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ABSTRACT 

 

      Among all the metal-oxide phase transition materials, vanadium dioxide (VO2) 

has attracted extensive research interest benefiting to its outstanding semiconductor-to 

metal phase transition (SMT) properties with a transition temperature (Tc) close to room 

temperature. VO2 is known to exhibit an ultrafast (within 0.1 °C) and reversible phase 

transition from a semiconductor phase to a metallic phase at ~68 °C. Because of this 

fascinating characteristic, VO2 shows great potential in various devices including sensors, 

switches, thermo/electrochromics, thermal actuators, and memory devices. The 

semiconductor phase VO2 has a monoclinic crystal structure. By the first-order SMT 

process, VO2 transits to tetragonal crystal structure, which results in dramatic changes in 

its electrical and optical properties. 

      Compared with single crystalline VO2, the properties of VO2 thin films can be 

largely affected by many factors including defects density, strain, and the existence of 

the multivalent vanadium ions (V
2+

, V
3+

, V
4+

, V
5+

). It’s quite challenging to synthesize 

high quality VO2 thin films with sharp transition width, narrow thermal hysteresis, and 

large electrical and optical property change. In order to address these issues, the work in 

this thesis is focused on optimizing the SMT properties of VO2 thin films and studying 

the defect effects in the SMT processes. 

Firstly, highly textured VO2 thin films have been achieved on amorphous glass 

substrates and compared with the ones grown on c-cut sapphire and Si (111) substrates, 

all by pulsed laser deposition. Excellent phase transition properties were observed for the 
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films on glass substrates and were correlated with the large grain size and low defects 

density of the films. 

      Based on the first work, VO2 thin films with controlled grain sizes were 

deposited on amorphous glass substrates by pulsed laser deposition. The VO2 films were 

found to exhibit a sharper SMT and larger transition amplitude with lower grain 

boundary (GB) density. The GBs were revealed to introduce disordered atomic structures 

and distorted crystal lattices in the films, which results in the drop of the film SMT 

properties. 

      To enable VO2 thin films in practical devices, a tunable Tc of VO2 is necessary to 

satisfy the working environments of different devices. To achieve the tunable Tc, VO2 

thin films with controlled thicknesses have been deposited on c-cut sapphire substrates 

with Al-doped ZnO (AZO) buffer layers by pulsed laser deposition. The Tc of the films 

was continuously tuned by the VO2 thickness and the VO2/AZO interface roughness, 

accompanied with no significant drop of other SMT properties. It shows that the Tc is 

correlated with the film strain, which increases with the decrease of film thickness or 

VO2/AZO interface roughness. 

      Finally, the stability of the VO2 thin film phase transition was characterized. The 

VO2 film deposited on c-cut sapphire substrate has been founded to exhibit a Tc shifting 

and transition width broadening after tens of cycles of phase transition. In situ 

transmission electron microscopy (TEM) heating experiments revealed that the strain 

was accumulated around the domain boundaries during phase transitions, possibly 

because of the dimension changes of the crystals. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

Over the past several decades, metal-oxide phase transition materials have 

attracted extensive research efforts owing to their dramatic physical property changes 

during phase transition processes [1-3]. Among all, vanadium dioxide (VO2) is in 

particular interest because of its transition temperature (Tc) close to room temperature 

[4]. VO2 single crystals exhibit an ultrafast (within 0.1 °C) and reversible phase 

transition from a semiconductor phase to a metallic phase (SMT) at ~68 °C during 

heating process [5]. Through such a first-order phase transition [6], VO2 transit from a 

tetragonal rutile phase to a monoclinic phase [7], accompanied with significant changes 

in the electrical [8-10] and optical properties [11-13]. Owing to the fascinating 

characteristics, VO2 shows great potential in various devices including gas sensors [14], 

electrical switches [15], thermochromic smart windows [16], thermal actuators [17] and 

memory devices [18], etc. 

The VO2 single crystals were reported to exhibit an electrical resistivity transition 

of 4-5 orders of magnitude during SMT process [19], accompanied with the optical 

transmission change of 40-50% in the near infrared and terahertz wavelength region [20]. 

However, bulk single crystal VO2 has poor ductility which could lead to failure during 

multi-cycle phase transitions [21]. Besides, the bulk VO2 can’t fit the size requirements 

of many devices. Therefore, during the past two decades, great efforts have been focused 

on improving the quality and performance of nanostructured VO2. Especially, VO2 thin 



2 

films have attracted particular interest because of the 2-dimentional geometry, the 

compatibility with current device manufacture and the capability to stand distortions. 

Compared with single crystalline VO2, the properties of VO2 thin films can be largely 

affected by many factors including defects density [22], strain [23], and the existence of 

the multivalent vanadium ions (V
2+

, V
3+

, V
4+

, V
5+

) [24]. 

In order to enhance the film quality and performance, VO2 thin films have been 

synthesized by various growth methods. The commonly used methods include chemical 

vapor deposition (CVD) [25], sol-gel process [4], pulsed laser deposition (PLD) [26], 

reactive sputtering [10], electron beam evaporation [27], etc. Various substrates have 

been applied for VO2 growth with different purposes. For instance, c-cut sapphire 

substrates were commonly used to grow epitaxial VO2 thin films [28]. Si substrates were 

applied to achieve the compatibility with current electrical devices [29]. Glass substrates 

were usually used for optical applications owing to the high transparency [30]. 

Furthermore, in order to tune the Tc of VO2 thin films, different doping elements have 

been introduced to shift the fermi level of the semiconductor VO2. VO2 thin films with 

different doping elements, including Mg, Mo, W, Ti and Cr, have been achieved and the 

Tc of the films has been tuned from less than 200 K to more than 350 K [31-36]. In 

addition, the defects in the VO2 thin films have been studied and correlated with the 

SMT properties. A model has been previously proposed for the microstructure-property 

correlations of VO2 based on defect density and interfacial energies [37]. In general, it 

suggested the better SMT properties with the higher epitaxial quality of the film, which 

agreed well with some of the experimental results [22]. 
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Recently, the in situ transmission electron microscopy (TEM) techniques, which 

conduct physical or chemical property measurements of the sample with real time 

monitoring in the TEM column, provide great opportunities to study the mechanisms of 

VO2 phase transition. In particular, the in situ TEM heating technique has been applied 

to study the defect effects and microstructure evolution during SMT process of VO2 [38, 

39]. In situ TEM mechanical testing has been conducted on VO2 nanowires and revealed 

the strain induced phase transition as well as the different mechanical properties of 

different VO2 phases [40, 41]. Therefore, the in situ TEM techniques have great potential 

on future VO2 fundamental studies. 

This chapter reviews the background of the VO2 studies, and summarizes the 

previous works for VO2 property enhancements and applications. It starts with a brief 

introduction of the VO2 crystal and energy band structures. Then the VO2 SMT 

properties and the correlated fundamental mechanisms are described in section 1.2.3 and 

1.2.4. The synthesis methods of nanostructured VO2 and the representative applications 

are introduced in section 1.2.5 and 1.2.6. The critical issues and previous works on VO2 

thin film growth and characterizations are summarized in section 1.3. Section 1.4 

reviews the recent in situ TEM studies on VO2. Finally, the challenges in current studies 

on VO2 are proposed in section 1.5. 

 

1.2 A review of vanadium dioxide (VO2) 

1.2.1 Vanadium oxide compounds 

      Vanadium has various oxidation states (+2, +3, +4, and +5) and thus produces 
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more than ten different stable vanadium oxide phases, including single valent oxides 

such as VO, V2O3, VO2, V2O5,and mixed valent oxides such as V6O13, V8O15 [42]. 

Figure 1.1 shows the vanadium-oxygen system phase diagram [43, 44]. Most of the 

vanadium oxide compounds show reversible semiconductor-to-metal phase transition 

(SMT) accompanied with significant changes of the electrical and optical properties [4, 

45-47]. Because of these fascinating characteristics, they have been receiving significant 

research attentions and show great potential in various devices. For example, VO2 can be 

used in various devices including gas sensors [14], switches [15], 

thermo/electrochromics [16], Mott transistors [48], and thermal actuators [17], while the 

V2O3 films of appropriate thickness have potential application as solar control products 

[49]. 

      The thermally driven SMT occurs at a critical temperature (Tc) based on the 

electrical resistivity (ρ) measurement. The Tc for different vanadium oxides varies from 

as low as -200 °C (~70 K) to as high as 177 °C (450 K) as listed in table 1.1 [4, 45, 50]. 

Among all, the VO2 is one of the particular interests owing to its reversible, first-order 

SMT at a Tc close to room temperature (RT). 
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Figure 1.1 Phase diagram of the vanadium-oxygen system. Reprinted with permission 

from Institute of Physics [43, 44]. 

 

 

 

Table 1.1 The metal-insulator transition of vanadium oxides [4, 45, 50] 

Oxides 

 

Tc (°C/K) Transition amplitude 

(orders of conductivity jump) 

VO 

V2O3 

V3O5 

V4O7 

V5O9 

Metal 

-123/150 

177/450 

-33/240 

-143/130 

- 

10 

2 

3 

6 
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Table 1.1 continued 

Oxides 

 

Tc (°C/K) Transition amplitude 

(orders of conductivity jump) 

V6O11 

V7O13 

V8O15 

VO2 

V6O13 

V2O5 

-103/170 

Metal 

-203/70 

67/340 

-123/150 

Insulator 

4 

- 

1 

5 

6 

- 

 

 

 

1.2.2 VO2 crystal and band structures 

Crystal structures 

Vanadium dioxide (VO2) is known to have several polymorphs, which include 

VO2(A), VO2(B), VO2(M1) and VO2(R) [51]. With the same chemical stoichiometry, 

their crystalline and electronic structures are completely different and highly complex, 

exhibiting many interesting electrical, optical and chemical properties. At the 

temperature higher than Tc, VO2 forms as a stable metallic tetragonal phase (rutile 

phase). This structure is based on a simple tetragonal lattice with space group P42/mnm 

[5, 52]. The lattice constants of rutile VO2 are a=4.554 Å and c=2.8557 Å [8]. The 

vanadium atoms occupy the Wyckoff positions (2a): (0, 0, 0), (
1

2
, 

1

2
, 

1

2
), while the oxygen 

atoms are located at the positions (4f): ±(u, u, 0), ±(
1

2
+ 𝑢, 

1

2
− 𝑢, 

1

2
) . Figure 1.2(a) 
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displays the rutile VO2 structure [7]. 

 

 

 

 
Figure 1.2 Atomic structures of (a) R phase and (b) M1 phase VO2. Reprinted with 

permission from Annalen der Physik [7]. 

 

 

 

While the temperature drops below Tc, the regular V-V separation (c-axis) of 

0.286 nm in the tetragonal structure transforms to alternate V-V separations of 0.266 and 

0.313 nm, leading to a doubling up of the unit cell [7]. A remarkable feature of the VO2 

M1 monoclinic structure is the presence of V-V pairs along its a-axis. The VO2 

monoclinic structure belongs to the space group P21/c [37]. The lattice constants of VO2 

monoclinic unit cell were reported as a=5.7517 Å, b=4.5378 Å, c=5.3825 Å, and 

β=122.646° [53]. The monoclinic VO2 crystal structure is shown in Figure 1.2 (b). The 



8 

metal atoms and the two different types of oxygen atoms occupy the Wyckoff position 

(4e): ±(x, y, z), ±(x, 
1

2
− 𝑦, 

1

2
+ 𝑧,) [54, 55]. The crystallographic relationship between 

the R and M1 phases is approximately aM1 = 2cr and bM1 = ar [5, 8, 56]. 

The A and B phases of VO2 are metastable tetragonal and monoclinic phases. 

They can be achieved by introducing certain internal stresses in the VO2 lattice and will 

transit back to stable tetragonal (R) and monoclinic (M1) phases when the stresses are 

released [55]. The atomic structures of VO2 in A and B phases are shown in Figure 1.3. 

Table 1.2 summarizes the crystal structures and lattice constants of different VO2 

polymorphs [51]. 

 

 

 

 
Figure 1.3 Atomic structures of (a) B phase and (b) A phase VO2. Reprinted with 

permission from Scientific Reports [51]. 
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Table 1.2 Crystal structures and lattice constants of VO2 in different phases [51] 

VO2 polymorphs Crystal structure (space group) 
Lattice constants in bulk 

a (Å) b (Å) c (Å) β (Å) 

VO2 (M1) 

VO2 (R) 

VO2 (A) 

VO2 (B) 

Monoclinic (P21/c(14)) 

Tetragonal (P42/mnm(136)) 

Tetragonal (P42/ncm(138)) 

Monoclinic (C2/m(12)) 

5.38 

4.55 

8.43 

12.03 

4.52 

4.55 

8.43 

3.69 

5.74 

2.86 

7.68 

6.42 

122.6 

 

 

106.6 

 

 

 

Band structures 

      The Goodenough model is used to describe the band structure of the M1 and R 

phase VO2 [57]. The vanadium atoms in VO2 have 3d
3
s

2
 electron orbits. Each vanadium 

atom has 4 electrons in the valence band, leaving one electron in the conduction band. 

Based on the 3d
1
4s

0
4p

0
 energy levels for cation V

4+
 and the 2s

2
2p

6
 energy levels for 

anion O
2-

, the energy band structure of tetragonal VO2 is derived in Figure 1.4(a) [5]. 

The electrostatic Madelung energy (EM) for the effective ionic charges is able to stabilize 

the O
2-

 :2p orbitals relative to the V
4+

 :3d orbitals. If considering the ionization energy of 

cations and electron affinity of the anions, the stabilization energy is reduced to EM-EI. 

Thus the oxygen 2p levels are far below the vanadium 3d states. The V
4+

 ion octahedral 

crystal field splits the 3d
1
 state into a high energy twofold-degenerate state of eg (𝑑3𝑧2−𝑟2, 

𝑑𝑥𝑦), and a low energy threefold-degenerate state of t2g (𝑑𝑥2−𝑦2, 𝑑𝑥𝑧, 𝑑𝑦𝑧) [7]. The two 

eg orbitals are further split into two 𝑑𝜎 orbitals. The three t2g orbitals are split into a 𝑑∥ 
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orbital formed by the σ bonding along cr direction, and two 𝑑𝜋 orbitals formed by the 

Vd—Op bonding. The antibonding doublets of V-V and Vd-Op lead to the bands of 𝜎∗ 

and 𝜋∗. The separation between 𝜎∗ and 𝜋∗ bands is described by itinerant-electron 

model. For the case of tetragonal VO2, the cr/ar ratio is about 0.627, suggesting an 

overlap of 3𝑑𝜎 𝜎∗ bands and 3𝑑𝜋 𝜋∗ bands, leading to the isotropic resistivity of the 

material [58, 59]. 

 

 

 

 
Figure 1.4 The electron band structures of VO2. (a) R phase [5] and (b) M1 phase. 

