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ABSTRACT 

 

 Methylation of the carbon 5 position of cytosine is a common epigenetic mark in 

vertebrates, and has been associated with male infertility. Methylation can be affected by 

environmental changes in utero and our long-term goal is to establish whether maternal 

nutrition affects the bovine sperm methylome and variation in male fertility. As a first 

step, our objective here was to establish the general pattern of methylation in ejaculated 

bovine spermatozoa. We performed whole genome bisulfite sequencing for five F1 

Nellore-Angus crossbred bulls and ~50 Gb of sequence was obtained per sample.  

Sequences were aligned to a bisulfite-converted version of the UMD3.1 bovine reference 

assembly.   

 The average level of CpG methylation was 88.2% and the global methylation 

patterns for sperm from Angus-Nellore F1 bulls and Nellore-Angus F1 bulls were similar.  

Gene bodies were heavily methylated, whereas promoter and CpG island (CGI) tended 

to be unmethylated.  For promoters with unmethylated CGI, there was enrichment for 

pathways associated with transcription.  Some differentially methylated regions were 

identified between Angus-Nellore F1 bulls and Nellore-Angus F1 bulls.  These data on 

the bovine sperm methylome also establish a baseline from which future work related to 

bovine male infertility can proceed. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

 In commercial production systems, reproduction is at least five times as 

important as growth and milk production (Trenkle and Willham, 1977). Improving the 

reproductive ability of livestock can decrease the cost of production (or input), thereby 

effectively increasing the overall efficiency of production (Trenkle and Willham, 1977). 

Therefore, reproductive efficiency and improved fertility in breeding sires can benefit 

producers. Male fertility is dependent upon sperm quality and normal spermatogenesis 

(Karimian and Hosseinzadeh Colagar, 2016). Male infertility is an increasing problem in 

human health care (Cisneros, 2004) and it is also a problem that livestock producers 

encounter in herds despite animals with normal sperm parameters (Jenkins et al., 2016). 

Male infertility is the inability to produce a pregnancy over a long span of time, typically 

at least one year, despite repeated attempts of intercourse without contraception 

(Cisneros, 2004; Kasturi et al., 2008; Friemel et al., 2014; Li et al., 2016).  

 Epigenetic mechanisms such as DNA methylation are critical for the proper 

function of the sperm genome and development of the embryo after fertilization (Ferlin 

and Foresta, 2014). Improved knowledge of sperm epigenetics in cattle is crucial to 

understand fertilization and embryo viability, and also the unknown causes that reduce 

male fertility. 

The objective of this experiment is to describe the methylome of bovine 

ejaculated sperm at nucleotide resolution to establish a baseline from which future work 

related to bovine male infertility could proceed. These data will also contribute to the 
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development of a commercial methylation array. Whole-genome bisulfite sequencing 

(WGBS) will be conducted using DNA from one semen collection from a population of 

Angus-Nellore crossbred cattle. Global methylation patterns will be characterized. In 

particular, the extent of differences in methylation patterns between Angus-Nellore F1 

bulls and Nellore-Angus F1 bulls, and the distribution of methylation in CpG islands 

(CGI) and non-CpG islands will be investigated. 

1.1 Spermatogenesis 

 The hypothalamic-pituitary-gonad (HPG) axis controls reproduction (Cisneros, 

2004). Gonadotrophin releasing hormone is produced in short-lived pulses every few 

hours from specialized neurons in the hypothalamus to stimulate the pulsatile release of 

follicle stimulating hormone and luteinizing hormone from gonadotroph cells in the 

anterior lobe of the pituitary gland (Senger, 2012). Luteinizing hormone binds to 

luteinizing hormone receptors on leydig cells adjacent to the seminiferous tubules within 

the testes, which stimulates steroidogenic acute regulatory protein-mediated uptake of 

cholesterol and the production of pregnenolone, which is converted to testosterone. 

Sertoli cells in the seminiferous tubules have receptors for testosterone and follicle 

stimulating hormone, which are transduced to promote follicular development of the 

spermatogonia.  

 Mature sperm, or spermatozoa, are produced continually in the seminiferous 

tubules of post-pubertal males due to the hormonal pulses of the HPG axis.  The tight 

junctions between sertoli cells of the seminiferous tubules form a protective environment 

known as the blood-testis barrier for germ cell development.  Spermatogenesis takes 61 
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days in a bull and has three distinct phases: proliferation, meiotic, and differentiation 

phases. Spermatogonia are primordial germ cells (PGC) located near the basement 

membrane of the seminiferous tubules. During the proliferation phase, spermatogonia 

undergo multiple rounds of mitosis and stem cell renewal, and move towards the lumen. 

Stem cell renewal allows for continuous spermatozoa production by continually 

replenishing the source of stem cells from which new spermatogonia can develop. 

Primary spermatocytes then undergo two rounds of meiosis to become haploid 

spermatids diffusing from the basal compartment into the protected adluminal 

compartment of the seminiferous tubules. Recombination during Meiosis I produces 

genetic diversity among secondary spermatozoa. Finally, spherical spermatids 

differentiate into the specialized cells of mature spermatozoa (Senger, 2012). The 

differentiation phase, also referred to as spermiogenesis, is required for proper sperm 

maturation without further cell divisions. Sperm divide synchronously in cohorts 

meaning that each sperm cell generation is produced in groups that underwent the 

spermatogenesis phases at the same time.  

