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ABSTRACT

In this research, a general nonlinear third-order plate theory has been developed us-
ing the principle of virtual displacements. The developed theory is based on geometric
nonlinearity, size effects of structures in micro scale, functionally graded materials, and
piezoelectric effects. The von Karman nonlinear strains, i.e., small strain and moderate
rotation, are considered to represent geometric nonlinearity. A modified couple stress the-
ory is adopted to capture microstructure dependent size effect. A power law distribution is
used to represent the variation of two material constituents through thickness. The devel-
oped plate theory is also specialized to classical, first order shear deformation, and Reddy
third order plate theories.

Analytical solutions for the developed plate theory are presented using the Navier so-
lution technique. All dependent variables are assumed to be forms of double trigonometric
functions which satisfy the boundary conditions. The analytical solutions are limited to
geometric linearity and simply supported plates. Examples of bending, buckling, and
vibration problems are presented to show effects of the power-law distribution of two ma-
terials and the microstructure-dependent size parameter.

The nonlinear finite element model based on the developed plate theory is carried out to
study of the static bending problems regarding the size effects of microstructure, geomet-
ric nonlinearity, and power-law variation of the material composition through the thick-
ness. The principle of virtual work is utilized to develop a displacement based weak-form
Galerkin finite element model which requires C! continuity of all dependent variables. A
conforming element is implemented using Hermite type interpolation functions.

The piezoelectric effect is considered for functionally graded smart plates which have

surface-mounted piezoelectric layers, and a functionally graded core layer. The formu-

i



lation includes the coupling between mechanical deformations and the charge equations
of electrostatics. In addition to the kinematic assumption of the developed plate theory,
the potential function is assumed to be the combination of half cosine variation of electric
potential and linear variation of applied voltage on outer surfaces. An analytical solution
and a finite element model are obtained. A parametric study is presented to show effects of
thickness ratio between core layer and piezoelectric layers in addition to material variation

of core plate and micro structure size effects.
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1. INTRODUCTION

Plates and shells are three-dimensional (3D) bodies that have much smaller dimen-
sion in the out-of-plane direction than the in-plane directions. To study behavior of these
structural elements, it is efficient to reduce 3D problems to 2D problems because of geo-
metrical characteristics of plate- and shell- like bodies, the high computational costs and
the complexity of the numerical analysis of 3D systems. The dimension can be reduced
by separating volume integral into thickness (1D) and area integrals (2D), and performing
thickness integral first. Overall properties of a plate are represented by equivalent sin-
gle layer (ESL) properties. The plate and shell theories assume expansions of the field
of dependent variables (stresses or displacements) through thickness directions based on
hypotheses of each theories. The oldest and simplest plate theory is the classical plate the-
ory (CPT, also known as Kirchhoff Love plate theory) based on the Kirchhoff hypothesis
which assumes 1) the straight lines normal to the mid surface before deformation remain
normal to the mid surface after deformation (normality), 2) straight lines before deforma-
tion remain straight after deformation (straight), and 3) the length of straight lines normal
to mid surface remain the same length (inextensibility). As a result of using the Kirchhoff
hypothesis, the CPT ignores transverse normal and shear strains. The simplest shear de-
formation plate theory is the first shear deformation theory (FSDT, also known as Mindlin-
Reissner plate theory) which considers transverse shear strains and stresses by removing
the normality condition from the Kirchhoff hypothesis. In the case of FSDT, however, the
transverse shear strains and stresses are constants through thickness of plates, which does
not agree with an exact solution (i.e. quadratic variation of transverse shear strain). To
obtain an equivalent transverse shear forces to the exact solution, the shear stresses are

modified using shear correction factors. To improve the transverse shear strains, higher



order shear deformation theories (HSDTs) are introduced. In the case of HSDTs, in-plane
displacement field is assumed to have more than quadratic variation; generally, a cubic
variation is preferred through thickness direction. By using cubic or higher variations of
in-plane displacement field, a parabolic variation of shear strain is promised. Because
plates are fundamental and essential components in most structural systems, these theo-
ries have intensively and extensively grown with the introduction of advanced material
systems, e.g., shape memory, functionally graded, piezoelectric, and bio materials. These
advanced material systems are required for intelligence, functionality, and serviceability in
the whole spectrum of magneto-, electro-, thermo-, and bio-mechanical couplings. Among
various types of advanced materials, functionally graded materials (FGMs) have great
advantages in applications of space and automobile structures, microelectromechanical
systems (MEMS), and nanoelectromechanical systems (NEMS). In general, the volume
fraction of two or more constituents in FGMs continuously varies in a body. A common
FGM is made of two constituents to provide a certain functionality, e.g., thermal barriers.
In the case of thermal barriers in space structures, the two constituents are ceramic and
metal; the ceramic constituent with low thermal conductivity insulates structural systems
against high temperatures, and the ductile metal constituent resists thermal fracture due to
high temperature gradient. Because of the advantages of FGMs in the coupling of various
spectrums, they are often used in micro- and nano-scale structural systems. When FGM
plates are in those small scale systems, it is necessary to account for the microstructure
size dependent effects, and piezoelectric materials are often used for actuating and sensing
these plates. Because the plate and shell theories are based on classical elasticity, they are
not able to capture the size dependent effects. These theories must be extended to account
for size effects in addition to material gradation through thickness, piezoelectric effects,

and geometric nonlinearity.



1.1 Motivation for proposed study

The numerous researchers have studied beam, plate, and shell theories based on as-
sumptions of the displacement field, displacement and strain relations, and strain and
stress relations. Those theories can be categorized into CPT, FSDT, and HSDT based
on the assumptions of the displacement field, linear and nonlinear plate theories based
on displacement and strain relations, and the consideration of materials based on strain
and stress relations, e.g., linear and nonlinear elasticity; visco-elasticity; plasticity; and
magneto-, electro-, thermo-, and bio-mechanical couplings. With developments of novel
material systems such as functionally graded and piezoelectric materials, those theories
should be extended to represent the new material systems. In the literature, functionally
graded beam, plate and shell theories are based on CPT and FSDT due to their simplicity
and acceptable accuracy in many applications, and only a few of them have been developed
using HSDT.

FGMs are often used in micro- and nano-scale structural systems due to their advan-
tages in the coupling problems, and piezoelectric materials are used for actuating or sens-
ing the structural systems in the small scale. Many researchers have clearly shown that the
size dependent effect should be included in the analysis of structures at micro- or nano-
scale. However, a plate model does not exist that accounts for material variation in the
thickness direction of plates, microstructure-dependent size effects, geometric nonlinear-
ity, shear deformation without requiring shear correction factors, and the electromechani-
cal coupling effect of piezoelectric materials. This very fact motivated the present study.
The objective of this study is to develop a general third-order plate theory and to obtain its
analytical solutions to bending, vibration, and buckling problems, and to develop a finite
element model of the present plate theory that accounts for through-thickness power-law

variation of a two material constituents, micro structure size effects using a modified cou-



ple stress theory, the bending-extensional coupling based on von Kdrméan nonlinearity, and

electromechanical coupling effects.
1.2 Scope of the research

This research began at Texas A&M University in the Fall of 2011, and is mainly fo-
cused on developing a general third order plate theory that accounts for functionally graded
and piezoelectric materials, geometrical nonlinearity, and micro structure size effects. The
research includes analytical solutions using the Navier solution technique for simply sup-
ported square micro plates in bending, vibration, and buckling problems and a nonlinear
finite element solution for various boundary conditions using a displacement based weak
form Galerkin finite element model. In addition, a parametric study for the material varia-
tion through thickness, micro structure size effects, and piezoelectric effects is performed.

The dissertation is organized as follows:

e In section 2, a general nonlinear third-order plate theory that accounts for geomet-
ric nonlinearity, microstructure-dependent size effects, and two-constituent material
variation through the plate thickness is presented using the principle of virtual dis-
placements. A detailed derivation of the equations of motion, using Hamilton’s prin-
ciple, is presented, and it is based on a modified couple stress theory, power-law vari-
ation of the material through the thickness, and the von Kdrman nonlinear strains.
The modified couple stress theory includes a material length scale parameter that can
capture the size effect in a functionally graded material. The governing equations of
motion derived herein for a general third-order theory with geometric nonlinearity,
microstructure-dependent size effect, and material gradation through the thickness
are specialized to classical and shear deformation plate theories available in the lit-
erature. The theory presented herein also can be used to develop finite element mod-

els and determine the effect of the geometric nonlinearity, microstructure-dependent



size effects, and material grading through the thickness on bending and postbuckling
response of elastic plates. The work presented in this section is from the published

journal paper [1].

In section 3, analytical solutions of the developed plate theory in section 2 are pre-
sented. The Navier solution technique is adopted to derive analytical solutions to
simply supported rectangular plates and the analytical solution is limited to geomet-
rically linear problems. The modulus of elasticity and the mass density are assumed
to vary only through thickness of plate, and a single material length scale param-
eter of a modified couple stress theory captures the microstructure-dependent size
effects. Examples of bending, buckling, and vibration problems are presented to
show effects of the power-law distribution of two materials and the microstructure-
dependent size parameter. The results presented in this section can be found in the

published journal paper [2].

In section 4, nonlinear finite element analyses of functionally graded plates based
on the developed third order plate theory in section 2 is carried out to bring out
the effects of couple stress, geometric nonlinearity, and power-law variation of the
material composition through the thickness on static bending analyses of plates.
The principle of virtual work is utilized to develop a displacement based weak-form
Galerkin finite element model. The developed finite element model requires C'! con-
tinuity of all dependent variables and no shear correction factors are needed. The
micro-structural effects are captured using a length scale parameter via the modi-
fied couple stress theory. The variation of two-constituent material is assumed only
through the thickness direction according to a power-law distribution. Numerical
results are presented for static bending problems of rectangular plates with various

boundary conditions to bring out the parametric effects of the power-law index and



length scale parameter on the deflections. The results presented in this section can

be found in the published journal paper [3].

In section 5, the equation of motion for functionally graded plates with surface-
mounted piezoelectric layers that accounts for the gradient elasticity through the
modified couple stress model and linear piezoelectricity is developed using Hamil-
ton’s principle. The formulation includes the coupling between mechanical defor-
mations and the charge equations of electrostatics. The mathematical model de-
veloped herein is an equivalent single-layer theory for mechanical displacement
field and the potential functions. The displacement field of the general third order
plate theory is used for kinematic assumption. The potential function is assumed
as the combination of half cosine variation of electric potential and linear variation
of applied voltage on outer surfaces. The approach described here is that standard
plate models can be enhanced to include the coupling between the charge equations
and the mechanical deformations as well as the size dependent effect of micro- and
nano-scale structures. Analytical and finite element solutions of the developed plate
model are presented. A parametric study is performed to study the effect of mate-
rial variation through thickness of plates, length scale parameters to capture the size
dependent effects, and the thickness ratio between piezoelectric layers and whole

plate. The section introduces the work that can be found in the published journal

paper [4].

In section 6, concluding remarks of this dissertation and suggestions for future re-

search directions are presented.



2. FORMULATION *

The next generation of material systems used in space and other structures as well
as in MEMS and NEMS feature thermo-mechanical coupling, functionality, intelligence,
and miniaturization. These systems may operate under varying conditions; they span
the whole spectrum of magneto-electro-thermomechanical conditions. When functionally
graded material systems are used in nano- and micro-devices, it is necessary to account
for the microstructure-dependent size effect and the geometric nonlinearity. Since beam
and plate structural elements are commonly used in these devices and structures, it is
useful to develop refined theories of plates that account for size effects, material gradation
through thickness, and geometric nonlinearity. The present study is focused on developing
a general third-order theory with aforementioned effects. The following sections provide

a background for the present study.
2.1 Higher-order plate theories

Plates are structural elements whose plane form dimensions are quite large compared
to their thickness, supported at few points of the domain, and subjected to forces that make
the structure stretch and bend under the action of external loads. Theories used to study
the response of plates under external loads are obtained by reducing three-dimensional
elasticity theory through a series of assumptions concerning the kinematics of deformation
and constitutive behavior. The kinematic assumptions exploit the fact that such structures
do not experience significant strains or stresses associated with the thickness direction.
Thus, the solution of the three-dimensional elasticity problem associated with a plate is

reformulated in terms of displacements or stresses whose form is presumed on the basis of

*Reprinted with permission from "A nonlinear modified couple stress-based third-order theory of function-
ally graded plates" by J.N. Reddy and Jinseok Kim, 2012, Composite Structure, vol. 94, pp. 1128-1143,
Copyright 2012 by ELSEVIER.



an educated guess concerning the nature of the deformation.

Two major classes of two-dimensional plate theories can be found in the literature: one
based on the assumed form of the displacement field and the other based on an assumed
form of the stress field. In both cases, the fields are expanded in increasing powers of the
thickness coordinate. Obviously, the higher-order terms would have diminishing returns
compared to the lower-order terms due to the smallness of thickness compared to in-plane
dimensions. Among the two classes, displacement-based theories have emerged as the
preferred ones because one does not have to consider strain/stress compatibility conditions
in addition to the kinematic and equilibrium conditions. It is determined that a third-
order expansion of the displacement field is optimal because it gives quadratic variation
of transverse strains and stresses, and require no shear correction factors compared to the
first-order theory, where the transverse strains and stresses are constant through the plate
thickness. To bring to light the the original contributions made in the development of plate
theories over the years by others, a brief overview of research done in third-order plate
theories is also included in here.

The simplest and oldest plate theory is the classical (Kirchhoff) plate theory (CPT) [5].
It is based on the kinematic assumptions that straight lines perpendicular to the plane of the
undeformed plate remain straight and inextensible, and rotate such that they always remain
perpendicular the midplane of the plate after deformation. These assumptions, known
as the Kirchhoff hypothesis, amounts to neglecting both transverse shear and transverse

normal strains [6,7]. The assumed displacement field is of the form

uy(z,y, 2, t) = u(x,y,t) + 20, (z,y,t) (2.1)
us(z,y, 2, t) = v(z,y,t) + 20,(z,y,t) (2.2)
u3(x7y727t> :U}(Q?,y7t) (23)



where

O, = —=, 0,=——=— (2.4)

and z is the coordinate perpendicular to the undeformed midplane of the plate, and (z, y)
coordinates lying in the plane. These assumptions simplify the three-dimensional problem
significantly to a two-dimensional problem whose governing equations are expressed in
terms of the three displacements (u, v, w) of a point on the midplane. The theory does not
qualify to be called first-order because the first-order terms, 6, and 6,, are not independent
of w. The theory is adequate in the vast majority of problems when thickness is very
small (two orders of magnitude less than the smallest in-plane dimension) and transverse
shear strains, ., and +,., are negligible. Finite element models of the CPT require C''-
continuity, i.e., continuity of the transverse displacement w as well as its derivatives -
slopes 0,, and 6,,, and the development of CPT finite elements that satisfy all completeness
and compatibility requirements is cumbersome [8,9].

The simplest first-order shear deformation plate theory (FSDT), often referred to as the

Mindlin plate theory [10], is based on the displacement expansion

u(z,y, 2,t) = u(z,y,t) + 260.(z,y,t) (2.5)
us(z,y, 2, t) = v(z,y,t) + 20,(z,y,t) (2.6)
u3(xayazat> :UJ(Q?,y,t) (27)

where 0, and 0, are the rotations of a transverse normal line,

(‘3u1 au2

61 = — and Hy = a— (28)
z

The original idea of such expansion can be found in earlier works by Basset [11],

Hencky [12] and Hildebrand, Reissner and Thomas [13].The first-order theory is based on



the first two assumptions of the Kirchhoff hypothesis, and the normality of the assumption
is not invoked, making the rotations ¢, and ¢, to be independent of (u,v,w). As a result
the transverse shear strains -,, and -, are nonzero but independent of z. This leads to
the introduction of shear correction factors in the evaluation of the transverse shear forces.
The finite element models of the theory require only C°-continuity, i.e., the variables of
the theory (u, v, w, 0, 0,) be continuous between elements; however, they can exhibit spu-
rious transverse shear stiffness even in pure bending, known as the shear locking, as the
plate becomes thin. The spurious transverse shear stiffness stems from an interpolation in-
consistency that prevents the Kirchhoff conditions of Eq. (2.4) from being satisfied as the
plate becomes thin. The shear locking phenomenon can be alleviated by using a reduced
integration to evaluate transverse shear stiffness terms in the element stiffness matrix or
by using higher-order approximations of the displacement field. Although the reduced in-
tegration solution is the most economical alternative, the process allows some elements to
exhibit spurious displacement modes, i.e., deformation modes that result in zero strain at
the Gaussian integration points.

Second-order and higher-order plate theories relax the Kirchhoff hypothesis further by
allowing the straight lines normal to the midplane before deformation to become curves.
However, most published theories still assume inextensibility of these lines. Second-order
plate theories are not popular because of the fact that they too require shear correction fac-
tors and while not improving over FSDT. The third-order theories provide a slight increase
in accuracy relative to the FSDT solution, at the expense of an increase in computational
effort, and do not require shear correction factors. From the finite element model de-
velopment standpoint, third-order plate theories requires C''-continuity of the transverse
displacement component and less sensitive to shear locking, depending on the specific
third-order theory used.

Several third-order plate theories have been developed by different researchers [14—

10



22], and some of them are claimed to be new whereas they are not new, as pointed by
Reddy [23], but only disguised in the form of the displacement expansions used. Various
third-order plate theories developed over the years differ from each other based on the as-
sumptions of their theories. The final equations developed depend on (1) the displacement
field, (2) the strain-displacement relations (linear or nonlinear, if nonlinear, nature of the
nonlinearity included - small strain but large displacements and rotations or moderate ro-
tations, etc.), and (3) equilibrium (or equations of motion) adopted. Similar displacement
fields were suggested by Schmidt [14], Murty [15], Lo, Christensen, and Wu [16, 17].
Since 1980 there appeared a number of papers which used third-order displacement fields
of different types (see Levinson [18], Murthy [19], Kant [20], Reddy [21-24], Bhimaraddi
and Stevens [25], Bose and Reddy [26,27], among others). Several of these displacement
fields look different while they are essentially the same, as pointed by Reddy [23]. The
works of Schmidt [14], Murty [15], and Levinson [18] are restricted to isotropic plates.
Schmidt [14] also accounted for the von Karman non-linear strains which assumes small
strains and moderate rotations.

