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ABSTRACT

In the first part of this dissertation, we simulate the underwater polarized light field.

A three-dimensional backward Monte Carlo code is developed to simulate light scatter-

ing for an atmosphere-ocean system. In this model, we send photons from the detector

and propagate them toward the source, which allows us to calculate the effective Mueller

Matrix of the medium. The 3D vector radiation field can be calculated with dynamic inter-

face, complex boundary conditions, as well as the complex ocean objects included in the

system. The polarizer imaging is first modeled when polarizers are stuck on the surface

of a piece of mirror and put in the open ocean to study the light polarizations in the ocean

water. The effects of observation distance and viewing angle on the radiance, the degree

of polarization, as well as the angle of polarization are studied systematically. Then we

use a simple tank model, where several spheres of different sizes and different scattering

properties were placed, to simulate what a marine organism can see under the water. Im-

ages based on four different Stokes components are obtained for a variety of underwater

circumstances.

In the second part, we study the effect of both coherent and incoherent beams on both

forward and multiple scattering of particulate media in biological tissues. The phase shift

of a single particle in the forward direction is calculated using the anomalous diffraction

method; the influence of particle size distributions, particle shapes, and particle orienta-

tions on the forward coherent peaks is studied for an ensemble of particles. In particular,

we demonstrate the forward coherent scattering, as well as multiple scattering properties

in detail for the chromatophore cell in cephalopods and the human blood system. Addi-

tionally, Mueller matrix components with partially coherent or even non-coherent incident

beams are investigated in order to study the effect of coherence length on the forward
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coherent scattering and multiple scattering.
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1. INTRODUCTION∗

1.1 Simulating the underwater polarized light field

Underwater imaging is challenging due to the significant attenuation of light caused

by absorption and scattering of hydrosols and marine organism in the ocean [1, 2, 3, 4, 5].

Active illumination is usually required to get improved visibility [1, 2, 3, 4]. Since the

unpolarized sunlight will be polarized after scattering [6], using polarization properties of

light is one of the options to improve the imaging quality in the ocean [7, 2, 4, 5]. In addi-

tion, many marine animals are sensitive to polarized light and are able to use the light po-

larization information. For example, anchovies can use polarization to detect zooplankton

and to navigate [8]; squids have a polarization visual system to aid them to discover some

transparent plankton [9, 10] and to communicate with each other [11]; and stomatopods

are even capable of sensing circularly polarized light [12]. A good model is needed to

simulate underwater polarized light field to study impact of polarization on underwater

imaging as well as on marine animals.

The radiative transfer theory [13, 14] has been widely used to calculate the polarized

light field in the atmosphere and ocean. Due to polarization, the vector radiative transfer

equations need to be solved. Many of the calculations are limited to plane-parallel systems

[15, 16, 17, 18], where the scattering medium is assumed to be in one dimension along the

vertical direction and homogeneous in the other two dimensions. The three-dimensional

(3D) solutions to the vector radiative transfer equations [19, 20, 21, 22] can provide more

predictions to real situations. Impulse response solutions for the 3D atmosphere-ocean

system with a dynamic surface has obtained through the hybrid matrix operator-Monte

∗Figure 1.1 is reprinted with permission from "Ultrastructure of cephalopod chromatophore organs" by
Cloney, Richard A., and Ernst Florey, 1968, Cell and Tissue Research 89.2 , 250-280, Copyright 1968 by
Springer.

1



Carlo method [23, 24, 25]. However, no marine organisms have even been placed in the

medium to consider their interactions with the surrounding light field in these methods. An

object placed in the scattering medium will destroy the symmetry and make the calculation

much more complex. We seek a Monte Carlo model to calculate the 3D vector radiation

field for an atmosphere-ocean system, which includes the dynamic interface, complex

boundary conditions as well as complex ocean objects. The code will be used to simulate

underwater imaging for the real underwater environment.

1.2 Effect of both coherent and incoherent beams on both forward and multiple

scattering for an ensemble of particles

Granular materials with organic particles densely packed together are abundant in

many biological organisms. Chromatophore cells [26, 27] are one type of coloration cells

under the skin of cephalopods, which play an important role for the astonishing cam-

ouflage ability of cephalopods. The basic chromatophore cell consists of many pigment

granules (chromatosomes) surrounded by a filamentous compartment (elastic sacculus)

with radial muscle fibers attached around the circumference, as shown in Figure 1.1. These

pigment granules are highly spherical with a diameter about 300nm and the muscle fibers

can control the cell to expand or contract, thereby changing the granules density and the

color of the cell. Another example is the human blood system. There are several kinds of

cells immersed in the blood plasma [28], among which erythrocytes are the most abundant

ones. These erythrocytes are also nearly spherical with a diameter of several microns and

occupy about 40%-45% of blood by volume. The interactions between the filling parti-

cles make it very complex to calculate the scattering properties of such systems. One can

always observe a big forward-scattering peak caused by constructive interference [29], as

well as many distinct multiple scattering effects. Since the filling particles are spherical,

we can model the chromatophore cell or the blood system in the form of an imaginary
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Figure 1.1: Diagrammatic illustration of a squid chromatophore cell. It consists of many
pigment granules (chromatosomes) surrounded by a filamentous compartment (elastic sac-
culus) with radial muscle fibers attached around the circumference.

spherical volume enclosing many small spheres, as shown in Figure 1.2. Note all organic

particles are immersed in the ambient media of tissue, which has a refractive index close

to that of water (n=1.33), thus we consider all incident wavelengths and refractive indices

are relative to the ambient medium. The specific refractive indices of these filling parti-

cles vary a great deal in different circumstances, while for simplicity we assume they have

the same values relative to the surrounding medium: 1.244+i0.013 for the chromatosomes

[30] and 1.0226+i0.001 for erythrocytes [31]. Exact scattering results are compared with

results with approximations, in an effort to search for simple simulation models for the

complex scattering media.
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Figure 1.2: Modeled chromatophore cell or blood system by an imaginary spherical vol-
ume enclosing many small spheres.

The scattering properties of single particles has been thoroughly studied, and many

numerical methods have been well developed, such as the Lorenz-Mie theory [32], the

discrete dipole approximation (DDA) method [33, 34], the finite difference time domain

(FDTD) method [35, 36], and the invariant imbedding T-matrix (IITM) method [37, 38].

For a particulate medium containing an ensemble of particles, there are two distinct ap-

proaches to deal with the multiple scattering problem: radiative transfer theory (or trans-

port theory) and analytical theory (or multiple scattering theory) [39]. Radiative transfer

theory [13, 14] deals directly with the transport of energy through the medium, and thus

assumes the scattering events are independent and therefore no phase information is used.

This implies that an ensemble of N particles will produce a scattered radiance of N times

4



that for a single particle in the ensemble assuming of course the particles are identical and

only single scattering is important. This method has been well established to solve the

scattering problems in the atmosphere, the ocean, and in biological media. In contrast,

analytical theory [39], such as Twersky’s theory and the diagrammatic method, is mathe-

matically rigorous since it starts with basic differential equations governing field quantities

and includes all the multiple scattering, diffraction, and interference effects. However, un-

til now no solution exists to get the explicit exact formulations to include all these effects,

and approximations are needed to get useful solutions for different ranges of parameters.

Currently, there does not exist a versatile and numerically accurate method for the scatter-

ing solutions of ensembles of particles with arbitrary shape and size. The DDA and the

FDTD methods are feasible ways to get the scattering results for small numbers of particles

with relatively small size parameters; the multiple sphere T-matrix (MSTM) method [40]

can provide a numerically exact solution for the scattering of a large number of spherical

particles. These are the analytic methods mainly used.

The incident light is always assumed to be fully coherent in many light scattering

theories [32, 33, 34, 35, 36, 40]. But in reality, light always has some degree of incoherence

due to light source fluctuations and interactions with the surrounding medium. The natural

sunlight, which is the direct light source for many oceanic and atmospheric measurements,

has a spatial coherence length of about 60um and a temporal coherence length of the order

of 1um [41]. A laser beam, which is often used as a light source in the laboratory and

in remote sensing, is fully spatially coherent throughout the cross-sectional width of the

beam and partially temporally coherent with a coherence length of the order of 100km,

and thus can be treated as coherent source WolfEmil. But it will become partially coherent

after propagating through atmospheric turbulence when it is used in remote sensing [42].

Spreading of partially coherent beams in random media has been studied [39, 42, 43],

however, the partial coherence effect on the scattering of an ensemble of particles has

5



received little attention. When people make measurements of light scattering, the finite

coherence length of the source has constantly been neglected. We will account for the

finite coherence effect for the scattering of an ensemble of particles in the last part of this

dissertation.
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2. SCATTERING GEOMETRY:STOKES VECTOR AND MUELLER MATRIX

In this chapter, we will introduce the geometry and mathematical formalism that are

usually used to describe the scattering problems.

2.1 Radiance and irradiance

There are several fundamental quantities which can be used to characterize the energy

distribution of the radiation field. The radiance, or the specific intensity, Iν , is the most

important one. The radiance [13] at position r⃗ in direction Ω̂ is defined as the energy

flowing across an element area dA within the solid angle dΩ, in the frequency interval

(ν, ν + dν), during a time interval dt:

dEν = Iν(r⃗, Ω̂, ν, t) cosθ dνdAdΩdt (2.1)

where θ is the angle between the surface normal direction and the radiance direction Ω̂.

Another important quantity is the irradiance [13], or the net flux, Fν , which is defined

as the flux density flowing across an unit area. Actually it is just the net flow in all the

directions and can be obtained by an integration over all solid angles:

Fν =

∫
Ω

Iν(Ω̂) cosθ dΩ (2.2)

2.2 Description of the light: Stokes vector

The electric field of a light beam can be very complex. But it can always be represented

by a superposition of plane waves in terms of a Frourier transformation [44]. To simplify

our problem, we can assume the the incident wave to be a plane wave. This is because

Maxwell equations are linear. We can first solve the plane wave incidence and then use

7



superposition to get the solution to the scattering problem for any kind of incident beams.

The electric field is transverse and it can be decomposed into two perpendicular com-

ponents due to its polarization nature, as shown in Figure 2.1. A plane of reference is

needed to conveniently describe the scattering of a beam of light. Typically, we choose

the plane of reference in a way such that the direction of propagation k̂ is in the plane of

reference. Then we can define two unit vectors: ê∥ and ê⊥, which are parallel and perpen-

dicular to the reference plane respectively, but both perpendicular to k̂. The relationship

between the three unit vectors can be expressed as:

ê⊥ × ê∥ = k̂ (2.3)

Then the electric field in terms of the two perpendicular components E∥ and E⊥ in vector

form is:

E = E∥ê∥ + E⊥ê⊥ (2.4)

Note we only require the plane of reference to contain k̂ and thus we have one degree

of freedom to choose any pair of ê∥ and ê⊥ which satisfy Eq. (2.3), i.e. one degree of

freedom to choose any plane of reference. Two kinds of reference planes are mainly used

in many light scattering theories: the scattering plane (indicated in blue in Figure 2.1),

which contains the incident and scattered directions; and the meridian plane (indicated in

pink in Figure 2.1), which contains the z-axis of the laboratory frame of reference and the

incident or scattered directions.

