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 ABSTRACT 

Biofeedback techniques have shown to be effective to manage stress and improve task 

performance. Biofeedback generally can be divided into two steps (i) measuring physiological 

functions (e.g. respiration, heart rate) via sensors and (ii) conveying the physiological signals to 

the user to improve self-awareness. Current systems require costly and invasive sensors to measure 

physiology, which are not comfortable and are not readily accessible to the general population. 

Additionally, current feedback mechanisms may be physically unpleasant or may hinder 

multitasking, especially in visually-demanding environments. To overcome these problems, we 

developed two tools: a music-based biofeedback tool that uses music as the medium of feedback, 

and a tool to measure breathing rate using a smartphone camera.  

The music biofeedback tool encourages slow breathing by adjusting the quality of the music in 

response to the user’s breathing rate. This intervention combines the benefits of biofeedback and 

music to help users regulate their stress response while performing a visual task (driving a car 

simulator).  We evaluate the intervention on a  2 × 2 design with music and auditory biofeedback 

as independent variables. Our results indicate that music-biofeedback leads to lower arousal (as 

measured by electrodermal activity and heart rate variability) than music alone, auditory 

biofeedback alone, and a control condition. Music biofeedback also reduces driving errors 

when compared to the other three conditions. 

While our results suggest that the music-based biofeedback tool is useful and enjoyable, it still 

requires expensive physiological sensors which are intrusive in nature. Hence, we present a second 

tool to measure breathing rate in real-time via smartphone camera, which makes it easily accessible 

given the pervasiveness of smartphones. Our algorithm measures breathing rate by obtaining the 
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photoplethysmographic signal and performing spectral analysis using Goertzel algorithm. We 

validated the method under a range of controlled breathing rate conditions, and our results show a 

high degree of agreement between our estimates and ground truth measurements obtained via 

standard respiratory sensors. These results show that it is possible to accurately compute breathing 

rate in real-time using a smartphone. 
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1 INTRODUCTION 

Psychological stress is a significant risk factor in cardiovascular diseases, the leading cause of 

mortality in the developed world (DeVries and Wilkerson 2003). Stress causes major mental health 

problems such as depression, post-traumatic stress disorder, pathological aging (DeVries and 

Wilkerson 2003), and also economic problems due to significant loss of productivity (Leiter and 

Maslach 2011). As a result, different relaxation techniques involving meditation, deep breathing, 

imagery, and music, and biofeedback, physical and mental exercises are practiced to tackle stress. 

Biofeedback techniques have been effectively used to manage stress (Varvogli and Darviri 2011) 

and treat anxiety (Sutarto, Wahab et al. 2010, Wells, Outhred et al. 2012). Biofeedback works by 

measuring physiological variables (e.g., heart rate, electrodermal activity), then displaying them 

to the user to improve self-awareness and self-regulation. Most biofeedback interventions 

generally use visual displays of physiological information, which demand visual attention from 

the user and make them incompatible with many routine activities such as driving. Other 

interventions utilize audio and haptic channels to convey information, but are monotonous and can 

lead to frustration (Henriques, Keffer et al. 2011). In order to overcome the above problems, this 

work is the first to implement and empirically evaluate a combination of music, deep breathing, 

and biofeedback for stress reduction during visually demanding tasks. Our intervention consists 

of monitoring the respiration rate of the user and adapting the quality of the music (e.g., signal-to-

noise ratio) to promote slow, deep breathing, an exercise with known therapeutic benefits 

(Vaschillo, Vaschillo et al. 2006). 

A secondary objective of this thesis is motivated by a current limitation of biofeedback systems, 

in that they require the use of costly or invasive sensors To address this issue and enable a wider 
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adoption of biofeedback interventions, this thesis proposes the use of smartphones to measure 

physiological variables. In particular, we describe an approach to measure respiration rate in real-

time using the Goertzel algorithm (Goertzel 1958) on a photoplethysmographic (PPG) signal 

obtained via a smartphone camera.  

The two specific aims of this thesis are:  

(1) To evaluate the effectiveness of music-based respiratory biofeedback in the context of a 

visually-demanding task (driving a car racing simulator), and compare it against auditory 

biofeedback and music in terms of its ability to lower arousal levels and improve driving 

performance. 

(2) To evaluate the proposed algorithm to measure breathing rate using a smartphone and compare 

the results with standard chest-strap respiratory sensor.  

The rest of the document is organized as follows. Chapter 2 summarizes theory related to stress 

and its physiological measures; it also discusses previous work on biofeedback, music 

interventions on driving, and measurement of respiration rate. Chapter 3 describes the proposed 

music-based respiratory biofeedback tool and the user studies to evaluate the tool during driving. 

Chapter 4 presents the tool to measure breathing rate using smartphone camera and the 

experiments to validate our new algorithm to measure breathing rate. Finally we provide directions 

for future work in Chapter 5. 
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2 BACKGROUND AND RELATED WORK 

In this chapter we review various topics concerning stress including physiological measures of 

stress, effect of music on driving stress, and biofeedback tools (specifically audio biofeedback) to 

manage stress to motivate our choice of using music as means of feedback. Finally, we also review 

the measurement of breathing rate via photoplethysmography techniques, which are relevant to 

the second part of this thesis.  

2.1 Stress 

Psychological stress arises when an event is interpreted as undesirable or taxing on personal 

resources (Lazarus and Folkman 1984). Selye viewed stress as a response to environmental 

stressors to attain homeostasis, which refers to the stability of physiological system (Selye 1956). 

Stress can be positive, motivating force which is termed is eustress or debilitating which is termed 

as distress. Eustress is beneficial as it keeps us alert in dangerous situations and focused to meet 

challenges. Yerkes-Dodson Law (Cohen 2011) provides the relationship between arousal and 

health/performance. It states that increased arousal can help improve health and performance till 

a certain point, termed as the optimal stress level, beyond which it become harmful to the organism 

( see Figure 1). Negative stress can be acute or chronic: acute stress is the short term, whereas 

chronic stress is long term and can last for days or longer. Chronic stress can lead to severe health 

consequences e.g. obesity, depression, posttraumatic stress disorder, pathological aging and 

cardiovascular diseases (DeVries and Wilkerson 2003). About 60-80% of outpatient visits may be 

related to stress (Avey, Matheny et al. 2003). Apart from the health consequences, stress has 

become the most prevalent economic concern for many countries. In the US alone, loss of 

productivity associated to stress is in the order of $300 billion per year (Leiter and Maslach 2011). 
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Figure 1. Yerkes-Dodson curve as described in (Everly Jr and Lating 2012) 

2.2 Physiological measures for stress 

Stress disrupts the balance between sympathetic and the parasympathetic branches of the 

autonomic nervous system (ANS), with the sympathetic nervous system (SNS) being dominant 

(fight-or flight response). This leads to changes in our physiological conditions such as increased 

muscle tension, heart rate, pupil dilation, adrenaline production, secretion of hormones such as 

cortisol, and difficulty in breathing. These physiological manifestations of the stress response can 

therefore be studied by monitoring variables including electrodermal activity (EDA), heart rate 

(HR), heart rate variability (HRV), blood pressure (BP), muscle tension (EMG), pupil dilation, 

cortisol levels, electrical activity in the brain (EEG) and respiration (Smyth, Ockenfels et al. 1998, 

Vrijkotte, Van Doornen et al. 2000, Healey and Picard 2005, Choi, Ahmed et al. 2012). However, 

in order to gain acceptance the stress monitoring/measurement tool must be minimally 

cumbersome to allow users to carry out routine activities/activities of daily living without 
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hindrance. Some of these physiological variables are difficult to measure (e.g. cortisol) while some 

others are limited to laboratory settings (e.g. EEG). Taking usability concerns into consideration, 

we chose HRV, EDA, and BR as indicators of stress.  

