Texas Agricultural Extension Service

The Texas A\&M University System

TEXAS A\&M UNIVERSITY

TEXAS STATE DEPOSITORY

JUN 211995

TEXAS STATE DOCUMENTS
 Texas
 Home Gardening

 Guide

Home Gardening Do's and Don'ts

Do

1. Use recommended varieties for your area of the state.
2. Sample soil and have it tested every 2 to 3 years.
3. Apply preplant fertilizer to garden area in recommended manner and amounts.
4. Examine garden often to keep ahead of potential problems.
5. Keep garden free of insects, diseases, and weeds.
6. Use mulches to conserve moisture, control weeds, and reduce ground rots.
7. Water as needed, wetting soil to a depth of 6 inches.
8. Thin when plants are small.
9. Avoid excessive walking and working in the garden when the foliage and soil are wet.
10. Wash and clean garden tools and sprayer well after each use.
11. Keep records on garden activities.

Don't

1. Depend on varieties not recommended for your area, but do try limited amounts of new releases.
2. Plant so closely that you cannot walk or work in the garden.
3. Cultivate so deeply that plant roots are injured.
4. Shade small plants with taller growing crops.
5. Water excessively or in late afternoon.
6. Place fertilizer directly in contact with plant roots or seeds.
7. Allow weeds to grow large before beginning to cultivate.
8. Apply chemicals or pesticides in a haphazard manner or without reading the label directions.
9. Use chemicals not specifically recommended for garden crops.
10. Store leftover diluted spray.

Handy Conversion Table

$$
\begin{aligned}
3 \text { teaspoons } & =1 \text { tablespoon } \\
2 \text { tablespoons } & =1 \text { fluid ounce } \\
16 \text { tablespoons } & =1 \text { cup } \\
2 \text { cups }= & 1 \text { pint or } 16 \text { fluid ounces } \\
2 \text { pints }= & 1 \text { quart } \\
4 \text { quarts }= & 1 \text { gallon } \\
1 \text { ounce }= & \begin{array}{l}
\text { approximately } 2 \text { tablespoons } \\
\end{array} \quad \text { (dry weight) }
\end{aligned}
$$

Texas Home Gardening Guide

H$H_{\text {ome gardening continues to grow in popularity. One }}$ of every three families does some type of home gardening, according to conservative estimates, with a majority of gardens located in urban areas. Texas gardeners can produce tasty, nutritious vegetables year-round. To be a successful gardener requires following a few basic rules and making practical decisions.

Garden Site

Although many urban gardeners have little choice, selecting a garden site is extremely important. An area exposed to full or near-full sunlight, with deep, welldrained, fertile soil is ideal. The location should be near a water outlet and free of competition from existing shrubs or trees. By modifying certain cultural practices and crop selections, almost any site can become a highly productive garden.

Crop Selections

As a home gardener, one of your first major decisions is deciding what vegetables to grow. Table 1 lists crops suitable for small and large gardens. Raise vegetables which return a good portion of nutritious food for the time and space required. Vine crops such as watermelons, cantaloupes, winter squash and cucumbers require large amounts of space. Locating the garden near a fence or trellis may allow for growing vine crops in less space. Plant according to family needs and resist over planting any particular vegetable, although surpluses may be preserved.

Proper variety selection is an important key to successful gardening. The wrong variety may not produce satisfactory yields regardless of subsequent care

SMALL GARDEN VEGETABLES		LARGE GARDEN VEGETABLES	
Beets	Green beans	Cantaloupes	Potatoes
Broccoli	Lettuce	Cauliflower	Pumpkins
Bush squash	Onions	Collards	Southern peas
Cabbage	Parsley	Cucumbers	Sweet corn
Carrots	Peppers	Mustard	Sweet potatoes
Eggplant	Radishes	Okra	Watermelon
English peas	Spinach		
Garlic	Tomatoes		

and attention. Contact your local county Extension agent for varieties which are well adapted to your area of Texas. Try new varieties and hybrids, but limit plantings.

If your garden is not in an area receiving full or nearfull sunlight, try leafy crops such as leaf lettuce, mustard, and parsley. Table 2 indicates vegetable crops which do well in full sunlight and those that tolerate partial shade.

Garden Plan

A gardener needs a plan just as an architect does. Careful planning lessens gardening work and increases returns on labor.