The transformation of electric field between different reference planes can be realized

by a rotation from the original reference plane to the final reference plane around the

propagation direction k̂. Such a rotation of angle θ in the counterclockwise direction

8



Figure 2.1: Reference planes and the decomposition of the incident and scattered electric
fields within the meridional planes. The scattering plane (indicated in blue) contains the
incident and scattered directions; and the meridian plane (indicated in pink) contains the
z-axis of the laboratory frame of reference and the incident or scattered directions. In the
meridional planes, ê⊥ = −n̂ϕ, ê∥ = n̂θ, k̂ = n̂.
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around k̂ will rotate the unit vectors ê∥ and ê⊥ according to

 ê
′

∥

ê
′

⊥

 =

 cosθ sinθ

−sinθ cosθ


 ê∥

ê⊥

 (2.5)

Thus the electric field will transform according to

 E
′

∥

E
′

⊥

 =

 cosθ −sinθ

sinθ cosθ


 E∥

E⊥

 (2.6)

The electric fields are usually difficult to measure directly, instead it’s much easier to

make measurements in terms of the energy. Thus it’s more practical to use the Stokes

vector I=(I,Q, U, V )T [44] which is based on energy flux and defined as:

I =< E∥E
∗
∥ + E⊥E

∗
⊥ >

Q =< E∥E
∗
∥ − E⊥E

∗
⊥ >

U =< E∥E
∗
⊥ + E⊥E

∗
∥ >

V = i < E∥E
∗
⊥ − E⊥E

∗
∥ >

(2.7)

where < > indicates time average over an interval long compared with the period. We can

directly measure the four Stokes components [44]. The Stokes vector has dimensions of

irradiance and all its four components are real. It can also be shown that:

I > 0, (2.8)

I2 ≥ Q2 + U2 + V 2. (2.9)

Equality holds only when the light is polarized. When the light is unpolarized, the Stokes

vector reduces to (I, 0, 0, 0)T . For more general state of polarization, we can define the
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degree of polarization (DOP), the degree of linear polarization (DOLP) and degree of

circular polarization (DOCP):

DOP =
√
Q2 + U2 + V 2/I, (2.10)

DOLP =
√
Q2 + U2/I, (2.11)

DOCP = V/I. (2.12)

All the three quantities are bounded in [0,1] and they can be used to characterize the

polarization properties of the light field.

Then the transformation of Stokes vectors from the original reference plane to the new

reference plane by a rotation of angle θ in the counterclockwise direction around k̂ can be

obtained by substituting Eq. (2.6) into Eq. (2.7):

I
′
= L(θ)I (2.13)

and

L(θ) =



1 0 0 0

0 cos(2θ) sin(2θ) 0

0 −sin(2θ) cos(2θ) 0

0 0 0 1


(2.14)

We can easily find three invariables under the transformation: I,Q2 +U2, and V. In other

words, these three quantities are independent on the reference plane.

11



2.3 Description of the scatterer: Amplitude matrix and Mueller matrix

For a scatter with finite size, the scattered electric field in the far-field region is a

transverse spherical wave [44]:

Esca =
eikr

−ikr
A, kr ≫ 1 (2.15)

where A is the amplitude of scattered electric field, r is the radial coordinate,k = 2π/λ is

the wavenumber and λ is the incident wavelength. Again due to the linearity of Maxwell

equations, the relation between the incident and scattered electromagnetic fields in Fig-

ure 2.1 is linear. Mathematically, we can write it as[44, 45]:

 Esca
∥

Esca
⊥

 =
eik(r−z)

−ikr

 S2 S3

S4 S1


 Einc

∥

Einc
⊥

 (2.16)

Here matrix S is defined as the amplitude matrix, with the incident direction along the z-

axis in the laboratory frame. The amplitude matrix contains all the scattering information

of the scatterer and is independent of both the incident fields and the scattered fields. There

are eight independent constants contained by the four complex elements. However, since

only relative phase matters, we actually have seven independent constants here.

By substituting Eq. (2.16) into Eq. (2.7), we can get the 4× 4 so-called Mueller matrix

P, which relates the incident Stokes vector Ii and the scattered Stokes vector Is:

Is =
1

k2r2
P Ii (2.17)

The Mueller matrix P can be derived directly from the scattering amplitude matrix S [46]:

P = A(S⊗ S∗)A−1 (2.18)
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Here ⊗ denotes the outer product of matrices and the matrix A is the given by:

A =



1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0


, A−1 =

1

2
A∗ (2.19)

Here A∗ denotes the complex-conjugate transpose of A, i.e. A∗ = (A)′.
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Explicitly, all the 16 Mueller matrix components Pij can be written as:

P11 =
1

2
(|S1|2 + |S2|2 + |S3|2 + |S4|2)

P12 =
1

2
(|S2|2 − |S1|2 + |S4|2 − |S3|2)

P13 = Re(S2S
∗
3 + S1S

∗
4)

P14 = Im(S2S
∗
3 − S1S

∗
4)

P21 =
1

2
(|S2|2 − |S1|2 − |S4|2 + |S3|2)

P22 =
1

2
(|S2|2 + |S1|2 − |S4|2 − |S3|2)

P23 = Re(S2S
∗
3 − S1S

∗
4)

P24 = Im(S2S
∗
3 + S1S

∗
4)

P31 = Re(S2S
∗
4 + S1S

∗
3)

P32 = Re(S2S
∗
4 − S1S

∗
3)

P33 = Re(S1S
∗
2 + S3S

∗
4)

P34 = Im(S2S
∗
1 + S4S

∗
3)

P41 = Im(S2S
∗
4 + S3S

∗
1)

P42 = Im(S2S
∗
4 − S3S

∗
1)

P43 = Im(S1S
∗
2 − S3S

∗
4)

P44 = Re(S1S
∗
2 − S3S

∗
4)

(2.20)

Therefore, the Mueller matrix contains all the scattering information of the scatterer and

it only has 7 independent constants, same as the amplitude matrix. Then there must be 9

independent relations between these 16 elements [47].
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2.4 Extinction, scattering and absorption

The concept of cross section is very useful to describe the total scattering effect of a

scatterer. When a beam of light interacts with a scatterer, the energy is partly absorbed

and partly scattered. The scattering, absorption and extinction cross sections are defined

as the total scattered, absorbed, and extinguished monochromatic energy from the original

beam divided by the monochromatic energy flux of the incident wave [44]. The Mueller

matrix element P11, also called the phase function, specifies the the angular distribution of

the scattered light. The scattering cross section can be obtained by an integral of P11 over

all directions:

Csca =
1

k2

∫
Ω

P11dΩ (2.21)

The extinction can be obtained by the optical theorem:

Cext =
4π

k2|Einc|2
Re[(Einc∗ · Esca)θ=0] (2.22)

This says extinction cross section is only determined by the exact forward scattering,

which physically means the scatterer removes some energy by the interference between

the forward scattered field and the incident field. Note for a general non-spherical particle,

the extinction cross section will be different for different incident polarization states. In

other words, we should have a extinction matrix to express the total removed power [14].

The absorption cross section will be the difference between the extinction cross section

and the scattering cross section:

Cabs = Cext − Csca (2.23)
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And the single scattering albedo is defined as:

ωo = Csca/Cext (2.24)

ωo is bounded in (0,1], and ωo = 0 means no absorption.

16



3. SIMULATING THE UNDERWATER POLARIZED LIGHT FIELD USING A

BACKWARD MONTE CARLO METHOD

3.1 Vector radiative transfer model

The radiative transfer (RT) model [13, 14] is a powerful method to solve the multiple

scattering when the particulate medium is sparsely packed [14, 29], i.e. when the scat-

terings are assumed independent and no phase information is carried. The vector transfer

equation (VRTE) can be written as [14]:

n̂ · ∇I(r⃗, n̂) = −K(r⃗, n̂) I(r⃗, n̂) +

∫
Ω

βs(n̂
′)P(n̂′, n̂)I(r⃗, n̂′)dΩ(n̂′) (3.1)

where ∇ is the divergence operator and n̂·∇ represents a directional derivative in direction

n̂, I(r⃗, n̂) is the Stokes vector defined in the meridian plane, K(r⃗, n̂) is the extinction

coefficient matrix considering the extinction dependence of incident polarization states,

and P(n̂′, n̂) is the phase matrix. Eq. (3.1) states there are two terms that contribute to the

directional derivative of the Stokes vector. The first term represents the attenuation of the

light field caused by extinction along the direction n̂ and the second term represents the

contribution of multiple scattered light from all directions into the current direction n̂.

We can define the position and direction vector as:

r⃗ = (x, y, z) (3.2)

n̂ = (
√
1− µ2 cosϕ,

√
1− µ2 sinϕ, µ) (3.3)

Then the directional derivative can be expressed as:

n̂ · ∇I(r⃗, n̂) =
dI(r⃗, n̂)

ds
= µ

dI(r⃗, n̂)

dz
(3.4)
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It is very convenient to define the Stokes vector I=(I,Q, U, V )T in the meridian plane,

which contains the z-axis of the laboratory frame of reference and the incident or scat-

tered directions. However, the scattering Mueller matrix Ps(n̂
′, n̂) is normally defined in

the scattering plane, as shown in Figure 3.1. We need two rotations associated with the

scattering Mueller matrix to obtain the phase matrix [13]:

P(n̂′, n̂) = L(π − i2)Ps(n̂
′, n̂)L(−i1) (3.5)

where L(−i1) rotates the reference plane from the initial meridian plan to the scattering

plan, and L(π− i2) rotates the reference plane from the scattering plane to the final merid-

ian plan. Here the first component of the phase matrix, which is called phase function, is

normalized so we can use it to sample the scattering angles:

∫
Ω

P11(n̂
′, n̂)dΩ(n̂′) = 1 (3.6)

The VRTE (Eq. (3.1)) is an ordinary differential equation (ODE). Its general integral

solution can be written as:

I(r⃗, n̂) = T(r⃗m, r⃗, n̂)I(r⃗m, n̂) +

∫ z

zm

dz

µ
T(r⃗′, r⃗, n̂)

∫
Ω′
βs(n̂

′)P(n̂′, n̂)I(r⃗′, n̂′)dΩ(n̂′)

(3.7)

where T(r⃗′, r⃗, n̂) is the transmission matrix from r⃗′ to r⃗ along the direction n̂, which is

defined as:

T(r⃗′, r⃗, n̂) = exp[−K(r⃗′, n̂)|r⃗′ − r⃗|] (3.8)

The general solution given by (Eq. (3.7)) is not an analytic solution. We will see later we

can get the successive order solution based on the general solution.
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Figure 3.1: Rotation of the Stokes vectors. The scattering angle is θ in the scattering plane
(indicated in blue). The Stokes vectors are defined in the meridian planes (indicated in
pink) which contain the z-axis of the laboratory frame of reference and the incident or
scattered directions. L(−i1) rotates the reference plane from the initial meridian plan to
the scattering plan, and L(π − i2) rotates the reference plane from the scattering plane to
the final meridian plan.
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3.2 The successive orders of scattering (SOS) method

In the SOS model, the total Stokes vector can be expressed as the summation of all

order of scattering terms:

I(r⃗, n̂) =
∞∑
n=0

In(r⃗, n̂) (3.9)

Since the VRTE is linear, we can introduce the effective Mueller matrix which relates the

incident Stokes vector and the scattered Stokes vector:

I(r⃗, n̂) = Meff (r⃗, n̂)I0 (3.10)

The effective Mueller matrix contains all the optical response properties of the medium.