 A mature sperm consists of a head, containing a highly condensed nucleus, and a 

flagellum tail driven by the mitochondrial helix midpiece. To be considered normal, the 

head should be smooth and elongated, not circular. The midpiece, principal piece and 

endpiece collectively form the tail which normally is slender, connected to the midpiece, 

and allows proper flagella movement. Abnormal spermatozoa have morphological 

abnormalities such as head defects, neck and midpiece defects, tail defects and excess 

residual cytoplasm (World Health Organization, 2010).   
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1.2 Male Infertility 

 Male fertility is dependent upon sperm quality and normal spermatogenesis 

(Karimian and Hosseinzadeh Colagar, 2016). A semen analysis is typically used to 

categorize normozoospermic males by evaluating the sperm count, morphology, 

motility, and viability (Aston et al., 2015). Although the main causes of male infertility 

are abnormalities in spermatogenesis (Karimian and Hosseinzadeh Colagar, 2016), 15-

50% of male infertility cases are idiopathic, where no specific cause of the infertility can 

be diagnosed (Aston et al., 2012; Anawalt, 2013). A few genetic markers correlated with 

male infertility have been identified, such as Y-chromosome microdeletions (Tiepolo 

and Zuffardi, 1976), DPY19L mutations (Harbuz et al., 2011), SPATA16 mutations 

(Dam et al., 2007), and an A2756G-polymorphism in methionine synthase (MTR)  

(Karimian and Hosseinzadeh Colagar, 2016). However, these genetic markers only 

explain some male infertility issues, not male infertility associated with idiopathic cases.   

1.3 Epigenetics and the Epigenome 

 Waddington (1942) coined the term epigenetics to describe the field of study that 

identifies causal mechanisms for the developmental processes that produce specific 

phenotypes from genotypes (Waddington, 2012).   More recently one definition of 

epigenetics has been refined to mean the study of stable alterations in gene expression 

that arise during development and cell proliferation (Jaenisch and Bird, 2003). 

Epigenetic differences are due to heritable alterations in the epigenome, not changes in 

the genetic DNA sequence (Jaenisch and Bird, 2003; Urdinguio et al., 2015).  Despite 

reprogramming of the epigenome in cells during spermatogenesis and embryogenesis, a 



 

5 

 

fraction of the epigenome from the parental gametes is still inherited and is dependably 

replicated through cell divisions (Aston et al., 2015). It is now recognized that an 

epigenome is a set of modifications to the chromatin. Epigenetics is important because 

alterations in the epigenome, like hypermethylation of genes, at the wrong place or 

wrong time can lead to diseases and disorders, such as male infertility (Portela and 

Esteller, 2010). 

Epigenetic modifications can be made by: DNA methylation, histone 

modification, chromatin remodeling and non-coding microRNA (Gotoh, 2015; Kitamura 

et al., 2015). Histone modifications include methylation, phosphorylation, acetylation, 

biotinylation, ubiquitination and ADP ribosylation (Portela and Esteller, 2010; Gotoh, 

2015). These modifications result from both internal and external stimuli at a particular 

time and/or intensity which influences gene expression (Gotoh, 2015).  This project will 

focus on DNA methylation.  

1.4 DNA Methylation 

 DNA methylation describes the covalent addition of a methyl group to cytosine, 

and is one of the most widely studied epigenetic mechanisms, which is fundamental for 

cellular processes and regulation (Portela and Esteller, 2010; Urdinguio et al., 2015; Lim 

et al., 2016). Cytosine methylation is the addition of a methyl group to the fifth position 

of the pyrimidine ring. In eukaryotes, DNA methylation occurs mainly in CpG 

dinucleotide sequences accounting for 60 to 90% of methylated cytosines (Bird, 2002; 

Cisneros, 2004; Portela and Esteller, 2010).  Based on nucleotide composition, it is 

expected there would be 4.41% CpG  (International Human Genome Sequencing 
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Consortium, 2001) in the mammalian genome, but instead ~1% of the genome is CpG 

(Hammoud et al., 2010; Portela and Esteller, 2010; Urdinguio et al., 2015). The 

underrepresentation of 5-methylcytosine is due to its spontaneous deamination to 

thymine (Illingworth and Bird, 2009; Cooper et al., 2010).  

Because CpG dinucelotides are self-complementary, the patterns of methylated 

and nonmethylated CpG can be copied when cells divide (Lim et al., 2016). This is 

regulated by the maintenance of DNA methyltransferase, DNMT1 (Rajender et al., 2011; 

Li et al., 2013; Lim et al., 2016). De novo methylation of cytosine is regulated by 

DNMT3A and DNMT3B (Ji et al., 2010; Li et al., 2013). DNA methylation plays a role in 

the proper expression of imprinted genes, biological processes and diseases, and there is 

evidence of transgenerational inheritance (Lim et al., 2016).  