2.2.1 Heart rate variability 

Heart rate variability is the phenomenon where the time interval between consecutive heartbeats 

changes as a result of autonomic regulation. HRV can be measured from the inter-heart beat 

intervals and it provides useful information about the state of the autonomic nervous system. SNS 

activation increases the HR and decreases HRV to prepare the body for action in response to a 

potential stressor (fight or flight response). In contrast PNS activation reduces HR and increases 

HRV so as to bring the body back to homeostasis. Therefore by analyzing fluctuations in beat-to-

beat interval we can separate the contributions from both branches and infer stress levels. Vaschillo 

et al. have showed that HRV is maximized at breathing rates around 0.1Hz (6 breaths/min); see 

Figure 2. Breathing at this pace increases the baroreflex gain, leading to a resonance in the 

cardiovascular system (CVS) resulting in high HRV. Higher HRV is linked to better functioning 

of human body, such as enhanced immune system, improved cognitive abilities, reduction in high 

blood pressure and better hormonal functioning (Berntson, Bigger et al. 1997). It also improves 

creativity and mood for better emotional regulation leading to various health benefits. 
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Figure 2. Resonance characteristics of the cardiovascular system for a participant;, the 

resonant frequency is 5.5 times/min or 0.092 Hz as described in (Vaschillo, Vaschillo et 

al. 2006) 

 

2.2.2 Electrodermal activity 

EDA (also known as galvanic skin response or skin conductance) measures are also strong 

indicators of autonomic activity, particularly the sympathetic branch. This is because the skin is 

innervated exclusively by the SNS, making the EDA response highly sensitive to emotional 

arousal e.g. startle, fear, anger etc. A stress stimulus elicits a sympathetic response by the sweat 

glands, which increases perspiration to flush waste and cool down the body. This increases the 

skin conductance due to increase in water and electrolytes.  EDA consists of two components: a 

slow changing tonic skin conductance level (SCL) and phasic changes (spikes) known as skin 

conductance responses (SCRs) (Boucsein 2012). Under stress, SCL increases gradually while each 

stress stimulus creates a new SCR. The characteristics of each SCR like latency, amplitude, rise 
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time and recovery time depending on the period and intensity of the stress point.   SCLs are highly 

subject-dependent and measurement of baseline SCL is difficult in the presence of SCRs. Also the 

characteristics of each SCR (frequency and amplitude) strongly reflect stress response to new and 

unexpected events. For this reason SCRs are a better EDA measure of arousal. 

2.2.3 Breathing rate 

Along with these, we also use breathing rate as an indicator of the physiology. Breathing rate or 

respiration rate is the frequency of ventilation, which includes an inhalation and exhalation of air 

in each cycle. During a stress episode, triggered SNS increases muscle tension and dilates bronchi, 

allowing more air in the lungs, resulting in shallow and faster breathing cycles to supply more 

oxygen to the muscles and tissues. It also increases the irregularity in breathing, and may even 

stop breathing momentarily in extreme cases. In contrast, deep breathing (high volume) at low 

pace addresses the autonomic imbalance by recruiting the PNS and inhibiting the SNS leading to 

relaxation. Respiration rate comparatively easier to measure and is also one of the few 

physiological variables which can be modified voluntarily, this is utilized to our advantage in our 

biofeedback tool to manage stress levels by modifying respiration rate.  

2.3 Music and driving 

High stress impairs decision making, decreases situational awareness and degrades performance, 

all of which affect driving capabilities (Hennessy and Wiesenthal 1999). In addition, stress 

experienced during commuting has negative impact on health and work life (Hennessy 2008). 

Extreme stress can result in car accidents, and potentially property damage, medical costs, 

insurance costs, loss of work productivity, and loss of human life. The National Highway Traffic 

Safety Administration estimates that the US economy incurs over $230 billion of annual losses 
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due to car accidents (Groene and Barrett 2012).  

The effects of music to reduce stress during driving have been studied extensively given that 

listening to music while driving is a popular activity: according to a 2014 report by Nielsen (Co. 

2014), nearly a quarter of all music listening in the United States happens behind the wheel. Zwaag 

et al. (van der Zwaag, Dijksterhuis et al. 2012, van der Zwaag, Janssen et al. 2013) showed that 

music can positively influence driver mood and driving performance. Studies have also shown that 

music lowers driver aggression (Wiesenthal, Hennessy et al. 2003) and improves defensive driving 

(Ünal, de Waard et al. 2013), which directly reduces road rage –one of the main causes of fatal 

accidents. The extent of relaxation depends on the user’s music preference, music genre (generally 

classical or instrumental) (Dillman Carpentier and Potter 2007, Grewe, Nagel et al. 2007), music 

properties (tempo, rhythm, volume, lyrics), age and type of intervention (Pelletier 2004). Music 

also improves performance during long monotonous driving sessions, where the driver may lose 

focus and become fatigued (Ünal, de Waard et al. 2013). In particular, non-vocal and slow tempo 

music has been used in studies to relax drivers and improve their performance by helping them 

focus (North and Hargreaves 1999, Dibben and Williamson 2007, van der Zwaag, Dijksterhuis et 

al. 2012).  

2.4 Biofeedback 

Biofeedback helps people control their stress response by employing relaxation techniques like 

deep breathing to calm an individual. Recent studies have looked at the combination of 

biofeedback techniques with games and music to promote regular practice. As an example, 

Parnandi et al. (Parnandi, Ahmed et al. 2014) presented a relaxation game that adapts game 

difficulty based on the players’ breathing rate, in this way motivating players to relax so they can 

improve their score on the game. Zwaag et al. (van der Zwaag, Janssen et al. 2013) created an 
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affective music player that learned the user’s physiological response to various music genres then, 

at a later time, played the appropriate music to match the user’s desired mood. Bergstrom et al. 

(Bergstrom, Seinfeld et al. 2013) compared three techniques for modulating the user’s heart rate: 

prerecorded music, sonification of heart-rate (i.e., auditory biofeedback), and an algorithmically-

modulated musical signal conveying the user's heart rate; their results show that music biofeedback 

was as effective as auditory biofeedback, and both superior to just listening to music. Epstein et 

al. (Epstein, Hersen et al. 1974) developed an intervention that allowed hypertensive patients to 

listen to music only if their muscle tension was low, as measured with electromyography. Weffers  

(Weffers 2010) developed a system to calm individuals by guiding their breathing rate via musical, 

haptic and visual cues. Similarly, Henriques et al. (Henriques, Keffer et al. 2011) presented a 

computer application to calm college students by guiding their heart rate variability via visual and 

audio cues. Reynolds et al. (Reynolds 1984) showed that combining autogenic training phases and 

music is more effective at promoting calm meditative states than using each treatment in isolation. 

In a similar study, Robb et al. (Robb 2000) showed that combining progressive muscle relaxation 

and music led to lower anxiety levels than practicing each technique separately. Wells et al. (Wells, 

Outhred et al. 2012) showed that audio based biofeedback on musicians leads to lower anxiety 

during musical performances.  Siwaik et al. (Siwiak, Berger et al. 2009) developed an interactive 

biofeedback system with audio and visual channels of feedback to regulate breathing rate and 

reduce motion based artifacts during 4D CT scans.  Finally, Harris et al. (Harris, Vance et al. 2014) 

developed a tool to modify music based on the user’s respiration rate using audio layering and 

noise addition techniques.  

In the context of driving, Edmonds et al. (Edmonds, Tenenbaum et al. 2008) showed that 

biofeedback training prior to driving has strong effect on driving performance. Other studies have 
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looked at changes in human physiology (Filho, Di Fronso et al. 2014) and detection of stress 

(Healey and Picard 2005) during driving using physiological sensors. To the best of our 

knowledge, however, ours is the first study to present a biofeedback intervention during driving 

to reduce stress. 

2.5 Photoplethysmography 

Photoplethysmography (PPG) is widely used to measure vital signs due to its simplicity and non-

invasiveness. PPG is based on the principle that blood absorbs more light than the surrounding 

tissue, so variations in blood volume affect transmission and reflectance accordingly. The resulting 

changes in the optical signal provide valuable information about heart rate due to its direct 

influence on blood flow. Research groups have developed tools to measure heart rate (HR) 

(Jonathan and Leahy 2010, Lakens 2013, Jiang, Wittek et al. 2014) and heart rate variability 

(HRV) (Lenskiy and Aitzhan 2013) via PPG.  

Due to the phenomenon of respiratory sinus arrhythmia (RSA) (Hirsch and Bishop 1981), the 

breathing rate (BR) also modulates the  PPG waveform. Thus, detecting these RSA-induced 

fluctuations may be used to derive breathing rate from PPG (Johansson 2003, Orini, Peláez-Coca 

et al. 2011, Karlen, Raman et al. 2013). The feasibility of this approach has been demonstrated in 

a number of studies. Initially, researchers tested different optical sensors to acquire the PPG signal 

to measure BR such as wrist sensors (Kagawa, Kawamoto et al. 2013), webcams (Jin, Dong et al. 

2013) and different optical sensor based biosignals (Shamim, Atul et al. 2010). Lately, studies 

have been more focused on obtaining the data via pulse oximeters, smartphones or tablets, and 

utilize frequency based methods such as wavelet-based filtering and variable-frequency complex 

demodulation (VFCDM) technique to perform offline analysis (Dash, Shelley et al. 2010) as these 

methods are computationally very expensive. Lee et al. (Lee and Chon 2010), Fleming et al. 
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(Fleming and Tarassenko 2007) and Nam et al. (Nam, Lee et al. 2014) have applied Auto 

Regressive (AR) models which are computationally faster than the prior methods and have 

potential for computing breathing rate in real time on mobile devices. Karlen et al. (Karlen, Lim 

et al. 2012) has discussed hardware issues to measure breathing rate via a smartphone. Prior studies 

have been able to successfully obtain PPG data from smartphones but compute breathing rate 

measurements on different platforms. Our work is computationally more efficient by using 

Goertzel algorithm for frequency analysis and can estimate breathing rate using the smartphone 

resources.  
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3 MUSIC-BASED RESPIRATORY BIOFEEDBACK IN  

VISUALLY DEMANDING TASKS 

In this chapter we describe a music-based biofeedback tool that promotes deep breathing by 

modifying the music based on the user’s breathing rate. We evaluated our tool in the context of 

driving a car racing-simulator, and compared it against auditory biofeedback and music in terms 

of its ability to lower arousal levels (primary objective) and improve driving performance 

(secondary objective). 