For arbitrary polarization states of the incident beam, we can immediately obtain the po-

larization states of the transmitted beam. Similarly, the total effective Mueller matrix can

be expressed as the summation of effective Mueller matrix of all order of scattering terms:

Meff (r⃗, n̂) =
∞∑
n=0

Meff
n (r⃗, n̂) (3.11)

Based on (Eq. (3.7)), we can see that the n-th order term can be expressed iteratively

in terms of the (n-1)-th order term:

Meff
n (r⃗, n̂) =

∫ z

zm

dz′

µ
T(r⃗′, r⃗, n̂)

∫
Ω′
βs(n̂

′)P(n̂′, n̂)Meff
n−1(r⃗

′, n̂′)dΩ(n̂′) (3.12)

We may come back to have a careful look at the 0-th order term. For simplicity, we just

consider a plane wave source at the boundary in the direction n̂0:

I(r⃗m, n̂) = I0δ(n̂− n̂0) (3.13)
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Then the 0-th order effective Mueller matrix is just the attenuating term of the direct

source:

Meff
0 (r⃗, n̂) = T(r⃗m, r⃗, n̂0)δ(n̂− n̂0) (3.14)

Then the first order

Meff
1 (r⃗, n̂) =

∫ z

zm

dz1
µ

T(r⃗1, r⃗, n̂)βs(n̂0)P(n̂0, n̂)T(r⃗m, r⃗1, n̂0) (3.15)

With (Eq. (3.12)) and (Eq. (3.15)), iteratively we can obtain all order of scattering terms.

3.3 The Vector Monte Carlo method

Even though we have all the iterative terms of the SOS method, it’s not practical to

calculate them all analytically. For systems with randomly positioned and arbitrarily ori-

ented particles, the extinction matrix reduces to the scalar case, and Monte Carlo method

becomes a possible way to numerically solve the VRTE.

In the Monte Carlo model [18, 23, 24, 25], the scattering medium is statistically ho-

mogeneous in certain regions. Both the extinction coefficient matrix and the phase matrix

are independent of the position. In other words, the probability to find a scatterer at any

position in the medium is the same. We can statistically evaluate the integrations over the

distances and solid angles in the SOS method by the summation over sampled distances

and sampled scattering angles. We will see later, for each scattering event, the path length

is distributed with an exponential probability density function and the scattering angle is

distributed with the single scattering phase function. With the probability of each indepen-

dent scattering event in a sequence of events known, we can obtain the statistical scattering

estimate of the final outcome.
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We start with the first order scattering term, which can be written in two forms:

Meff
1 (r⃗, n̂) =

∫ z

zm

dz1
µ

T(r⃗1, r⃗, n̂)βs(n̂0)P(n̂0, n̂)T(r⃗m, r⃗1, n̂0) (3.16)

=
µ0

µ

∫ z

zm

dz1
µ0

T(r⃗1, r⃗, n̂)βs(n̂0)P(n̂0, n̂)T(r⃗m, r⃗1, n̂0) (3.17)

The two different forms represent two different sample directions: the forward Monte

Carlo and the backward Monte Carlo. For first order scattering, the scattering angle is just

the angle between n̂0 and n̂, and what we need to do is just to sample the first scattering

position. In (Eq. (3.17)), T(r⃗m, r⃗1, n̂0) represent the transmission from the boundary posi-

tion r⃗m to the scattering position r⃗1, therefore we can use it to sample a path-length z1/µ0

assuming the photon starts from the boundary point r⃗m and proporgates along n̂0. The left

T(r⃗1, r⃗, n̂)P(n̂0, n̂) represents the contribution of the scattering from the source direction

n̂0 to the detector direction n̂ and the transmission from the first scattering position r⃗1 to

the detector position r⃗.

Alternatively, we can sample the photon from the detector to the source. In (Eq. (3.16)),

the transmission matrix from the scattering position r⃗1 to the detector position r⃗ is T(r⃗1, r⃗, n̂),

which can be used to sample a pathlength z1/µ assuming the photon starts from the de-

tector position r⃗ and proporgates along n̂. The left P(n̂0, n̂)T(r⃗m, r⃗1, n̂0) represents the

contribution of the scattering from the source direction n̂0 to the detector direction n̂ and

the transmission from the first scattering point r⃗1 to the boundary position r⃗m. The dif-

ference with the forward Monte Carlo sampling is that we have no extra factor for the

backward Monte Carlo sampling.

Similarly, based on the iterative equation (Eq. (3.12)), we can write the second order
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scattering term in two forms:

Meff
2 (r⃗, n̂) =

∫ z

zm

dz2
µ

T(r⃗2, r⃗, n̂)

∫
Ω

dΩ(n̂1)βs(n̂1)P(n̂1, n̂) (3.18)

·
∫ z2

zm

dz1
µ1

T(r⃗1, r⃗2, n̂1)βs(n̂0)P(n̂0, n̂1)T(r⃗m, r⃗1, n̂0) (3.19)

=
µ0

µ

∫ z1

zm

dz2
µ1

T(r⃗2, r⃗, n̂)

∫
Ω

dΩ(n̂1)βs(n̂1)P(n̂1, n̂) (3.20)

·
∫ z

zm

dz1
µ0

T(r⃗1, r⃗2, n̂1)βs(n̂0)P(n̂0, n̂1)T(r⃗m, r⃗1, n̂0) (3.21)

Again we have two different sampling directions based on the two different forms. Eq. (3.21)

illustrates the forward Monte Carlo sampling. T(r⃗m, r⃗1, n̂0) represents the transmission

from the boundary position r⃗m to the first scattering position r⃗1, thus we can use it to

sample the first photon path-length z1/µ0 assuming the photon starts from the boundary

point r⃗m and proporgates along n̂0. Then P(n̂0, n̂1) represents the first scattering from

the source direction n̂0 to the scattering direction n̂1, which can be used to sample the

first scattering direction n̂1. The transmission matrix T(r⃗1, r⃗2, n̂1) represents the transmis-

sion from the first scattering position r⃗1 to the second scattering position r⃗2, which then

can be used to sample the second scattering position r⃗2. At last, the left estimation part

T(r⃗2, r⃗, n̂)P(n̂1, n̂) represents the multiplication of the scattering from the first scattering

direction n̂1 to the detector direction n̂ and the transmission from the second scattering

point r⃗2 to the detector position r⃗.

While Eq. (3.19) illustrates the backward Monte Carlo sampling. First we use T(r⃗2, r⃗, n̂)

to sample a photon path-length z2/µ assuming the photon starts from the detector position

r⃗ and propagates along n̂. Then we use P(n̂1, n̂) to sample the new propagating direction

n̂1 after the first scattering. Now our photon is at position r⃗2 and propagates along −n̂1,

we then use T(r⃗1, r⃗2, n̂1) to sample a photon path-length z1/µ1 to make it proporgetes to

another scattering position r⃗1. At lat, the left P(n̂, n̂0)T(r⃗m, r⃗1, n̂0) represents the multi-
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plication of the scattering from the source direction n̂0 to the detector direction n̂ and the

transmission from the first scattering point r⃗1 to the boundary position r⃗m.

Continuing this iterative process based on equation Eq. (3.12), we can get the numer-

ical estimation of all order of the scattering terms. Note the difference of the forward and

backward Monte Carlo simulations is that the forward sampling will always leave us a

µ0/µ factor. For different circumstances, using symmetries we can simplify our iterative

equation Eq. (3.12), which can greatly simplify our numerical sampling. We can also use

some forced collision tricks and estimation methods to improve our sampling efficiency.

We will talk about this more in the coming underwater simulation section.

3.4 Simulating the underwater polarized light field using a backward Monte Carlo

method

The polarization nature of ocean light provides a diversity of applications such as ma-

rine biology, remote sensing and underwater imaging. Marine animals are able to use

polarization to forage, to navigate and to communicate. The polarization properties of

light in the ocean can also be used to improve underwater imaging image qualities. When

modeling the atmosphere-ocean system, a good assumption is to simplify our problem and

assumes scattering medium is statistically homogeneous in certain regions. This means

both the extinction coefficient matrix and the phase matrix are independent of the posi-

tion. In other words, the probability of finding a scatterer at any position in the medium

in certain regions is the same. Thus we can use using a backward Monte Carlo method to

statistically evaluate the underwater polarized light field.

We simulate the underwater light properties by propagating photons throughout the

atmosphere-ocean system. Every photon we inject into the medium carries a weight ω

and effective Mueller matrix Mp.The weight represents the energy the photon currently

carries and its initial value is 1.0. The effective Mueller matrix carries all the polarization
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informations and it’s a 4 × 4 identity matrix at the starting point. We will see later, for

each scattering event, the path length is sampled based on the transmission matrix and

the scattering angle is sampled based on the single scattering phase function. After each

sampled scattering event, both the weight and the effective Mueller matrix of the photon

will be updated. The photon will be terminated after its weight is smaller than some

certain truncation value. We keep injecting photons and repeating this sampling process,

the effective Mueller Matrix of the medium can be obtained from the statistical average

result of a large number of photons.

In the atmosphere and in the ocean, the transmission matrix T(r⃗1, r⃗2, n̂) from r⃗1 to r⃗2

along the direction n̂ reduces to the scalar case:

T(r⃗1, r⃗2, n̂) = T (r⃗1, r⃗2, n̂) E; (3.22)

T (r⃗1, r⃗2, n̂) = exp(−βext|r⃗1 − r⃗2|) (3.23)

where E is a 4× 4 identity matrix and βext is the extinction coefficient. Eq. 3.23 is just the

Bouger-Lambert-Beer law, which states the transmission is the ratio of the original photon

packet due to the attenuation. We can define the optical depth or the optical thickness

between two points r⃗1 and r⃗2 as:

τ = βext|r⃗1 − r⃗2| (3.24)

Then the transmission of the Bouger-Lambert-Beer law is simply:

T (r⃗1, r⃗2, n̂) = e−τ (3.25)

The fundamental principle of Monte Carlo calculation is to sample the variable based
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on its probability density function. For example, we can sample the optical depth by

∫ τ

0

e−τdτ = ξ (3.26)

where ξ is a random number which is uniformly distributed on 0 < ξ < 1. Then we have

τ = − ln(1− ξ) (3.27)

Since (1− ξ) is another random number also uniformly distributed over the interval (0,1),

we can just use:

τ = − ln ξ (3.28)

The sampled optical depth τ ranges from 0 to infinity. Obviously, this is not efficient

since samplings of τ beyond the boundary, which means the photon will escape from the

medium, will be discarded. Instead, we can use a so-call forced collision method. If the

optical thickness along the current propagation direction is τm, as as shown in Figure 3.2,

the fraction of photons that will escape from the medium without scattering will be e−τm .

Thus we can force a collision over the optical depth interval (0,τm) by using the weighted

sampling: ∫ τ

0
e−τdτ∫ τm

0
e−τdτ

= ξ (3.29)

which leaves us

τ = − ln(1− (1− e−τm)ξ) (3.30)

This will increase the sampling efficiency intensively, especially for a thin scattering

medium. To remove the bias introduced by the weighted forced collision sampling, we
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Figure 3.2: A diagram of a forced collision. The optical thickness along the current prop-
agation direction is τm and our forced collision will be over the optical depth interval
(0,τm).

need to multiply the photon weight by a weight factor:

ω2 = ω1(1− e−τm) (3.31)

where ω1 and ω2 are the initial and final weights, respectively. The physical meaning of

the factor is the fraction of the photons that remain in the medium. After an optical depth

is sampled, we can update the location of the photon;

r⃗2 = r⃗1 +
τ

βs

· n̂ (3.32)

where r⃗1 and r⃗2 are the initial and final positions, respectively, and n̂ is the propagation
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direction.

