Deficiencies of Cotton Classing
 and

possible Methods of Correction

SUMMARY

As cotton harvesting approaches complete mechanization, cleaning of the fiber by gin plants has been intensified. These practices are based on the assumption that lower nonlint content means improved quality at all stages, including fiber grade and spinning potential.

The deficient factors in cotton classing are those elements of cotton quality which are not included in grade and staple length.

The dominant factor in spinning potential is bright color when associated with a satisfactory maturity index. Color frequently is misinterpreted by the classer because it is associated with what appears to be excessive nonlint in the fiber. The findings of this project indicate that as nonlint content is diminished by gin plant cleaning, yarn quality is not necessarily improved.

A system of quality evaluation geared to actual nonlint content, color by the Colorimeter, associated with an acceptable maturity index and fiber uniformity ratio would assist in the determination of quality differences that reflect effectively the fiber spinning potentials.

Type of lint cleaning	Date Tests, ginned number	Maturity index ${ }^{2}$	$\left.\begin{array}{cc} & \begin{array}{c}\text { Fiber } \\ \text { tensile }\end{array} \\ \text { Fine- strength, }\end{array}\right\}$		Length U.H.M., inches ${ }^{5}$	Uniformity ratio ${ }^{6}$	Grade index ${ }^{7}$	Colorimeter			Nonlint content, per cent 9	Waste picker \& card, percent ${ }^{10}$	Average yarn break factor, 22 's \& 50 ' ${ }^{11}$	
					Rd.			+b	Grade equivalent ${ }^{8}$					
Single-saw	8-21 1	81	4.8	86		1.04	82	100	75.1	9.4	100	2.36	8.13	2539
Mean	1	81	4.8	86	1.04	82	100	75.1	9.4	100	2.36	8.13	2539	
Air-jet-saw	8-29 1	83	5.2	85	1.13	81	85	71.5	8.7	94	4.58	10.40	2454	
Air-jet-saw	8-29 1	79	4.6	84	1.00	81	94	72.0	9.3	97	3.36	8.78	2401	
Air-jet-saw	8-29 1	75	4.0	90	. 94	81	100	73.2	9.7	100	2.89	9.27	2279	
Single-saw	9-19 1	77	3.9	84	. 98	80	85	70.5	8.6	94	3.84	8.80	2282	
Air-jet-saw	9-20 1	79	4.5	87	1.04	81	94	72.0	8.5	94	3.80	8.90	2450	
Air-jet-saw	9-20 1	80	4.6	83	1.01	80	97	72.5	8.6	97	2.35	7.46	2327	
Mean	6	79	4.4	85	1.02	81	92	72.0	8.9	96	3.39	8.89	2365	
Single-saw	8-21 1	79	4.0	87	1.04	81	94	72.5	9.2	97	4.06	9.63	2573	
Single-saw	$9-61$	82	4.7	87	1.10	82	89	67.5	9.1	89	5.09	10.51	2593	
Mean	2	80	4.3	87	1.07	81	91	69.9	9.1	93	4.55	10.00	2553	
Single-saw	8-21 1	76	3.8	87	1.03	81	85	67.1	8.6	85	4.09	10.50	2473	
Single-saw	8-29 1	74	3.6	87	1.01	79	89	71.0	9.2	94	4.93	12.24	2533	
Mean	2	75	3.7	87	1.02	80	87	69.0	8.9	89	4.49	11.34	2503	