Reprinted with permission from Elsevier and American Physical Society [5, 62]. 
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      The phase transition of VO2 from R phase to M1 phase leads to the distortion 

along the cr direction. The deformation of the octahedral oxygen crystal field results in 

the destabilization of the hybridized 𝑑𝜋 band and thus raises it above the Fermi level 

[60]. Besides, the crystallographic distortion is accompanied with a doubling of the 

cr-axis to form the aM1-axis, which split the half filled 𝑑∥ band into two separated bands 

[61]. The lower 𝑑∥ band is completely filled while the upper 𝑑∥ band is empty. As 

shown in Figure 1.4(b) [62], the energy gap between the lower 𝑑∥ band and the 𝑑𝜋 

band is about 0.7 eV, leading to the semiconductor properties of M1 phase VO2. As the 

𝑑𝜋  band is partially filled with electrons at RT, the M1 phase VO2 is an n-type 

semiconductor [63]. 

 

1.2.3 VO2 Phase transition mechanisms: Mott model vs. Peierls model 

Peierls model 

      It has been decades to study the origin of VO2 phase transition. However, it is 

still a big challenge to identify the true mechanisms. Several models have been applied 

to explain the SMT of VO2. An earlier attempt was approached by using a 

non-interacting electron model to understand the origin of band gaps in semiconductors. 

      In 1930s, Rudolf Peierls stated that a one-dimensional equally spaced chain with 

one electron per ion is unstable [6, 64]. In order to lower the energy, the ions would 

prefer to rearrange and make a distorted lattice, as shown in Figure 1.5. The distortion 

will introduce a smaller band gap of the material. When the energy saved from the band 

gap is larger than the elastic energy generated by lattice distortion, the rearrangement 
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will be initiated. 

 

 

 

 
Figure 1.5 Peierls model: Distortion of the periodic lattice in 1-D crystal 

 

 

 

     A model of the potential for an electron in a 1-D chain can be used to describe the 

energy states of the distorted lattice, 

𝐻 = 𝐻0 + 𝑉 =
𝑝2

2𝑚
+ 𝑉(𝑥)                 (1.1) 

where 𝐻0 is the Hamiltonian of non-interacting electrons in the 1-D chain, V is a 

periodic potential [65], i.e. 𝑉( 𝑥 + 𝑎) = 𝑉(𝑥) . Based on this theory, the periodic potential 

in the non-distorted lattice leads to band gaps at 𝑘 =  ±
𝜋

𝑎
. For atoms with single valent 

electron, such as the vanadium atom in VO2 with 3d
1
 electron, the bands are half filled 
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and therefore the crystal would be metallic. Through the Peierls transition, the potential 

period changes from a to 2a, resulting in the band gaps at𝑘 =  ±
𝜋

2𝑎
. The electrons could 

fill all the states and make the material semiconductor. 

      However, when the Peierls model was applied on VO2, it failed to explain many 

behaviors of VO2 phase transition. Therefore new models have been introduced to 

further understand the SMT behavior of VO2. 

 

Mott model 

The Mott model is the most commonly accepted model for the mechanisms of 

VO2 phase transition. It is widely used to describe the materials which should conduct 

electricity under conventional band theories, but are insulators when measured [66]. 

These materials, such as the M1 phase VO2 [9], are called Mott insulating materials (or 

Mott insulators). The electron-electron interaction, which is ignored in the Bloch theory, 

plays an important role in the Mott model. It suggests that the low conductivity of the 

Mott insulators is caused by the strong interactions between electrons, where the 

Coulomb repulsion in between prevents them from conducting [67]. 

In 1937, Jan Hendrik de Boer and Evert Johannes Willem Verwey first 

demonstrated that a class of semiconductors with incompletely filled 3d bands has a 

relatively narrow energy bandgap but is lack of conductivity [68]. Nevill Mott and 

Rudolf Peierls then predicted that this phenomenon can be explained by the interactions 

between electrons [69]. At a low temperature, the electrostatic interaction between the 

electrons prevents them from moving, and therefore the majority of the electrons are in 
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their proper places in the ions. The minorities which overcame the potential barrier find 

that all the other atoms were occupied. Thus in order to get through the lattice, they have 

to spend a long time in ions already occupied by other electrons. 

     A physical model of Mott insulators was firstly proposed for NiO in 1949 [70]. 

Then the Hubbard model, named after John Hubbard, was proposed to describe the 

interacting particles in a lattice [71]. The Hubbard model was successfully used to 

explain and predict Mott insulators. It is based on the tight-binding approximation from 

solid state physics. In the tight-binding approximation, electrons are considered to 

occupy the standard orbitals of their constituent atoms, and then tunneling between 

atoms during conduction. Based on this theory, the movement of an excited electron in a 

lattice is a competition between the Coulomb potential (U) of electrons and the 

tight-binding (t) between electrons and each neighboring atom. Therefore, the total 

energy barrier of the electron conduction in a Mott insulating material can be presented 

as: 

E = U – 2zt                        (1.2) 

where z is the number of nearest-neighbor atoms. In general, Mott insulating property 

occurs when the repulsive Coulomb potential U is large enough to create an obvious 

energy barrier in the lattice [72]. 

      The Mott insulators can experience a Mott transition process with the increase of 

electron energy. By certain excitations, the induced energy will be high enough to 

overcome the electrostatic interaction between electrons and therefore allow a significant 

fraction of electrons to escape their sites [73]. 
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Based on the Mott model, the electrons in the M1 phase VO2 are localized on the 

V-V pairs by Coulomb repulsion. This will lift up the upper 𝑑∥ band and leave a ~2.0 

eV gap from the lower 𝑑∥ band [74]. When the temperature increases to higher than Tc, 

the thermal energy allows electrons to overcome the 2.0 eV band gap and fill in the 

upper 𝑑∥ band, which results in the transition of VO2 to the metallic phase. 

 

1.2.4 Semiconductor-to-metal transition (SMT) of VO2 

      VO2 single crystals exhibit an ultrafast (within 0.1 °C) and reversible phase 

transition from the semiconductor phase to metallic phase (SMT) at ~68 °C during 

heating process [5]. Through such a first-order phase transition [6], VO2 gets dramatic 

changes in its electrical [8-10] and optical [11-13] properties. Because of these unique 

characteristics, VO2 have attracted considerable interest during the past five decades [75, 

76]. Figure 1.6 shows the typical electrical resistivity [19] and optical [20] transmission 

changes of VO2 along with the phase transition processes. It is shown that the resistivity 

switching can be as large as 10
4
 to 10

5 
times in bulk VO2. In addition, the R phase VO2 

shows a much higher terahertz (THz) transmission compared to the M1 phase. 

      The phase transition of VO2 can be triggered in many different ways. Besides of 

temperature switching, stress/strain, electrical field and photoexcitation could also lead 

to VO2 phase transitions. Figure 1.7 shows the strain-temperature phase diagram of VO2 

[77]. The diagram indicates that the Tc of VO2 is strongly dependent on the strain/stress. 

The Tc gradually decreases with the increase of compressive strain/stress along cr-axis 

(am-axis). The compressive strain could even lead to a direct phase transition from M1 
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phase into R phase. On the other hand, the tensile strain along cr-axis causes an increase 

of the Tc. Besides, it introduces an intermediate M2 phase of VO2. The formation 

temperature of M2 phase decreases by increasing tensile strain. Therefore, the tensile 

strain leads to the broadening of the transition from M1 phase to R phase. 

 

 

 

 

Figure 1.6 Electrical resistivity [19] and optical transmission [20] changes of VO2 during 

phase transition processes. Reprinted with permission from Nature [20]. 
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Figure 1.7 The uniaxial stress (along cr-axis)-temperature phase diagram of VO2. 

Reprinted with permission from American Chemical Society [77]. 

 

 

 

      Figure 1.8(a) shows the electrical field triggering of VO2 phase transition [78]. 

The jump of current density at ~22 V indicates a transition to metallic phase. Based on 

the band structures, the SMT of VO2 strongly depends on the hole density of the 

semiconductor phase [48]. The electrical field actually results in a doping of the hole 

concentration in semiconductor VO2, and therefore triggers the phase transition. The 

critical electrical field for VO2 phase transition is typically ~ 10
6
 V/m [79]. 

      Figure 1.8(b) shows the VO2 phase transition induced by photoexcitation [33]. 

The transition is triggered by increasing the power of incident beam. When the photon 

energy is higher than the band gap of VO2, the increase of pump beam power could 

induce a photo-excitation of electrons from the lower 𝑑∥ to the upper 𝑑∥. The creation 

of electron-hole pairs makes the two split 𝑑∥ bands form two overlapped and half filled 
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𝑑∥ bands, which leads the VO2 to transit to the rutile phase [57, 62]. The photoexcitation 

response of VO2 is ultrafast, usually less than 1 ns [80]. 

 

 

 

 

Figure 1.8 (a) Electrical field and (b) photoexcitation triggering of VO2 phase transition. 

Reprinted with permission from American Institute of Physics and Institute of Physics 

[33, 78]. 

 

 

 

Benefit to the fascinating properties, VO2 has great potential in various device 

applications. In order to match the requirements of different devices, nanostructured VO2 

with different geometries is desired. Despite of the excellent SMT properties of single 

crystalline bulk VO2, it is quite challenging to synthesize high quality nanostructured 

VO2 with outstanding performance. The existence of multivalent vanadium ions (V
2+

, 

V
3+

, V
4+

, V
5+

) could lead to the formation of other VOx phases in the nanostructured VO2 

and result in the drop of overall properties [24]. Besides, the strains and defects in VO2 
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could also influence its properties [22, 23, 81]. Therefore, great efforts have been 

focused on synthesizing high quality VO2 thin films, nanowires, nanoparticles and other 

designed nanostructures and enhancing their properties. 

 

Synthesis of VO2 thin films 

      Many of the current technological devices, such as gas sensors [82], optical 

switches [83], smart window [84] and microbolometer [85], are based on thin films 

because of the 2-dimentional geometry, the compatibility and the capability to stand 

distortions. However, because of the lack of advanced synthesis techniques, there was a 

big delay of the study of VO2 thin films since it was first explored [45]. One of the 

earliest VO2 thin film growth was achieved by metal-organic chemical vapor deposition 

(MOCVD) [86]. Ryabova et al. used N2 gas to carry the vapors of vanadium oxychrolide 

(VOCl3) and then hydrolyzed on the inner surface of the crucible. Since 1990s, with the 

development of new techniques, the growth and SMT properties of VO2 thin films have 

been explored by various deposition methods including chemical vapor deposition (CVD) 

[25], sol-gel process [4], pulsed laser deposition (PLD) [26, 87], reactive sputtering [10, 

88-90], electron beam evaporation [27, 91, 92], etc. 

      Various vanadium-based precursors have been used for CVD growth of VO2. 

Kim et al. achieved epitaxial VO2 thin films on TiO2 buffered sapphire substrates using 

vanadium triethoxide oxide [VO(OC2H5)3] as precursor [93]. Sahana et al. used the 

vanadyl acetylacetonate [VO(acac)2] to synthesize polycrystalline VO2 on glass 

substrates [94]. Solution-based methods are more commonly used to synthesize VO2 
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films for optical applications [36]. This kind of methods usually consists of a spin 

coating and a subsequent annealing process under low pressure. The vanadyl 

triisopropoxide [VO(OC3H7)3] is commonly used as the starting material for both 

epitaxial and polycrystalline VO2 growth [95]. Then the post annealing at oxygen 

deficient environment will evaporate the carbon and hydrogen, and leave the VO2 thin 

films on the substrates. The chemical vapor or solution based deposition methods are 

low cost and highly efficient. However, it is quite challenging to control the defects 

density and get high quality VO2 thin films. Besides, the adhesion between VO2 and the 

substrates are usually not strong. 

      In contrast, many of the physical vapor deposition (PVD) techniques undergo 

non-equilibrium processes, which provide more kinetic energies to the ad-atoms. These 

methods are more commonly used to synthesize high quality epitaxial VO2 thin films. 

Reactive sputtering growth of VO2 thin films was firstly reported by Fuls et al. in 1967 

[96]. Some novel sputtering methods, such as plasma-assisted sputtering [97] and 

magnetron sputter-ion plating physical vapor deposition [98], could achieve better 

quality VO2 films. Recently, PLD is one of the most popular techniques for VO2 thin 

film synthesis. The first PLD growth of VO2 thin films was reported by Singh et al. in 

1993 [26]. A KrF pulsed excimer laser (248 nm) was used to ablate a metallic vanadium 

target in vacuum chamber with Ar and O2 (10:1) atmosphere of 100-200 mTorr, and a 

substrate temperature of about ~500 °C. PLD technique has been used to deposit VO2 

thin films on different substrates, including sapphire [28], silicon [99], quartz [100], 

glass [101], etc. 
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Synthesis of VO2 nanowires 

      The one-dimensional VO2 nanowires show great potential in the applications of 

thermal actuators [17] and memory devices [18] and thus attract extensive research 

interests. However, the synthesis of high quality VO2 nanowires is achieved in the recent 

decade. In 2004, Wu et al. reported the synthesis of VO2 nanowires by the reaction of 

ammonium metavanadate (NH4VO3) and distilled water on stainless still and a 

subsequent drying process [102]. The fabricated VO2 nanowires showed a (001) growth 

orientation. However, they didn’t exhibit good SMT performances. 

      In recent, the vapor transport method is one of the most commonly used 

techniques to fabricate VO2 nanowires. In this method, the bulk VO2 powders were 

usually placed in a quartz boat in the center of a tube furnace. With thermal evaporation, 

the VO2 was either directly deposited on the substrates above the quartz boat or carried 

by Ar gas to deposit on the substrates downstream from the boat [14, 103, 104]. The 

cross-section the VO2 nanowires are usually in rectangular shape. The width of 

nanowires can be controlled from tens of nanometers to micron range by varying the 

temperature. 

      Because of the 1D geometry of VO2 nanowires, they are convenient to be bent 

and distorted. Therefore, many mechanical tests have been conducted on VO2 nanowires 

to study the strain effects on VO2 phase transition. Wu et al. reported that the 

semiconductor and metallic phase domains could be simultaneously formed in a single 

VO2 nanowire because of the internal strain distribution [105]. The VO2 nanowires 

fabricated by Cao et al. showed a core-shell structure, i.e. inside semiconductor phase 
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covered by outside metallic phase, resulting from large surface stress [106]. Furthermore, 

the bending experiments showed the formation of alternate semiconductor-metallic 

phases in the curved area of VO2 nanowires [77]. Besides, Guo et al. reported a tensile 

test induced M1-M2 phase transition of VO2 nanowires [40]. 

 

Synthesis of VO2 nanoparticles 

      The nanoparticle is a 0-D nanostructure. VO2 nanoparticles are widely used to 

study the size effects on VO2 phase transition [107]. Because of the 0-D geometry, VO2 

nanoparticles can be fabricated into periodic array structures, which show potential 

applications as photonic crystals [108], biochemical sensors [109], near-field 

electromagnetic waveguides [110], etc. 

