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ABSTRACT 

 

This study presents an integrated hybrid data-driven and model-based approach to 

detecting abnormal driving conditions. Vehicle data (e.g., velocity and gas pedal 

position) and traffic data (e.g., positions and velocities of cars nearby) are proposed for 

use in the detection process. In this study, the abnormal driving condition mainly refers 

to unintended acceleration (UA), which is the unintended, unexpected, uncontrolled 

acceleration of a vehicle. It is often accompanied by an apparent loss of braking 

effectiveness. UA has become one of the most complained-about vehicle problems in 

recent history.  

The data-driven algorithm aims to use historical data to develop a model that 

describes the boundary between normal and abnormal vehicle behavior in the vehicle 

data space. At first, several detection models were created by analyzing historical 

vehicle data at specific moments such as acceleration peaks and gear shifting. After that, 

these models were incorporated into a detection system. The system decided if a UA 

event had occurred by sending real-time vehicle data to the models and comprehensively 

analyzing their diagnostic results. Besides the data-driven algorithm, a driver model-

based approach is proposed. An adaptive and rational driver model based on game 

theory was developed for a human driver. It was combined with a vehicle model to 

predict future vehicle behavior. The differences between real driving behavior and 

predicted driving behavior were recorded and analyzed by the detection system. An 

unusually large difference indicated a high probability of an abnormal event.  
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Both the data-driven approach and the model-based approach were tested in the 

Simulink/dSPACE environment. It allowed a human driver to use analog steering wheels 

and pedals to control a virtual vehicle in real time and made tests more realistic. Vehicle 

models and traffic models were created in dSPACE to study the influences of UA and 

ineffective brakes in various roadway driving situations. Test results show that the 

integrated system was capable of detecting UA in one second with high accuracy. 

Finally, a brake assist system was designed to cooperate with the detection system, 

which reduced the risk of accidents. 
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NOMENCLATURE 
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ECU Electronic Control Unit 
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ETC Electronic Throttle Control 
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MLP Multilayer Perceptron 

MPC                         Model Predictive Control 
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TN True Negative 
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1. INTRODUCTION 

 

1.1 Background 

Automotive electronics have evolved enormously over the past decades. Numerous 

powerful electronic control units (ECUs) were developed to equip modern vehicles, 

which made driving much easier and more comfortable. As can be expected, a growing 

number of autonomous vehicles or partially autonomous vehicles will come to the 

market in the next few decades [1]. However, driving is an inherently complex task and 

cars can be very dangerous if not handled properly. As the intelligence level of vehicles 

increases, people gradually lose direct control of vehicles and raise worries about the 

safety and reliability of vehicle systems. 

One of the typical problems related to electronic systems is unintended acceleration 

(UA). The US National Highway Traffic Safety Administration (NHTSA) defines UA as 

“the occurrence of any degree of acceleration that the vehicle driver did not purposely 

cause to occur.” An apparent loss of braking effectiveness often happened at the same 

time [2]. UA first came to public attention due to its higher-than-usual occurrence as 

reported by drivers [3]. It has been a serious problem across the auto industry for many 

years. Audi cars received an unusually large number of complaints about UA in the 

1980s. However, Audi and other vehicles manufactured at that time had comparatively 

few electronics systems and used mechanical throttle control. NHTSA attributed the 

cause of Audi’s problems to drivers’ misapplication [4].  
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Figure 1.1 Unintended acceleration complaints [5] 

In contrast to traditional simple and straightforward mechanical control systems, 

electronic systems have become more and more popular in vehicles in the past 25 years. 

One of the widespread systems is the electronic throttle control (ETC) system. 

Unfortunately, the promotion of ETC was accompanied by an increasing number of 

complaints about UA problems, which was doubted to be caused by software or other 

electronic failure. The National Aeronautics and Space Administration (NASA) and 

NHTSA conducted several analyses to study the cause of UA, as shown in Figure 1.1. 

Four major factors were deduced including pedal misapplication, unresponsive pedals, 

electronic throttle control or cruise control failure and stuck throttle. Pedal 

misapplication was concluded to be the most plausible reason. However, the possibility 

of vehicle defects still could not be ruled out [6, 7]. Mariani [8] claimed that soft errors 

should be considered for drive-by-wire automotive components. Koopman [9] argued 

that software bugs such as excessive use of global variables, concurrency bugs and race 

conditions could also be the cause of UA. Sood et al. [10, 11] stated that shorting of tin 
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whiskers could be a cause of UA. ETC is not the only widely used electronic system that 

has received a large number of complaints. With continued emergence of novel 

intelligent systems and people’s growing dependence on them, fault detection, isolation 

and recovery (FDIR) has become vitally important. A well-designed vehicle should be 

able to find the causes of potential problems in real time and take action to prevent 

accidents. 

1.2  Objective 

 

 

Figure 1.2 Schematic architecture for driving condition identification 

The objective of this project is to develop an integrated hybrid model-based and 

data-driven approach to detecting abnormal driving conditions, as illustrated in Figure 

1.2. Vehicle data (e.g., velocity, yaw rate and throttle position) and traffic data (e.g., 

velocities of cars nearby and space headway) are proposed for use in the detection 

process. In this task, the abnormal driving condition mainly refers to UA. 

As one of the most complained-about problems in recent history, UA has drawn 

wide public attention and raised worries of vehicle safety. While human actions are 

involved in UA events, behavior of vehicular systems and human-vehicle interaction 
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also play an important role and need to be analyzed. This task aims to further study the 

causation of UA events and create corresponding detection and mitigation systems. 

Some findings from this research can also be extended to the emerging autonomous 

vehicle technology domain. 

1.3 Literature review 

Intelligent and electronic vehicle systems have been developed rapidly over the past 

few decades, and it is still a dominant trend of future vehicles. With the gradual 

transition from manual control to smart control, improvement of reliability and safety 

has become increasingly important. Automatic fault diagnosis systems need to be well-

designed to identify abnormal vehicle behavior in real time. A lot of research has been 

done to study fault diagnosis algorithms for automotive components. In particular, it is 

possible to efficiently collect and use traffic data in traffic modelling, remote monitoring 

and wireless diagnosis with the rapid development of intelligent transportation systems 

(ITS) [12, 13]. In the following sections, previous studies about fault diagnosis, vehicle 

systems related to UA, driver models and game theory are reviewed respectively. 

1.3.1 Fault diagnosis 

Fault diagnosis is an important and challenging task in various disciplines. Extensive 

efforts have been devote to this field. Generally speaking, fault diagnosis consists of 

three tasks. The first one is fault detection. The occurrence of faults in the functional 

units, which results in undesired behavior of the system, should be detected. The second 

task is fault isolation, which aims to identify the position and type of the fault. The third 

task is recovery. It allows the system to continue operation to a level of satisfaction 
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when a fault occurs [14]. 

 

Figure 1.3 Fault diagnosis methods 

Numerous fault diagnosis algorithms have been proposed in the past decades [15-

17]. A rough classification of these algorithms is shown in Figure 1.3. These methods 

can be classified into four categories, which are plausibility check, hardware 

redundancy, analytical redundancy and signal processing. Plausibility check analyzes if 

a process component obeys some simple physical laws. For example, a system state is 

usually monitored by one sensor. A threshold of this state value is set according to 

experience and a fault is considered to occur when the state value exceeds the threshold. 
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This method is popular because of its simplicity and reliability. It is extensively used in 

the on-board diagnostic system (OBD), which was designed to maintain low-emissions 

of in-use vehicles. However, it can only detect large faults and does not allow a deep 

insight into the process behavior [18]. In addition, UA is a multi-dimensional problem, 

which is influenced by gas pedal positions, brake pedal positions, road grades and so on. 

An error may occur when all the state values stay within their own normal ranges. 

Hence, limit value checking is not a good choice for detecting UA. Hardware 

redundancy is another traditional way to diagnose faults. It reconstructs process 

components (i.e. sensors and actuators) using identical components. It is concluded that 

an error has occurred if process components and redundant components have different 

outputs. This method has high reliability, but its cost is relatively too high. Therefore, 

hardware redundancy is not very popular and it is only used in certain key components 

(e.g., the actuator of an air pressure regulator of an airplane). 

To conduct in-depth fault diagnosis, a model-based fault diagnosis approach was 

proposed in the early 70’s and great progress has been made since then. Basically, a 

process model of the system is usually created first, as shown in Figure 1.4. 

Subsequently, algorithms are applied to processing real-time data and diagnosing faults 

based on the model [19]. Würtenberger et al. [20] proposed a method to supervise 

vehicle motion using a discrete parity space. Moseler et al. [21] presented a parameter 

estimation technique for fault detection on a brushless dc motor. This method usually 

relies on a highly developed model, which can represent the complete system dynamics, 

e.g., models of electric motors. However, a vehicle’s acceleration is affected by multiple 
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factors, e.g., environmental conditions and engine status. It is quite difficult to build a 

process model for all the vehicle systems related to UA. First of all, engines and tires are 

difficult to model accurately. Furthermore, ECUs, which may be the most important 

parts of modern vehicles, are often kept as commercial secrets and very difficult to 

model. Finally yet importantly, it is computationally complex to simulate the whole 

vehicle in real time. In summary, it is difficult to model the complete driving loop 

accurately in real time. Nevertheless, a combination of driver models and simplified 

vehicle models is still useful for evaluating the vehicle’s status.  

 

 

Figure 1.4 Model-based fault diagnosis 

In contrast to the physical model-based fault diagnosis methods, data driven methods 

are based on a large amount of process data, including both historical data and online 

measurement data [22].  It mainly consists of two steps. The first step is training, in 

which the historical data sets are processed and transformed to a diagnostic system or 

algorithm. The second step is online running, in which data are collected and processed 

in the diagnostic system in real time for reliable fault diagnosis. In addition to these 

algorithms, signal processing based approaches are also widely used in fault diagnosis 
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[23-25]. It assumes that certain process signals carry the information about faults and the 

information can be obtained after processing signals properly. Symptoms are generated 

in the time domain (e.g., mean values and amplitudes) or frequency domain (e.g., power 

spectral density). Signal processing based algorithms are usually applied to the processes 

in the steady state.  

Fault diagnosis algorithms have been widely used in the automotive field [26]. 

Schmidt et al. [27] built a framework to enable vehicles to communicate with other 

vehicles in the vicinity, using Vehicular Ad-Hoc Networks. Vehicles were classified as 

trustworthy, untrustworthy or neutral in regards to traffic safety. Sang et al. [28] 

identified abnormal behavior by performing video-based detection and creating an 

information chain of tracked vehicles. Bouttefroy et al. [29] introduced a paradigm for 

abnormal behavior detection, relying on the integration of contextual information in 

Markov random fields. This technique models the local density of object feature vector 

and leads to simple and sophisticated criterion for behavior classification. Chen et al. 

[30] presented an approach to detect potential ECU application software abnormal 

behavior based on the Mahalanobis Distance, the Mahalanobis-Taguchi System and 

vehicle driving data playback capability with a simulator. Jeppesen et al. [31] 

demonstrated an observer-based technique for monitoring an active suspension control 

system. Several observers were created for vehicle subsystems and the observer 

residuals were normalized and combined to perform fault diagnosis. 

1.3.2 Vehicle systems related to UA 

A growing number of electronic systems have been added to automobiles in the past 
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twenty-five years. While the vehicle becomes increasingly intelligent, the safety and 

reliability of these electronic components become more and more important.  

 

 

Figure 1.5 Electronic throttle control system 

One of the widely used vehicle electronic systems is ETC system. ETC is a drive-by-

wire technology which connects the gas pedal to the throttle electronically [32], as 

shown in Figure 1.5. An ETC system usually consists of three major parts: (1) a gas 

pedal module, (2) a throttle valve which can be controlled by an electric motor and a 

throttle position sensor (TPS), (3) an engine control module (ECM) [33]. ETC aims to 

make the vehicle power-train characteristics seamlessly consistent regardless of 

conditions such as engine temperature. It is also capable of adjusting throttle positions 

irrespective of the driver’s gas pedal positions. This feature facilitates the integration of 

other electronic systems, which need torque management such as cruise control system 

and ESC system. However, ETC was criticized since it overruled driver decisions. Its 

safety and reliability has been suspected.  
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Michael Barr worked as an expert witness and testified in the Toyota UA litigation. 

He analyzed Toyota’s ETC source code and concluded that the code was defective and 

contained bugs, which could cause UA [34]. Single bits in memory controlled each task. 

Therefore, hardware or software faults could result in bit flips, which suspended desired 

tasks or even started unwanted tasks. Michael Barr argued that one particular dead task 

could cause loss of throttle control and UA. The driver might have to fully remove the 

foot from the brake during UA events before being capable of ending UA, which was 

confirmed in tests. In addition, mirroring was used to protect variables against software- 

and hardware-caused corruptions. However, he found that some critical variables were 

not mirrored. In summary, fail safes may be inadequate and misbehaviors of ETC could 

be a cause of UA [34]. 

Apart from ETC faults, the failure of cruise control and adaptive cruise control 

(ACC) can also result in UA. Cruise control is an electronic system that controls the 

speed of a vehicle automatically. It takes over the throttle control of a car to maintain a 

steady speed set by the driver. ACC goes one step future by adding automatic braking or 

dynamic set-speed type controls. The system uses a radar or laser setup to detect cars 

nearby and calculate the safe following distance. When the vehicle in front gets too 

close, the brake is controlled to let the car slow down [35]. There were complaints about 

the failure of cruise control or ACC. For instance, a jammed cruise control trapped a 

driver in his car for half an hour at it raced along the Eastern Freeway in Melbourne, 

which was very threatening [36].  

According to the traffic and accident reports, UA is often accompanied by ineffective 
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brakes [2]. A typical brake system contains a brake pedal, a pushrod, a master cylinder 

assembly, reinforced hydraulic lines and brake caliper assemblies. Many vehicles are 

also equipped with vacuum brake boosters to provide power assist to the brake system, 

as shown in Figure 1.6.  

 

 

Figure 1.6 Brake booster [37] 

A brake booster usually has two or more chambers, which are divided by flexible 

diaphragms. When the driver is not pressing the brake pedal and chambers are attached 

to the intake manifold of the engine, a two-way valve let the pressure in both chambers 

decrease. In this state, the booster stores the engine vacuum and works like a reservoir. 

When the driver presses the brake pedal, the two-way valve moves and let the vacuum 

only apply to the front. At the same time, atmospheric pressure air flows into the rear 

chamber and pushes the diaphragm. This force pushes the master cylinder piston and 
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assists braking. It can be seen that the brake booster highly relies on the engine vacuum. 

Based on the data from NHTSA [38], with depleted vacuum, it requires average of one 

hundred and seventy five pounds of force on the brake pedal to hold against wide open 

throttle. In contrast, it only needs fifteen to forty-three pounds of force with vacuum. If 

the throttle is not controlled properly, for example, it is wide open when the driver 

presses the brake pedal, it will be very difficult to stop the car, which is extremely 

dangerous. 

1.3.3 Driver model 

Driving is a complicated task and a driver is the most important component in the 

driving loop. Abnormal driving could be detected by analyzing the difference between 

the behavior of a rational driver model and the behavior of a human driver. An accurate 

driver model is drawing increasing interest from transportation researchers. Numerous 

driver models have been developed since the 1950s, including car-following models and 

lane-changing models. 

Car following is one of typical driving tasks and has been extensively studied [39-

41]. Newell [42] presented a car-following model based on the assumption that a human 

driver had a desired speed and tended to converge to this speed in an exponential 

fashion.  Tyler [43] assumed that a human driver was similar to a linear optimal 

controller which tried to minimize a quadratic cost function of range error and range rate 

error. Burnham [44] improved Tyler’s model by adding the reaction time of human 

drivers and vehicle nonlinearities. Gipps [45] presented a behavioral car-following 

model based on the assumption that each driver sets the limits of his desired braking and 
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acceleration rates. Lee et al. [46, 47] made a comparison between several classic 

longitudinal driver models and argued that the Gipps’ model had the best performance. 

They also modified the Gipps’ model by considering the reaction time of the following 

driver to the deceleration of the lead vehicle. In the modified Gipps’ model, the velocity 

of the car is given by 

   𝑉𝑛(𝑡 + 𝜏) =  𝑚𝑖𝑛

{
 
 

 
 

𝑣𝑛(𝑡) + 2.5𝑎𝑛𝜏 (1 −
𝑣𝑛(𝑡)

𝑉𝑛
)√0.025 +

𝑣𝑛(𝑡)

𝑉𝑛

𝑏𝑛𝜏 + √𝑏𝑛
2𝜏2 − 𝑏𝑛 [2[𝑥𝑛−1(𝑡) − 𝑠𝑛−1 − 𝑥𝑛(𝑡)] − 2𝑣𝑛(𝑡)𝜏 −

𝑣𝑛−1(𝑡)
2

𝑏̂
]

 (1.1) 

 

where  𝑎𝑛 is the vehicle n driver’s allowable maximum acceleration, 𝑏𝑛 is the vehicle n 

driver’s allowable maximum deceleration, 𝑏̂ is the estimated value for 𝑏𝑛−1, 𝑠𝑛−1 is the 

effective size of vehicle n, 𝑉𝑛 is the vehicle n driver's desired speed, 𝑥𝑛(𝑡) is the location 

of the front of vehicle n at time t, 𝑣𝑛(𝑡) is the speed of the vehicle n at time t.  