Long-termcrops require a long growing period. Plant
Table 2. Light Requirements of Common Plants

\left.| REQUIRE BRIGHT SUNLIGHT | | | |
| :--- | :--- | :--- | :---: |
| Beans | Eggplant | Potatoes | |
| Broccoli | Okra | Pumpkin | |
| Cantaloupes | Onions | Squash | |
| Cauliflower | Peas | Tomatoes | |
| Cucumbers | Peppers | Watermelons | |
| | | | |
| TOLERATE PARTIAL SHADE | | | |$\right]$| Beets | Carrots | Lettuce |
| :--- | :--- | :--- |

themwhere theywon't interfere with care and harvesting of short-term crops. Plant tall-growing crops where they will not shade or interfere with growth of smaller crops. Plant vegetables such as okra, staked tomatoes, pole beans, and sweet corn on the garden's north side to avoid shading lower-growing crops such as radishes, leaf lettuce, onions, and bush beans. Group crops according to the rate of maturity. Table 3indicates the relative maturity rate of various vegetable crops. By grouping vegetables according to maturity rate, one crop can be planted to take the place of another as soon as it is removed. Try to plant crops totally unrelated to the previous crop. For example, follow early beans with beets, bush squash, or bell peppers. Crop rotation helps prevent diseases and insect buildups.

QUICK (30-60 DAYS)		
Beets	Mustard	Summer
Bush beans	Radishes	squash
Leaf lettuce	Spinach	Turnips
		Turnip greens
MODERATE (60-80 DAYS)		
Broccoli	Green onions	Parsley
Cabbage,	Kohlrabi	Peppers
Chinese	Lima beans,	Tomatoes,
Carrots	bush	cherry
Cucumbers	Okra	
SLOW (80 DAYS OR MORE)		
Brussels	Cauliflower	Pumpkins
sprouts	Eggplant	Sweet
Bulb onions	Garlic	potatoes
Cabbage	Irish potatoes	Tomatoes
Cantaloupes		Watermelon

When to Plant

Consult the table on pages 6 and 7 for information regarding recommended spring and fall planting times for home vegetable gardens in your area. Usually home gardens can be planted 10 days to 2 weeks earlier than commercial fields because of the protection offered by existing buildings, trees, and shrubs. Proper planting time is important if maximumquality and production are expected. Figures 1 and 2 (inside back cover) indicate average dates for first and last freeze (32 degrees F.) for Texas and can be used with the center table to determine optimum planting dates.

Soil Preparation

Many garden sites do not have deep, well-drained, fertile soil which is ideal for vegetable growing. Thus, soils must be altered to provide good drainage and aeration. If the soil is a heavy clay, the addition of organic matter or sand may be highly advantageous.

Apply 1 to 2 inches of good sand and 2 to 3 inches of organic matter to the garden site surface and turn under in late winter or early spring to improve the soil's physical quality. Work on the soil's physical condition over a period of time rather than trying to develop desirable soil in a season or two. Make periodic additions of organic matter in the form of composted materials, peanut hulls, rice hulls, grass clippings, or other organic matter. Turn the soil to a depth of 8 to 10 inches -- the deeper the better. Gypsumimproves soil structure and drainage. Add gypsum at the rate of 6 to 8 pounds per 100 square feet where the soil is a tight, heavy clay.

When adding organic matter or sand to the garden site, take care to avoid introducingsoil pests such as nematodes. The Texas Agricultural Extension Service provides a laboratory service to determine whether nematodes are present in soils. Contact your county Extension agent for additional information.

Never work wet garden soil. Soils containing a high degree of organic matter can be worked at a higher moisture content than heavy clay soils. To determine if the soil is suitable for working, squeeze together a small handful of soil. If it sticks together in a ball and does not readily crumble under slight pressure by the thumb and finger, it is too wet for working.

Seeds germinate more readily in well-prepared soil than in coarse, lumpy soil. Thorough preparation greatly reduces the work of planting and caring for the crop. It is possible, however, to overdo preparation of some soils. An ideal soil for planting is granular, not powdery fine.

Fertilization

Proper fertilization is another important key to successful vegetable gardening. The amount of fertilizer needed depends upon soil type and crops. Texas soils vary from deep blow sands to fertile, well-drained soils to heavy, dark clays underlaid by layers of caliche rock. Crops grown on sandy soils usually respond to liberal amounts of potassium, whereas crops grown on clay soils do not.