      The VO2 nanoparticles could be fabricated either on the surface of a substrate [23] 

or embedded in the substrate (matrix) [111]. The VO2 nanoparticles can be directly 

synthesized on the substrate surface through the Volmer-Weber mode (island growth 

mode) growth, which isolated VO2 nucleus will be formed at the early stage of 

depositions. Suh et al. reported the growth VO2 nanoparticles on n-type Si substrates by 

PLD and a following thermal oxidation process [23]. The VO2 particle size can be 

controlled by the deposition time. VO2 nanoparticles in the matrix can be synthesized by 

direct implantations of vanadium and oxygen ions in the substrates. Lopez et al. reported 

that the V and O ions implanted in SiO2 could form (011) oriented VO2 nanoparticles by 

post-annealing [112]. The particle size can be controlled by annealing time and 

temperature. The periodic VO2 nanoparticle arrays were usually fabricated on 
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lithography treated substrates, where the ion/electron beam lithography can precisely 

control the sizes and positions of the subsequently deposited VO2 [113]. 

      The VO2 nanoparticles were reported to have strong size effects on the SMT 

properties [114]. With the decrease of particle size, VO2 requires less phase transition 

energy (lower Tc) [113] but shows an increase of thermal hysteresis [112]. More point 

defects will be induced in the VO2 nanoparticles with smaller size, which leads to a 

broadening of the VO2 phase transition [115]. Besides, it was reported that the VO2 

nanoparticle arrays showed resonance effects in optical scattering spectrum [111]. The 

resonant peak position was reported to be dependent on particle sizes and positions, and 

shifted during phase transition. 

 

1.2.6 Applications of VO2 

      VO2 is defined as one of the smart materials, which show intrinsic property 

responses to temperature changes, electric field and/or pressure variations, 

photoexcitation, etc. This class of materials generally has capabilities including sensing, 

switching, thermo/electrochromics and actuating. The SMT process for VO2 occurs 

closer to room temperature than any of the commonly-known compounds and is 

accompanied with large changes in electrical resistivity and optical transmittance. 

Moreover, nanostructured VO2 including thin films, nanowires and nanoparticles have 

more spatial ratio compared to bulk VO2 and tend to survive the stress generated during 

repeated cycles of phase transition. Therefore they are suitable for many device 

applications. 
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Gas sensors 

For the gas sensors, there are two major factors which define their performances: 

the receptor and transduction functions. The receptor function defines the interaction 

between the analyte molecules and the surface of the sensing material and therefore 

determines the sensor rate, selectivity, and reversibility. The transduction function 

defines the conversion of the interaction into the output signal [14]. In 1962, Seiyama et 

al. revealed that the electrical resistivity of ZnO could be dramatically changed by the 

presence of reactive gases in the environment [116]. Since then, tremendous works have 

been reported on the applications of metal-oxides semiconductors as gas sensors benefit 

to their small dimensions, low costs, and high compatibility with processing techniques 

[117]. In general, these gas sensors are in the size of nanometers and are based on the 

charge transfer mechanism between a nano-surface and an analyte molecule [118-120]. 

The charge transfer is followed by the formation of charge-induced 

depletion/accumulation layer in the nanostructures. However, the sensitivity of these 

kinds of nano-sensors is generally low beyond the class of strong redox molecules and 

usually requires elevated temperatures to have reasonable reaction rate [14, 121-123]. 

In 2009, Strelcov et al demonstrated a novel transduction principle in gas sensors 

based on the sharp temperature driven phase transition in VO2 single crystal nanowires 

[14]. The concept is to fabricate single VO2 nanowire with the Tc close to the 

environmental temperature. As the system pressure is influenced by the gas elements in 

the environments, the change of gas contents will lead to a change of external stress on 

the VO2 nanowire, leading to a variation of the transition temperature. When the Tc of 
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the nanowire changes through the environmental temperature, the nanowire will 

experience a phase transition process, resulting in dramatic changes of the electrical 

resistivity. And thus the object of gas sensing is realized. 

Baik et al. then reported exceptionally sensitive hydrogen sensors produced using 

Pd-nanoparticle-decorated single VO2 nanowires [124]. The VO2 nanowires were 

fabricated through the vapor transport method. After putting between two Au contacts, 

the VO2 nanowire was further coated with a ~0.6 nm layer of Pd by electron beam 

evaporation. The Pd layer was then self-aggregated into nanoparticles, as shown in 

Figure 1.9 (a) and (b). The sensing process is realized by the absorption of H2 in Pd 

particles, which changes the surface strain status of the VO2 nanowires and leads to the 

lower down of Tc by over 10 °C. As shown in Figure 1.9 (c), the sensor is operational at 

50 °C and is reasonably sensitive to the H2 gas flow as low as 5 sccm. More VO2 based 

gas sensors are expected in the future researches with high sensitivity of different kinds 

of elements. 
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Figure 1.9 (a) Scanning electron microscopy (SEM) image of an individual VO2 

nanowire with appropriate Au contacts. (b) SEM image of a Pd-decorated VO2 nanowire 

(scale bar, 200 nm). (c) I-V curves obtained at 50 °C for the nanowire after various 

exposure times to hydrogen gas (5 sccm). (d) The change in current for the nanowire 

biased at 10 V as a function of time of exposure to hydrogen gas. Reprinted with 

permission from Americal Chemical Society [124]. 

 

 

 

Electrical switches 

      The electrical switch is a direct use of the electrical property transition of VO2 

during SMT process. In practical applications, electrical field or optical driven resistance 

switching is more favorable owing to the short activation time and ultra-fast dynamic 

response compared to the thermal switching. 

      The electrical switching of VO2 was firstly reported by Ovshinsky in 1969 [125]. 

Then several authors reported electric-field induced switching in two-terminal VO2 thin 
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films [126-128]. Lee et al. argued that the current flow into a narrow filament generates 

Joule heat, resulting in the transition of VO2 films [129]. However, Okimura et al. 

reported an electrical switching response within 200 ns of the VO2 film on c-cut sapphire 

substrates, suggesting an electrical potential energy induced Mott transition without the 

contribution of Joule heating [130]. Stefanovich et al. discovered that the delay time of 

VO2 electrical switch response decreased with the increase of electrical field [9]. It was 

also reported that the VO2 showed an S type negative differential resistance in the I-V 

characteristics, providing potentials in memory elements applications [131]. VO2 also 

showed good performance for high frequency devices. Ha et al. reported that the VO2 

response to a radio frequency signal showed a rise time of the order of 10 ns followed by 

an oscillatory damping to steady state on the order of several μs [132]. Furthermore, the 

VO2 switch exhibited a long lifetime (more than 260 million cycles without failure) 

under the 10 GHz microwave signal [133]. 

 

Thermochromic smart windows 

      The smart window is a system that can sense and respond to external stimulus 

such as heat, electricity, or light. It controls the solar radiation transmission rate through 

the window, resulting in the reversible control of indoor luminous and temperature. 

Therefore the smart window is promising in applications of next-generation household 

or industrial windows for energy saving [134, 135]. 

VO2 has attracted a large amount of research interest as a thermochromic smart 

window material, benefiting to its phase transition at a Tc close to room temperature and 
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the accompanied abrupt change of optical transmittance [136, 137]. When the 

environmental temperature is higher than the Tc of VO2 coating, the transmission of VO2 

film, especially the infrared (IR) light, decreases abruptly. It leads to the effective block 

of the IR light to make the indoor temperature stay at a lower value. While the 

environmental temperature is below Tc, the VO2 transits to semiconductor phase, which 

results in the improvement of IR transmission to make the indoor temperature increase 

[84, 138]. 

      The recent research efforts have been primarily focused on enhancing the 

transmittance, especially the visible light transmittance of VO2. Multilayered structures 

were designed by coupling VO2 with high-reflective-index dielectric top or bottom 

layers. Jin et al. reported a strong enhancement in luminous transmittance of the 

TiO2/VO2/TiO2 anti-reflection structure [139]. The ITO/VO2/ITO structure reported by 

Heinilehto et al. showed an optical transmittance switch of 34.2% at 1550 nm 

wavelength [140]. Doping elements were usually introduced to shift the transmission 

wavelength of VO2 to visible region [141, 142]. Hu et al. reported the Mg-doped VO2 

thin film with a wide band gap of 2.32 eV, which significantly lowered the luminous 

absorption at visible wavelength [142]. Furthermore, Zhou et al. have reported that VO2 

coating had a strong scattering of the light energy, which could scatter partial light to a 

solar cell for electricity generation [143]. As shown in Figure 1.10, the solar cells are 

designed to be assembled around the VO2 coated smart window. The VO2 coating was 

discontinuous to enhance the scattering of light. This design combined energy saving 

and generation together, which supported an important new insight into resolving the 
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energy consumption. 

 

Thermal actuators 

      Thermally activated actuators are widely used in microelectromechanical 

systems for modern technologies. The traditional design of such devices is a bilayer 

structure coupling two materials with different thermal expansion coefficients. The 

bilayer structure bends in response to a temperature change because of the differential 

thermal expansion (DTE) [144]. The DTE can be as large as 10
-4

/K for conventional 

designs [145]. 

 

 

 

 

Figure 1.10 (a) Three-dimensional structure of the VO2-based smart window. The solar 

cells are assembled in a manner that surrounds the module. (b) The cross-section view of 

VO2 film on quartz that served as a scattering medium. SC, LGL and DP represent the 

solar cell, light guider layer and low reflective index medium, respectively. Reprinted 

with permission from Scientific Reports [143]. 
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In 2010, a new mechanism for micrometer-sized actuation based on VO2 phase 

transition was introduced by Rua et al [17]. This design consisted on the use of the 

crystallographic changes of VO2 thin films across its structural phase transition. The 

highly oriented VO2 thin film deposited on SiO2 micro-bridge showed a strain of -0.32% 

during phase transition, leading to the tuning of the micro-bridge resonant frequency up 

to -23%. The DTE was reported to be an order of magnitude higher than the traditional 

designs. Based on the novel design, Cabrera et al. then fabricated VO2-Pt MEMS 

actuators, as shown in Figure 1.11 [146]. The cantilever structures were fabricated 

through a bottom-up process. Total deflections of 68.7 and 28.5 µm were observed for 

300 and 200 µm MEMS cantilevers, respectively. The cut-off frequency (f3dB) of the 300 

µm MEMS actuator is 29 Hz in vacuum mostly because of the heat conductivity 

limitation, whereas the f3dB in atmosphere is as high as 541 Hz. 

Single VO2 nanowires were also reported to have the potential as thermal 

actuators through inhomogeneity phase transition [147, 148]. J. Cao et al. have reported 

that VO2 nanowire cantilevers formed discontinuous M1 and R phase domains during 

phase transition, leading to the curvature of the nanowire [148]. 
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Figure 1.11 Fabrication process of VO2-Pt cantilever. (a) Bottom electrode deposition 

and patterning by lift-off, (b) sacrificial layer (amorphous silicon) deposition and 

patterning, (c) first SiO2 deposition and patterning, (d) top electrode deposition, (e) 

second SiO2 deposition, (f) Patterning of the second SiO2 layer, (g) release of the MEMS 

actuator, and (h) VO2-deposition by pulsed-lased deposition using in-situ shadow mask. 

(I) The SEM image of the as-fabricated 300 μm cantilever (highlighted in red). (J) The 

300 μm cantilever after actuation. Reprinted with permission from IEEE [146]. 

 

 

 

Memristors 

      Circuit elements that store information without the need of a power source 

represent an important change in electronics, allowing for low-power computation and 

storage. Furthermore, if the information could span into a continuous range of values, 

analog computation may replace the present digital one [149]. Memory-resistor 

(memristor) was postulated as such a missing circuit element by Chua in 1971. It was 

based on an observed symmetry in integral-variations of ohm’s law [150]. The most 
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important characteristic of a memristor is that the resistance of a two-terminal device 

depends not on the instantaneous value of the applied voltage, but on the entire 

dynamical history of the charge flowing in the system [151]. 

      The memristor behavior of VO2 was firstly demonstrated by Driscoll et al. in 

2009 [18]. As shown in Figure 1.12, the VO2 thin film exhibited nonlinear hysteretic 

behaviors through three current-voltage cycles, indicating a memristive system. The 

operation temperature of this system is close to Tc, where the resistivity is a highly 

hysteretic function of temperature. Furthermore, the VO2-based memristor was placed 

into an LC contour as an adaptive filter. This filter was reported to respond preferentially 

to signals of a specific design frequency by sharpening the quality factor of its bandpass 

[152]. In 2013, Bae et al. reported a two-terminal memristor device based on a single 

VO2 nanowire [153]. The phase transition of the single VO2 nanowire was driven by the 

bias voltage of 0.34 V without using any heat source. The device not just provided 

switchable resistances in a large range of magnitude, but also maintained the resistances 

by a low bias voltage. 
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Figure 1.12 (a) Schematic of the VO2 memristor device. (b) Three cycles of the 

current-voltage (I-V) curves for the device. The nonlinear hysteretic behavior indicates a 

memristive system. Reprinted with permission from American Institute of Physics [18]. 

 

 

 

      Several mechanisms have been proposed to describe the memristor behavior of 

VO2. The memristor phenomena are commonly explained by way of drifting oxygen 

vacancies and physical crystal expansion [154]. However, the memristor properties of 

VO2 could be related with the nanoscale process of the phase transition, during which 

nano-size metallic regions emerge from the semiconductor host, increasing in number 

and size to form a percolating transition [155]. People have also argued the mechanism 

correlated to the electronic phase separation phenomena in the vicinity of the phase 

transition, which have been observed in a variety of complex oxides [156, 157]. 

Currently, the mechanism of the historic memory of VO2 phase transition is still under 

debate. 
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1.3 VO2 thin films 

      VO2 thin films have attracted extensive research interest benefiting to the 

2-dimentional geometry, the compatibility with current device fabrications and the 

capability to stand distortions. The synthesis process of VO2 thin films could lead to 

dramatic difference of microstructures, and therefore the SMT properties could vary a lot. 

This section reviewed some critical questions of VO2 thin film epitaxial growth and the 

impact factors on the film SMT properties. 

 

1.3.1 Thin film epitaxy 

Epitaxy is an important concept for thin film growth. It refers to the method of 

growing an oriented crystal layer on the crystal surface of another material. The 

deposited film is so called epitaxial film or epitaxial layer. The strict definition of 

epitaxy specifically refers to the growth of a single crystalline film on a single crystal 

substrate. However, as the substrate and film materials usually have different crystal 

symmetries and lattice parameters, it is quite difficult to have single crystalline epitaxial 

growth of the film. Thus generally the epitaxy means the highly orientated growth with 

fewer defects. 