${ }^{1}$ Project field samples processed at a card production rate of $91 / 2$ pounds per hour by AMS, USDA.
${ }^{2}$ Maturity index is the ratio of the untreated to the treated Causticaire readings multiplied by 100 : above 81 is mature, 76 m average and 70 to 75 is immature.
${ }^{3}$ Fiber fineness is linear density expressed in terms of micrograms per inch: 3.0 to 3.9 is fine, 4.0 to 4.9 average, 5.0 to 5.9 coark a 6.0 and above very coarse.
${ }^{4}$ Fiber strength is the force in 1,000 pounds required to break the equivalent of a surface area of 1 square inch calculated froe th Pressley index: 86 to 95 is strong, 76 to 85 average, 66 to 75 fair and 65 or less is weak.
${ }^{5}$ Expressed in terms of the upper-half-mean which is the average length of the longest half of the fiber array by weight. This ore sponds closely to staple length as determined by classers: .92-.96 equals $15 / 16$ inch, $.95-.99$ equals $31 / 32$ inch, $.98-1.02$ equals 1 ind 1.01-1.05 equals $1-1 / 32$ inches, $1.04-1.08$ equals $1-2 / 32$ inches and $1.07-1.11$ equals $1-3 / 32$ inches.
${ }^{6}$ Uniformity is a measure of fiber length distribution and is obtained by dividing the mean by the upper-half-mean and eppoig the result in percent. Above 80 is considered uniform in fiber length, 75 to 80 average and below 75 irregular in fiber lengit
${ }^{7}$ Grade index: 104 is Strict Middling, 100 Middling, 94 Strict Low Middling, 85 Low Middling, 76 Strict Good Ordinary and 70 and Ordinary.
${ }^{8}$ Color by the Colorimeter. The color values are percentages reflectance in terms of $\mathbf{R d}$ and yellowness in terms of +b . Incraig $\mathbf{R d}$ values indicate increasing brightness and increasing +b values indicate increasing degrees of yellowness.
${ }^{9}$ Nonlint content for the various lots was determined by the use of the Shirley analyzer which separates the lint from the fercif matter. The results are distinguished from total picker and card waste in that practically no fiber is included, whereas tati mill wastes include appreciable amounts of fiber. Based on tests made of bales of cotton used in the official standards for pir of Upland cotton, the following scale has been developed to represent average percentages of nonlint for the various white gind as determined by the Shirley analyzer: Good Middling 2.4, Strict Middling 2.9, Middling 3.7, Strict Low Middling 5.1, Low Midith 7.6, Strict Good Ordinary 11.0 and Good Ordinary 17.0.

[^0]
Muxiencries of Cotton Classing and Possible Methods of Correction

J. M. Ward, Assistant Professor

Department of Agricultural Economics and Sociology

Cotton classing is the art of estimating grade and ple. Grade of cotton is composed of three factors combination - color, leaf and preparation.
Color evaluation deals with the major differacs or degree of yellowness among classes of white, outed, tinged, yellow, stained and gray.
Leaf and trash vary in quantity through each he grades, increasing from the high grades, in there is little, to the lower grades, in which eproportion becomes comparatively large. Grades
th contain the least proportion of leaf and foreign
witer, other conditions being equal, are those with
thighest spinning value.
Preparation is a term used to describe the degree
moothess or roughness with which the lint is
od. As a general rule, smoothly ginned cotton
pults in less waste, and produces a slightly smoother
mid more uniform yarn than roughly ginned cotton.
inget cottons normally will have a rougher appear-
meater ginning than shorter cottons, but that does
xx necessarily mean that yarns made from such
mons will be relatively poorer.
The length of staple of any cotton is the normal
th by measurement, without regard to quality or
e, of a typical portion of its fibers under a rela-
thumidity of an atmosphere of 65 percent and
mperature of $70^{\circ} \mathrm{F}$. (1) ${ }^{1}$
Grade is a leading factor in the determination of equality differences. Leaf and other trash have
kren of prime importance in grade determination;
xtaps it has been over-emphasized.

FIBER CLEANING FACILITIES

The use of lint cleaning equipment in gin plants increased in recent years. This has emphasized
taming of the fiber after the gin stand has separated
tweed from the lint. This in turn seems to indicate
sone or more segments of the cotton industry put
light value on elaborately cleaned cotton. (4) The
Iungrading system now in use was developed before
Tkalent of lint cleaning in gin plants. The current
fling system has not been adjusted to changes in
1 plant processing.
Nithough leaf and other trash in raw cotton is llator which determines spinning performance, it fraty one of several. It is not the most important
ess in parentheses refer to literature cited.
nor most vital as is implied by the increased use of fiber-cleaning equipment in gin plants.

