C^{2} WHICH FEED

is the BEST BUY?

texas agricultural extension service
G. G. Gibson, Director, College Station, Texas
[Blank Page in Original Bulletin]

Which Feed Is the Best Buy?

Richard E. Burleson
Extension Dairy Husbandman
Texas A. \& M. College System

Occasionally dairymen must make a choice among feeds which they must buy. In most cases, these feeds may be grouped as dry roughages such as alfalfa and Johnsongrass hay or concentrates such as corn and milo.

Sometimes it is difficult to decided which feed is the best buy. This is especially true when a legume hay such as alfalfa is compared with a nonlegume hay such as Sudangrass. On the other hand, making a choice between two legume hays, two nonlegume hays or two concentrates such as corn or milo can be done with more accuracy. The quality of the feeds being considered is very important. The analyses used in the following tables may not fit the specific feeds under consideration. Realizing this shortcoming of any analysis, dairymen must consider any variation in quality of the feeds involved.

Table 1 may be used in deciding which concentrates are the best buy at prevailing prices. The chart is based on the productive energy value of each feed. Briefly, the productive energy of a feed is the amount of energy available for maintenance and production after the work of digestion. In this sense, it is probably a more accurate measure of feeding value than total digestible nutrients. A therm is merely a unit of measure of productive energy.

Table 1. Cost per therm of productive energy in couta

Concentrates	Therms per	Cost per therm when market					
		\$1.75	\$2.00	\$2.25	\$2.50	\$2.75	\$3.00
		Cents	Cents	Cents	Cents	Cents	Cents
Beet pulp	74.4	2.3	2.7	3.0	3.4	3.7	4.0
Corn	85.4	2.0	2.3	2.6	2.9	3.2	3.5
Corn and cob meal	71.2	2.4	2.8	3.2	3.5	3.9	4.2
Milo	84.8	2.1	2.4	2.7	2.9	3.2	3.5
Molasses, blackstrap	62.8	2.8	3.2	3.6	4.0	4.4	4.8
Oats	71.2	2.4	2.8	3.2	3.5	3.9	4.2
Wheat bran	66.7	2.6	3.0	3.4	3.7	4.1	4.5

At prices not listed in the Table, the cost per therm may be determined by dividep into the price of the concentrate.

Table 2. Cost per thend

Table 2 may be used similarly with nonlegume roughages. In this Table we see that cottonseed hulls would have to sell at $\$ 12$ per ton to provide productive energy at the same cost as 21 -dollar mature Johnsongrass hay.

Nonlegume roughages	$\left\|\begin{array}{c}\text { Therms } \\ \text { per } \\ \text { ton }\end{array}\right\|$	
		\$1211
		Cents
Cottonseed hulls	386	3.1
Hegari fodder, with heads	944	13
Johnsongrass hay, young	810	15
Johnsongrass hay, bloom	716	1.7
Johnsongrass hay, mature	672	18
Oat hay	694	1.7
Prairie hay	712	1.7
$\begin{aligned} & \text { Sorghum fodder, } \\ & \text { red top } \end{aligned}$	644	1.9
Sudangrass hay	678	1.8

At prices not listed in the Table, the coter nonlegume hay.
b. is as follows:

$\$ 3.75$	$\$ 4.00$	$\$ 4.25$	$\$ 4.50$
Cents	Cents	Cents	Cents
5.0	5.4	5.7	6.0
4.4	4.7	5.0	5.3
5.3	5.6	6.0	6.3
4.4	4.7	5.0	5.3
6.0	6.4	6.8	7.2
5.3	5.6	6.0	6.3
5.6	6.0	6.4	6.7

per 100 pounds (given in the table)

Table 1 shows that corn priced at $\$ 2.50$ per 100 pounds will supply productive energy at a cost of 2.9 cents per therm. On the other hand, milo selling at $\$ 2$ per 100 pounds will supply productive energy at 2.4 cents per therm. Therefore, milo would be the better buy at that price.
xive energy in nonlegume roughages at different prices

Cost per therm when market price per ton is as follows:

$\$ 21.00$	$\$ 24.00$	$\$ 27.00$	$\$ 30.00$	$\$ 35.00$	$\$ 40.00$	$\$ 45.00$	$\$ 50.00$	$\$ 55.00$
	Cents							
Cents								
2.4	6.2	7.0	7.8	9.1	10.4	11.6	12.9	14.2
2.6	2.5	2.9	3.2	3.7	4.2	4.8	5.3	5.8
2.9	3.3	3.8	4.2	4.9	5.6	6.3	7.0	7.7
3.1	3.6	4.0	4.5	5.2	5.9	6.7	7.4	8.2
3.0	3.4	3.9	4.3	5.0	5.8	6.5	7.2	7.9
2.9	3.4	3.8	4.2	4.9	5.6	6.3	7.0	7.7
3.3	3.7	4.2	4.6	5.4	6.2	7.0	7.8	8.5
3.1	3.5	4.0	4.4	5.1	5.9	6.6	7.4	8.1