When the photon packet arrives to a new location, it will be scattered at some scattering

angle. The scattering angle is determined by the single scattering phase function:

∫
Ω

P11(n̂, n̂
′)dΩ(n̂′) = 1 (3.33)

For most cases, the phase function is independent of the azimuthal angle ϕ:

p(θ, ϕ) = p(θ) (3.34)

Thus we can separately sample the zenith angle θ (or µ = cos θ) and the azimuthal angle

by:

ξ1 = 2π

∫ u

−1

p(µ)dµ, (3.35)

ξ2 =

∫ ϕ

0

1

2π
dϕ (3.36)

where ξ1 and ξ2 are two independent random variables uniformly distributed over the in-

terval (0,1). The the zenith angle θ (or µ = cos θ) and the azimuthal angle can be obtained

in terms of ξ1 and ξ2.

Two kinds of phase functions have been widely used due to their analytic mathemat-

ical simplicity. The first one is the phase function of Rayleigh scattering [45]. Rayleigh

scattering is caused by particles much smaller than the wavelength of the radiation and

the scattering in the atmosphere is dominated by this type of scattering. Therefore the

Rayleigh phase function is often used to simulate the radiative transfer process in the

atmosphere. Rayleigh scattering has the phase function and reduced Mueller matrix as
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follows:

pR(θ) =
3

16π
(1 + cos2 θ) (3.37)

M(θ) =



1 − sin2 θ
1+cos2 θ

0 0

− sin2 θ
1+cos2 θ

1 0 0

0 0 2 cos θ
1+cos2 θ

0

0 0 0 2 cos θ
1+cos2 θ


(3.38)

Substitute Eq. (3.37) into Eq. (3.35) and Eq. (3.36) and we have the sampled scattering

angle for the Rayleigh phase function:

µ = (z +
√
z2 + 1)1/3 + (z −

√
z2 + 1)1/3, where z = 2(2ξ1 − 1) (3.39)

ϕ = 2πξ2 (3.40)

Another widely used analytic phase function which is mainly used in ocean optics is

the Henyey-Greenstein (HG) phase function [48]:

pHG(θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
(3.41)

where g is the asymmetry factor defined by

g =

∫ 1

−1

∫ 2π

0

p(θ, ϕ) cos θ sin θdθdϕ (3.42)

Substituting Eq. (3.41) into Eq. (3.35) and Eq. (3.36), the scattering angle sampling for
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HG phase function can be obtained:

µ =
1

2g
(1 + g2 − (

1− g2

1 + g(2ξ1 − 1)
)2) (3.43)

ϕ = 2πξ2 (3.44)

Since the particles in the ocean are mainly soft particles which have a refractive index close

to unity, the reduced scattering Mueller matrices of them are also Rayleigh like, which is

as expressed in Eq. (3.38).

The two analytic phase functions can approximate the light scattering properties in

the atmosphere and in the ocean water, respectively. However, discrepancies between

the analytic result and real case can always be anticipated. What we will mainly use in

our model is the phase function measured from the real ocean water in Curacao by Dr

Alex Gilerson’s group from City College of New York. The measured data, which has an

asymmetry factor g=0.925, is compared with HG phase function, as plotted in Figure 3.3.

It has very similar behavior with HG phase function with g=0.93, except a higher tail near

the backward directions. Again, we will assume the reduced scattering Mueller matrix

is Rayleigh like as expressed in Eq. (3.38). By substituting the numerical values of the

phase function into Eq. (3.35) and Eq. (3.36), the scattering angle can be sampled. After

the scattering angles are sampled, we can update our photon packet propagation direction

based on the old propagation direction.

We have discussed how to sample the path length and scattering angle. In our model,

we will use another trick, the so-called statistical estimation approach, to increase the

simulation efficiency. This means, after each collision, we make an estimation to the

source from the current position of the photon packet, which carries a weight w and an

effective Mueller matrix Mp. In this way, one photon packet will represent N photon

trajectories after N times of collisions. Now we will explain how to calculate the statistical
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Figure 3.3: The measured phase function compared with HG phase function. The phase
function (red dots) is measured in Curacao by Dr Alex Gilerson’s Group from City College
of New York. It has an asymmetry factor of 0.925.
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estimation to the source for different cases.

3.4.1 Collision in the medium

We should make some updates and make an estimation to the source after each scat-

tering event has happened. In the 3D case, the updates and estimation will depend on both

the position and propagation direction of our current photon. Suppose the current photon

carries a weight w and effective Mueller matrix Mp and propagates along n̂. We will first

update the photon weight by multiplying by the single scattering albedo ωo:

w = wωo (3.45)

Physically, this accounts for that a fraction of 1− ωo of the original photon packet will be

removed due to absorption by the medium. If the photon is in the atmosphere layer, the

estimation to the source can be expressed by:

Mj = w exp(−τs)MpL(π − i2)P(θs)L(−i1) (3.46)

where τs is the optical distance between the current location and the boundary location

at the atmosphere top traced back along the inverse source direction; θs is the scattering

angle from the source direction to the current photon propagation direction, and P(θs) is

the Rayleigh Mueller matrix with scattering angle θs; L(−i1) and L(π − i2) are the two

rotation matrix for scattering from the source direction to the current photon propagation

direction. Note the orders of these matrix multiplication from the view of backward Monte

Carlo method. In addition, we don’t have the factor 1/µ, which is introduced only for

forward Monte Carlo method.

When the collision point is in the ocean, we need two steps to make the estimation

to the source. Given the current position and propagation direction as well as the source
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direction, we can trace back the only trajectory for the photon packet. The photon will

start from the current point to a point r⃗i in the atmosphere-ocean interface with scattering

angle θs along a direction n̂t, then it goes from r⃗i to boundary point r⃗s at the atmosphere top

along the inverse source direction. Thus the estimation can be written as the multiplication

of the two steps:

Mj =w exp(−τi)MpL(π − i2)P(θs)L(−i1)

· n2exp(−τs)L(π − i′2)T(θi)L(−i′1)

(3.47)

where the first line represents the scattering in the water, τi is the optical distance between

current point and point r⃗i, P(θs) is the scattering Mueller matrix with scattering angle θs,

and L(−i1) and L(π − i2) are the two rotation matrices for scattering from direction n̂t

to the current photon propagation direction; the second line represents the transmission

through the interface, τs is the optical distance between point r⃗i and point r⃗s, T(θi) is the

transmission Mueller matrix with incident angle θi, and L(−i′1) and L(π− i′2) are the two

rotation matrices for scattering from the source direction to the direction n̂t. n2 here is

the n2 law for radiance [49] caused by transmission on the boundary from medium 1 to

medium 2, where n is the refractive index of medium 2 relative to medium 1.

What’s more, after a new scattering direction is sampled, we need to update the effec-

tive Mueller matrix carried by the photon packet:

Mp = MpL(π − i2)P̃(θs)L(−i1)

= MpL(π − i2)
P(θs)

p(θs)
L(−i1)

(3.48)

where P̃(θs) is the reduced scattering matrix, L(−i′1) and L(π − i′2) are the two rota-

tion matrices for scattering from the inverse new propagation direction to the inverse old

propagation direction.

For the following two types of collisions, we only need to replace the phase matrices in
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Eq. (3.46), Eq. (3.47) and Eq. (3.48) by their specific phase matrices to make the estimation

or update.

3.4.2 Lambertian reflection

The photon will encounter some surfaces with Lambertian reflection, such as the ocean

bottom or the spheres with a Lambertian surface. The Lambertian reflection means the

reflected radiance will be isotropic, i.e. the radiance of a Lambertian surface is the same

regardless of the observer’s angle of view. The phase matrix of this kind of surface is:

pL(θ) =
cos θ

π
(3.49)

M(θ) =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


(3.50)

Substitute Eq. (3.49) into Eq. (3.35) and Eq. (3.36), we have the sampled scattering angle

for a Lambertian scattering:

µ =
√

ξ1 (3.51)

ϕ = 2πξ2 (3.52)

3.4.3 Fresnel reflection

When the photon hits the atmosphere-ocean interface, the surrounding glass wall or

the mirror spheres, the scattering matrix will be dominated by Fresnel’s law [44]. For the

mirror reflection surfaces, we can treat the surface as a medium with imaginary refractive

index, such as silver. For an incident angle θi from medium 1 to medium 2, the Fresnel’s
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law reads:

sin θi = n sin θt (3.53)

where θt is the transmitted angle and n is the refractive index of medium 2 relative to

medium 1. The reflection and transmission coefficients for the parallel and perpendicular

components are:

rl =
cos θt − n cos θi
cos θt + n cos θi

(3.54)

rr =
cos θi − n cos θt
cos θi + n cos θt

(3.55)

tl =
2 cos θi

cos θt + n cos θi
(3.56)

tr =
2 cos θi

cos θi + n cos θt
(3.57)

Then the reflection and transmission Mueller matrix from the Fresnel’s law for the wave

vectors can be expressed as:

R =



1
2
(|rl|2 + |rr|2) 1

2
(|rl|2 − |rr|2) 0 0

1
2
(|rl|2 − |rr|2) 1

2
(|rl|2 + |rr|2) 0 0

0 0 Re(rlr
∗
r) Im(rlr

∗
r)

0 0 Im(rlr
∗
r) Re(rlr

∗
r)


(3.58)

T =



1
2
(|tl|2 + |tr|2) 1

2
(|tl|2 − |tr|2) 0 0

1
2
(|tl|2 − |tr|2) 1

2
(|tl|2 + |tr|2) 0 0

0 0 Re(tlt
∗
r) Im(tlt

∗
r)

0 0 Im(tlt
∗
r) Re(tlt

∗
r)


(3.59)

The element R11 is the reflectivity, which is the probability that the beam gets reflected.

Therefore we can use a random number ξ which again is uniformly distributed over the
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interval (0,1), to compare with the reflectivity to decide if the photon packet is reflected

or transmitted after it hits the surface: if ξ < R11, the photon is reflected; otherwise it is

transmitted. Note that for total internal reflection or reflection by medium with imaginary

refractive index, the R43 element will be nonzero. This will produce circular polarization,

and we will see this in later simulation results.

Figure 3.4: The flowchart of the backward Monte Carlo simulation procedure.

In summary, the basic procedure of the backward Monte Carlo simulation is as shown

in Figure 3.4. Initially, we inject a new photon with w = 1 and effective Mueller matrix

Mp = I. An optical length is sampled according to Eq. (3.30) to get the new collision

point. Then estimation to the source is made by Eq. (3.46) or Eq. (3.47). A scattering
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angle is sampled by Eq. (3.35) and Eq. (3.36) to find the new propagation direction. Then

we update our photon effective Mueller matrix Mp according to Eq. (3.48). Now we test

the current photon weight ω to decide if we continue the sampling or terminate the current

photon. If the current photon weight ω is small enough, we terminate the photon and

inject a new photon to repeat the whole process. A sampling example is illustrated as in

Figure 3.5. We have three scattering events (two in the ocean and one in the atmosphre)

before the photon is killed. Using the statistical estimation approach, we actually have

three photon trajectories which all make the contribution to final result, even though only

one photon is shot.

Figure 3.5: An example to illustrate the backward Monte Carlo simulation for one photon.
The three scatterings provide three photon trajectories which all make the contribution to
final result, even though only one photon is shot.
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3.5 Result

3.5.1 Validation
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Figure 3.6: Comparison between the backward Monte Carlo and Zege’s code calculations
for an plane-parallel atmosphere-ocean system. The atmosphere layer has an optical depth
of 0.15 with Rayleigh scattering (single scattering albedo 1.0) and the ocean layer has
an optical depth of 10.0 with HG phase scattering (single scattering albedo 0.85) with
asymmetry factor g=0.93. The detector is placed at a point with optical depth of 1.0 under
the interface.