Even when the displacement field used is the same, the equations of equilibrium used
by various authors were different. Some used the equilibrium equations of the classical or
first-order theory, because they are arrived using the vector approach, in which the equi-
librium of a plate element is considered. Thus, these equations do not contain the effect of
the higher-order terms in the form of higher-order stress resultants but they are included
in the strains computed. These theories are not derivable from energy considerations and
they result in unsymmetric stiffness coefficients even for a linear case (if the finite element
method is used). The second approach is to use the principle of virtual displacements. The
resulting set of equations for all theories higher than first-order are different from those
arrived using the vector approach. The virtual work principle gives many more additional

terms in the form of higher-order stress resultants. Reddy [21,22] is the first one to de-
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velop the equilibrium equations of a third-order plate theory with vanishing tractions for
laminated composite plates using the principle of virtual displacements. Reddy third-order
plate theory [22] also accounts for the von Karmén strains.

A comment is in order on the development of finite element models of plates. When
a continuum formulation is used, the finite element model includes the total nonlinearity,
unless otherwise stated, and the kinematic assumptions are invoked at the time of approxi-
mating the displacement field (after the virtual work statement is derived). The continuum
formulation inherently includes suitable measures of stress and strain (e.g., second Piola-
Kirchhoff stress tensor and Green-Lagrange strain tensor) and geometric updates to deter-
mine the deformed configuration at any increment of the load. In contrast, finite element
models developed using a given plate theory are based on the assumption that strains are
small and rotations may be moderately large so that the geometry changes are neglected
(i.e., there is no difference between the Cauchy stress and second Piola—Kirchhoff stress
tensors). Thus, a plate theory with full nonlinearity should not be developed unless proper

measures of stress and strain are used.
2.2 Modified couple stress theory

In recent years numerous papers that consider microstructure-dependent size effects
in formulating the classical and first-order beam and plate theories have appeared (see
Eringen [28], Anthoine [29], Yang, et al. [30], Park and Gao [31,32], Reddy [33-35], Lu et
al. [36], Reddy and Pang [33], Ma, Gao, and Reddy [37-39], Aghababaei and Reddy [40],
Tsiatas [41], Asghari, et al. [42,43], Xia, Wang, and Yin [44], Ke and Wang [45], and Ke
et al. [46]). As these studies have been motivated by the fact that beam-like and plate-like
structural elements are commonly used in micro- and nano-scale devices and systems such
as biosensors, atomic force microscopes, MEMS, and NEMS (see Li et al. [47], Lam et al.

[48], Pei, Tian, and Thundat [49], and McFarland and Colton [50]), and their response may
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be influenced by certain microstructural parameters. The classical couple stress elasticity
theory of Koiter [51] includes four material constants (two classical and two additional).
The higher-order Bernoulli-Euler beam model developed by Papargyri-Beskou et al. [52]
is based on the gradient elasticity theory with surface energy and it involves four elastic
constants, two classical and two non-classical. In view of the difficulties in determining
microstructure dependent length scale parameters (see Lam et al. [48]; Yang and Lakes
[53]; Maranganti and Sharma [54]) and the approximate nature of beam and plate theories,
refined beam and plate models that involve only one material length scale parameter are
desirable. One such model has been developed for the Bernoulli-Euler beam by Park and
Gao [31,32] and for the Timoshenko and Reddy beam theories and Mindlin plates by Ma,
Gao, and Reddy [37-39] and Reddy [35] using a modified couple stress theory proposed
by Yang et al. [30], which contains only one material length scale parameter.

On the other hand, the nonlocal Bernoulli-Euler beam model by Peddieson, Buchanan,
and McNitt [55], the nonlocal Timoshenko beam model by Wang et al. [56], the nonlocal
Bernoulli-Euler, Timoshenko, Reddy, and Levinson beam models formulated by Reddy
[34,57] and Reddy and Pang [33] are developed using a constitutive equation suggested
by Eringen [28]. The modified couple-stress models involve a length scale that is different
from the nonlocal parameter used in the Eringen’s model, and they have the opposite
effect on the response. In addition, the nonlocal formulations of beams and plates based
on Eringen’s model yield governing equations that cannot be derived using the principle
of virtual displacements. The present study is based on modified couple stress theory of

Yang et al. [30].
2.3 Functionally graded materials

Structural designs are often based on maximum stress criteria. Elimination of stress

concentrations in structural elements is mitigated by suitable design of materials. Func-
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tionally gradient materials (FGMs) are a class of materials that have a predetermined (of-
ten using an optimization procedure) variation of material properties from point surface
to another (see Hasselman and Youngblood [58], and Koizumi [59]) These materials were
proposed as thermal barrier materials for applications in space planes, space structures,
nuclear reactors, turbine rotors, flywheels, and gears, to name only a few. These materials
are often isotropic but nonhomogeneous. One reason for increased interest in FGMs is
that it may be possible to create certain types of FGM structures capable of adapting to
operating conditions.

A most common FGM is one in which two materials are mixed to achieve a com-
position that provides certain functionality. For example, for thermal-barrier structures,
two-constituent FGMs are made of a mixture of ceramic and metals. The ceramic con-
stituent of the material provides the high temperature resistance due to its low thermal
conductivity. The ductile metal constituent, on the other hand, prevents fracture due to
high temperature gradient in a very short period of time. The gradation in properties of
the material reduces thermal stresses, residual stresses, and stress concentrations. The
paper by Noda [60] provides an extensive review that covers a wide range of topics from
thermo-elastic to thermo-inelastic problems. He also discussed the importance of tempera-
ture dependent properties on thermoelastics problems and presented analytical methods to
handle transient heat conduction problems and indicates the necessity for the optimization
of FGM properties. Tanigawa [61] compiled a comprehensive review on the thermoelastic
analysis of FGMs.

A number of other investigations dealing with thermal stresses and deformations of
beams, plates, and cylinders had been published in the literature (see, for example, Noda
and Tsuji [62], Obata, Noda, and Tsuji [63], Reddy and Chin [64], Praveen and Reddy
[65], Praveen, Chin, and Reddy [66], and Vel and Batra [67], among others). Among

these studies that concern the thermo-elastic analysis of plates, beams or cylinders made
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of FGMs where the material properties have been considered temperature dependent are
Noda and Tsuji [62], Praveen and Reddy [65], Praveen, Chin, and Reddy [66],Shen [68],
Yang and Shen [69], and Kitipornchai, Yang, and Liew [70], among few others. The work
of Praveen and Reddy [65], Reddy [71], and Aliaga and Reddy [72] also considered von
Karman nonlinearity (also see Reddy [6]) in functionally graded plates. The works of
Aliaga and Reddy [72] also considered the third-order plate theory of Reddy [6,21, 22].
Jin and Noda [73-75] suggested optimum material variation of metal-ceramic functionally
gradient material by minimizing the thermal stress intensity factor and presented the steady
state and the transient heat conduction problems in FGMs. Reddy and Berry [76] pre-
sented axisymmetric bending of functionally graded circular plates based on temperature
dependent material properties and the von Kdrméan geometric nonlinearity. Saidi, Bodaghi,
and Atashipour [77] presented Levy-type solution for bending-stretching analysis of thick

functionally graded rectangular plates using Reddy third order plate theory [22].
2.4 Constitutive models
2.4.1 Material variation through the thickness

Consider a plate of total thickness, h. The x and y coordinates are taken in the mid-
plane, denoted by €2, and the z-axis is taken normal to the plate. We assume that the ma-
terial of the plate is isotropic but varies from one kind of material on one side, z = —h/2,
to another material on the other side, = = h/2. A typical material property of the FGM
through the plate thickness is assumed to be represented by a power-law (see Praveen and

Reddy [65] and Reddy [71])

PIT) = [RD) - BTN S+ PulT). 1) = (3+7) @9
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where P, and P, are the values of a typical material property, such as the modulus, density,
and conductivity, of the ceramic material and metal, respectively; n denotes the volume
fraction exponent, called power-law index. When n = 0, we obtain the single-material

plate (with property F,).

1\\\\\\\\\

0.8

0.6

0.4

0.2

Thickness coordinate, (0.5 + z/h)

—_

0 0.2 0.4 0.6 0.8

Volume fraction of ceramic material

Figure 2.1: Volume fraction of P, through the plate thickness for various values of power-
law index [1]

Figure 2.1 shows the variation of the volume fraction of P, through the plate thickness
for various values of the power-law index n. Note that the volume fraction f(z) decreases
with increasing value of n. When FGMs are used in high-temperature environment, the

material properties are temperature-dependent and they can be expressed as

Pa(T) =co (caaT "+ 1+ 1T+ 1%+ c3T%), a=corm (2.10)
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where ¢ is a constant appearing in the cubic fit of the material property with temperature;
and c_1, c1, ¢, and cs coefficients of 7!, T', T?, and T, obtained after factoring out ¢
from the cubic curve fit of the property. The modulus of elasticity, conductivity, and the

coefficient of thermal expansion are considered to vary according to Egs. (2.9) and (2.10).
2.4.2 Modified couple stress model

The couple stress theory proposed by Yang et al. [30] is a modification of the classical
couple stress theory (see Koiter [51]). They established that the couple stress tensor is
symmetric and the symmetric curvature tensor is the only proper conjugate strain measure
to have a contribution to the total strain energy of the body. The two main advantages of
the modified couple stress theory over the classical couple stress theory are the inclusion of
a symmetric couple stress tensor and the involvement of only one length scale parameter,
which is a direct consequence of the fact that the strain energy density function depends
only on the strain and the symmetric part of the curvature tensor (see Ma, Gao, and Reddy
[37D).

According to the modified couple stress theory, the virtual strain energy 6l4 can be

written as

U = / (be: o+ dx :m)dv = / (0i; 645 + my; dxiz) dv (2.11)
v v

where summation on repeated indices is implied; here o;; denotes the cartesian compo-
nents of (the symmetric part of) the stress tensor, €;; are the strain components, m,; are the
components of the deviatoric part of the symmetric couple stress tensor, and x;; are the

components of the symmetric curvature tensor

1
x = [Vw +(Vw)'], w=3Vxu 2.12)

1
2
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or

1 c%)i 8wj L.
ng 9 (8% + 3%) y 4] ) 73

and w; (2 = 1, 2, 3) are the components of the rotation vector

1 /Ous Ousy
wx:w1:§<8_x2_8_x3)
1 [0up  Ous
wy_w2_§<8_1:3_8_xl)
1 (Ouy Owy
wz—Wg)—i(a—ml—a—xz).
Thus, we have
_ 1 Pus 0%uy
Xez = X1 = 2 (85618562 B 836183:3)
1 0%y 0%us
Xy = X2 =5 (axzaxg B 83:181‘2)
1 0%us 0%uy
Xez = X33 = 9 (8x18:v3 B axzaxg,)
1 [ 0%us 0%uy 0%uy 0%us
Xoy = 2x12 = 2 ( 022 dry0xs T dx10x5  Ox2 )
1 0%us Puy  0%us 0%uy
Xox = 2x13 = 2 (8x28x3 a2 * o2 8x18x2>
1 (0% 0%us 0%uy 0%uy
Xyz = 223 2 ( 022 Ox10xs * dx10xy  Ox2 ) '

2.4.3 Constitutive relations

For an isotropic, linear elastic material the 3-D stress-strain relations are

0ij =2pey; + N epe — o (3A+2p) (T —

mi; = 24 & Xij
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where ;o and A are the Lamé parameters (see Reddy [78])

A vE 2 B and 3142
A+v)(1-2v) F-1v0 =1

with F being Young’s modulus and v being Poisson’s ratio, « is the coefficient of thermal
expansion, and AT is the temperature increment from the room temperature, 7, and ¢
is the material length scale parameter. The material length scale parameter is the square
root of the ratio of the modulus of curvature to the modulus of shear, and it is a property
measuring the effect of the couple stress. For a functionally graded material, iz and \ are

functions of z and, possibly, 7', as indicated in Egs. (2.9) and (2.10).
2.5 General third-order plate theory

Consider a plate of total thickness A and composed of functionally graded material
through the thickness. It is assumed that the material is isotropic, and the grading is
assumed to be only through the thickness. The xy—plane is taken to be the undeformed
midplane 2 of the plate with the z-axis positive upward from the midplane, as shown in
Fig. 2.2. We denote the boundary of the midplane with I'. The plate volume is denoted as
V = Q x (=h/2,h/2). The plate is bounded by the top surface 2, bottom surface 2,
and the lateral surface S =I" x (—h/2,h/2).

Here develop a general third-order theory for the deformation of the plate first and
then specialize to the well-known plate theories. We restrict the formulation to linear elas-
tic material behavior, small strains, and moderate rotations and displacements, so that there
is no geometric update of the domain, that is, the integrals posed on the deformed config-
uration are evaluated using the undeformed domain and there is no difference between the
Cauchy stress tensor and the second Piola—Kirchhoff stress tensor.

The equations of motion are obtained using the principle of virtual displacements for

the dynamic case (i.e., Hamilton’s principle). The three-dimensional problem is reduced
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to two-dimensional one by assuming a displacement field that is explicit in the thickness
coordinate. We make use of the fact that the volume integral of any sufficiently continuous

function f(x,y; z) that is explicit in z can be evaluated as

/f(x,y;z) de/( 2f(x,y;z)dz> dzdy. (2.25)
1% Q —h

q.(xY)

Figure 2.2: Domain and various boundary segments of the domain [1]

When thermal effects are considered, like in the case of thermomechanical loads, the
temperature distribution, which is assumed to vary only in the thickness direction, i.e.,
T = T(z), is determined by first solving a simple steady state heat transfer equation
through the thickness of the plate, with specified temperature boundary conditions at the

top and bottom of the plate. The energy equation for the temperature variation through the
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thickness is governed by

or 0 oT h h
PCvE B {k(ZaT)E} =0, ) <z< 5 (2.26)
T(_h/Qa t) = Tm(t)v T(h/Zv t) = Tc(t) (2.27)

where k(z,T) is assumed to vary according to Eqs.(2.9) and (2.10), while density p and

specific heat c, are assumed to be a constants.
2.5.1 Displacements and strains

We begin with the following displacement field:

ur(2,y, 2, 1) = u(w,y,t) + 20, + 2°¢s + 2%, (2.28)
us(,y, z,t) = v(x, y, t) + 20, + 2°¢, + 2°¢, (2.29)
us(z,y, z,t) = w(x,y,t) + 20, + 2°¢, (2.30)

where (u,v,w) are the displacements along the coordinate lines of a material point on
the zy—plane, ie., u(z,y,t) = uy (z,y,0,t), v(z,y,t) = us (v,y,0,t), w(z,y,t) =

ug (z,9,0,t), and

g, — (u g, — (2 _ (9us
\o0z )., RN S o\ ).,

82U1 (92’&2 62U3
2%‘(622)2;0’ 2%—(322)2:0’ 207 e

83u1 83U2

6y = 55

>

The reason for expanding the in-plane displacements up to the cubic term and the
transverse displacement up to the quadratic term in z is to obtain a quadratic variation of

the transverse shear strains 7,. = 2¢,, and v,, = 2¢,, through the plate thickness. Note
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that all three displacements contribute to the quadratic variation. In the most general case
represented by the displacement field in Egs. (2.28) to (2.30), there are 11 generalized dis-
placements (u,v,w, 0, 60,,0,, s, ¢y, ¢2, Vs, 1) and, therefore, 11 differential equations
will be required to determine them.

If the transverse shear stresses, 0,. and o, are required to be zero on the top and
bottom of the plate, i.e., z = +h/2, as in the Reddy third-order theory [6,21,78], it is

necessary that v, and 7, be zero at z = +h/2. This in turn yields

2, + % =0 (2.31)
2¢, + %—eyz =0 (2.32)
0, + g—i + %2 (3% + 88@;2) =0 (2.33)
0, + g—j + h; (3% + 8;;2) =0. (2.34)

Thus, the variables (¢,, ¢, ¥, 1, ) can be expressed in terms of (w, 6,,,6,,0., ¢.), and
thus reduce the number of generalized displacements from 11 to 7. In addition, if we set
0. = ¢, = 0, we obtain the displacement field of the Reddy third-order theory, which has
only 5 variables (u, v, w, 8,,6,).

The von Karman nonlinear strain-displacement relations associated with the displace-
ment field in Eqs. (2.28) to (2.30) can be obtained by assuming that the strains are small

and rotations are moderately large; that is, we assume
Ol 2 ~0 U, 2 ~0
or ) 7 oy ) T 7
Ous 2 [ ow 2 Ous 2 [ ow 2 Ous Juz\ _ OJwow
or ) ~\ox)  \oy) ~\oy) \ozx oy ) Ox dy
for « = 1,2. Thus the nonzero strains of the general third-order theory with the von
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Karmdn nonlinearity are
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> higher-order strains.

In view of the displacement field in Eqgs. (2.28) to (2.30), the components of the

rotation vector and curvature tensor take the form (with w; = w,, wo = wy, w3 = w;,

X11 = Xaas X22 = Xyy» and so on)
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The curvature tensors (Xzz, Xyys Xz2» Xay> Xaz» and x,.) are
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2.5.2 [Equations of motion

The equations of motion can be derived using the principle of virtual displacements.
In the derivation, we account for thermal effect with the understanding that the material
properties are given functions of temperature, and that the temperature change AT is a
known function of position from the solution of Egs. (2.26) and (2.27). Thus, temperature
field enters the formulation only through constitutive equations.
The principle of virtual displacements for the dynamic case requires that (see Reddy
[791)
T
/0 (0K — U —6V)dt =0 (2.46)

where 0/C is the virtual kinetic energy, ol is the virtual strain energy, and d) is the virtual

work done by external forces. Each of these quantities are derived next.
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The virtual kinetic energy 0K is
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where the superposed dot on a variable indicates time derivative, e.g., & = du/0t, and m;

(2=20,1,2,---,6) are the mass moments of inertia

m; = /2 p(2)" dz. (2.48)

h
2
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The virtual strain energy is given by [see Eq. (2.11)]

oU = / / (0220€35 + Oyydeyy + 0,06,
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Next, we introduce thickness-integrated stress resultants as

[Ny
|=

k . h
Mi(j) = /_h(z)kaij dz and Mz(j) :/_

(2)*my;dz,  (k=0,1,2,3).
h

Then the virtual strain energy can be expressed in terms of the stress resultants as

3
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1=0

Note that Még), Még), and Még) are the membrane forces (often denoted by N, Ny,
and Ng,), Mggglg) My(? and M;,%) are the bending moments (denoted by M,,, M,,, and
M,,), and Még) and Még) are the shear forces (denoted by (), and @),). The rest of the
stress resultants are higher order generalized forces, which are often difficult to physically
interpret. Because of their similarity to the generalized physical forces identified above,
they are assumed to be zero when their counter parts (i.e., generalized displacements) are
not specified.