[^0]Table 3. Cost per therm of productive energy in

Legume roughages	Therms per ton	Cost per therm when marke					
		$\$ 12.00$	$\$ 15.00$	$\$ 18.00$	$\$ 21.00$	$\$ 24.00$	$\$ 27.00$
	Cents	Cents	Cents	Cents	Cents	Cents	
Alfalfa hay, average	754	1.6	2.0	2.4	2.8	3.2	3.6
Alfalfa hay, leafy	984	1.2	1.5	1.8	2.1	2.4	2.7
Clover hay, sweet	856	1.4	1.7	2.1	2.4	2.8	3.1
Peanut hay, few nuts	904	1.3	1.6	2.0	2.3	2.6	3.0
Vetch hay	716	1.7	2.1	2.5	2.9	3.3	3.8

At prices not listed in the Table, the cost per therm may be determined br $\langle\hat{t}$ legume hay.

Table 4. Cost per therm of prodifer
Dairymen often are confronted with the question of whether to buy hay to cut down on the amount of concentrates necessary to maintain production. Table 4 shows that if a dairyman is feeding an 18 percent concentrate mixture costing $\$ 3$ per 100 pounds, he can afford to pay as much as $\$ 30$ per ton for Johnsongrass hay cut in the bloom. As the cost of his concentrate mixture rises, the more he can pay for hay and get productive energy at the same cost. Full feeding of hay is a sound practice especially when prices favor hay in cost of productive energy.

	Therms per ton		
		$\$ 12.00$	
		Cents	ent
	716	1.7	2.5
	Therms per $\mathbf{1 0 0}$		
		$\$ 1.75$	
		Cents	
Concentrate mixture, 18\% crude protein	72.1	2.4	

Other dry roughages may be corch mixture used in this table contififu be much lower.
is as follows:

$\$ 40.00$	$\$ 45.00$	$\$ 50.00$	$\$ 55.00$
Cents	Cents	Cents	Cents
5.3	6.0	6.6	7.3
4.1	4.6	5.1	5.6
4.7	5.2	5.8	6.4
4.4	5.0	5.5	6.1
5.6	6.3	7.0	7.7

$d \mathrm{~mm}$ per ton into the price of the

Table 3 applies to legume roughages.

No attempt is made to compare a nonlegume roughage with a legume roughage. In such a comparison it would be wise to consider factors other than productive energy. Among these factors would be the higher protein content of legume roughages and the resulting need for additional protein supplement in the concentrate mixture to be fed with nonlegume roughages. The cost of the total ration would be a more accurate measure in this case.
dily in a dry roughage and a concentrate mixture at different prices
wot per therm when market price per ton is as follows:

$\$ 21.00$	$\$ 24.00$	$\$ 27.00$	$\$ 30.00$	$\$ 35.00$	$\$ 40.00$	$\$ 45.00$	$\$ 50.00$	$\$ 55.00$
Cents								
2.9	3.3	3.8	4.2	4.9	5.6	6.3	7.0	7.7

st per therm when market price per $\mathbf{1 0 0} \mathbf{~ l b}$. is as follows:

$\$ 2.50$	$\$ 2.75$	$\$ 3.00$	$\$ 3.25$	$\$ 3.50$	$\$ 3.75$	$\$ 4.00$	$\$ 4.25$	$\$ 4.50$
Cents								
3.5	3.8	4.2	4.5	4.8	5.2	5.5	5.9	6.2

2 18% concentrate mixture by referring to Tables 2 and 3 . The concentrate roughages. If ground roughages are included, the therms per 100 lb . would

Hawe Yow Met...... YOUR COUNTY EXTENSION AGENTS? If not, drop by to see them soon. They represent both the United States Department of Agriculture and The Texas A. \& M. College System in your county and they can furnish the latest information on farming, ranching and homemaking.
 Most county extension agents have their offices in the county courthouse or agriculture building. Get to know them and take advantage of their services.
 This publication is one of many prepared by the Texas Agricultural Extension Service to present up-to-date, authoritative information, based on results of research. Extension publications are available from your local agents or from the Agricultural Information Office, College Station, Texas.

[^1]
[^0]: may be determined by dividing the therms per ton into the price of the

[^1]: Cooperative Extension Work in Agriculture and Home Economics, The Texas A, \& M. College System and United States Department of Agriculture cooperating. Distributed in furtherance of the Acts of Congress of May 8, 1914, as amended, and June 30, 1914. 10M-12-56, Reprint