We have introduced a backward Monte Carlo method to calculate the 3D vector radia-

tion field for the atmosphere-ocean system. This model can deal with a dynamic interface,

different boundary conditions and complex ocean environments. To validate our code, we

compared our results with the benchmark results by Zege’s code [50] for a plane-parallel

atmosphere-ocean system. We assume the atmosphere layer has an optical depth of 0.15

with Rayleigh scattering and the ocean layer has an optical depth of 10.0 with HG phase
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scattering with asymmetry factor g=0.93. The detector is placed at a point with optical

depth of 1.0 under the interface. In Figure 3.6, we show a comparison of the four Stokes

vector elements between the two methods. The agreement is always within a few percent

for all components. We have almost the same jumping behavior near the Snell’s win-

dow (zenith angle near 132o) for both I and Q components. Our Monte Carlo code can

accurately predict the Mueller matrix elements for different scattering angles.

3.5.2 Tank model

Figure 3.7: Illustration of the modeling of a detector. The tank has surrounding glass walls
with refractive index 1.5 and a Lambertian bottom with albedo ωb = 0.4. Several spheres
with different sizes and different scattering properties are put along the diagonal in the
tank.

Marine animals are capable of detecting light polarization in the ocean. Many experi-

ments about these marine animals are made in a tank rather than in the open ocean. This

may bring in some artifacts because these marine animals in the tank may see differently
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from what they see in the open ocean. To account for this, we first use a tank model,which

is illustrated in Figure 3.7, to simulate what a marine organism can see under the water.

The tank has surrounding glass walls with refractive index 1.5 and a Lambertian bottom

with albedo ωb = 0.4. Several spheres with different sizes and different scattering prop-

erties are placed along the diagonal in the tank. We can simulate different underwater

circumstances by changing the following parameters: the incident light direction, the way

light scatters (phase function), the absorption and extinction coefficient, viewing position

and viewing direction, and so on.

Figure 3.8: Illustration of the modeling of a detector. The screen is divided into many
pixels, and each pixel corresponds to a different direction along which photons can hit the
pixel through the focus point. After we collect the light information of all the pixels, the
image of the viewing cone can be obtained.
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A simulation of the way how cameras or human eyes work to get the image infor-

mation inside the viewing cone, as shown in Figure 3.8, is needed to get the underwater

image. The screen is divided into many small pixels, and each pixel corresponds to a

different direction along which photons can hit the pixel through the focus point. After

we collect the light information of all the pixels, the image of the viewing cone can be

obtained. In our backward Monte Carlo model, we send photons from the detector and

make estimations to the source. For each pixel in the screen array, we first calculate its

corresponding direction and then shoot photons at the detector position along the corre-

sponding direction. Effective Mueller matrices are obtained for all directions, thus all the

Mueller matrices information for our image is obtained. We can change the detector po-

sition, its viewing directions as well as the angles of the viewing cone. In such a way, we

can get the Mueller matrix image information at any points along any viewing directions

inside the atmosphere-ocean system. Having the effective Mueller Matrix, we can obtain

the Stokes vector(I,Q,U,V) as well as the degree of polarization (DOP), which compose

all the polarization information.

In the tank model, we assume the atmosphere layer has an optical depth of 0.15 with

Rayleigh scattering (single scattering albedo 1.0), which is the characteristic of the earth’s

atmosphere. Inside the ocean, light scattering has HG phase function (single scattering

albedo 0.85) with asymmetry factor g=0.93 and Rayleigh type reduced Mueller matrix.

The optical depth between the ocean surface and the spheres is 2.0. The four components

of the Stokes vector for this case are shown in Figure 3.9, assuming the unpolarized sun-

light is normal incident. From the radiance image, we can see clearly the four balls as well

as their shadows on the Lambertian bottom. The individual Lambertian sphere displays

isotropic brightness, while a lower reflection albedo will result in a dimmer image. There

is a bright spot on the top of the mirror sphere due to the specular reflection of the directly

incident sunlight. It’s fascinating we have the image of the surrounding objects on the
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Figure 3.9: Underwater images of the four components of the Stokes vector, when the
optical depth between the ocean surface and the spheres is 2.0. We assume the atmosphere
layer has an optical depth of 0.15 with Rayleigh scattering (single scattering albedo 1.0),
which is the characteristic of the earth’s atmosphere. Inside the ocean, light scattering
has HG phase function (single scattering albedo 0.85) with asymmetry factor g=0.93 and
Rayleigh type reduced Mueller matrix.
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Figure 3.10: Underwater images of radiance and DOP, when the optical depth between the
ocean surface and the spheres is 2.0. We assume the atmosphere layer has an optical depth
of 0.15 with Rayleigh scattering (single scattering albedo 1.0), which is the characteristic
of the earth’s atmosphere. Inside the ocean, light scattering has HG phase function (single
scattering albedo 0.85) with asymmetry factor g=0.93 and Rayleigh type reduced Mueller
matrix.

mirror sphere surface, just as in the real life. The surrounding glass walls are quite black

since we assume all the transmitted photons are absorbed to simplify our model. From

the Q components, we can only see very blur images of the four spheres and the bottom

without too much details. U components tell us very litter information about system even

though they have considerable amplitude. The V components, which represents circular

polarization, are always very small since Rayleigh typed reduced Mueller matrix scattering

couldn’t produce circular polarization. As we mentioned previously, circular polarization

can only be caused by total internal reflection and mirror reflection as the Mueller matrix

element M43 is nonzero.

Since Q, U and V components carry little information individually, we try to combine

them together to see if the degree of polarization (DOP) (defined as Eq. (2.12) ) can tell

more. The comparison between the radiance image and DOP image for the same case is
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Figure 3.11: Underwater images of radiance and DOP, when the optical depth between the
ocean surface and the spheres is 0.2. We assume the atmosphere layer has an optical depth
of 0.15 with Rayleigh scattering (single scattering albedo 1.0), which is the characteristic
of the earth’s atmosphere. Inside the ocean, light scattering has HG phase function (single
scattering albedo 0.85) with asymmetry factor g=0.93 and Rayleigh type reduced Mueller
matrix.

shown in Figure 3.10. The DOP image can convey much better contrast compared with

the three components individually. All the Lambertian surfaces display very small DOP

since the reflection on Lambertian surfaces is totally unpolarized. The DOP becomes

comparably high at points further away. The high DOP comes from the path radiance

since scattering with a Rayleigh type reduced Mueller Matrix can produce a large DOP at

90 degree scattering.

Then what will happen when the scattering is very weak. Figure 3.11 shows the under-

water images of radiance and DOP, when the optical depth between the ocean surface and

the spheres is just 0.2. We have very sharp contrast for both the two images, since without

too much scattering the direct beams from the targets can convey their unique scattering

information. For the radiance image, the top of the mirror sphere is black, in contrast to

the bright spot when the optical depth is large. This can be explained by that no photons
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from the top of the mirror sphere can reach the detector after specular reflection from it.

The image of DOP is really fabulous for this case. We can see clearly the mirror sphere,

the surrounding glass walls as well as the air-ocean interface. We can also see clearly these

beautiful surrounding images not only on the mirror sphere surface, but also on the glass

walls and on the air-ocean interface. In this weak scattering case, the degree of polarization

conveys much more imaging information than the radiance. Since many marine animals

are capable of detecting light polarization while humans can only see radiance, maybe the

world in their eyes is much more spectacular than ours. Note the difference between the

image of the bottom on the glass wall and the image of the bottom on the mirror sphere.

This is because the mirror reflection conserves the polarization information while the glass

reflection changes the polarization dramatically.

From the two cases, we can see polarization information contains a lot of useful infor-

mation about the surrounding light field. Sometimes it can even convey more information

than the radiance. Thus the polarization can always be used to improve the underwater

imaging quality.

3.5.3 Polarizer imaging

To learn about the real ocean water polarization information, we want to study the

imaging of several polarizers which are placed vertically in the ocean. Dr Alex Gilerson’s

Group from City College of New York made some measurement and their measurement in-

strument is as shown in Figure 3.12. The polarizers and a piece of silver mirror were stuck

together and they were placed vertically in water. The camera was about 1m away from the

mirror and the frame to which the camera and the mirror were attached was allowed to ro-

tate, both clockwise (as shown) and counterclockwise with computer-controlled thrusters.

Measurements were taken on July 10th, 2012 in Curacao (near oil terminal). The sun

azimuth angle (clockwise from North) was 81 degree, sun elevation (from horizon) was
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Figure 3.12: The measurement instrument for polarizer imaging by Dr Alex Gilerson’s
Group from City College of New York. The polarizers and a piece of silver mirror were
stuck together and they were placed vertically in water and the camera was about 1m
away from the mirror. The frame to which the camera and the mirror were attached
was allowed to rotate, both clockwise (as shown) and counterclockwise with computer-
controlled thrusters. The sun azimuth angle (clockwise from North) was 81 degree, sun
elevation (from horizon) was 43 degree, the depth was 2.91±0.09 meters, and wind speed
was about 3m/s.

43 degree, the depth was 2.91 ± 0.09 meters, and wind speed was about 3m/s. Several

simulations for the exactly same system are made using the backward Monte Carlo code.

The atmosphere layer is assumed to have an optical depth of 0.15 with Rayleigh scattering

(single scattering albedo 1.0). Their measured phase function is used for light scattering in

the ocean and Rayleigh typed reduced Mueller matrix is assumed. The extinction coeffi-

cient is 0.16m−1 and the single scattering albedo is 0.85. The asymmetry factor g=0.925,

which means the scattering is strongly dominated at forward direction.
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Figure 3.13: Three different types of radiance that contribute to the images: radiance
directly from the target(target radiance), radiance without interaction with the target(path
radiance) and radiance with scattering between the target and camera(target radiance with
scattering).

One powerful feature of Monte Carlo simulation is that we can track the history of

each photon arriving to the detector. There are three different types of radiance that con-

tribute to the images, as shown in Figure 3.13: radiance directly from the target(target

radiance), radiance without interaction with the target(path radiance) and radiance with

scattering between the target and camera(target radiance with scattering). The target ra-

diance can convey the information about the target, while the other two types of radiance

will make target image blurred by introducing surrounding light information. Monte Carlo

simulation can give us the contribution of each component to the final signal.

For example, the contributions of the three different types of radiance for the four po-

larizers, when the camera is 1m away from the target, are shown in Figure 3.14. The

scattering by the sea water is strong enough such that the target radiance and the path radi-
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Figure 3.14: The contributions of the three different types of radiance for the four polariz-
ers, when the camera is 1m away from the target. The extinction coefficient in the ocean
is 0.16m−1 and the single scattering albedo is 0.85.
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ance have nearly the same contribution even though the distance between the camera and

target is only 1m. We can expect the target radiance contribution will drop very quickly

as the object goes further away from the camera. The relation between the target radiance

contribution and the optical depth from the target to the camera is numerically plotted in

Figure 3.15. Since the ocean light is mainly horizontally polarized, the horizontal polarizer

Figure 3.15: The numerical relation between the target radiance contribution and the opti-
cal depth from the target to the camera.

always has the highest target radiance contribution because horizontally polarized light is

easier to be reflected back by a horizontal polarizer. While the vertical polarizer will kill

horizontally polarized light, thus it always has the lowest target radiance contribution. We

can expect that at a distance of 5m with extinction coefficient in the ocean 0.16m−1, the

target radiance contribution will be less than 20% and the ocean imaging will be very
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blurred, with an optical depth 0.8. Strong scattering and absorption kills the target radi-

ance and the path radiance becomes dominant. This is the direct reason why underwater

imaging is very challenging.