Epitaxy contains two categories: homoepitaxy and heteroepitaxy. Homoepitaxy 

refers to the case where the film and substrate are the same material. This technique is 

usually used to grow the film with less defects and higher purity than the substrate, or to 

fabricate additional layers with different doping levels. A representative example of 

homoepitaxy is the growth of epitaxial Si on Si substrates by CVD vapor-phase epitaxy 
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for the first step in IC transistors [158, 159]. The homoepitaxy Si thin film can be easily 

doped with different doping elements and various concentrations. Heteroepitaxy refers to 

the case where the film and substrate are different materials, which is a more common 

case in thin film growth. In heteroepitaxy, the microstructures and properties of the 

epitaxial films are strongly dependent on the crystal structures, interfacial chemistry, and 

thermal expansion coefficients of film and substrate. A representative example of 

heteroepitaxy is the AlGaAs/GaAs superlattice structure for light emission diode (LED) 

application [160]. The lattice parameter of AlGaAs can be tuned by the Al and Ga 

concentrations to achieve different film epitaxial qualities. 

The homoepitaxy usually has no strained interfacial bonds because of the 

identical lattice parameters. However, for the heteroepitaxy growth, residual strain will 

be introduced in the film-substrate interface. The residual strain in the epitaxial film is 

generated from the lattice mismatch, and it determines the growth characteristics, 

morphology, chemical and physical properties of films. Therefore it is very imported to 

understand the lattice mismatch for film quality and property controlling [161]. 

 

 

Lattice matching epitaxy 

     The lattice matching epitaxy forms a coherent interface with one-on-one lattice 

matching between film and substrate. Thus the lattice constant of the thin film in the 

plane of the interface is equal to the substrate. The in-plane lattice misfit of this scenario 

is defined as: 
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𝑓 = 2 ×
𝑎𝑓𝑖𝑙𝑚−𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑎𝑓𝑖𝑙𝑚+𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
                    (1.3) 

Due to the constraint on the in-plane lattice constant, the unit cell will be 

distorted as allowed by Poisson’s ratio. As shown in Figure 1.13, a cubic unit cell is 

distorted into a tetragonal cell. As afilm > asub, the cell of the film is confined in the 

in-plane direction and its height is increased.  

The coherent epitaxy with a strained layer can only accommodate the lattice 

mismatch strain of less than 2%. For the case of f > 2%, pseudomorphic growth will be 

initiated from a critical thickness. The strain energy beyond the critical thickness is large 

enough to trigger the formation of dislocations, leading to the strain relaxation of the 

film, as shown in Figure 1.13 (c). Through such a Pseudomorphic growth, the lattice 

matching epitaxy could accommodate the lattice mismatch strain up to 7-8% [162]. 

 

 

 

Figure 1.13 Schematic illustration of lattice matching epitaxy: (a) before growth, (b) 

coherent growth and (c) pseudomorphic growth. 
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Domain matching epitaxy 

      When the system has a lattice mismatch larger than 8%, the conventional lattice 

matching epitaxy is unable to accommodate the strain to establish an epitaxial growth of 

the thin film. However, epitaxial growth was also observed in this kind of systems, such 

as sapphire ZnO(0001)/Al2O3(0001) [163] and TiN(100)/Si(100) [164]. These epitaxial 

growths are understood as domain matching epitaxy, which was proposed in 2003 [162]. 

Based on the domain matching epitaxy theory, an epitaxial film can be deposited on the 

substrate with different lattice matching orientations. For example, the film lattice can 

match in the diagonals of the substrate lattice, such as the cube-on-hexagonal epitaxy. 

Besides, the lattice misfit can be accommodated by matching of integral multiples of 

lattice planes, where one extra half plane (dislocation) corresponding to each domain. 

Therefore for the domain matching, the large residual strain can be relaxed within a 

couple of monolayers, so that the misfit strain and dislocations can be engineered and 

confined close to the interface, as shown in Figure 1.14. As the residual strain is 

minimized by matching of m planes of films with n planes of substrate (|m-n|=1), the 

lattice mismatch of this scenario is defined as: 

𝑓 = 2 ×
𝑚𝑎𝑓𝑖𝑙𝑚−𝑛𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑚𝑎𝑓𝑖𝑙𝑚+𝑛𝑎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
                    (1.4) 

If the lattice mismatch corresponds to the perfect matching ratios of planes 

(mafilm= nasubstrate), the residual strain will be eliminated. When the lattice mismatch is 

away from perfect matching, the residual strain can be released by two domains 

alternating with a certain frequency (α) to provide for a zero residual strain, i.e. 

(m+α)afilm = (n+α)asubstrate. 
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Figure 1.14 Schematic illustration of domain matching epitaxy. 

 

 

 

1.3.2 SMT modelling of VO2 thin films 

      The SMT properties of VO2 can be characterized by the electrical resistivity 

switching with four parameters: the transition temperature (Tc), the amplitude of 

resistivity change (ΔA), the transition sharpness (ΔT), and the width of thermal 

hysteresis (ΔH). It is desired to have a tunable transition temperature, large amplitude of 

resistivity change with a sharp transition and a small width of thermal hysteresis. 

However, despite of the excellent SMT properties of single crystalline bulk VO2, the 

SMT properties of VO2 thin films can be influenced by a lot of factors. 

      In 2006, a thermal dynamic model has been proposed by Narayan et al. for the 
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microstructure-property correlations of VO2 thin films based on defect density and 

interfacial energies [37]. The model argued that the structural phase transition from 

monoclinic to tetragonal phase is accompanied with a Gibbs free energy change, which 

can be derived as ∆𝐺𝑟 = ∆𝑇𝑟∆𝑆0. Here the ∆𝑇𝑟 is the deviation from the equilibrium 

transition temperature and the ∆𝑆0 is the change in entropy between two phases. As the 

monoclinic to tetragonal and the reverse structural phase transitions can both be 

accomplished by a single coordinated atomic jump, the propagation rate of velocity of 

phase transition is then derived as: 

𝑉 = 𝜆𝑣𝐷𝑒𝑥𝑝−Φ/𝑘𝑇                    (1.5) 

where 𝜆 is the jump distance of the coordinated atom (~1 Å for VO2), 𝑣𝐷 is frequency 

of atomic jump, and Φ is the activation barrier. The value of Φ approximately equals to 

𝑘𝑇𝑟, where k is the Boltzmann constant and 𝑇𝑟 is the transition temperature [165]. If 

assuming 𝑣𝐷 = 1012 s
-1

, the transition velocity can then be estimated to be ~40 m/s. 

This estimation agrees well with the experimental report by Cavalleri et al., which 

conducted time resolved, near-edge X-ray absorption measurements for VO2 phase 

transition velocity [166]. 

It was reported that the VO2 phase transition started with the nucleation of 

nano-sized metallic phases in the semiconductor host. These regions increased in 

numbers and sizes and finally formed a percolating transition [155]. Thus the behavior 

of this VO2 phase transition can be described by the nucleation model, from which the 

critical size (rc) of stable nuclei can be derived as [37]: 

𝑟𝑐 = 2𝛾/(∆𝑇𝑟∆𝑆0)                     (1.6) 



40 

where γ is the interfacial energy. Based on the above thermal dynamic model, it is able to 

predict the influence of VO2 thin film microstructures on the SMT parameters, i.e. ΔA, 

ΔT, ΔH and Tc. 

      The transition sharpness (ΔT) is proportional to the overall defects density, i.e. 

ΔT = Ctρd. Here Ct is a constant and ρd is the overall defect density, including point 

defects, dislocations, and grain boundaries, impurities, etc. Therefore the ΔT is 

determined by the overall defect content per unit volume. The transition amplitude (ΔA) 

also depends on the defect content. It has an inverse proportional relationship to the 

defect density, i.e. higher-quality VO2 thin films with fewer defects could lead to a larger 

ΔA. The thermal hysteresis ΔH is directly related with the transition temperature 

derivation ΔTr. As the Gibbs free energy for VO2 phase transition requires a finite ΔTr, 

the ΔH is inevitable for both single crystalline bulk and thin film VO2. From the model, 

it can be derived that ∆𝑇𝑟 = 2𝛾/(𝑟𝑐∆𝑆0). Therefore, the ΔH increases with the decrease 

of nuclei size. Besides, the interfacial energy γ is related with the nature and orientation 

of grain boundaries. Large angle, randomly oriented grain boundaries could lead to large 

interfacial energy, resulting in the increase of ΔH. Tc is directly related with the 

stress/strain status of the VO2 film, which has been discussed in the VO2 

stress-temperature phase diagram (Figure 1.7). 

 

1.3.3 Substrate and buffer layer effects 

      The microstructures of VO2 thin films can be influenced by a lot of parameters. 

The choice of substrates and buffer layers will directly impact the growth orientation, 
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crystallinity, strain status and defects density, and thus the SMT properties of the VO2 

thin films. Various substrates have been used for VO2 thin film growth with different 

purposes. Among all, c-cut sapphire substrate is commonly used to grow epitaxial VO2 

thin films [28, 167]. The films are highly textured along (001) or (010) on sapphire 

(0001) substrate [168]. Si substrates are used to achieve the compatibility with current 

electrical devices. They are cheaper compared to sapphire ones. However the VO2 thin 

films deposited on Si were usually reported to be polycrystalline because of large lattice 

mismatch and the native oxide layer [169]. Glass substrates were usually used for optical 

applications owing to the low cost and high transparency. VO2 films directly grown on 

glass substrates were reported to be monoclinic phase with preferred (011) out-of-plane 

orientation, however with random in-plane orientations [30]. MgO (111) and STO (111) 

substrates were used to achieve b-axis growth of VO2 [51]. 

      Besides the substrate exploration, different buffer layer materials were also 

applied to achieve better epitaxial quality of the VO2 films. TiO2 has a good lattice 

matching relationship with VO2. Muraoka et al. reported that VO2 preferred to grow 

along (001) on TiO2 (001) while tended to grow along (011) on TiO2 (011) [170]. It 

indicated that the lattice orientation of TiO2 buffer layer could determine the growth 

orientation of VO2. ZnO has a domain matching relationship with the VO2 lattice. Many 

researchers have reported high quality VO2 thin films on ZnO or doped-ZnO buffer 

layers [136, 171, 172]. As ZnO could also grow epitaxial on Si substrates [173], it 

provides a transition between VO2 and Si. In addition, SnO2 and CeO2 were reported as 

an antireflection layer for thermaochromic applications of VO2 [174, 175]. 
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Because of the different lattice mismatch relationships, the substrates and buffer 

layers not only influence the microstructures, but also impact the strain states of the VO2 

thin films. In fact, the strain has been controlled by using various substrates and buffer 

layers for the growth of VO2, which results in successful Tc tuning of the films. VO2 thin 

films on STO (111) [51] and r-cut sapphire [176] substrates were usually reported to 

have a lower shift of Tc, while the VO2 on MgO (111) [177] and c-cut sapphire 

substrates [28] commonly showed an upper shift of Tc. In addition, different buffer 

layers, such as TiO2, CeO2, ZnO, SnO2, etc., have been applied between VO2 and 

substrates to provide more possibility of strain tuning [136, 170, 175, 178, 179]. 

This section is focused on reviewing the lattice structures and the corresponding 

VO2 growth impacts of sapphire, Si, glass and ZnO, which have been used in the works 

of this thesis. 

 

Sapphire 

Sapphire belongs to the inorganic compounds with the chemical formula Al2O3. 

It is also called aluminum oxide, alumina, corundum, as well as many other names, 

depending on the applications. Al2O3 has a rhombohedral/hexagonal crystal structure 

(R3̅c) with ionic bonds. Figure 1.15 shows the hexagonal unit cell with 12 Al
3+

 ions and 

18 O
2-

 ions. The lattice of the hexagonal unit cell consists of close packed oxygen planes, 

alternating with a hexagonal array of aluminum planes [180, 181]. The lattice parameters 

of Al2O3 are a=4.7587 Å and c=12.9929 Å. Sapphire is an insulator with a band gap of 9 

eV at room temperature [182]. The thermal expansion coefficients of sapphire are 



43 

6.2×10
-6

 and 7.07×10
-6

 cm/k along a- and c-axes, respectively [183]. 

There are four commonly used face terminations of sapphire as substrates: (0006) 

(c-plane), (101̅2) (r-plane), (11̅00) (m-plane), and (112̅0) (a-plane), among which c- r- 

and m-cut sapphires have been used for VO2 growth. The VO2 on c-cut sapphire shows 

the best epitaxial quality with (002) growth orientation. However, many researchers still 

reported relatively low SMT properties of VO2 on c-cut sapphire. Yang et al. 

demonstrated that it could be caused by the formation of 120° domain boundaries of the 

VO2 on c-cut sapphire due to the three-fold symmetry of the sapphire c-plane [28]. VO2 

on r-cut sapphire was reported to have a tetragonal phase (011) growth orientation at 

elevated temperature during depositions. When cooling down, the monoclinic phase 

formed (2̅11) and (200) twin structures [26, 176, 184]. VO2 has a large lattice mismatch 

with the sapphire m-plane, which results in several growth orientations [184]. 
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Figure 1.15 Atomic structure of hexagonal sapphire unit cell. Red balls represent O
2-

 and 

green balls represent Al
3+

. 

 

 

 

Silicon 

      Silicon (Si) is one of the most abundant elements in earth and serves as the most 

commonly used material in the current integrated devices. Si has a face-centered 

diamond cubic crystal structure with a lattice constant of ~5.431 Å, as shown in Figure 

1.16. Si has an indirect band gap of 1.12 eV at room temperature. The n-type and p-type 



45 

Si can be fabricated by doping of phosphor (P) and boron (B). The pure Si wafer forms a 

native oxide layer, SiO2, of about 3 nm on top [185]. As the SiO2 layer has an 

amorphous structure, it strongly limited the epitaxial growth of thin films on Si 

substrates. 

 

 

 

 
Figure 1.16 Atomic structure of the face-centered diamond cubic Si unit cell. 

 

 

 

      As Si is widely used in the current integrated devices, it attracted extensive 

research interest to achieve high performance VO2 thin films on Si substrates. However, 
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the VO2 directly grown on Si was usually reported to be polycrystalline [186, 187], and 

sometimes even with the existence of other phases [188]. Therefore, transition buffer 

layers were usually used in between of VO2 and Si to enhance the epitaxial quality of the 

VO2 film. The buffer layers are required to have good lattice matching relationship with 

both Si and VO2 to provide intermediate lattice structures to accommodate the large 

lattice mismatch between Si and VO2. Buffer layers including ZnO [29], Al2O3 [189], 

yttria-stabilized zirconia (YSZ) [190], etc. have been reported to have a good 

enhancement of the quality and therefore the performance of VO2 on Si. 