EFFECTS OF DRYING AND CLEANING

Spinners believe that the inherent spinning quality of cotton is being diminished rather than improved by over-drying and over-machining. Overdrying diminishes the natural oils and waxes in the fibers and makes them subject to excessive breaking. The excellent spinability of the cotton fiber is highly dependent on its delicate surface properties. (3)

The ginner must please his customer, the cotton grower. If he overcleans cotton so that it will make a good grade for the loan, the mills using the fiber have processing difficulties. If he does not clean the fiber to make a good grade for the classing board, the grower is displeased. The fiber should be processed by gin plants to preserve the quality produced. Cotton ginned in this way is acceptable to the mills. That portion of the crop not purchased by spinners can find an outlet in the loan. (4)

DRYING AND CLEANING NOT ALWAYS PROFITABLE

An investigation by the National Cotton Council disproved the theory that higher grades (attained by drying, excessive machining and cleaning alone) return greater profits to the farmer through government loans or supports. Instead, in many instances the producer receives less dollar return on much of the higher grades produced. The loss in weight due to drying and cleaning, staple shrinkage and removal of foreign matter nullifies any gain due to higher grades. The support price discounts for the lower grades will be smaller in 1960 than in 1958 or 1959. This will further diminish the potential gains from lint cleaning. Spinners have learned that synthetic higher grades attained by drying and elaborate cleaning will not produce the quality fabrics that once were obtained from hand-picked cotton ginned on old conventional gins. During the past 3 seasons, their preference for the lower grades has been limited only by the supply available. Many of the lower grades are not overheated or excessively cleaned and produce fabrics of satisfactory quality at lower manufacturing costs. Some ginners are beginning to question the wisdom of buying, installing and using much elaborate equipment. (2) Many questioned this move at the beginning of the past decade; but the installation of lint-cleaning equipment continued.

The solution is to show growers and ginners that the apparent benefits of drying and cleaning are not what they seem to be. Spinners have avoided high grades when supplies permitted and the long-term market for cotton has not been enhanced by current drying and cleaning practices in gin plants. Eventually, each bale must be converted into yarn and fabrics. The system of cotton classification and evaluation should be revised to reflect true spinning value.

A study was made by the Texas Agricultural Experiment Station during the crop years of 1957-59 on the processing performance of cottons produced in two areas. The areas chosen for the tests were Wharton and Fort Bend counties in the Upper Gulf Coast and Burleson, Brazos and Robertson counties in the Brazos River Valley of Central East Texas.

Deltapine is the predominant type of cotton grown in each area.

Marked changes in ginning techniques have occurred in these areas in the past decade. These changes have been more pronounced since 1956. Many gins with no lint cleaning installed single phase cleaning in 1957. Some gins with one-stage lint cleaning installed a second stage. This is known as tandem lint cleaning.

Machine-picked and hand-harvested cottons of similar harvest periods were sampled at the gin during the 3 seasons, and spinning performance tests were run on each bale. These tests were analyzed on the basis of fiber properties, color, nonlint content, percentage of picker and card waste, and average break factor and yarn appearance index of 22 's and 50 's yarn.

UPPER GULF COAST

Cottons produced in the Upper Gulf Cois in 1957-59 are arrayed in Tables 1, 2 and 3 inde ing order of the yarn appearance grades of tix processed from each test spun in each ye separating the tests into groups having the same appearance grade. The yarn appearance \& correlated with the nonlint content as deten by the Shirley analyzer.

Recent ginning emphasis has shifted to linit ing or removal of leaf and other trash from the after ginning. Nonlint content is one of the t factors considered when assigning grade to ase The rapid increase in the use of lint deana ginners since 1956 indicates that nonlint conerel the most important factor considered by an influes segment of the cotton industry when evaluatinge for grade.