Heavy clay soils can be fertilized considerably heavier at planting than can sandy soils. Heavy clay soils and those high in organic matter can safely absorb and store fertilizer at three to four times the rate of sandy soils. Poor thin, sandy soils, which need fertilizer the most, unfortunately cannot be fed as heavily and still maintain plant safety. The solution is to feed poor thin soils more often in lighter doses. For accurate recommendations regarding fertilizer rates, contact your county Extension agent and request a soil test kit.

In general, if your garden is located on deep, sandy soil, apply a complete preplant fertilizer such as 5-10-10 or 6-12-12 at the rate of 1 to 2 pounds per 100 square feet. If your garden consists of a soil type with a high percentage of clay, a fertilizer such as 10-20-10 or 12-2412 at 1 to 2 pounds per 100 square feet should be suitable.

After determining the proper amount of fertilizer for a preplant application, apply the fertilizer a few days before planting. Spade the garden plot, spread the fertilizer by hand or with a fertilizer distributor and then work the soil one or two times to properly mix the fertilizer with the soil. After the fertilizer is well mixed
with the soil, bed the garden in preparation for planting. On alkaline soils, apply 1-20-0 (superphosphate) directly beneath the intended seed row or plant row before planting. Apply the superphosphate 2 to 4 inches beneath the seed or roots of the plant at the rate of 1 to $1-1 / 2$ pounds per 100 linear feet of row. Take care to avoid banding nitrogen material directly beneath the row. Death of the seed or severe burning of the plants could result. Apply additional nitrogen as a furrow or sidedress application later in the season. For most soils, $1 / 2$ to $3 / 4$ pound of 21-0-0 (ammoniumsulfate) per 100 linear feet of row, applied in the furrow and watered in, is adequate. Apply at first fruit set for crops such as tomatoes, peppers, and squash. Sidedress leafy crops such as cabbage and lettuce when they develop several sets of character leaves.

Planting

Plant your garden as early as possible in the spring and fall so the vegetables will grow and mature during ideal conditions.

Transplanting vegetable crops wherever possible allows earlier harvesting and extends the productive period of many vegetable crops. Where transplanting is not practical or convenient, seed directly. A general rule of thumb for planting is to cover the seed 2 to 3 times its widest measurement. This is especially true for bigseeded crops such as green beans, sweet corn, cucumbers, cantaloupes, and watermelons. For smaller-seeded crops such as carrots, lettuce, or onions, an average planting depth of $1 / 2$ to $1 / 4$ inch usually is adequate. Seed the plants fairly thick with the intention of thinning to an optimum stand at a later date. Avoid allowing the soil to over-dry or crust during germination, but do not over water. Tabie 4 indicates the number of days from planting to expected emergence when properly planted.

Avoid transplanting too deep or too shallow, especially

Beans 5-10 days	Onion 7-10 days
Beets 7-10 days	Peas 6-10 days
Broccoli 5-10 days	Parsley 15-21 days
Cabbage 5-10 days	Pepper 9-14 days
Carrots 12-18 days	Radish 3-6 days
Cauliflower 5-10 days	Spinach 7-12 days
Corn................ 5-8 days	Squash 4-6 days
Cucumber 6-10 days	Tomato 6-12 days
Eggplant 6-10 days	Turnip 4-8 days
Lettuce 6-8 days	Watermelon.... 6-8 days
Okra............. 7-10 days	

if plants are in containers such as peat pots. Deep planting often causes developed roots to abort, and planting too shallow exposes containers to the surface and causes root death from excessive drying. Some crops are easily transplanted bare-root while others are best transplanted in containers, as indicated in Table 5. When transplanting plants such as tomatoes or peppers, use a starter solution.

EASILY TRANSPLANTED		
Beets Broccoli Cabbage	Cauliflower Chard Lettuce	Onion Tomatoes
REQUIRE CARE		
Carrots Celery	Eggplant Okra	Pepper Spinach
VERY DIFFICULT WITHOUT USING CONTAINERS		
Beans Cantaloupe Corn	Cucumber Peas Squash	Turnip Watermelon

Starter solutions may be purchased at local nurseries or can be made at home by mixing $1 / 4$ to $1 / 2$ cup offertilizer such as 10-20-10 in 5 gallons of water. Use the lower rate on light, sandy soils. Apply $1 / 2$ to 1 pint of starter solution, depending upon plant size, into each transplant hole before planting. This prevents the plants fromdrying out and provides adequate sources of fertility for young, growing plants.