Besides car-following models, efforts have also been devoted to studying drivers’ 

lateral behavior [48-50]. Ahmed [51] proposed a gap acceptance model to decide if the 

adjacent gap is sufficient for lane changes. Laval et al. [52] presented an algorithm to 

capture the relaxation phenomena commonly observed in lane changes. Lane changes 

took place based on a stochastic process, whose mean value was a function of lane-

specific macroscopic quantities. Yoo et al. [53] considered the application of a 

Stackelberg game to a driver behavior model in a merging situation. Yang et al. [54] 

proposed a rule-based lane-changing model. Lane changes were classified as either 

mandatory (MLC) or discretionary (DLC). A gap acceptance model was developed to 
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decide if it was safe to change lanes. The acceptable gap decreased linearly as the driver 

got closer to the location where a MLC had to take place. Toledo et al. [55] suggested 

that the subject vehicle changed lanes when both the lead gap and lag gap were bigger 

than predefined thresholds., as shown in Figure 1.7.  

 

 

Figure 1.7 Gap acceptance model 

1.3.4 Game theory 

Game theory is “the study of mathematical models of conflict and cooperation 

between intelligent rational decision-makers” [56]. It has been extensively developed 

and applied to various disciplines since the 1950s. Besides its applications in the fields 

of economics, political science and psychology, game theory has been implemented in 

the engineering field to study human reasoning and interactions.  

In game theory, games are usually well-defined mathematical objects, which include 

the players of the game, available strategies and payoffs for outcomes. A simple example 

is demonstrated in Table 1.1. This game has two players, P1 and P2. P1 has two choices 

of strategies (i.e. a, b) and P2 has two strategies (i.e. c, d). The payoffs of combinations 

A 

S B 

C 

Lag gap  Lead gap  
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of strategies are given in the interior. The first number is the payoff for the row player 

(i.e. P1) and the second number is the payoff received by the column player (i.e. P2). A 

lot of research has been done to study particular sets of strategies called “solutions” or 

“equilibria”. A solution is a stable state in which no player can profit by unilaterally 

changing his strategy.  

Table 1.1. Nash equilibrium 

Game theory 

P2 

c d 

P1 

a 

 

6; 1 

 

4; 3 

b 5; 4 3; 2 

 

A famous solution of the non-cooperative game is the Nash equilibrium [57]. In this 

game, it is assumed that each player acts simultaneously or at least not earlier than 

players’ actions. The Nash equilibria represent strategy pairs such that no player can 

obtain a better payoff by changing their own strategy. In the game given in Table 1.1, 

arrows indicate each player’s preferred course of action.  For instance, player P1 tends to 

choose the strategy pair (a, c) instead of (b, c) because (a, c) has a higher payoff. It can 

be easily seen that the pair (a, d) is the Nash equilibrium because both players P1 and P2 

cannot benefit by unilaterally deviating from the strategies. Arrows also point to that 

strategy pair. 
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In contrast to simultaneous games, later players have a prior knowledge about earlier 

actions. These games are called sequential games. One classical solution of these kinds 

of games is the Stackelberg equilibrium [58]. A typical Stackelberg game is shown in  

Figure 1.8. In this game, P1 is the leader and acts first. The follower P2 chooses its 

strategy after that. It is assumed that the leader P1 knows that the follower P2 observes 

its action. Meanwhile, the leader also knows that the follower will not commit to a future 

non-Stackelberg follower action. Under these assumptions, it can be seen that the 

Stackelberg equilibrium of the game is (b, c). P1 knows that after it chooses strategy a, 

P2 will choose strategy d because its payoff is higher. 

 

 

Figure 1.8 Stackelberg equilibrium 

One of the main applications of game theory in the engineering field is traffic 

modelling [59]. Fisk [60] argued that two game theory models (i.e. Stackelberg game 

and Nash non-cooperative game) could be utilized in the decision-making process for 

transportation modelling. Talebpour et al. [61] presented a lane-changing model based 

P1 

 P2 P2 

 a  b 

c  d c  d 

 6; 1 4; 3  5; 4  3; 2 
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on a game-theoretical approach in a connected vehicular environment. The prediction 

capability of the model is tested and results show that the framework is able to predict 

lane-changing behavior with limitations that still need to be addressed. Alvarez et al. 

[62] proposed to model signalized intersections based on game theory and a Markov 

chain model. 

1.4 Outline of the dissertation 

The rest of this dissertation is organized as follows. Section 2 describes the 

development of the data-driven detection and mitigation system. The detection system 

was validated by both the data collected from vehicles controlled by a drive model in 

Simulink and the data collected from virtual vehicles in the dSPACE driving simulator. 

Section 3 presents a driver model-based detector for UA. A rational and adaptive driver 

model was created and its behavior was compared with the behavior of a human driver 

in real time in dSPACE. Finally, a summary of this work is given in Section 4.  
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2. DATA-DRIVEN DETECTION SYSTEM* 

 

2.1 Overview 

In this chapter, we are going to develop a data-driven method to detect UA, which 

does not need a complete prior knowledge of the vehicle structure. Its scheme is shown 

in Figure 2.1. 

 

 

Figure 2.1 Data-driven detection 

                                                 

 
*
 Reprinted with permission from "Detection of Unintended Acceleration in Longitudinal Car Following" 

by Hongtao Yu and Reza Langari, 2015. SAE International Journal of Passenger Cars-Electronic and 

Electrical Systems, Volume 8, Pages 306-313, Copyright 2015 by SAE and permission from "A Detection 

and Warning System for Unintended Acceleration" by Hongtao Yu and Reza Langari, 2015. ASME 2015 

Dynamic Systems and Control Conference, pp. V002T31A002-V002T31A002, Copyright 2015 by 

ASME. 
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Modern vehicles have a series of sensors. The data collected by these sensors form 

an n-dimensional data space. Each point in this data space represents a vehicle state. It is 

assumed that if normal vehicle behavior and abnormal vehicle behavior can be 

separated, a boundary between them can be founded in this data space or the 

transformation of this space. Since it is impossible to collect infinite data points which 

cover the whole space and even cars of the same type may have different performance 

characteristics, the objective is only to find an approximate boundary rather than the real 

boundary [63].         

The first step to build a data-driven model to define the boundary was to collect 

vehicle data. Experiments were designed and conducted in the Simulink1/dSPACE2 

environment to gather data for both normal and abnormal vehicle behavior. The data set 

was then divided into the training part and test part randomly. Features were extracted 

from the training data set and the optimal combination of features was selected to train 

data-driven models. These models were combined to formulate a detection system for 

UA. Finally, the test data set was used to validate the system. 

Besides the classification unit, a preprocessing unit and a brake assist system were 

also designed and combined to prevent accidents. A flowchart of the whole system is 

shown in Figure 2.2. At first, related vehicle signals are sampled and smoothed. 

Processed signals are sent to the classification unit in real time. If the classification unit 

doubts an error occurs, the system cuts the engine power and adjusts the braking force to 

                                                 

 
1
  Simulink is a registered trademark of The MathWorks, Inc. 

2
  dSPACE is a registered trademark of dSPACE GmbH. 
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reduce the risk of accidents. 

 

 Figure 2.2 UA detection and brake assist system 

2.2 Collect data from vehicle models in Simulink 

A large amount of representative data points are needed to create a robust data-

driven model. Efforts have been devoted to collecting and analyzing vehicle data. For 

instance, the University of Michigan Transportation Research Institute (UMTRI) has 

developed large driver-vehicle databases since the mid-1990s [64]. However, these data 

sets only contain data points from normal vehicles. If these data points cannot cover the 

whole space of normal behavior, the boundary obtained from them could deviate largely 

from the real one. In contrast, a few data points of abnormal vehicle behavior could help 

transform the data space and find a boundary much closer to the real boundary. 

Furthermore, data points of abnormal vehicle behavior are needed to validate the model. 

In order to collect data for both normal and abnormal vehicle behavior, new experiments 

in which UA is simulated need to be designed. 
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At the first stage, experiments were conducted in Matlab / Simulink. A three 

dimensional vehicle model was built. The model contained tire models, an engine, an 

automatic transmission system and other powertrain components. Vehicle problems and 

drivers’ reactions were simulated and added during the simulation. Sensor noise was also 

considered and corresponding filters were designed and applied. After performing traffic 

simulation in Simulink, vehicle data including RPM, acceleration, brake pedal positions, 

velocity, and accelerator pedal positions were collected under both normal and abnormal 

driving conditions. 

2.2.1 Powertrain model 

 

 

Figure 2.3 Powertrain model 

A three dimensional automatic front-wheel drive (FWD) vehicle model was built in 

Simulink. The model contains basic powertrain components including engine, torque 

converter, gearbox, differential gear, and brake, as shown in Figure 2.3. Front wheels use 

disc brakes and rear wheels use drum brakes. Independent rear suspension is applied. 
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The car is assumed to use symmetric camber angles and toe angles so that it can move 

along a straight line when the steering angle is zero. The reason for choosing automatic 

transmissions is that, based on reports, UA most often happens with automatic vehicles. 

2.2.2 Vehicle dynamics 

In this study, a Society of Automobile Engineers (SAE) standard coordinate system 

is used [65]. The positive x axis points forward, the positive y axis points to the right and 

the positive z axis points down. Positive rotations are determined by the right-hand rule 

for these axes, as shown in Figure 2.4.  

 

 

Figure 2.4 Vehicle dynamics 
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The longitudinal, lateral and yaw movement of a vehicle is described by 

 

𝑚(𝑎𝑥 − 𝑉𝑦𝜔) =∑𝐹𝑋𝑖
𝑖

− 𝐹𝑑𝑟𝑎𝑔 − 𝐹𝑠𝑙𝑜𝑝𝑒  (2.1) 

𝑚(𝑎𝑦 + 𝑉𝑥𝜔) =∑𝐹𝑌𝑖
𝑖

 (2.2) 

𝐼𝑧𝛼𝑧 =∑𝐹𝑌𝑖𝐿𝑓

2

𝑖=1

−∑𝐹𝑌𝑖𝐿𝑟

4

𝑖=3

+ (𝐹𝑋1 − 𝐹𝑋2)
𝑇𝑊𝑓

2
+ (𝐹𝑋3 − 𝐹𝑋4)

𝑇𝑊𝑟
2

+∑𝑀𝑧𝑖

4

𝑖=1

 

(2.3) 

 

where 𝑚 is the vehicle mass, 𝑎𝑥 and 𝑎𝑦 are longitudinal and lateral acceleration, 𝑉𝑥 and 

𝑉𝑦 are longitudinal and lateral velocities, 𝛼𝑧 represents the yaw angular acceleration, 𝐼𝑧 is 

the yaw moment of inertia, 𝐹𝑑𝑟𝑎𝑔 is the aerodynamic drag force, 𝐹𝑠𝑙𝑜𝑝𝑒 is the force 

caused by the road grade and gravity, 𝜔 denotes the yaw rate, 𝐿𝑓 and 𝐿𝑟 are the distance 

from CoG to the front and rear axles, 𝑇𝑊𝑓 and 𝑇𝑊𝑟 are the front and rear track width, 

and 𝑀𝑧𝑖 is the tire aligning moment.  

The longitudinal and lateral wheel forces are calculated as: 

 

𝐹𝑋𝑖 =∑𝐹𝑥𝑖𝑐𝑜𝑠𝛿𝑖
𝑖

−∑𝐹𝑦𝑖𝑠𝑖𝑛𝛿𝑖
𝑖

 (2.4) 

𝐹𝑌𝑖 =∑𝐹𝑥𝑖𝑠𝑖𝑛𝛿𝑖
𝑖

+∑𝐹𝑦𝑖𝑐𝑜𝑠𝛿𝑖
𝑖

 (2.5) 

 

where 𝐹𝑥𝑖 and 𝐹𝑦𝑖 are longitudinal and lateral tire forces, which are determined from the 
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tires normal forces, and 𝛿𝑖 is the steering angle. The rolling resistance is included in 𝐹𝑥𝑖. 

For a small roll angle 𝜙 and pitch angle 𝜃, roll and pitch equations are given by: 

 

 (𝐼𝑥 +𝑚𝑐𝑑𝑟𝑜𝑙𝑙
2 )𝜙̈ + (𝐷𝑟𝑜𝑙𝑙𝑓 + 𝐷𝑟𝑜𝑙𝑙𝑟)𝜙̇ + (𝐾𝑟𝑜𝑙𝑙𝑓 + 𝐾𝑟𝑜𝑙𝑙𝑟)𝜙 

= 𝑚𝑐𝑔𝑑𝑟𝑜𝑙𝑙𝑠𝑖𝑛𝜙 −𝑚𝑐(𝑎𝑦 + 𝑉𝑥𝜔)𝑑𝑟𝑜𝑙𝑙𝑐𝑜𝑠𝜙  

(2.6) 

(𝐼𝑦 +𝑚𝑐𝑑𝑝𝑖𝑡𝑐ℎ
2 )𝜃̈ + 𝐷𝑝𝑖𝑡𝑐ℎ𝜃̇ + 𝐾𝑝𝑖𝑡𝑐ℎ𝜃

= 𝑚𝑐𝑔𝑑𝑝𝑖𝑡𝑐ℎ𝑠𝑖𝑛𝜃 + 𝑚𝑐(𝑎𝑥 − 𝑉𝑦𝜔)𝑑𝑝𝑖𝑡𝑐ℎ𝑐𝑜 𝑠 𝜃 

(2.7) 

 

where 𝑑𝑟𝑜𝑙𝑙 is the length of the roll moment arm, 𝐾𝑟𝑜𝑙𝑙𝑓 and 𝐾𝑟𝑜𝑙𝑙𝑟 are front and rear roll 

stiffness, 𝐷𝑟𝑜𝑙𝑙𝑓 and 𝐷𝑟𝑜𝑙𝑙𝑟 are front and rear roll damping, 𝑑𝑝𝑖𝑡𝑐ℎ is the length of the 

pitch moment arm, 𝐾𝑝𝑖𝑡𝑐ℎ is the pitch stiffness, and 𝐷𝑝𝑖𝑡𝑐ℎ is the pitch damping. 

Tire normal forces consist of four parts: the static vertical load 𝐹𝑠 , the longitudinal 

load transfer due to acceleration 𝐹𝑝, the lateral load transfer due to rolling 𝐹𝑟  and the 

lateral load transfer due to acceleration of the unsprung mass 𝐹𝑢. The tire normal force of 

the left front tire is given by 

 

𝐹𝑧1 = 𝐹𝑠1 + 𝐹𝑝1 + 𝐹𝑟1 + 𝐹𝑢1        

=  
−ℎ𝐹𝑑𝑟𝑎𝑔 − (𝑚𝑐ℎ +𝑚𝑢𝑓ℎ𝑢𝑓 +𝑚𝑢𝑟ℎ𝑢𝑟)𝑔𝑠𝑖𝑛𝛾 + 𝑚𝑔𝐿𝑟𝑐𝑜𝑠𝛾

2𝑊𝐵
             

−
(𝑚𝑐ℎ +𝑚𝑢𝑓ℎ𝑢𝑓 +𝑚𝑢𝑟ℎ𝑢𝑟) ∗ 𝑎𝑥

2𝑊𝐵

+
(𝑎𝑦𝑐𝑜𝑠𝜙 + 𝑔𝑠𝑖𝑛𝜙) ∗ 𝑚𝑐𝑑𝑟𝑜𝑙𝑙 ∗ 𝐾𝑟𝑜𝑙𝑙𝑓

𝑇𝑊𝑓(𝐾𝑟𝑜𝑙𝑙𝑓 + 𝐾𝑟𝑜𝑙𝑙𝑟)
+
𝑚𝑐𝑎𝑦ℎ𝑢𝑓 ∗

𝐿𝑟
𝑊𝐵 +𝑚𝑢𝑓𝑎𝑦ℎ𝑢𝑓

𝑇𝑊𝑓
  

(2.8) 
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where 𝑚𝑐 is the sprung mass, 𝑚𝑢𝑓 and 𝑚𝑢𝑟 are the front and rear unsprung mass, h is 

the height of sprung mass CoG, ℎ𝑢𝑓 and ℎ𝑢𝑟 are the height of front and rear unsprung 

mass CoGs, 𝑊𝐵 is the wheel base, and 𝛾 is the road inclination angle. The normal loads 

on other tires are similar. The values of some vehicle parameters are shown in Table 2.1. 