The data shown in Table 1 are from II from the crop of 1957. The lint cleaners used re six by one-stage saw-type and five by air-jet fol by a saw-type cleaner. The increase in nonlint a from the highest to the next two lower yarn a ance groups was significant. The difference be the lowest yarn appearance grade to the grou above was not significant.

The data on the four groups indicate that 1 appearance grade is correlated with nonlint cores color, maturity index and uniformity ratio. latter is of less influence when it is within the amf able range of good quality. The dominant fact bright color, when associated with a satisary maturity index.

TABLE 2. FIBER PROPERTIES AND SPINNING PERFORMANCE OF UPPER GULF COAST COTTONS, 1958 (aic CLEANED WITH THREE TYPES OF LINT CLEANERS

Type of lint cleaning g	Date ginned	Tests, number	$\begin{aligned} & \text { Matu- } \\ & \text { rity } \\ & \text { index } \end{aligned}$	$\left.\begin{array}{cc} & \begin{array}{c}\text { Fiber } \\ \text { tensile }\end{array} \\ \text { Fine- strength, }\end{array}\right]$ness, 000 's micro- pounds grams per per square inch inch, zero gauge		Length U.H.M., f inches	Uniformity ratio	Grade index	Colorimeter			Nonlint content, percent	Waste picker \& card, percent		
						Rd.			+b	Grade equivalent					
Tandem-saw	- 8.8	1	80	4.5	87		1.11	79	100	74.7	10.7	100	2.28	6.50	2607
Air-jet-saw	8-8	1	81	4.8	86	1.07	79	100	68.5	9.4	94	2.16	7.24	2368	
Single-saw	8-19	1	80	4.4	87	1.04	80	100	74.5	9.5	100	1.88	7.25	2537	
Mean		3	80	4.5	87	1.07	79	100	72.5	9.8	98	2.10	6.99	2504	
Air-jet-saw	8-12	1	78	4.2	83	1.03	80	94	71.0	9.9	88	2.92	8.50	2478	
Air-jet-saw	8-18	1	84	5.0	88	1.00	82	104	76.5	9.3	102	1.56	5.86	2355	
Tandem-saw	W 8-19	1	78	4.2	83	1.02	78	100	69.5	9.5	94	1.30	6.46	2243	
Tandem-saw	W 9-3	1	78	4.4	80	1.02	76	85	63.0	8.2	85	4.36	8.86	2181	
Mean		4	79	4.4	83	1.02	79	96	69.7	9.2	92	2.26	7.31	2315	
Tandem-saw	w 8-28	1	80	4.4	86	1.01	79	94	68.3	8.6	89	3.22	8.84	2300	
Single-saw	8-28	1	75	3.8	86	1.02	79	94	72.0	9.2	97	2.53	8.10	2487	
Single-saw	9-3	1	75	3.8	87	1.01	78	100	73.5	8.9	100	3.21	7.00	2465	
Mean		3	77	4.0	86	1.01	79	96	71.2	8.9	95	2.97	7.94	2417	

Table 2 contains data on 10 bales of cotton from 1588 crop. Processing of the fiber by gin plants Theen intensified as compared with 1957 ginnings. e bales were cleaned by single-saw units, three firjet saw combinations and four by the tandema process. When the tests were grouped by yarn Hrarance grades, the nonlint content became less wible as an index of potential yarn appearance The difference in the nonlint content between mio top yarn appearance grade groups was not ficant. Differences in picker and card also were rigificant. The difference in nonlint content then the two lowest yarn appearance groups was Firiant. The difference in picker and card waste mot significant.
Factors which influenced the rankings by yarn arance were the brightness of color in combinawith a desirable maturity index. The third al group had a mean color index slightly above cond ranked group, but the maturity index was fiantly lower. Uniformity ratio does not differ Ing the three groups.
The data in Table 3 include six tandem-saw deaned bales from the crop of 1959. Use of filt content as a guide to yarn appearance grade le processed cotton was less reliable than in the 8 tests. The groups with the greatest nonlint ant had the highest yarn appearance grades. The st nonlint content fiber processed into yarn with lowest yarn appearance grades. Similar results : noted with respect to picker and card waste. difference in nonlint content and picker and I waste between the first two groups was not Iifiant. Low processing waste traditionally has associated with superior yarn appearance. Ily the intensive cleaning of lint impairs some edelicate surface qualities of the fiber which foute to high spinning performance.