The virtual work done by external forces consists of three parts: (1) virtual work done
by the body forces and couples in V' = Q x (—h/2,h/2) , (2) virtual work done by
surface tractions and couples acting on the top and bottom surfaces of the plate Q1 and
Q~, and (3) virtual work done by the surface tractions and couples on the lateral surface
S =T x(—h/2,h/2), where Q" denotes the top surface of the plate, 2 the middle surface
of the plate, {2~ the bottom surface of the plate, and I" is the boundary of the middle surface
(see Fig. 2.2).

Let f,, fy, and f, be the body forces (measured per unit volume), Z,, ty, and t, be the
surface forces (measured per unit area) on .S, and ¢, q;, and ¢! be the distributed forces
(measured per unit area) on QF, ¢, qz, and ¢’ be the distributed forces (measured per
unit area) on {2, ¢,, ¢,, and ¢, be the body couples (measured per unit volume), 5., 5,,
and 5, be the surface couples (measured per unit area) on S, and pf, p}, and p. be the

distributed couples (measured per unit area) on 2, and p?, pz, and p° be the distributed
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couples (measured per unit area) on {2~ in the x, y, and z coordinate directions. Then the

virtual work done by external forces is

oV = — [ (.f_x5u1 + fy5U2 + [20u3 + Cp0w, + Cyowy + 52(5wz) av

—

+ / (qééul + q;5u2 + qLous + p'ow, + pg&uy + piéwz> dzxdy
O+
b b b b b b
+ <q$5u1 + q,0u2 + q;0u3 + pow, + p,dw, + pZ(SwZ)d:Udy

+

——

(ta0uy + t,0ug + t.0us + 5.0w, + 5,0w, + 5.0w;) dS] .

2.51)

In view of the displacement field in Egs. (2.28) to (2.30), )V can be expressed as

ov = —{ /Q (FO6u + 1060, + [P0 + [P0, + Do + [66,

+ 1280, + £60, + [O5w + f160. + fP6¢. + 6w
15 (1 2)5 (2 0) 5, ,(0 15 (1 2)5 (2

+ cWow® + (Do 4 ¢, )5%5 ) 4+ c, )5%5 ) 4+ c, )&ué )

+ 96w® + W + P sw® 4 cg?’)éwf*)) dxdy

“

(qi + QZ> Su+ (qf, + qZ) v+ (qi + Q§> ow + g(% — QZ>5%

L—

+
Sl GRS

[ —
/N /N <
R < o+

@ o+

+
/;,@: oo | T, |

+

+
>N S

N
i
n

)

+
|

_ qb)59 L (qt - qb) 50, + - (qt n qb>5q§x
Y Y 2 z z 4 T T
b h2 t b hd t b
+ qy) 6¢y + Z (qz + qz) 0¢, + g <qu - Qx)(swx
q, — qf,)éwy + (pi + pi>5w§;°) + (pZ + pf,) 5w ”
h h
+ pﬁ) 0wl + 2 (pi - pi) owp + 2 (pf; - pf,) dwi!
Ne @ P L o\e @ Pl | 5)s @
h3
(pi + pZ) sw® + T (pi — pi) 5w,§3)] dady
+ / (K060 + 1006, + 1266, + 150, + 160 + 156,
T
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+ 1206, + 10, + 105w + 1060 + 1260, + 505wl

+ sWowM) + s@ g 4 séo)éwz(/o) + sél)éwz(/l) + 352)(%)(2)

Y

+ 50600 + sWew® + 5@, 4 323)5w£3)>d1“}

:—{/{ Jou—+ F%v + FO0w + FV80, + F\V66, + FP5¢,
Q

+ FP8¢, + FPdp, + F(3)5¢y FW60, + FPs¢,

1 0dw 00w
—(0) _ 200 _
+ QCx ( 3y 59) C’y ( pe 591)

_|_

+

1 956, 1 93¢,
1@ _ L@ (999

+ 508 ( 5 35%) el ( 5 35%)
1
P

| —

0dv  Odu 1000,
302 (%—a—y)wﬂﬁ (28 g )

1060, 1 200, 060
(1) —oM y _ x
v <2 oz ) * 202 ( Oz oy )

Q

c® (35% _ 35%) n %Cz(s) <a5’¢y B 85%)}0&@

ox oy ox oy

+/{ Vou+ 060 +tOsw + 66, + N6, + V50,
r

5¢x+t 5¢y+t 5¢Z+t 6wx+t 5%

1 Odw 1 Odw
5 _ — ~40) _
T ( a 5%) Ll ( o 5@)

1 dov  Odu 1000,
5 _
3% <8x ay)“m (28 5%)

1 006 1 260, 006
n(Z227= ZgM) y _ 5’3
%y (2 Ox 5%) * 2% ( Ox dy )

1 000, 1 009,
ey N — 2 _
=l (G -3 - o (G - v

_|_

1 8¢, 06d,\ 1 80, Oy
@ (9P _ 240 y _ T
2Z<8fc 8y)+28z(3fv 3y)1d}

31

(2.52)



where

h h
@ _ [/ yiF @ _ [?
f5 —/h(z) fedz, te —/h
2 2
h
@ _ [?
2

b_ o, (P
and Cf():cé) (5) [pg—l—

fort =0,1,2,3and £ = x,y, 2.

(2) e dz, cg) =

h

2
_h
2

(2)" & dz,

h

(2) 5 dz, " =f0+ (—) [q§+(—1)"q§},

2

(—1)%2]

The equations of motion of the general third-order plate theory governing functionally

graded plates accounting for modified couple stresses are obtained by substituting 0/, 0U,

and 0V, from Eqgs. (2.47), (2.50), and (2.52), respectively, into Eq. (2.46), applying the

integration-by-parts to relieve all virtual generalized displacements of differentiations with

respect to x, y and ¢, noting that all variations at the upper and lower time limits are zero,

and invoking the fundamental lemma of the variational calculus (see Reddy [6,7,79]). We

obtain (after a lengthy algebra and manipulations) the following equations:

oM oM 10 foMY oMY 1oc
ou : — + + FO 4 -
ox dy 20y \ Ox dy v 2 Oy
= moil + mléx + m2(é§x + miﬂbx
(0) (0) (0) (0) (0)
ox oy 20x\ Oz dy Y 2 Ox
= m(ﬂ')' + mléy + m2(5y -+ m31ﬁy)
& (ow dw o (ow dw oMY
o Z= 0 4 2 p(0) — [ Z= MO 4 ZZ A p0) i
ow or (83: we T oy Y + oy\oxr ™ + oy Y * ox
oMY 19 (oMY oMb 1o M) . M)
dy 20y \ Ox dy 20x oy ox
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00, :

00, :

0y -

0y

0y -

0y

(0) (0)
1 { ) . .
+ FZ(O) + = <aCy _ oc. ) = Mot + m10, +mao, (2.55)

2\ Oz oy

oMy | OMy) ) L(OMY oMy MY
ox oy 2\ Ox dy oy
10 (oMY omY 1 1oc®
-9 i z FO 4t 4 290
+28y( Oz * Jy )+ * +20y T3 oy
= maii + maby + Mg, + maths (2.56)
oMLY . oMy oL oML . oMy oMY
ox oy =2\ Ox dy ox
(1) (1) (1)
_ 12 OIMa: + aMyz + F(l) _ 1055;0) _ lacz
20\ Oz dy v 2 2 Ox
= mli} + mgéy + mgg.zéy + m4d}y (257)
OM | OMS) 1y, (M) oMy oMY
ox y v ox y dy Yz
10 (oMZ oM 100
-9 i ? @ o0 29
+28y( ox * dy >+ = TG +2 dy
= maii + M3l + mady + msthy (2.58)
oM . oMy, ) (OMSD . oMy OIME )
ox oy Yz ox dy ox v
(2) (2) (2)
_ L0 (oM OMuN | pey _ oy 19C
20\ O dy Y 2 Ox
= My + mab, + mad, +msi, (2.59)
oM | My 3 (OME) oMyl oM
ox oy 2\ Oz dy oy vz
10 (oM oM 3 1oc®
_3y@ 4 29 i vz F® L 20@ 290
“+28y( ox + dy )+ * +2 Y +2 oy
= mii 4+ myby + Msdy + methy (2.60)
OMy)  OMy) 3 (OMZ oMy oMZ
ox oy 2\ Ox dy ox v
10 (oMP  omY 3 19C%
_ay@ 29 i vz G _ 2o _ 294
My 28:15( Ox * dy ) Ty QC”” 2 Ox
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= mad + my, + msd, + met, (2.61)

(1) (1) (1) (1)
5o OM oMy o 10 (oMul oMy
: oz Ay = 20y\ O Ay
10 (oM OME 1 <aM§P2 - 8M§f?>
20z \ Oy Ox 2\ Oy ox
acy)  act) 5 ;
+FO 4 2( o ) = muti + mafl. + mad. (2.62)
oMy oM 10 (OME) oMY
. Tz z . ( ) - xrxr Yy
0¢: : oz + dy 2M; 20y ( ox + oy )
10 8/\/1 &12 oMy
2 0x ox
ac s . .
LE® 2( o ) — myi + mafl, + mad.. (2.63)

The boundary conditions involve specifying the following generalized forces that are

dual to the generalized displacements (u, v, w, 0, 0y, @5, Oy, Vu, ¥y, 0., 02):

ou : O—M nw+M(0)

(aM(O) 8/\/1(0)
2

(0)
=t oy >y+ ~COn, +190  (2.64)

——C(O ne + Y  (2.65)

1 /oMY aM :
v: 0= Még)nx + Még)ny — —( Y

; ;)
ow ow ow ow
. — M _M(O) _M(O) M(O) M(O)
ow: 0= <83:' =t gy )”I*(a ay ) +
1 (oM 8/\/1 1 /oMy oM
(0) _ = Tz Y - vy
+ M,y 2( o + ) 2( )nx
1
+35 (COn, — COny) + ¢ (2.66)
1 oM oM
. — M( ) M(l) i yz
06, : 0 Ny + ny + 20 +3 Ep + By Ny
1
+3 (M;Q)nm + MOn, — Mglz)ny> + ¢V (2.67)
1 M oMy
. = M( ) M(l) - — rz yz
00, : 0 Ng + ny 2CZ 2 g + dy Ny
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0y :

Iy, :

0y

0y

60, :

0, :

DO | —

- (M;‘an - M;Oy)ny - /\/lglz)nx) - tél) (2.68)

1
0=MZn, + MZn, + §C§2)ny + (ngy)nx + M)n, — Mglgny)

1 /oM oM
4—§< o T a; )ny+t§> (2.69)
1
0=MPn, + M3)n, — §C§2)nm - <M§fz)nx + Mn, — Mglz)nm)
1/(omM?2 oMy )
G =

1 3
0=Mn, + M:,gz)ny + 5053)713, + 3 (M%)m + ./\/lz(fy)ny - ./\/lgz)ny>

1M omP

1 3
0= M, + M, 50O, = 5 (M, + MEn, - MPn,)
)

1 (OMY M
__( Me: | OMyz o) 2.72)

Oz dy ) v
(

oMLY . oms) .
ox dy v

(1) (1)

CPn, — C’ff)ny> + MWn, — MUn

yz T

N | —

1 <3M§? oM
+

2 ox ox

1/OME) oMy
5 +—( ”1y+ A@y)mﬁ¢fl (2.74)

"o\ T or oy

N—

Here we assumed that

MOy + MPn, =0 (2.75)
Mg + MOn, =0 (2.76)
MBn, + ME)n, =0 (2.77)
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2.5.3 Constitutive relations

Mn, + MPn, =0
M, + Miny = 0
M, + M@, =0

MO, + MOn, =0

MWn, + Mélz)ny =0

MPn, + ./\/lfz)ny =0

MPn, + /\/l?(ji)ny = 0.

(2.78)
(2.79)
(2.80)
(2.81)
(2.82)
(2.83)

(2.84)

Here we represent the profile for volume fraction variation by the expression in Eq.

(2.9); we assume that moduli £ and G, density p, density p, and thermal coefficient of

expansion « vary according to Eq. (2.9), and v is assumed to be a constant because the

effect of the variation of Possion’s ratio is negligible [80]. The linear constitutive relations

are

v 0 0
v 0 0
1—v 0 0
1(1-2v) 0

0 0
0 0 0

(2.85)

where A = E//[(1+v)(1 — 2v)], a is the coefficients of thermal expansion, and AT is the

temperature increment from a reference temperature 7y, AT =T — T,
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2.5.4 Plate constitutive equations

Here we relate the generalized forces (M, M;Z), Mé’y), M, Mé?) and the general-
ized couples (M;";, M;Z, Mgfﬁ, Mé’z), MSZ)) to the generalized displacements (u, v, w,
Ors Oys iy ys Vas Yy, 02, ). We have

i k k k k—i
@) o] [ A ] [
gl _ [? i, k k k k—i
MZS?J) _/h Tyy (2) dz_z AgQ) A§1) AgQ) 55/2/ :
: 3 k=i :
T
—{X;’) v Z;”} (2.86)

7 k k—1
M) N ow U - U B Y B
. 2 i 4
M p= [ fap@a=d 0 5O o [{0F e
) 2 k=i .
M) Oy 0 0 BW| 4%
ME) Maa B0 0| s
2 . A
Mgy ¢ = / my, p (=30 BE 0 | { (2.88)
2 k=1 .
MY me. 0 0 Bglf) &
7 k k—1i
N |y B0 o [
) 2 i i
Mo = / e (=3 00 BE 0 | 4 (2.89)
) k=i
i k k—i
M) My 0 0 BE| [xE?

where m;; are couple stresses m;; = 2,ul2xij and plate stiffness (Ajq,A12, B11, and By;)
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are

(k)_ 1—1/ % k (k)_ v % k

Ajl _(1+1/)(1—21/)/g(z) E(2)dz, A}y = (1+1/)(1—21/)/g<2) E(2)dz
b _ 1 %Zk T %zk 2)dz

B =5y [, @ @ B =g [ @ e e

and the thermal generalized forces are X (i), Yéi), and Zi(;) are defined by

h
. . . 1 3
X0y _ 0 _ m/ (2)*E(z, T)o(z,T) AT d=.

h
2

We note that 5,(;;) =0, %(;3;) = (0, and 7,5;32) = 0.

2.6 Special cases

The general third-order theory developed herein contains all of the existing plate the-
ories but some of them have not been extended to contain the microstructure parameters

and the von Kdrmén nonlinearity. They are summarized here.

2.6.1 A general third-order theory with tangential traction free on top and bottom

surfaces

If the top and bottom surfaces of the plate are free of any tangential forces, i.e., ¢, =

qf; = qé = qz = 0, we can invoke the conditions in Egs. (2.31) and (2.34) and eliminate

P Gy» Vo, and Py

o100, 104, 4 ow
%__ﬁax’ wx__3ax_3h2<6”ax>’

100, 109, 4 ow
W= 5y YT <0y+3y)'

3 dy  3h?
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Then the strains are given by Eq. (2.35) with

¢
(0)

€$$

0
€ éy)

1y
\ 7

( (1) 3
Exx

1
€ z(,/y)

7y
\ V

]
(2)

gICC

2
€ ?(JZ/)

2
%(cy)
\ /

( (3) 3
Exx

3
€ z(,/y)

e
\ V

( © 3
€ZZ

0

(0)
\ vz

( ) 3
622

1
7

W
\ V

( @ 3
gZZ

2
(2)

Yz
y,

\

ou 1
8_z+§(8x

( )
00,
ox
00,
dy
0z 4 9%
\ 9y + Oz )
( )
920,
Ox2
_1< 926,
2 dy?
%0,
\ " 9z0y )
( )
0%,
Oz2
_1) e
3 dy*
Rt
\ ~ 9z0y )
.
0.
ow
0. + oz
0 ow
L Y + Jy
(
20,
¢ 0
0
\
0
ow
O+ 30
ow
Hy + oy

v 1 (0w
@+5<%

ou ov ow dw
(oy t oz T ax oy

5
SN—
[\

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

where ¢; = 4/3h? and ¢, = 4/h%. The components of the rotation vector and curvature
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tensor are

with

Wg
Wy

Wy
Xaa
Xyy
Xzz
Xzy

sz

Xyz

o 4o 52,0
= w® 4z 4 2

= wgo) + zwil) + 22@(22) + z3w§3)
= X+ 2t + 28

=Xy 2+
=X+ o) + XY
= X4y +axdy + 22X
= X+ axtd + 22 + 2

= xy? +axgd 2 + 2
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(2.98)
(2.99)
(2.100)
(2.101)
(2.102)
(2.103)
(2.104)

(2.105)

(2.106)

(2.107)

(2.108)



A\

)

o

X

0
Xz(;y)

9

X
\

1
Xz(;y)

X
\ Y,

@ )
Xzx

2
Xz(;y)

2

\ V,

( (0) )
Xzy

0
X:(rz)

(0)

\ Xyz V,

( (1) )
Xzy

X5

(1)
Xyz J

@) )
Xy

&

X
2)
\ Xyz Vs
.
3

(3)

Xzxz
’

Xyz
\ /
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(2.109)

(2.110)

(2.111)

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)



Then the equations of motion become

5 oMY . oML Ll
u —
Ox dy 2

— Mgl + My by — 2 9. _ ms [q (9; + 8—“)) + 18@] (2.117)
s

O (oM MR o, 19CT
ox y 2 Oy

ox 3 O0x
oMy | OMy 10 (oM oMy
ox oy 2 0x ox dy

3 . ms 00, O 106,
:mov+m19y - 72 ay — mg3 [Cl (9 + 8y) + = ] (2118)

o [Oow ow o [ ow ow
ow: MO+ — MO MO+ MO
v ox (81‘ + oy Y oy Oy \ Or + oy Y
oM amY M3 92MP) 2P
+ Tz + Yz + 1 T 2 xy 4 vy

ov :

ox? * 0x0y 0y?