In the following subsections, we first discuss the proposed tool in detail. Then we describe the user 

studies to evaluate the tool during visually demanding tasks and provide the system details for the 

studies. Next, we present the physiological results, task performance and subjective results. Finally 

we discuss the results and provide our conclusions about the tool.  

3.1 Music-based respiratory biofeedback tool 

The Music-based respiratory biofeedback tool encourages slow breathing by modifying the quality 

of the music recording in proportion to the user’s respiration rate. In the following subsections, we 

discuss the biofeedback mechanism, the breathing range considered calm, and the relationship 

between breathing rate and noise to change the quality of the music. Finally we provided the 

implementation details of the existing tool. 

The proposed tool is illustrated in Figure 3. The music biofeedback tool manipulates the noise 

level in music to convey the users breathing rate. We use a chest strap to measure the user’s 

respiration rate and send it to an audio modification application, where it is compared against a 

target breathing rate BR0. The system adds white noise to the music proportional to the positive 

deviation from the target breathing rate. In terms of classical control theory model, the control 
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loop consists of (i) user as the plant we wish to control, (ii) respiratory sensor that measures the 

user’s breathing rate and (iii) audio modification which acts as a controller to minimize the 

difference between the desired and actual output. This system is based on a positive feedback 

control law where states of non-relaxation (breathing rates > BR0 breaths/min) are penalized by 

increasing the noise in the music while breathing rates lower than BR0 are not penalized.  

 

 

Figure 3. Biofeedback mechanism as described in (Harris, Vance et al. 2014) 

3.1.1 Target breathing rate ( BR0) 

We choose a target breathing rate of 8 breaths/min based on prior studies (Vaschillo, Vaschillo et 

al. 2006) showing that heart rate variability –a physiological indicator of relaxation, is maximized 

at breathing rates around 0.1Hz (6 breaths/min). Reaching this breathing rate requires familiarity 

with deep breathing practice, and for this reason we choose a slightly higher rate (8 breaths/min) 

to ensure our study participants would be able to achieve it yet enjoy the calming benefits of slow 

breathing.  
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3.1.2 Music modification 

As shown in Figure 4, if the user’s respiration is below the target rate the musical piece is played 

without applying any modification. However, if the user’s breathing exceeds the target rate (8 

breaths/min), the audio modification application adds white noise to the musical piece according 

to a piece-wise linear function as per the following set of equations (1) and (2): 

𝑚(𝑡) = 𝑠(𝑡) + 𝑛(𝑡) (1) 

𝑛(𝑡) =

{
  
 

  
 

0, 𝑏(𝑡) ≤ 8

[
(𝑏(𝑡) − 8)

8
] × 𝑠(𝑡), 8 < 𝑏(𝑡) ≤ 12

[
(𝑏(𝑡) − 12)

16
+ 0.5] × 𝑠(𝑡), 12 < 𝑏(𝑡) ≤ 20

𝑠(𝑡), 𝑏(𝑡) ≥ 20

 

 

(2) 

where 𝑚(𝑡) is the modified music’s sound intensity, 𝑠(𝑡) is the original music’s sound intensity, 

𝑛(𝑡) is the white noise’s sound intensity and 𝑏(𝑡) is the current breathing rate. Namely, at 12 

breaths/min, the noise amplitude is 50% the average amplitude of the music track; at or above 20 

breaths/min, noise and music have the same amplitude. The rate at which noise is added between 

8-12 breaths/minute is double than the rate between 12-20 breaths/minute. The sharp rise in noise 

between 8-12 breaths/minute is to help the user perceive the low intensity of noise and also help 

them understand that their breathing rate is slightly deviated from the target breathing rate.  



15 

 

 

Figure 4. Relationship between breathing rate and the ratio of noise amplitude to music 

amplitude 

 

3.1.3 Tool description 

The initial prototype of the music-based biofeedback tool was developed by Harris et al. (Harris, 

Vance et al. 2014) as part of a senior design project. The tool had two different techniques to 

modify music: track layering and white noise addition. Track layering technique phases out audio 

channels from a multi-track recording based on the amount of deviation from the target breathing 

range (0-8 breaths/min) while noise addition technique adds noise based on the amount of 

deviation from the target breathing range (0-8 breaths/min). We utilize the noise addition approach 

for further evaluation as the study by Harris et al. (Harris, Vance et al. 2014) suggested that track 

layering technique is less effective  since it requires familiarity with the song in order to determine 

if all tracks are being played and users are practicing deep breathing. Also audio layering 

techniques require multi-track recordings which are not commonly available.  
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We modified the noise/music ratio vs breathing rate curve based on the feedback we received 

during the pilot studies. We also modified other aspects such as the visual interface to suit the 

requirements for our user study; see screenshots in Figure 5. The tool is implemented as a mobile 

app on a Nexus 5 smartphone running Android 4.4 (KitKat). We measure breathing rate from a 

Bluetooth thoracic respiratory sensor (Bioharness BT, Zephyr Tech.) which sends the breathing 

rate to the smartphone app via Bluetooth communication protocol. Once a song is selected the app 

will modify the audio as described in Figure 4. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Visual Interface of the music biofeedback tool: (a) initial screen to connect to 

the respiratory sensor, (b) music player with songs playlist, current respiration rate and 

player controls, (c) respiration signal graph displaying the current respiration rate with 

the ideal value (6 breaths/min) 
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3.2 User studies 

We evaluated our intervention on a 2 × 2 study design with music and auditory biofeedback as 

independent effects. Participants (N=28; 23 males; 22-36 years) were required to have prior 

driving experience. For detailed information about the participants, refer to APPENDIX B. The 

protocol consisted of three phases, each lasting 5 minutes: 

- Driving: participants played the car racing simulator to measure physiological baseline 

during driving 

- Treatment: participants were randomly assigned one of the four conditions in Table 1 

(N=7 participants per condition) 

- Driving+treatment: participants repeated their assigned condition while driving the 

simulator 

Participants in the MBF condition used the mobile app to practice deep breathing while listening to music 

during the treatment and treatment+driving phases. ABF participants used the mobile app similarly1, 

except the music track was replaced with silence; thus, ABF participants heard white noise if their 

breathing rate was higher than the target, and silence otherwise. MUS participants listened to music 

1 In both biofeedback cases (MBF, ABF) the level of noise guides participants towards reducing their 

breathing rate. 
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without biofeedback, and control participants received no assistance (app or music).  Music was delivered 

with stereo headphones, and the app’s GUI was not visible during the experiment to avoid visual 

distractions from driving.  

 

Table 1. 2 x 2 study design 

Prior to the experiments, participants in the MBF and MUS condition were asked to select two songs of 

the same composer from a predetermined music library; see Table 2. All songs had a slow tempo (50-80 

beats/min) and were instrumental –such compositions have been associated with lowering physiological 

responses (Pelletier 2004, Dillman Carpentier and Potter 2007, Grewe, Nagel et al. 2007, Ünal, de Waard 

et al. 2013). Subjects also filled a questionnaire pre and post experiments for qualitative analysis; see 

APPENDIX A. The study was approved by our Institutional Review Board. 

 

Table 2. List of pre-selected musical compositions 

3.2.1 Visual task: Driving  

To simulate a visually-demanding task, we used an open-source car racing simulator (Parnandi and 

Gutierrez-Osuna 2014) , displayed on a 22” LCD and integrated with a racing wheel as shown in Figure 

No Biofeedback Biofeedback

No Music Control (CTRL) Auditory Biofeedback (ABF)

Music Music only (MUS) Music Biofeedback (MBF)

Composer Song 1 Song 2

Beethoven Concerto No. 5 Fur Elise

Mozart Andante Andantino

Enya Caribbean Blue Watermark

Einaudi Nuvole Bianche I Giorni

Yo Yo Ma Cell Suite No. 1 Meditation
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6. To reduce variance across participants and experimental conditions, we modified the game so players 

were only required to steer the car, its speed at each position in the track being predetermined. The 

nominal speed profile for the track was obtained by recording game runs of a proficient player in a prior 

study. To measure task performance, we recorded the number of crashes during the race. 