The first ranked group was superior in the desirable fiber properties of maturity and color. The second ranked group had a lower color index than the third; the maturity index was similar. The ranking of the third group cannot be explained by relative color, maturity or uniformity of fiber length.

BRAZOS RIVER VALLEY

Table 4 contains fiber properties and spinning data on 14 bales produced in the Brazos River Valley in 1957. Seven bales were processed through singlesaw type lint cleaners, three were cleaned by tandemsaw combinations, two by air-jet-saw and two were not lint-cleaned.

There was no significant difference in nonlint content between the two lowest yarn appearance groups (100 and 95). The difference in nonlint content between the 105 yarn appearance group and the 100 group was not significant. However, the highest nonlint content of a single test group ranked was 4.17 percent in the 105 group.

In the first of the four yarn appearance groupings, nonlint content was indicative of superior yarn grade. As more intensive lint cleaning was used in the third and fourth ranked groups, nonlint content was less reliable as a measure of desirable yarn appearance.

The factors which contributed to the highest ranking samples in yarn appearance were brightness of color (measured by the Colorimeter) combined with one of the three top maturity indexes. One bale in the second ranked group (105) had brighter color, but the maturity index was the lowest of the group.

The data in Table 5 include 12 bales of the 1958 crop from two farms. All of the cottons in this lot were ginned by the same plant, with moderate
before-ginning cleaning and one-stage saw-type comber lint cleaning. The yarn from six bales graded 105; the remainder 100 . There was a significant differ-
ence in the nonlint content between the two appearance groups; the group graded 105 had lowest percentage. There was a slight but \mathbb{I}

TABLE 4. FIBER PROPERTIES AND SPINNING PERFORMANCE, BRAZOS RIVER VALLEY COTTONS, 1957 CROP CLEANED WITH THREE TYPES OF LINT CLEANERS AND NO LINT CLEANERS

Type of lint cleaning	Date Tests, ginned number		Maturity index	$\left.\begin{array}{cc} & \begin{array}{c}\text { Fiber } \\ \text { tensile }\end{array} \\ \text { Fine-strength, }\end{array}\right\}$		Length U.H.M., inches	Uniformity ratio	Grade index	Colorimeter			Nonlint content, percent	Waste picker \& card, percent	Average Areresyarnyreakappezzfactor,ance,22's \&22sk50's			
			Rd.			+b			Grade equivalent								
Air-jet-saw	10-9	1		81	4.5		87	1.05	78	94	74.8	8.4	97	1.83	6.59	2347	110
Mean		1	81	4.5	87	1.05	78	94	74.8	8.4	97	1.83	6.59	2347	110		
No lint cleaner	10-2	1	79	4.2	84	1.05	79	76	66.5	7.9	85	6.92	12.49	2409	105		
No lint																	
cleaner	10-2	1	81	4.4	83	1.08	81	76	62.5	7.5	76	6.25	12.02	2400	105		
Single-saw	10-4	1	78	4.2	81	1.14	80	94	75.5	8.7	100	2.13	6.78	2629	105		
Tandem-saw	+ 11-1	1	81	4.4	77	1.05	78	94	71.1	8.0	89	3.27	8.63	2295	105		
Mean		4	80	4.3	81	1.08	79	85	68.6	8.0	85	4.17	9.68	2433	105		
Tandem-saw	W 10-4	1	77	4.2	84	1.12	79	85	70.5	8.1	94	2.99	8.24	2536	100		
Single-saw	10-7	1	. 79	4.4	79	1.10	79	85	71.1	8.1	94	3.29	8.39	2408	100.		
Single-saw	11-1	1	77	4.0	77	1.07	80	85	66.5	7.4	85	4.40	10.16	2250	100		
Tandem-saw	W 12-4	1	79	4.4	79	1.08	80	85	65.5	8.0	85	3.73	8.54	2199	100		
Single-saw	12-15	1	76	4.0	79	1.06	78	85	70.5	7.1	85	4.64	8.73	2253	100.		
Mean		5	77	4.2	80	1.08	79	85	68.7	7.7	85	3.76	8.79	2329	100		
Air-jet-saw	10-10	1	73	3.5	84	1.01	79	85	66.5	7.9	85	3.36	7.25	2383	\%		
Single-saw	12-4	1	76	4.0	78	1.02	78	85	66.3	8.6	85	4.49	10.14	2075	95		
Single-saw	12-5	1	79	4.3	75	1.07	79	85	68.5	7.3	85	3.82	9.81	2107	95		
Single-saw	12-5	1	78	4.2	82	1.05	80	85	63.1	7.6	80	4.04	9.77	2194	95		
Mean		4	76	3.7	80	1.04	79	85	66.1	7.8	85	3.91	8.92	2189	95		