~(0) ~(0) ~(0) ~(0)
g OMzs n OMay n 190 [OMyy n OMazy L FO
Ox dy 20x N

M) aMyz L1 (oG ocy
2\ Ox dy
= (2 0
T ams or Oy
(96, 96, i 0%
T\ oy Ty ) T\ T o
2 92 @2 92 mg 82 ¢z 82 ¢z
x? + 8y2> _?<ax2 + 0y? }
+ Mot + mab, + magd, (2.119)
oMy o) 1 (oM omP)  omY
T + ry 5 Ty + vy 2z

00, :

M)
ox dy we T ox dy Ay

1oCM
2 Oy

1 40 (1)
56% <8M +8M + oMY + O+ O(°)+

ox Jy
— i+ 10f, — g 99 _ i [cl (9; 4 %) i 18@] (2.120)

ox 3 Ox
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oMy anly) 1<aM§£2 oML aMS?)
00, : + — 3 —

MO _
dy Ox Yz ox * dy ox

2 0z

(1) (L) A (1)
ox dy v 2 2 Ox

s 00, . O, 196,
R [ (9 ) 38] (2.121)

20 ) 20/ )

== mlv + mgey -

8M3?Z

3x2 3x8y

dy
_(9M§,Z B <8Mm M%) 3 < ML?)
o

ox By ox - dy

L (of2  of”\ oot ao
+ = +
2\ Oz dy Jy ox

_1 8u oV o 89 80

=2\ 9z T oy oz

o (9% o, a%z a%z
2 \ 022 " 0y? 8x2

% 0*w .
e (37 ; Wﬂ T gt 4 mafi, + madh, 2.122)

1 {2MmP MG o)
X . (1) - T xy vy
36, : 2M (! +3< 5 e, T oy
Lo (M oM o fomel | oM
oy ox dy ox dy
L0 (omE oM\ 1 (on? o acs
ox ox dy 3\ Ox oy dy
o0y o 1 i ov\ . (06, 08,
e T3 m?’(a—x*a—y)*W ot oy
g (00 20\ | me |1 (6. 0
2 \ Ox2 2 3 |3\ 022 Oy?

)
82 82
+ (a_w B )] + Mgt + msl, + mad. (2.123)
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with

fg(i) _ fgi) _ leg(HQ)’ My = M; — C1M(i12),
é& = 05(1) - ClCS(H_Q)v CE = C(Z) - CQC(H_Q)v éf = Cf( + C H_Q)
) _ 0 @+2) D = O e O
Mg, = M) — exMg,™, Mg) = M) — eiM, ™,
NONYIO (z+2) AD — Aq@ (Z+2
Mﬁz - Mﬁz M ’ MEW - M5’7 M ’

and M{) = M) + e, MG

where ¢ and 7, both take on the symbols x, y, and z, and + = 0,1,---. The boundary
conditions involve specifying the following generalized forces (including the Kirchhoff
free-edge type boundary conditions; see Reddy [6,7]):

oMY N oMY
dy dy

1
ou: 0=MDn, +MSn y+2< )ny+50§°>ny+t§£> (2.124)

(0) (0)
ov: 0=M0 nm—i-M 2<8J;/;“+6/;;W>nm—%c nm—i—t (2.125)
ow ow ow ow
Sw: 0= ( o MO 4 3y M<°>) ( 3y M+ o sz>) n,

L (o oney o foms) ony)
! ox oy * ox dy Y

CLfome oMy 1 oMy oMy
2 ox oy Y2 Ox dy ’

+ (MOn, + MOny) + co (MPn, — MPn,)

1/~ )
+ e ([0ns + fny) + 5 (Cn, — EOm,)

+ "+A9"_@3_9;_ @+1395z
|t T Aty 2 Oz M6 | @ oxr 3 0x M

ms 00
2 0y

+c1 | mal + 1yl —
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o0
on

00,

00,

00.:

000,
on

0,

DM,
+a—g 0 (2.126)
S
0=c, MO (2.127)
. . 1 (oMY omSY) 1.
= Mn, + Mé;)ny + 3 < B + 8yy ny + 3 Wy, +
1 _ _ _
+ 5 (MEne + Myin, — MEn,) (2.128)
. 1 oM  omy 1.
_ 1 1) zz Yz 1 1
0=M3n, +M3)n, — 3 ( T P §O§ "ng +t{)
1 - _ _
-5 (MOn, + MOn, — MDn,) (2.129)

1| (omZ  oMmS) oM oMY
025 o Ny + 3y Ny | + o Ny + 3y Ty

oMb oML M) OMS)
— MOy e Yy Ty vy
M In, ( o + By ny + g + dy Ny

1
+ MOn, + 3 (fPn, + fPn,) — CPOny + CPny +

1 m 06, o 104, )]
+§ moti 4+ Mg, — ms | c1=— + Ny

2 or or ' 3 Ox

g madd di | 106,

5 maov -+ M3uy 5 8’3/ ms | C1 8y 3 ay Ty

10M2

z 2.130
+ 55, ( )
1

0= §M7§3) (2.131)

1| (oM oM oMy oMY
025 o Ny + 3y Ny | + o Ny + 3y My

oM aMé?;)>
+ Ny

+2(MUn, — MPn,) — (

ox dy
(oM oMY oM
ox oy 3 0Os
1
+3 (fOn, + fPny) — CPny + CPny 4 2
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— |mgt +mub, — —— —mg | c1—
3 3 4 2 Oz S\ "oz
— [msv + myub, — — —mg | c1—
3 3 40y 2 oy 6 18y
P 1
0= -M®
on 3 "
where

ns

199:
3 Ox

106,
+§ dy

)

Ty

(2.132)

(2.133)

M) = (M) — M) ngny, + M) (n2 —=n2), ML) = MOn2 + M{In2 +2M{)n,n,

vy

forv = 1, 2, 3. The conditions in Egs. (2.75) to (2.84) are still assumed to hold. This third-

order theory is an extension of the theory developed by Reddy [78] to modified couple

stress theory.

2.6.2 The Reddy third-order theory

The Reddy third-order theory (Reddy [21,22,78]) is based on the displacement field

in which 6, = 0 and ¢, = 0; when the top and bottom surfaces of the plate are required to

be free of any tangential forces, we obtain

¢r =0
wx = <61+ gzj)
be:O

Thus, the theory is a special case of the one derived in the previous
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(2.134)

(2.135)

(2.136)

(2.137)
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deduced by setting 0, = 0, ¢, = 0, ¢, = 0, and ¢, = 0. Then the strains are

(0) (1) 23 (0) (2)

Exx Exx Exx T €2z Ezz €22
e (= (A Ew [T e (o (e =
Yoy vy 1y 1 YTy Ve 7
where
() bu | 1 (0w)? (1) o (0)
Exx % T3 (%) Eax s €27 0
W= mer(E) ey B e
e ) (g gee] e Gera) | Oy + 5
E2 % 2y g;? 0
eP) b =—a % ‘3271; cand ¢ A2 b =—c 00, + w
\%(c?/) ) %_9; % + 2% %(/z) 0, + aa_z)

It is clear that the transverse normal strain ¢, is identically zero. Consequently, o,

does not enter the strain energy expression and we use the plane stress-reduced constitutive

relations
4 3\ B I 4 3\
fo 1 v 0 0 Egp — QAT
Tyy v 1 0 0 Eyy — QAT
FE
O =Tz [0 0 5% 0 0 Yo (- (2.138)
\ Oyz y, _0 0 0 0 1;_1/_ \ Vyz Y,

and the stress resultants must be expressed in terms of the strains using the constitutive
equations in Eq. (2.138).

The equations of motion and natural boundary conditions of the Reddy third-order
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theory are obtained from Eqs. (2.117)—(2.123). The equations of motion are

gu.  OM oMy 10 (oME oM g 10CY
’ Ox Oy 2y Ox oy e 2 Oy
= moii + mi6, — msey (ém + g— (2.139)
xXr
. oMLY . oMy 19 (oMY . oMY o 190
‘ Ox oy 20x ox oy 4 2 Ox
= mot 4+ myf, — msey ( 6, + g—y) (2.140)
0 [ Oow ow 0 [ ow ow
. — (= p0) o 2 pr(0) — ( Z= MO 4 ZZ pf00)
ow ox (&E v T oy Y + oy \or " + oy %

. oMY . oM, . 0* MY . LMy . 0* My
c
Oox Jy " 0s2 0xdy 0y?

_10 (oM oMY\ 10 (oM | OMYy
20y ox oy 20x oy ox
e o | fome oMyl
2\ Oy ox 2 dy Ox
of of o dii 9
+C1( p + ay + F;7 = mo + ¢ {mzz (%—i_a_y)

+ 7 80,,3 + % _ az_w + 32_11}
T\ o oy ame \ g2 0y?

5. oY . oMLy 70 4 L oMY . oMy omY
v ox oy o2\ Ox Oy oy
10 (oM  omy a1 1000
-9 @2 2 W), f) 4 LA 190z
+28y< p + By + M) + fr +20y +2 By
— i + ol — Thacy (éw n %> (2.141)
ox
(1) (1) ~(0) ~/(0) ~(0)
59 : aMyy + aMxy . M(O) . 1 a./\/l;m + a./\/lxy . 8Mzz
v dy ox =2 ox dy ox
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19 (oMY  omlY . 1_ 100
_ - zz _ (1) 1 _ 0) _ z
20x ( ox + dy Moz Jy

= 1y + el — ey <éy + 8522) : (2.142)

The boundary conditions are of the form

oMY . oMY

1 1
Su: 0=MOOn, + Még)ny 4= ( > ny + §C§0)ny +t9 (2.143)

2 dy dy

oML oMy 1
v: 0=MIn, + MOn, i vz o) (0) .
v: 0 ne + 2 ot o )" SO, + 1) (2.144)

ow ow ow ow

Sw - — M(O — M9 n, MO 4
w: 0 < o 5y ey Ng + 3y M, + o M

oMY

+ (MOn, + MOn,) + 1 + ¢

oM oML OMSy) oMy
+ TNy + + ny
ox dy Ox dy
CLfomE oMy 1 (oM oMy
2 ox dy Y2 Oz dy e

+ ey (MEny — MDn,) + o (fPn, + fiPn,)

1/~ . 0
+ 5 (CZSO)TL“C — Cio)ny> + |:(m3u + T?L40 — MgCy ’LU)

+

ox
L A
+ | msv + m49y — m661a—y Ny (2145)
96
8—:: 0=c; M® (2.146)
oM omy 1.
00,: 0= MDn, + M{)n = ¥z —CWn,, + M
2Ny + 2 g + By ny—|—2C’z ny + Ly
1 _
+3 (MO, + MOn, — MDn,) (2.147)
- . 1 (oM omy! 1.
00y 0= M)y, + My)n, — - ( 7+ ayy ng = 5Cn, + 1)
1, _ _ _
-5 (MOn, + MOn, — MDn,) . (2.148)
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The generalized forces (M, M@SQ, MQEZ) ) and the generalized couples M), ./\/13(12,

/\/lgfﬁ, M , M?(fz) ) are related to the generalized displacements (u, v, w, 0,,6,) by Eqgs.

(2.86) to (2.89) with
1 5
AP = =7 /_h(z)kE(z,T) dz (2.149)
Ak — (1_’/V2) /i(z)kE(z,T) dz (2.150)
1 3
B = m/h(z)kE(z,T) dz. (2.151)

2.6.3 The first-order plate theory

The well-known first-order plate theory is based on the displacement field in Egs.
(2.28) to (2.30) with ¢, = 0, ¢, = 0, ¥, = 0,9, = 0,0, = 0, and ¢, = 0. Then

the strains in Eq. (2.35) simplify to

Exx es 2 €2z ety 0
e O R S PR TS S CR LY
Yoy Yoy i ) e 752 0y + 5o
with
el Gu i 1(2u) el 2z
Wi mea) o Wy #
1y Su G Guoe o %o 4

The equations of motion and boundary conditions are obtained from Eqs. (2.53) —

(2.63) by setting ¢, = 0, ¢, = 0, ¢, = 0,v¢, =0, 0, = 0, and ¢, = 0. The equations of
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motion are

0) 0 (0) © (0
ox oy 20 ox 0y ¥ 2 Oy
= moii + my 6, (2.153)
) 0 MO (0
5 GM@%_A@y_lﬁ_&Mm +ﬂm_1&3
ox 2 0x Y 2 Oz
= mo? + m10 (2.154)
0 [ oOw ow
.9 MO 4 MO L 0
ow: o ( o ) ( MY + 5y —— M| ) (2.155)
OM,? 8My2) 1 g aMm M)
Ox y 20
10 (oM M act”  act )
55K idd ) 2(8x ay)—mwj (2.156)
) ) (0) 0) 0)
50:[ : aMx;p + 3Mxy . M(O) 1 a./\/l + aMyy N 8Mzz
ox y 2 ox dy dy
19 (oMY amY L1 1oc )
*33\ "ty ) + 104500 + 5 5, — i+ mal (2.157)
(1) (1) 0) 0) 0)
60 : aMxy + 3Myy M(O) _1 ame + aMxy . 8MZZ
v ox y v= 2\ Ox dy 8x
10 (oMY oaml) 190V ) »
5o\ ar T oy )+f?5 C(O 3 oy bt maby,

(2.158)

The natural boundary conditions of the theory are

oM omy) 1
ou:  0=MDn, +M9n, + - 5 ( s 8; )ny + écéo)ny +1¥ (2.159)

1M oMy
. _ 0 0 Tz Yz
v 0= MY+ b, - 5 (2

310 0) 5w 0) 8w (0) aw (0)
a[L’ Mmm a M ) + (%sz + 6_yMyy )Tby

1
)nx = 50, + 7 (2.160)

ow : O—(

51



1 <3M§£B aMé‘;))

MOy, + MO H0) _
L(OMy) | oM 1w )
5( 5 T ae et 3 (e =GPy 2.161)
1 1 aM(l) aM(l)
60:5 . 0= M(l) - M(l) _C(l) - Tz Yz
2z v + xyny+2 Z?’Ly+2 I + ay ny
1
3 (Mioy)”x + My — Mi?ny) + 1! (2.162)
1 1/oMY  amY
00, : 0= M(l) - M(l) _ _C(l) i Tz yz i
! oy Mo T My My = 502 e o\ T T Ty "
1
2 <M§”%x My - Milz)"w) +ty) (2.163)

The generalized forces and couples are related to the generalized displacements through

Eqgs. (2.86)—(2.89) with the coefficients A%, A% and B defined by Egs. (2.149) to

(2.151). Note that the shear correction factor must multiply the coefficient Bﬁ) when
computing the transverse shear forces.
2.6.4 The classical plate theory
The classical plate theory is obtained by setting
ow ow
Op=—+, 0,=—F7+ 2.164
ox v oy ( )

and ¢, = ¢, =V, = ¢, = 0, = ¢, = 0 in the displacement field of Egs. (2.28) to (2.30),

giving

ow
- L 2.1
ul(xaya Zat) U(I’,y,t) Z@x ( 65)
us(z,y, 2, t) = v(z,y,t) — Z@_w (2.166)
dy
us(x,y, 2z,t) = w(z,y,t). (2.167)
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The equations of motion are obtained from the Reddy third-order theory by invoking
the conditions in Eqs. (2.134) to (2.137) and setting ¢; = 1, ¢ = 0, ¢, = 0, and ¢, = 0.