1.5 DNA Methylation in Spermatogenesis 

 Genome-wide demethylation and remethylation occur in waves during 

mammalian development: after fertilization of the embryo and during development of 

the germ cell (Cisneros, 2004; Smallwood and Kelsey, 2012).  In mice, within 6 to 8 

hours of fertilization the paternal genome is actively demethylated and then the maternal 

genome is demethylated after several divisions (Mayer et al., 2000). By implantation, 

most methylation marks in both maternal and paternal genomes are erased in a process 

known as epigenetic reprogramming. This ensures proper development during the 

pluripotent cell stage of an organism (Lim et al., 2016). The only methylation to remain 

at this point is at imprinted genes where DNA methylation patterns are maintained to 

ensure parent-of-origin monoallelic gene expression (Hammoud et al., 2010). 
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Figure 1. DNA methylation changes during developmental epigenetic reprogramming. 

PGCs = primordial germ cells. gDMRs = germline differentially methylated regions. 

From Smallwood and Kelsey (2012); reprinted with permission. 

 

 

 

 Soon after gastrulation begins, primordial germ cells emerge from the epiblast 

and they proliferate and colonize the genital ridge, which becomes the gonads.  Because 

PGC originate from a cell type that had already begun to follow a somatic cell fate, 

during migration to the genital ridge, imprinting marks are erased and reset to ensure 

totipotency of the next generation (Reik et al., 2001; Smallwood and Kelsey, 2012).  

After sex determination, male germ cells are mitotically arrested as prospermatogonia.  

Before meiosis global remethylation occurs in prospermatogonia and the remethylation 

process is completed before birth (Figure 1).  In mice, it has been shown that DNA 

methyltransferase 3-like (Dnmt3L) is highly expressed in nondividing prospermatogonia 

in a brief perinatal period associated with global methylation of repetitive DNA 

(Bourc'his and Bestor, 2004).  In Dnmt3L knockout mice, there is hypomethylation of 

long interspersed nuclear elements and mature sperm are absent, providing evidence that 
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global remethylation is required for correct development of spermatozoa.  In addition to 

prenatal remethylation, there is some postnatal methylation in prospermatogonia that is 

completed before meiosis (Oakes et al., 2007). It is thought that methylation might 

suppress gene expression during meiosis (Li, 2002). 

In addition to Dnmt3L, other genes affecting methylation have been associated 

with male infertility.  Methionine synthase (MTR) catalyzes the conversion of 

homocysteine to methionine in folate metabolism (Chen et al., 2001), which is critical 

for DNA synthesis and methylation reactions (Karimian and Hosseinzadeh Colagar, 

2016). There is a common adenine to guanine transition (A2756G) in MTR that can 

influence enzymatic activity, and the minor allele (G) has been associated with male 

infertility (Karimian and Hosseinzadeh Colagar, 2016). RHOX gene clusters were found 

to be hypermethylated in infertile subjects compared to those with normal semen 

parameters (Richardson et al., 2014). In some infertile men there was aberrant 

hypermethylation of CCCTC-binding factor (CTCF) binding sites (Wang et al., 2012; 

Urdinguio et al., 2015).  

 Errors in the erasure of imprinting marks can also affect fertility.   Likewise, 

errors in global reprogramming could be associated with male infertility (Houshdaran et 

al., 2007). There is a significant relationship between imprinted loci and aberrant DNA 

methylation in cases of idiopathic infertility (Hammoud et al., 2010). Kitamura et al. 

(2015) showed that H19, a paternally imprinted locus, hypomethylated in 16 of the 22 

patients with abnormal fertility. Average methylation patterns for H19 were seen in 

normozoospermic males (Hammoud et al., 2010; Ferlin and Foresta, 2014). 
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Hypermethylation of MTHFR was also associated with infertility (Ferlin and Foresta, 

2014; Urdinguio et al., 2015).  Further, it has been observed that with increasing use of 

artificial reproductive technologies in infertility cases, there has been an increase in the 

occurrence of imprinting errors compared to mating by natural conception (Hammoud et 

al., 2011).  

1.6 CpG Islands and CpG Island Shores 

 The distribution of CpG is generally clustered rather than random (Gardiner-

Garden and Frommer, 1987; Takai and Jones, 2002). A large portion of methylated CpG 

are found in repetitive elements to guard chromosomal integrity and avoid instability 

(Portela and Esteller, 2010). In contrast, unmethylated CpG tend to be clustered in 

promoter regions of genes and these clusters are known as CpG islands (CGI). About 

40% of mammalian gene promoters and exons are associated with CGI (Takai and 

Jones, 2002). These non-methylated CGI have high G + C content and a high frequency 

of CpG dinucleotides (Gardiner-Garden and Frommer, 1987; Illingworth and Bird, 

2009). Gardiner-Garden and Frommer (1987) defined a CGI as stretches of DNA at least 

200bp in length, G + C content of 50% and a CpG frequency of 0.6. To filter CpG that 

occur in interspersed repeats, such as Alu in the human genome, Takai and Jones (2002) 

redefined CGI to be stretches of DNA at least 500bp in length, G + C content of 55% 

and a CpG frequency of 0.65. There was an ~90% reduction in CGI identified by the 