TABLE 5. FIBER PROPERTIES AND SPINNING PERFORMANCE, BRAZOS RIVER VALLEY COTTONS, 1958 CROP, CLEANED WITH SINGLE-SAW TYPE LINT CLEANERS BY ONE GIN PLANT

Type of lint cleaning	Date ginned n	Tests, number	Maturity index	Fiber tensile Fine- strength,,		Length U.H.M., inches	Uniformity ratio	Grade index	Colorimeter			Non- lint con- tent, per- cent	Waste picker \& card, percent	$\begin{aligned} & \text { Average Average } \\ & \text { yarn apmern } \\ & \text { break ance, } \\ & \text { factor, } 22 \text { sk } \\ & 22 \text { 's \& } 50 \text { s. } \\ & 50 \text { 's inder } \end{aligned}$		
						Rd.			+b	Grade equivalent						
Single-saw	9-9	1	82	4.8	78		1.12	82	94	73.5	8.8	97	2.79	6.89	2340	105
Single-saw	9-9	,	80	4.8	85	1.02	80	100	75.5	8.8	100	2.55	6.62	2310	105	
Single-saw	10-3	1	79	4.5	80	1.05	79	85	67.0	7.7	85	4.00	8.10	2262	105	
Single-saw	9-30	1	80	4.6	80	1.09	80	94	71.7	7.8	94	3.20	6.89	2347	105	
Single-saw	9-30	1	80	4.6	81	1.12	80	85	69.4	8.0	85	5.85	9.17	2330	105	
Single-saw	10-10	1	81	4.8	77	1.12	79	85	67.0	7.7	85	4.95	8.81	2199	105	
Mean			80	4.7	80	1.08	80	90	70.6	8.1	94	3.72	7.68	2298	105	
Single-saw	9-15	,	81	4.4	82	1.12	79	94	72.4	8.3	94	3.94	7.51	2616	100	
Single-saw	9-15	1	79	4.1	81	1.12	79	89	73.0	8.2	94	5.30	8.00	2613	100	
Single-saw	10-6	1	81	4.8	83	1.08	81	85	68.7	7.9	85	4.47	8.31	2304	100	
Single-saw	10-16	1	78	4.4	82	1.06	77	85	69.4	7.8	85	5.25	9.09	2009	100	
Single-saw	10-20	1	79	4.6	79	1.10	82	89	70.5	7.5	85	3.26	7.04	2367	100	
Single-saw	10-20	1	79	4.6	81	1.11	82	85	73.0	7.3	94	4.40	8.07	2337	100	
Mean		6	79	4.5	81	1.10	80	88	71.2	7.8	94	4.38	7.98	2374	100	