The equations of motion are

su: OMr + OMzy L19 OME) | OMy: + O 190
Oz oy 20y Ox oy “ 2 Oy
— i — ml% (2.168)
(0) (0) (0) (0) (0)
U T dy  20¢\ oz By v o
= Mot — mlaa—l; (2.169)
0 (ow ow 0 (ow ow
o =0 4 2 pp(0) — ( Z= MO 4 ZZ pg0)
ow ox <8$ v T oy Y + oy \or ™ + oy Y
. o2y . oMY .\ 232M§§} 9 (oMl . M)
0x? oy? 0x0y dy ox dy
L9 M) . oMY L0 £ L0 fY ooy . oci
ox oy ox ox oy oy ox
oi 0V 0w 0%
(0) — R’ 27 - i T
+ F moeW + My (83: + 8y> Mo (83:2 + 83/2) (2.170)

and the boundary conditions are

ou: 0=Mn, + M;‘?ny +

1 (oM omy) 1
—(M 1 oMy ny+§cgo>ny (2.171)

2 ox dy
1 (oMY omY 1
ov: 0= Még)nx + M;g)ny —3 < g/lx + /;;y Ng — §C§O)nx (2.172)

ow . oy Ow . ow o Ow .

oMy oml) oMYy oMy
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x y x y

8/\/((0) aM(O) aM(O) 8./\/1(0)
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i i
+ ngo)nz — Céo)ny + my (tUng, + ny,) —my ( v + —wny)
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o (2.173)
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3. ANALYTICAL SOLUTION *

Analytical solutions of the general third order plate theory developed in the section
2 are presented using the Navier solution technique for bending, vibration, and buckling
problems. The geometrical nonlinearity is not considered for the analytical solution since
the Navier solution technique is limited to linear case and only for simply supported rect-

angular plates.
3.1 Linear strains

The linear strains are based on the assumption of small strain and small rotation. By
this assumption, any higher order terms (i.e. higher than linear) are omitted. The linear

strains of the general third order plate theory based on the displacement field of Egs. (2.28)

—(2.30) are
( ) ( ) ( ) ( ) ( )
Eaa ) el e )
0 1 2 3
Eyy 61(131) 5?(Jy) 57(421) 51(131)
| e ol e |
= + z + z + z (3.1
284y 25;%) 25%) 25%) 25%)
2¢,. 2¢) 20 2% 21
(0) (1) (2) (3)
\25yz ) \25yz ) K25yz ) \25yz ) \25yz )
where

*Reprinted with permission from "Analytical solutions for bending, vibration, and buckling of FGM plates
using a couple stress-based third-order theory" by Jinseok Kim and J.N. Reddy, 2013, Composite Structure,
vol. 103, pp. 86-98, Copyright 2013 by ELSEVIER.
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e Qu et %
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51(/y) g_y 5541/) By
e [ _ 0, el B 20, 3.2)
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2¢) u 2 2ely) P | G
2¢l9) 0, + % 2e4) 20, + %=
(0) dw (1) a0,
\25312) \6y+8_y/ \2€yZ/ k2¢y+8_y)
\ \ ( ) ( 3\
el ar el u
2 P 3 96
51(11/) aiyy 53(Jy) a_yy
e? 0 e¥ < 0 (33)
SRON N T A PON B F e '
Yy 8’!./ oz ry 8y ox
2:() 30, + 2= 2:(Y 0
(2 ¢z (3)
\25yz \31/1?, + o ) \25yz ) 0 )

The rotation vectors and curvature tensors defined in Eqgs. (2.36) — (2.45) do not changed

for geometrically linear problems.
3.2 Isothermal constitutive equations of FGM plates

We assume isotropic plate with variation of two constituents through thickness. The
constitutive relation in Eq. (2.85) is modified for the linear constitutive equations of the

isothermal and isotropic plate:
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1—v 1% 1% 0 0
v 1—v v 0 0
v 1% 1—v 0 0
A
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0 0 0 0 %(1—2y)
0 0 0 0 0 %

] \

0 €z

0 Eyy

0 €z

0 Eay

0 Exz
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3.4)

where A = E/[(14+v)(1—2v)]. In the equation (3.4), Young’s modulus, F, varies through

thickness direction according to the power law distribution in Eq. (2.9) and Possion’s ratio,

v, 1s assumed as constant. The generalized forces and couples with the absence of thermal

coupling can be expressed as

M) L o AT Al Al
A R TR R S PR
w7 e T Al aw
MY Lo . B®» o0 0
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M2 oo oBY
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i k k—i
M) - R

h
. 2 i s
Mo = / e (@=L 0 BE 0 | 4 (3.8)
. T2 k=i .
M) my. 0 0o B®||yE?

where m;; are couple stresses m;; = 2@62)@ and plate stiffness (Aj1,A12, B11, and Byy)

are
1 h
Al = —v / 5 .
11 (1 + l/) (1 . 21/) T (Z) (Z) dZ (3 9)
2
3
A = - / 5 1
1 3
(k) _ k
By = 20+7) /_g (2)" E(z)dz (3.11)
w_ O[T
By = a5 /_g (2)" E(2)d=. (3.12)
The resultants of moduli are following
h
2
E, = / “WE (2)dz (3.13)
h
—2
Mr+n
Ey = Eyh 3.14
0= Eph——= (3.14)
2 —
B - Eyh* (Mr—1)n (3.15)
2(n+2)(n+1)
Eyh® (n® +3Mrn? 4+ 3n? + 3Mrn + 8n + 6 Mr)
E, = (3.16)
12(3+n)(n+2)(n+1)
2 1) hé
B - (n*+43n+8) (Mr — 1) h*nE, (3.17)
8n+4)B+n)(n+2)(n+1)
Eyh® (5MrA A
E4: bh (5 rTA+n 2) (318)
80(5+n)(n+4)(3+n)(n+2)(n+1)
b — Eynh® (n* + 1003 + 5502 + 110n + 184) (Mr — 1) (3.19)
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Ebh7 (7M7’A3 + NA4)

B — 3.20
ST BT 640G+ +2) i+ ) BLn) 1) (3-20)
where
1 z\"
B = (BB ] () + Bl ()= (3+7)
A =n*+6n°+23n% + 18n + 24
Ay =n* + 1013 4 55n% + 110n + 184
Ay = n® + 15n° + 115n* 4+ 405n° + 964n% + 660n + 720
Ay =n® 4 21n° + 217n* 4+ 115513 + 3934n> + 6384n + 8448
E,
Mr =—
Ey
and the subscripts ¢ and b indicate top(z = %) and bottom(z = —%) surfaces. The figure

3.1 shows the variation of the non-dimensional resultant of Young’s modulus in terms of
power law index n. It is clear that the maximum value occurs at n = 0 and the resultant
of Young’s modulus decreases with larger value of n since we assume that material on top
surface is stiffer than one on bottom surface.

The equations of motion of the general third order plate theory has been derived in
the section 2 using the principle of virtual displacements (2.46). The derivation is based
on the nonlinear kinematic relation, a modified couple stress theory, and the variation of
two materials through thickness. The nonlinear kinematic relation is simplified to linear
strains in Eqs (3.1)—(3.2). Substituting the kinematic relation (3.1) and the constitutive
relation (3.4) into the generalized forces (3.5) to (3.8), we obtain the equation of motion of

the general third order plate theory in terms of the generalized displacements. The derived
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Figure 3.1: The non-dimensional resultants of modulus [2]

linear equation of motion can be expressed as following
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3.3 The Navier solution

Analytical solutions for a simply supported rectangular FGM plate is obtained using
Navier solution technique. The dependent unknowns(generalized displacements): u, v, w,
0z, 0y, 0., Oz, Gy, @2, ¥z, ¥, and external load ¢, are expanded in double trigonometric
series. The trigonometric functions are selected according to the boundary conditions of
problems. To derive algebraic relation in terms of generalized displacements and known
coefficients, the expansions of dependent unknowns and the external load are substituted
into equation of motions (3.21) to (3.31). The external load ¢, is only defined for the
bending analysis and other external forces and body forces are omitted. For eigenvalue
problems, free vibration and buckling problems, ¢, is also omitted from the equation of

motion.
3.3.1 Boundary conditions

Figure 3.2 shows the geometry a rectangular plate. a and b denote the in-plane dimen-

sions along = and y coordinate and / denotes the height of the plate.

y z

Figure 3.2: The geometry and coordinate system for a rectangular plate [2]
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The boundary conditions of a simply supported rectangular plate can be expressed as

u(z,0) =u(z,b) =0,

¢ (2,0) = ¢, (x,b) = 0,
v(0,y) =v(a,y) =0,

¢y (0,y) = ¢y (a,y) =0,

w (2,0) = w(z,b) = 0

0. (2,0) = 0. (,b) =0,

¢ (2,0) = ¢, (x,b0) =0,

ML) (0,y) = M) (a,y)

M) (0,y) = M) (a,y) =0,

where ¢ =0, 1, 2,3 and 5 =0, 1, 2.

0, (z,0) = 6, (x,b) =0,
Y (2,0) = 1y (2,0) = 0,
0y (0,y) = 0y (a,y) =0,
Uy (0,9) = ¥y (a,y) =0,
w(0,y) = w(a,y) =0,

0.(0,y) =0.(a,y) =0,
¢. (0,y) = ¢, (x,0) =0,

=0 M) (2,0) = M) (z,b) =0,

3.3.2 Expansions of displacements

M) (2,0) = M) (2,b) =

The displacements are assumed as the series of double trigonometric functions that

satisfy boundary conditions in section 3.3.1.

u(z,y,z,t) =

v(z,y,2,t) =

w(x,y,2,t)

0, (z,y,2,t) =

0, (x,y,2,t) =

cos (ax) sin (By)

ZZUmn

m=1 n=1

ZZan

m=1 n=1

sin (ax) cos (By)

- Z Z Wmn (t) sin (ax) sin (By)

Z Z ©,mn (t) cos (ax) sin (By)

Z Z ©,mn (t) sin (ax) cos (By)

m=1n=1
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0. (z,y,2,t)=> > O.mn(t)sin (az) sin (By) (3.37)
G (@,y,2,8) = Y Y Domn (t) cos (ax) sin (By) (3.38)
by (z,y,2,t) =Y Z ®,mn (t) sin (az) cos (By) (3.39)
6. (w,y,2,8) =D > ®.mn (t)sin (az) sin (By) (3.40)
Yo (2, 2,8) = > Y Womn (t) cos (ax) sin (By) (3.41)

Yy (r,y,2,t) = Z Z U, mn (t) sin (ax) cos (By) (3.42)

m=1 n=1

where o = =%, b= “%. The generalized displacement coefficients (Umn, Vmn, Wmn,
0,mn, O,mn, ©,mn, ®,mn, &,mn, ®,mn, ¥Y,mn, and \I/y) are treated as time inde-

pendent variables for static bending and buckling problems.
3.3.3 Bending analysis

By substituting Eqgs. (3.32) to (3.42) into Eqgs. (3.21)-(3.31) and omitting the inertia
terms, we have algebraic relations for bending problems in terms of the known coefficient
matrix and load vector and the unknown generalized displacement vector. The distributed

transverse load is also expanded in double trigonometric series in Eq. (3.43).

q. = Z Z Qmn (t) sin (ax) sin (By) (3.43)
m=1 n=1
where
4 a b
Qmn = —/ / q.sin (ax) sin (By) dxdy. (3.44)
ab Jo Jo
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The algebraic equations are

(70101
C'0201

(70301

(70102
C'0202

(70302

(70103
C'0203

(70303

(70110

(70210

(70310

(70111
(70211
CY0311

o, mn
d,mn

v, mn

{ v, mn )

4

(3.45)

and to distinguish ¢=1 and j=11 from =11 and j=1, the subscript ¢ and j vary 01 to 11.

The known coefficients C;; in Eq. (3.45) are following

1
Coun = Affo® + BY 8 + B (5" +o*5?)

1
Coroz = ADaB + BV as — ZBQ (@B +af?)

Coio3 =0

1
Coos = AiYo? + BYY 8% + ZBE) (a®8% + %)

1
Coros = AN aB + BYas — ZBﬁ) (@B + af?)

Coio6 = —Aﬁg)a

1 |
Couor = A’ + BY S + 3B 6% + 181 (o257 + 5Y)

1 1
Coros = AZaB + BPap — 55?})@/3 _ Zsi? (a®B + aB?)
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Coros = —2APa
Cono = AP 0? + B® g2 + 8(1)62 + B ' (a?8% + 8Y)
Corn = AP aB + BPap — —B“) B— ZBll (a8 +ap?)
Coonr = AYaB + BYap — ZBY (a8 + ap?)

Cozoz = ADB% + BYa? + Bﬁ’) (o' + a?p?)

Co203 =0

Co2o4 = A%)aﬁ + Bﬁ)aﬂ - EBS) (0435 + O‘Bg)

Coz0s = Aﬁ)52 + BS)O‘Q + EBS) (a* +a?p?)

00206 = _Agg)ﬂ

Co2o7r = 12 Oéﬂ + Bn af — —B(O) B - 18(2) (agﬁ + O‘ﬁ?))
Cozos = AP 82 + B o2 B(O) 24 B ' (ot + a23?)
Cozs = —2A13 8

Cozo = AP as + BPaps — —B“) B— 16(?” (a8 + af?)
Coor = A2 + B a? + B(” : 4 B "o+ a?8?)
Cozor =0

Cozoz =0

Conos = BYY (02 + 57) + 351 (0" + 5*)

1

ZBQ)OJ?’

Cosos = BB — —511 B

Cosos = BS)Oé —

Clsos = B&) (a2 + 52) + ZBS) (a4 + 54)

1
00307 = QBE)CY — QBS)CYS
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L a
§B§1)53

Co = B} (02 +57) + 3B (o' + )

Cozos = 238)5 —

Cosio = 3B Bﬁ
Cos11 = 3311 p— _811 ) g3
Coior = AYa? + B 2 + B“)( 262 4 g4

Coas = Al af + BiYas — ZBS) (@B + af)

1 0
4851) 3

1 1
Couna = Ao’ + BY + BIVS* + 181 (o +28°) + 1B (8" +a’57)

Cosoz = Bf?)a

Cosos = A%)CYB + Bﬁ)aﬁ - %Bg)aﬁ - iBg) (0435 + 0453)

Coaos = —A%)a + Bﬁ)a — 188)043

Coior = A o? + 2B + By 8* + - B n (o +35%) + [511 (a?B% + )
Coaos = 12 065 + Bll af — _B(U s - ZBll (0‘35 + 0453)

Coso9 = —2A12 a+ B§1)o¢ — iBﬁ)oj”

Cono = AfYa? + 3B} + BiY 8> + 25’5? (a2 +462) + EBY? (a2 + 5%)
Com = AYap + Bllap — 380 ap — 1B (a% + )

Coson = Ay + Byyaf — —B(l) (@’8+ap?)

Cosoz = AV B + B a? + ZBS) (o' 4+ a*B%)

1

1552)53

1
Coss = A0 + Bag — SB0as — (B (a5 + oz63)

Cos03 = B{?)ﬁ -

Cosos = AD G + BY + BYa? + 1B (207 + 7) + 1B (o + o2)

Cos06 = —A(112)5 + B(l)ﬂ —Bﬁ)ﬂ?’
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1
Cosor = AV aB + BB ap — -B(” 8- ZBS’;) (a®B + aB?)

2 (1) ()21(1>221<3>4 2 22
Cosos :Anﬁ + 2B +Bna "’5811 (304 + B ) +ZBH (O‘ +a”f )
1 e
15&)53

1

Cosi0 = A%)Oéﬁ +BYas - 38%as - ZB%) (@B + af)

Cos09 = —2A§22)ﬁ + BS)B -

Coonr = A8+ 387 + Bt + 1B (0% + ) + 3517 (o' + a*7)
Cosor = —Ag)oz

Cosoz = — AW B

Coors = BEY (07 + 57) + 3517 (o* + 5*)

Cosos = —A 5o+ B( _ _B(l) 3

Cosos = —AYB+ BWg — —3(1)53

oo = A9+ BY (o + 37) + 52 a1 1)

Cosor = —A%)oz + QBﬁ)a — %Bg)oﬁ

Cons = ~ A5+ 285~ 38

o = 2480+ BY (o ) + lsg? (a4 8

Cosro = —APa +3BP o — _611

Coe11 = —Ag)ﬂ + 3311 B— ZBS)B?’

Corr = Aa® + BB + 8“”52 + 811 (28 + B

Coroz = Ag)aﬁ + Bll aff — 535(1))045 - 1311 (B + aB?)

Coroz = QBS)(M — %Bﬁ)a?’

Comon = Ao 428+ B+ 3B (o 4 35%) + 1817 (0257 + )

1
Coros = A ap + Bap — 2B ap — B (a% + af)
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1
2

1
Coror = Aﬁ)O‘Q + 4B§1) + B11 52 + 811 + Bﬁ) (a2 + 352) + ZBYP (04252 + 54)

Coros = _A(122) + 23§1 - —Bn Bﬁ)of’
1
Coros = Ao+ BYap — 38008 — ZBﬁ) (a®B + af?)
1

Coro9 = —214%)04 + QBﬁ)Oé - Bgll)a - 569043

R G)) (3) 2 (1) (3) 2 (5) [ 202 4
Corio = AjY o +6B); +B '3 + 3By, + B (30 +105)+ B (a?B8% + %)
Cory = A aB+ BPap — 58P as — ZBH (a®8 + ap?)

1
Cosor = AZaB + BPap — —B(O) 8- —15’(2) (a®B + af?)

Cosor = A B + Bil o’ B(O) “+ B (ot + a23?)
1
Cosos = 2BY 3 — 588)53

1
Cosor = AV aB + BB ap — —B“) 8- ZB&? (a®B + afB?)

1 1
Cosos = AWB® +2B1) + BiYa” + 281 (30% +57) + 281 (o +a’4")
1 o 1 (o
§B§1)ﬁ - 5351)53

1
Cosor = AWaB + BYap — 38008 — ZBﬁ) (a®B + af?)

Cosos = —A%)ﬂ + QBS)B —

oo = A5+ 45D + B + BY + B (307 + ) + LY (ot 4 0299
Cosos = —2A%Y B+ 2B 3 — BB — %Bﬁ)ﬁ?’

Cosio = A aB + B af — 5B ap — 13<5> (a®8 + a8?)

Cosnt = A8 + 65 + B + 361 + LB (1002 +38°) + 1BY (o* +o26?)
Cooo1 = —2A§12)04

Cogo2 = —214512)6

Cooos = B} (0?4 B%) + %185? (o + %)

1
Cogos = —2A§22)a + Bﬁ)a — ZBS)Q?’
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Cogos = —2A§22)ﬁ + BS)B — %Bﬁ)ﬁ?)

oo = 248 + B (02 +.57) 4 3B (02 +.5°) + 1B " 4.5
Cogor = —214&32)04 + ZBﬁ)oz — Bﬁ)a — %Bﬁ)a?’

Cooos = 2435+ 2B 5 — BY s — 2B

Coono = 441 + BiY (0® + 5°) + BYY (o® + %) + 8(4) (o + 8%
Cogro0 = —2A12 a+ 3Bﬁ)04 — 38(2)@ _ §B(4)043

Cog11 = —QA%)ﬁ + 3B(4),3 38(2)6 — —B 5

Cuom = A2 + B G + B0 5 + 2B (28 + 5

Ciooa = A + BJlaf — JBVas — 1B (%8 + af)

Choo3 = 338)04 — ZBﬁ)oﬁ

Crons = AfYe® + 3B} + BYY 8 + 7 B @ (a2 +45%) + iBﬁ) (0282 + 5*)

Choos = AlYaB + BYas — 3[5(2)@5 — —B{i) (a®8 + ap?)
3
1

1
Cioor = A)a? + 6B + 3B + —Bll (302 4 108%) + 135? (a28% + %)

Cloos = _A(é) +33§1 - —Bn Bﬁ)a?’

Croos = ADaB + BPap — 58P a8 — isf? (a®8 + af?)