Watering

Apply enough water to penetrate the soil to a depth of at least 6 inches. For best production, most gardens require a moisture supply equivalent to 1 inch of rain a week during the growing season. Light sandy soils generally require more frequent watering than heavier dark soils. If sprinklers are used, water in the morning to allow plant foliage to dry before night. This practice helps prevent foliage diseases, since humidity and cool temperatures encourage disease development on most vegetable crops.

The use of drip irrigation to supply water is also beneficial in this regard. Additionally, this system of irrigation is the most water-use efficient available and is ideally suited for use with mulches.

Vegetables	Seed or Plants per 100 feet	Depth of Seed Planting in Inches	Inches of Distance Between		Average Height of Crop in Feet	Spring Planting in Regard to Average Frost-Free Date*
			Rows	Plants		
Asparagus	66 pl., 1 oz.	6-8, 1-11/2	36-48	18	5	*4 to 6 wks . before
Beans, snap bush	$1 / 2 \mathrm{lb}$.	1-11/2	30-36	3-4	$11 / 2$	on to 4 wks . after
Beans, snap pole	$1 / 2 \mathrm{lb}$.	1-11/2	36-48	4-6	6	on to 4 wks . after
Beans, Lima bush	$1 / 2 \mathrm{lb}$.	1-11/2	30-36	3-4	$11 / 2$	on to 4 wks . after
Beans, Lima pole	$1 / 4 \mathrm{lb}$.	1-11/2	36-48	12-18	6	on to 4 wks . after
Beets	1 oz .	1	14-24	2	$11 / 2$	4 to 6 wks . before
Broccoli	$1 / 4 \mathrm{oz}$.	$1 / 2$	24-36	14-24	3	4 to 6 wks . before
Brussels Sprouts	$1 / 4 \mathrm{oz}$.	$1 / 2$	24-36	14-24	2	4 to 6 wks . before
Cabbage	1/4 oz.	$1 / 2$	24-36	14-24	11/2	4 to 6 wks . before
Cabbage, Chinese	$1 / 4 \mathrm{oz}$.	$1 / 2$	18-30	8-12	11/2	4 to 6 wks . before
Carrot	$1 / 2 \mathrm{oz}$.	$1 / 2$	14-24	2	1	4 to 6 wks . before
Cauliflower	$1 / 4 \mathrm{oz}$.	$1 / 2$	24-36	14-24	3	not recommended
Chard, Swiss	2 oz .	1	18-30	6	$11 / 2$	2 to 6 wks . before
Collard (Kale)	$1 / 4 \mathrm{oz}$.	$1 / 2$	18-36	6-12	2	2 to 6 wks . before
Corn, sweet	3-4 oz.	1-2	24-36	9-12	6	on to 6 wks . after
Cucumber	$1 / 2 \mathrm{oz}$.	$1 / 2$	48-72	8-12	1	on to 6 wks . after
Eggplant	1/8 oz.	$1 / 2$	30-26	18-24	3	2 to 6 wks. aftel
Garlic	1 lb .	1-2	14-24	2-4	1	not recommended
Kohlrabi	$1 / 4 \mathrm{oz}$.	$1 / 2$	14-24	4-6	$11 / 2$	2 to 6 wks . before
Lettuce	$1 / 4 \mathrm{oz}$.	$1 / 2$	18-24	2-3	1	6 wks . before/2 wks. after
Muskmelon (Cantaloupe)	1/2 oz.	1	60-96	24-36	1	on to 6 wks . after
Mustard	$1 / 4 \mathrm{oz}$.	$1 / 2$	14-24	6-12	$11 / 2$	on to 6 wks . after
Okra	2 oz .	1	36-42	12-24	6	2 to 6 wks . after
Onion (plants)	400-600 pl.	1-2	14-24	2-3	$11 / 2$	4 to 10 wks . before
Onion (seed)	1 oz .	$1 / 2$	14-24	2-3	$11 / 2$	6 to 8 wks . before
Parsley	$1 / 4 \mathrm{oz}$.	$1 / 8$	14-24	2-4	1/2	on to 6 wks . before
Peas, English	1 lb .	2-3	18-36	1	2	2 to 8 wks . before
Peas, Southern	$1 / 2 \mathrm{lb}$.	2-3	24-36	4-6	$21 / 2$	2 to 10 wks . after
Pepper	1/8 oz.	$1 / 2$	30-36	18-24	3	1 to 8 wks . after
Potato, Irish	$6-10 \mathrm{lb}$.	4	30-36	10-15	2	4 to 6 wks . before
Potato, sweet	$75-100 \mathrm{pl}$.	3-5	36-48	12-16	1	2 to 8 wks . after
Pumpkin	$1 / 2 \mathrm{oz}$.	1-2	60-96	36-48	1	1 to 4 wks. after
Radish	1 oz .	$1 / 2$	14-24	1	1/2	6 wks . before/4 wks. after
Spinach	1 oz .	$1 / 2$	14-24	3-4	1	1 to 8 wks . before
Squash, summer	1 oz .	1-2	36-60	18-36	3	1 to 4 wks . after
Squash, winter	$1 / 2 \mathrm{oz}$.	1-2	60-96	24-48	1	1 to 4 wks. after
Tomato	50 pl. , 1/8 oz.	4-6, 1/2	36-48	36-48	3	on to 8 wks . after
Turnip, greens	1/2 oz.	$1 / 2$	14-24	2-3	$11 / 2$	2 to 6 wks . before
Turnip, roots	1/2 oz.	$1 / 2$	14-24	2-3	$11 / 2$	2 to 6 wks . before
Watermelon	1 oz .	1-2	72-96	36-72	1	on to 6 wks . after