 

 

Figure 6. System overview 

3.2.2 Physiological arousal  

We measured arousal with two well-known physiological indices: electrodermal activity (EDA) 

and heart rate variability (HRV). We extract two components from the EDA response: SCL and 

SCR. Specifically, we estimate SCL as the average skin conductance during each phase. We 

computed two features based on SCR’s: the number of SCRs and the electrodermal positive 

Respiration 
sensor

Target
respiration

Error

Audio 
modification

Original
music

Modified
music
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change (EPC) (Leiner, Fahr et al. 2012). To extract the number of SCRs, we used Ledalab2, an 

open source software written in Matlab (Benedek and Kaernbach 2010, Bach 2014). To extract 

SCRs, Ledalab decomposes the skin conductance signal into distinct phasic and tonic components 

using nonnegative deconvolution to obtain a zero baseline signal, then measures SCRs via standard 

trough-to-peak analysis (Benedek and Kaernbach 2010). The second feature, electrodermal 

positive change (EPC) sums the amplitude of each SCR over time (Leiner, Fahr et al. 2012). We 

measured EDA using a FlexComp Infinity encoder (Thought Technology Ltd.) with disposable 

AgCl electrodes attached on the palmar region of the subject’s non-dominant hand. 

The second physiological index to measure arousal is heart rate variability (HRV). We computed 

HRV as the root mean square of successive differences (RMSSD) in R-R intervals over a 30s 

window sliding by 1s (Parnandi and Gutierrez-Osuna 2014). We measured HRV with the same 

Bioharness BT chest strap from which we measure respiration rate. 

It is important to note that these two physiological measures were collected for monitoring 

purposes and were not used in any way for biofeedback purposes. When used in combination, 

EDA and HRV provide a robust index of arousal: changes in EDA and HRV are generally in 

opposite direction with increasing arousal (e.g. EDA increases while HRV decreases), so 

simultaneous increases (or decrements) in both variables can be dismissed as noise or motion 

2 http://www.ledalab.de/ 
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artifacts. 

3.3 Results 

In the context of driving, we evaluated music biofeedback (MBF) with auditory biofeedback 

(ABF), music (MUS) and control (CTRL) conditions in terms of its ability to lower arousal levels 

and improve driving performance. We compared physiological arousal based on changes in 

breathing rate, heart rate variability and electro dermal activity. We also present the driving 

performance under each condition based on collisions and speed values. Finally we share the 

subjective results obtained via the survey filled by the participants.  

3.3.1 Breathing rate  

Figure 7 shows the average breathing rate for the four conditions at each stage in the protocol. 

Breathing rates for participants in the non-biofeedback conditions (CRTL, MUS) decreased 

moderately during treatment, but returned to the original levels during driving+treatment.  In 

contrast, breathing rates for participants in the biofeedback conditions (ABF, MBF) dropped below 

the 8 bpm target during treatment and, more importantly, remained at that level during 

driving+treatment. 2-way ANOVA shows a main effect for biofeedback during treatment 

(𝐹(1, 24) = 148.45, p < 0.05) and driving+treatment (𝐹(1, 24) = 107.10, p < 0.05), but no 

music or interaction effects for either phase. It clearly demonstrates that participants under 

biofeedback conditions are able to reduce their breathing rate during treatment and maintain a low 

RR during the driving+treatment phase indicating the transfer of deep breathing skills 
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Figure 7. Average respiration rate (across all participants) during driving, treatment, 

and driving+treatment. Error bars indicate standard deviation. 

 

Next, we analyze the temporal evolution of respiration rate to gain a better understanding of the 

difference between the four conditions. Figure 8 presents the average respiration rate for 

participants under each condition over the course of the experiment. These plots corroborate the 

results discussed above. Both biofeedback interventions are more effective at encouraging slow 

breathing during visually-demanding tasks (driving+treatment phase) compared to the other two 

groups. 

4

8

12

16

20

24

Driving Treatment Driving + treatment

R
es

p
ir

at
io

n
 r

at
e

CTRL

MUS

ABF

MBF



23 

Figure 8. Average respiration rate for the four conditions (MBF,CTRL,MUS,ABF) 

over the entire protocol. 

3.3.2 Heart Rate Variability (HRV) 

Figure 9 shows the percent increase in HRV (relative to their levels during driving) for the treatment and 

driving+treatment phases.  Participants in the non-biofeedback conditions showed similar HRV during 

treatment and driving+treatment as observed during driving suggesting that music alone was unable to 

reduce arousal. In contrast, participants in the two biofeedback conditions had a large increase in HRV 

during treatment indicating a lowering of arousal, and these levels were sustained during 

driving+treatment. As with breathing, 2 way ANOVA shows a main effect in HRV for biofeedback 

during treatment (𝐹(1, 24) = 15.85, p < 0.05) and driving+treatment (𝐹(1, 24) = 10.75, p <

0.05), but no music or interaction effects for either phase. 
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Figure 9. Percentage change in HRV (high HRV indicates relaxation). Error bars indicate 

standard deviation. 

 

To understand the effects of the independent variables (music and biofeedback), we next assess the 

temporal evolution of the HRV signal over the course of the experiment.  Figure 10(a-b) show the z-score 

normalized HRV over time averaged over all participants in biofeedback vs biofeedback conditions and 

music vs non-music conditions respectively. Figure 10(a) shows that participants under biofeedback 

conditions have a higher HRV throughout the treatment and driving+treatment phases in comparison to 

non-biofeedback conditions. As per Figure 10(b), there is no visual difference between music and non-

music conditions in all the three phases.  
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(a) (b) 

Figure 10. Z-score normalised HRV(a) Comparing HRV for biofeedback vs non-

biofeedback conditions over time. (b) Comparing HRV for music vs non-music 

conditions over time. 

3.3.3 Electrodermal Activity (EDA) 

We extracted three features via the EDA signal: Skin Conductance Response (SCR), Skin 

conductance level (SCL) and Electrodermal positive change (EPC). Figure 11 shows the percent 

reduction in SCR’s (relative to its level during driving). Here the SCRs were computed using the ledalab3 

software. Participants in all the four conditions show a large reduction in SCR’s (greater than 50%) during 

treatment phase. Arousal levels during driving+treatment return close to their initial values observed 

3 http://www.ledalab.de/ 
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during driving for all conditions except for MBF, which still shows a large (47%) reduction in SCR’s. 

This result suggests that music biofeedback is more effective than auditory biofeedback at lowering 

arousal during visually-demanding tasks. 2-way ANOVA shows a main effect in EDA for biofeedback 

during treatment (𝐹(1,24) = 5.50, p < 0.05), a strong effect for biofeedback during 

driving+treatment (𝐹(1,23) = 12.06, p < 0.05) after outlier removal by residual analysis using SPSS 

software4 and no music or interaction effects for either phase. 

Figure 11. Percentage change in SCR (low SCR indicates relaxation). Error bars indicate 

standard deviation. 

4 http://www-01.ibm.com/software/analytics/spss/ 

-90%

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

Treatment Driving + treatment

C
h

an
ge

s 
in

 S
C

R

CTRL

MUS

ABF

MBF



27 

 

Figure 12 shows the percent reduction in SCL (relative to their levels during driving) for each of the four 

conditions. Participants under all conditions showed decrease in SCL during treatment than during 

driving phase but the amount of reduction relatively is larger in biofeedback conditions. Participants in 

the biofeedback conditions showed lower SCL during driving+treatment than during driving (especially 

MBF condition), suggesting that biofeedback alone was able to reduce arousal more effectively. 

Participants under MBF condition had the largest reduction in SCL during driving+treatment phase 

which indicates that they were more relaxed. 2 way ANOVA shows a main effect in SCL for biofeedback 

during treatment (𝐹(1,24) = 4.50, p < 0.05) and a marginal effect during driving+treatment 

(𝐹(1,23) = 4.00, p = 0.05) after outlier removal by residual analysis using SPSS software but no 

music or interaction effects for either phase.  

 

 

Figure 12. Percentage change in SCL (low SCL indicates relaxation). Error bars indicate 

standard deviation. 

 

Figure 13 shows the z-score normalized SCL over time averaged over all participants in biofeedback vs 

biofeedback conditions and music vs non-music conditions. Figure 13(a) shows that participants under 
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biofeedback conditions have a lower SCL than non-biofeedback conditions during treatment and 

driving+treatment phase. Visual comparison between music and non-music conditions shows no such 

trend. 

 

(a) 

 

(b) 

Figure 13 Z-score normalised SCL(a) Comparing SCL for biofeedback vs non-

biofeedback conditions over time. (b) Comparing SCL for music vs non-music conditions 

over time. 