Takai and Jones (2002) method. Most CGI are hypomethylated, even during global de 

novo methylation in early development; the mechanism that protects CGI from 

methylation remains unknown (Illingworth and Bird, 2009). 
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 Recently, regions within 2kb of a CGI and with lower CpG density have been 

defined as CGI shores (Ji et al., 2010; Portela and Esteller, 2010). Most tissue-specific or 

cell-specific DNA methylation occurs at the CGI shores rather than at CGI (Portela and 

Esteller, 2010). Differential methylation of CGI shores is significantly inversely 

correlated with gene expression during cellular differentiation (Ji et al., 2010; Portela 

and Esteller, 2010), and more strongly than for CGI.  Hypomethylation of promoters 

tends to be associated with increased gene expression, whereas hypermethylation of 

promoters tends to be associated with transcriptional inactivation.  

1.7 Differentially Methylated Regions 

 Several studies have demonstrated that CpG methylation in mammalian sperm is 

very high. Frommer et al. (1992) found CpG dinucleotides in non-repetitive sequences in 

human sperm were hypermethylated, whereas CGI were not.  Approximately 70% of the 

DMR in humans are associated with CGI shores (Portela and Esteller, 2010).  According 

to Popp et al. (2010), 80-90% of CpG in mature mouse spermatozoa are methylated, 

which is the highest level of methylation observed for specific cell types.  Although 

exons are highly methylated, methylation of promoters is considerably lower (35-40%). 

Promoters associated with genes important in early development tend to be 

hypomethylated in the sperm genome (Hammoud et al., 2011). Song et al. (2005) 

identified 14 tissue-specific, differentially methylated CGI that are hypomethylated in 

mature human sperm, but hypermethylated in somatic cells.  

 Shojaei Saadi et al. (2014) used a hybridization approach to characterize 

methylation in bovine sperm.  Similar to other species, hypermethylation of bovine 
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sperm DNA was confirmed when compared to the embryo (Shojaei Saadi et al., 2014). 

Greater than 85% of differentially methylated regions (DMR) were to due to 

hypermethylation in sperm when compared to blastocysts (Shojaei Saadi et al., 2014). 

1.8 Promoter and Gene Body Methylation 

 Hypermethylation of CGI in the promoter region of a gene is associated with 

gene silencing (Cisneros, 2004; Portela and Esteller, 2010). DNA binding proteins are 

recruited to target sites in promoters for active transcription and binding is impeded by 

methylation (Portela and Esteller, 2010).  

 Although methylation is associated with silencing in promoters, gene body 

methylation is positively correlated with expression.  Demethylation of the gene body 

can cause transcription to be initiated from incorrect positions, and cause a disease state 

(Portela and Esteller, 2010).  

1.9 Epigenome and Disease 

 Increase in risk of assorted diseases has been explained by the Developmental 

Origins of Health and Disease (DOHaD) theory, which states that suboptimal growth in 

early life can program changes in long-term health (Gotoh, 2015; Kitamura et al., 2015). 

Fetal and early life stages are associated with epigenetic variations, but gametes are also 

susceptible to environmental factors (Kitamura et al., 2015). Previous studies in both 

human and animal models concur that this programming for susceptibility is correlated 

to the epigenome (Kaneda et al., 2011; Rajender et al., 2011; Gotoh, 2015; Montjean and 

Ravel, 2016). Therefore, differences in the sperm epigenome could also contribute to 

health of the next generation. However, a current limitation is that most approaches to 
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evaluate the sperm epigenome are based on the analysis of a population of sperm cells, 

rather than an individual sperm (Aston et al., 2012). Results are indicative of the average 

level of methylation at a specific locus. Nevertheless, Aston et al. (2015) showed that 

infertile and fertile men have significantly different sperm DNA methylation patterns. 

 A study of genetically identical monozygotic twins showed that DNA 

methylation can impact phenotype, including susceptibility to disease (Fraga et al., 2005; 

Portela and Esteller, 2010).  Despite a common genotype, several phenotypic differences 

between twins were observed that were attributable either to CpG hypermethylation or 

CpG hypomethylation (Fraga et al., 2005).  

1.10 Whole Genome Bisulfite Sequencing  

 Sodium bisulfite treatment causes cytosine to undergo sulphoration, then 

hydrolytic deamination, followed by desulphoration, to yield uracil (Saheb et al., 2014). 