Type of lint deaning	Date ginned		Maturity index	$\left.\begin{array}{c}\text { Fiber } \\ \text { tensile }\end{array}\right\}$Fine- strength, ness, 000's micro- pounds grams per per square inch inch, zero gauge		Length U.H.M., inches	Uniformity ratio	Grade index	Colorimeter			Non- lint con- tent, per- cent	Waste picker \& card, percent	Average yarn break factor, 22's \& 50's	Average yarn appearance, 22's \& 50's index	
		Tests, number				Rd.			+b	Grade equivalent						
Finglesaw	9-28	1	79	4.4	77		1.08	81	85	74.3	8.0	97	3.85	7.90	2373	115
Suglesaw	9-16	1	83	4.9	80	1.08	80	89	73.5	8.8	97	4.20	7.83	2374	110	
Mean		2	81	4.6	78	1.08	$80+$	87	73.9	8.4	97	4.02	7.86	2373	112	
Singlesaw	10.7	1	81	4.8	77	1.07	79	89	68.7	8.5	89	3.46	7.58	2218	105	
Singlesaw	10-19	1	79	4.6	74	1.06	79	89	70.4	8.3	94	3.22	8.55	2055	105	
Siglesaw	10-21	1	79	4.6	74	1.06	79	89	70.5	8.3	94	3.10	8.13	2147	105	
Mean		3	80	4.7	75	1.06	79	89	69.8	8.4	92	3.25	8.07	2140	105	
Einglesaw	10.21	1	79	4.6	77	1.05	78	94	73.5	8.1	94	2.70	6.36	2143	100	
Siglesaw	10-18	1	79	4.4	76	1.06	80	89	70.2	8.6	94	3.40	8.18	2124	100	
Saglesaw	10-16	1	79	4.4	77	1.06	78	85	69.4	8.5	94	4.35	8.53	2105	100	
Siglesaw	10-12	1	79	4.4	74	1.03	77	85	68.5	8.2	85	4.18	9.25	2102	100	
Mean		4	79	4.4	76	1.05	78	88	70.3	8.3	92	3.59	8.08	2118	100	
Finglesaw	10-28	1	81	4.7	74	1.07	79	85	65.7	7.8	85	3.80	9.85	2016	95	
Siglesaw	10-26	1	80	4.6	79	1.06	77	85	71.3	8.1	94	3.27	8.84	2182	95	
Tinglesaw	$10-23$	1	77	4.0	78	1.06	78	85	71.0	8.1	94	3.60	9.06	2259	95	
Siglesaw	$10-8$	1	81	4.5	76	1.07	77	88	70.5	8.5	94	3.22	7.64	2202	95	
Mean		4	80	4.4	77	1.06	78	86	69.5	8.1	92	3.46	8.81	2164	95	

gnificant difference in picker and card waste. Nonlint content gave a reliable indication of yarn quality; pider and card waste did not. The mean Colorimeter edings indicated no significant difference between be two lots. The higher appearance groups had a gigificantly higher fiber maturity index. There was difference in uniformity ratio between the two

Table 6 contains data on 13 machine-picked bales he 1959 crop from the same farm. All were procd on the same gin that was used in 1958. Nonlint untent was not an accurate criterion of potential In appearance index. The group having the greatat nonlint content had the highest yarn appearance
Whex. This nonlint content was significantly above the of the second ranked yarn appearance group. The second, third and fourth-ranked groups did not Iifer significantly in nonlint content. The firstFaked yarn-apperance group differed significantly in Ifler and card waste only when compared with the barthranked group. The spread in this instance was is than l percent. Nonlint content, as well as picker Ial ard waste, were not reliable criterion of yarn mparance index even though nonlint content is Wiluential in cotton grade determination.

The combination of bright color and high matuindex was the most significant indication of prior yarn appearance grade.