 

Figure 14 shows the percent reduction in EPC (relative to its level during driving). Participants in all four 

conditions showed a large reduction in EPC during treatment, suggesting that the four conditions were 

effective in reducing arousal. This was especially evident for the two biofeedback groups (MBF and 

ABF). During driving+treatment phase, both biofeedback conditions show higher reductions (MBF has 

1% higher reduction than ABF) than non-biofeedback conditions. This result suggests that biofeedback 

is effective at lowering arousal during visually-demanding tasks. 2-way ANOVA shows a main effect in 

EPC for biofeedback during treatment (𝐹(1,24) = 17.50, p < 0.05), a weak effect for biofeedback 

during driving+treatment (𝐹(1,24) = 1.250, p = 0.274) and no music or interaction effects for either 

phase adjustment. 
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Figure 14. Percentage change in EPC (low EPC indicates relaxation). Error bars indicate 

standard deviation. 

 

3.3.4 Subjective results 

We also obtained subjective assessment from the participants for a qualitative analysis; refer APPENDIX 

A. When asked “how negative (unhappy) or positive (happy) do you feel after listening to the music?” on 

a 5-point Likert scale (1: unhappy; 5: happy) participants in the two music interventions (MBF, MUS) 

reported being happier after listening to music during driving+treatment relative to only driving, while 

participants in the non-music interventions (ABF; CTRL) reported a decrease in their happiness level; 

see Figure 15(a). A 2-way ANOVA shows a main effect in valence (happiness) for music during 

driving+treatment (𝐹(1,24) = 6.17, p < 0.05), but no biofeedback or interaction effects. Though 

participants in the four conditions reported a reduction in arousal level, the reported reduction was largest 

for those in the MBF condition; see Figure 15(b). This result suggests that music biofeedback is more 
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effective at lowering arousal during visually demanding tasks than music or auditory feedback alone. 

 

(a) 

 

(b) 

Figure 15.  Subjective ratings (a) Change in valence, measured using a 5-point Likert scale (1: 

unhappy; 5: happy). Error bars indicate standard deviation. (b) Change in arousal , measured 

using a 5-point Likert scale (1: calm; 5: excited)  

 

When asked “do you feel the music helped you reach a calmer state?” the average rating for MBF and 

MUS participants was 3.4 (1: not at all; 5: extremely).   Similarly, when asked “how much did you like or 
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dislike the songs?” MBF and MUS participants provided an average rating of 4.57 (1: strongly dislike; 5: 

strongly like). A t-test for the likability ratings provided by participants for MBF and MUS conditions 

(MUS: 4.28; MBF: 4.85) showed a statistical difference (p < 0.05).  We also found significant 

differences between ABF and MBF in terms of usability ratings: when asked “would you use this app if 

it were available to you?” all MBF participants responded in the positive, compared to three out of 7 

among ABF participants. When asked “how often would you use the app?” the average answer for MBF 

and ABF participants was 3.28 and 2.42, respectively (1:not at all; 2:weekly; 3:several times/week; 

4:daily; 5:several times/day)  Finally,  when asked “how often were you able to listen to the music without 

any noise?” MBF participants felt they were in better control over the quality of music and listened to the 

music devoid of noise more often than ABF participants (MBF: 3.71; ABF: 2.57) (1:never; 2:seldom; 

3:about half the time; 4:usually; 5:always). 

3.3.5 Driving performance  

We compared task performance for each of the four conditions in terms of number of collisions and 

average speed for each phase.  Figure 16 shows the reduction in the number of collisions during 

driving+treatment (relative to their values during driving).  Participants in the two music conditions had 

fewer collisions than those in the non-music conditions (2 way ANOVA; marginal effect after outlier 

removal:𝐹(1,22) = 3.391; 𝑝 = 0.07). Note, however, the large error bar for the MUS condition, which 

indicates that the effects of music-biofeedback are more consistent across subjects than music alone. 
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Figure 16. Absolute change in number of collisions to measure task performance. Error bars 

indicate standard deviation. 

 

We also evaluated driving speed as another indicator of participant’s task performance.  Results in Figure 

17 show an increase in speed for participants under all conditions during driving+treatment (relative to 

their values during driving).  Participants in the two music conditions have a higher speed than the non-

music conditions but the differences are not statistically significant (2 way ANOVA; weak effect:𝑝 =

0.28) due to high variance in all conditions.  These results are similar to the results obtained for collisions 

as the average speed is predetermined over the track and is only affected by the number of crashes and 

the duration of each crash. 
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Figure 17. Absolute change in speed to measure task performance. Error bars indicate 

standard deviation 

 

3.4 Discussion 

We have presented a tool which combines the benefits of music and biofeedback to practice 

relaxation exercises during visually demanding tasks. The tool allows the user to listen to their 

favorite music, and adapts it to encourage slow, deep breathing. We compared this music-

biofeedback tool against auditory biofeedback, music and a control condition, with four 

physiological measures and driving performance on a car-racing simulation as dependent 

variables. When compared to the two non-biofeedback conditions, music biofeedback lead to 

lower arousal levels across the four physiological measures. While music biofeedback and 

auditory biofeedback were comparable in terms of respiration and HRV, music biofeedback did 

lead to lower EDA levels (i.e., lower arousal) than auditory biofeedback in terms of Skin 

conductance response and skin conductance level. The latter is a stronger result given that EDA 
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(especially number of SCR’s) is a more robust measure of arousal than HRV –HRV is modulated 

by respiration rate, whereas EDA is not. Results from subjective ratings also indicate that music 

biofeedback leads to a larger reduction of arousal. Interestingly, the subjective reduction in arousal 

reported by subjects and percentage change in EDA –Figure 15(b) and Figure 11, respectively, are 

consistent with each other, supporting our argument that EDA is a relevant index of arousal. In 

terms of driving performance, music related conditions lead to fewer collisions and larger increase 

in speed. While music and music biofeedback are comparable in results, music biofeedback leads 

to more consistent performance across participants than music based on the large error bars shown 

in Figure 16. In terms of usability, the music biofeedback tool was preferred over auditory 

biofeedback tool. Overall, this suggests that music biofeedback is a viable stress-management 

intervention during driving and other visually-demanding tasks.   

The music based biofeedback tool has other benefits over the current existing biofeedback 

systems. Majority of the biofeedback tools cannot be used in conjunction to any other activity 

while our tool can be used while performing a visual task such as reading, exercising, etc.  The 

mobile app allows users to select any song from their personal music library which acts as a key 

benefit to this system compared to other music based biofeedback systems which have special 

format requirements for musical compositions (Bergstrom, Seinfeld et al. 2013). Deep breathing 

is a proven method to reduce stress but is not enjoyable due to its monotonous nature. Our tool 

adds the benefits of music to make this activity an enjoyable experience; leading to low attrition 

rates in practice of deep breathing. 

We summarize the overall results in the form of a table by ranking each condition based on the 

results which are beneficial to the user (results indicating stronger relaxation or better driving 

performance or higher happiness level are ranked higher); see Table 3. Music biofeedback tool is 
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ranked in top two groups in each category. Auditory biofeedback is ranked second in all results 

related to physiological arousal but last in terms of driving performance and happiness ratings. A 

reverse trend is displayed by participants listening to music, where driving performance and 

happiness ratings are highest but poor physiological arousal rankings. Interestingly, the order of 

ranking is same for driving performance and subjective valence (happiness); they also have similar 

pattern in their results as shown in Figure 15(a) and 16. This can lead us to speculate that the 

driving performance and happiness are directly related.  

SR 

No. 

Independent Variable Trend  Rank #1 Rank #2 Rank #3 Rank #4 

1 Breathing Rate ↓ MBF ABF CTRL MUS 

2 Heart Rate Variability  ↑ MBF ABF MUS CTRL 

3 Skin Conductance Response ↓ MBF ABF MUS CTRL 

4 Skin Conductance Level ↓ MBF ABF CTRL MUS 

5 Electrodermal Positive Change ↓ MBF ABF CTRL MUS 

6 Subjective Arousal ↓ MBF MUS ABF CTRL 

7 Subjective Valence ↑ MUS MBF CTRL ABF 

8 Collisions ↓ MUS MBF CTRL ABF 

9 Speed ↑ MUS MBF CTRL ABF 
 

Table 3 Overall results table (↑= positive change in independent variable is beneficial 

for the user; ↓ = negative change in independent variable is beneficial for the user ) 
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4 SMARTPHONE-BASED MEASUREMENT OF RESPIRATION  

RATE USING GOERTZEL ALGORITHM 

In this chapter we describe the smartphone application to measure breathing rate via 

photoplethysmography and the experiments conducted to evaluate the tool measurements in 

comparison to a medical grade respiratory sensor.   

The remaining sections of this chapter are organized as follows. First, we describe our algorithm 

to estimate breathing rate via PPG signal extracted from smartphone camera. Then we discuss our 

set of experiments to evaluate the accuracy of the breathing rate measurements. Next, we present 

the results obtained via the smartphone application and also discuss the influence of breathing rate 

and other algorithm parameters on the error. Finally we interpret the results in the last subsection. 

