

45TH TURBOMACHINERY & 32ND PUMP SYMPOSIA HOUSTON, TEXAS | SEPTEMBER 12 - 15, 2016 GEORGE R. BROWN CONVENTION CENTER

Investigation of Steam Turbine blade

Ashutosh Vengurlekar cr and Engineering, Singapore Mr. Robert D Fisher

ExxonMobil Research and Engineering, Houston Global Technology Sponsor (Machinery)

Mr. Yuki Nakamura

Mitsubishi Heavy Industries Compressor Corporation, Hiroshima Japan Mr. Yuichi Sasaki

Mitsubishi Heavy Industries Compressor Corporation, Hiroshima Japan

Mr. Satoshi Hata

MHI Compressor International Corporation, Houston

Mr. Kyoichi Ikeno

Mitsubishi Heavy Industries Compressor Corporation, Hiroshima Japan

Presenter/Author bios (To be revised)

Mr. Ashutosh Vengurlekar

ExxonMobil Research and Engineering, Singapore

Discipline Technology Lead – Machinery Asia Pacific, ashutosh.vengurlekar@exxonmobil.com

Mr. Robert D Fisher

ExxonMobil Research and Engineering, Houston

Global Technology Sponsor (Machinery), robert.d.fisher@exxonmobil.com

Mr. Yuki Nakamura

Mitsubishi Heavy Industries Compressor Corporation, Hiroshima Japan

Engineering & Design Division, yuki4_nakamura@compressor.mhi.co.jp

Mr. Yuichi Sasaki

Mitsubishi Heavy Industries Compressor Corporation, Hiroshima Japan

Engineering & Design Division, yuichi2_sasaki@compressor.mhi.co.jp

Mr. Satoshi Hata

Mitsubishi Heavy Industries Compressor Corporation, Hiroshima Japan

Engineering & Design Division, satoshi_hata@compressor.mhi.co.jp

Mr. Kyoichi Ikeno

Mitsubishi Heavy Industries Compressor Corporation, Hiroshima Japan Engineering & Design Division, <u>kyoichi_ikeno@compressor.mhi.co.jp</u>

Abstract

Blade failure was observed on a backpressure steam turbine (driving a centrifugal compressor) after it was in service for more than one year. This paper presents details of observations, inspections carried out and root cause analysis of the turbine blade failure.

Contents

- 1. Turbine specification
- 2. Observations during overhaul
- 3. Fracture surface observation

3.1. Fracture surface observation by OEM

3.2. Fracture surface observation result

- 4. Review of operation data
- 5. Possible cause
- 6. Heat transfer stress analysis
- 7. Fretting stress analysis
- 8. Solution to avoid fretting
- 9. Conclusion
- 10. Lessons Learned

1. Turbine Specification

Turbine Cross Section

- **Turbine specification** •
 - Back pressure turbine driving ethylene compressor in a cracker plant
 - Power : 17MW
 - Speed : 4117 5085 rpm
 - Normal steam inlet condition
 - Inlet : 103 kg/cm²G , 503°C •
 - Outlet : $45 \text{ kg/cm}^2\text{G}$ •
- History •

Restart attempted and unsuccessful due to high vibrations at low speeds. Decided to overhaul turbine.

March 2014 Turbine trips on high vibrations

2. Observations during overhaul (1/3)

First stage wheel : Broken blade at one location. No damage on other components.

2. Observations during overhaul (2/3)

One blade damaged out of 78 blades, and fracture was located at the 1st bearing portion of blade root. Other components (2nd and 3rd stage) not damaged

3rd bearing

2. Observations during overhaul (3/3)

O: Crack indication

Failed blade and crack indicated blades were located on the first/last of shroud.

No.70 blade root

Failed blade was No.70 on blue colored circle part.

Concave side, Steam inlet side

Crack indication was detected on No.11, No.22 and No.40 blade root in

3-1. Fracture surface observations

- Ratchet mark was observed on fracture surface, so the crack has multiple origin.
- Rough surface was observed around crack origin.
- Crack was started from rough surface.
- No corrosion pit was observed.
- Chemical components and hardness were satisfied the required specification.

Initial crack was initiated by fretting fatigue, and blade failed from high cycle low stress fatigue.

3-2. Fracture surface observation result

The followings are observed from fracture surface of No.70 blade.