The cottons in this project were in the white category. There were no spotted, tinged or off-color bales.

ACKNOWLEDGMENTS

The quality phases of this study were facilitated by the cooperation of the cotton growers and ginners in the Upper Gulf Coast and the Brazos River Valley.

The study was made under the Texas Agricultural Experiment Station's state contributing project to the Southern Regional Cooperative Cotton Marketing Project No. SM-18 Revised, "Economic Analysis and Evaluation of the Utilization of Fiber Tests in the Marketing of Cotton."

LITERATURE CITED

(1) USDA, AMS, Cotton Division, The Classification of Cotton, MP-310.
(2) Truluck, T. D., Disregard for Quality Is Cotton's Greatest Menace, The Cotton Trade Journal, March 4, 1960.
(3) Elting, J. P., Short Fiber Content Is Most Important of Five Key Qualities Needed by Mills, The Cotton Trade Journal, March 4, 1960.
(4) Brady, J. B., Texas Rio Grande Valley Has "Vintage" Cotton Year with Mills Buying Most of the Crop. The Cotton Digest, September 26, 1959.

Location of field research units of the Texas Agricultural Experiment Station and cooperating agencies

State-wide Research

Abstract

The Texas Agricultural Experiment Statian is the public agricultural research ageng of the State of Texas, and is one of te parts of the Texas A\&M College Syster

ORGANİZATION

OPERATION

in the main station, with headquarters at College Station, are 16 matter departments, 2 service departments, 3 regulatory services a administrative staff. Located out in the major agricultural areas of Te 21 substations and 9 field laboratories. In addition, there are 14 coop stations owned by other agencies. Cooperating agencies include the Forest Service, Game and Fish Commission of Texas, Texas Prison ? U. S. Department of Agriculture, University of Texas, Texas Techry College, Texas College of Arts and Industries and the King Ranch. experiments are conducted on farms and ranches and in rural homes

THE TEXAS STATION is conducting about 400 active research projects, in 25 programs, which include all phases of agriculture in Texas. these are:

Conservation and improvement of soil Beef cattle
Conservation and use of water
Grasses and legumes
Grain crops
Cotton and other fiber crops
Vegetable crops
Citrus and other subtropical fruits
Fruits and nuts
Oil seed crops
Ornamental plants
Brush and weeds
Insects
Dairy cattle
Sheep and goats
Swine
Chickens and turkeys
Animal diseases and parait
Fish and game
Farm and ranch engineerit
Farm and ranch business
Marketing agricultural pro
Rural home economics
Rural agricultural economis
Plant diseases
Two additional programs are maintenance and upkeep, and centrals

Research results are carried to Texas farmers, ranchmen and homemakers by county agents and specialists of the Texas Agricultural Extension Service

AGRICULTURAL RESEARCH seeks the WHATS, the WHYS, the WHENS, the WHERES and the HOWS o hundreds of problems which confront operators of farms and ranches, and the many industries depend ing on or serving agriculture. Workers of the Main Station and the field units of the Texas Agricultural Experiment Station seek diligently to find solutions to these problems.

[^0]: ${ }^{10}$ Experience has shown the average relationship between grade and manufacturing waste, as based on medium staple Upland cute when carded at $91 / 2$ pounds per hour, is approximately as follows: Good Middling, 6.3\%, Strict Middling 7.2%, Middling \&ill Strict Low Middling $\mathbf{9 . 3} \%$, Low Middling $\mathbf{1 2 . 5 \%}$, Strict Good Ordinary $\mathbf{1 5 . 6} \%$ and Good Ordinary 18.3%.
 ${ }^{11}$ The break factor is obtained by multiplying the yarn strength by the yarn number and averaging these values for the two tande numbers spun.
 ${ }^{12}$ Yarn appearance refers to the relative evenness, smoothness and freedom from foreign material of the yarn as evaluated by a lim comparison with the standards adopted by the American Society for Testing Materials. An index of 100 is average, 110 good ad 120 very good.