4.1 Smartphone application to measure respiration rate 

Respiration modulates the PPG waveform in three ways: respiratory induced amplitude variations 

(RIAV), respiratory induced frequency variations (RIFV) and respiratory induced intensity 

variations (RIIV). We aim to detect the respiration induced intensity variations (RIIV’s) in the 

PPG signal to measure breathing rate as it provides more accurate results (Karlen, Raman et al. 

2013). Our algorithm to measure breathing rate from a smartphone camera is illustrated in Figure 

18.  We will describe the algorithm stepwise in the following sub-sections: 
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Figure 18. Steps of the algorithm to measure breathing rate 

4.1.1 Algorithm  

We use the built-in camera in the smartphone to collect PPG signal as shown in Figure 19. The 

user is required to place their index finger over the camera covering the flash light. We extract 

only the green channel signal due to lower absorption of green light by blood, which results in a 

stronger PPG signal (Wieringa, Mastik et al. 2005). At each sampling point, the PPG image is 

averaged to obtain a time series of PPG’s after data acquisition as shown in Figure 19(d). 

 

 

Figure 19 Data acquisition (a) Cover flash and camera with index finger (b) separate image 

in RGB channels (c) extract green channel data and average each time frame to a single 

point (d) PPG signal 

 

As shown in Figure 20, the PPG time series data goes through several preprocessing steps before 
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being used for BR estimation. First, we select a segment of PPG signal from a time window of 

certain width and resample at interval of 100 ms (10 Hz) to rectify variable camera sampling 

interval using cubic interpolation. We then remove the mean from the resampled signal and apply 

linear detrending (Fleming and Tarassenko 2007, Dash, Shelley et al. 2010, Lee and Chon 2010), 

which helps remove local trends before frequency analysis and reduce sensor based or subject 

based motion artifacts.  

 

(a) (b) 

(c) (d) 

 

(e) 

Figure 20 Pre-processing steps (a)Raw PPG signal (b) Resampled signal (10 Hz) (c) 

Signal after mean removal (d) Detrended signal (e) Signal after multiplication for 

hamming window 
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We estimate the breathing rate 𝐵𝑅 by obtaining frequency responses 𝑔𝑟 for the preprocessed signal

𝑋 at specific frequencies 𝑓 using Goertzel algorithm and calculating the exponential weighted 

average as shown in Equation (3): 

𝐵𝑅 =
∑ (𝑓 ∗ 𝑔𝑟(𝑓, 𝑋)

𝛼)𝑓

∑ 𝑔𝑟(𝑓, 𝑋)
𝛼

𝑓

(3) 

where 𝛼 = 10 is found to be appropriate exponential weighting parameter in our preliminary work. 

Goertzel algorithm (Goertzel 1958)  returns the frequency response at specific frequencies for the 

input data (see Figure 21) as per equations (4) and (5) : 

𝑠(𝑛) = 𝑥(𝑛) + 2 cos(2𝜋𝑓) 𝑠(𝑛 − 1) − 𝑠(𝑛 − 2) (4) 

𝑦(𝑛) = 𝑠(𝑛) − 𝑒−2𝜋𝑖𝑓𝑠(𝑛 − 1) (5) 

where 𝑠(𝑛) is the intermediate sequence, 𝑥(𝑛) is the input sequence, 𝑓 is the given frequency, and 

𝑦(𝑛) is the output sequence5. The final term in the output sequence is the Goertzel response (𝑔𝑟)

for the given frequency 𝑓. Goertzel algorithm analyses one specific frequency component from 

the discrete signal. It suits our purpose as it is computationally inexpensive and provides frequency 

response for selected frequencies. We choose frequencies which correspond to low breathing rates 

5 𝑠(−2) = 𝑠(−1) = 0; 𝑥(𝑛) = 0 for all 𝑛 < 0 
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(4-16 at interval of 0.125 breaths/minute) as the signal is strongly influenced by RSA at low 

breathing rates (Hirsch and Bishop 1981). A Hamming window is used to minimize the first side 

lobe for frequency response.  

 

Figure 21 Goertzel response at specific frequencies for a PPG signal (30 seconds) for a 

participant breathing around 6 BPM (frequency correspond to 4-16 BPM at interval of 

0.5 BPM) 

 

4.1.2 Tool description  

We implemented the tool as a mobile app on a Nexus 5 smartphone running Android 4.4 (KitKat). 

Initial version of the app also included measurement of HR using peak detection algorithms over 

the PPG signal, but was removed to reduce computational cost to measure breathing rate. The 

visual interface displays the video stream captured by the camera, the PPG signal (green channel 

only) and the computed respiration rate; see screenshots in Figure 22. Note that the mobile app 

can run on any Android smartphone with a flash based camera which acts as the source of light 

for PPG.  

We extensively tested the accuracy of our measurements under different lighting conditions, 
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spectral considerations (green, blue and red), region of interest in the frame, flash light intensity 

during our initial experiments. To utilize the tool, users are required to place their index finger on 

the smartphone camera (generally camera on the other side of the screen) after starting the 

application on the android smartphone. The app will start streaming the PPG signal on the bottom 

of the screen –see Figure 22(a). The streaming helps detect motion artifacts in the PPG signal 

visually in real-time. After a fixed time period, a breathing rate value will be displayed as shown 

on in Figure 22(b). To avoid inaccurate readings, users should cover the complete camera and 

flash while keeping their finger still until a measurement is displayed on the screen. 

 

 

(a) 

 

(b) 

Figure 22. Visual interface of the smartphone application to measure breathing rate : (a) 

screenshot during data collection, (b) screenshot after breathing rate value is estimated  
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4.2 User studies 

To evaluate this tool, we compared the breathing rate estimated from the app with the reference 

values obtained by the chest strap respiration sensor. Participants (N=5; 5 males; 22-36 years) 

were required to have no current cardiac or respiratory problems. 

Participants maintained a fixed breathing rate (6, 8, 10 or 12 BPM) for each paced breathing 

session. During each session, four reliable6 datasets were collected (participants placed their index 

finger on the camera for each dataset). Overall, we collected 80 signals (5 subjects x 4 breathing 

rates X 4 repetitions), each lasting 2 minutes. To avoid ordering effects, the sequences of sessions 

for fixed breathing rates were randomized. 

During these controlled breathing sessions, subjects were instructed to inhale and exhale by 

following an auditory pacing signal7 with the inspiration to expiration ratio set to 2:3 (Strauss‐

Blasche, Moser et al. 2000).  To measure respiratory ground truth, we used Bioharness BT chest 

strap sensor which provides medical grade breathing rate measurements (Hailstone and Kilding 

2011). This study is approved by our Institutional Review Board. 

6 Unreliable datasets (corrupted due to motion artifacts or inconsistent breathing rate) were rejected 

7 Paced Breathing: Android app which provides visual and audio breathing cues, available on google play. 

(https://play.google.com/store/apps/details?id=com.apps.paced.breathing&hl=en)   
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4.3 Results  

4.3.1 Online analysis 

We evaluated the accuracy of the proposed method by computing the root mean square error 

(RMSE) between ground truth values measured by a chest strap respiratory sensor and estimated 

breathing rates. Figure 23 shows the RMSE for the four breathing conditions (refer Section 4.2).  

The average RMSE for the four breathing conditions was 0.323 BPM with the error being less 

than 1 BPM for all conditions. We also observed that the error and the corresponding variance was 

relatively higher for 8 and 12 BPM conditions.  

 

 

Figure 23. Root mean square error (breaths/min) for estimated BR in comparision to  

ground truth values for different breathing rates. Error bars indicate standard deviation. 

 

Figure 24 shows a scatter plot with the estimated breathing rate and ground truth values for all 

datasets. In our assessment we noted that 91.25% of the estimated BR values were within ± 1 

standard deviations of the mean values (datapoints in green region). We had only two extreme 

outliers: a dataset with reference breathing rate of 8 breaths/min (estimated BR=15.98, the 
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harmonic frequency being captured) and a dataset with reference breathing rate of 12 breaths/min 

(estimated BR=4, no strong frequency response in applicable range). These datasets are the cause 

for high variance in results under 8 and 12 BPM as shown in Figure 23. The Spearman correlation 

coefficient between the estimated BR and ground truth was found to be 𝑟 = 0.88 ((𝑝 < 0.01)) 

indicating a strong correlation. This shows that the method measures breathing rate accurately and 

is robust too.  

  

Figure 24. Scatter plot, error per subject : Scatter plot showing the estimated and mean 

of the reference values of RR. Blue dashed line represents the optimal performance 

4.3.2 Offline analysis 

We also performed an offline analysis on the PPG data obtained from the smartphone application 
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to simulate a continuous measurement8 of breathing rate. Continuous measurement is achieved by 

using a sliding window with specified window size and overlap. We completed offline analysis to 

tune the different parametric values used in our algorithm. We examine the accuracy of our method 

for the four controlled breathing rates included in the user study. Our algorithm comprises of a 

few variables which can be tuned to achieve higher accuracy in the estimation which include: 

 Alpha (α): The exponential factor for the weightage of frequency response of Goertzel

algorithm as shown in Equation (3) 

 Window size (w): Data length in seconds used for each estimation

 Spacing (s): The spacing between each breathing rate used in the Equation (3)

 Figure 25 shows the RMSE for different breathing rates averaged different overlapping windows. 