Cloog = —QA%)a + 3B(4)a - 38(2)04 — §B(4)a3

Choro = A0 + 9B + B9g? 4 9B | B(4) (90 4 308%) + 5’(6) (a26% + %)
Cion = +A12 af + Bn af — _611 af — 1311 (agﬁ + 0553)

Chrio1 = AIQ)aB + Bﬁ’ af — —B(l) B — 13(3) (&35 + 0453)

Cioe = ATYB* + BfY o + 38(1) 2 B ' (ot + a3

3

B S

Chiioz = 333)5 ~ 1
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Cuuon = A ap + B — 38Jap - 1B (036 + ap?)

Cuos = A2+ 3B17 + B{Ya? + EBE? (40% + %) + iBﬁ) (a* +a?p?)

Cuun = — A8+ 3816 - BV 5 - 1B

Cuur = Afap + BYap — 5B as - 1B (a°8 + o)

Cuos = A+ 6B + BYo? + 38 + JBY (100% +35%) + 181 (o' +075?)
Cuow = ~245 + 3808 - 3835 - 2B

Cuno = Aap + BYap — Blap — 1B (05 + ap?)

1 1
Cin = ARG + 9B + B o + 9B + 51 (300% +95%) + 1 BYY (o + o’5%)

and the coefficient for the transverse load, ()mn, is obtained evaluating Eq. (3.44) and

examples are following

164, . .
a 5 for uniformly distributed load
Qmn = { "nm (3.46)
4P . /mm\ . /nm .
—bsm <7) s (7) for point load at the center of plate
a

where ¢, and P are magnitude of the uniformly distributed load and the point load and
m=1,3,5,...and n = 1,3,5,.... The unknown generalized displacement coefficients,
Umn, Vmn, ..., and ®mn, can be obtained from solving Eq. (3.45) for each m, and n.

The displacements, u, v, ..., and 9, are evaluated by Eqgs. (3.32)to (3.42).
3.3.4 Free vibration analysis

For the free vibration analysis, the time dependant variables in Eqgs. (3.32)to (3.42) are

assumed as

Umn (t) = Umn x e~ ™ (3.47)
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O,mn (t) = O,mn x e ™! (3.43)

d,mn (t) = ®ymn x e (3.49)
Vmn (t) = Vmn x e (3.50)
O,mn (t) = O,mn x e ™! (3.51)
d,mn (t) = ®,mn x e (3.52)
Wmn (t) = Wmn x e ™" (3.53)
O.mn (t) = ©,mn x e ™! (3.54)
O.mn (t) = .mn x e ™! (3.55)
U,mn (t) = Uymn x e (3.56)
U,mn (t) = ¥,mn x e (3.57)

where w is the natural frequency. By substituting equations (3.47) to (3.57) and (3.32) to
(3.42) into the equation of motion, we setup the eigenvalue problem to determine eigen-

frequencies:

{[C] —w?, [M]}{U} = {0}. (3.58)

Here [C] is the coefficient matrix, [)/] is the matrix of inertias, and U is the vector of
generalized displacements. The matrix [C] is the same as the one in bending analysis, and

the coefficients of the matrix of inertias are

MOlOl =My M0102 =0 M0103 =0 M0104 =my M0105 =0 M0106 =0
M0107 =My M0108 =0 M0109 =0 MOHO =ms MOlll =0
M0201 =0 MO202 =My M0203 =0 M0204 =0 M0205 = M0206 =0

Mogor =0 Moges = ma Mupggg =0 Mp210 =0 Mg = mg3
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Mozor =0 Mogo2 =0 Mogos = mo  Mogoa =0 Mozos =0 Mozes = 1
Mozor =0 Mozos =0 Mogog = ma Mozio =0  Mozi1 =0

Mosor =my1 Mosoza =0 Mosos =0 Mosoa = ma Mosos =0 Mosos =0
Mosor =m3 Mogos =0 Mosog =0  Mogro =my  Mos1 =0

Mosor =0 Mosoz = m1 Mosos =0 Mosoa =0 Mosos = ma Moso6 = 0
Mosor =0 Mosos =m3 Mosog =0 Mosio =0 Mos11 = my

Mosor =0 Mogo2 =0 Mogos = m1 Mogoa =0 Mogos =0 Mogos = 12
Mosor =0 Mogos =0 Mogog = m3  Mogio =0  Mog11 =0

Mozo1 = ma  Mozo2 = 0 Moz03 =0 Mozoa = m3  Mozos = 0 Moz06 = 0
Mozo7 = ma Mozos =0 Moz09 = 0 Mozi0 =ms Moz =0

Mogor =0 Mosoz = ma  Mosos = 0 Mosos =0 Mosos = m3  Mosos = 0
Mogor =0 Mogo2 =0 Mogos =ma Mogoa =0 Mogos =0 Mogos = m3
Mogor =0 Mogos =0 Mogog = ma  Mogio =0 Mog11 =0

Mosor =0 Mosos = ma  Mosog =0 Mosi1o =0 Mog11 = ms

Migor =ma Migo2 =0 Mg =0  Migoa =m3 Migos =0  Migos =0
Moo =ma Miges =0  Migog =0  Migro =ms Mo =0

M1 =0 Mo =ma M3 =0  Mijoa=0  Mios =m3 M6 =0

M0 =0 Miios = my  Mirg9 =0 Mii10=0 Mii11 = ms

h
2

where m; = [?, 2'p (z) dz. The rule of subscripts are same as known coefficients matrix,
2

[C]. The scale of plate thickness may cause a badly scaled inertia matrix of GTPT since
higher order of plate thickness terms in diagonal. In such cases, the governing equations

(3.21) to (3.31) are needed to be dimensionless form.
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3.3.5 Buckling analysis

We assume that only in-plane forces act on each sides of simply supported plate and all
other mechanical and thermal loads are zero and inertial terms are omitted for the buckling
analysis. For buckling analysis, the additional terms ]\fm%‘é’ + ]\fyy%ﬁ are added to the
right side of the equation of motion (3.23) [6]. N;m and ]\fyy are the compressive loads

acting on edges of a simply supported square plate and the system equation of buckling

analysis becomes

Umn 0
Vmn 0
B 1 | Wmn 0
Coior - Coroz Co1o3 -+ Cono Cornn
e,mn 0
Co201 Co202 Co203 <+ Co210 Conn
e,mn 0
Coso1 Coszoz Cozos — No (042 + kﬁQ) -+ Cozio Cosii
§60,mn =40
®,mn 0
Croor Chonz Choo3 Cioo Clon
o, mn 0
Ciior Chioz Chios Ciio Cin
- - | ®,mn 0
v.mn 0
\ \Pymn Y, \ 0 y,
(3.59)
where Ny = —Nm, k = % To determine Ny, the condensation of variables procedure

is applied to Eq. (3.59), and all unknown coefficients except W mn are eliminated. The
equation (3.60) shows an expression of generalized displacements, ( Umn, Vmn, ©,mn,

0,mn, ©,mn, ®,mn, &,mn, ®.mn, V,mn, and ¥,) in terms of Wmn.
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where

00102
00202
C(0402

C10502

00104
00204
C’0404

C'0504

C10103
C(0203
C10403
C'0503
CV0603
C10703
C(0803
C109()3

C11003

)

COllO

00210

C’0410

C10510

(3.60)

After applying condensation of variables, we obtain the expression for the critical load N,

as follows:
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Coso1 Co103
Co302 Co203
Co304 Coaos
No = m Cos03 — 4 Cosos [C_'} Cos03 . (3.61)
Cos10 Choos
\C0311) kC1103)

3.4 Numerical results

Numerical examples of the analytical solution are obtained using the material proper-
ties and the dimension of the functionally graded plate from Reddy [35]. The dimensions
of functionally graded plate in Figure 3.2 are a = 20h, b = 20h, and h = 17.6 x 10~ %m.
The moduli and mass densities of two constituents are £, = 14.4G Pa, B, = 1.44G Pa,

pr = 12.2 x 103kg/m, and p, = 1.22 x 103kg/m.
3.4.1 Static bending

For bending example, The uniformly distributed load gy = 1N/m? is applied on top
surface z = % In this example, the number of summation in double trigonometric series in
Eqs.(3.32) to (3.42) and (3.43) is taken up to 31 for bending problems. Figure 3.3 through
3.5 show non-dimensional deflections @ (z, 2,0) with variation power-law index, n, in
Egs. (3.14) to (3.20) and the length scale parameter in Eq. (3.12). The microstructure
effects that are included using length scale parameter, ¢, makes the plate stiffer. It is clear
that the functionally graded plate becomes stiffer along smaller power-law index, n since

we assume that £; is larger than £, in this example.

82



0.025

(x,6/2,0)
o
Q
)]
(@]

3
0.015;
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0.005;

Nondim. deflection
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Distance, T = x/a

Figure 3.3: Non-dimensional deflection @ (x, 2,0) versus distance along a FGM simply
supported plate with various power-law index, n [2]

o
o
B

0.003}

0.002¢ ——{¢/h=0
——{/h = 0.3
—=¢/h=0.6

—0/h=1.0

o
o
o
=

Nondim. deflection W (x,b/2,0)

02 04 06 08 1
Distance, T = x/a

Figure 3.4: Non-dimensional deflection w (x, %, O) versus distance along a homogeneous

simply supported plate with various length scale parameter, ¢ [2]
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—~n=>5¢/h=0

-e-n=5,4/h=1.0
—-—n =10,/h=0
-a-n=10,4/h

0.005t /

Nondim. Deflection w (z,b/2,0)

02 04 06 08 1
Distance, T = z/L

Figure 3.5: Non-dimensional deflection w (m, g, 0) versus distance along a FGM simply
supported plate with various power-law index, n and length scale parameter,

(2]

3.4.2 Natural vibration

The natural frequencies of the simply supported square FGM plates are obtained using
Eq. (3.58). The fundamental frequencies are obtained when m = 1 and n = 1. Unlike
homogeneous plate(n=0), the resultants of Young’s modulus, F, Ej3, and E5, of FGM
plates in Egs.(3.15), (3.17), and (3.19) are nonzero and vary with power-law index, n.
Figure 3.6 clearly shows the the natural frequency of FGM plates varies with power-law
index,n in similar form with variation of those resultants of Young’s modulus in the Fig.
3.1. Table 3.1 contains the non-dimensional natural frequencies for various length scale
parameter, ¢ and power-law index, n. The consideration of microstructure effects increases

the stiffness of the plate and the magnitude of the natural frequencies.
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Figure 3.6: Non-dimensional fundamental frequency, w versus power-law index, n [2]

Table 3.1: Non-dimensional fundamental natural frequencies of simply supported plate

Power-law index, n

bgrl g 1 2 3 i 5 6 7 8 9 10
0| 610 539 522 532 551 571 588 604 617 627 636
05| 931 887 877 883 895 907 918 928 936 943 949
1.0 | 1525 15.00 14.95 1498 15.05 15.12 15.18 1524 1528 1532 15.36
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3.4.3 Buckling

The critical loads for FGM simply supported square plates are obtained using Eq.
(3.61). The same magnitude of compressive loads, Nm = Ayy, are assumed for a square
plate. The minimum critical load is obtained when m = 1 and n = 1 in double trigono-
metric function. The critical loads with various length scale parameters and power-law
indices are shown in Figure 3.7 and Table 3.2. For larger length scale parameter, the FGM
plates become stiffer and have larger critical load. It is shown that we can control the
critical load for the FGM plates with predefined configuring material variation through

thickness direction.

120 —

——t/h=0
¥ = a2 -+ {¢/h=10.5
00 No=Nogm e t/h =1

Nondim. critical load, N
o
o

(0]
o

>

N
o

ZO\M‘ | | :

% 1 2 3 45 6 7 8 9 10

Power-law index, n

Figure 3.7: Non-dimensional critical load versus length scale parameter,/ along a FGM
simply supported plate with various power-law index, n [2]
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Table 3.2: The non-dimensional critical loads of simply supported plate (NO =

Nga?
Eyh3

) 2]

o/h Power-law index, n
0 1 2 3 4 5 6 7 8 9 10
01890 811 553 467 432 413 402 393 386 380 3.74
0514396 2195 15.61 1287 11.38 1044 979 930 891 859 8.32
111180 62.82 4537 37.05 32.20 29.01 26.75 25.05 23.72 22.66 21.78
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4. FINITE ELEMENT MODEL *

4.1 Approximation of nodal variables

The displacement based weak form Galerkin finite element model for the general third
order plate theory is developed using the principle of virtual displacements (2.46). The
explicit forms of the virtual energies and the virtual work done by external forces are pre-
sented in the section 2. The principle of virtual displacement (2.46) contains the second
derivative of dependent variables, (u, v, w, 8, 0y, 0., ¢, ¢y, G2, Vs, 1,). Therefore, they
can be approximated using the C'! interpolation functions. The finite element approxima-

tion takes the form
AXp

UD (z,y) = > AP (2,9) (4.1)

j=1
where U! is the dependent variables, p is number of nodes in an element, the superscript

I indicates Iy, variable of anode, e.g. UV = u, U®) =0, U®) = w, UY = 4,, and so on.

(1)

Ag-l) is the nodal variables and their derivatives of j** node, and ©; (z,y) is C'' Hermite

type interpolation functions. In this study, we used a C!' conforming element which has

o2y D)
Oz0y

n ouh su)

four degrees of freedom(U (0 or 0 oy and

) per node [9]. Since the general
third order plate theory has 11 dependent variables, the total degrees of freedom per node
becomes 44. Figure 4.1 shows arrangement of typical nodal variable, Ay) . The typical

nodal variable is defined as

where k = 4 (n — 1) and n is node number.

*Reprinted with permission from "A general third-order theory of functionally graded plates with modified
couple stress effect and the von Karman nonlinearity theory and finite element analysis" by Jinseok Kim
and J.N. Reddy, 2015, Acta Mechanica, vol. 226, pp. 29732A$2998, Copyright 2015 by Springer.
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>
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A, AL A By

Figure 4.1: Arrangement of nodal variables for 4 node micro plate element

4.2 Displacement based weak-form Galerkin finite element model

By substituting the displacement field (2.28)—(2.30), the kinematic relation (2.35),
(2.36), and (2.41), the constitutive relation (2.23) and (2.24), and the finite element ap-
proximation (4.1) into the principle of virtual displacement (2.46), we obtain the following

the finite element model of the general third order plate theory in generic matrix form
[M{U} + [K]{U} = {F} (4.2)

where [M] and [K] are mass and stiffness matrices, and {U} and {U} are the acceleration
and the displacement vectors respectively. {F'} is the force vector. The mass and stiff-
ness matrices has 11 by 11 square submatrices, and the acceleration, the displacement,
and the force vectors have 11 subvectors whose sizes are 4 times number of node in an
element. The simplest rectangular element (4 node element) has 176 degrees of freedom

per element. The explicit forms of nonzero mass are

M = / m O dudy 43)
Q

MY = / mW M oW dady (44)
Q
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11
g = [ o,
Q

where the resultants of mass (m(’“)) are

The stiffness matrices of the developed finite element model are

a()
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Oy 0p;
or Ox

090}
dy
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66
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+4<44a2 o2 % oy ozoy ) Y
(2) ( )
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iJ 12 ox ay 66 83] ax
2 2
L po@" P 0@ e
4 M0y 0xoy % 0xdy  Ox? 4
3
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fori =1,2,3,5 =1,2,3, m =4,5,6,and k = 1,2, ...,6. The superscripts of mass and
stiffness matrices vary 01 to 11 to distinguish /=1 and J=I11 from /=11 and J=1. The

explicit form of force vector, { F'}, is
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4.3 Numerical examples

Here we present the results of a static bending analysis using the developed finite
element model. For the purpose of illustration, we take following material properties.
The Young’s moduli of top and bottom surfaces are F; = 14.4 x 10°N/m? and E}, =
1.44x10° N/m?, respectively. The poisson’s ratio, v, is assumed as 0.38 for both materials.
The plate thickness, h, is assumed to be 17.6 x 10~%m, and the length of a square plate,
a, is assumed to be 20h. The full plate is used as computational domain shown in Figure
4.2. The 16 by 16 mesh is used to analysis the micro plate. Simply supported and clamped
boundary conditions are applied to x = &3 and y = ig. In the case of the simply
supported boundary conditions, SS1 and SS3 types [9] are considered. SS1 type boundary
condition is that the in-plane displacement (u; or us) whose direction is parallel to the
normal direction on a side of plates is free to move. SS3 type boundary condition is that
all bending displacements with respect to in-plane coordinates are free to move on all

sides of plates. The clamped boundary condition is that all in-plane displacements are
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Figure 4.2: Computational domain of a full plate [3]

constrained on all sides of plates. For all types of boundary conditions, we constrain the
transverse defection on middle surface, w, on all sides of plates. Since the developed finite
element model is based on a modified couple stress theory, we need to define additional
higher order boundary conditions (derivatives of displacements) in addition to boundary
conditions of classical plate models. We keep the meaning of each boundary conditions,
and define additions boundary conditions with respect to the rotation vector (2.36). For
SS1 type, the rigid body rotation, w;, whose direction is parallel to the tangential direction
of the side of plates is free to move, and other rotations are constrained. For example,
only w, is not constrained at x = +2. Note that the rigid body rotation, w, and the
bending rotations (6, ¢., and v,) of u; are in the same direction. For SS3 type, the rigid
body rotations with respect to in-plane coordinates are free to move, and all rigid body
rotation are constrained for the clamped boundary condition. We assume that the rigid
body rotation with respect to transverse direction, z, is constrained for all boundary cases.

To compare with a classical model (the first order shear deformable plate model), SS1-0
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type boundary condition which does not include any higher order terms is considered. The
constrained degree of freedoms are shown in Table 4.1. Note that v; and w; are defined
in Egs. (2.28)—(2.30) and (2.37)—(2.40) in terms of generalized displacements and their

derivatives, : = 1,2,3 and 7 = x, v, 2.