In bisulfite treated DNA that is amplified by PCR, cytosine is detected as thymine.  5-

methylcytosine does not react to the bisulfite treatment so methylated positions are 

unchanged and are detected as cytosine.  Most methods developed to characterize 

methylation patterns in bisulfite-converted DNA rely on enrichment of the methylated 

fraction of the genome, either by hybridization or immunoprecipitation.  Whole-genome 

shotgun bisulfite sequencing (WGBS) was first reported by Cokus et al. (2008) and is 

the only method that generates quantitative methylation profiles at single-nucleotide 

resolution (Johnson et al., 2012; Wu et al., 2015).  Libraries of bisulfite converted DNA 

are sequenced using massively parallel short-read sequencing techniques.  Specialized 

algorithms have been developed to align the bisulfite converted sequences to reference 
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genome sequences.  For example, Bismark (Krueger and Andrews, 2011) uses a three-

letter alignment method in which all the cytosines in reads and the reference genome 

sequence are converted to thymine.  Reads are mapped and then compared back to the 

original reads to identify methylated positions.  Although this is a relatively simple 

approach, a known disadvantage of the three-letter method is that decreasing sequence 

complexity from four nucleotides to three nucleotides causes more reads to be mapped at 

multiple genomic locations, and therefore results in lower genome coverage for uniquely 

mapped reads (Li et al., 2013). 
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2. MATERIALS AND METHODS 

 

 Cattle used for the study were produced near McGregor, Texas at the Texas 

A&M AgriLife Research Center. All procedures involving animals were approved by 

the Texas A&M University Institutional Animal Care and Use Committee (AUP #2015-

013A).  

 For breeding purposes unrelated to this project, semen samples were collected 

from two F1 Angus-Nellore bulls and three F1 Nellore-Angus bulls by a commercial 

service provider using standard electroejaculation methods. At the time of collection, 

semen samples (without extender) were flash frozen in liquid nitrogen and stored at 

-80°C until they were ready to be processed. Although contamination of semen is 

reported as 10
3
 to 10

7
 other cells in humans, there are no reports of contamination levels 

in cattle (Phillips et al., 1978; Liu, 2008). Sperm DNA was extracted by standard 

proteinase K digestion followed by extraction with phenol-chloroform. Briefly, for each 

bull a 150μl aliquot of semen was centrifuged at 1000 x g for 5 min at room temperature 

to pellet the sperm cells. The pelleted cells were washed three times by resuspension in 

1.5 mL TNE (10 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, pH 8.0), and 

centrifugation at 1000 x g for 5 min at room temperature. Each pellet was then 

resuspended in 1000 μl of fresh semen lysis buffer (1% SDS, 1mg/ml proteinase K, 

40mM DTT, in TNE, pH 8.0) and incubated with gentle shaking at 37°C overnight. The 

cell lysate was transferred to a 15 mL conical tube and mixed with 1.5 mL lysis dilution 

buffer (85% TNE, 1% SDS, 50 mM DTT).  Samples were extracted once with an equal 
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volume of phenol:chloroform:isoamyl alcohol (25:24:1) and twice with an equal volume 

of chloroform with each extraction followed by centrifugation for 10 min at 1200 x g. To 

precipitate the DNA, 150μl 2M NaCl and 5.5 mL 100% ethanol were added to the 

aqueous phase, which was mixed by inversion, placed at -80°C for 1 hr, and then 

centrifuged at 4°C for 30 minutes at 1200g. The DNA pellet was rinsed with 70% 

ethanol, pelleted again by centrifugation, and then air dried for 15 min.  Finally, the 

DNA was dissolved in 400 μl TE (0.01M Tris pH 7.5, 1 mM EDTA).  

 DNA integrity was visualized under UV light (302nm) following agarose gel 

(1% agarose, 1 x TAE, 0.2 μg/mL ethidium bromide) electrophoresis with lambda 

standards for 15 min at 150V, and DNA concentration was determined using a Nanodrop 

1000 spectrophotometer with 0.2 mm path length. A 10 μg aliquot of each DNA sample 

normalized to 100 ng/μL was shipped to Novogene Ltd.  

Bisulfite conversion, library preparation and whole genome bisulfite sequencing 

were performed by Novogene Ltd. Library construction consisted of: DNA quality 

control testing, addition of positive control DNA to allow monitoring of the bisulfite 

conversion, fragmentation of DNA to 200-300 bp using a Covaris S220 focused ultra-

sonicator, terminal repair, A-ligation, and ligation of methylated Illumina sequencing 

adaptors. The final DNA library was bisulfite converted twice using the EZ DNA 

Methylation Gold Kit (Zymo Research), and finally the bisulfite treated library was size 

selected and amplified by PCR prior to cluster generation and paired-end 150 bp 

sequencing with indexing on an Illumina HiSeq 2500.  An initial sequencing run 

combining our libraries with up to 21 other samples in a single lane was performed to 
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check integrity of the library.  Then 4 to 5 additional lanes of data were produced, where 

our samples were multiplexed with a total of 8 samples per lane.  A minimum of 50 Gb 

of sequence data was generated per animal (i.e. ~18x coverage).  Novogene Ltd. 

performed image deconvolution, quality control calculations, and preparation of FASTQ 

formatted files.  Data files provided by Novogene Ltd. were analyzed using FastQC 

(Bock, 2012) to trim reads containing adapters, trim reads with > 10% N, and trim reads 

with low quality.   

 Sequences were aligned to the cattle reference genome, UMD 3.1, using Bismark 

v0.16.1 (Krueger and Andrews, 2011). First, for this three-letter alignment method, the 

bisulfite reads were converted to C-to-T and G-to-A, which were then aligned to C-to-T 

and G-to-A converted versions of the UMD3.1 bovine reference genome. Bismark uses 

bowtie2 v2.2.9 for alignments and Phred+33 quality scores to map unique alignments 

and identify the strand origin of the bisulfite reads.  No mismatches were allowed 

between the converted read and reference sequence.  The minimum alignment score was 

set as a function where, f(x) = 0 + (-0.6) • L where L is the 150 bp read length.  Mapping 

rate was reported by Bismark and calculated as the proportion of reads uniquely mapped 

to the UMD 3.1 reference genome.   