We average the results obtained using windows of size 30, 60, 90, and 120 seconds (with an 

overlap of 29, 59, 89 and 119 seconds respectively) for each breathing rate. The error for lower 

breathing rates (6 and 8 BPM) is comparatively lower than higher breathing rates (12 BPM). The 

error increases with increase in breathing rate. The variance of the error also increases with higher 

breathing rates showcasing the variability in the estimation of the breathing rates. 

8 Note that the app provides single reading for each 2-minute dataset 
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Figure 25. RMS error (breaths/min) for different breathing rates (average over different 

window sizes). Error bars indicate standard deviation. 

 

Figure 26 shows the averaged RMS error for all the datasets for different alpha values (the 

exponential factor for the weight of frequency response as described in Equation (3)). Other 

parameters such as window size (w =120 seconds) and spacing (s =0.125 breaths/min) are kept 

constant for this assessment. We chose these parameter values since they resulted in the lowest 

RMSE during our preliminary studies. As the alpha value increase from 0.1 to 100, the error 

initially reduces after which it starts to increase. This analysis shows that α=10 led to the smallest 

error (RMSE=0.32 breaths per minute).  
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Figure 26. RMS error (breaths/min) for different alpha values (average over entire 

dataset). Error bars indicate standard deviation. 

 

Figure 27 shows the averaged RMS error for the complete dataset with different data length used 

for breathing rate estimation. Other parameters such as alpha (α=10) and spacing (s =0.125 

breaths/min) are kept constant across all datasets. It shows a large reduction in error with 

increasing window size. The error is highest (2.62 breaths/min) for window size = 30 seconds 

while a window size of 120 seconds led to the lowest error (0.32 breaths/ min). These results show 

that the error reduces with increasing window size. However, it is worth mentioning that duration 

required for each measurement is directly dependent on the measurement window i.e. higher the 

window size, longer the measurement duration, 
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Figure 27. RMS error (breaths/min) for different window sizes (average over entire 

dataset). Error bars indicate standard deviation. 

 

Figure 28 shows the averaged RMS error for the complete dataset for different spacing values 

(0.125, 0.25, 0.5 and 1 breaths/min) between the ranges of breathing rate queried in equation (3). 

Other parameters such as alpha (α=10) and window size (w =120 seconds) are kept constant. The 

error is least with spacing equal to 0.125 breaths/min; however the difference in RMSE for the 

different values of s is not significant (less than 0.1 breaths/min).  

  

Figure 28. RMS error (breaths/min) for different spacing values (error averaged over 

entire dataset). Error bars indicate standard deviation. 
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4.4 Discussion 

We presented a method to extract respiratory rates using Goertzel algorithm directly from 

smartphone camera recordings. We compared our algorithm performance with medical grade 

respiratory sensors over controlled breathing settings. The algorithm has shown high accuracy and 

robustness in estimating breathing rates from PPG signal when computed on the smartphone. The 

results also suggest that our method is more accurate for lower breathing rates. The accuracy 

reduces for higher breathing rates as the modulation of PPG signal by respiration reduces with 

higher breathing rates. Also the higher breathing rates exhibit large amount of motion 

corresponding to high artifact noise in the data.  In addition, the error significantly decreased when 

longer time windows were used.  

In comparison to prior methods, our algorithm can compute breathing rate over the smartphone 

itself while prior methods ((Kagawa, Kawamoto et al. 2013, Karlen, Raman et al. 2013, Nam, Lee 

et al. 2014) could not due to high computational complexity and implemented their methods offline 

(Matlab framework). We were able to achieve this by using Goertzel algorithm, which reduces 

computational cost by providing frequency response for selectable frequencies only. After 

obtaining the frequency responses for desirable frequencies, we tested different averaging systems 

to estimate the breathing rate by tuning the alpha value described in Equation (3). As per Equation 

(3), α=0.1 can be considered as giving no weightage to any frequency response; α=1 is the linear 

mean of the frequency responses obtained; α=10 represents the exponential average while α=100 

is selecting the highest value amongst all frequency response values. We can conclude that 

exponential average provides better results than linear average or by selecting the frequency with 

highest response value as used by (Dash, Shelley et al. 2010). We also increased the granularity 

of the frequencies used for the averaging system by increasing the spacing between the 
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frequencies. These results are not highly influenced by frequency spacing, which can be explained 

by the fact that our reference values are very close to integer values, hence a spacing of 1 BPM is 

also sufficient. Note that to reduce our computational costs, we limited the frequency spacing to 

0.125 breaths/min and window size not more than 120 seconds.  
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5 CONCLUSIONS AND FUTURE WORK 

In this thesis, we have presented two tools related to biofeedback: 

 a tool for practicing relaxation exercises during visually demanding tasks. 

 a tool to measure breathing rate using a smartphone camera. 

The first tool aims to use music as an alternative means of feedback while the other provides a 

solution to measure breathing rate using a smartphone eliminating the need for any special sensor. 

There are several interesting research directions that arise from the work. We discuss work 

required to further investigate each tool and the eventual integration of these tools in the following 

subsections.  

5.1 Music-based respiratory biofeedback tool 

Our study to evaluate the biofeedback tool used slow-tempo instrumental songs, a music style that has 

been associated with reductions in physiological responses and better driving (North and Hargreaves 

1999, van der Zwaag, Dijksterhuis et al. 2012, Ünal, de Waard et al. 2013).  While our tool may in 

principle be used with any song in the user’s personal library, additional work is needed to determine if 

the beneficial effects of music biofeedback hold when other music genres are used, particularly those that 

are designed to excite/arouse the user.  Further work is also needed to measure potential interference 

effects on driving performance and mental workload (Dibben and Williamson 2007).   

Our results are based on a modest sample size of college students (N=28), so further work is also needed 

to test the intervention on different demographics, particularly older adults and novice vs. experienced 

drivers. Further studies will also require more realistic and complex driving tasks (e.g., urban driving, 

unexpected events) than those possible with our car racing simulator, and more sensitive measures of 
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driving performance than the one we used, such as lane tracing accuracy, eye tracking . 

Driver fatigue and drowsiness is also a major cause for accidents apart from road rage.  These 

problems arise due to long and arduous driving sessions or sleep deprivation. Physiological arousal 

can be used to detect sleepy behavior in drivers (Lal and Craig 2001) while biofeedback techniques 

can be used to increase their arousal level to optimize their driving performance. Our tool can be 

utilized with a modified biofeedback mechanism where participants listen to arousing music 

during drowsy state. The music used in this scenario will be high tempo music with abrupt tempo 

changes which has been used to increase physiological arousal (Dillman Carpentier and Potter 

2007). 

For this study we used a sensor chest strap, but some subjects complained that the sensor was “not 

comfortable” or “the chest sensor was tight”. This was one of the key motivations for us to find a less 

cumbersome way to measure respiratory rate. For example, respiration rates can be measured with 

contact-free sensors (e.g., Doppler ultrasound) or estimated from webcams or smartphone cameras. This 

led to the development of our smartphone application to measure breathing rate without the need of any 

sensor.  

5.2 Smartphone-based respiration measurement tool 

There are several limitations in our study to measure breathing rate via smartphone camera that 

present opportunities for further work. We evaluated participants under controlled breathing 

settings; however our future goal is to evaluate this tool in spontaneous breathing conditions. We 

have tested this tool for a breathing range (8-16 breaths/min) applicable for adults at rest only. 

Further investigation is required to measure the accuracy for higher breathing rates (20-40 

breaths/min) commonly found in children (under 12 years) or in adults during physically strenuous 
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activities.  

Powerful processors, multiple sensors and wireless connectivity makes mobile phones a low cost 

portable option to deliver health care services, especially in the developing countries where 

medical trained professionals and clinical facilities are scarce but mobile phones are ubiquitous in 

the rural areas. It has been anticipated that smartphone based healthcare services now termed as 

‘mHealth’ as per World Health Organization, will benefit more than 500 million people by the end 

of 2015 (Ciaramitaro and Skrocki 2011). Smartphones have already been used as microscopes, 

ultrasound systems and spectrometers to detect diseases such as malaria and sickle cell anemia 

(Breslauer, Maamari et al. 2009, Mertz 2012). Using PPG techniques, our tool can be used to 

diagnose cardiovascular diseases in impoverished countries. We can aim to detect medical 

problems such as atrial fibrillation (Jinseok, Reyes et al. 2013).  and blood loss (Selvaraj, Scully 

et al. 2011) by measuring vital signs such as heart rate, heart rate variability and respiration rate. 