Table 4.1: Constrained degree of freedoms of each boundary conditions [3]

xr = :i:@/2 U2, w

S51-0 y==+b/2 | u, w

S €r = :EG/Q Uz, W, Wy, Wy
Yy = :l:b/2 U, w, Wya Wy
€T = :|:CI,/2 Uu, v, w, Wy

SS3 y==+0/2 | u, v, w, w,
r = +a/2,

Clamped y = :tb/Q Uy, U2, w, Wes wl/’ Wy

To clearly see nonlinear behavior of a micro plate, ¢! = 5.4 x 105N/m? is incremen-
tally applied through 20 load steps. The Newton iteration scheme is used to solve the
nonlinear equations [9]. Figures 4.3—4.6 show comparisons of the first order shear defor-
mation plate theory (FSDT) using 8 by 8 quadratic element and the general third order
plate theory (GTPT) using 16 by 16 cubic element in the case of homogenous material
(n = 0). The displacement, 13 = 42, through thickness direction at the center of the plate

gta’
Ebh4 H

w

e are shown in

and the middle plane deflection, w = *, versus the load parameter, ¢ =
Figs. 4.3 and 4.4. Since the general third order plate theory considers an extensible plate
thickness, the deflection through thickness shows a quadratic variation (shown in Figure
4.3). Since the SS1 boundary condition constrains more degree of freedoms (derivatives
of dependent variables), the system becomes slightly stiffer than SS1-0 boundary condi-

tion. Figures 4.5 and 4.6 show the comparison of bending and shear stresses of FSDT and

GTPT at load parameter ¢ = 50.
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Figure 4.3: Comparison of center deflections of FSDT (8 by 8 quad.) and GTPT (16 by 16
cubic) through thickness [3]
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cubic) through thickness [3]
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through thickness [3]
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The stresses of the GTPT are computed at nodal points instead of integration points
since the displacement gradients are computed at nodes. To compare with the FSDT (8
by 8 quadratic element), the stresses of the FSDT are computed using one point Gaussian
quadrature rule. The bending stress, o,, and the transverse shear stress, o, are computed
at (&, +,2), and at (7%, > 2) respectively. The bending stresses of the GTPT do not
much differ from the bending stresses of the FSDT (shown in Fig. 4.5). Since the variation
of transverse shear strains of the GTPT has a form of quadratic variation through thickness,
the transverse shear stress in the case of homogenous material shows a quadratic variation
(shown in Fig. 4.6). Note that we do not force the transverse shear strain to be zero on

top and bottom surfaces and the transverse shear stresses on top and bottom surfaces are

not exactly zero. Figures 4.7—4.9 show center deflections of middle plane, w (%, b2, O),

| ——n=54¢/h=0 W=7YF
3;+n:1,€/h20 g= 2zt 1
—4—n=05,0/h=0 i
- ->x-n=0,{/h=0

- ——n=0,(/h=05
| —2—n=0,{/h=1.0
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e !
0 200 400 600

Load parameter, ¢

Figure 4.7: Middle plane deflection versus load parameter with SS1 boundary condition

(3]
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Figure 4.8: Middle plane deflection versus load parameter with SS3 boundary condition
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Figure 4.9: Middle plane deflection versus load parameter with clamped boundary condi-
tion [3]
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versus load parameter, ¢, with SS1, SS3, and clamped boundary conditions, respectively.
When the power-law index is larger, the volume fraction of top surface material which is
stiffer material decreases, and the plate stiffness in Egs. (4.166)—(4.170) become softer,
therefore the larger displacements are obtained for larger power-law index. In the case
of considering the micro structure size effect, the stiffness matrices become stiffer due
to the effect of the couple stress related terms, Rgﬁ?, n = 1,2,...,6 in Egs. (4.169) and
(4.170), and smaller deflections are presented. Figures 4.10-4.15 show the bending and

shear stresses through thickness direction with various boundary conditions at ¢ = 50.
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Figure 4.10: Bending stress through thickness with SS1 boundary condition [3]

. b Ta b
The bending stresses and shear stresses are computed at (%, %, z), and at (72, L. )
respectively. Unlike the homogenous plate, the variation of stresses of FGM plate not

only depends on the variation of strains but also the variation of the material properties
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in a body. For nonzero power-law index, the odd order of plate stiffnesses, (Ag?), Bf,]f%l,
and Rgﬁ?) ,k = 1,3,5 are nonzero and contribute to system equation (4.2). When the
odd order plate stiffnesses are nonzero, the contribution of the higher order generalized
displacements to overall displacements increases. The effect of this phenomena makes

larger nonzero transverse shear stresses on top and bottom surfaces.
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5. PIEZOELECTRIC SMART PLATE *

Beams, plates, and shells are the most common structural elements used in a wide
range of applications, including systems used for strain sensing and actuating. The re-
sponse of such systems can be quite complex when there is magneto-electro-thermo-
mechanical coupling. Through-thickness, functionally graded structures provide advan-
tages over traditional laminated composite structures. Piezoelectric layers are surface
mounted to these structural parts to monitor or control their functionality and structural
integrity. Thus, it is useful to develop refined theories of plates that account for coupling
of size effects, material gradation, and piezoelectric effects.

Many researchers have studied the behavior of structures under the effects of electric
and/or magnetic fields in addition to thermomechanical loadings [81-83]. Crawley and
de Luis [81] studied static and dynamic behavior of surface bonded and embedded piezo-
electric actuator using Euler-Bernoulli beam model. Im and Atluri [82] presented a study
of beam-column structure with two piezoelectric layers bonded on the upper and lower
surfaces. Finite element models to study static and dynamic responses of beams with a
bonded piezoelectric actuator is developed using four different displacement-based one-
dimensional beam theories by Robinson and Reddy [83]. Tzou and Zhong [84] developed
piezoelectric shell models using the Hamilton’s principle. They presented a first order
shear deformation shell model that accounts for electromechanical effects, and simplified
the developed model to a classical shell model. Mitchell and Reddy [85] developed refined
hybrid theory to study piezoelectric plates. They used an equivalent single-layer theory

based on the displacement field of Reddy third order shear deformation theory [22] and

*Reprinted with permission from "Modeling of functionally graded smart plates with gradient elasticity
effects" by Jinseok Kim and J.N. Reddy, 2017, Mechanics of Advanced Materials and Structures, vol. 24,
pp. 437-447, Copyright 2016 by Taylor & Francis.
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a layerwise theory for the electric potential. Recently, Komijani, Reddy, and Eslami [86]
investigated a nonlinear thermo-electro-mechanical response of functionally graded piezo-
electric actuators. In their study, the Timoshenko beam model that accounts for the von
Karmdn nonlinearity, variation of two materials in transverse direction of the beam, and
size effects of micro structure was presented. In this study, we develop a functionally
graded smart plate model using a general third order plate theory that accounts for gradi-
ent elasticity effects, functionally graded materials and linear piezoelectricity. We assume
functionally graded smart plates that consist of a functionally graded core layer and two

piezoelectric layers bonded to top and bottom surfaces.
5.1 Formulation

In this study, Hamilton’s principle is used to derive a set of governing equations of a
plate with surface-mounted piezoelectric layers. The charge equations of electrostatics are
coupled to the mechanical deformation by using a modified energy density function given
by [85]

1

where H (&, xij, ;) is called the electric enthalpy density function having the strain ten-
sor ¢;5, the symmetric part of curvature tensor Y;;, and electric field F; as arguments, p
is the mass density, and 1; is the time derivative of the i"* displacement component. Nu-
merous field theories can be derived based upon the particular selection of H (;;, x4;, E;).
Of course, they must all follow according to the conservation laws of linear and angular

momenta as well as energy. For this study, H (¢;;, x;;, E;) is taken as

1 1
H (eij, x4j, Ei) = §Cijkl5ij (er — 05jaAT) + pl?xijxij — eijnBicie — §kijEiEj (5.2)

129



where Cji, 1, £, €ijx, and k;; are called the elastic constant, the shear modulus, the ma-
terial length scale parameter, piezoelectric, and dielectric permittivity constants, respec-
tively [87]. The d;;, o, and AT, are the Kronecker delta, the thermal expansion coeffi-
cient, and temperature change. The electric field, £;, is derivable from a scalar potential
functions ¢ by

9¢

E;, = “or, (5.3)

A complete theory of plates with surface mounted piezoelectric layers is developed

with the help of Hamilton’s principle

T
0 v
+ / (fidu; + ¢dw; + @o¢) dV + / (t:0u; + $;i0w; + ddg) dS
v s
+ / (g6u; + piow;) dQ" + / (g76u; + plow;) de}dt (5.4)
Qt Qb
where o;;, m;;, and D; are the symmetric parts of stress tensor and the deviatoric part of

couple stress tensor, and the component of electric displacement vector which are derived

from

OH
Oij = 9 Cijui (e — 05jaAT) — ey Bl (5-5)
5z’j
o0H
m;j = v = 21120° i) (5.6)
OH
D, = _a_EZ» = e;jk€jk + kij j (5.7)

and ﬁ-, ¢;, and g are the body forces and couples and the electric body charge,and ¢;, 5;,
and d are the surface forces, couples, and charges on the side surfaces, and ¢® and p* are

the surface forces and couples on top (o = t) and bottom (« = b) surfaces.
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5.2 Electric potential

The mostly used assumption of electric potential is an uniform distribution in the in-
plane direction and a linear distribution in the transverse direction of plates, and this as-
sumption violates Maxwell static electricity equation [88, 89]. Wang et al. [89] have been
proposed a half-cosine electric potential distribution along transverse direction and numer-
ically verified it using FEM. Wang [90] has been proposed a combination of a half-cosine
and a linear variation of the electric potential. Based on his work, the assumed electric

potential takes form of

6 (02) = o5 (72 ) o) + 22 58)
P P

where 2, is measured from the geometrical center of the piezoelectric layer, h), is the
thickness of the piezoelectric layer, ¢ (z,y) is a variation of electric potential in in-plane
direction and it is measured at z, = 0, and 1} is an externally applied electric voltage. The

electric fields can be obtained by substituting Eq.(5.8) into Eq.(5.3)

E, = cos (%) 06 (z,y)

hy, ox
7z, \ 09 (z,y)
E = jler ) B s St 4
e ()75
s TZ - 2
E,=——sin| —2 — —Vs.
hpsm(hp)as(x,y) v

5.3 Constitutive relation

In this study, we consider a transversely isotropic materials including piezoelectric

effect such as lead zirconate-titanate(PZT). The constitutive relation is given as following
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where 11y = rg9s = 133 = 2u12f? and ryy = r55 = 166 = p12f2, and the length scale
parameter, ¢, has meaning of the ratio of shear moduli. The non-piezoelectric laminae
is assumed as a functionally graded material which of the material properties vary only
through thickness direction. The variation of material properties are modeled using power-

law distribution (2.9).
5.4 Equations of motion

The equations of motion is derived from Hamilton’s principle (5.4). In the derivation,
the temperature change AT is a known function of position. Thus, temperature field enters
the formulation only through constitutive equations (5.9). Hamilton’s principle (5.4) can

be expressed as following (see [79])
T
/ (0K — U — 6E — 6V)dt =0 (5.12)
0

where 0/C is the virtual kinetic energy, o/ is the virtual strain energy, 6 is the contribution
of the electric field, and ¢V is the virtual work done by external forces. The virtual kinetic
energy, 6K and the virtual strain energy, 0/ are given in Egs. (2.47) and (2.49).

The contribution of the electric field, d&, is given by

0€ = / / 85¢ + Dy 909 + D3 9¢ dzdxdy
b dy 0z

= / (P1 964 (x’ v, p %0y pss (m,y)) dady (5.13)
Q Ox y

where
h

h
hy s

h h
-4 P

where h, is thickness of a piezoelectric layer. Note that 2, should be replaced with the
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global coordinate, z, and the range of the piezoelectric layer based on a specific problems.

The virtual work done by external forces and charge density is

oY = —

/ (fiow; + €0w; + qo¢) dV + / (ti0u; + $;0w; + ddg) dS
|4

S

+ / (g0w; + piow;) d + / (g20u; + plow;) dP
Ot QOb

:—{/[ V5u+ FV%v + FO%w + FMV60, + FV66, + FP g,
Q

+ FP6g, + FO 5y, + FP o, + FN60, + FPdg,

L o) (Oow L (o) ( Q0w
5Cr (8y 69y> 5% 5 00,
Lo (B0 050\ | ) (1000,
2% e ay ) @ \ 27y
(1) (098, 040,
? ox dy
96, 1 969,
02)( dy —361@) 50?52)( " —352/136)

o2 (65% B 85%) Ll (85% B 851/)36) _qu—ﬁ} ddy
dy dy

+ / {t;%u + 1060 + t V5w + 860, + V60, + V50,
r

)

+tP0¢, +t6¢, + 8¢, + tP o, + sy, + dqﬁ} dr} (5.14)

where

(o) feda, 1 = /()itgdz,
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The equations of motion are obtained by substituting 6/C, 0U/, 0&, and o), into Eq.

(5.12) and applying the integration-by-parts to relieve all virtual generalized displacements

and potential function of differentiations with respect to z, y and ¢.

ou :

ox oy * 58_y ox * oy
= mOd + m1é$ + m?ézg:v + miﬂﬁx
5o OMY oMy 19 (oM oMy
Oz oy 20z

= moi} + mléy + ng.zéy + mg’(l;y

(0) (0) (0) (0) (0)

(0)
L PO 10c:
ox dy 4 2 Ox

s, OMOM) 10 (oM oM
- Ox oy 20y \ Ox dy
19 (OMy oMY Lo L[0g) o
20x \ Oy ox N 2\ Ox dy
= mow + mléz + mgéz
5o OME oMy o 1(OMy oMy oMY
T Ox oy 7= 2\ Oz oy oy
10 (oMY omY 1 19c
+28y< Ox * y )+Fx +203’ 2 Oy
= myii + mab, + mad, + matl,
5o OME oM o 1(OME oMy oMY
YU ox oy v= 2\ Oz Oy ox
L0 (oM OMEN |y L) 10
20x\ O dy Y 2" 2 Ox

=m0+ mQéy + mSéy + mu%y
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0y :

0y

0y

00, :

0¢p, :

o2 om?
+ )
ox oy

2 2 2
10 (oM OMZN | poy, o, 10
20y \ Ox y v Y 2 Oy

oMy} oMy oMY M<°>>

— oMW
we T ( ox dy dy Yz

= myii + ms0, + mady + mst, (5.20)
oM2 oM o (oME amb)  aml
SV ( N ~

— M0
oz Jy oz M >

102
19
Ty Co 2 Ox

8x+8y

10 (oM oMy
20\ Oz dy

—~

= mgi} + mgéy + m4(5y + m512}y (521)
oM oM M2 omP  om?
7+ 9y =+ + M

ox dy oy
19 (oM L oMy
20y \ Ox y

3

3 19c%

2Y 2 Oy

)+F3§3)+

= maii + mab, + msdy + methy (5.22)

(3) (3) (2) 2) (2)
ox dy Y 2\ Oz dy ox
10 (oM oMY
20x\ O y

= mad + mabf, + msd, + met), (5.23)
oM oMy o 10 (OME) oMy
ox oy = 20y \ Oz dy
(1) (1) (0) (0)
20\ Oy ox 2\ Oy Ox
1(80&1) B actH
2\ Ox dy

) — i + mab, + M, (5.24)

(2) (2) (2) (2)
OMy> N oMz o) 10 (OMag N oMy
ox dy = 20y\ Oz dy
10 (oM oM\ oml)  oml)
o= + + -
20x \ 0Oy ox dy ox
oo
2

+F®

ox oy

) — Mg + msl, + Mmah, (5.25)
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5o :

oP, 0P,

4+ 2P+ g=0.

ox dy

(5.26)

The boundary conditions involve specifying the following generalized forces that are

dual to the generalized displacements and electric potentials (u, v, w, Oy, 0y, ¢y, Gy, Vg,

wy’ 02, ¢za Cg)
1/oMY  amlY 1
su:  0=MIn,+MOn, + 5( g/t + g/ly )ny + §cg0>ny +t9 (527
w y
1/oMY  amlY 1
ov : 0= Még)nx + My(g)ny — 5( j(;/l ./(\9/131 )nac - _C(O)nx + 7520) (5.28)
x y
1M M)
ws 0= MOn+ 2, 40— (2 2B,
1L (OMy)  OME) 1
1 1M  aml)
00, 0=MDn, +MIn, + icil)ny + 5( o T 8yy )ny
1
+3 (M;(an + MOn, — /\/lglz)ny> + ¢V (5.30)
1 1/oME oMY
) - 1 1 1 Tz Yz
360, 0=MYn, + MDn, - 502 ng — 5( 5 T oy )nz
1
. (M;‘an - MO, - M9Z>n$> ) (5.31)
1
St 0=MPDn, + Mg)ny + 569)% + <M3(61y)nx + M?(le)ny — ./\/lglz)ny>
1/oMZ  omlY
5( o+ )ny 2 (532)
1
6py: 0= Mg)nz + Mﬁ)ny — 5022)711 — <./\/lilz)nm + ng)ny — Milz)nm)
1/oM2 oMY
= xrz z (2)
2( T 3 ) « Tty (5.33)
1 3
Se: 0= MPn,+ M, + 5cPn, + 3 (Mfﬁ”w + MG, - Mg”y)
1/oMP oMY



1 3

1/oMP) oM
= xrz z (3)
: ( 5 T oy )nm + 1 (5.35)
1 1
00, : 0=MDYn, + My(?ny + 3 (cg(ll)nx - cg)ny> + 3 (J\/lg)z)ny - Mggoz)nx)
1/OME oMYy 1(OME)  OMYy)
_5( Ox * 8yy) Y 5( 6xy - 8yyy)nz+t9) (5.36)
5., = MPn, + MPn, + %(cl(f)nm — cf)ny) + MUn, — Mn,
1(oME)  oME) 1(OME) oMy
—5( o T axy)ny+§( axy + ayyy>nx+t§2) (5.37)
5¢: 0= P, + Py, +d. (5.38)

Note that the charge equation (5.26) and the corresponding boundary condition (5.38)
are a general form in this study. When more than one piezoelectric layers are surface-
mounted or embedded in the structural system, the charge equation should be written for
each piezoelectric layers and the electric potential, ¢, becomes ¢* where k is k" piezo-

electric layer.
5.5 Analytical solution

A simply supported plate that consists of a functionally graded core layer and two
piezoelectric layer on the top and bottom surfaces are analyzed. Figure 5.1 shows the
geometry of the smart plate that is used for the numerical example. We assume that the
poling direction is opposite to the positive transverse direction(z). a and b denote the
in-plane dimensions along = and y coordinate and H and h denote the height of the total
plate and the height of piezoelectric layers, respectively. An analytical solution is obtained

using Navier solution technique.
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Figure 5.1: Smart plate geometry

The boundary conditions of a simply supported rectangular plate can be expressed as

w(z,0) =u(z,0) =0, 6, (2,0)=0,(x,b) =0, ¢ (x,0)=¢, (x,b) =0,
Yo (2,0) = ¥y (2,0) =0, v(0,y) =v(a,y) =0, 0,(0,y) =0, (a,y) =0,
¢y (0,9) = ¢y (a,y) =0, ¥y (0,9) =1y (a,y) =0, w(z,0)=w(zb)=0,
w(0,y) =wl(a,y) =0, 0.(z,0) =0.(z,b) =0, 0.(0,y) =0:(a,y) =0,
6: (,0) = 6. (2,0) =0, 6. (0,y) = ¢. (x,b) =0, &' (2,0) = (x,b) =0,
¢' (0,y) = &' (a,y) =0, ¢’ (2,0) = ¢ (,0) =0, ¢"(0,y) = ¢ (a,y) =0,
M (0,y) = My (a,y) =0, M) (x,0) = M) (,b) =0,

M) (0,y) = MY) (a,y) =0, MY) (,0) = MY) (2,b) =0

where © =0, 1, 2, 3, j =0, 1, 2. The superscript ¢ and b indicate top and bottom piezoelec-
tric layers. In this example, two piezoelectric layers are bonded to top and bottom surface

of core FGM plate.