- 1) The blade failed from high cycle fatigue.
- 2) Fatigue cracks start in 4 areas on both sides of the blade root.
 - This and the presence of ratchet marks support a high cycle low stress fatigue mode.
- 3) In the fatigue crack initiation locations multiple fretting marks are present. Fretting fatigue cracks start from these locations.
- 4) The failed blade steel is made of good quality.
- 5) No evidence of an external factor related to steam quality was found.

Fig.1 Fracture surface of No.70 blade

4. Review of operation data

Review of Operation data

The temperature changed from approximately from 500 degree C to 410 degree C in roughly 20 minutes and then recovered to rated temperatures in approximately 30 minutes.

This event had occurred approximately 1 month before the failure of the turbine blade.

5. Possible cause (1/2)

Result & Assessment

Inlet steam temperature goes down from

 \triangle

X

 \wedge

X

X

No indication of contact with other parts

1st stage blade stress due to NPF, $2 \times NPF$

different from PRC turbine.(ERC turbine is

Blade root dimension is within design.

Failed blade material is made of good

No evidence of an external factor related

\times : Low possibility

Fracture

Number of cycles exceed fretting thresh-hold for crack initiation

> ⇒ initial cracks formed

Vibratory stress ⇒ cause crack propagation even with no slip

6. Heat transfer stress analysis (1/2)

<Analysis Model>

Blade & Shroud

<Analysis condition table>

Steam Temp.		Operating Time			Operating
Reduction	Reheating	Reduction	Reheating	Total	Speed
-4 °C/min	+2.4 °C/min	22 min	38 min	60 min	Nor. (4700 rpm)

Analysis Model & Thermal Boundary Condition

6. Heat transfer stress analysis (2/2)

The contact area shifts from 1st bearing surface to 3rd bearing surface on end blades as temperature is reduced. Makes the end blades susceptible to vibrations.

Contact force reduction (Focused on first or last blade of shroud group)

 \checkmark At the 1st brg. Line A (cracked point), the contact pressure significantly reduce after steam cooled.

 \checkmark After steam reheated, the contact pressure become nearly equal to initial condition again.

Average of contact pressure (at Blade 6) / Concave side)

Slip evaluation result

(Focused on first or last blade of shroud group / 1st bearing)

Slip between rotor groove and blade was possible as the vibratory forces exceeded contact force on \checkmark blade root during temperature excursion event

Slip level of contact area

7. Fretting stress analysis (1/2)

Fretting evaluation

Relative slip & contact stress is plotted on fretting criteria (based on experimental data in OEM).

Relative slip S is,

$$S = \frac{(1-\nu^2)}{E} \int \frac{F\nu i b - \mu Fnominal}{Area} dy$$

$\mu \times$ Fnominal

Blade side

Movement force

7. Fretting stress analysis (2/2)

Fretting estimated time : 1000sec Dominant cycle : $157Hz = 4700rpm/60 \times 2shock/round$ \Rightarrow Cyclic number : 1.6×10^5 cycles = 157Hz \times 1000sec

Commonly, cyclic number for fretting fatigue crack initiation is $10^4 \sim 10^5$ cycle.

Enough time to initiate fretting crack

8. Solution to avoid fretting (1/2)

8. Solution to avoid fretting (2/2)

Comparison of fretting evaluation

Fretting analysis result **Original case**

Fretting occurs from 750sec

Fretting analysis result Improvement case

Fretting does not occur.

9. Conclusion

- 1. <u>Contact pressure at the origin of crack changed significantly during inlet steam</u> temperature excursion.
- 2. <u>Slip between rotor disk and blade was possible</u> as the vibratory forces exceeded contact pressure on blade root during temperature excursion event.
- 3. Temperature event combined with number of cycles during low temperature excursion was adequate to cause fretting and to initiate fretting cracks.
- 4. Reduction of contact pressure at the first/last blade of shroud group due to temperature change, and crack location are <u>matching with the analysis result</u>.
- 5. <u>Vibratory stresses have to be reduced</u> to be lower than contact pressure as a solution to avoid fretting. This was possible by modification of governing valve sequence in case of this turbine. Effect of change has been studied and model results show that <u>fretting</u> can be avoided even in case of temperature excursions by reducing vibratory stresses.

10. Lessons Learned

> Operation

 \checkmark Plant operation can have significant impact on performance of steam turbines. **<u>Stable temperature</u>** must be maintained for long term reliability.

- Design
 - <u>Robust design</u> should consider potential operation out of normal operating ranges.
 - Establish guideline for fretting on Goodman diagram to avoid fretting

Where:

- σY Yield strength
- σEA Fatigue limit in pure steam
- σT Actual breaking stress

Thank you for your attention