Since a polarizer is 100% polarized, the DOLPs of these polarizers will be close to 1

when the camera is close enough. As the camera goes away, the DOLPs decrease to certain

values (nearly 25%), as we can see in Figure 3.16. Same thing happens for the AOLPs:

Figure 3.16: The DOLP and AOLP vs the distance between the target and the camera.

all the ALOPs decrease from their theoretical value to 0 as the distance from the target to

the camera increases. This can be explained by that when far away enough, path radiance,

which is mainly horizontally polarized with a DOLP about 25%, will become dominant.
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Figure 3.17: Distribution of AOLP as a function of azimuthal angle.
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Figure 3.18: Distribution of radiance as a function of azimuthal angle. We define the 0

azimuthal angle as the sun is in front of the target.
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Images of the polarizers, the mirror and water areas outside the target are simulated

with different azimuthal angles from 0 to 180 deg. Here we define the 0 azimuthal angle

as the sun is in front of the target. Distribution of radiance as a function of azimuthal

angle is shown in the Figure 3.18. As the azimuthal angle increases, the target will be

rotated away from the sun, thus the radiance will decrease. We have the same trend as the

measured result, however, we couldn’t get good numerical agreement.

Distribution of ALOP as a function of azimuthal angle is shown in the Figure 3.17.

We have the AOLP very close to the theoretical values, however, again no good numerical

agreement could be reached.
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4. EFFECT OF BOTH COHERENT AND INCOHERENT BEAMS ON BOTH

FORWARD AND MULTIPLE SCATTERING FOR AN ENSEMBLE OF

PARTICLES

In many biological organisms, organic particles are very densely packed together, for

example, the chromatosomes in a chromatophore cell and the erythrocytes in human blood.

For an ensemble of particles, the photons will be scattered many times before reflected or

transmitted out. Multiple scattering makes it extremely difficult to simulate the light scat-

tering. A big forward-scattering peak, which is caused by the coherent effect, will always

appear. Because the filling particles, the chromatosomes and the erythrocytes, are spher-

ical, we can try to model the chromatophore cell or the blood system by an imaginary

spherical volume enclosing many small spheres. We seek simple simulation models for

the complex scattering media, by comparing exact scattering results with results with ap-

proximations.

4.1 Some numerical models

4.1.1 Phase shift of single particle at the forward direction

For particles with mirror and rotational symmetry, the exact forward wave behaves like

scalar propagation and the scattering amplitude matrix reduces to identity matrix [45]. In

the forward direction (denoted by 0), the complex amplitude can be expressed as

S(0) = |S(0)|eiϕ0 (4.1)

where ϕ0 is the relative phase shift of the scattered wave. These parameters are dependent

on the particle but independent of the polarization states of the incident light. For single

particles, the scattering properties are easy to compute: Lorenz-Mie theory provides an
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analytical solution of S(0) for spherical particles [32], and the DDA method can be used

to obtain numerical result of S(0) for non-spherical particles. Alternatively, there exists a

simple approximate method, the so-called anomalous diffraction method [45]. When the

particles are large and their refractive index n (relative to the surrounding medium) is close

to 1, by introducing a phase lag which depends only on the particle geometry, the forward

scattering amplitude can be approximated by

S(0) =
k2

2π

∫∫
(1− eik(n−1)d)dxdy (4.2)

where k = 2π/λ is the wavenumber, d is the distance a ray of light at (x,y) travelled

within the particle assuming the ray suffers nearly no deviation along z-axis, as shown

in Figure 4.1. The integral will become real when the particle size is big enough [45],

thus the phase shift goes to π/2 when considering the π/2 phase shift introduced by the

asymptotic form of the scattered wave in the far field as in Eq. (2.15).

Figure 4.1: A diagram of a ray of light passing through a sphere. d is the distance the ray
at a specific point travelled within the sphere assuming the ray suffers no deviation along
the incident direction. The phase shift of single particle at the forward direction can be
calculated using anomalous diffraction method.
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4.1.2 Monte Carlo code for the spherical volume

The Monte Carlo model based on radiative transfer theory is a powerful method which

can be used to solve the multiple scattering for ensembles of particles. The scattering

medium is assumed statistically homogeneous in the model, which means the probability

to find a scatterer at any position in the medium is the same. For such systems, the scat-

tering variables can be obtained as following. First, the single scattering properties for the

filling spheres: the single scattering albedo, the scattering phase matrix as well as the cross

sections, are calculated using Lorenz-Mie theory [32]. Then the extinction coefficient can

be obtained by the product of the single extinction cross section and the number density of

the filling spheres. At last, the extinction coefficient can be used to sample the scattering

path length and the single scattering phase matrix can be used to sample the scattering an-

gles. A Monte Carlo code has been developed to simulate light scattering for the spherical

volume.

4.1.3 Effective medium theory

A temptingly simple method for an ensemble of particles is to approximate the com-

posite medium as a homogenous medium with an effective refractive index. This method

is called effective medium theory (EMT) [44], which is based on average Maxwell fields

weighted by volume fraction at the macroscopic level. The effective refractive index of

the inhomogeneous medium is determined by the volume fractions, the shapes as well as

the refractive indexes of its constituents. Perhaps the Maxwell Garnett theory [44] is the

most popularly used one. When only one kind of spherical particles are included in the

matrix medium, the Maxwell Garnett formula can be written as:

εeff = εm
2εm + ε+ 2f(ε− εm)

2εm + ε+ f(εm − ε)
(4.3)
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where εeff is the effective dielectric constant of the medium, ε is the one of the inclusions

and εm is the one of the matrix; f is the volume fraction of the inclusions. In this way,

we can get the effective refractive index for the imaginary homogeneous spherical volume

and simply use the Lorentz-Mie theory to calculate the scattering matrix. This is a rough

but very simple model and we will use it to compare results with analytic results.

4.1.4 Partially coherent beam

We consider the partially coherent beams generated by the the Gaussian Schell-model

[41], the cross-spectral density function with a coherence length σµ for two position vector

r⃗1 and r⃗2 can be written as:

W (r⃗1, r⃗2) = A exp(− r⃗1
2 + r⃗2

2

4σ2
s

) exp(− r⃗1
2 − r⃗2

2

4σ2
µ

) (4.4)

where σs is the width of the beam and A is a constant independent of the positions. We

can represent the partially coherent beam with an ensemble of random fields using the

angular spectrum representation [51]. We use the code in [51], which is modified from the

original DDA code. The width of the beam σs is taken to be infinity and the influence of

the coherent length σµ of the incident beams on the scattering matrix is studied for both

single sphere and an ensemble of spheres.

4.2 Numerical results and discussion

4.2.1 Phase shift for single particle

First we applied the anomalous diffraction method to calculate the phase shifts for

single particles with various sizes and various shapes. The incident wavelength is 0.435um

in the ambient medium, whose refractive index is 1.33. The results are shown in Figure 4.2.

To validate this method, we compared the approximate results with the accurate results, i.e.

phase shift results from Mie theory for spherical particles and phase shift results from the

57



Figure 4.2: Phase shifts for single particles versus effective radius. The incident wave-
length is λ=0.435um. (A) Comparison of results computed by the anomalous diffraction
method and Lorenz-Mie theory for a sphere with refractive index n=1.244. (B) Same as
(A) except that refractive index n=1.244+i0.013. (C) Phase shifts for two different in-
cident directions of an oblate spheroid (a/b=2) with refractive index=1.244+i0.013 using
the anomalous diffraction method. (D) Same as (A) but the results are for a cube with
refractive index=1.244+i0.013 for face on incidence.
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ADDA for cubic particles, as shown in panels A, B and D of Figure 4.2. Even though the

anomalous diffraction method is valid only when the particles are large and their refractive

index is close to the surrounding medium, we obtained good agreements for different-

sized particles with relative refractive indices larger than unity. Thus the simple anomalous

diffraction method can be used as a good approximation of S(0). The relative phase shift is

roughly in the range [0, π/2], which means even for different-sized scatterers, the forward

scattered waves are quite coherent. Especially, when the particle size deviation is small or

when all the particles are quite large, the phase shifts of the particles will be very close to

each other. This means the forward waves will be completely coherent: thus an ensemble

of N particles will produce a scattered amplitude of N times that for a single particle while

the scattered radiance will increase by N2 , if the particles are sparsely packed and all the

particles can be illuminated by the incident beam. As shown in panel C of Figure 4.2,

the phase shifts with different incident directions will not be the same for non-spherical

particles because of the phase lag difference along different light paths. However, the

difference is again quite small and the scattered waves will behave quite coherently. In

addition, we can see that from panel B of Figure 4.2, with a complex refractive index, the

relative phase goes to π/2 more quickly with increased sizes due to absorption. Thus we

can expect more coherent effects with stronger absorption.

4.2.2 Coherent forward scattering and multiple scattering

Since the phase shift deviation for single particles is small, the effects of the filling

particles on the forward scattering were investigated for an ensemble of particles. We put

100 small particles with random positions into an imaginary spherical volume with radius

R=2um. The incident wavelength is 0.435um and all the small particles have the same

refractive index n=1.244+0.013i. Numerically exact methods, MSTM for spheres and

ADDA for non-spherical particles, are used to calculate the Mueller Matrix components
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Figure 4.3: Mueller Matrix components for 100 spheres in a spherical volume with radius
R=2um, incident wavelength λ=0.435um, refractive index n=1.244+i0.013 and volume
fraction 0.057. In the left figure, identical size means all the spheres have the same radius
0.166um; the Gaussian size distribution has an average radius 0.166um and standard devi-
ation 0.07um; the uniform distribution over the interval [0.096, 0.236] also has an average
radius 0.166um. In the right figure, the filling particles are all the same in size for each
case. They all have an effective radius r=0.166um (the effective radius is defined as the ra-
dius of an equivalent sphere with the same volume as the particle), but they have different
shapes and orientations.
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of the system. The results are shown in Figure 4.3. In the left figure, the filling particles are

all spheres with same average radius r=0.166um, but they have different size distributions.

In the first case, the spheres have the same size; in the second case, the spheres have a

Gaussian size distribution; in the third case, the spheres are uniformly distributed. We

define the effective radius or the effective size of a particle as the radius of an equivalent

sphere with the same volume as the particle. In the right figure, the filling particles are all

the same in effective radius (r=0.166um) but they have different shapes and orientations.

We can see that for the 7 different cases, the ensembles of particles have the same forward

phase function peak, regardless of the size distribution, the shape as well as the orientation

of the filling particles. This can be explained by the fact that the forward scattered waves of

individual particles are completely coherent and they will add together coherently. Thus

the forward scattering of an ensemble of particles is dominated by the coherent effect,

the intensity distribution of which depends on the effective size but is independent of the

internal particle composition.