Bismark determines the methylation state of cytosines by comparing the read 

sequence with the corresponding genomic reference sequence.  Bismark methylation 

extractor was used to extract the methylation status, excluding the first 5 bp of the 

forward and reverse reads to avoid undesirable sequencing quality.  Additionally, 

Bismark was able to discriminate between cytosines in CpG, CHG, and CHH sequence 
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context. Finally, PCR duplicates were filtered using Bismark_deduplicate.  Methylation 

was classified relative to annotated genome features: CGI, CGI shores, promoters and 

gene bodies.  Annotations based on the UMD3.1.1 assembly for CGI were downloaded 

from UCSC.  The only difference between UMD3.1 and UMD3.1.1 is that NCBI 

removed some unassigned scaffolds that they determined were not of bovine origin, so 

annotations for features assigned to chromosomes are identical in these two versions of 

the bovine reference assembly. CpG island shores were defined as sequences 1000 bp 

upstream and downstream of each CGI (Doerks et al., 2002; Wu et al., 2015). 

Annotations for genes from Bos taurus Annotation Release 104 were downloaded from 

the NCBI ftp site and any feature designated “gene” assigned to a chromosome was 

included in our analysis.  Genes in this file included both NCBI Gnomon predictions, 

tRNAscan-SE predictions, and RefSeq alignments for protein coding genes, 

pseudogenes, long noncoding RNA, microRNA, and tRNA.  Promoters were defined as 

sequences 2200 bp upstream to 500 bp downstream of the first nucleotide of the “gene” 

feature (Jin et al., 2014).  Gene bodies were defined as beginning 500bp into the “gene” 

feature and ending at the last nucleotide of the annotation.   

 To evaluate whether the direction of the F1 cross (Angus-Nellore vs. Nellore-

Angus) affects methylation patterns in bovine sperm, the R packages bsseq and 

BSmooth were used to identify DMR (Hansen et al., 2012; Wu et al., 2015). 

Differentially methylated regions were constrained to filter out regions smaller than 200 

bp. A 1 Mb sliding window was used for mean counts of methylated CpG sites and to 

show the methylation patterns for the two different F1 crosses. Our null hypothesis was 
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there were no differences in methylation patterns due to the treatment (type of cross). A 

circular plot representing whole genome methylation patterns and DMR was constructed 

using Circos (Krzywinski et al., 2009). 

 Next, gene ontology (GO) and KEGG pathway enrichment analyses were 

performed using DAVID v6.8beta (Huang et al., 2009b; Huang et al., 2009a).  Genes 

within 2 kb upstream or downstream of DMR were input as a list, based on Ensembl 

gene identifiers, for functional annotation and functional classification with default 

settings.  Within category Benjamini-Hochberg correction was applied to control the 

false discovery rate. 
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3. RESULTS AND DISCUSSION 

 

 High molecular weight DNA was extracted from the five bovine semen samples 

(Figure 2).  The yield from one sample (482T) was very low (<1 ng/μL) and the 

extraction was repeated using twice as much semen (300 μL).  Prior to normalization, 

concentrations ranged from 29.5 ng/μL for 482T to 857.6 ng/μL for 473X.  To have 

sufficient sample for bisulfite sequencing, DNA from 482T was dried down to 

concentrate it, whereas there was sufficient material for all the other samples to be 

diluted to the required 100 ng/μL concentration.  Although the amount of DNA 

recovered from 482T was low, he has sired 144 F2 calves in the McGregor Genomic 

population according to herd records.  The quality control report from Novogene (Table 

1) indicated that the 260/230 ratio for the 482T sample was low, suggestive of carryover 

phenol or salt contamination (Wilfinger et al., 1997). 

 

 

 
Figure 2. Genomic DNA from 5 bovine sperm samples after normalization of 

concentration.  Lane 1: HindIII lambda ladder, 2: 213U, 3: 324T, 4: 473X, and 5: 482T, 

and 6: 917A.  
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Table 1. Summary generated by Novogene of sample quality 

 
Sample 

Name 

 

F1 cross 

Conc. 