 

Soda-lime glass 

      Soda-lime glass is the most prevalent type of glass, and commonly used for 

windowpanes and glass containers. It is prepared by melting the raw materials, such as 

sodium carbonate (soda), lime, dolomite, silicon dioxide (silica), aluminium oxide, in a 

glass furnace at temperatures locally up to 1675 °C. The soda-lime glass has an 

amorphous structure with a melting temperature of ~570 °C. Soda-lime glass as substrate 

is cheap, relatively chemically stable, reasonably hard, and extremely workable. It has a 

large optical transparency window from the wavelength of 400 nm to 2700 nm with 

larger than 90% transmission, as shown in Figure 1.17. Therefore, it is widely used as 

the substrate for optical applications. 
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Figure 1.17 Transmission spectrum of the soda-lime glass. 

 

 

 

      The VO2 thin film grown on soda-lime glass substrate has the advantages of low 

cost, small substrate effects, and high optical performance for smart windows [16]. 

However, compared to the research works of VO2 thin films on sapphire and Si 

substrates, the effort on the growth of high quality VO2 thin films on glass substrates is 

much less. In general, VO2 thin films on glass substrates have been reported to have 

relatively poor SMT performances [30, 178, 191, 192]. For example, Hanlon et al. 

reported that a sputtering deposited VO2 film on glass substrate exhibiting a phase 

transition width as large as 10 °C [191]. The VO2 film on glass substrate reported by 
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Chiu et al. showed an 11 °C width of thermal hysteresis [178]. Further research works on 

the VO2 growth on glass is desired for future optical device applications. 

 

Zinc oxide 

      ZnO is a II-VI group semiconductor. It crystallizes in two main forms, hexagonal 

wurtzite and cubic zincblende [193]. The wurtzite structure is a more stable phase and 

thus more commonly used for both research and industry applications. It belongs to 

P63mc with the lattice parameters of a=3.2498 Å and c=5.2066 Å. As shown in Figure 

1.18, the wrutzite ZnO lattice is composed of two hexagonal close packed (HCP) 

sublattices of Zn and O atoms. ZnO has a wide direct bandgap of Eg = 3.37 eV at room 

temperature, which makes it suitable for blue and ultraviolet (UV) optoelectronics and 

transparent electronics [194]. The bandgap can be varied from 3.0 to 4.0 eV through Cd 

and Mg substitution [195, 196]. The native doping of ZnO due to oxygen vacancies or 

zinc interstitials is n-type [197]. 

      ZnO has been reported as a good buffer layer for VO2 growth [172]. Both b- and 

c-axes of VO2 growth have been achieved on ZnO [171, 178]. Kato et al. reported a 

b-axis growth of monoclinic VO2 on ZnO buffered glass substrates with the β angle of 

VO2 lattice matches on 120° ZnO hexagonal lattice. The heteroepitaxial relationships 

were determined as VO2 (010)[100]||ZnO (001)[100],[010],[1̅1̅0] [136]. This result was 

supported by the research works from Srivastava et al. and Chiu et al. [192, 198] 

However, Yang et al. and Koo et al. reported the c-axis growth of VO2 on ZnO (0006) 

[171, 199]. The lattice matching relationships were determined as VO2 (002)||ZnO (0002) 
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and VO2 (01̅0)||ZnO (101̅0). These results indicated that the epitaxial orientations of 

VO2 on ZnO buffer layers could be influenced by specific synthesis processes. 

 

 

 

 

Figure 1.18 Hexagonal wurtzite crystal structure of ZnO with Zn
2+

 ions shown as red 

and O
2−

 shown as gray. 

 

 

 

1.3.4 Defect effects 

The defects are the imperfection of the periodic crystal structure. They widely 

exist in almost all kinds of crystals. The defects can be categorized by the dimensions. 

The 0 dimension (0-D) defects are called point defects, which includes vacancies, 
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interstitial atoms, etc. The 1-D defects mainly refer to dislocation related defects. The 

2-D defects are in planar shape, such as grain boundaries twin interfaces, domain walls, 

etc. The 3-D defects are the clusters in the crystal matrix, including voids, cracks, 

inclusions or secondary phases. The VO2 thin films usually contain many kinds of 

defects. Despite of the theoretic prediction of the thermal dynamic model introduced in 

section 1.3.2, the practical defect effects on the SMT properties of VO2 thin films is still 

under investigation. Especially, the mechanisms of defects influence on VO2 SMT 

properties are still under debate. 

Point defects exist in all kinds of crystal structures including VO2 thin films 

because of the thermal energy. The point defects were reported to have a negative impact 

on the film SMT properties. Lopez et al. reported that by annealing the as-deposited VO2, 

the point defects could be reduced, leading to a larger phase transition amplitude and 

sharper transition [112]. In particular, the oxygen vacancy was reported to have a tuning 

effect on the Tc of VO2 thin films [23]. Appavoo et al. have conducted plasmon 

resonance nanospectroscopy characterizations on VO2 at nuclei stage [115]. The VO2 

with higher oxygen vacancy density showed a Tc shift to lower temperature, which was 

correlated with the vacancy generated strain at grain boundaries. 

Dislocations in the VO2 thin films can usually be observed at the film/substrate 

interface due to the lattice mismatch [200]. Kawatani et al. have reported the dislocation 

generation at the VO2/TiO2 interface [201]. The increase in dislocation density in thicker 

films caused the overly broadening of the transition sharpness. Furthermore, the local 

area phase transition study by Sohn et al. revealed that the VO2 film near the 
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dislocations had a Tc shifting to the bulk transition temperature, owing to the strain 

relaxation by forming dislocations [202]. 

Grain boundary (GB) is a 2-D defect. As one of the major defects widely existing 

in the VO2 thin films, it has dramatic influence on the SMT properties of VO2 thin films. 

The GB is generally believed to have negative impacts on the film SMT properties. 

Brassard et al. demonstrated that when VO2 grew thicker on Si3N4/Si substrates, the 

grains gradually grew larger in the top parts of the thin films and result in a sharper 

phase transition and larger transition amplitude [22]. However, Aliev et al. have reported 

a different result. It was found that the grain size increase of VO2 thin films on Al2O3 and 

Si substrates led to the reduction the width of thermal hysteresis but broadening of the 

phase transition sharpness [203]. 

The 120° twin boundary is another type of 2-D defects that have widely been 

observed in the VO2 films deposited on the substrates with hexagonal lattice symmetry, 

such as c-cut sapphire. A negative impact on the SMT properties was also reported. 

Moreover, Yang et al. have reported that this impact would be more significant when the 

electrical current went through the twin interfaces perpendicularly [171]. The SMT 

measurements conducted on in-plane and out-of-plane direction of the VO2 film showed 

that the parallel current flow had a sharper transition with a smaller ΔH compared to the 

perpendicular current flow. 

Secondary phases usually exist in the VO2 thin films synthesized at un-optimized 

conditions. As the VOx phases had different composition and phase transition 

temperature from VO2, they were usually reported to cause a decrease of the VO2 film 
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transition amplitude [204, 205]. However, the pre-existence of R phase VO2 in the M1 

phase matrix was reported to cause limit impacts on the transition amplitude and 

sharpness, but result in an easier transition of the M1 phase matrix to the R phase [206]. 

It was proposed that the R phase clusters provided nucleus which lowered down the 

activation energy for the surrounding M1 VO2 phase transition. 

In fact, due to the co-existence of other defects, it is very challenging to study the 

individual defect effects on VO2 SMT properties. Furthermore, film thickness and the 

stress induced by substrates could also affect the SMT properties of VO2 thin films. 

Therefore, it is desired to study the effects of defects on VO2 films by limiting the 

existence of other defects and minimizing the substrate induced stress [207]. 

 

1.3.5 Doping effects 

In semiconductor production, doping is to intentionally introduce impurities into 

an extremely pure intrinsic semiconductor for the purpose of modulating its electrical 

properties. In general, the doping in an intrinsic semiconductor will lead to the 

narrowing of the energy band gap by introducing extra energy states between the 

conduction and valence band, which results in higher conductivity of the semiconductor. 

For the case of VO2, since it’s intrinsically in n-type, any acceptor doping will 

compensate for undoped n-type VO2 and thereby lower down its energy gap. Therefore 

the n-doped VO2 film requires lower thermal energy to trigger the phase transition, 

leading to the drop of Tc [36, 208]. Furthermore, Macchesn et al. reported that when the 

dopant radius is larger than V
4+

, it can lead to the drop of Tc, and while the dopant has a 
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smaller radius than V
4+

, it will increase the Tc [32]. 

Doping is one of the most common ways to tune the Tc of VO2. Various doping 

elements, including W, Mo, Nb, Mg, Al, Ti and Cr, have been achieved and the Tc of the 

films has been tuned from less than 200 K to more than 350 K. However, since doping 

elements could introduce extra defects in the VO2 lattice, it is usually accompanied with 

a drop of other SMT properties including lowering of ΔA, broadening of ΔT, and 

decreasing of optical transmission switch. In 1983, Greenburg reported CVD synthesis 

of W, Mo and Nb doped VO2 thin films. All the doping elements led to a drop of Tc, but 

caused a decrease of the transmission switch at infrared wavelength during phase 

transition [25]. Jorgenson et al. then varied the W doping concentration from 0-7% in the 

VO2 thin films [32]. They reported a decrease of the Tc from 340 K to 160 K, which 

covered the operation temperatures (~280-310K) for normal devices. However, the 

electrical resistance transition amplitude was observed to drop with the W doping. The 

first-principles calculations by Tan et al. revealed that an isolated W ion in VO2 lattice 

possesses an intrinsically symmetric tetragonal-like structure, which drives the 

de-twisting of the nearby asymmetric monoclinic VO2 lattice towards rutile phase [209]. 

These W generated rutile-like VO2 regions acts as nuclei for the “metallic puddles” 

which propagate through the monoclinic matrix, and thus lowering down the thermal 

activation energy across phase transition. 

Hanlon et al. reported Mo-doped VO2 thin films on glass substrates exhibiting a 

drop of Tc from 62.5 °C to 24 °C with the doping concentration increasing from 0 to 7% 

[210]. The films showed a dramatic drop of conductivity transition amplitude and 
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broadening of transition width with the increase of Mo concentration. Xu et al. further 

characterized that the transition amplitude drop could be as large as 2-3 orders with 5% 

of Mo concentration variation, as shown in Figure 1.19 [211]. Wu et al. have conducted 

high resolution X-ray diffraction characterizations on Mo-doped VO2 thin films on c-cut 

sapphire substrates [208]. The results showed a comparable epitaxial quality of doped 

and undoped VO2 films, indicating limited defects induced by Mo doping. Mai et al. 

argued that Mo doping resulted in the loss of V
4+

-V
4+

 pairs. It not only destabilized the 

semiconductor phase, which led to the drop of Tc, but also caused the bond damage of 

the monoclinic lattice, which resulted in the decrease of transition amplitude. 

 

 

 

 

Figure 1.19 The effects of MoO3 doping concentration on (a) the Tc and (b) the 

magnitude of resistivity change of the VO2 thin films. Reprinted with permission from 

Journal of Materials Science [211]. 
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In contrast to the high valent elements (W
6+

, Mo
6+

, Nb
5+

, etc.), the low valent 

elements, including Al
3+

, Cr
3+

, Ti
4+

 were reported to tune the Tc of VO2 to higher 

temperatures during doping. Chae et al. reported an increase of Tc of VO2 thin films by 

10 K with 20% Ti doping concentration [35]. Furthermore, Takahashi et al. found that 

the Tc of VO2 was less sensitive to the doping concentration for heavily doped (>15%) 

samples [34]. They reported that about 15 K increase of Tc of VO2 thin films was 

accomplished by 15% of Ti doping, while the Tc showed almost no change with the Ti 

concentration increased to 20%. Beteille et al. also reported less sensitivity of VO2 

transition temperature at high doping level. But they revealed that the ΔA still kept 

decreasing despite of the relatively stable Tc [36]. This indicated that the high level 

doping will keep on increasing the defects density in the VO2 film but can’t introduce 

much more energy states in the band structure. In addition, Beteille et al. have 

introduced Al and Cr as doping elements for VO2 thin films [36]. These elements 

showed similar doping effects as Ti, but with higher Tc tuning capability, i.e. larger Tc 

shift at the same doping level, because of the lower valent. 

      As discussed above, introducing doping elements is usually accompanied with 

the decrease of ΔA and broadening of ΔT. However, most reports showed that the width 

of thermal hysteresis (ΔH) decreased with the doping level [212, 213]. This could be 

because the doping elements played different roles during the M1 to R and R to M1 

phase transition processes. Chen et al. reported that for the Ti-doped VO2 thin films, the 

Tc in the cooling circle increased more than that in the heating circle, leading to a 

decrease of ΔH [214]. Based on the first-principles computation, they argued that dopant 
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Ti ions break the octahedral symmetry of local structure in VO2 (R) phase, which is a 

nonlocal effect because the distortion is propagated in anisotropy. On the other hand, the 

Ti induced structural change in VO2 (M1) phase is only constrained in the local positions 

of Ti ions. The energy calculation showed that the activation barrier has more increase in 

Ti-doped VO2 (R) phase than that in Ti-doped VO2 (M) phase, resulting in more increase 

of Tc in cooling circle than that in heating circle. For the acceptor doping elements (W
6+

, 

Mo
6+

, Nb
5+

, etc.), the increase of the activation barrier in VO2 (R) phase leads to less 

decrease of Tc in cooling circle, which also results in the reduction of ΔH. 

      To limit the reduction of SMT properties of VO2 thin films due to doping, 

co-doping has been applied, by which two or more elements have been simultaneously 

doped in the VO2 films. Takahashi et al. have reported the co-doping of W-Mo and W-Ti 

[34], while Burkhardt et al. have reported the co-doping of W-F in VO2 thin films [215]. 

With the remaining of Tc shift, the phase transition amplitude of the films has been 

enhanced compared to the single doped samples. It is suggested that the co-doped 

elements have some compensation between the lattice distortions they generated in the 

VO2 matrix, which minimizes the defects in the films. Meanwhile, they independently 

introduce energy states in the VO2 band structures, which result in the remaining of Tc 

tuning effects on the films. 

      The doping effects are mainly based on the change of VO2 band energy structures. 

Thus they are at least partially independent from the strain effects. Therefore the doping 

and strain effects can have combined influence on the VO2 phase transition temperature. 

Du et al. reported that an undoped VO2 thin film prepared by polymer-assisted 
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deposition showed a Tc of 57.1 °C due to the large internal strain. With 5.7% of Ti 

doping, the Tc of the film shifted to ~80 °C without obvious change of the strain status 

[213]. The 5.7% Ti-doped film even showed a narrowing of transition width with almost 

no drop of the transition amplitude. The combination of doping and strain effects 

provides an efficient way with simultaneous Tc tuning and other SMT properties 

optimization of VO2 thin films. 