In the chromatophore cell, the surrounding muscle fibers can change the chromato-

some density by manipulating the cell to expand or contract. We simulate the density

changing by putting different number of chromatosomes into a fixed-sized spherical vol-

ume. Again the incident wavelength is 0.435um and all the chromatosomes have the same

refractive index n=1.244+0.013i. The results are shown in Figure 4.4A. When the num-

ber of chromatosomes N is smaller than 200, which means the volume fraction is smaller

than 10%, both the forward amplitude S(0) and the scattering cross section σ will change

linearly with N. In this case, the chromatosomes are far apart from each other and the

scatterings are approximately independent. A volume fraction of 10% means the average

particle distance is about twice the particle diameter; this agrees with the criterion for in-

dependent scattering in [14]. However, as N increases and the particles are close to each

other (volume fraction larger than 20%), both S(0) and σ are no longer linearly propor-
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Figure 4.4: Forward amplitude values versus the volume fraction. All the values are nor-
malized by the value for a single sphere. (A) Chromatophore cell, simulated by a spherical
volume (R=2um) filled with chromatosomes (r=0.166um): λ=0.435 um, n=1.244+i0.013.
(B) Blood system, simulated by a spherical volume (R=18um) filled with spherical ery-
throcytes (r=2.646um): λ=0.376 um, n=1.0226+i0.001.

tional to N, instead they will approach some upper bound. This can be interpreted as a

multiple-scattering effect: particles occult other particles along the beam path by attenu-

ating the incident light. Similar results for the blood system are shown in Figure 4.4B.

At quite different size scales, the same conclusions can be drawn here. As the number of

erythrocytes N becomes larger than 40, multiple scattering begins to have an impact. In

total, an ensemble of N particles will produce a scattered radiance of N2 times that for a

single particle when the volume fraction is smaller than 10%, however, the scattered radi-

ance will reach a plateau as a result of multiple-scattering when the particles are closely

packed.

Specifically, Mueller matrix components for chormatophore cells with four different

filling densities were calculated to study both the forward scattering and the multiple scat-

tering effects. The results are compared with results both from the RT model and from

the EMT method, as shown in Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8. In Fig-
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ure 4.5 and Figure 4.6, when the chromatosomes are packed sparsely, the reduced Mueller

matrix elements for the Monte Carlo and the MSTM are exactly the same, and the phase

functions agree very well except for a forward coherent peak (angle width about 10o) in

the MSTM result. Note that light beams used in the RT model are treated as non-coherent

since the phase of each scattering is ignored, while in MSTM all coherence effects are

accounted for. The forward scattering peak, which causes the only difference, is just a co-

herent effect caused by strong constructive interference. This tells us that the independent

scattering approximation is valid and the Monte Carlo method is a feasible, simple simu-

lation method when the volume fraction is small. However, as volume fraction increases

(larger than 10%, as shown in Figure 4.7 and Figure 4.8), the angle widths of the forward

coherent peaks will increase (to about 20o) and a deviation between the two results be-

gins to appear. This is because multiple scattering becomes important and it changes the

features of the Mueller matrix components. Especially, we can see that P22/P11 deviates

further from unity as the volume fraction increases. An interesting result is that the EMT

method and the MSTM method give the same forward scattering patterns. This again can

be explained by the fact that the scattering is dominated by the diffraction pattern near the

forward direction, the intensity distribution of which depends primarily on the effective

size but is independent of the particle configurations.

Multiple scattering by particles in the volume makes the scattering properties deviate

from single scattering. But what is the limit and when will the volume behave like a

single homogeneous particle? We kept the filling volume fraction of the spherical volume

the same but changed the size of the filling spheres. The Mueller matrix components for

different cases are compared in Figure 4.9). We have the same forward pattern since all

cases share the same effective size. Note those sharp oscillation peaks in the phase function

pattern in the EMT Lorenz-Mie result is the unique feature of sphere scattering, which are

caused by interference of the beams travelling inside the sphere since the sphere has the
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Figure 4.5: Comparison between Mueller matrix components of 50 small spheres
(r=0.166um) in an imaginary spherical volume (R=2um), calculated by MSTM method
and Monte Carlo method. λ=0.435 um, n=1.244+i0.013. Volume fraction=2.8%, optical
depth along a diameter τ=0.1754.
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Figure 4.6: Comparison between Mueller matrix components of 100 small spheres
(r=0.166um) in an imaginary spherical volume (R=2um), calculated by MSTM method
and Monte Carlo method. λ=0.435 um, n=1.244+i0.013. Volume fraction=5.7%, optical
depth along a diameter τ=0.3508.
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Figure 4.7: Comparison between Mueller matrix components of 200 small spheres
(r=0.166um) in an imaginary spherical volume (R=2um), calculated by MSTM method
and Monte Carlo method. λ=0.435 um, n=1.244+i0.013. Volume fraction=11.4%, optical
depth along a diameter τ=0.7016.
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Figure 4.8: Comparison between Mueller matrix components of 400 small spheres
(r=0.166um) in an imaginary spherical volume (R=2um), calculated by MSTM method
and Monte Carlo method. λ=0.435 um, n=1.244+i0.013. Volume fraction=22.8%, optical
depth along a diameter τ=1.4033.
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Figure 4.9: Comparison between Mueller matrix components of a spherical volume
(R=2um) filled with different-sized small spheres: the volume fraction is fixed at 22.8%,
λ=0.435 um and n=1.244+i0.013.
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highest level of symmetry. When the filling particles are large, the spherical volume isn’t

a continuum but instead it consists of a collection of discrete spheres, and therefore we

shouldn’t expect to see these sharp resonances which occur for a homogeneous sphere.

However, as the filling spheres become smaller, it will become harder for the incident light

to distinguish these discrete particles. With the radius of the small spheres r=0.035um as

shown in the blue curve in Figure 4.9), the Muller matrix components display the same

oscillations peaks. We can expect the spherical volume will behave more like a single

homogeneous particle with even smaller filling spheres, just like a sphere composed of

dipoles in the ADDA method. Unfortunately, organic particles in human or animal tissues

typically have a size much larger than 0.035um, therefore, we couldn’t use the simple

EMT method to simulate the multiple scattering of the composite media.

4.2.3 Partially coherent beam

As the forward scattering patterns are mainly caused by the constructive interference

which originates from the complete coherence of the forward scattered beam, it is instruc-

tive to study what will happen when partially coherent beams are incident. There are two

important characteristic lengths compared with the coherence length of the incident light

for a volume of particles: the size of single particle and the size of the volume. Thus the

Mueller matrix components were calculated for both a single sphere and an ensemble of

spheres with partially coherent incident beams of different coherence lengths.

We will study this for a single sphere for an incident wave of λ=0.435um, and refrac-

tive index n=1.244+i0.013, and we will consider two different cases: a sphere with radius

much smaller than the wavelength (r=0.166um, similar to the chromatosome) and a sphere

with radius much larger than the wavelength (r=2.17um, similar to the erythrocyte). For

the first case, as shown in Figure 4.10, we can see the coherence length plays an impor-

tant role in determining the scattering patterns. With a large coherence length σµ=4λ ,
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Figure 4.10: Comparison between Mueller matrix components of single small sphere
(r=0.166um) calculated by the DDA method with partially coherent incident beams of
different coherence lengths. λ=0.435 um, n=1.244+i0.013.
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Figure 4.11: Comparison between Mueller matrix components of a single large sphere
(r=2.17um=5λ) calculated by the DDA method with partially coherent incident beams of
different coherence lengths. λ=0.435 um, n=1.244+i0.013.
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the results approach the coherent case. As the incident field becomes less coherent, the

Mueller Matrix components become smoother and more isotropic and start to lose their

features. When σµ=r, both the forward and backward peaks in the phase function vanish

and other Mueller Matrix components deviate significantly from the coherent case. How-

ever, for the case where the sphere is much larger than the incident wavelength, as shown

in Figure 4.11, the influence of coherence length is dramatically different. As the coher-

ence of the incident light deteriorates, the overall curves for Mueller Matrix components

are almost the same except that the forward and backward phase function peaks become

smaller and the oscillation peaks are smoothed out. Since all the peaks are consequences

of coherent interference, it?s reasonable to expect this behavior when coherence is lost. In

the atmosphere, many water droplets and ice crystals have an effective radius over 100um,

which is larger than 60um, the coherence length of the sunlight. The scattering peaks will

be weakened comparing with the coherent case. However, considering the large coher-

ence length of the sunlight, the overall scattering pattern will be the same. As calculated

by Jianping [51], we can still expect the rainbows and glories for spherical raindrops, and

the halos for hexagonal ice crystals.

For a volume of small spheres, we again used the chromatophore cell as an example.

A chromatophore cell (R=2um) is filled with 50 chromatosomes (r=0.166um), the incident

wavelength is λ=0.435um, the refractive index is n=1.244+i0.013, and the volume frac-

tion is about 3%. The results are shown in Figure 4.12. The P11 forward peak values will

decrease dramatically with decreased σµ due to lack of coherence in the incident beam.

Also as σµ decreases, other Mueller Matrix components features will be smoothed out, as

a consequence of Rayleigh single scattering by the chromatosome. Therefore, the coher-

ence length impacts the scattering patterns a great deal for an ensemble of small spheres

when the coherence length is comparable with the size of the filling particles. Thus we

must be very careful when we make measurements or simulations for this kind of system
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Figure 4.12: Comparison between Mueller matrix components of a chromatophore cell
(R=2um) filled with 50 chromatosomes (r=0.166um, volume fraction=0.028), calculated
by DDA method with partially coherent incident beams of different coherence lengths and
Monte Carlo method. λ=0.435 um, n=1.244+i0.013.
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Figure 4.13: Comparison between Mueller matrix components with partially coherent
incident beams of different coherence lengths, for a circular area (R=20um) filled with
100 disks (r=0.166um, the area fraction is 0.01). λ=0.435 um, n=1.244+ i0.013.
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considering partially coherent beam incidence. In reality, the sizes of the scattering media

are always very large, at least much larger than both the incident wavelength and the size

of the included particles. To account for this, we need to increase the media volume size to

better simulate the actual situation. We next wanted to expand the size of the spherical vol-

ume. Due to the speed limitation of the DDA code, we tried the simpler two-dimensional

case and considered a circular area (R=20um) filled with 100 disks (r=0.166um). The area

fraction is about 1% and everything else is the same as before. The results are shown in

Figure 4.13. Except for the dramatically decreased forward peak as a result of decreased

coherence, the reduced effective Mueller matrix components as well as the phase function,

agree perfectly with the Monte Carlo results. This can be explained by the fact that only

scattered waves by particles in the coherent volume will interact coherently and the sparse-

ness of the filling particles makes the interaction similar as incoherent multiple scattering

in the RT model. Given that the overall patterns for single large spheres are almost the

same for different coherence lengths and multiple scattering once again washes out the

single scattering features, we can expect the result for a large ensemble of large particles

will agree with the RT result. Thus, with low volume fraction and large size of the filling

particles, the Monte Carlo results match the DDA results when incident with a partially

coherent beam. Actually, the scattering of aerosols in the atmosphere and hydrosols in the

ocean is just such a case. They are distributed so sparsely in the atmosphere with large

sizes compared with the sunlight. This is the reason why RT model virtually always works

well for atmospheric and oceanic simulations. In addition, we can still observe the similar

forward phase function diffraction patterns, only with different amplitudes for different

coherence lengths.
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4.3 Conclusion

The relative phase shifts of forward amplitude for single particles range in [0, π/2] and

thus the scattered waves in the forward direction always have some degree of coherence.