 Fall-Freeze Date

Number of Days Ready for Use

Average Length of Harvest Season Days

Average Crop Expected per 100 Feet

Approximate Planting per Person
(Storage) Canning or Freezing
not recommended 8 to 10 wks . before 14 to 16 wks. before 8 to 10 wks . before 14 to 16 wks. before

8 to 10 wks . before 10 to 16 wks . before 10 to 14 wks . before

10 to 16 wks . before 12 to 14 wks . before 12 to 14 wks . before 10 to 16 wks . before

12 to 16 wks . before 8 to 12 wks. before 12 to 14 wks . before 10 to 12 wks. before

12 to 16 wks . before 4 to 6 wks . before 12 to 16 wks . before 10 to 14 wks . before

14 to 16 wks . before 10 to 16 wks . before 12 to 16 wks . before not recommended 8 to 10 wks. before

6 to 16 wks. before 2 to 12 wks. before 10 to 12 wks . before

12 to 16 wks. before 14 to 16 wks . before not recommended 12 to 14 wks. before
on to 8 wks . before 2 to 16 wks . before 12 to 15 wks . before 12 to 14 wks . before 12 to 14 wks. before 2 to 12 wks . before 2 to 12 wks . before 14 to 16 wks. before
730
$45-60$
$60-70$
$65-80$
$75-85$

$50-60$
$60-80$
$90-100$

$60-90$
$65-70$
$70-80$
$70-90$
$45-55$
$50-80$
$70-90$
$50-70$
$80-90$
$140-150$
$55-75$
$40-80$
$85-100$
$30-40$
$55-65$
$80-120$
$90-120$

$70-90$	90
$55-90$	7
$60-70$	30

60-90
75-100
100-130
75-100
25-40
40-60
50-60
85-100
70-90
30
$30-60$
80-100

60

14

30

 14 40 30 40 21 40 2121 14 40
60
103090
30
30
30
90
40
40
90
7
30
90

Weed Control

A long-handled hoe is the best tool for control of undesirable plants in vegetable gardens. Chemical weed control usually is undesirable and unsatisfactory because of the selective nature of weed control chemicals. The wide variety of vegetable crops normally planted in a small area prohibits use of such chemicals. Cultivate and hoe shallowly to avoid injury to vegetable roots lying near the soil surface. Control weeds in the seedling stage to prevent themfromseeding and re-inoculating the garden area. The use of mulch is also an effective means of weed control.

Mulching

Mulchingwill increase yields, conserve moisture, prevent weed growth, regulate soil temperature, and lessen losses caused by ground rot of many vegetable crops. Organic mulches can be made of straw, leaves, grass, bark, compost, sawdust, or peat moss. Organic mulches incorporated into the soil will improve the soil tilth, aeration, and drainage. The amount of organic mulch to use depends upon the type, but 1 to 2 inches of organic material applied to the garden surface around growingplants is adequate.