 

 

 

1.4 In situ transmission electron microscopy (TEM) studies on VO2 

1.4.1 In situ TEM characterization techniques 

      Transmission electron microscopy (TEM) is one of the most widely used 

techniques to characterize the micro/nanostructures of a material. It can provide a 

projection view of the microstructures in atomic level, which leads to fundamental 

understandings of the materials. In addition, it has the capability to identify the internal 

structure underneath of the surface while the electrons transmit through the TEM 

specimens, which distinguished this technique from other microscopies. Owing to such 

great potential, the TEM technique is not just limited in the field of material science 

researches, but also employed in other areas such as microelectronic device technology, 

biotechnology, etc. However, conventional TEM techniques can only characterize the 

microstructures but the physical or chemical properties of the materials. The property 

measurements were generally conducted ex situ, i.e. out of the TEM column. Therefore, 
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conventionally the microstructure and property characterizations were separated from 

each other, which make a big challenge to reveal the fundamental mechanisms of the 

material behaviors. 

      In the past two decades, the emergence of in situ TEM techniques gives the 

possibilities to characterize the microstructures in real time during property 

measurements of the materials, which provides great opportunities to correlate 

structure-property together for fundamental mechanism studies. In general, the in situ 

TEM refers to the techniques conducting property measurements on a TEM specimen 

inside the TEM column. The microstructure evolutions of the specimen can be directly 

observed during property measurements. The in situ TEM techniques can be classified 

by the type of property measurements conducted. The most commonly used techniques 

are including in situ TEM heating, mechanical testing, electrical measurement, 

electrochemical testing, etc. 

 

In situ TEM heating 

      The in situ TEM heating technique conducts thermal measurements on the 

specimen in the TEM column. The two most important requirements for in situ TEM 

heating are the capability to reach high temperatures and the thermal stability of the 

system. The instability of the TEM holder at elevated temperatures could lead to the drift 

of the specimen and thus loss the possibility to characterize the microstructures. The 

heating source is usually provided by the Joule heat, which is generated by conducting 

electrical current into a metal filament. In this design, the heating source is separated 
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from the specimen, thus minimizes the sample instability. 

      The in situ TEM heating techniques have been widely used for the investigation 

of defects evolution, grain growth, solid interaction, and phase transition process, etc. 

Here several representative works using the in situ TEM heating technique are 

introduced. Fan et al. have conducted in situ TEM heating experiments on the FeZr 

nanocomposites with micron-sized Fe grains [216]. It was directly observed that the 

dislocations were generated inside the Fe grains at when heating up to 550 °C. Then the 

dislocations were driven to the outside of the grains and absorbed by the grain 

boundaries. The accumulation of large amount of dislocations at the grain boundaries 

finally led to creation of a gap surrounding the grain. Dannenberg et al. have 

characterized the thermal response of nanocrystalline Ag thin films by in situ TEM 

heating [217]. The growth of Ag nano-grains was observed beyond 100 °C. More 

interestingly, it was found that the grain growth was not uniform, but with the formation 

of large grains surrounded by much smaller grains. Su et al. have examined the thermal 

stability of amorphous SiOC and crystalline Fe composite by in situ TEM heating [218]. 

The diffusion of Fe into SiOC was observed at elevated temperatures. Furthermore, the 

diffusion was found to be more sever at the triple-point junctions where a grain 

boundary intersects the layer interface. Dorcet et al. have reported the in situ TEM 

experiments on Na0.5Bi0.5TiO3 (NBT) [219]. It was revealed that the rhombohedral to 

tetragonal phase transition of NBT was a two-step process. The process began by a first 

order phase transition involving the reconstructive transformation of the rhombohedral 

phase into an orthorhombic one. Then the intermediate orthorhombic phase turned to the 
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tetragonal one in a short time. 

 

In situ TEM mechanical testing 

      The in situ TEM mechanical testing technique conducts mechanical 

measurements on the specimen in the TEM column. Two of the major catalogs of this 

technique are in situ TEM nanoindentation and tensile testing. A typical design of the in 

situ nanoindentation TEM holder consists of a piezo controlled diamond indentation tip 

connected with a capacitor force sensor. The TEM specimen is required to be half ring to 

allow the access of the tip. During in situ TEM nanoindentation tests, the diamond tip 

propagates towards the specimen with simultaneous recording of the force. Therefore, 

the microstructure evolution can be monitored in real time together with the 

force-displacement plot. The specimen for in situ TEM tensile testing is usually free 

standing. The TEM holders contain different types of specially designed clamps to catch 

the specimen. One side of the clamps is fixed while the other side is connected with a 

piezo controller. The tensile testing will be initiated by retracting the movable side of the 

clamps. 

      A representative type of applications of the in situ TEM mechanical testing 

technique is for analysis of microstructural response of a material under the external 

stress applied with real time observation. Legros et al. have conducted in situ TEM 

tensile testing on the free-standing nanocrystalline Al thin films [220]. Extensive grain 

boundary migrations have been observed accompanied with the in situ loading, which 

resulted in the grain growth for more than 50 nm. Lee et al. have reported a direct 
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observation of strain hardening in nanocrystalline nickel by in situ TEM nanoindentation 

[221]. Abundant Lomer-Cottrell (L-C) locks were observed to form both within nano 

grains and against twin boundaries, which were believed to contribute to the strain 

hardening effect. Bufford et al. have conducted in situ TEM nanoindentations on 

nano-twined Al thin films [222]. Incoherent twin boundaries were observed to migrate 

by the assistant of dislocation nucleation and absorption, which result in the high work 

hardening capacity and plasticity. 

      The in situ TEM mechanical testing technique was also conducted on 

investigating stress induced phase transitions. Liu et al. have reported a reversible 

gradual L21-to-10M/14M phase transition of single crystalline Ni54Fe19Ga27 alloy at low 

stress by in situ TEM nanoindentation [223]. Furthermore, an irreversible abrupt 

transition from residual L21 to L10 martensite was observed at higher stress during 

nanoindentation. The dynamic observation of microstructure evolution showed that the 

reversible phase transition at lower stress involved gradual propagation of phase front 

accompanied by stress plateau, while the irreversible phase transition at higher stress 

took place in a discrete fashion. 

 

In situ TEM electrical measurement 

      In general, the in situ TEM electrical measurement is to apply electrical field on 

the specimen in the TEM column while record the current response simultaneously. The 

in situ TEM electrical measurement holder usually consists of a metal tip (made by W, Pt, 

etc.) serves as the electrical contact. The specimen is required to be free standing or half 
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ring for the tip access. The specimen is hold in a metal container which connects to the 

other end of the electrical power. 

      The in situ TEM electrical measurement technique has been applied on 

investigating the microstructure evolution of materials under electrical field. Among all, 

the in situ TEM characterizations on conducting channel formation in oxide 

semiconductors are of particular interest. Park et al. have conducted in situ TEM 

electrical measurements on the asymmetric Ta2O5−x/TaO2−x bilayer structure [224]. The 

result showed clear mersister behavior of the structure with reversible bipolar resistive 

switching. The dynamic observation of atomic-scale structure evolution suggested that 

the switching effects occurred by the formation and annihilation of oxygen conducting 

channels in the TaO2−x layer, which consist of nanoscale TaO1−x filaments. Similar 

results were reported by Yang et al., who have conducted in situ electrical measurements 

on La0.85Sr0.15TiO3/SrTiO3:Nb (LSTO/STON) thin films. The electrical resistance 

switching behavior of the film was correlated with the oxygen content variation. In situ 

dynamic observations revealed that the oxygen content was changed by the oxygen 

vacancies at the interface between LSTO and metal contact, which were driven inside 

the film to form the conductive channels during electrical biasing. 

 

1.4.2 In situ TEM heating studies on VO2 

As discussed previously, in situ TEM heating technique provides an effective 

way to study the fundamentals of phase transition phenomena. However, the phase 

transition of VO2 is accompanied with just a small amount of lattice change, which is 
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very difficult to be distinguished by TEM imaging. In contrast, the electron diffraction 

theory indicated that the monoclinic lattice has strong higher-order Laue zone (HOLZ) 

reflections of the electron beam, which results in secondary diffraction dots in the 

electron diffraction patterns. Therefore the M1 and R phase VO2 could have 

distinguishable electron diffraction patterns. This theoretic prediction was supported by 

many experimental reports. As shown in Figure 1.20, the diffraction pattern taken from 

the M1 VO2 [020] zone contained a lot secondary diffraction dots with weak intensity, 

which disappeared in the pattern taken from the same zone after phase transition [38]. 

 

 

 

 

Figure 1.20 The electron diffraction patterns of (a) M1 phase and (b) R phase VO2, taken 

from VO2 [020] zone for both phases. Reprinted with permission from Elsevier [38]. 
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Based on the electron diffraction, the SMT processes have been directly observed 

in both VO2 thin films and nanowires. Yang et al. have fabricated VO2 films with 

self-organized nano-pores by sol-gel methods [225]. The in situ TEM heating 

experiments then proved that the film matrix and the pore areas had simultaneous phase 

transition when heating to 70 °C, which indicated the homogeneity of the films without 

dramatic strain or defect effects from the self-organized pores. Sohn et al. have 

synthesized VO2 nanowires on c-cut sapphire substrates with [100] growth orientation 

[226]. The in situ TEM heating experiments showed that the nanowires experienced a 

direct M1 to R phase transition during heating. In comparison, they also synthesized free 

standing VO2 nanowires along the same growth direction [227]. By in situ TEM heating, 

it was found that the free standing nanowires showed a M1 to M2 phase transition before 

tuned into R phase. These results indicated that the nanowires grown on the substrates 

contained less strain, while the free standing nanowires had large surface strain that led 

to the emergence of the intermediate M2 phase. Beteille et al. have fabricated free 

standing polycrystalline VO2 thin films [38]. The in situ TEM heating study revealed 

that for the film with ~100 nm average grain size, each grain exhibited independent 

phase transition processes without any collective transformation through the film. 

However for the film with ~3-5 μm average grain size, the in situ experiments showed 

sudden and rapid modification in the large mono-oriented domains, suggesting a 

cooperative-like behavior during phase transition process. 

More detailed in situ TEM heating investigations have revealed a lot of 

microstructural evolutions driven by VO2 phase transitions. He et al. have conducted an 
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atomic resolution in situ TEM heating experiment on the VO2 film grown on c-cut 

sapphire substrates [39]. The propagation of the M1-R phase domain wall was directly 

observed during phase transition. Domain walls were located in (202) and (040) planes 

of rutile structure. The phase transition of M1 VO2 lattices beside the domain wall was 

identified with two steps: V-V pair movement followed with lattice expansion. 

Balakrishnan et al. have studied the thermal stability of the VO2 thin film on Si3N4 

membrane during phase transition [228]. The in situ TEM heating experiments showed 

that the VO2 film cracked during the phase transition cycle. The cracks were found 

mainly along the grain boundaries, suggesting instability of the grain boundaries during 

VO2 phase transition cycling. Furthermore, high density of twin structures was found to 

form beside the cracks, indicating a plastic deformation of the film before cracking. 

Viswanath et al. have investigated the microstructural evolution of the VO2/Si cantilever 

structure during actuating process [229]. Strain was observed to propagate through the 

VO2 film mainly by passing the grain boundary areas. It suggested the important effects 

of boundaries in the VO2 films to accommodate the phase transition induced strain. 

The previous research works of in situ TEM heating on VO2 have already 

revealed a lot of fundamental information about the SMT process. Therefore it is 

believed that this technique will continue playing an important role in the future studies 

of VO2. 

 

1.4.3 In situ TEM mechanical and electrical measurements on VO2 

Despite of the great benefit of conducting in situ TEM mechanical and electrical 
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measurements on VO2, not many research works have been reported yet. Especially, no 

works have been reported on the study of VO2 thin films. In 2011, Guo et al. have 

conducted in situ TEM tensile tests on individual VO2 nanowires [40]. The dynamic 

imaging and electron diffraction showed the M1–M2 structural phase transition arising 

from the central portion of the nanowire, as shown in Figure 1.21. A plateau was 

detected in the stress–strain curve at the point of M2 phase emergence. Further increase 

of the tensile stress led to the propagation of the one-dimensionally M2 domain with 

pinning and depinning of the domain walls along the nanowire. The M1 and M2 phase 

VO2 were calculated with different Young’s Modules. In 2013, the authors conducted 

combined in situ TEM heating and mechanical tests on VO2 nanowires [41]. Focus 

electron beam was employed as the heating source while tensile loading was applied 

simultaneously. With a constant tensile displacement, the abrupt transition of VO2 from 

M1 to M2 phase led to a drop of the tensile load, while the transition from M1 to R 

phase led to an increase of the load. These in situ TEM works revealed the fundamentals 

of VO2 phase transition induced strain effects and provided a foundation for the VO2 

based mechanical devices. 
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Figure 1.21 (a) Force-displacement plot of an in situ TEM tensile test on an individual 

VO2 nanowire during loading (in green) and unloading (in red). (b) Dark field TEM 

images of the unstrained VO2 nanowire. (c) Sample at loading of 88 μN and (d) sample 

at loading of 133 μN. Reprinted with permission from Americal Chemical Society [40]. 

 

 

 

In fact, the in situ TEM mechanical and electrical measurements have great 

potentials in VO2 phase transition studies. With the in situ nanoindentations on VO2 thin 

films, one can expect direct observations of VO2 phase transitions under stress. The 

transition processes could be dependent on the growth orientations of the films. 

Furthermore, by combining the mechanical and electrical measurements together, the 
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resistivity of VO2 thin films can be monitored together with the stress change, which 

provides the possibility to realize stress induced electrical switching of VO2. In addition, 

by investigating the microstructural evolution during electrical bias, the mechanisms of 

field induced phase transitions and the memristor behaviors of VO2 could be verified. 

 

1.5 Challenges of the current research on VO2 thin films 

Despite of the great research efforts on VO2 thin films, challenges still remain to 

be addressed for their future applications. For example, the VO2 thin films are difficult to 

synthesize with high quality and performance on many of the low cost substrates, such 

as Si and glass, because of poor lattice matching relationship. In particular, the effort on 

the growth of high quality VO2 thin films on glass substrates is to be explored. Chapter 

III of this dissertation focuses on achieving high performance VO2 thin films on 

amorphous glass substrates [101]. In addition, the practical defect effects on the SMT 

properties of VO2 thin films are still under investigation. Especially, the mechanisms of 

defects influence on VO2 SMT properties are still under debate. As grain boundary is 

one of the most commonly existing defects in thin films, chapter IV of this dissertation is 

focused on investigating the role of grain boundaries in SMT processes [207]. 