Especially, if the particles sizes are close to each other, the relative phase shifts will be

almost the same and the forward coherent peak values of the ensemble are dependent on

the effective sizes of included particles but independent of their shapes, size distributions

and orientations. For an ensemble of particles, the forward amplitude S(0) changes linearly

with small number of the scatterers, but it will saturate as a result of multiple scattering

effect when more scatterers are in the ensemble; independent scattering is valid when

volume fraction is small, while multiple scattering will make the scattering deviate more

from the single scattering as volume fraction become larger. The EMT theory fails to

get the scattering patterns since the organic particles aren’t small enough to make the

scattering medium a continuum. The forward phase function peak is an effect of coherent

interference and of course with decreased coherent lengths of the incident wave, the peak

will decrease sharply as a result of incoherence. For an ensemble of big particles of low

filling volume fraction with partially coherent beam incidence, the Monte Carlo method

(or RT model) can give matched results with analytical results since the forward coherent

peak vanishes and scattering events are independent. While additional attention should be

paid when dealing with a volume of small particles since the increased incoherence will

smooth out most scattering patterns.
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5. CONCLUSIONS

In this dissertation, we first introduced the general terminologies and concepts that are

often used to describe the light scattering problem. Then we simulated the underwater

polarized light field using a Backward Monte Carlo method and studied the effect of both

coherent and incoherent beams for particulate media in biological tissues.

In Chapter 3, we have developed a backward Monte Carlo Vector method for the

atmosphere-ocean system, which can be used not only to study ocean polarization but

also to simulate underwater imaging. Polarization information contains a lot of useful

information about the surrounding light field. Especially, for a weak scattering case, we

obtained the very sharp and clear underwater image from the DOP information while ra-

diance image only tells the four blurred spheres. Sometimes polarization itself can convey

more surrounding information than the radiance. Thus it’s a good option to use the light

polarization to improve the underwater imaging. Since many marine animals are sensitive

to polarization, the extended study of their ability to detect and to utilize light polarization

in the ocean is of great application potential. This code can also be used to simulate po-

larized light field scattering in other circumstances, such as to detect a tumor in healthy

tissues and to make a 3D light field animation in the real world. In the future, we can in-

clude a dynamic surface in the code to study the impact of ocean waves on the underwater

imaging and remote sensing.

In Chapter 4, We have studied both forward and multiple scattering for granular media

in many biological organisms. The scattering in the forward direction is always coherent,

regardless of the shapes, the sizes, as well as the orientations of scatterers, which will result

in a big forward scattering peak for an ensemble of particles. With decreased coherence

lengths of the incident wave, the phase function forward peak will decrease due to lost
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coherence. For sparsely packed particles inside a large volume, for example, aerosols

in the atmosphere, with decreased coherence lengths of the incident wave, the multiple

scattering can be approximated by radiative transfer theory since only particles inside the

coherence volume will add coherently and the non-coherent treatment is valid. However,

approximating an organism by a homogeneous medium with the EMT theory is not valid

since the organic particles are too large to make the scattering medium a continuum.

78



REFERENCES

[1] Gilbert, G. D. & Pernicka, J. C. Improvement of underwater visibility by reduction

of backscatter with a circular polarization technique. Applied Optics 6, 741–746

(1967).

[2] Cariou, J., Le Jeune, B., Lotrian, J. & Guern, Y. Polarization effects of seawater and

underwater targets. Applied Optics 29, 1689–1695 (1990).

[3] Chang, P., Walker, J., Hopcraft, K., Ablitt, B. & Jakeman, E. Polarization discrim-

ination for active imaging in scattering media. Optics Communications 159, 1–6

(1999).

[4] Walker, J. G., Chang, P. C. & Hopcraft, K. I. Visibility depth improvement in active

polarization imaging in scattering media. Applied Optics 39, 4933–4941 (2000).

[5] Chang, P. C. et al. Improving visibility depth in passive underwater imaging by use

of polarization. Applied Optics 42, 2794–2803 (2003).

[6] Waterman, T. H. Polarization patterns in submarine illumination. Science 120, 927–

932 (1954).

[7] Walraven, R. Polarization imagery. Optical Engineering 20, 200114–200114 (1981).

[8] Flamarique, I. N. & Hárosi, F. I. Visual pigments and dichroism of anchovy cones:

a model system for polarization detection. Visual Neuroscience 19, 467–473 (2002).

[9] Shashar, N. et al. Underwater linear polarization: physical limitations to biological

functions. Philosophical Transactions of the Royal Society B: Biological Sciences

366, 649–654 (2011).

[10] Shashar, N., Hagan, R., Boal, J. G. & Hanlon, R. T. Cuttlefish use polarization

sensitivity in predation on silvery fish. Vision Research 40, 71–75 (2000).

79



[11] Mäthger, L. M. & Hanlon, R. T. Anatomical basis for camouflaged polarized light

communication in squid. Biology Letters 2, 494–496 (2006).

[12] Chiou, T.-H. et al. Circular polarization vision in a stomatopod crustacean. Current

Biology 18, 429–434 (2008).

[13] Chandrasekhar, S. Radiative transfer (Courier Corporation, 2013).

[14] Mishchenko, M. I., Travis, L. D. & Lacis, A. A. Scattering, absorption, and emission

of light by small particles (Cambridge University Press, 2002).

[15] Twomey, S., Jacobowitz, H. & Howell, H. Matrix methods for multiple-scattering

problems. Journal of Atmospheric Sciences 23, 289–298 (1966).

[16] Plass, G. N., Kattawar, G. W. & Catchings, F. E. Matrix operator theory of radiative

transfer. 1: Rayleigh scattering. Applied Optics 12, 314–329 (1973).

[17] Kattawar, G. W., Plass, G. N. & Catchings, F. E. Matrix operator theory of radiative

transfer. 2: Scattering from maritime haze. Applied Optics 12, 1071–1084 (1973).

[18] Zhai, P.-W. et al. A vector radiative transfer model for coupled atmosphere and ocean

systems with a rough interface. Journal of Quantitative Spectroscopy and Radiative

Transfer 111, 1025–1040 (2010).

[19] O’Brien, D. Accelerated quasi monte carlo integration of the radiative transfer equa-

tion. Journal of Quantitative Spectroscopy and Radiative Transfer 48, 41–59 (1992).

[20] Sánchez, A., Smith, T. & Krajewski, W. A three-dimensional atmospheric radiative

transfer model based on the discrete-ordinates method. Atmospheric Research 33,

283–308 (1994).

[21] Haferman, J. L., Smith, T. F. & Krajewski, W. F. A multi-dimensional discrete-

ordinates method for polarized radiative transfer. part i: validation for randomly ori-

80



ented axisymmetric particles. Journal of Quantitative Spectroscopy and Radiative

Transfer 58, 379–398 (1997).

[22] Chen, Y., Liou, K. & Gu, Y. An efficient diffusion approximation for 3d radiative

transfer parameterization: application to cloudy atmospheres. Journal of Quantita-

tive Spectroscopy and Radiative Transfer 92, 189–200 (2005).

[23] Zhai, P.-W., Kattawar, G. W. & Yang, P. Impulse response solution to the three-

dimensional vector radiative transfer equation in atmosphere-ocean systems. i. monte

carlo method. Applied Optics 47, 1037–1047 (2008).

[24] Zhai, P.-W., Kattawar, G. W. & Yang, P. Impulse response solution to the three-

dimensional vector radiative transfer equation in atmosphere-ocean systems. ii. the

hybrid matrix operator–monte carlo method. Applied Optics 47, 1063–1071 (2008).

[25] You, Y., Zhai, P.-W., Kattawar, G. W. & Yang, P. Polarized radiance fields under

a dynamic ocean surface: a three-dimensional radiative transfer solution. Applied

Optics 48, 3019–3029 (2009).

[26] Cloney, R. A. & Florey, E. Ultrastructure of cephalopod chromatophore organs. Cell

and Tissue Research 89, 250–280 (1968).

[27] Messenger, J. B. Cephalopod chromatophores: neurobiology and natural history.

Biological Reviews 76, 473–528 (2001).

[28] Bosschaart, N., Edelman, G. J., Aalders, M. C., van Leeuwen, T. G. & Faber, D. J.

A literature review and novel theoretical approach on the optical properties of whole

blood. Lasers in Medical Science 29, 453–479 (2014).

[29] Mishchenko, M. I., Travis, L. D. & Lacis, A. A. Multiple scattering of light by par-

ticles: radiative transfer and coherent backscattering (Cambridge University Press,

2006).

81



[30] Deravi, L. F. et al. The structure–function relationships of a natural nanoscale pho-

tonic device in cuttlefish chromatophores. Journal of The Royal Society Interface 11,

20130942 (2014).

[31] Sydoruk, O., Zhernovaya, O., Tuchin, V. & Douplik, A. Refractive index of solutions

of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-kronig

analysis. Journal of Biomedical Optics 17, 115002–115002 (2012).

[32] Mie, G. Articles on the optical characteristics of turbid tubes, especially colloidal

metal solutions. Ann. Phys 25, 377–445 (1908).

[33] Draine, B. T. The discrete-dipole approximation and its application to interstellar

graphite grains. The Astrophysical Journal 333, 848–872 (1988).

[34] Yurkin, M. A. & Hoekstra, A. G. The discrete dipole approximation: an overview and

recent developments. Journal of Quantitative Spectroscopy and Radiative Transfer

106, 558–589 (2007).

[35] Yee, K. S. et al. Numerical solution of initial boundary value problems involving

maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag 14, 302–307

(1966).

[36] Yang, P. & Liou, K. Finite-difference time domain method for light scattering by

small ice crystals in three-dimensional space. JOSA A 13, 2072–2085 (1996).

[37] Johnson, B. R. Invariant imbedding t matrix approach to electromagnetic scattering.

Applied Optics 27, 4861–4873 (1988).

[38] Bi, L., Yang, P., Kattawar, G. W. & Mishchenko, M. I. Efficient implementation

of the invariant imbedding t-matrix method and the separation of variables method

applied to large nonspherical inhomogeneous particles. Journal of Quantitative Spec-

troscopy and Radiative Transfer 116, 169–183 (2013).

82



[39] Ishimaru, A. Wave propagation and scattering in random media, vol. 2 (Academic

Press New York, 1978).

[40] Mackowski, D. & Mishchenko, M. A multiple sphere t-matrix fortran code for use

on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative

Transfer 112, 2182–2192 (2011).

[41] Wolf, E. Introduction to the theory of coherence and polarization of light (Cambridge

University Press, 2007).

[42] Shirai, T., Dogariu, A. & Wolf, E. Mode analysis of spreading of partially coherent

beams propagating through atmospheric turbulence. JOSA A 20, 1094–1102 (2003).

[43] Gbur, G. & Wolf, E. Spreading of partially coherent beams in random media. JOSA

A 19, 1592–1598 (2002).

[44] Bohren, C. F. & Huffman, D. R. Absorption and scattering of light by small particles

(John Wiley & Sons, 2008).

[45] Hulst, H. C. & van de Hulst, H. C. Light scattering by small particles (Courier

Corporation, 1957).

[46] Anderson, D. G. & Barakat, R. Necessary and sufficient conditions for a mueller

matrix to be derivable from a jones matrix. JOSA A 11, 2305–2319 (1994).

[47] Fry, E. S. & Kattawar, G. W. Relationships between elements of the stokes matrix.

Applied Optics 20, 2811–2814 (1981).

[48] Henyey, L. G. & Greenstein, J. L. Diffuse radiation in the galaxy. The Astrophysical

Journal 93, 70–83 (1941).

[49] Mobley, C. D. Light and water: radiative transfer in natural waters (Academic

Press, 1994).

83



[50] Zege, E. P., Polonsky, I. N. et al. Multicomponent approach to light propagation in

clouds and mists. Applied Optics 32, 2803–2812 (1993).

[51] Liu, J., Bi, L., Yang, P. & Kattawar, G. W. Scattering of partially coherent electro-

magnetic beams by water droplets and ice crystals. Journal of Quantitative Spec-

troscopy and Radiative Transfer 134, 74–84 (2014).

84