 

Table 2.1 Vehicle parameters 

𝑚 1450 kg ℎ 0.5 m 

𝑇𝑊𝑓 1.585 m 𝐿𝐹 1.07 m 

𝑇𝑊𝑟 1.575 m 𝐿𝑅 1.605 m 

𝑚𝑢𝑓 95 kg 𝑚𝑢𝑟 95 kg 

 

2.2.3 Tire model 

Tires are one of the most important parts of vehicles and tire modelling is crucial to 

the accuracy of simulation. Various tire models have been developed, including ring tire 

models [66, 67] and brush tire models [68]. In this study, Pacejka tire model (Magic 

Formula) [69] is used for the calculation of tire dynamics since it has proved to be 

reasonably accurate and computationally fast. One critical term in the Pacejka tire model 

is the slip ratio, which measures the difference between the rotational speed of the wheel 

and the translational velocity of the wheel center. To avoid singular values at low speed, 

the slip ratio is defined as: 
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𝜎𝑖 =

{
 
 

 
 
𝜔𝑖𝑟 − 𝑉𝑥𝑖
|𝑉𝑥𝑖|

                             |𝑉𝑥𝑖| > 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝜔𝑖𝑟 − 𝑉𝑥𝑖

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 +
(𝜔𝑖𝑟)2

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

      |𝑉𝑥𝑖| < 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 (2.9) 

 

where 𝜔𝑖 is the rotational velocity of the wheel, 𝑟 is the effective radius of the wheel and 

𝑉𝑥𝑖 is the longitudinal velocity of the wheel. 

2.2.4 Traffic simulation 

Traffic simulation is a relatively effective approach to capture the patterns for 

abnormal vehicle behaviors and analyze the effects of vehicle problems. A complete 

traffic simulation has three parts. First, environmental conditions are determined. Then, 

different kinds of vehicle faults are simulated and added to the simulation. Finally, a 

driver model to mimic the reaction of real drivers in this scenario is built.  

In this study, it is assumed that drivers have specific driving patterns in certain traffic 

scenarios. To generate representative vehicle data that can cover the whole space of 

normal and abnormal behaviors, several typical traffic scenarios need to be chosen. This 

section focuses on longitudinal car following, in which drivers only control the gas pedal 

and brake pedal. Numerous car-following models have been developed since the 1905s. 

Gipps [45] proposed a behavioral car-following model based on the assumption that 

each driver sets the limits of his desired braking and acceleration rates. Lee et al. [46, 47] 

compared a few longitudinal driver models and suggested that the Gipps’ model was the 

most promising. They also modified the Gipps’ model by considering that the following 

driver would take time to observe the deceleration of the lead vehicle. Modified Gipps’ 
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model was adopted because its calculated distances between two cars are closer to the 

assumed safe distance, which is one car length per ten miles per hour. However, the 

Modified Gipps’ model can only estimate the velocity of the following car according to 

the lead car’s velocity. To generate reasonable throttle/brake position data, a feedback 

control system is applied, as shown in Figure 2.5.  

 

 

Figure 2.5 Car-following scheme 

The velocity of the lead car was obtained from the Mobile Century data [70], which 

collected vehicle velocities on one section (NB and SB) of highway on Interstate 880 in 

California. Ninety cars were chosen from the data set. Interpolation was performed to 

synchronize the data of different cars. 

The velocities from the Mobile Century data were integrated to get the trajectories of 
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lead cars. They were also sent to Modified Gipps’ car following model to calculate the 

velocities of the following cars, which were then used to calculate the trajectories of the 

following cars. The automatic driver controlled throttle positions and brake positions by 

comparing Gipps’ trajectories and automatic trajectories. The trajectories of the lead cars 

were also sent to the automatic driver to further determine throttle/brake positions and 

prevent accidents. 

2.2.5 Driver model 

The driver model plays an important role in the traffic simulation and directly affects 

the representativeness and comprehensiveness of the generated data. This study 

concentrates on generating realistic throttle position and brake position data rather than 

minimizing the tracking error. Therefore, several logical assumptions were made to 

mimic a rational human driver, which are shown in the following. 

a) Safe distance = one car length per 10 miles per hour. 

b) The gas pedal and brake pedal are not pressed at the same time. Since it is easy to 

detect if the gas pedal and brake pedal are pressed at the same time, this kind of issue 

can be dealt with separately and is not considered in this section. 

c) If 𝑉𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 > 𝑉𝑙𝑒𝑎𝑑 when ℎ𝑒𝑎𝑑𝑤𝑎𝑦 ≈ 𝑠𝑎𝑓𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, the driver of the following 

car begins to brake. Otherwise, the driver stops pressing the accelerator pedal and 

lets the car decelerate. 

d) The time for moving between the gas pedal and brake pedal is around 0.6 s. 

e) Brake position is defined as 
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𝐵𝑟𝑎𝑘𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1 − 𝑒−𝜃 (2.10) 

 

where 𝜃 is obtained from 

 

𝜃 =
𝑉𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 − 𝑉𝑙𝑒𝑎𝑑

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 h𝑒𝑎𝑑𝑤𝑎𝑦
 (2.11) 

 

This equation simulates the process that the brake position increases as the headway 

distance decreases, and the velocity difference between the following car and lead 

car increases. 

f) Throttle positions are given  by 

 

𝑢(𝑡 + 𝜏) = 𝑢(𝑡) + 𝐾1 ∗ 𝑒𝑟𝑟𝑜𝑟(𝑡 + 𝜏) + 𝐾2 ∗ (𝑒𝑟𝑟𝑜𝑟(𝑡 + 𝜏) − 𝑒𝑟𝑟𝑜𝑟(𝑡)) +

𝐾3 ∗ (
𝑑𝑒𝑟𝑟𝑜𝑟(𝑡+𝜏)

𝑑𝑡
−
𝑑𝑒𝑟𝑟𝑜𝑟(𝑡)

𝑑𝑡
)                       

(2.12) 

 

where 𝜏 is the human driver reaction time. The error is defined as 

 

𝑒𝑟𝑟𝑜𝑟(𝑡) = 𝑋𝐺𝑖𝑝𝑝𝑠(t) − 𝑋𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) (2.13) 

 

where 𝑋𝐺𝑖𝑝𝑝𝑠 is the position of the Gipps’ model and 𝑋𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is the position of 

the driver model. 

In summary, driver behaviors are simulated using a logical model and the amount of 

throttle position change is modelled using a discrete PID controller. The simulation 

result is shown in Figure 2.6. Blue stars represent the trajectory of the lead car. Green 

circles represent the trajectory of Gipps’ model. Red crosses represent the trajectory of 

the real following car. The automatic following car can track the trajectories of the 
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Gipps’ model without crashing.  

 

  

Figure 2.6 Automatic following 

2.2.6 Simulation of vehicle problems and experiments 

 

 

Figure 2.7 Common drivers’ reactions to UA 

Unintended acceleration 

1. Independent errors 

2. Combined errors 

     Try to accommodate errors 

(simulated by the PID controller) 

Shocked and stop pressing pedals 

(simulated by zero driving input) 

Pedal misapplication 
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Vehicle problems were simulated to help find the boundary of normal and abnormal 

vehicle behavior. This study focuses on the detection of UA. Since UA is often 

accompanied by loss of the brake control, brake problems are also taken into account. 

Figure 2.7 shows some common drivers’ reactions to UA. The first two cases are caused 

by vehicle problems. The third one is due to human error. In this case, some human 

features such as drivers’ heart rates are needed for reliable prediction. This section 

studies the first two cases that result from vehicle problems. 

The vehicle problems are simulated in two ways. The first one is by generating 

random errors, which are defined as 

 

𝑟𝑒𝑎𝑙 𝑉𝑓𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙 = 𝑉𝑓𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙 + 0.1  (𝑚/𝑠) (2.14) 

𝑟𝑒𝑎𝑙 𝑏𝑟𝑎𝑘𝑒 𝑡𝑜𝑟𝑞𝑢𝑒 = 𝑏𝑟𝑎𝑘𝑒 𝑡𝑜𝑟𝑞𝑢𝑒 ∗
1

2
 (𝑁 ∗ 𝑚) (2.15) 

 

UA is simulated by giving an instantaneous increase of the velocity to drive wheels. 

Brake problems are modelled as a decrease of the brake torque. The real brake torque is 

equal to half the original torque, which means that the driver has to press the brake pedal 

very hard to stop the car.  

The second approach to modelling the faults considers the vehicle-driver interaction, 

as shown in Figure 2.8. It is a combination of brake problems and UA. When the driver 

presses the brake pedal, there is a sudden increase in acceleration. At the same time, the 

driver loses control of the brake so that the real brake torque is zero. The next part 

simulates the hesitation of the driver experiencing UA. There is neither brake input nor 

throttle input for a short period of time, which assumes that the driver is shocked and has 
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no idea what to do. Finally, everything goes back to normal.  

 

 

Figure 2.8 Combined faults 

Finally, experiments were conducted in Simulink to collect data for both normal and 

abnormal driving. Each data set records the data of ninety cars and each car has three 

hundred and thirty time points. Sensor noise was also simulated and added.  

2.3 Collect data from virtual vehicles in dSPACE 

At the second stage, experiments were designed and conducted to collect data in the 

Simulink/dSPACE environment. dSPACE software allows a human driver to control a 

virtual vehicle using analog steering wheels and pedal in a 3D environment. It could be 

connected to Simulink so that features such as positions of vehicles could be extracted 

and recorded. A complete experiment process contains four parts, which are road design, 

traffic simulation, error and noise simulation and data collection. 

2.3.1 Road design 

Road types play a crucial role in driving. Vehicles’ acceleration is affected by the 

curvature and slope of the road. Moreover, human drivers may change their driving 
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styles under different road conditions. To collect representative data, typical road 

environments should be covered. The road in the test has two lanes. One is the inner lane 

and the other is the passing lane. The road is designed to contain several straight sections 

and curved sections. The road grade also varies. Some parts are steep while others are 

flat. In the steep part, a car is able to have a considerable increase of acceleration without 

its driver’s inputs. 

2.3.2 Traffic model 

Another critical factor in the driving environment is the traffic condition. Driving 

patterns of a human driver are affected by cars nearby. UA is extremely dangerous in the 

dense traffic. To perform realistic simulation and a comprehensive study of UA, a traffic 

model should be well constructed. Besides the car driven by the human driver, several 

virtual cars were created to move autonomously under several logic rules, as shown in 

Figure 2.9.  

Initially, these cars move at preset desired velocities, which were obtained from the 

Mobile Century data [70]. The Mobile Century data set was collected from vehicles on 

Highway I-880 in California. Desired velocities are updated according to this data set in 

real time. In such a way, the desired speed of these virtual cars changes over time, which 

is similar to real cars. A virtual car starts to check if there is enough space for changing 

lanes when there is a car ahead and its velocity is much lower than the desired speed. If 

there is no space for changing lanes, the car switches to the following mode. Meanwhile, 

cars are not allowed to stay in the passing lane all the time. The traffic model was tested 

in dSPACE and proved sufficient to mimic the real traffic in this work.   
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Figure 2.9 Traffic model 
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2.3.3 Simulation of unintended acceleration and sensor noise 

As discussed above, UA refers to an unexpected sudden increase of acceleration. It 

could be caused by software failure. In this work, UA was simulated by adding an error 

to gas pedal positions randomly, as shown in  

 

𝐺𝑃𝑟𝑒𝑎𝑙 = 𝑚𝑖𝑛(𝐺𝑃𝑑 + 𝐺𝑃𝑒𝑟𝑟𝑜𝑟, 𝐺𝑃𝑚𝑎𝑥) (2.16) 

 

where 𝐺𝑃𝑑 is the gas pedal position input from the driver.  𝐺𝑃𝑟𝑒𝑎𝑙 is the real gas pedal 

position value received by the electronic control unit. It is the sum of 𝐺𝑃𝑑 and an error 

and has an upper bound 𝐺𝑃𝑚𝑎𝑥 of one hundred.  𝐺𝑃𝑒𝑟𝑟𝑜𝑟 is an error function. The range 

of this error is between zero and fifty. The duration of the error should be long enough to 

make sure that drivers can notice abnormal vehicle behavior. The error was finally 

programmed to last for three seconds every time. Since the error was added randomly, 

the real duration of the error was a multiple of three seconds. It should be noted that 

Equation (2.16) actually works by adding a random error to the engine output torque, as 

shown below. 

  

𝑇𝑒𝑛𝑔𝑖𝑛𝑒 = 𝑇𝐺𝑃𝑑 + 𝑇𝑒𝑟𝑟𝑜𝑟 (2.17) 

 

where 𝑇𝑒𝑛𝑔𝑖𝑛𝑒 is the engine output torque, 𝑇𝐺𝑃𝑑is the torque caused by the driver’s input 

and 𝑇𝑒𝑟𝑟𝑜𝑟 is the torque caused by 𝐺𝑃𝑒𝑟𝑟𝑜𝑟. The map between 𝐺𝑃𝑒𝑟𝑟𝑜𝑟 and 𝑇𝑒𝑟𝑟𝑜𝑟 is 

nonlinear.  The whole equation tries to reproduce the problem in the linkage between 

pedals and the engine. For example, when the ECU is interfered with extraneous signals, 

it may send a wrong signal to increase the throttle position while the driver does not 



 

36 

 

press the gas pedal. Another important part in the fault detection is the sensor noise. A 

poor detection system may generate false alarms due to sensor noise. In order to make 

the simulation more realistic, white noise is added to noisy sensors like accelerometers.  

2.3.4 Experiments 

The final step of data collection is conducting experiments. A front-wheel-drive 

virtual car with automatic transmission was created in dSPACE for tests because UA 

often appeared in this kind of cars. There were 120 tests in total. In each test, a human 

driver controlled a virtual car through analog steering wheels and pedals, as shown in 

Figure 2.10. 

 

 
 

Figure 2.10  dSPACE simulator 

Important signals were chosen and recorded at a sampling rate of 50 Hz. The 

selected data channels are accelerator pedal position, throttle position, brake pedal 
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position, steering angle, rpm, overall velocity, yaw rate, longitudinal acceleration, 

longitudinal velocity, lateral velocity and vertical velocity. The yaw rate and longitudinal 

acceleration can be measured or estimated by the sensors of electronic stability control 

system (ESC). Since most modern vehicles are equipped with ESC, it should be 

relatively straightforward to measure these two states. The longitudinal velocity, lateral 

velocity and vertical velocity can be measured by a GPS receiver.  

2.4 Building detection systems 

A relatively large data set was collected in experiments, but the data channels are 

very noisy and the data do not directly identify UA. To find the boundary between 

normal and abnormal vehicle behavior, certain information that is relevant to UA needs 

to be extracted and combined. There is a variety of ways to generate rules from the data 

and design models. Different detection models are compared by two major indicators, as 

shown in (2.18) - (2.19). The first indicator is the detection rate. An error is regarded as 

detected if at least one time point of it is found abnormal by the system. It should be 

noticed that the system could detect multiple points of an error. Therefore, the number of 

correctly detected points is larger than or equal to the number of detected errors. The 

second indicator is precision. The system gives one false alarm when one normal time 

point is considered abnormal.  

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝑁𝑒𝑟𝑟𝑜𝑟

 (2.18) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 + 𝑁𝑓𝑎𝑙𝑠𝑒𝑎𝑙𝑎𝑟𝑚
 (2.19) 
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where 𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 is the number of detected errors, 𝑁𝑒𝑟𝑟𝑜𝑟 is the number of errors and 

𝑁𝑓𝑎𝑙𝑠𝑒𝑎𝑙𝑎𝑟𝑚 is the number of false alarms. 

2.4.1 Smoothing 

Though raw data reflect the trend of driver behavior and vehicle behavior to some 

extent, they are still inadequate for detecting UA. First, sensors such as accelerometers 

are very noisy. The noise interferes in deciding if UA happens. Second, drivers had 

diverse driving patterns. One example is shown in Figure 2.11. 

Figure 2.11 Different driving patterns 

Driver one changed throttle positions smoothly while driver two changed throttle 

positions frequently. It was found that it was very difficult to detect UA using the data 

from drivers who changed their inputs at high frequencies. The reason might be the 

decrease of correlation between pedal positions and other vehicle states when the pedal 

positions changed frequently. To address the above problems, it is essential to find an 

approach to capturing important patterns of the data and leaving out noise or other rapid 
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phenomena in real time. However, not all the signals are noisy and need to be filtered. 

Additionally, many filters introduce a lag to the signal while filtering. As a result, there 

will be a mismatch between different data channels after filtering, which severely 

disrupts classification. In this work, oversampling is combined with exponential weights 

to reduce the impact of mismatch, which is shown in Figure 2.12. 

  

 

Figure 2.12 Smoothing 

The sampling rate of noisy signals is set to be much higher than that of other signals. 