(ng/μl) 

 

OD260/280 

 

OD260/230 

213U Nellore-Angus 78.1 2.05 1.367 

324T Angus-Nellore 81 1.88 1.741 

473X Nellore-Angus 98.3 1.885 1.885 

482T Nellore-Angus 78.1 1.815 0.71 

917A Angus-Nellore 77.4 1.808 1.679 

 

 

 Raw sequence data generated by Novogene ranged from 49.94 Gb for 213U to 

72.32 Gb for 482T (Table 2).  Novogene determined that the efficiency of bisulfite 

conversion was 99.91% for each sample.  After quality control filtering, the clean 

sequence data ranged from 48.06 Gb for 213U to 69.4 Gb for 482T.  Mapping rates for 

the bisulfite-converted sequences ranged from 69.1% for 324T to 74.1% for 917A. The 

conservative nature of these mapping results is likely because no mismatches in 

alignments were allowed and because Bismark uses three-letter alignment (Krueger and 

Andrews, 2011).  Using simulated reads, Lee et al. (2015) showed that Bismark mapped 

reads accurately when no mismatches were allowed and they obtained an 80% mapping 

rate. Doherty and Couldrey (2014) reported a 61.4% mapping for paired-end 100 bp 

whole genome bisulfite sequences from sheep aligned with Bismark. As expected, GC 

content was lower in the bisulfite sequences than in the reference genome because of the 

conversion of unmethylated cytosines to thymine. GC content for each bisulfite 

converted sample ranged from 23.83% for 324T to 25.04% for 213U.  
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Table 2. Summary statistics for bisulfite sequencing 

 
Sample 

Name 

Raw Bases 

(Gb) 

Clean Bases 

(Gb) 

 

Clean Reads 

 

Mapping Rate 

 

GC Content 

213U 49.94 48.06 320,355,580 69.9% 25.04% 

324T 58.38 57.06 380,446,588 69.1% 23.83% 

473X 58.42 56.82 378,749,946 73.0% 24.38% 

482T 72.32 69.4 462,706,440 69.2% 24.00% 

917A 57.90 55.38 369,234,782 74.1% 24.64% 

 

 

 

Table 3. Annotation of CpG sites in the bovine genome  

 

Feature
1
 CpG Count No. Features Mean CpG 

CpG Island 2,266,449 36,922 61.38 

CpG Island Shore 1,911,051 73,844 25.87 

Gene Body 13,205,033 32,314 408.64 

Promoter region 2,150,750 32,314 66.56 

Other 8,006,634 - - 
1Gene body and promoter regions are based on the “gene” feature in bovine 

annotation release 104 and includes protein coding genes, pseudogenes, long 

noncoding RNA, microRNA, and tRNA. 

 

 

 

 In the bovine genome reference sequence there are 27.5 million CpG sites (Table 

3) corresponding to 0.96% of the bovine genome (Bovine Genome Sequencing Analysis 

Consortium, 2009).   Gene bodies have the highest number of CpG per feature and CGI-

shores the lowest (Table 3).  There were 21,115 protein-coding genes in the bovine 

annotation and 58.2% of the promoters of these genes contained a CGI and 48.8% of 

gene bodies had at least one CGI.  

In bovine ejaculated sperm, CpG sites in gene bodies were strongly methylated 

(median 94.76%; Figure 3 and Appendix 1).  Extensive methylation of gene bodies is 

common in bovine somatic tissues (Huang et al., 2009b), but has not been previously 

described for mature sperm.  The CpG sites in CGI-shores also were heavily methylated 
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(median 65.9%), whereas in promoters (median 24.0%) and CGI (median 12.5%) the 

CpG sites tended to be unmethylated, similar to previous studies (Gardiner-Garden and 

Frommer, 1987; Irizarry et al., 2009; Portela and Esteller, 2010; Suzuki et al., 2013; Su 

et al., 2014).  However, there was much more variability in the level of methylation of 

CGI, CGI shores, and promoters than in gene bodies. In particular, 25% of CGI had <2% 

methylation and 25% of the CGI had >98.8% methylation (Figure 4).  Methylation of 

CGI in promoters is associated with stable silencing of gene expression (Bird, 2002; 

Illingworth and Bird, 2009).  Conversely, active promoters tend to be unmethylated 

(Cisneros, 2004; Saxonov et al., 2006; Aran et al., 2011).  Enrichment analysis using the 

set of genes near unmethylated CGI showed strong enrichment in pathways associated 

with transcription (Table 4). 

 

Table 4. Enrichment analysis of unmethylated CpG island nearby genes.  

 
Term Count % Enrichment P-value Benjamini P-value 

Membrane-enclosed lumen 202 5.3 1.7e-21 9.1e-19 

Intracellular organelle lumen 195 5.1 3.9e-21 1.1e-18 

Organelle lumen 195 5.1 4.9e-21 8.9e-19 

RNA processing 104 2.7 2.8e-14 8.7e-11 

RNA binding 116 3.1 1.2e-11 1.4e-8 

Transcription 148 3.9 1.8e-9 1.8e-6 
DNA replication 37 1.0 8.5e-7 2.6e-4 

ATP binding 243 6.4 5.1e-6 8.0e-4 

tRNA metabolic process 40 1.1 9.5e-9 7.3e-6 

tRNA aminoacylation 21 0.6 6.0e-6 1.2e-3 
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Figure 3. Boxplot of the proportion of methylated CpG sites averaged across 5 samples 

and the distribution among different genomic features.  Promoters and gene bodies are 

from protein coding genes.  Horizontal line is the median, and boxes are the 25
th
 to 

75
th
 percentiles. 
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Figure 4. Histogram of CpG island methylation. 

