COTTON SPACING--A REVIEW AND DISCUSSION

H. C. Lane, Assistant Professor Department of Plant Physiology and Pathology

LIBRARY
 A. \& M. COLLEGE OF TEXAS

$-00-$

SUMMARY

Cotton spacing or plant population has received extensive investigation in the geweral belief that it has considerable influence on yields. Such a premise is not borne out by the results of experiments conducted over the cotton belt during the past 40 years.

Although this publication discusses the optimum and the minimum stands for mauimum yields, plant populations less than the minimum can produce a good crop of cotion.

Some of the replanting done after June 1 on the High Plains because stands have been reduced by sand-burn, hail or other causes are not justified on a yield basis nor in terms of fiber quality. $-00 \times 00-$

Introduction

Cotton plants grow and develop in proportion to the space about them. When cotton plants spaced some distance apart in the row fail to produce as much or more lint per acre than when the stand is thick, something in the complex of variables affecting the crop is amiss. The factor responsible may be declinine soil fertility, excessively dry or hot weather, or a disease such as cotton roct rot or verticillium wilt.

This publication reviews a number of spacing studies and furnishes a mathematical description of the relationship among thickness of stand, bolls per foot of row and yield.

Spacing has been studied from a number of different points of view. Spacing influences earliness in the opening of bolls. In the warmer parts of the cotton belt, thick stands seem to promote earliness. The size of bolls was affected in some of the experiments. Usually the boll size increases siightly as the space between plants increases from 3 to 12 inches.

Close spacing reduces both the number of vegetative limbs on the plants and the number of bolls per fruiting limb, and raises node-wise the position of the first square. It decreases the individual measurements of a single plant but increases the dry weight per acre of the parts of the plants above ground.

Review and Analysis

Table l, which should be analyzed by sections of the cotton belt, sum2 marizes the results of a number of spacing studies conducted over the cotton belt between 1915 and 1955. The highest yielling population in any test or average of years testing is recorded as 100 , and the lower yielding populations as a percentage of 100 .

Figure I. Least squares equation through points recorded in Table 1.

Figure 2. Relation between bolls per plant and stands. Data are based on counts in cotton on the Texas High Plains.

Table 1. Yields in relation to cotton plant populations

Figure 1 shows the curve fitted to these data by the method of least squares. The equation of the curve can be used to approximate yields when plant populations vary from 10,000 to 75,000 per acre. The curve does not show fully the variability in yields at the extremely low and high populations.

Thick stands have been better in most years in the western part of the cotton belt (California, Arizona, New Mexico and far West Texas). A desirable stand for this section seems to be 30,000 to 40,000 plants per acre. In the cooler years, the vetetative-fruiting balanee of cotton has moved toward vegetative growth. Very thick cotton made excessive vegetative growth, which was accompanied by lodging, boll rotting and poorer grajes. Researchers recommend a conservative spacirg of 6 to 8 inches per plant for this section since this spacing seems to offset to some degree the effect of cool weather on fruiting (20). Excellent yields have been made in this section with spacing at 15 inches (21). Table 1 indicates little difference in yield when stands vary from 15,000 to 75,000 plants per acre.

In the southeastern section of the cotton belt (South Carolina, Georgia, Alabama, Mississippi, Louisiana and Arkansas), stands may vary from 15,000 to 60,000 plants per aere without an appreciable influence on yield. Thick stands seem to give better yields on poorer soils. The optimum stand for this section seems to be about 25,000 plants per acre, an increase from the 15,000 plants former:iy recommended.

Thin stands have been better in Oklahoma. Yields have been increased by thiming plants to 15 to 20 inches apart in the row.

The optimum stand for the Texas Blacklands has changed more since these tests were started than for any other area. From 1915 through 1921, the optimun stand at Temple was less than 7,500 plants per acre. In recent years, it bas been 75,000 plants per acre. This population is not recomnended for all parts of the Blackiands, but seems to be best for areas infested with cotton ront rot. At Denton in 1955, Lankart 57 had the highest yield at the lowest population in the test, but Stormproof 1 produced the best yield at the highest stand (19).

In East and South Texas, stands of 15,000 to 60,000 plants per acre prom duce about the same yield. An optimum stand is 2 to 3 plants per foot of rov, or 26,000 to 40,000 plants per acre.

On the Texas High Plains, stands can vary from 10,000 to 50,000 plants per acre, on both dry and irrigated farms, without influencing yields greatly. Formers in this area have alweys planted cotton at somewhat heavy rates and have not practiced thiming. Figure 2 shows the relation between bolls per plant and plants per foot of row on the High Plains. These data include counts from experiments at the Jubbock station and a similar number of counts taken at random in cotton growing over the entire area.

Discussion

There is a tendency on the High Plains to plant cotton too thick. This, combined with the fact that planting rate recommenations are increased evex so often, eventually may be harmíul in terms of cotton quality. Early summer temperatures at Lubbock in some years are too low to favor fruiting. The effect of low temperature adds to the effect of close spacing in delaying the appearance of the first square, and the combination of ten produces a decided delay in fruiting. The past 3 seasons (1953-55) show that a spacing of 4 to 8 inches tends to of 9 set the eifect of low temperature on fruiting.