Exponential weights are assigned to noisy signals and the average value of each section 

is calculated and stored. This process actually combines a forward moving average filter 

with a backward moving average filter. The lead and lag introduced by two filters cancel 

each other out. It is similar to the approach proposed by Chen et al. [71]. In their 

research, a filter was developed for offline application. In this work, exponential weights 
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are applied in real-time detection. It causes a little detection delay because the system 

can only decide if UA occurs after the backward filtering of the current section is 

finished. However, the delay is very short and the smoothing process can greatly reduce 

the mismatch between data channels and improve the detection result.  

2.4.2 Feature extraction and selection 

The boundary between normal and abnormal behavior is concealed in abundant data 

points. Model-based fault diagnosis methods generate residuals or symptoms to detect 

faults. Similarly, features that are relevant to faults need to be extracted from the data set 

in data-driven approaches. One advantage of the data-driven approaches is that complex 

features can be handled even if the relationships between features are not completely 

available.  

The first few features were selected by analyzing vehicle dynamics, as shown in 

Figure 2.4. It is assumed that UA results from a problem in the linkage between pedals 

and the engine. Therefore, tire forces increase when UA occurs. Though tire forces 

cannot be measured directly, vehicles’ acceleration and other states can be estimated. 

Acceleration is an important vehicle variable in this work. To take it one step further, 

longitudinal acceleration is combined with other variables to show a vehicle state that is 

relevant to UA. The modified acceleration is calculated by 

 

                                 𝑀𝐴 = 𝑎𝑥 − 𝑉𝑦𝜔 +
𝐹𝑠𝑙𝑜𝑝𝑒

𝑚
 

= 𝑎𝑥 − 𝑉𝑦𝜔 + 𝑔𝑠𝑖𝑛(𝜃𝑠𝑙𝑜𝑝𝑒)  

(2.20) 

where 𝑔 is the gravitational acceleration and 𝜃𝑠𝑙𝑜𝑝𝑒 is the slope angle. 𝑎𝑥, 𝑉𝑦 and 𝜔 can 



 

41 

 

be measured by vehicle sensors directly. However, the road grade is usually not 

available. Research efforts have been devoted to the road grade estimation. Ohnishi et al. 

[72] tried to estimate the road grade by comparing the differential of the wheel speed 

with the longitudinal acceleration of the vehicle. However, this method actually obtains 

the sum of the road slope and the pitch motion, which is not accurate. They also 

estimated the road grade by comparing the results of the vehicle’s longitudinal model 

and the wheel output torque. However, this approach does not work while braking and 

gear shifting. Sebsadji et al. [73] presented a method to reconstitute the road slope using 

an Extended Kalman Filter and a Luenberger observer. Bevly [74] demonstrated the 

capability of a standard low-cost GPS receiver to estimate the slope angle of the road. In 

this research, the car is assumed equipped with a GPS receiver. The slope angle of the 

road is estimated by 

 

𝜃𝑆𝑙𝑜𝑝𝑒 = 𝑡𝑎𝑛−1 (
−𝑉𝑧

√𝑉𝑥2 + 𝑉𝑦2
) (2.21) 

 

where 𝑉𝑥, 𝑉𝑦 and 𝑉𝑧 are the longitudinal velocity, lateral velocity and vertical velocity.  

The modified acceleration 𝑀𝐴 can be calculated after the road grade is estimated. It 

is used to represent the current vehicle state. However, a single acceleration value is not 

sufficient to represent the vehicle state accurately. According to the Takens’ time-delay 

embedding theorem, a chaotic dynamic system can be reconstructed from the time-

delayed versions of one generic state of the system [75]. This theorem was also extended 

to deterministic systems forces by some stochastic process [76-78]. In light of these 
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theorems, the time-delayed versions of acceleration would probably be capable of 

representing the current vehicle state. The embedding dimension of the data set is 

evaluated by the false nearest neighbors (FNN) [79].  

 

 

Figure 2.13 Estimating the embedding dimension 

The main idea of FNN is that a sequence of observations of the state forms a signal 

trajectory in an n-dimensional space. Successive points will be mapped onto neighbors 

in the delay space due to the smoothness of the dynamics. In a low embedding 

dimension, many of the neighbors will be false. However, these false neighbors will no 

longer be neighbors as the embedding dimension increases. The test result of FNN is 

illustrated in Figure 2.13. It shows that the embedding dimension of the data set should 

be at least three to get an acceptable percentage of false nearest neighbors. 

The second important term is the aerodynamic drag, which is given by 

 

𝐹𝑑𝑟𝑎𝑔 =
1

2
𝜌𝑣2𝐶𝐷𝐴 (2.22) 

 

where 𝜌 is the air density, 𝑣 is the relative speed of vehicles, 𝐶𝐷 is the drag coefficient 
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and 𝐴 is the cross sectional area. Velocity squared is proportional to the aerodynamic 

drag and it is chosen as a feature. In this work, it is assumed that the wind speed is zero. 

When the wind speed is high, an extra sensor to estimate the wind speed is needed to 

recalculate the relative vehicle speed.  

Other primary vehicle inputs, which affect vehicles’ acceleration, are gas pedal 

positions, brake pedal positions and gear shifting. The engine time lag and brake time 

lag 𝜏𝑏  should also be considered. The engine speed response is dominated by the rotor 

inertia. The lag caused by the dynamics of combustion process is very small compared to 

the primary engine time constant 𝜏𝑒 [80]. Though 𝜏𝑒 and 𝜏𝑏 vary in different operating 

environments, their ranges are relatively small. Rough estimates of average 𝜏𝑒 and 𝜏𝑏 are 

enough in this approach. Gear shifting is also a key factor. Some cars have the gear shift 

shock, which may interfere with the detection of UA. Gear positions are not directly 

accessible for some types of cars. In this case, this feature can be obtained by monitoring 

the gear ratio, which is represented by 

 

𝐺𝑅 =
𝑅𝑃𝑀

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 (2.23) 

 

In summary, each time point 𝑡 is regarded as an observer. If UA happens at this time 

point, the label of this point is one. Otherwise, this point is labelled as zero. The features 

of each time point are shown below. 

 

𝐺𝑃𝑑(𝑡 − 𝜏𝑒), 𝐺𝑃𝑑(𝑡 − 𝜏𝑒 − 𝜏), 𝐺𝑃𝑑(𝑡 − 𝜏𝑒 − 2𝜏)  
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𝐵𝑃𝑑(𝑡 − 𝜏𝑏), 𝐵𝑃𝑑(𝑡 − 𝜏𝑏 − 𝜏), 𝐵𝑃𝑑(𝑡 − 𝜏𝑏 − 2𝜏)  

𝑉2(𝑡), 𝑉2(𝑡 − 𝜏), 𝑉2(𝑡 − 2𝜏)  

𝑀𝐴(𝑡),𝑀𝐴(𝑡 − 𝜏),𝑀𝐴(𝑡 − 2𝜏),𝑀𝐴(𝑡 − 3𝜏) (2.24) 

 

where 𝜏 is the time gap between two successive points, 𝐺𝑃𝑑 denotes the driver’s gas 

pedal input, 𝜏𝑒 is the engine time lag, 𝐵𝑃𝑑 is the driver’s brake pedal input, 𝜏𝑏 is the 

brake time lag,  𝑉2 represents velocity squared and 𝑀𝐴 denotes the modified 

acceleration. Besides the above features, other variables such as the frequency 

components of steering angles and lateral acceleration were also taken into account. 

Different combinations of features were tested using machine learning models. The 

above set of features proved to have the best performance. 

2.4.3 Initial test 

Signals were smoothed and features and labels of all the time points were calculated. 

An initial test was conducted to compare the performance of several common machine 

learning models, including K-Nearest Neighbors (KNN), Linear Discriminant Analysis 

(LDA), Naïve Bayes, Random Forest and Multilayer Perceptron (MLP) [81]. The data 

set was normalized for some algorithms according to their needs. Then it was divided 

into training and test parts randomly. One hundred trials were used to train the model 

and the remaining twenty trials were sent to test the model. Classification results are 

shown in Table 2.2. It can be seen that although detection rates are acceptable, the 

precision is too low. It is not too complicated to design rules to detect UA. Nonetheless, 

the rules generated by a sophisticated detection model should not only be able to detect 
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faults, but also avoid false alarms under different conditions. If a detection system has 

too many false alarms, customers may just turn it off instead of using it. 

 

   Table 2.2 Initial test results 

 Detection rate Precision 

KNN 99.19% 25.95% 

LDA 98.26% 22.50% 

Naïve Bayes 97.82% 10.87% 

Random Forest 98.14% 26.00% 

MLP 93.23% 39.34% 

 

 

 

Among the tested algorithms, LDA is a linear model. But the dynamics of vehicles 

are highly nonlinear. That may be reason why LDA has low detection precision and it is 

not a good choice to monitor vehicles. Naïve Bayes assumes independence of features 

and is not suitable in this task. KNN does not really generate new rules from the training 

data and is not robust without a considerable amount of data. Random Forest requires a 

large number of trees and is computationally time-consuming. It may not be appropriate 

in real-time prediction of UA. MLP has the highest precision and is capable of solving 

nonlinear problems. It is adopted in the following work. 
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Figure 2.14 Multilayer perceptron 

MLP is one of the well-developed artificial neural-network algorithms. It has been 

widely used in classification and control fields [82-84]. The structure of MLP is 

illustrated in Figure 2.14. It emulates the central nervous system by creating a high-

dimensional mapping from the input layer to the output layer. Weights between neurons 

are tuned based on the training data. Transfer functions are placed after hidden layers 

and the output layer. The last transfer function of the neural network model is a 

threshold and is adjustable. An error is considered to occur when the calculation result of 

previous steps is higher than this threshold. 

2.4.4 Multilayer sequential detection 

It can be seen from Table I that applying ML algorithms to data processing directly 

has poor performance. The precision is too low. It is reasonable because one data-driven 
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model is not powerful enough to represent the whole vehicle dynamics. To detect UA, 

representative time points need to be chosen from the whole time series.  

 

 

Figure 2.15 Acceleration 

Figure 2.15 shows an example of the acceleration changes when UA happens. Red 

circles mean errors occur at those time points. UA usually starts with an obvious 

increase of acceleration. After that, the aerodynamic drag increases as the velocity 

increases. Meanwhile, the driver may press the brake pedal. Consequently, the 

acceleration of the vehicle will reach a peak value in a short period of time. Afterwards, 

the acceleration may decrease remarkably or go to a steady value, which makes it 

difficult to differentiate normal and abnormal vehicle behavior. Therefore, the rising 

edge of acceleration contains the most obvious symptoms of UA and is the easiest time 

interval to detect UA accurately and quickly. The beginning of UA can be detected by 

analyzing big increases of the acceleration. The end of the rising edge can be detected by 

comparing acceleration peaks. The whole detection scheme is illustrated in Figure 2.16. 
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Figure 2.16 Detection scheme 

Three models were built using the training data. The first classifier was built by 

analyzing time points where acceleration increases obviously. Its final transfer function 

was adjusted to ensure a high detection rate regardless of its accuracy. The second 
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classifier was trained by time points at acceleration peaks. Its final transfer function was 

adjusted to keep a balance between the detection rate and accuracy. During the test, it 

was found that a single classifier could not distinguish acceleration peaks caused by the 

shift shock from those caused by UA and generated false alarms. To solve this problem, 

a third classifier was created by analyzing time points at gear shifting. 

When the system starts, it tries to detect big increases of acceleration at first. The 

features of time points where acceleration increases rapidly are sent to the first classifier. 

This classifier works like a filter and most normal time points cannot pass through it. If 

the first classifier doubts that an error might occur, the system begins to detect 

acceleration peaks. If an acceleration peak is found in a short period of time, the features 

of this peak are sent to the second classifier. If the second classifier also realizes a high 

possibility of UA, the system checks if this acceleration peak is caused by the shift shock 

using the third classifier. If the possibility of the shift shock is ruled out, the system 

gives a warning to the driver. 

It may be doubted that if such a complicated data-driven system is necessary to 

detect UA. A straightforward idea to detect UA is described in Equations (2.25) - (2.26). 

Generally speaking, there is a strong possibility that UA happens if there is a substantial 

increase in acceleration while the gas pedal position does not increase obviously. 

Similarly, UA is quite likely to occur if the acceleration increases as the brake pedal 

position increases.  
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If 

 

𝐺𝑃𝑑(𝑡) − 𝐺𝑃𝑑(𝑡 − 𝜏) ≤ 𝑎  

𝑀𝐴(𝑡) − 𝑀𝐴(𝑡 − 𝜏) > 𝑐 (2.25) 

 

Or 

 

𝐵𝑃𝑑(𝑡) − 𝐵𝑃𝑑(𝑡 − 𝜏) > 𝑏  

𝑀𝐴(𝑡) − 𝑀𝐴(𝑡 − 𝜏) > 𝑐 (2.26) 

 

then give a warning. 

The above equations contain four parameters, which are 𝑎, 𝑏, 𝑐 and 𝜏. Extensive 

search was adopted to find the optimal parameter values. Various combinations of 

parameter values were tested one by one and their detection rates and precision were all 

calculated. Some illustrative results are shown in Table 2.3.  

 

Table 2.3 Set thresholds directly 

 Detection rate Precision 

Test 1 13.59% 69.74% 

Test 2 31.54% 33.61% 

Test 3 93.59% 1.59% 

 

 

 

It can be seen that the performance of these equations is very poor. When the 
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thresholds are set big enough to obtain a satisfactory detection rate, many false alarms 

are sent. When conservative thresholds are defined to guarantee high precision, only a 

small number of errors can be detected. It is understandable because vehicle systems are 

very complicated. Besides the above two rules, many factors like gear shifting also play 

an important role. Moreover, constant thresholds are not sufficient to cover nonlinear 

characteristics of vehicles. In addition, estimation of the road grade using a GPS receiver 

fluctuates sometimes and deviates from the real values. This error plus sensor noise 

increases detection difficulties. In summary, it is quite difficult to manually design a 

complete set of rules that separate UA from normal behavior accurately. Setting 

thresholds directly can only fulfill the demand of some low-dimensional simple 

problems. 

2.5 Validation and discussion 

This section presents the test results of the proposed detection algorithm. Both the 

data collected from vehicles controlled by the driver model in Simulink and the data 

collected from virtual cars in dSPACE were used to validate the proposed detection 

algorithm.  

2.5.1 Validation using data collected in Simulink 

At first, data sets extracted from traffic simulation in Simulink are used to validate 

the detection system. Each data set records the data of 90 cars and each car has 330 time 

points. Sensor noise is also simulated and added. Finally, each data set is divided into the 

training part and test part. Sixty-three cars are chosen randomly for training. The 

remaining twenty-seven cars are used in the test.  
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The first data set only contains UA errors. The result is shown in Table 2.4. There 

are 67 errors in 8910 time points. The detection system gives 66 warnings and 63 of 

them are correct. 

 

Table 2.4 Independent errors 

  Condition positive Condition negative 

Test outcome positive TP = 63 FP = 3 

Test outcome negative FN = 4 TN = 8840 

 

 

 

The second data set uses a combination of UA errors and brake problems. The 

driver’s reaction is also considered. Classification result is shown in Table 2.5. There are 

49 errors in 8910 time points. The detection system gives 47 warnings and 46 of them 

are correct.  

 

Table 2.5 Combined errors 

 Condition positive Condition negative 

Test outcome positive TP = 46 FP = 1 

Test outcome negative FN = 3 TN = 8860 
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To further validate the model, the detection rates are defined as 

𝐷𝑅𝑈𝐴 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2.27) 

𝐷𝑅𝑛𝑜𝑟𝑚𝑎𝑙 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(2.28) 

𝐷𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(2.29) 

 

where 𝐷𝑅𝑈𝐴, 𝐷𝑅𝑛𝑜𝑟𝑚𝑎𝑙 , 𝐷𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙 are the detection rates of UA, normal vehicle 

behaviors and the whole data set. Each test is repeated 30 times to obtain both the mean 

and standard deviation of the classification accuracy. The detection rates are summarized 

in Table 2.6. The average detection rates range from 92% to 99%. 

 

Table 2.6 Simulink validation 

Detection rate Independent errors Combined errors 

Normal behavior 99±0.64% 99±0.81% 

Unintended acceleration 93±2.34% 92±3.68% 

Overall 97±0.92% 96±1.17% 
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2.5.2 Validation using data collected in dSPACE 

Data sets collected in dSPACE are used to future validate the detection system. The 

detection rate and precision are calculated and compared. Apart from the detection rate 

and precision described in Equations (2.18) - (2.19), the reaction time is important for a 

detection system. A well-designed detection system should be able to detect errors as 

soon as possible and give ECU or drivers enough time to solve the problem and prevent 

accidents. The reaction time of the system is defined as 

 

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝑡𝑓𝑖𝑟𝑠𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔 − 𝑡𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 (2.30) 

 

where 𝑡𝑓𝑖𝑟𝑠𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔is the time of the first warning and 𝑡𝑒𝑟𝑟𝑜𝑟𝑏𝑒ginning is start time of 

errors.  