Furthermore, increasing doping level in the VO2 films was usually accompanied with a 

significant drop of SMT properties. Therefore it is desired to explore other methods of Tc 

tuning with the other SMT properties retained. Chapter V focuses on exploring 

continuous Tc tuning of the VO2 thin films with the maintenance of other SMT 

properties. Moreover, in situ TEM studies of VO2 studies could be powerful in 
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addressing the fundamental mechanisms that could not be addressed easily by ex situ 

property measurements. Chapter VI of this dissertation focuses on investigating the 

stability of the VO2 SMT properties during multiple thermal cycles by the in situ TEM 

heating technique.  
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CHAPTER II 

RESEARCH METHODOLOGY 

2.1 Pulsed laser deposition system 

In the past 30 years, the pulsed laser deposition (PLD) technique has developed 

significantly and became a widely used technique for thin film growth of various kinds 

of materials. The laser assisted thin film deposition technique was initially carried out in 

1960s, and then demonstrated on the depositions of YBa2Cu3O7 by Dijkkamp and 

Venkatesan in 1987 [230]. The PLD belongs to the physical vapor deposition (PVD), 

which refers to thin film deposition methods with the vaporized materials containing 

many species such as electrons, ions, atoms, molecules, clusters and particulates from 

the target condensing onto various substrates in a vacuum chamber. The PLD technique 

is relatively simpler than many other PVD techniques. It mainly consists of the pulsed 

laser system and the vacuum chamber. Once the pulsed laser strikes the target material, 

the evaporated materials from the target can fly through the vacuum chamber and 

deposit on the surface of the substrate. 

A typical schematic of the PLD system is shown in Figure 2.1. In this chamber, 

multiple target holders are located face to face with the substrate holder. The targets are 

rotatable and oriented at an angle of 45º to the incident direction of the excimer laser 

beam. The chamber vacuum is maintained at ~10
-7

 Torr by two-stage vacuum system 

with roughing pump and turbomolecular pump. Most of PLD systems use excimer gas to 

generate laser beam. The laser wavelength ranges between 200nm and 400nm (KrF: 

λ=248 nm, ArF: λ=193 nm, Nd:YAG: λ=355 nm). Optical components including mirrors 
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and lenses are placed between the laser and the vacuum chamber to change the incident 

beam direction and the focus point. Once a high power laser shots the target through the 

optical focusing lens, it can generate the heat energy to vaporize the target materials. The 

laser power density is usually varied from 3 J/cm
2
 to 5 J/cm

2
 by adjusting the laser 

output energy and the focusing lens. The distance between the target and substrate is 

usually maintained at approximately 3-5 cm for best film quality. During depositions, the 

substrate temperature can be changeable in the range from room temperature to 800 °C. 

The precisely temperature control and sequential ramping can be achieved with 

computer controlled feedback loops of thermal couple and heater. 

 

 

 

 
Figure 2.1 Schematic diagram of the PLD system. 
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The quality of the deposited thin films can be affected by several parameters 

including laser repetition rate, substrate temperature, laser energy density, distance 

between the target and substrate, and the partial gas pressure of the chamber. Especially, 

interaction between the laser and target plays an important role in the film deposition. 

With the interaction, the incidence laser creates a plume towards the substrate holder. 

The plume contains many different species such as atoms, molecules, electrons, ions, 

clusters, particulates and molten globules by means of photon interaction. During the 

interaction, the laser energy first converts to electronic and then into thermal excitations. 

After that, chemical and mechanical energies result in evaporation, ablation, plasma 

formation and even exfoliation. The plume then flies through a short distance across the 

vacuum chamber and high energy molecules ejected from the target are deposited on the 

substrate as adatoms. Thin films are then synthesized through the solidification process. 

Elevated substrate temperature is desired during the deposition process to provide 

enough kinetic energy for the adatoms to diffuse through the surface to preferred lattice 

sites. 

The PLD physical principles have been described by R. K. Singh and J. Narayan 

in 1990 [231]. The interaction process can be explained with three different steps: 

laser-target interaction, interaction of laser beam with evaporated material, and adiabatic 

plasma expansion. The first two steps happen at the initial stage of the laser radiation 

and through the laser pulse duration (about 25 ns duration). The last step happens right 

after the laser pulse stops. 
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Figure 2.2 Schematic diagrams illustrating different steps of laser target interactions 

during laser pulse along time variation [231]. 

 

 

 

Figure 2.2 shows the laser-target interaction during the pulsed laser period. 

During the laser-target interaction, the laser beam with intensity of I0*exp(-α) can be 

absorbed by the target within the depth of x. Then the electromagnetic energy in the laser 

pulse is transferred to different energy types such as the thermal energy, which can melt 

and evaporate the materials from the target surface. The heating, melting and 

evaporation rate of a laser pulse is usually dependent on the parameters of the laser beam 
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and properties of the target materials. The laser parameters include the laser energy 

density, pulse duration, laser wavelength and the shape of the laser pulse. The material 

properties refer to the optical reflectivity, absorption rate, heat capacity, thermal 

conductivity, and material density, etc. These factors eventually define the heat flow 

through the target. Considering a one dimensional heat flow, it can be described by the 

following equation: 

𝜌𝑖(𝑇)𝑐𝑝(𝑇)
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑡
[𝐾𝑖(𝑇)

𝜕𝑇(𝑥,𝑡)

𝜕𝑥
] + 𝐼0(𝑡)[1 − 𝑅(𝑇)]𝑒−𝑎(𝑇)𝑥    (2.1) 

where x is the distance normal to the surface of the target and t is the time. ρi(T) is the 

target density, cp(T) is thermal heat capacity, R(t) is the optical reflectivity, a(T) is the 

absorption coefficient, I0(t) is the intensity of the incident laser, and Ki(T) is the thermal 

conductivity. The subscript i indicates the phase, which stands for solid when i = 1 and 

for liquid when i = 2. 

      The high power of the pulsed laser beam irradiated on target surface could cause 

a temperature higher than 2000 K, leading to the melting of the target material. Thus the 

position of the target surface is changeable. Based on the energy balance approach, it is 

possible to calculate the amount of the evaporated material by the laser pulse which can 

be considered similar to the amount of the energy needed for the film deposition without 

any energy loss. The balance equation can be expressed as: 

∆𝑥𝑖 =
(1−𝑅)(𝐸−𝐸𝑡ℎ)

(∆𝐻+𝐶𝑣∆𝑇)
                      (2.2) 

where Δxi is the thickness change amount of the target after evaporation, R is the 

reflectivity, ΔH is the amount of the heat absorbed by unit mass, Cv is the heat capacity 

under constant volume, and ΔT is the change of the temperature. The threshold energy, 
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Eth, refers to the minimum energy required for the evaporation. This equation is suitable 

for the case of the absorption length shorter than the thermal diffusion length in the 

target material. 

      After the materials evaporate from the target, further interactions between these 

evaporated species and the laser been can be expected on the way of the laser path. As 

the laser-target interaction surface temperature can as high as 2000K, positive ions and 

electrons can be emitted from the surface. These emissions can be estimated by the 

Langmuir-Saha equation: 

𝑖+

𝑖0
=

𝑔+

𝑔0
𝑒[(𝜙−𝐼)𝐾𝑇]                       (2.3) 

where i+ and i0 are the fluxes of positive and neutral ions emitted from the target surface 

at the temperature of T. g+ and g0 are the weights of the ions on the ionic and neutral 

states. ϕ is the work function of the electron, and I is the material ionization potential. 

Based on the equation, when I is larger than ϕ, the flux of the neutral ions will 

exponentially increase with the increase of temperature. 

      The target surface will continually absorb energy from laser radiation since the 

outer edge of the plasma regime is transparent to the laser beam. Figure 2.3 shows a 

schematic diagram of the interaction of laser beam with the target surface. It consists of 

four different regions: the unaffected bulk target (A), the evaporating target surface (B), 

the area adjacent to the surface which absorbs laser beam energy (C), and the rapidly 

expanding outer edge which is transparent to the laser beam (D). 
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Figure 2.3 Schematic diagram shows the different phases presented during the laser 

target interaction [231]. 

 

 

 

      After the plasma formation and expansion, the adiabatic expansion of the plasma 

in vacuum chamber gives rise to the laser deposition process. In this step, the thermal 

energy is converted to kinetic energy of the plasma. Under adiabatic condition, 

anisotropic expansion of the plasma plume can be enhanced, which can be described by 

the relation shown below: 

𝑇[𝑋(𝑡)𝑌(𝑡)𝑍(𝑡)]𝛾−1 = 𝑐𝑜𝑛𝑠𝑡               (2.4) 

where γ is the ratio of the specific heat capacities at constant pressure and volume. 

During the adiabatic step, the conversion of the thermal energy into the kinetic energy 

can lead to high velocity of the plasma expansion. Thus the plasma, which initially has 
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larger dimension along X and Y than Z direction, can expand along the Z direction with 

increase of the velocity. The last stage of PLD is the deposition of the ablated materials 

onto substrate surface. As the ejected species by laser-target interaction have high kinetic 

energies, they may cause the sputtering of the substrate surface atoms, which could have 

collisions with the following incident flux flow. A thermal equilibrium condition can be 

reached for the film growth when the condensation rate is higher than that of the flux. 

      In the works of this dissertation, PLD was used for all the thin film syntheses. 

The targets were prepared by a standard solid-state reaction method. High purity 

commercial V2O5 powders were used as the target source of the VO2 films. The mixed 

powders of Al2O3 and ZnO with the ratio of 5 wt.% were used as the material source of 

the Al-doped ZnO (AZO) depositions. The target powders were mixed and pressed into 

pellets. The pressed V2O5 pellets were sintered at 650 °C for 6 hours in a tube furnace 

exposed to atmosphere, while the AZO pellets were sintered at 1100 °C for 6 hours. The 

amorphous lime-soda glass, c-cut sapphire, and Si (001) single crystal substrates were 

used for the thin film depositions 

      Depending on the growth parameters and the intrinsic properties of the substrates 

and thin films, the thin films growth can be described by three major modes: 

Volmer-Weber island growth, Frank-Van der Merwe layer-by-layer growth, and 

Stranski-Krastanov layer + island growth, as illustrated in Figure 2.4 [232]. In the island 

growth mode, adatoms and molecules nucleate onto substrate surface to form clusters, 

which result in growth into 3-D islands. The driving force of the island growth is the 

stronger bonding between deposited atoms compared with the bonding between adatom 
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and the substrate. In the layer-by-layer growth mode, adatoms tend to form small nuclei 

to grow into 2-D planar structures because of the stronger bonding to the substrate atoms. 

The layer + island growth mode is a combination of both the layer-by-layer and island 

growth [233]. In this mode, Volmer-Weber island growth begins after formation of 

several atomic monolayers in a layer-by-layer growth due to the energetically instability 

during the film growth. 

 

 

 

 

Figure 2.4 Illustrations of the heteroepitaxial growth modes: (a) Volmer-Weber Island 

growth, (b) Frank-Van Merwe layer-by-layer and (c) Stranski-Krastanov layer + island 

growth. Reprinted with permission from Elsevier [232]. 
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Figure 2.5 Surface energy model of the nucleation process during a thin film vapor 

deposition process [232]. 

 

 

 

The bonding energy difference can be illustrated by the surface energy. Thus the 

growth modes of the thin films can also be described by the thermodynamic models for 

nucleation process. Figure 2.5 illustrates the surface energy model that describes the 

nucleation process [232]. The equilibrium between the horizontal components of the 

interfacial tensions between substrate, film and vapor phases is expressed by the 

following equation: 

𝛾𝑠𝑣 = 𝛾𝑓𝑠 + 𝛾𝑓𝑣𝑐𝑜𝑠𝜃                     (2.5) 

where γ is the interfacial energy and θ is the wetting angle. The subscripts s, v, and f 

represent the substrate, vapor and film, respectively. The three growth modes mentioned 

above can then be identified by this equation according to the wetting angle. In the 

island growth mode, the θ has a positive value while the surface energy of the film is 
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higher than that of the substrate. In the layer-by-layer growth, the surface energies of the 

film and substrate are similar and the film wets the substrate with θ ~ 0. Despite of the 

reliability of this ideal model, a lot of other factors could influence the growth of the 

films in practical. There are different kinds of nucleation sites including step edges and 

defects during the film growth and the growth of nuclei can be disrupted beyond the 

critical nucleus size. Besides, the thin film growth is also affected by the growth 

dynamic which is influenced by the growth parameters such as the laser energy and 

repetition rate. Therefore in the series of works in this dissertation, many growth 

parameters were varied and optimized to get the films with controlled microstructures 

and qualities. 

      In order to get the monoclinic phase VO2, the oxygen partial pressure was 

optimized as 10 mTorr for all the VO2 depositions. The laser beam was focused to obtain 

an energy density of approximately 3 J/cm
2
. The substrate temperatures, laser repetition 

rates and deposition durations were varied to obtain the films on different substrates, 

with different grain sizes and different thicknesses. The AZO depositions were 

conducted at the substrate temperature of 750 °C and laser repetition rate of 2 Hz. The 

oxygen partial pressures were varied to obtain the AZO layers with different surface 

roughness. 

 

2.2 X-ray diffraction (XRD) characterizations 

X-ray diffraction (XRD) is one of the most widely used nondestructive analysis 

techniques for exploring the lattice constant, orientation and internal stress of the crystal 
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materials. Especially, application for the thin film materials can help to identify the film 

crystallinity and the strain effects between the film and substrate. Figure 2.6 shows the 

schematic set up of an X-ray spectrometer [234]. During operations, the incident 

direction of the x-ray beam is orthogonal to the surface of the reflecting plane. In this set 

up, once the incident beam is diffracted by the plane surface, the diffracted beam can be 

measured by the detector D, which is rotated with a certain angle respect to sample 

position C. The incident X-ray beam will be diffracted into specific directions by a 

crystal structure. According to the angles and the intensities of the diffracted beams, the 

three dimensional structure of the crystal can be identified. X-ray diffraction is governed 

by the Bragg's Law: 

𝑛𝜆 = 2𝑑 sin𝜃                        (2.6) 

where λ is the wavelength of the X-ray, d is the lattice plane spacing (d-spacing), and θ is 

the diffraction angle. The schematic of the Bragg’s Law is shown in Figure 2.7 [235]. 

 

 

 

 
Figure 2.6 Schematic diagram of X-ray spectrometer [234]. 
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Figure 2.7 (a) A two dimensional periodic array of atoms forming different planes in the 

crystal, (b) Bragg diffraction of a set of planes with inter-plane spacing of d,which is 

conditioned to Bragg’s Law [235]. 

 

 

 

The Bragg's Law conditions can only be satisfied by certain combinations of the 

θ angles and d-spacing. The plot of the intensities of the diffracted beams versus the 

angle of 2θ is called θ-2θ scan. The θ-2θ scan is the characteristic XRD pattern in which 

the incident beam and detectors rotate simultaneously to form an angle 2θ. Based on the 

peak positions of the θ-2θ scan, the crystal structure of the material can be characterized. 

In addition, the width of the intensity peak can be essential to determine the crystallinity 

of the material. 
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The width of the θ-2θ scan peaks is affected by several factors. First of all, due to 

the wave destructive interference resulted from periodicity of atomic arrangement, the 

width of the diffraction peak could increase with the reduction of crystal size. Figure 2.8 

shows the effect of the crystal size on the width of the peak [234]. Based on this diagram, 

the size of the crystal can be estimated by the following formula: 

𝑡 =
𝑘𝜆

𝐵 𝑐𝑜𝑠𝜃𝐵
                          (2.7) 

where λ is the wavelength of the X-ray beam (1.5418 Å for Cu Kα), B is the full width at 

half maximum (FWHM) of the peak, and θB is the highest intensity position of the peak. 