The most inmature eotton produced in the area wol grown where stands were extremely tcick and crowded. Table 1 shows that 20,000 to 30,000 plants per acre consistently outyielded higher populations.

REPETEMCES

1. Mayton, E. L., et al. Cotton spaning. Ala. Agr. Exp. Sta. Circ. 76. 1937.
2. Peebles, R. \boldsymbol{H}. , et al. Effect of spacing on some agronomic and fiber character. istics of irrigatea cotton (in press). Results at Sacaton and Mesa, Ariz.
3. McK̈eever, H, G. Spacing experiments with Acaia cotton. S. Calif. Jour. Agr. Res. 28:1081. 1924.
4. Tavernetti, J. R., et al. Cotton mechanization studies in California. Agr. Eng. 32:497-488. 1249.
5. Ibid.
6. Regional cotton mechanization project. USDA Annual Report. 1952.
7. Cotton, J. R., et al. Cotton spacing in Soirthern Louisiana in relation to sertain plant characters. La. Agr. Exp. Sta. Bul. 245. 1934.
8. Dick, J. B., et ai. Plant population studies with cotton io the Delta. Hesissippi Faxi Fesearch, Anril 195%.

9, Fegional cotton mechanization project. USDA Annual. Report. 1952.
10. Tbit.
11. Regionai cotton mecizanizetion project. USDA Annal Rerort. 1953.

IE, Esil, 2. Z., et al. Cotton experiments at Florence. S. Car. Agr. Exp. Sta. 2ul. 2as. 2926.
13. Reynolis, E. B. The effect of specing on the yiald of eotton. Tex. Agx. Exp. Sts. Bun. 340. iget.
14. Tarvey, R. . . The influence of spaeing and fertilizer on plant size and shape, ball production and fiber yield of cotton grown on Houston Rlack clay ot Temple, 1551. Tex. Agr. Exp. Sta. Prog. Ppt. 1457. 1952.
15. Reynolds, E. 3. The effeet of spacing on the yield of cotton. Tex. Agr. 2xp. Sta. Bul. 340. 1926.
16. Regional cotton mecbsinization project. USDA Annual Report. 1952-53-54.
17. Lane, H. C. The effect of in, juries simulatiag bail damage to cotton. Tex. Agr. Nxp. Sta. Prog. Fpt. 1660. 1954; and Misc. Publ. 123. 1955.
18. Broith, H. P. et al. Machanical bamesting of cotton, College Station. Tex. Agr. Exp. Sta. Prog. Apt. 1527. 1952.
19. Smith, Ti. P. Harvesting cotton with mechanical strippers and pickers, College Station and Denton, 1955. Tex. Agr. Exp. Sta. Prog. Rpt. 1836. 1956.
20. Frivate Vommications with W. D. Fisher, Tucson, A2 S*, 2955.
21. Research roundup on western cotton production. Southwent Five-state Growers Association, Arizona Cotton Growers Association, and Nationsi Cottor Ccunci.; 2p. $15017 . \quad 1955$.

APRETIXI

The number of feet of row in an acre depends on the row width. Rows 36 to 42 inches apart are used. To find the number of feet of row in an acre, divide 43,560 by the row width in feet. Since the 40 -inch row is standard, $43,560-31 / 3$ $=13,068$ feet of row in an acre. Tha relationship between spacing and the number of plants per foot of row and per ocye is field heving 40 -inch rows io shown following:

Spacing, inches	Number plants ¥er foot of row	Number plante per acre
1	32	156816
2	6	78408
3	4	52272
4	3	39204
6	2	26136
9	I 1/3	17424
12	3	13068
15	4/5	10454
18	2/3	8732
20	3/5	7840
24	1/2	6534

If the highest average yield for each spacing interval in Table 1 is designated as 100 percent, and the lover yields proportionately, the followime agreement is found between the formula in Tigure 1 and these averages:

Plant population (thousands)	From the table	By formula
$75 \&$ \& above	91	89
62.5	89	93.5
45	96	96.5
35	99	97
27.5	96	97
22.5	100	96.5
17.5	95	94.5
12.5	96	93.5
8.75	94	93
7.5 \& less	91	

Figure 2 shows that the swerage stand on the High Plains is 2 to phaste per foot of row. The freehand curve drawn through the points has the form of ara equilateral hyperbois. The goodness of fit was determined from the "read-ofe" deviations. The standard error of estimate (S_{yx}) from "read-ofi" deviations has basically the same meaning as a calculated one, and in a sample this aize, we Syx plus and minus should include two-thirds of the sample poirts. Syy for the curve is slightly more than one boll per plant. The coefficient of curvilimear correlation (Rho) for Figure 2 is 0.99 . An equilateral hyperbola has the equation or $\mathrm{XY}=$ constant. In other words, Figure 2 indicates that over the range of 0.6 of a plant to 12 riants per foot of row (spacing of 20 inches to 1 inch), the number of bolls per foot of row is a constant. The equation of a straight line ceiculated from the number of bolls per ioot of row plotted against plants per foct for these same counts is $Y=14.27+0.07 \mathrm{X}$. Thus the trend toward more bolls per acre as the number of plants increases is very weak.