Two methods were used to evaluate the algorithm. In the first part, the original data 

set was divided randomly to test the proposed algorithm. In the second part, the whole 

detection system was embedded into Simulink and tested by human drivers in real time. 

Table 2.7 shows 95% confidence intervals of the results of detection. Two tests were 

conducted. The first one chose one hundred trials for training and twenty trials for the 

test randomly. It is the same as the information in Table 2.3. As can be seen, both the 

detection rate and precision of the improved system are higher than those of using MLP 

directly. Meanwhile, warnings can be given within one second. The second test aimed to 

analyze if the generated model was robust. In each round, the data set of one driver was 

used to validate the model while the remaining data were used to train the model. This 

process was repeated twenty times so that each driver was used in the validation once. 
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The results show that both detection rates and precision are beyond 95% and all the 

errors were detected within one second. The system succeeds in separating abnormal 

acceleration from normal vehicle behavior. 

 

Table 2.7 dSPACE validation 

 Detection rate Precision Reaction time (s) 

Training: 100 trials 

Test: 20 trials 
97.21±0.55% 99.57±0.35% 0.82±0.19 

leave-one-out 

cross-validation 
97.83±1.50% 99.65±0.49% 0.81±0.17 

 

 

 

The second major part of the validation comprises real-time tests of data-driven 

models generated from the original data set. The whole detection system including the 

smoothing unit and classification unit was embedded into Simulink. In these tests, 

signals were processed during the simulation and they were totally independent of the 

data used to train models. The error was a square wave whose amplitude was fifty. To 

have a thorough evaluation of the system, UA was programmed to occur under different 

conditions. Test results are shown in Figure 2.17 - Figure 2.19.  
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Figure 2.17 UA occurs when no pedal is pressed 

 

Figure 2.18 UA occurs when the brake pedal is pressed 

In the first test, UA only occurred randomly when no pedal was pressed. In the 

second test, UA was programmed to occur randomly when the brake pedal was pressed. 

The braking force was adjusted to mimic an ineffective brake. It can be seen from Figure 

2.17 and Figure 2.18 that the system gave as least one warning to an error and there was 

no false alarm.  

In the third test, UA occurred randomly when the gas pedal position increased, which 

was the most difficult to detect. A ramp input was sent to the gas pedal to make sure that 

the pedal position kept increasing when the error appeared. It can be seen from Figure 
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2.19 that the system still succeeded in distinguishing the abnormal acceleration 

introduced by an error from the normal acceleration caused by pressing the gas pedal. 

 

 

Figure 2.19 UA occurs when the gas pedal is pressed 

Aside from the ability to detect UA, a decent detection system should avoid false 

alarms under any circumstances. When drivers increase their input frequencies, the 

correlations between acceleration and these inputs decline. It raises the possibility of 

false UA alarms. The fourth test intends to assess the system performance when the 

driver changes inputs frequently. The result is shown in Figure 2.20. No false alarm was 

given even when the driver changed the gas pedal position, brake pedal position or 

steering wheel angle at a high frequency. 
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Figure 2.20 Normal condition 

Based on the previous test results, the precision of the detection system is 

satisfactorily high. When the system gives an alert, the vehicle may encounter UA or an 

unwanted big increase of acceleration. To further avoid danger, an additional safety 

device was designed and integrated into the model to cut the engine power temporarily 

when the system detects an error and then reconnect the engine power. Since the 

detection system reacts very quickly, this process can slow down the vehicle before the 

driver takes some actions. It is helpful, for instance, when the driver is shocked by UA 

and does not know what to do. It should be noted that cutting the engine power and 

releasing the accelerator pedal have similar effects. For that reason, when the engine 
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power is disconnected, the detection system assumes the gas pedal position is zero 

irrespective of the real value. If the system detects UA multiple times in a short period of 

time, it sends a written message to the driver to pull off the road. (This is the current 

implementation in the simulation environment. In practice a more appropriate 

notification such as verbal, verbal and written, or a combination of an alarming sound 

and a verbal or written message can be used to inform the driver.) At the same time, it 

helps stopping the car by cutting the engine power and increasing the braking force 

when the brake pedal is pressed. A braking mechanism (e.g., an extra pump) which is 

different from the brake pedal is implemented in case of an ineffective brake.  

 

 

Figure 2.21 Brake assist 
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This safety system was simulated and tested in Simulink/dSPACE. One experiment 

result is illustrated in Figure 2.21. The braking system of the virtual car was modified so 

that it was not effective enough. When UA occurred suddenly, the detection system 

detected the error quickly and the safety device cut the engine power before the driver 

pressed the brake pedal. It can be seen in the graph that plots tire force vs. time that the 

tire force decreased due to this action. Since the UA event lasted for a relatively long 

period of time, the detection system gave multiple warnings. After the third warning, the 

safety device started to check if the brake pedal was pressed. When the pedal was 

pressed, it was assumed that the driver wanted to decelerate and the system helped 

increase the braking force. Figure 2.21 shows that the system successfully slowed down 

the vehicle and helped the driver stop the car finally.  

 

 
 

Figure 2.22 A vehicle without the detector and brake assist 
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Figure 2.23 A vehicle equipped with the detector and brake assist 

A comparison between a vehicle without the brake assist system and a vehicle with 

the brake assist system is shown in Figure 2.22 - Figure 2.23. The blue car is the subject 

vehicle and it is approaching an intersection. There is a stop sign ahead so that the 

subject vehicle needs to gradually slow down and finally stop before the stop sign. Two 

tests were conducted. In order to highlight the influence of the proposed detection and 

mitigation system, the subject vehicle was controlled using the same gas pedal inputs 

and brake pedal inputs in two tests. The only difference between these tests is that the 

second one contains brake assist while the first one does not.  

It can be seen that even though the driver tried to press the brake pedal when UA 

occurred in the first test, the braking force was not big enough and the subject vehicle 

crashed into a vehicle, which had the right of way. In Contrast, the neural-network based 

detector gave multiple warnings quickly when UA occurred in the second test and sent 
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commands to the brake assist system. Finally, the system helped the driver stopped the 

car slightly before the stop sign and prevent an accident. 

2.6 Summary 

In this chapter, a data-driven detection system for UA is demonstrated. The system 

operates by smoothing vehicle signals and analyzing specific vehicle events like 

acceleration peaks and gear shifting.  Corresponding models were created and combined 

to decide whether UA occurred. If UA was detected, the system cut the engine power 

and adjusted the braking force to prevent accidents. It should be noticed that though a 

robust detection system needs a large database of vehicle data to construct its models, 

these generated models only contain a few parameters. A low-cost processor is adequate 

for running these models to perform real-time detection.  

Experiments were conducted under Simulink/dSPACE environment. UA events were 

simulated by adding a random error to gas pedal positions. Consequently, a human 

driver could find his virtual car accelerated by itself suddenly sometimes. Sensor noise 

was also introduced to vehicles during the simulation. Several tests were designed and 

run to evaluate the system under diverse conditions. Results are promising. The system 

reacted to errors very fast and both detection rates and precision are beyond 95%. It 

validates the possibility that well-built data-driven models can detect vehicle problems 

such as UA with high accuracy. Though these results are encouraging, caution should be 

taken while transferring the system to the real vehicles. It is possible, for example, that 

some uncommon working patterns of vehicles or driving styles were not covered by any 

of the collected subjects. Likewise, the driving environment in the experiments did not 
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span the entire range of real-world driving. However, it is believed that the simulator and 

experiments are sufficiently representative and realistic and comparable detection results 

can be achieved in real vehicles.  
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3. RATIONAL AND ADAPTIVE DRIVER MODEL-BASED 

DETECTION SYSTEM 

 

3.1 Overview 

In this chapter, a model-based approach to detecting unintended acceleration (UA) is 

proposed. The scheme of model-based detection system is shown in Figure 3.1. The 

basic idea of this approach is to develop an adaptive and rational driver model for a 

human driver. This driver model is combined with a vehicle model to predict the future 

behavior of the vehicle. Real driving behavior is recorded and compared with predicted 

driving behavior. If the real behavior deviates largely from the predicted behavior, the 

system concludes that an abnormal event has occurred. 

In this study, it is assumed that sensors such as radar sensors, laser sensors and 

cameras are installed on vehicles so that the positions of cars nearby are available. In 

other words, the subject vehicle moves in a connected environment. At the same time, 

vehicle data such as velocities and throttle positions are also collected. Both the traffic 

data and vehicle data are sent to the driver model so that the model can adjust its 

parameters and adapt to the driver’s behavior. The most difficult part of the model-based 

detection is to mimic the behavior of human drivers, especially the interaction between 

drivers. In this study, game theory was adopted to capture the patterns of human-vehicle 

interaction and driver-to-driver communication. The adaptive driver model was 

developed by combining multilevel PID controllers with the game theoretical model. 

Finally, a simplified vehicle model is combined with the driver model to guarantee real-
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time prediction. The objective of the adaptive model is to keep the differences between 

the driver model and human drivers relatively small under normal conditions rather than 

to minimize the differences. 

 

 

Figure 3.1 Driver model-based detection 

3.2 Vehicle dynamic model 

The first step for simulating the entire driving system is to develop a vehicle model. 

Since this model is used in real-time calculation, a simplified model is more appropriate 

than a complete, but time-consuming model. A Society of Automobile Engineers (SAE) 
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standard coordinate system is adopted [65]. The positive x axis points forward and the 

positive y axis points to the right. Positive rotations are determined by the right-hand 

rule for these axes, as shown in Figure 3.2. 

 

 

Figure 3.2 Vehicle model 

The longitudinal, lateral and yaw movement of vehicles is given by [85]: 

𝑥̇ = 𝑣𝑥 (3.1) 

𝑣𝑥̇ =
𝐹𝑥 − 𝐹𝑑𝑟𝑎𝑔

𝑚
+𝜔𝑣𝑦 (3.2) 

𝑦̇ = 𝑣𝑦 (3.3) 

𝑣𝑦̇ =
1

𝑚𝑣𝑥
(−𝐿𝑓𝐶𝛼𝑓 + 𝐿𝑟𝐶𝛼𝑟)𝜔 −

1

𝑚
(𝐶𝛼𝑓 + 𝐶𝛼𝑟)𝛽 +

1

𝑚
𝐶𝛼𝑓𝛿 − 𝜔𝑣𝑥 (3.4) 

𝜓̇ = 𝜔 (3.5) 

𝜔̇ =
1

𝐼𝑧𝑣𝑥
(−𝐿𝑓

2𝐶𝛼𝑓 − 𝐿𝑟
2𝐶𝛼𝑟)𝜔 −

1

𝐼𝑧
(𝐿𝑓𝐶𝛼𝑓 − 𝐿𝑟𝐶𝛼𝑟)𝛽 +

1

𝐼𝑧
𝐿𝑓𝐶𝛼𝑓𝛿 (3.6) 
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where 𝑣𝑥, 𝑣𝑦 and 𝜔 represent the longitudinal velocity, lateral velocity and yaw velocity 

of the vehicle, 𝑥, 𝑦 and 𝜓 are longitudinal position, lateral position and yaw angle of the 

vehicle, m denotes the vehicle mass, 𝐶𝛼𝑓 and 𝐶𝛼𝑟 are front and rear cornering stiffness, 

𝐼𝑧 denotes the yaw moment of inertia, 𝛿 is the steering angle,  𝐿𝑓 and 𝐿𝑟 are the distance 

from CoG to the front and rear axles, 𝐹𝑥 denotes the longitudinal tire force, 𝐹𝑑𝑟𝑎𝑔 is the 

aerodynamic drag and it is proportional to the relative speed of the vehicle, 𝛽 denotes the 

vehicle sideslip angle, which is given by: 

 

𝛽 =
𝑣𝑦

𝑣𝑥
 (3.7) 

 

This state space model contains six states, which are 𝑥, 𝑦, 𝜓, 𝑣𝑥, 𝑣𝑦 and 𝜔. There are 

two inputs, which are 𝐹𝑥 and 𝛿. Equations (3.1) - (3.7) are created in the vehicle-fixed 

coordinate system. In order to simulate vehicles in the earth-fixed coordinate system, a 

transformation matrix is applied, which is calculated by: 

 

[
𝑉𝑋
𝑉𝑌
Ω
]  = [

𝑐𝑜𝑠𝜓   𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

] [
𝑣𝑥
𝑣𝑦
𝜔
] (3.8) 

 

where 𝑉𝑋, 𝑉𝑌 and Ω represent the longitudinal velocity, lateral velocity and yaw velocity 

of the vehicle in the earth-fixe coordinate system. Positions in the earth-fix coordinate 

system can be calculated by integrating these velocities. 

3.3 Drive model 

A common driving loop is shown in Figure 3.3. A driver sends control inputs to 
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electronic control units. Subsequently, these control units send commands to other 

vehicle components such as the throttle and power is transmitted from the engine to 

wheels. Finally, generated tire forces make the vehicle move. Vehicle motion could be 

estimated by a vehicle model. Other than that, drives’ inputs, electronics control units 

and other vehicle components could be represented by a driver model. The driver model 

collects information from the environment and controls tire forces and steering angles to 

let the vehicle move safely. A complete driver model contains longitudinal and lateral 

control. 

 

 

Figure 3.3 Driver model 

3.3.1 Longitudinal driver model 

The first part involves the longitudinal driving logic. The longitudinal movement of a 

vehicle can be divided into two types. The first type is driving with no car ahead. In this 

situation, the driver controls the car according to his desired velocity. The second type is 

car following. When there is a car ahead and it is not convenient to change lanes, the 

driver has to estimate a safe following distance and drives his car based on it. Three-

second rule [86, 87] is used to estimate a normal following distance, which means the 
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time headway of the vehicle should be at least be three seconds. Time headway is 

calculated by  

 

𝑇𝐻 =
𝑃𝑎ℎ𝑒𝑎𝑑 − 𝑃𝑠𝑢𝑏𝑗𝑒𝑐𝑡

𝑉𝑠𝑢𝑏𝑗𝑒𝑐𝑡
 (3.9) 

 

where 𝑇𝐻 is the time headway of the subject car,  𝑃𝑎ℎ𝑒𝑎𝑑 is the position of the car ahead, 

𝑃𝑠𝑢𝑏𝑗𝑒𝑐𝑡 and 𝑉𝑠𝑢𝑏𝑗𝑒𝑐𝑡 are the position and velocity of the subject car. The driver model 

needs to know how to choose the driving mode according to the driving environment. 

The mode transition process is illustrated in Figure 3.4.  

 

 

Figure 3.4 Driving mode transition 

The variable 𝑡0 denotes the desired following distance. When the time headway is 

smaller than 𝑡0, the subject car enters the car-following mode. In order to prevent 

frequent mode changes, the subject vehicle only goes back to the free driving mode 

when the time headway is bigger than 𝑡0 + 𝑡𝜖, where 𝑡𝜖 is a positive number. In such a 

way, the vehicle can stay in the car-following mode when its time headway fluctuates 

near 𝑡0. Besides choosing modes, the longitudinal driver model should also be capable of 

controlling the vehicle in two modes. To accomplish these tasks, an adaptive cruise 

control model was designed and applied to the longitudinal movement, which is shown 

Free driving Car following 

𝑇𝐻 < 𝑡0 

𝑇𝐻 > 𝑡0 + 𝑡𝜖 
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in Figure 3.5.  

 

 

Figure 3.5 Longitudinal driver model 

The model contains an upper-level controller and a lower-level controller. The 

lower-level controller is responsible for cruise control. It implements feedback PID 

control to adjust tire forces and let the vehicle move at the desired velocity. The upper-

level controller is in charge of calculating the current desired velocity. During car 

following, this controller estimates a safe following distance and uses it to calculate the 

desired velocity. When there is no car ahead, this controller estimates the human driver’s 

desired velocity in real time. Details about estimating the driver’s desired speed are 

discussed in section 3.3.3. 

3.3.2 Lateral driver model 

In addition to a model that controls the longitudinal movement, a complete logic 

driver model still needs to decide when to change lanes and control the steering wheel. 

This part of the model was designed by mimicking the behavior of a rational human 

driver. A flowchart of the logic process is shown in Figure 3.6. 
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Figure 3.6 Lateral driver model 
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This whole process is imitated by combining PID controllers with a game theoretical 

model. PID controllers are used to control steering angles. The game theoretical model is 

used to mimic the interaction between drivers. Generally speaking, a human driver 

begins to considering changing lanes when the car ahead is moving too slowly. Before 

changing lanes, the driver looks at the rear-view mirror and side-view mirror to check 

the surrounding traffic. If cars in the adjacent lane are faster than the car ahead or the 

space in the adjacent lane is big enough for overtaking the car ahead, the driver desires 

to change lanes. If there is no following car in the target lane, changing lanes is 

relatively easy. The driver only needs to turn the steering wheel and move to the target 

lane smoothly. However, changing lanes in heavy traffic is relatively complicated since 

the driver has to predict the trajectories of vehicles nearby.  