In turning organic mulches under for subsequent crops, add additional fertilizer at the rate of about 1 pound per 100 square feet to help soil organisms break down the additional organic matter.

Pest Control

Diseases and insects cause great concern among Texas gardeners. Long growingseasons with relatively mild winters encourage large insect populations. Avoid spraying when possible, but use recommended and approved chemicals if the need warrants. Exercise care when deciding which chemicals to apply. Spray only those crops which are listed on the chemical's container. When used according to manufacturer's directions and label, chemicals pose no threat to the home gardener.

Disease control is really a preventive rather than an eradication procedure. Cool, damp conditions are conducive to foliage diseases. Carefully watch your garden for symptoms of diseases. Spray accordingly, using only approved fungicides. Publications on disease and insect identification and control are available from your local Extension office.

Harvesting

For the greatest enjoyment of your home vegetable garden, harvest vegetables when they are mature. A vegetable's full flavor develops only at peak maturity, resulting in the excellent taste of vine-ripened tomatoes, tender green beans, and crisp, flavorful lettuce. For maximumflavor and nutritional content, harvest the crop the day it is to be canned, frozen, or eaten.

Common Garden Problems

Symptoms	Possible Causes	Corrective Measures
Plants stunted in growth; sickly, yellow color	Lack of soil fertility or soil pH abnormal	Use fertilizer and correct pH according to soil test. Use 2 to 3 pounds of complete fertilizer per 100 square feet in absence of soil test.
	Plants growing in compacted, poorly-drained soil	Modify soil with organic matter or coarse sand.
	Insect or disease damage	Use a regular spray or dust program.
	Iron deficiency	Apply iron to soil or foliage.
Plants stunted in growth; sickly, purplish color	Low temperature	Plant at proper time. Don't use lightcolored mulch too early in the season.
	Low available phosphate	Apply sufficient phosphate at planting.
Holes in leaves; leaves yellowish and drooping, or distorted in shape	Damage by insects	Use recommended insecticides at regular intervals.
Plant leaves with spots; dead, dried areas; or powdery or rusty areas	Plant disease	Use resistant varieties, remove diseased plants when they are noticed and use a regular spray program
Plants wilt even though sufficient water is present	Soluble salts too high or root system damage	Have soil tested by county Extension agent. Use soil insecticides, fungicides, and resistant varieties.
	Poor drainage and aeration	Use organic matter or sand in soil.
	Insect or nematode damages	Use recommended varieties and soil insecticides or nematocides.
Plants tall, spindly, and unproductive	Excessive shade	Relocate to sunny area. Keep down weeds.
	Excessive nitrogen	Reduce applications of nitrogen.
Blossom drop (tomatoes)	Hot dry periods	Use mulch and water. Plant heat tolerant varieties.
	Minor element deficiencies	Use fertilizer containing zinc, iron, and manganese.
Failure to set fruit (vine crops)	Poor pollination	Avoid spraying when bees are present.
Leathery, dry, brown blemish on the blossom end of tomatoes, peppers, and watermelons	Blossomend rot	Maintain a uniform soil moisture supply. Avoid over-watering and excessive nitrogen.

Other Gardening Publications

B-1252 Insect Control Guide for Organic GardenersB-1300 Managing Insect and Mite Pests in Vegetable GardensB-5078 Texas Earth-Kind Gardening Guidelines
B - 1613 Specialty Vegetables in Texas
L-2242 Growing Herbs in Texas
L-2016 Non-Chemical Control of Plant Diseases in the Home Garden
L-781 Control of Plant Parasitic Nematodes Around the Home and Garden
MP - 1150 Vegetable Gardening in Containers
MP - 954 Disease Prevention in the Home Garden
Series Easy Gardening Guides: Asparagus - Watermelons

Educational programs conducted by the Texas Agricultural Extension Service are open to all people without regard to race, color, sex, disability, religion, age or national origin.

Issued in furtherance of Cooperative Extension Work in Agriculture and Home Economics, Acts of Congress of May 8, 1914, as amended, and June 30, 1914, in cooperation with the United States Department of Agriculture. Zerle L. Carpenter, Director, Texas Agricultural Extension Service, The Texas A\&M University System.

