analytical models that represents the radiator problem with certain assumptions. The 

analytical model results correlate well with MSC Nastran.  

 

In addition steady state and transient heat transfer analysis of the radiator panel explores 

the thermal characteristics of the core materials identified. In all the cores the 

temperature profile is more similar to one another with the given boundary conditions. 

Furthermore, to realize the potential thermal performance of the radiator, a distinct 

approach to find the temperature profile of the electronics box is put forth. The 

temperature of the electronics box predicted with aluminum honeycomb core is reduced 

with embedded heat pipes all along the core. This increases the weight, cost and 

complexity of the radiator panel compared to a core of Poco graphite foam. This 

approach illustrates that out of the core materials investigated, Poco foam is capable of 

removing the heat rapidly and maintaining a low temperature profile in the electronics 

box with reduced cost and complexity. Therefore the radiator panel for the given 

payload will have Poco foam as its core material.  
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APPENDIX 3 
Elastic Properties [25] calculation for aluminum honeycomb is given by the following 

equations. 

 

c

umaluc
L d

Et
E

*10
**3 min=  

 

2
min

*3
**

c

umalucc
W l

Edt
E =  

 

c

umaluc
Z d

Et
E
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**4 min=  

 

Where lc is the length of the core and tc is the thickness of the core. And dc = 0.866*lc.  

 

Young’s Modulus of Aluminum 6061 is given by  

Ealuminum = 10E07 Psi  

 

Substituting lc  = 46 inches and tc = 0.6 inch, the parameter dc is calculated to be 39.836 

inches, the young’s modulus in the L (X), W (Y) and Z directions are calculated to be as 

follows. 

 

EL = 4.52 E04 Psi (0.31 Gpa) 

EW = 3.76 E04 Psi (0.26 Gpa) and  

EZ = 2.01E05 Psi (1.39 Gpa) 

 

The shear modulus [1] is assumed to be as follows. 

G12 = G13 = 0.1 Gpa and G23 = 0.40 Gpa. 
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The effective thermal Conductivity for aluminum honeycomb for L (X), W (Y) and Z 

directions are calculated as follows 

 

S
K

K umalu
x

δmin=  

 

S
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K umalu
y

δmin

2
3

=  

 

S
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K umalu
z

δmin

3
8

=  

 

The aluminum honeycomb core used in the analysis has a foil thickness, δ, of 0.001 

inches and nominal cell dimension, S of 0.25 inches [26]. The thermal conductivity of 

aluminum 6061(Kaluminum) is 1160 Btu-in/hr-ft2-0F. 
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