 

                                                                                           

Figure 3.7 Lane-changing scenario 

In recent years, increasing efforts have been made to study lane-changing behavior. 

A typical lane-changing scenario is shown in Figure 3.7.  Car S is the subject vehicle. It 

wants to move to the left lane. However, Car C is following in the adjacent lane and Car 

A 

S B 

C 
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S needs to predict the trajectories of surrounding vehicles if it wants change lanes.  

Many popular algorithms such as rapidly-exploring random tree (RRT) [88-90], model 

predictive control (MPC) [91-93] and the gap acceptance model [94-96] assume that Car 

C has constant velocities or acceleration during the lane changing process of Car S. Liu 

et al. [97] adopted recursive regression to predict the trajectory of Car C.  

 

 

 

 

 

 

 

 

Figure 3.8 Aggressive competing vehicle 

 

Figure 3.9 Timid competing vehicle 

However, all these algorithms have one common problem. There is delay between 

the real signals and estimated signals, which could cause some trouble. An example is 

shown in Figure 3.8. Car S is the host vehicle and wants to move to the left lane. Car C, 

a following vehicle in the adjacent lane, is far behind. Car S thinks that if Car C has a 

constant velocity, it is safe to change lanes since the distance between two cars is big 

S C 
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C 

S 

C 

S 

C 
𝑣𝑐 = 15𝑚/𝑠 

𝑣𝑠 = 10𝑚/𝑠 
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enough. However, Car C is much faster. If Car C is aggressive, it may not want to slow 

down and follow Car S in this lane. Actually, when Car C finds that Car S starts to 

change lanes, Car C may accelerate and prevent Car S from changing lanes. It is 

relatively dangerous. Figure 3.9 shows another scenario. Car C is close to Car S at the 

beginning. Car S thinks that it could not change lanes if Car C has a constant velocity. 

Otherwise, it would crash into Car C. However, Car C may be timid in the real world. 

When it finds that Car S starts to change lanes, it may slow down and let Car C change 

lanes successfully and safely. In summary, the interaction between vehicles is not 

considered in these scenarios. The host vehicle needs to interact with emotional human 

drivers. The assumption that the competing vehicle has a constant velocity during the 

lane changing process of the host vehicle is not always true in the real world. 

 

 

Figure 3.10 Mimic the lane changing process of a human driver 
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 Game theory is a powerful tool to study the interaction between decision makers. 

The whole process mimics the lane changing process of a human driver, as shown in 

Figure 3.10. At the beginning, the host vehicle starts to interact with the competing 

vehicle by using the turn signal or making a small lateral move. Then the driver of the 

host vehicle looks at side view mirrors and the rear view mirror and observes the 

reactions of the competing vehicle. The driver is able to see if the competing is 

accelerating or decelerating and how fast the acceleration changes. Based on the 

observation, the subject vehicle is able to estimate the aggressiveness of the competing 

vehicle to some extent. Subsequently, the host vehicle starts to estimate the benefits of 

different strategies according to the estimated aggressiveness of the competing vehicle. 

Finally, Car S chooses its optimal strategy by predicting the reactions of Car C. This 

process is like playing chess. Both players are trying to maximize their payoffs. For 

instance, if Car S changes lanes and Car C reacts by accelerating, Car S’ payoff is six 

and Car C’s payoff is one. If Car S changes lanes and Car C reacts by yielding, Car S’ 

payoff is four and Car C’s payoff is three. It is obvious that Car C will choose to yield to 

Car S when Car S changes lanes due to its higher payoff. Therefore, Car S’ payoff is 

only four if it changes lanes. Similarly, Car S’ payoff is five when it chooses to stay in 

the current lane because Car C tends to react by accelerating. The optimal strategy of 

Car S is staying in the current lane.  

The real scenario of changing lanes is a little more complicated than the game in 

Figure 3.10. Besides the following car in the adjacent lane, there may be other cars, 

which have big influence on the decision of the host vehicle, as shown in Figure 3.7. Car 
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B is the lead vehicle in Car S’ lane while Car A moves in front of Car S in the adjacent 

lane. Car S has to consider Car A’s positions to prevent crashes while changing lanes. 

But Car A is not required to react to the future actions of Car S. In other words, the 

interaction between Car A and Car S is not guaranteed. Only Car S and Car C are 

interacting with each other when Car S changes lanes. Car A and Car B only provide 

constraints to the host vehicle. Therefore, there are only two players in this game.  

The structure of the game is shown in Table 3.1, where a represents the longitudinal 

acceleration of the vehicle and U denotes the payoff of the combination of strategies. Car 

S decides not only if it will change lanes, but also if it will accelerate or decelerate while 

changing lanes or staying in the current lane. Since acceleration is continuous, there are 

infinite combinations of strategies. Car C also has an infinite number of choices. It can 

choose acceleration within the physical limits of the vehicle. Both two cars are trying to 

maximize their payoffs. 

 

Table 3.1 Structure of the game 

Decision making 

Car S 

Change lanes 

 
−6 ≤ 𝑎 ≤ 4 

𝑆𝑡𝑎𝑦 

 

−6 ≤ 𝑎 ≤ 4 

Car C −6 ≤ 𝑎 ≤ 4 𝑈𝑐0, 𝑈𝑠0 𝑈𝑐1, 𝑈𝑠1 
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It can be seen that payoff functions play an important role in the decision making 

process. In order to reproduce drivers’ logic in lane changes, two payoff functions are 

defined in the game. The first function 𝑈𝑠𝑎𝑓𝑒𝑡𝑦 measures the safety payoff that a player 

can obtain in the game. The second function 𝑈𝑠𝑝𝑎𝑐𝑒 estimates the space payoff that a 

player can get in the game.  

𝑈𝑠𝑎𝑓𝑒𝑡𝑦 is defined as the change of the safety factor in the lane-changing process, as 

shown below. 

 

𝑈𝑠𝑎𝑓𝑒𝑡𝑦 =
1

2
(𝑆𝑃𝑡=𝑇𝑐𝑙 − 𝑆𝑃𝑡=0) (3.10) 

 

where 𝑆𝑃𝑡=𝑇𝑐𝑙 is the safety factor after the lane changing process ends, 𝑆𝑃𝑡=0 is the 

initial safety factor and 𝑇𝑐𝑙 is the time needed to change lanes, which is given by 

 

𝑇𝑐𝑙 =
𝑦𝑠𝑇𝑠
𝐿𝑊

 (3.11) 

 

where 𝑦𝑠 is the lane position of car S,  𝐿𝑊 is lane width and 𝑇𝑠 is the duration of 

complete lane changes. The safety factor is a function of the time headway. Its range is 

between negative one and one. The smaller the time headway, the smaller the safety 

factor. The safety factor of a vehicle is defined by 

 

𝑆𝑃 =

{
 
 

 
 

1                              𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦 ≤ −𝑇𝑏

2 ∗ |𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦|

𝑇𝑏
− 1                  − 𝑇𝑏 < 𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦 ≤ 𝑇𝑏

1                                𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦 > 𝑇𝑏

 (3.12) 
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where 𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦 is the minimum time headway between the subject vehicle and its 

surrounding vehicles and 𝑇𝑏 is a breakpoint, which represents the desired time headway. 

When two cars are far enough from each other, the time headway is bigger than 𝑇𝑏. It is 

always safe under this condition and the safety factor reaches its maximum value.  𝑇𝑏 of 

the competing vehicle is given by 

 

𝑇𝑏 = min (3, 𝑇0) (3.13) 

 

where 𝑇0 is the initial time headway between the competing vehicle (i.e. Car C) and the 

vehicle in front of it (i.e. Car A) when the host vehicle (i.e. Car S) starts to change lanes. 

The number three comes from the three-second rule [98], which suggests that a 

minimum of a three second interval between the host vehicle and the car ahead should be 

kept. Equation (3.13) means if the initial time headway of the competing vehicle is 

bigger than three seconds, it is assumed that the desired time headway of competing 

vehicle is three seconds. Otherwise, the desired time headway of the competing vehicle 

is 𝑇0.  

The initial time headway between Car S and Car C is defined by 

 

𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦 =
𝑃𝑠 − 𝑃𝑐
𝑣𝑐

 (3.14) 

 

where 𝑃𝑠 and 𝑃𝑐 are initial longitudinal positions of Car S and Car C relative to the road 

coordinate system and 𝑣𝑐 is the velocity of Car C. The time headway of the following 
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vehicle after 𝑇𝑐𝑙 seconds is given by 

 

𝑇ℎ𝑒𝑎𝑑𝑤𝑎𝑦 =

{
 

 
𝑃𝑠𝑙 − 𝑃𝑐𝑙
𝑣𝑐 + 𝑎𝑐𝑇𝑐𝑙

     𝑃𝑠𝑙 ≥ 𝑃𝑐𝑙

𝑃𝑐𝑙 − 𝑃𝑠𝑙
𝑣𝑠 + 𝑎𝑠𝑇𝑐𝑙

     𝑃𝑠𝑙 < 𝑃𝑐𝑙

 (3.15) 

 

where 𝑣𝑠 and 𝑣𝑐 are velocities of Car S and Car C relative to the road coordinate system, 

𝑎𝑠 and 𝑎𝑐 are acceleration of Car S and Car C, 𝑃𝑠𝑙 and 𝑃𝑐𝑙 are longitudinal positions of 

Car S and Car C, which are calculated by 

 

𝑃𝑠𝑙 = 𝑃𝑠 + 𝑣𝑠𝑇𝑐𝑙 +
1

2
𝑎𝑠𝑇𝑐𝑙

2  (3.16) 

𝑃𝑐𝑙 = 𝑃𝑐 + 𝑣𝑐𝑇𝑐𝑙 +
1

2
𝑎𝑐𝑇𝑐𝑙

2  (3.17) 

 

 

Figure 3.11 Safety factor 
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In summary, the safety factor is a piecewise linear function of the time headway. 

However, a piecewise function is relatively slow in the optimization process. In order to 

make the model more efficient, a function that is differentiable everywhere is used to 

approximate the piecewise function. In this study, Gaussian probability distribution 

functions are adopted. The amplitude is fixed and the standard deviation is adjusted to 

approximate the original function, as shown in Figure 3.11. 

 

               
 

Figure 3.12 Space payoff tree 

The second payoff function 𝑈𝑠𝑝𝑎𝑐𝑒 estimates the change of space payoffs. A space 

payoff tree is shown in Figure 3.12. 𝑈𝑠𝑝𝑎𝑐𝑒 is given by 

 

𝑈𝑠𝑝𝑎𝑐𝑒 =
1

2
(𝑅𝑃𝑡=𝑇𝑐𝑙 − 𝑅𝑃𝑡=0) (3.18) 

 

(𝑈1𝐶𝑆; 𝑈1𝑆𝐶) 

Car S 

Car C 

Car C 

Change lanes 

Stay in the 

current lane 

Accelerate 

 Yield 

Accelerate 

 Yield 

(𝑈2𝐶𝑆; 𝑈2𝑆𝐶) 
  

(𝑈4𝐶𝑆; 𝑈4𝑆𝐶) 
  

(𝑈3𝐶𝑆; 𝑈3𝑆𝐶) 
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where 𝑇𝑐𝑙 is the time needed to change lanes, 𝑅𝑃𝑡=𝑇𝑐𝑙 is the space payoff after 𝑇𝑐𝑙 

seconds and 𝑅𝑃𝑡=0 is the initial space payoff. The space payoff is a function of relative 

positions. Its range is between negative one and one. Car S can get more space by 

changing lanes and Car C can get more space by accelerating and moving in front of Car 

S. The estimation of the space payoff of vehicles depends on if two vehicles move in the 

same lane. 

When two cars move in different lanes, the space payoff of Car C in the instant t is 

calculated by 

𝑅𝑃𝑐𝑠(𝑡) = {
2

3

−1                                  𝑡𝑐𝑠(𝑡) ≤ −3

𝑡𝑐𝑠(𝑡) + 1                  − 3 < 𝑡𝑐𝑠(𝑡) ≤ 0
1                                   𝑡𝑐𝑠(𝑡) > 0

 (3.19) 

 

where 𝑡𝑐𝑠 is the relative position of Car C with respect to Car S. For example, when car 

S is in front of Car C, Car C’s relative position is defined as 

𝑡𝑐𝑠 =
𝑑𝑐𝑠
𝑣𝑐

 (3.20) 

where 𝑑𝑐𝑠 is the relative distance between Car C and Car S and 𝑣𝑐 is the velocity of Car 

C. Car S’ relative position with respect to Car C is given by 

𝑡𝑠𝑐 =
𝑑𝑠𝑐
𝑣𝑐
 = −

𝑑𝑐𝑠
𝑣𝑐
 = −𝑡𝑐𝑠 (3.21) 

The sum of the space payoffs of Car S and Car C is zero, as shown below. 
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𝑅𝑃𝑠𝑐(𝑡)  = −𝑅𝑃𝑐𝑠(𝑡) (3.22) 

Figure 3.13 illustrates why the space payoff is defined in this way. When car S is far 

ahead of car C, it is easy for car S to change lanes. As a result, car C does not lose a lot 

of space and tends to give way to car S. When car S wants to change lanes and car C is 

close to car S, car C has to decelerate a lot to give way to car S. In this case, car C tends 

to accelerate instead of giving way to car S. 

 

 

Figure 3.13 Space payoffs when two cars move in different lanes 

When two cars move in the same lane, the space payoff of Car C in the instant t is 

calculated by 

𝑅𝑃𝑐𝑠(𝑡) = {

−1                                  𝑡𝑐𝑠(𝑡) ≤ −3

𝑡𝑐𝑠(𝑡)

3
                    − 3 < 𝑡𝑐𝑠(𝑡) ≤ 3

1                                   𝑡𝑐𝑠(𝑡) > 3

 (3.23) 

Equation (3.23) means that when a car is far behind the other car, it is relative 

position is negative one. When it is far ahead of the other car, it is relative position is 

one. The sum of two cars’ space payoffs is still zero. For the sake of solving the game 

fast and efficiently, Equation (3.19) and Equation (3.23) are approximated by functions 
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that are differentiable everywhere as well. In this study, Gaussian cumulative 

distribution functions are utilized.  

The total payoff function is a linear combination of the safety payoff and space 

payoff, which is given by 

𝑈𝑝𝑎𝑦𝑜𝑓𝑓 = 𝑓𝑤((𝑎 − 𝑎0)
2) ∗ ((1 − 𝛽(𝑞)) ∗ 𝑈𝑠𝑎𝑓𝑒𝑡𝑦 (𝑎) + 𝛽(𝑞) ∗ 𝑈𝑠𝑝𝑎𝑐𝑒(𝑎) + 1) − 1 (3.24) 

where 𝑎 is the future acceleration (i.e. future strategy) of the vehicle and 𝑎0 is the current 

acceleration of the vehicle, 𝑓𝑤 is the jerk penalty, 𝑞 is the aggressiveness of the driver 

and 𝛽 is the weight of payoffs. It can be seen that 𝛽 is the most important parameter in 

the total payoff function. It affects the weights of space payoffs and safety payoffs, as 

shown below. 

𝛽~
𝛽(𝑞)∗𝑈𝑠𝑝𝑎𝑐𝑒

(1−𝛽(𝑞))∗𝑈𝑠𝑎𝑓𝑒𝑡𝑦
 ,          0 ≤ 𝛽 ≤ 1 (3.25) 

 

 

 

Figure 3.14 Distribution of aggressiveness 

Distribution of 
aggressiveness 𝑞 

Distribution of the 
weight 𝛽 

One-to-one mapping 
between 𝑞 and 𝛽 
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One parameter called aggressiveness is introduced into the equation. Aggressiveness 

of drivers has a significant influence on driving. A lot of research has been done to study 

human factors including aggressiveness in driving [99-102]. One of the widely-used 

assumption is that aggressiveness of drivers obeys Gaussian distribution [103, 104], as 

shown in Figure 3.14. There is a one-to-one mapping between aggressiveness 𝑞 and 

weight 𝛽. Aggressive drivers care more about space than safety. They have big 𝛽 and a 

small weight of safety payoffs. Timid drivers care more about safety than space. Their 

weights of safety payoffs are bigger than those of space payoffs. The jerk penalty 

function is defined as 

𝑓𝑤 = 𝑒
−𝑇𝑐𝑙

2∗
(𝑎−𝑎0)

2

𝑤  (3.26) 

where 𝑎 is the future acceleration of the vehicle and 𝑎0 is the current acceleration of the 

vehicle, 𝑤 is the penalty parameter and 𝑇𝑐𝑙 is the time needed to change lanes.  