This study was conducted in a controlled environment, but further studies can look into the 

measurement of breathing rate in real-life settings which have an ambulatory environment. In this 

scenario, the biggest hurdle is the unreliable readings obtained due to motion artifacts. Prior studies 

have used statistical models (Selvaraj, Mendelson et al. 2011) and independent component 

analysis (Kim and Yoo 2006)  to remove motion artifacts  in PPG signal. Other groups have tried 

to minimize motion artifacts by integrating mobile games with data acquisition of PPG signal and 

penalizing the user’s gameplay for motion artifacts (Han, Shi et al. 2014). In future, we would like 

to incorporate these approaches and use commercially available phone attachments to suppress 

motion artifacts as shown in Figure 29. 
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Figure 29. Phone attachment to place index finger over the camera to reduce motion 

artifacts9 

5.3 Integration of both tools 

Our final aim is to integrate the music based respiratory biofeedback tool with the measurement 

of breathing rate tool. The envisioned smartphone application will measure breathing via the 

smartphone camera and modify the music based on the respiration rate. It will be a complete end-

to-end biofeedback tool, which is a zero cost solution (except the phone cost), requires no extra 

9(www.designboom.com/design/morpholio-photoplethysmography-technology-transfer-28-04-2014) 
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hardware and can be practiced with any musical composition. The requirement of only a 

smartphone and no special sensors makes it accessible to anybody just by downloading an app.  It 

will help wider adoption of biofeedback techniques and will be enjoyable too. Apart from driving, 

it can be used in parallel to other tasks such as reading, web browsing, etc.  

We can experiment with different modifications of this integrated tool to suit our purpose. We can 

modify the biofeedback mechanism to be used in a mobile game to perform relaxation exercises 

as shown by Parnandi et al.(Parnandi, Ahmed et al. 2014).  We can also change the means of 

feedback to haptic or visual channels to test the tool with auditory tasks such as public speaking 

or listening to a podcast. We can measure heart rate variability (Lenskiy and Aitzhan 2013) and 

change the quality of music based on user’s heart rate variability. 

In terms of implementation challenges, both tools are smartphone applications which allow 

seamless integration of these tools. Although the algorithm to measure breathing rate is 

computationally efficient (around 150 ms per measurement), we need to further improve the 

implementation to provide continuous measurements by using coding practices such as threading. 

We also need to integrate the visual interface of both applications for improved usability 

experience. To use the app in ambulatory conditions, we need to address the issue of motion 

artifacts as explained in section 5.2.  
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APPENDIX A 

Biofeedback Gaming Survey 

Subject Number: 

BACKGROUND

 Age: 

 Gender: 

 Occupation: 

 How do you feel today? 

Very tired A bit tired Neutral A bit energetic Very energetic 

 Do you practice meditation regularly? If so, how often and for how long? 

 Do you practice deep breathing regularly? If so, how often and for how long? 
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 Do you have any experience with biofeedback?  
 

 

 

 Have you ever used wearable sensors (e.g., heart rate monitors, activity sensors)? If so, 
which ones? 
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MUSIC PREFERENCES 

 Music experience: How often do you listen to music per week?  
 

Not at all 0-1 days 2-3 days 4-5 days 6-7 days 

 

 

 For how long each time? 
 

Not at all Less than  

an hour 

1-2 hours 3-4 hours More than  

4 hours 

 

 

 Does music alter your emotional state? If so, in what ways? 
 

 

 

 Which of the following music genres do you like? Check all that apply 
 

Check Music Genre Example Artists/Bands 

 Classical Mozart, Beethoven  
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 Jazz Ray Charles, Frank Sinatra 

 World Ravi Shankar, Ali Farka Touré  

 Blues BB King, Stevie Ray Vaughan 

 Country Taylor Swift, Keith Urban 

 Pop Bruno Mars, Michael Jackson 

 Rock Pink Floyd, Queen 

 Heavy metal Metallica, AC/DC  

 Hip Hop/Rap/R&B Eminem, Usher 

 Electronic Daft Punk, Skrillex 

 

 Others (please mention genre and artist/band):  

 

Baseline emotional state 

 Valence: How negative (unhappy) or positive (happy) do you feel at the moment? 
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 Arousal: How calm or excited do you feel at the moment? 
 

 

 

Post Paced Deep Breathing Task 

 How hard was it for you to follow the breathing pace during the task?  
 

Very easy A bit easy Neutral A bit hard Very hard 
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Deep Breathing (Relaxation) 

 Valence: How negative (unhappy) or positive (happy) do you feel after completing the deep 
breathing (relaxation) session? 
 

 
 

 Arousal: How calm or excited do you feel after completing the deep breathing (relaxation) 
session? 

 

 
 

 In which situations or places would you practice deep breathing? 
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Music 

 Valence: How negative (unhappy) or positive (happy) do you feel after listening to the 
music? 
 

 
 

 Arousal: How calm or excited do you feel after listening to the music? 
 

 
 

 Do you feel the music helped you reach a calmer state? 
 

Not at all A little Neutral A lot Extremely 

 

 

 How much did you like or dislike the songs? 
 

Strongly dislike Dislike Neutral Like Strongly like 

 

 

 

 In which situations or places would you listen to music to relax? 
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 Can you suggest other songs/artists/genres that may help you relax? 
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Musical Biofeedback App 

 Valence: How negative (unhappy) or positive (happy) do you feel after listening to the 
music? 
 

 
 

 Arousal: How calm or excited do you feel after listening to the music? 
 

 
 

 Do you feel the music helped you reach a calmer state? 
 

Not at all A little Neutral A lot Extremely 

 

 

 How much did you like or dislike the songs? 
 

Strongly dislike Dislike Neutral Like Strongly like 
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 To what extent did you feel that you were in control of the quality of the music? 
 

Not at all A little Neutral A lot Extremely 

 

 

 How often were you able to listen to the music without any noise?  
 

Never Seldom About half the time Usually Always 

 

 

 Can you suggest other songs/artists/genres that may help you relax? 
 

 

 

 Would you use this app if it were available to you? 
 

 

 In which situations or places would you use it? 
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 How often would you use it? 
 

 

Not at all 

 

Weekly 

Several 

times/week 

 

Daily 

Several 

times/day 

 

 

 Please list the things you liked most about this app 
 

 

 

 Please list the things you liked least about this app 
 

 

 

 Do you like the idea of using wearable sensors as an input to an app? Why? Why not? 
 

 

 

 Do you have any comments or suggestions to improve the app? 
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Protocol design 

 What was the goal of the overall experimental protocol? 
 

 

 

 Were the instructions provided clear? Please elaborate 
 

 

 

 Did you find the sensors comfortable? Please elaborate 
 

 

 

 Did you notice any difference in difficulty between pre and post task (Color Word Test)? 
Please elaborate 
 
 
 

 Do you have any comments or suggestions related to the overall experimental 
protocol? 
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APPENDIX B 

Description of Participants Characteristics by Group 

(Pre-protocol survey) 

Sr. 

No. 

Variable Name Valid Options Number of participants 

(out of 7 participants ) 

   CTRL MUS ABF MBF 

1 Gender Male 6 7 4 6 

  Female 1 0 3 1 

2 Age <25 years 2 2 4 1 

  25-30 years 4 3 3 5 

  >30 years 1 2 0 1 

3 Occupation Student 6 6 7 6 

  Non  student 1 1 0 1 

4 Practice meditation Yes 2 1 1 2 

  No 5 6 6 5 

5 Practice deep breathing Yes 2 1 1 1 

  No 5 6 6 6 

6 Familiarity with biofeedback Yes 0 2 2 1 
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  No 7 5 5 6 

7 Wearable sensors used in the past Yes 0 2 4 1 

  No 7 5 3 6 

8 Listen to music (in days/week) 0-1 days 2 0 1 0 

  2-5 days 2 1 1 3 

  6-7 days 3 6 5 4 

9 Each music listening session 

duration (in hours) 

Less than an 

hour 

2 2 2 3 

  1-2 hours 2 3 2 3 

  More than 2 

hours 

3 2 3 1 

10 Music alter emotional state Yes 5 6 7 6 

  No 2 1 0 1 

11 Preferred music genre Classical 3 4 2 5 

  Jazz 2 3 2 1 

  World 2 3 2 1 

  Blues 1 2 2 2 

  Country 1 3 2 1 

  Pop 5 5 2 2 
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  Rock 2 5 2 4 

  Heavy Metal 1 1 1 2 

  Hip 

Hop/Rap/R&B 

2 4 3 4 

  Electronic 1 2 2 3 

12 Energy levels prior to experiment Tired 3 2 2 1 

  Neutral 4 3 2 5 

  Energetic 0 2 3 1 

 

 

 