 

 

 

 Global methylation patterns in F1 Nellore-Angus and F1 Angus-Nellore sperm 

were very similar, and as in other species (Miller et al., 2010; Molaro et al., 2011; 

Hammoud et al., 2013; Jenkins et al., 2015). The two Angus-Nellore crossbreds had 

97% of the methylated sites in common, and the three Nellore-Angus crossbreds were 

95% identical. Genome-wide methylation in mature sperm is high (Figure 5). Based on 

the average methylation in 1 Mb non-overlapping windows across the 5 samples, global 

methylation was 88.2%.  Nevertheless, some DMR were found between the crosses.  

Few DMR were found on chromosomes 2, 9, 11, and 12, whereas chromosomes 14, 26, 

and X had a higher number of DMR. Differentially methylated regions had a mean 

length of 407 bp and were associated with 166 genes within 2 kb upstream and 2 kb 
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downstream of that gene. Although DMR were found between the crosses, there was no 

enrichment in specific pathways (Table 5).  

 

 
Figure 5. Circos plot of the distribution of CpG sites, whole genome methylation and 

differentially methylated regions. The two inner histogram tracks show the total CpG 

sites within 1 Mb non-overlapping windows across the whole genome for the Nellore-

Angus cross (red) and the Angus-Nellore cross (blue). The two line tracks show 

proportion of methylated CpG sites in 1 Mb non-overlapping windows for the whole 

genome. The track below the ideogram shows differentially methylated regions.  

Regions hypermethylated in sperm from the Nellore-Angus F1 bulls compared to the 

Angus-Nellore F1 bulls are in purple and hypomethylated regions are in green. 
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Table 5. Enrichment analysis of differentially methylated regions 

 
Category Term Gene Number % p-value Benjamin 

KEGG Pathway Renin secretion 4 3.3 6.1e-3 4.9e-1 

KEGG Pathway cGMP-PKG signaling pathway 5 4.2 1.3e-2 5.3e-1 

GO Biological  Positive regulation of canonical  

Wnt signaling pathway 

2 1.7 5.6e-2 9.9e-1 

 

 

 

 There was one region of chromosome 12 with substantially lower methylation 

than the global methylation levels, where there was also a cluster of DMR.  One of the 

DMR coincided with the promoter of LOC100337006, a computationally predicted gene 

similar to ATP-binding cassette, subfamily C (ABCC4), member 4, also known as 

multidrug resistance-associated protein 4 (MRP4).  MRP4 regulates cAMP-dependent 

signaling pathways and controls proliferation of smooth muscle cells (Sassi et al., 2008). 

The CpG sites in the promoter region of the sperm from Nellore-Angus bulls were 

mostly unmethylated, whereas in the sperm from Angus-Nellore bulls they were 

methylated (Figure 6).   

 

 

Figure 6. CpG sites in the promoter region for LOC100337006 are differentially 

methylated in sperm from F1 bulls.  Black circles indicate that the CpG site is methylated 

and white circles indicate that the CpG site is unmethylated. 
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Future examination of all the DMR in mature sperm may be useful in identifying the 

cause of reciprocal differences in birth weights in Bos indicus x Bos taurus crosses 

(Amen et al., 2007). 

 Although it was beyond the scope of this study, DNA methylation can occur in 

CHG and CHH nucleotides, where H = A, C, or T (Li et al., 2013). In embryonic stem 

cells, ~17.3% of 5-methylcytosine occurred in CHG regions (Cooper et al., 2010). Lister 

et al. (2009) found that stem cells showed CHG and CHH methylation enrichment in 

gene bodies and depletion in protein binding sites. This CHG and CHH methylation 

accounted for 25% of the 5-methylcytosines identified (Lister et al., 2009). CHH and 

CHG methylation levels were inversely related to the amount of DNMT3A and DNMT3B 

(Lister et al., 2009).  There are no reports on the extent of CHH and CHG methylation in 

sperm and the data produced in this study could be used for future work on non-CpG 

methylation. 

 

 

 

 

 

 

 

 

  



 

28 

 

4. SUMMARY 

 

 The data in this experiment represent the first evaluation of the bovine sperm 

methylome at nucleotide resolution based on whole-genome bisulfite sequencing. 

Mature sperm were collected from Angus-Nellore F1 bulls and Nellore-Angus F1 bulls.  

Across the genome, the average level of CpG methylation was 88.2% and the global 

methylation patterns for sperm from Angus-Nellore F1 bulls and Nellore-Angus F1 bulls 

were very similar.  Gene bodies were heavily methylated, whereas promoter and CGI 

tended to be unmethylated.  For promoters with unmethylated CGI, there was 

enrichment for pathways associated with transcription.  Some differentially methylated 

regions were identified between Angus-Nellore F1 bulls and Nellore-Angus F1 bulls and 

future work will focus on the role of these genes in growth and development.  These data 

on the bovine sperm methylome also establish a baseline from which future work related 

to bovine male infertility can proceed. 
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APPENDIX 

Figure A1. Boxplot of the proportion of methylated CpG sites across 5 samples and the 

distribution among different genomic features. Horizontal line is the median, and boxes 

are the 25
th
 to 75

th
 percentiles.  Outliers (below 10

th
 percentile and above 90

th
 percentile) 

were omitted. 