After estimating the safety payoff and space payoff, the last step is to solve the game. 

In the lane changing process, the host vehicle that wants to change lanes and the 

competing vehicle in the adjacent lane follow a 2-person Stackelberg game. This is a 

bilevel optimization problem, as shown below. 

 

(𝑎𝑠
∗, 𝑐𝑙

∗) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑠,𝑐𝑙

( 𝑚𝑖𝑛
𝑎𝑐∈𝛾𝑐(𝑎𝑠,𝑐𝑙)

𝑈𝑠(𝑎𝑠, 𝑐𝑙, 𝑎𝑐, 𝑞𝑠)) (3.27) 

𝛾𝑐(𝑎𝑠, 𝑐𝑙) ≜ {𝜉 ∈ 𝛤𝑐: 𝑈𝑐(𝑎𝑠, 𝑐𝑙, 𝜉,  𝑞𝑠𝑐) ≥ 𝑈𝑐(𝑎𝑠, 𝑐𝑙, 𝑎𝑐, 𝑞𝑠𝑐), ∀𝑎𝑐 ∈ 𝛤
𝑐}    (3.28) 

subject to         
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     𝑣𝑐 ≥ 0,  

𝑣s ≥ 0,  

𝑎𝑚𝑖𝑛 ≤ 𝑎𝑠 ≤ 𝑎𝑚𝑎𝑥,  

𝑎𝑚𝑖𝑛 ≤ 𝑎𝑐 ≤ 𝑎𝑚𝑎𝑥,  

 {
𝑃𝑠 < 𝑃𝐴                        𝑎𝑓𝑡𝑒𝑟 𝐶𝑎𝑟 𝑆 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑙𝑎𝑛𝑒𝑠
𝑃𝑠 < 𝑃𝐵   𝑤ℎ𝑒𝑛 𝐶𝑎𝑟 𝑆 𝑠𝑡𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑎𝑛𝑒

  

    𝑈𝑠𝑎𝑓𝑒𝑡𝑦(𝑠) > 𝐾  

 

where Car S is the host vehicle that wants to change lanes, Car C is the competing 

vehicle following in the adjacent lane, Car A is the car ahead in the adjacent lane and 

Car B is the car ahead in host vehicle’s lane, 𝑈𝑠 denotes the payoff of the host vehicle, 

𝑈𝑐 is the payoff of the competing vehicle, 𝑎𝑠 denotes the possible acceleration of Car S, 

𝑐𝑙 shows if Car S is changing lanes, 𝑎𝑐 is the possible acceleration of Car C, 𝑎𝑠
∗ is the 

optimal acceleration of Car S, 𝑎𝑐
∗ is the optimal acceleration of Car C, 𝑐𝑙

∗ shows if 

changing lanes is appropriate for Car S, 𝛾𝑐(𝑎𝑠, 𝑐𝑙) denotes the optimal action candidates 

of Car C given the actions of Car S, 𝛤𝑐 indicates the action candidates of Car C, 

𝑈𝑠𝑎𝑓𝑒𝑡𝑦(𝑠) is the safety payoff of Car S, 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 are the minimum and maximum 

acceleration that a vehicle can reach, 𝑞𝑠 is the aggressiveness of Car S, 𝑞𝑠𝑐 is the 

estimated Car C’s aggressiveness, 𝑃𝐴,  𝑃𝐵  and 𝑃𝑠 are positions of Car A, Car B and Car S 

and 𝑣𝑐  and 𝑣𝑠 are velocities of Car C and Car S. 

The solution of this game is the strategy that maximizes lower limit of the payoff 
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from the viewpoint of the leader with the consideration of the follower’s reacting 

strategy. In other words, the solution indicates the pair that maximizes their payoffs in 

the worst case in order. If high accuracy of strategies is not required, this bilevel 

optimization problem can be solve by extensively searching the discrete payoff matrix. 

For example, one decimal place is accurate enough for the acceleration of vehicles in 

this game. A payoff matrix consists of a set of discrete acceleration can be built, which is 

similar to Table 3.1. Each element of the matrix represents the payoff of the combination 

of one of Car S’ strategies and one of Car C’s strategies. This matrix only has finite 

elements and the Stackelberg equilibrium can be found easily. If the accuracy of 

strategies is particularly important, this bilevel optimization problem can also be solved 

by Bilevel Evolutionary Algorithm (BLEAQ) [105]. However, BLEAQ is slower than 

extensive search. In should be noticed that the solution of the game is calculated in every 

instant. It may change when the game is played. For example, the solution may change 

from changing lanes to staying in the current lane after getting the latest traffic 

information, which is similar to real drivers. 

The game in Equations (3.27) - (3.28) simulates the reasoning process of the leader 

while changing lanes. If the host vehicle knows the aggressiveness of the competing 

vehicle, it can predict the future reactions of the competing vehicle. Based on the 

predicted reactions, the host vehicle can find its optimal strategies. However, there is 

still one unknown, the aggressiveness of the competing vehicle. In order to find the 

optimal strategy accurately, the host vehicle needs to estimate the aggressiveness of the 

competing vehicle, as shown in Figure 3.15. 
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Figure 3.15 Estimate the aggressiveness of the competing vehicle 

The host vehicle starts to interact with the competing vehicle by using the turn signal 

or making a small lateral move. At the beginning, the host vehicle knows nothing about 

the competing vehicle. It is reasonable to assume the competing vehicle is driven by a 

normal driver, whose aggressiveness is zero according to the distribution in Figure 3.14. 

The host vehicle predicts how a normal driver will react to its future actions and finds its 

own optimal strategy. In the next instant, the host vehicle is able to observe the real 

action of the competing vehicle. The real action is compared with the predicted action 

and the difference is used to update the estimated aggressiveness. The estimated 

aggressiveness is only updated when the difference is bigger than 0.3𝑚/𝑠2. It is updated 
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by solving the following equation. 

𝑈𝑝𝑎𝑦𝑜𝑓𝑓(𝑞𝑐 , 𝑅𝑒𝑎𝑙𝑎𝑐) ≥ 𝑈𝑝𝑎𝑦𝑜𝑓𝑓(𝑞𝑐 , 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑎𝑐) (3.29) 

where 𝑈𝑝𝑎𝑦𝑜𝑓𝑓 is the total payoff of Car C, 𝑞𝑐 is the aggressiveness of Car C, 𝑅𝑒𝑎𝑙𝑎𝑐 is 

the real acceleration of Car C and 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑎𝑐  is the predicted acceleration of Car C. 

There is only one unknown  𝑞𝑐. The range of the aggressiveness of Car C can be 

estimated by solving the inequality. 

3.3.3 Estimate the driver’s desired speed 

One of the most important parameters of the driver model is the driver’s desired 

speed. The driver model compares the velocity of the car ahead with the driver’s desired 

speed so that it can decide if it needs to change lanes. The desired speed is also used as 

the reference signal in the feedback control loop in the free driving mode. However, the 

desired speed of a human driver cannot be measured by a sensor directly. Furthermore, 

the desired speed varies a lot during driving. To address these challenges, a fixed-size 

queue is used to memorize the velocities of the car and estimate the driver’s desired 

speed. The objective is to obtain a signal, which tracks the real desired speed. An 

example of the queue is shown as below. 

 

𝑉𝑑 = [𝑉(𝑡 − 3), 𝑉(𝑡 − 6), 𝑉(𝑡 − 9),… , 𝑉(𝑡 − 30)] (3.30) 

 

where 𝑉𝑑 represents the velocity queue,  𝑉 is the velocity of the car and 𝑡 denotes the 

time. The queue records the velocities of the car in the past few seconds. If the previous 
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velocities are not available, the queue is filled in with the speed limit of the current road. 

The size of this queue is fixed, which means when a new number is added to the rear 

terminal position, the oldest number at the front terminal position is removed. The 

estimated desired velocity of the driver is calculated by: 

 

𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =
∑ (𝑉𝑑𝑖)𝑖

𝑁
 (3.31) 

 

where 𝑉𝑑𝑖 is the element of the velocity queue and 𝑁 is the size of the queue. The 

estimated desired velocity is the mean value of the elements of the queue. When the car 

moves, the queue keeps being updated and the estimated velocity is recalculated in real 

time. A flowchart of the update process is shown in Figure 3.16.  

At the beginning, the system checks if the driver model works in the car-following 

mode. If the model does not work in the following mode, there is no car ahead nearby. In 

this case, the system enqueues the newest velocity and dequeues the oldest velocity. The 

estimated desired speed is recalculated using the new queue in real time. This process is 

similar to a moving average filter and the estimated speed will track the vehicle’s speed. 

If the model shows that it is following another car, the system starts to check whether the 

driver model and the human driver stay in the current lane or change lanes together. If 

the model and human driver keep staying in the same lane, the estimated speed is the 

same as or close to the real desired speed. Consequently, the elements of the queue do 

not need to be changed. 
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Figure 3.16 Estimate the driver’s desired speed 

In contrast, the model and the human driver may act differently. If the model 

changes lanes while the human driver stays in the original lane, the estimated velocity is 

bigger than the desired velocity. If the human driver changes lanes and the model does 

not change lanes, the estimated velocity is smaller than the desired velocity. In either 

case, the difference between the estimated velocity and the real desired speed is too big. 

To make the mean value of the queue elements converge to the real desired speed faster, 

the latest velocity is enqueued multiple times instead of only once and corresponding 
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oldest velocities are removed. In summary, the system selectively records velocities and 

estimates the desired speed using the historical data. 

3.4 Detection system 

In this section, the longitudinal driver model, the lateral driver model and the vehicle 

model are integrated into one fault detection system, which is able to predict the rational 

future positions of vehicles. The prediction results are compared with real positions 

measured by sensors. If the vehicle movement deviates largely from prediction results, 

the system concludes that an abnormal situation or an anomaly has occurred.  

 

         

Figure 3.17 Prediction results of the driver model 

The complete fault detection system was embedded into Simulink/dSPACE for tests. 

At the beginning, several virtual cars were assigned random initial positions, velocities, 

desired velocities and aggressiveness. Apart from these virtual cars, a human driver 

controls one car using analog steering wheels and pedals. This car is equipped with 

sensors such as LIDAR sensors and cameras so that it is able to detect surrounding cars. 

Blue car: 

Real car driven by 

a human driver 

White car: 

Virtual car which 

shows the 

predicted position 

Error 

Detector 
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An adaptive driver model was combined with the simplified vehicle model to predict the 

future positions of this vehicle, as shown in Figure 3.17. 

 

 

Figure 3.18 Estimate the aggrssivness of the subject vehicle 

Since the aggressiveness of a human driver may not be constant, this parameter 

should be estimated and updated in real time, as shown in Figure 3.18. Initially, it is 

assumed that the aggressiveness of the driver is zero (i.e. normal). After that, two 

variables are calculated to indicate how much the car driven by the human driver 

deviates from the car controlled by the rational driver model. Since a transient difference 

is not big enough to represent the deviation, these two variables are calculated every 

three seconds during the simulation. The variables are defined as 

 

 

𝑒𝑥(𝑛) =
∑ (𝑚𝑜𝑑𝑒𝑙(𝑡) − 𝑐𝑎𝑟(𝑡)) 𝑡∈[3(𝑛−1),3𝑛]

𝑁𝑡
         𝑛𝜖𝑍 (3.32) 

𝑒𝑦(𝑛) = ∑ (𝑚𝑜𝑑𝑒𝑙𝑙𝑐(𝑡) − 𝑐𝑎𝑟𝑙𝑐(𝑡))

 𝑡∈[3(𝑛−1),3𝑛]

      𝑛𝜖𝑍 (3.33) 
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where ex is the average difference between predicted longitudinal positions and real 

longitudinal positions in the current time interval, 𝑛 is the index of time intervals, 

𝑚𝑜𝑑𝑒𝑙(𝑡) is the predicted longitudinal position at instant t, 𝑐𝑎𝑟(𝑡) denotes the real 

longitudinal position at instant t, 𝑁𝑡 is the number of sampled points in the current time 

interval, ey represents the difference between predicted number of lanes changes and real 

number of lane changes in the current time interval, 𝑚𝑜𝑑𝑒𝑙𝑙𝑐(𝑡) is one if the model 

predicts that the car will change lanes at time t and is zero otherwise, 𝑐𝑎𝑟𝑙𝑐(𝑡)  is one if 

the car changes lanes at time t and is zero otherwise. The vehicle model and driver 

model are also reset every three seconds so that initial values of ex and ey are always 

zeros in each time interval. Aggressiveness is estimated by combining ex and ey, where 

ey is dominant.  It is updated in real time, as shown below. 

 

𝑞(𝑡𝑘) = 𝑞(𝑡𝑘−1) + 𝐾𝑝𝑥[𝑒𝑥(𝑡𝑘) − 𝑒𝑥(𝑡𝑘−1)] + 𝐾𝑖𝑥𝑒𝑥(𝑡𝑘)

+ 𝐾𝑑𝑥[𝑒𝑥(𝑡𝑘) − 2𝑒𝑥(𝑡𝑘−1) + 𝑒𝑥(𝑡𝑘−2)] + 𝐾𝑖𝑦𝑒𝑦(𝑡𝑘) 
(3.34) 

 

where 𝑞 is the aggressiveness, 𝐾𝑝𝑥, 𝐾𝑖𝑥, 𝐾𝑑𝑥 and 𝐾𝑖𝑦 are estimation parameters. 𝐴𝑔 is a 

cumulative value. If the real driving behavior does not deviate obviously from the 

predictive driving behavior, 𝐴𝑔 will decay to zero due to the integral term. The fault 

detector works by observing the transient difference between the predictive model and 

real car. It is given by 

 

𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 = √𝑤1 ∗ 𝐷𝑓𝑥
2 + 𝑤2 ∗ 𝐷𝑓𝑦

2  (3.35) 
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where 𝐷𝑓𝑥 is the difference between the real longitudinal position and predicted 

longitudinal position and 𝐷𝑓𝑦 is the difference between the real lateral position and 

predicted lateral position, 𝑤1 and 𝑤2 are weights of 𝐷𝑓𝑥 and 𝐷𝑓𝑦. 

3.5 Test results and discussion 

Several tests were conducted by a human driver in Simulink/dSPACE. In the present 

study, the road has two lanes. UA was simulated by adding an error to throttle positions 

randomly. 

 

 

Figure 3.19 Normal driving 

 

Figure 3.20 UA occurs randomly 
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Figure 3.19 shows the test result of normal driving. It can be seen that the 

aggressiveness does not fluctuate a lot and stays at a low level. The detector curve is also 

relatively flat, which meets expectations. Figure 3.20 shows driving with random UA 

errors. The duration of the error is three seconds. It can be found that the estimated 

aggressiveness keeps increasing and reaches a big value before it decays. The 

aggressiveness is a cumulative value and indicates the status of the driver and vehicle 

based on historical driving data. As expected, the aggressiveness of the test with UA is 

much higher than that of normal driving. Another important finding is that when UA 

occurs, the detector values are relatively high, which means the detector is helpful for 

detecting UA. However, there are also some problems. The test result shows that if the 

driver presses the brake pedal and controls the car carefully when UA occurs, there is no 

big difference between the predicted vehicle position and real vehicle position. In 

addition, human drivers change driving patterns suddenly sometimes. It leads to high 

detector values, which are not caused by vehicle errors. 

 

 

Figure 3.21 First test for UA lasting for seven seconds 
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Figure 3.22 Second test for UA lasting for seven seconds 

Figure 3.21 - Figure 3.22 show the test results when the duration of errors is 

extended to seven seconds. It can be seen that the relationship between errors and 

detector values is more obvious. It is reasonable because when the error lasts longer, it is 

more difficult to control the car. Therefore, real vehicle positions deviate considerably 

from predicted positions, which result in large detector values. Another interesting 

finding is that the driver in the second test could not control the visual car well and the 

estimated aggressiveness is much higher than that of the driver in the first test. 

3.6 Summary 

In this chapter, a model-based detection system for UA and other abnormal driving 

conditions is demonstrated. A rational and adaptive driver model is developed and 

combined with a vehicle model to predict the future behavior of the vehicle. The results 

of prediction are compared with real measurements from sensors. If the car driven by a 

human driver deviates largely from the trajectory of the model, the system concludes 

that an abnormal event has occurred. The detection system is validated in the dSPACE 
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driving simulator. Test results show that it is capable of indicating abnormal driving 

conditions. A persistent pattern of anomalies may imply a more drastic situation such as 

UA or else due to the driver becoming seriously erratic (e.g., incidents of road rage). 

Whether it is possible to differentiate the two cases, it is not clear at this point. 