The displacements and electric potentials are assumed as the series of double trigono-
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metric functions that satisfy the simply supported boundary conditions.

(x,y,z ZZUmncos (ax) sin (By)

m=1 n=1

oo o0

w(x,y,z) = Z Z Wmnsin (ax) sin (fy)

m=1 n=1
co 00

0, (x,y,z ZZ@ mncos (ax) sin (By)

m=1n=1

(x,y,2 ZZ@ mnsin (ax) cos (By)

m=1 n=1

(x,y,z Z Z@ mnsin (ax) sin (6y)

[e.e]

Oz (x,y,2) = Z Z@ mncos (ax) sin (By)

m=1 n=1
co 00

by (2,y,2 Z Z ¢, mnsin (ax) cos (By)

m=1 n=1

(x,y,z Z ZCD mnsin (ax) sin (5y)

m=1n=1
0o 00

Uy (2,9, 2 Z Z U, mncos (ax) sin (By)

m=1 n=1
co 00

Yy (x,y, 2 Z Z\IJ mnsin (ax) cos (By)

m=1n=1

i i P'mnsin (ax) sin (By)

o (z,9) f: i P*'mnsin (ax) sin (By)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

where o = %, 3 = 5. ¢! and ¢ are assumed electric potential for top and bottom

piezoelectric layers and they are measured at center of each piezoelectric layers. By sub-

stitute Equations (5.39) to (5.39) in the governing equations (5.15) to (5.26), we have
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algebraic relations for bending problems. Numerical examples of the analytical solution
are obtained using the dimensions of the functionally graded plate from Reddy [35], func-
tionally graded material properties from Liew et al. [91] and piezoelectric properties from
Mitchell and Reddy [85]. The dimensions of the plate in Fig. 5.1 are H = 17.6 x 10~ 5m,
a/H = b/H = 5,10, 20, and h varies to see the effect of thickness ratio between smart
materials and FGMs. Table 5.1 shows the material properties for the functionally graded

and piezoelectric materials.

Table 5.1: Material properties of FGM and piezoelectric layers

Properties Zirconia [91] Aluminium [91] PZT [85]
Young’s modulus(GPa) 151 70 -
Possion’s ratio 0.3 0.3 -
Elastic coefficient C; (GPa) - - 148
Elastic coefficient Cs33 (GPa) - - 131
Elastic coefficient C';5 (GPa) - - 76.2
Elastic coefficient C';3 (GPa) - - 74.2
Elastic coefficient Cy, (GPa) - - 254
Elastic coefficient Cgg (GPa) - - 35.9
Piezoelectric constant 31 (-5) - - 2.1
Piezoelectric constant e33 (%) - - 9.5
Piezoelectric constant e15 (%) - - 9.2
Dielectric coefficient k1 (%) - - 4.07 x107°
Dielectric coefficient kss (L) - - 2.08 x107*

The assumed electric potential (5.8) is for a typical piezoelectric layer. Since we con-
sider two piezoelectric layers, the electric potential should be written for each layer. To
obtain the static bending responses, unit positive and negative voltages are applied to top

(V) and bottom (V) surfaces of the plate, respectively.
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Figures 5.2-5.4 show comparison between current study and the work of Mitchell and
Reddy [85]. In their study, thickness change of the plate is not considered in the kinematic
assumption and tangential tractions on top and bottom surfaces are assumed to be zero.
The electric potential is modeled using a layerwise theory. When the ratio of plate side-to-
thickness become smaller (i.e. plate becomes thicker), the difference between two study

reduces.

30 [ 1 1 1 1 }
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Thickness ratio of PZT(h) and total plate(H), (h/H)

Figure 5.2: Center deflection of simply supported smart plate versus the thickness ratio of
piezoelectric layer (Aluminium and PZT, a/H = 20)

The ratio of the side to thickness of the plate is taken as a/H = 20 to show effects of
the power-law index and the length scale parameter. Figure 5.5 shows center transverse
deflections of FGM plates for various values of the power-law index and the ratio between

the piezoelectric layers and total plate thickness. As the plate thickness ratio (h/H) is
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Figure 5.3: Center deflection of simply supported smart plate versus the thickness ratio of
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Figure 5.4: Center deflection of simply supported smart plate versus the thickness ratio of
piezoelectric layer (Aluminium and PZT, a/H = 7)
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increased, the plate behavior is close to that of a homogeneous plate, and the effect of
power-law index vanishes. Due to the piezoelectric effect, in-plane stresses occur in top
and bottom surfaces, and they create a bending moment which is a quadratic function of
thickness of the piezoelectric layers. The elastic stiffness of Zirconia is slightly larger
than PZT and, therefore, the plate becomes slightly softer when increasing the thickness
of the piezoelectric layers. Since the change of plate stiffness is not significant, the vari-
ation of center deflection with change of thickness ratio is a parabolic variation, that is,
it follows the variation of the bending moment. For the case of Aluminium, the plate be-
comes stiffer when increasing the thickness of the piezoelectric layers, and the deflection
decreases. This can be clearly seen from Fig. 5.5. The size dependent effect is presented
in Figs. 5.6 and 5.7. For larger values of the length scale parameter (¢), plates become
stiffer and center deflection decreases. In addition to the size-dependent stiffening effect,
the effect of the plate thickness ratio (h/H) diminishes with larger values of the length
scale parameter. Note that we use the same values of length scale parameter for both the
functionally graded and piezoelectric layers, but the effect of the length scale parameter
may differ for each layer because the length scale parameter has the meaning of the shear
moduli ratio at a material point. The functionally graded material is an isotropic material
but the piezoelectric material is represented as a transversely isotropic material.

Figures 5.8, 5.9, and 5.10 show the center transverse deflection of the smart plates
along the x-axis. When the power-law index become larger the functionally graded layer
become softer (more Aluminium) and defection become larger. The size dependent stiff-
ening effects are clearly shown in Figs. 5.9 and 5.10. To see the effects of the functionally
graded material and the length scale parameter, the thickness ration, h/H is taken as 0.05.

The effect of the various values of the ratio of plate side-to-thickness of the smart plate
is shown in Fig. 5.11. When the ratio becomes smaller, the plate become stiffer and the

effect of thickness ratio decreases. For geometrically stiffer plate, that is small ratios, the
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Figure 5.5: Center deflection versus piezoelectric thickness ratio for various power-law
index ({ = 0, a/H = 20) [4]
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Figure 5.6: Center deflection versus piezoelectric thickness ratio for various length scale
parameter (Zirconia, a/H = 20) [4]
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Figure 5.7: Center deflection versus piezoelectric thickness ratio for various length scale
parameter (Aluminium, a/H = 20) [4]
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effects of material variation and thickness ratio decrease.

Center deflection, w = w (a/2,b/2,0) /H x 1000

0\\M\\\\HH\H\\MH\M\HM\HMH\MH\
01 02 03 04 05 06 07 08 09

Thickness ratio of PZT plate (h) and FGM plate (H), (h/H)

Figure 5.11: Center transverse deflection versus piezoelectric thickness ratio for various
values of the ratio of plate side-to-thickness ratios of plates (¢ = 0) [4]

5.6 Finite element model

The finite element models for piezoelectric plates can be categorized into two groups.
One does not consider electric degree of freedoms and the other one includes electric
degree of freedoms in addition to kinematic nodal degree of freedoms. Without electric
degree of freedoms, piezoelectric effects are considered using thermal analogy, i.e., with
known temperature field, thermal effects are considered only as thermal forces. Among
many researchers whose works do not consider electric degree of freedoms, Hwang and
Park [92] and Shen and Sharpe Jr. [93] developed a finite element model for piezoelectric

plate using classical plate theory, and Lam et al. [94] presented static bending and vibration
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of cantilevered plate using the classical plate theory. Chandrashekhara and his colleagues
[95-97] presented finite element model for buckling and vibration problems using first
shear deformation plate theory. Han and Lee [98] developed a finite element model to
study actuation effectiveness of a cantilevered laminate composite plate using first order
shear deformation theory. Hosseini-Hashemi, EsﬁAZhaghi, and Taher [99] used Reddy
third order plate theory to study free vibration analysis of thick circular/annular plates.
They used half sinusoidal distribution of the electric potential through thickness of the
plate. A general third order plate theory with linear variation of electric potential was
developed by Ray, Bhattacharyya, and Samanta [100] and they performed static bending
analysis for laminate rectangular plate. Chen, Wang, and Liu [101] studied a vibration
control and suppression of intelligent using classical plate theory with linear variation of
electric potential. Carrera [102] presented a static analysis of multilayered plate using a
first shear deformation plate theory with parabolic variation of electric potential.

In section 4, the displacement based weak form Galerkin finite element model for the
general third order plate theory is developed using the principle of virtual displacements
(2.46). For the smart functionally grade micro plate, the displacement field is assumed
using C'' Hermite interpolation functions, and the electric potential is assumed using C°
Lagrange interpolation functions. Figure 5.12 shows nodal degree of freedoms in 4 node
rectangular element. Equations (4.1) and (5.52) represent the assumed displacement and
electric potential, respectively. The details of the assumed displacement are presented in

the section 4.
p

0 (z,y) =D ¢V (z,y) (5.52)
j=1
where ¢ (z,v) is p is number of node in an element, the electric potential on 4, piezo-

electric layer, gby) is nodal value of the electric potential, and wﬁi) (x,y) is the Lagrange

interpolation function. For the simplest rectangular element (4 node element), the finite
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Figure 5.12: Arrangement of nodal variables for 4 node micro smart plate

element model has total 180 degree freedoms (176 degree of freedoms for displacements
and their derivatives and 4 degree of freedoms for electric potential).

The finite element model for functionally graded micro plate is

[M]{U} + [K]{U} = {F} (5.53)

where [M] and [K] are mass and stiffness matrix that has 13 by 13 sub-matrices when two
piezoelectric layers are mounted. The number of sub-matrices depend on the number of
the mounted piezoelectric layers because charge equation (5.26) must be written for each
piezoelectric layers. The explicit form of nonzero mass matrices is derived in the section
4. The stiffness matrices derived in the section 2 still valid with the constitutive relation
in Egs. (5.5) to (5.5). In addition to the stiffness terms defined in the section 2, following

stiffness terms are added to the system equation (5.53)

o OptH
KO = / — B =Ly dady (5.54)
Q
0113 7(0) 6901(1) (13)
K@= | —Epy 8x_¢j dxdy (5.55)
Q
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where subscripts 7" and B indicate top and bottom piezoelectric layers. The coefficients
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where h; and h; are thickness of top and bottom piezoelectric layers, and / is thickness of

core plate, i.e., thickness of functionally graded plate. The forces due to piezoelectric ef-

fect are needed to add to the force vectors (4.171) — (4.181) in the section 2. The additional

force vectors are
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To verify the finite element model, the solutions of finite element model are com-
pared with the analytical solutions in Fig. 5.13. Both results are simply supported linear
problem, since the Navier solution technique is only available for simply supported linear
problems. The results of the finite element model show good agreement with the analytical
solutions. Since the finite element model of the functionally graded smart plate accounts
for geometrical nonlinearity, it is necessary to show nonlinear behavior of the finite ele-
ment model. Figure 5.14 shows center defection of a simply supported smart plate versus
applied external voltages. The voltages are applied to top and bottom surface in different

directions.
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Figure 5.13: Comparison of analytical solution and finite element model solution [4]
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6. CONCLUSIONS

6.1 Concluding remarks

In this study, a general third-order plate theory that accounts for micro structure size
effect, functionally graded and piezoelectric material behaviors, and geometrical nonlin-
earity is developed. Based on the proposed plate theory, analytical solutions and finite
element solutions are presented. The parametric studies clearly show the effect of varia-
tion of materials through the thickness, length scale parameters, and electro-mechanical
coupling effect.

In section 2, a general third-order theory of functionally graded plates with microstruc-
ture dependent length scale parameter and von Karman nonlinearity is developed. The
power-law distribution is used to model the functionally graded material, and modified
couple stress theory is used to bring a microstructural length scale parameter. The equa-
tions of motions and associated force boundary conditions are derived using Hamilton’s
principle. The theory developed contains 11 generalized displacements. Three dimen-
sional constitutive relations are used, consistent with the three dimensional strain field, to
develop plate constitutive relations. Then the existing plate theories, namely, a third-order
theory with vanishing surface tractions, the Reddy third-order plate theory, the first-order
plate theory, and the classical plate theory are obtained as special cases of the developed
general third-order plate theory.

In section 3, analytical solutions to a general third-order shear deformation plate the-
ory that accounts for functionally graded material and modified couple stress theory are
presented using the Navier solution technique. The variation of two constituents through
the thickness of the FGM plate is considered using a power-law model, and the microstruc-

ture effects are considered using a length scale parameter. The solutions to static bending,
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free vibration, and buckling problems are presented to show the effect of FGMs and mi-
crostructure effects. It is clearly shown that smaller power-law index, n, makes plates
stiffer based on the ratio of mechanical properties of the two constituents, and the length
scale parameter, ¢, has the ability to capture microstructure effects. The presented ana-
lytical solutions are limited to linear theory and for simply supported rectangular plates,
but they are useful for the purpose of comparison with the numerical solutions (e.g., finite
element models).

In section 4, a displacement based weak form Galerkin finite element model of a gen-
eral third-order plate theory that accounts for the modified couple stress theory and the
power-law variation of material through the thickness and von Karman nonlinearity is de-
veloped. The micro structure size effect is captured by a length scale parameter through
a modified couples stress theory. The finite element model requires C'' continuity for all
dependent variables. The 2D Hermite interpolation functions are used to represent the
variables. The Newton iteration scheme is used to solve the resulting nonlinear finite ele-
ment equations. Numerical results for rectangular plates with various boundary conditions
are presented to study the effects of the power-law index and the length scale parameter in
the static bending problems. The numerical results clearly show that the length scale pa-
rameter, ¢, causes a stiffening effect in the plates. Since the plate theory does not explicitly
imposes the vanishing of transverse shear stresses, they are not exactly zero; however, a
quadratic variation of the transverse shear stresses is accounted for and no shear correction
factors are used.

In section 5, a higher-order shear deformation plate model of functionally graded smart
plates is developed using Hamilton’s principle. The mechanical displacement field is as-
sumed to be cubic variation for in-plane displacement and quadratic variations for trans-
verse displacement. The electrical potential is assumed to be a combination of half cosine

and linear variation of applied voltages. The presented model accounts for the power law
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variation of two materials through the thickness in core layer and piezoelectric effects on
surface-mounted layers in addition to size dependent effects. The numerical examples for
simply supported plates are presented using the Navier solution technique, and developed
finite element model. The effects of the material variation through the thickness, the size
dependent stiffening and the thickness ratio between piezoelectric layers and total plate
are presented. The power-law distribution is used to model material variation through the
transverse direction. The numerical examples presented herein clearly show that the effect
of the piezoelectric layers does not only depend on its thickness but also upon the stiffness
of the core. The size dependent stiffening effect is captured using a length scale parameter

of the modified couple stress theory.
6.2 Recommendations

The encouraging results from the application of the general third order micro plate the-
ory to functionally graded and piezoelectric materials open several interesting and chal-
lenging tasks to be carried out in future study.

For the development of plate theory, further studies can be carried out to satisfy traction
boundary conditions, especially on top and bottom surfaces. In the literature, only Reddy
third order theory [21] is developed to satisfy zero tangential tractions on top and bottom
surfaces, and most displacement based plate theories do not consider the traction bound-
ary conditions at the stage of development of displacement field. By neglecting traction
conditions, most of plate theories result errors in the tractions on top and bottom surfaces
of plates. Also, the proposed formulation can be extended to a higher order shell theory.

The present study accounts for the modified couple stress theory to capture the size
effect of micro plates. The nonlocal theories requires additional material properties, e.g.,
length scale parameters, which are difficult to determine. Recently, Romanoff and Reddy

[103] presented experimental validation of the modified couple stress Timoshenko beam
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theory for web-core sandwich panels. In their study, the length scale parameter was defined
in terms of the dimensions of unit cell, and the analysis results showed good agreement
with 3D finite element and experimental results. Explicit forms of those length scale
parameters in nonlocal theories applied to specific problems should be investigated.

We present static bending, vibration, and buckling studies of functionally graded micro
plates. It would be of great interest to perform transient analysis and post buckling analysis
on functionally graded plates under thermomechanical coupling. In this study, we also
presented static bending analysis of smart plates with surface mounted piezoelectric layers.
The vibration and buckling studies using the developed finite element model of smart
plates have yet to be carried out. Also, it would be of great interest to investigate distributed

sensing performance of finite element models of piezoelectric plates.
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