Integration of physiological sensing may help differentiate these cases [106] [107] but 

this itself requires additional evaluation (and more sophisticated and complex 

experiment design). In summary, though the accuracy of the model-based detection 

system is not extremely high, it is a strong indicator of abnormal events and a good 

complement to the data-driven detector. 
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4. CONCLUSIONS 

 

In this study, both a data-driven detector and a driver model-based detector were 

developed for vehicle anomalies originating in UA. These two detectors were integrated 

to increase the detection accuracy. 

In the first part, a neural network-based detection system was designed. At first, the 

model was tested using the data collected from Matlab / Simulink. A vehicle model with 

six degrees of freedom was built. The model also contained tire models, an engine, an 

automatic transmission system and other powertrain components. A driver model was 

created to control steering wheels and pedals. Simulation results showed that the detector 

was able to differentiate abnormal acceleration from normal acceleration and its 

accuracy was beyond 95%. After that, the detection model was also tested in dSPACE. 

A brake assist system was developed to cooperate with the detection system. Test results 

showed that the detection system was able to detect anomalies in one second with an 

accuracy of 99%. The brake assist system received warnings from the detector and was 

capable of helping the driver stop the car safely. 

In the second part, a rational and adaptive driver model was created. The longitudinal 

model is similar to an adaptive cruise control system while the lateral model is based on 

a Stackelberg game, which mimics the decision-making process of a human driver in the 

lane-changing scenario. The behavior of this driver model was compared with the 

behavior of a human driver. When the difference between the driver model and the 

human driver was abnormally large, the system concluded that an abnormal event had 
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occurred. Simulation results show that the driver model-based detector could give timely 

warnings when UA occurred. The driver model could also be extended to the emerging 

field of autonomous driving. 

In summary, effective models that can detect and mitigate UA have been presented. 

The proposed approaches could be extended to other vehicle problems. For example, 

similar structures could be used for detecting the failure of electric power steering. The 

findings of this study could increase safety on the roadway. 
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 VEHICLE DYNAMICS APPENDIX A

 

Section 2 gives a brief introduction of vehicle dynamics. This section presents some 

more details, which are also important in a vehicle model, but not discussed in section 2. 

Tire modelling is critical for driving simulation. It could be up to 50% of a vehicle 

model. One of the most widely-used tire models is Pacejka tire model (Magic Formula) 

[69], in which tire forces and torques are functions of slip angles and slip ratios. A slip 

angle is the angle between the direction towards which a rolling wheel is pointing and 

the actual direction of travel of the wheel, as shown below [69]. 

𝛼 =

{
 

 𝛿 − arctan (
𝑉𝑦𝑖

𝑉𝑥𝑖
)                  𝐹𝑟𝑜𝑛𝑡 𝑤ℎ𝑒𝑒𝑙

−arctan (
𝑉𝑦𝑖

𝑉𝑥𝑖
)                        𝑅𝑒𝑎𝑟 𝑤ℎ𝑒𝑒𝑙

 (A.1) 

where 𝛼 denotes the slip angle, 𝛿 is the steering angle, 𝑉𝑦𝑖 represents the lateral velocity 

and 𝑉𝑥𝑖 denotes the longitudinal velocity of the wheel. 𝑉𝑥𝑖 and 𝑉𝑦𝑖 of different wheels are 

shown in Figure A-1. 

Vx1 = 𝑉𝑥 + 𝜔𝑧 ∗
𝑇𝑊𝑓

2
 (A.2) 

Vx2 = 𝑉𝑥 − 𝜔𝑧 ∗
𝑇𝑊𝑓

2
 (A.3) 

Vx3 = 𝑉𝑥 + 𝜔𝑧 ∗
𝑇𝑊𝑟
2

 (A.4) 
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Vx4 = 𝑉𝑥 − 𝜔𝑧 ∗
𝑇𝑊𝑟
2

 (A.5) 

Vy1 = 𝑉𝑦 + 𝜔𝑧 ∗ 𝐿𝑓 (A.6) 

Vy2 = 𝑉𝑦 + 𝜔𝑧 ∗ 𝐿𝑓 (A.7) 

Vy3 = 𝑉𝑦 − 𝜔𝑧 ∗ 𝐿𝑟 (A.8) 

Vy4 = 𝑉𝑦 − 𝜔𝑧 ∗ 𝐿𝑟 (A.9) 

 

where 𝑉𝑥 and 𝑉𝑦 are longitudinal and lateral velocities of the vehicle, 𝑇𝑊𝑓 and 𝑇𝑊𝑟 are 

front and rear track width, 𝐿𝑓 and 𝐿𝑟 are the distance from center of gravity (CoG) to the 

front and rear axles and 𝜔𝑧 denotes the yaw rate. 

 
Figure A-1 Wheel forward velocities and lateral velocities 
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Slip ratios are calculated by Equation (2.9). Longitudinal tire forces, lateral tire 

forces and aligning moments are given by  [69] 

𝐹𝑥𝑖 = 𝐷𝑥𝑠𝑖𝑛(𝐶𝑥 arctan(𝐵𝑥𝜎 − 𝐸𝑥(𝐵𝑥𝜎 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝑥𝜎))) (A.10) 

𝐹𝑦𝑖 = 𝐷𝑦𝑠𝑖𝑛(𝐶𝑦 arctan (𝐵𝑦𝛼 − 𝐸𝑦(𝐵𝑦𝛼 − 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵𝑦𝛼))) (A.11) 

𝜙𝑖 = (1 − 𝐸𝑧) ∗ 𝛼 +
𝐸𝑧
𝐵𝑧
∗ arctan (𝐵𝑧 ∗ 𝛼) 

(A.12) 

𝑀𝑧𝑖 = 𝐷𝑧sin (𝐶𝑧 ∗ arctan(𝐵𝑧 ∗ 𝜙𝑖)) (A.13) 

 

where 𝐹𝑥𝑖 denotes the longitudinal tire force, 𝐹𝑦𝑖 denotes the lateral tire force, 𝑀𝑧𝑖 is the 

aligning moment, 𝜎 is the slip ratio, 𝐵𝑥, 𝐶𝑥, 𝐷𝑥, 𝐸𝑥, 𝐵𝑦, 𝐶𝑦, 𝐷𝑦, 𝐵𝑧 , 𝐶𝑧 , 𝐷𝑧 and 𝐸𝑧 are 

functions of tire normal forces. Tire normal forces are affected by the slope angle of the 

road, as shown in Figure A-2. 

 
 

 

Figure A-2 Tire force 
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The road slope angle is denoted by γ and the tire normal force is denoted by 𝐹𝑧. 𝐹𝑧 

consist of four parts: the static vertical load 𝐹𝑠 , the longitudinal load transfer due to 

acceleration 𝐹𝑝, the lateral load transfer due to rolling 𝐹𝑟  and the lateral load transfer due 

to acceleration of the unsprung mass 𝐹𝑢. Tire normal forces are given by 

𝐹𝑧1 = 𝐹𝑠1 + 𝐹𝑝1 + 𝐹𝑟1 + 𝐹𝑢1        

=  
−ℎ𝐹𝑑𝑟𝑎𝑔 − (𝑚𝑐ℎ +𝑚𝑢𝑓ℎ𝑢𝑓 +𝑚𝑢𝑟ℎ𝑢𝑟)𝑔𝑠𝑖𝑛𝛾 + 𝑚𝑔𝐿𝑟𝑐𝑜𝑠𝛾

2𝑊𝐵
             

−
(𝑚𝑐ℎ +𝑚𝑢𝑓ℎ𝑢𝑓 +𝑚𝑢𝑟ℎ𝑢𝑟) ∗ 𝑎𝑥

2𝑊𝐵

+
(𝑎𝑦𝑐𝑜𝑠𝜙 + 𝑔𝑠𝑖𝑛𝜙) ∗ 𝑚𝑐𝑑𝑟𝑜𝑙𝑙 ∗ 𝐾𝑟𝑜𝑙𝑙𝑓

𝑇𝑊𝑓(𝐾𝑟𝑜𝑙𝑙𝑓 + 𝐾𝑟𝑜𝑙𝑙𝑟)
+
𝑚𝑐𝑎𝑦ℎ𝑢𝑓 ∗

𝐿𝑟
𝑊𝐵 +𝑚𝑢𝑓𝑎𝑦ℎ𝑢𝑓

𝑇𝑊𝑓
  

(A.14) 

𝐹𝑧2 = 𝐹𝑠2 + 𝐹𝑝2 + 𝐹𝑟2 + 𝐹𝑢2        

=  
−ℎ𝐹𝑑𝑟𝑎𝑔 − (𝑚𝑐ℎ +𝑚𝑢𝑓ℎ𝑢𝑓 +𝑚𝑢𝑟ℎ𝑢𝑟)𝑔𝑠𝑖𝑛𝛾 + 𝑚𝑔𝐿𝑟𝑐𝑜𝑠𝛾

2𝑊𝐵
             

−
(𝑚𝑐ℎ +𝑚𝑢𝑓ℎ𝑢𝑓 +𝑚𝑢𝑟ℎ𝑢𝑟) ∗ 𝑎𝑥

2𝑊𝐵

−
(𝑎𝑦𝑐𝑜𝑠𝜙 + 𝑔𝑠𝑖𝑛𝜙) ∗ 𝑚𝑐𝑑𝑟𝑜𝑙𝑙 ∗ 𝐾𝑟𝑜𝑙𝑙𝑓

𝑇𝑊𝑓(𝐾𝑟𝑜𝑙𝑙𝑓 + 𝐾𝑟𝑜𝑙𝑙𝑟)
−
𝑚𝑐𝑎𝑦ℎ𝑢𝑓 ∗

𝐿𝑟
𝑊𝐵 +𝑚𝑢𝑓𝑎𝑦ℎ𝑢𝑓

𝑇𝑊𝑓
  

(A.15) 
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𝐹𝑧3 = 𝐹𝑠3 + 𝐹𝑝3 + 𝐹𝑟3 + 𝐹𝑢3        

=  
ℎ𝐹𝑑𝑟𝑎𝑔 + (𝑚𝑐ℎ + 𝑚𝑢𝑓ℎ𝑢𝑓 +𝑚𝑢𝑟ℎ𝑢𝑟)𝑔𝑠𝑖𝑛𝛾 +𝑚𝑔𝐿𝑓𝑐𝑜𝑠𝛾

2𝑊𝐵
            

+
(𝑚𝑐ℎ +𝑚𝑢𝑓ℎ𝑢𝑓 +𝑚𝑢𝑟ℎ𝑢𝑟) ∗ 𝑎𝑥

2𝑊𝐵

+
(𝑎𝑦𝑐𝑜𝑠𝜙 + 𝑔𝑠𝑖𝑛𝜙) ∗ 𝑚𝑐𝑑𝑟𝑜𝑙𝑙 ∗ 𝐾𝑟𝑜𝑙𝑙𝑟

𝑇𝑊𝑟(𝐾𝑟𝑜𝑙𝑙𝑓 + 𝐾𝑟𝑜𝑙𝑙𝑟)
+
𝑚𝑐𝑎𝑦ℎ𝑢𝑟 ∗

𝐿𝑓
𝑊𝐵 +𝑚𝑢𝑟𝑎𝑦ℎ𝑢𝑟

𝑇𝑊𝑟
  

(A.16) 

𝐹𝑧4 = 𝐹𝑠4 + 𝐹𝑝4 + 𝐹𝑟4 + 𝐹𝑢4        

=  
ℎ𝐹𝑑𝑟𝑎𝑔 + (𝑚𝑐ℎ + 𝑚𝑢𝑓ℎ𝑢𝑓 +𝑚𝑢𝑟ℎ𝑢𝑟)𝑔𝑠𝑖𝑛𝛾 +𝑚𝑔𝐿𝑓𝑐𝑜𝑠𝛾

2𝑊𝐵
            

+
(𝑚𝑐ℎ +𝑚𝑢𝑓ℎ𝑢𝑓 +𝑚𝑢𝑟ℎ𝑢𝑟) ∗ 𝑎𝑥

2𝑊𝐵

−
(𝑎𝑦𝑐𝑜𝑠𝜙 + 𝑔𝑠𝑖𝑛𝜙) ∗ 𝑚𝑐𝑑𝑟𝑜𝑙𝑙 ∗ 𝐾𝑟𝑜𝑙𝑙𝑟

𝑇𝑊𝑟(𝐾𝑟𝑜𝑙𝑙𝑓 + 𝐾𝑟𝑜𝑙𝑙𝑟)
−
𝑚𝑐𝑎𝑦ℎ𝑢𝑟 ∗

𝐿𝑓
𝑊𝐵 +𝑚𝑢𝑟𝑎𝑦ℎ𝑢𝑟

𝑇𝑊𝑟
  

(A.17) 

 

where 𝑎𝑥 and 𝑎𝑦 denote the longitudinal and lateral acceleration of the vehicle, 𝐹𝑑𝑟𝑎𝑔 is 

the aerodynamic drag force, 𝑚𝑢𝑓 and 𝑚𝑢𝑟 are the front and rear unsprung mass, ℎ𝑢𝑓 and 

ℎ𝑢𝑟 are the height of front and rear unsprung mass CoGs, 𝑚𝑐 is the sprung mass, , h is 

the height of sprung mass CoG, 𝑑𝑟𝑜𝑙𝑙 is the length of the roll moment arm, 𝐾𝑟𝑜𝑙𝑙𝑓 and 

𝐾𝑟𝑜𝑙𝑙𝑟 are front and rear roll stiffness and 𝑊𝐵 is the wheel base. 
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 VEHICLE MODEL IN SIMULINK APPENDIX B

 

A vehicle model with six degrees of freedom was built in Matlab / Simulink. The 

model contained tire models, an engine, an automatic transmission system and other 

powertrain components. The model was tested in a 3D environment. A traffic model was 

created. Side view mirrors and the rear view mirrors were also simulated. A human 

driver is able to drive a virtual vehicle using analog steering wheels and pedals. 

 

 

Figure B-1 Powertrain 
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Figure B-2 Vehicle dynamics simulation 
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Figure B-3 Coordinate transformation and 3D simulation 

 

Figure B-4 Control the vehicle using analog steering wheels and pedals 
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Figure B-5 Add traffic simulation 

 

Figure B-6 Simulate mirrors 
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 MATLAB GUI APPENDIX C

 

A Matlab GUI was created to visualize the movements of vehicles clearly, as shown 

in Figure C-1. It is similar to a simulation player and contains buttons such as run, step 

forward, step backward and stop. Velocities of vehicles are also shown in real time. 

 

Figure C-1 Traffic simulation 

Vehicle models described in section 3 are tested in Simulink. A few representative 

tests results are shown below. The red vehicle is the host vehicle. It wants to changes 

lanes because the blue car is moving slowly ahead. There is an orange car following in 

the adjacent lane. The red car needs to find the optimal timing for changing lanes. In the 

first test, the aggressiveness of the red car is positive (i.e. aggressive) and the 

aggressiveness of the orange car is negative (i.e. timid). Simulation results are shown in 

Figure C-2. The red car accelerates and starts to change lanes. The orange car finds that 

and decelerates. Finally, the red car change lanes successfully and safely. 
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Figure C-2 Aggressive vs. timid 

In the second test, the aggressiveness of the red car is negative (i.e. timid) and the 

aggressiveness of the orange car is positive (i.e. aggressive). Simulation results are 

shown in Figure C-3. The red car thinks it is dangerous to compete with the orange car 

and move in front of it. Therefore, it slows down and lets the orange car go first. Finally, 

the red car change lanes safely and follows the orange car in the new lane. 

 

 

Figure C-3 Timid vs. aggressive 
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End 
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End 
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In the third test, the aggressiveness of the red car is smaller than that of the orange 

car. It means the orange car is more aggressive than the red car. Simulation results are 

shown in Figure C-4. At the beginning, the red car accelerates and tries to compete with 

the orange car. The orange car reacts by accelerating. After a period of time, the red 

vehicle gives in to the orange car and lets it go first. Therefore, it slows down and lets 

the orange car go. Finally, the red car change lanes and follows the orange car in the new 

lane. 

 

 

Figure C-4 Aggressive vs. aggressive 
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 ROAD DESIGN APPENDIX D

 

A critical factor in the driving environment is the road type. Drivers may change 

their driving patterns under different road conditions. Various kinds of roads were 

designed and used in tests in the dSPACE driving simulator, as shown below. The first 

part is a top view. It can be seen that both straight and curved roads were created.  

 

 

Figure D-1 Road one 

 

Figure D-2 Road two 
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There are two lanes, a passing lane and an inner lane. Since gravity affects vehicles’ 

acceleration, the slope of the road is especially important in this work. Therefore, the 

road was designed to contain both steep and flat parts. In the steep part, there can be 

considerable changes of the acceleration even without drivers’ inputs. It should be 

noticed that height curves of roads are smoothed (i.e. there is no sharp corner) in the 3D 

environment of the dSPACE simulator. 

 

 

Figure D-3 Road three 

 

Figure D-4 Road four 
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Figure D-5 Road five 