The constant k depends on the morphologies of the crystals. The value of 0.9 is usually 

used for thin film samples. 

 

 

 

 
Figure 2.8 The crystal size effects on the XRD θ-2θ spectra peak width [234]. 
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Another possible reason for the variance of the peak width is the relationship 

between the spectral width of the x-ray source and diffracted angle θ. The term of 

“spectral width” refers to the wavelength width of the output beam. Such wavelength 

width from the source is proportional to tanθ. Thus when the θ is close to 90°, the 

increase of the peak width can be caused by misorientation of the grain crystal structures 

of a material. For instance, for the columnar grain structures commonly observed in thin 

films, if the angle of the misorientation between the columns is defined as ±ε, the 

diffracted peak at θ for the single crystal will be broadened up to θ ± ε. Besides of the 

peak width, the intensity of the peak will also be affected by the grain structured crystal. 

When the material has poor crystallinity, the atomic arrangement is irregular, and the 

constructive and destructive interference won’t happen due to the random phase. The 

intensity of the X-ray beam can be estimated by the summary of all the X-ray intensities 

scattered. For the well-oriented crystals, the diffracted beam obeys the Bragg’s Law. 

Thus the intensity of the beam can be formulated as N
2
A

2
, where N is the number of 

scattered rays and A is amplitude of the rays. In contrast, the intensity of the diffracted 

beam with scattering can be formulated as NA
2
. Therefore, the material with higher 

crystallinity can have higher intensity of the X-ray diffraction than that with lower 

crystallinity. 

 

2.3 Transmission electron microscopy (TEM) characterizations 

      Transmission electron microscopy (TEM) is a powerful and widely used tool for 

microstructure characterizations. TEM is developed to overcome the limitation of optical 
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microscopes depending on the wavelength of visible light. It has the capability to 

identify the internal structure underneath the surface while the electrons transmit through 

the TEM specimens, which makes this system distinguishable with other microscopes. 

Additionally, the TEM can provide projection of microstructures in atomic level, which 

give fundamental and comprehensive understandings of the material systems. For the 

applications on thin films, although large portion of the film quality analysis still highly 

relies on surface analysis tools such as atomic force microscopy (AFM) and scanning 

electron microscopy (SEM), the analysis ability on the internal and small size 

microstructures along with the cross-section and plan-view is entitled by TEM technique. 

The TEM investigations on thin films have already provided clear evidences of strain 

coupling, defects formation, interfacial reaction and surface diffusion etc. Furthermore, 

within such remarkable system, other analytical techniques including STEM, EELS, and 

EDX have been combined together, which make this system even more powerful to 

characterize the integrating chemical compositions of the materials within single atomic 

scale. 

Figure 2.9 shows a typical TEM system set up [236]. It mainly contains four 

parts: the electron source, electromagnetic lens system, sample stage and imaging 

systems. They are all combined in a vacuum column backed up by the mechanical pump 

and turbo pump or diffusion pump [236]. There are different types of electron guns, 

including thermal emission guns and field emission guns, in which the cathodes emit 

electrons when heated and by high voltage, respectively. The electron beam is then 

accelerated towards the anode by the extraction voltage. The high energy electron beam 
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is focused and confined by the condenser lens and apertures before reaching the 

specimen. The objective lenses then focus the transmitted beam after passing through the 

specimen and project the image on the phosphorescent screen and CCD camera. In this 

dissertation, JEOL JEM-2010 (200 kV, LaB6 filament) and Tecnai F20 super-twin (200 

kV, ZrO2/W Schottky field emitter) were used for the TEM characterizations. They have 

the point-to-point resolution of 0.23 and 0.24 nm respectively. 

 

 

 

 

Figure 2.9 The block diagram of a typical TEM system set up with analytical capabilities 

[236]. 
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2.3.1 Resolution 

Resolution and magnification are two of the main parameters of TEM. The 

magnification can easily be adjusted by changing the acceleration voltage and the 

magnetic field of the lens. However, the resolution is affected by a lot of factors. Without 

considering the aberration effects, the resolution limit of the microscope can be 

theoretically estimated by the wavelength of the electrons and the aperture angle of focus 

lens, which can be expressed based on Rayleigh criterion: 

r =
0.612𝜆

𝑛 𝑠𝑖𝑛𝛼
                          (2.8) 

where λ is the wavelength of the electrons, n is the refractive index (n = 1 for vacuum) 

and α is the aperture angle of the lens. Generally, in order to generate more coherent 

beam, the electrons are accelerated by high voltage in the TEM. Thus the wavelength of 

the electron beam is usually shortened in the order of 0.01 Å, which contributes to a high 

resolution of the microscope. 

Besides of the electron wavelength limitation, the aberrations of the lens have 

significant influence on the resolution. The aberrations are including spherical 

aberrations, chromatic aberrations and astigmatisms. The spherical aberration is mainly 

caused by more refraction of the incident electron beam when passing through the edge 

portion of the lens compared to passing through the central portion, as shown in Figure 

2.10(a) [237]. Because of the spherical aberration, when the electron beam through the 

lens center is focused on the image plane, the beam near the lens edge will be focused 

before the plane. As a result, the spherical aberration disk with radius rs will be made 

with relation of rs = Csβ
3
, where Cs is the spherical aberration coefficient and β is the 
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angular aperture of the lens. 

 

 

 

 

Figure 2.10 Electron beam diagrams of the objective lens aberrations: (a) spherical, (b) 

chromatic and (c) astigmatism [237]. 
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Chromatic aberration is another kind of aberration which is occurred by the 

energy dispersion (ΔE) of the incident electrons. The focus lens using magnetic field has 

different refraction capabilities for the electrons with different energies. The electrons 

with higher energy, and thus higher velocity, are expected to have lower refraction 

angles through the magnetic lens. Therefore, the focal lengths between the dispersed 

electrons can be different, as shown in Figure 2.10(b). The chromatic aberration can be 

even worse with the increase of the TEM specimen thickness. Thus preparations of thin 

enough specimens are desired to improve the resolution. 

Astigmatism is another factor to affect the resolution. The astigmatism usually 

comes from non-uniform magnetic field which results in different focal length in 

different directions, as shown in Figure 2.10(c). This can be caused by the vibration of 

the electromagnetic field due to non-uniform surface of cylindrical pole-pieces, and the 

contamination charging up the electron beam. The projected TEM image with different 

focus length can be deformed with radius rast as shown below: 

𝑟𝑎𝑠𝑡 = 𝛽Δ𝑓                        (2.9) 

Where β is the astigmatism coefficient and Δf is the maximum difference in focal length 

induced by astigmatism. The astigmatism can be corrected by changing the amplitude 

and orientation of the magnetic field on the lens to compensate the field vibrations. 

 

2.3.2 Depth of field and depth of focus 

When the electron beam has a spatial width, the lens will refract the beam to focus at 

multiple positions. The vertical distance between points at which the beam crosses over 
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along the central axis on objective plane is called the depth of field (D), as shown in 

Figure 2.11 [238]. As the angle β is small, the value of D can be calculated by the 

following equation: 

D =
𝑑1

𝛽
                           (2.10) 

Similarly, the depth of focus (D’) is defined on image plane as the vertical distance 

between points at which beam crosses over along the central axis. D’ can be calculated 

by the equation: 

D′ =
𝑑1

𝛽
(

𝑑1

𝑑2
)

2

=
𝑑1

𝛽
(

𝛽

𝛼
)

2

                     1) 

 

 

 

 

Figure 2.11 Schematic diagrams of the depth of field and depth of focus [238]. 
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It can be noticed that by selecting smaller size of aperture, the angle β will 

decrease, which will contribute to the increase of the depth of field (D) and depth of 

focus (D’). For instance, when d1 = 1 Å and β = 5×10
-3

 radius, the depth of the focus is 

20 nm. It means any region of the specimen with a thickness less than 20 nm can be 

focused. Therefore, preparations of thin specimens are desired to have broader range of 

the D and D’. 

 

2.3.3 Image and diffraction modes 

When the coherent electron beam transmits through the specimen, it can be 

dispersed and refocused on the image plane by the objective lens, which generates the 

image of the specimen. In contrast, the beam dispersed and refocused on the back focal 

plane can generate the diffraction patterns. In this mode, the beam coming through the 

specimen will travel through the selected area diffraction (SAD) path, as shown in 

diagram in Figure 2.12(a) [239]. In this path, the size of the beam gets smaller with the 

change of the focal length of the intermediate lens. And the selected area diffraction 

(SAD) aperture is inserted in the image plane. Then the diffraction pattern is projected 

on the viewing screen. 

The generation of the electron diffraction is related with two features. First, as 

the wavelength of the electron beam is much smaller than the lattice distance, the 

diffraction angle will be very small. Then Bragg’s law defined as  𝑛𝜆 = 2𝑑 sin𝜃 

becomes 𝑛𝜆 = 2𝑑 ∙ 𝜃 with θ < 0.5°. Second, as the specimen is very thin, the projected 

diffraction will be in the rod form of the domain. The Ewald reflection sphere can then 
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overlap with the diffraction domain for active state of hkl reflection. Based on the 

relationship of the reflection indices, hu + kv + lw = 0, the reflection on the (hkl) planes 

will have the beam incident direction of [uvw] along the zone axis. Therefore the 

reciprocal plane (uvw) in the diffraction pattern includes the lattice point hkl. 

In the image mode, as shown in Figure 2.12(b), the objective lens is inserted in 

the image plane of the objective lens and the focus length of the intermediate lens is 

adjusted to project the image on the viewing screen. In this mode, dark field (DF) and 

bright field (BF) images can be obtained depending on the objective aperture 

configuration and the beam diffraction as shown in Figure 2.13 [239]. BF image is 

formed when the aperture is positioned to allow the direct transmitted electrons to pass, 

while DF image is formed when the aperture is positioned to allow only certain 

diffracted electrons to pass. The DF image can also be obtained through a tilted incident 

beam, as shown in Figure 2.13(c). In the dark field mode, as the filtered beam just 

contains the information from certain diffraction planes, only the areas along such 

orientations in the specimen will be imaged (shown as bright on the screen). All the 

other areas will show in dark contrast on the screen. 
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Figure 2.12 The electron beam paths of two basic operation modes of TEM: (a) the 

diffraction mode and (b) the imaging mode [239]. 
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Figure 2.13 Diagrams of the objective lens and objective aperture coordinated 

production of (a) a BF image formed from the direct electron beam, (b) a 

displaced-aperture DF image formed by a certain orientation diffraction beam, and (c) a 

DF image formed by the tilted incident beam, which scatters certain diffraction beam to 

the optic axis [239]. 

 

 

 

2.3.4 TEM specimen preparations 

As discussed in previous sections, the TEM specimen preparation is essential to 

obtain high quality TEM images. Typically, the region transparent to electrons should 

have the thickness less than 100nm. The preparation method depends on the material 

properties and objective. In this dissertation, both the cross-section and plan-view 

samples were prepared by conventional grinding, polishing, dimpling and ion milling 
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steps. First, the sample (substrate and film) is cut into thin slices by diamond pen. For 

cross-section samples, two slices are glued together. Second, the cut and glued samples 

are pre-thinned by sand papers and polished by diamond papers. Third, the thinned 

samples (usually less than 100μm) are then dimpled and polished by a copper wheel and 

leather wheel on a dimple machine. Finally, the dimpled samples are put into a precision 

ion polishing system (PIPS) for ion milling. The ion milling can bombard and thin the 

specimen to get a thin area (< 100 nm) surrounding the ion milling holes. Depend on the 

film and substrate materials and specimen types, various factors of ion milling can be 

adjusted, including beam energy, beam incident angles, and beam modulations. 

Generally, shorter ion milling duration is preferred to reduce the ion damages on the 

specimen. 

 

2.4 Electrical properties measurements 

In this dissertation, the phase transition properties of the VO2 thin films were 

characterized by the electrical resistance switches with temperature variations, which 

were measured by a Physics Property Measurement System (PPMS) (EverCool, 

Quantum Design, Inc). The PPMS provides a flexible and automatic platform that can 

perform a variety of experiments with precise thermal control including magnetization 

and resistivity vs. temperature measurements (R-T). The PPMS has a capacity to apply 

magnetic fields up to ±9 Tesla and a temperature range of 1.9 ~ 400 K using liquid He 

and heater. The temperature sweep rate can be varied from 0.01 K/min to 12 K/min. 

The DC transport measurements in PPMS incorporate a high precision current 



96 

source and a voltmeter in the Model 6000 control unit. The R-T option supports the 

four-terminal probe measurements. These measurements are typically conducted by 

introducing a known current through the sample from two electrodes, and measuring the 

voltage across the sample direction from another two electrodes. The sample resistivity 

is then calculated according to the Ohm’s law and the sample dimension. The electrodes 

on the samples for the measurements were Au contacts deposited by a magnetron 

sputtering system. 

 

 

 

 

Figure 2.14 Schematics of the sample rod and puck setup in the dewar of PPMS for 

electrical measurements. 
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Figure 2.14 shows the sample rod used for the R-T measurements in PPMS. The 

sample is mounted on easily removable printed circuit boards as show in Figure 2.15. 

This DC Resistivity Standard puck has three channels, which can measure up to three 

samples at one time. For the VO2 thin films, the R-T plot can be measured within the DC 

puck. And the phase transition properties, i.e. transition temperature, amplitude, 

sharpness, and width of thermal hysteresis, can then be characterized by the resistivity 

changing rate with temperature. 

 

 

 

 

Figure 2.15 Standard four-point-probe DC Resistivity measurement puck with three 

channels. 
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CHAPTER III 

SHARP SEMICONDUCTOR-TO-METAL TRANSITION OF 

VO2 THIN FILMS ON GLASS SUBSTRATES* 

3.1 Overview 

Outstanding phase transition properties of Vanadium dioxide (VO2) thin films on 

amorphous glass were achieved and compared with the ones grown on c-cut sapphire 

and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate 

exhibit a sharp semiconductor-to-metal transition (~4.3 °C) at a near bulk transition 

temperature of ~68.4 °C with an electrical resistance change as high as 3.2 × 10
3
 times. 

The excellent phase transition properties of the films on glass substrate are correlated 

with the large grain size and low defects density achieved. The phase transition 

properties of VO2 films on c-cut sapphire and Si (111) substrates were found to be 

limited by the high defect density. 

 

 

 

 

 

 

 

 

______________________ 

* Reprinted with permission from “Sharp semiconductor-to-metal transition of VO2 thin 

films on glass substrates” by Jie Jian, Aiping Chen, Wenrui Zhang and Haiyan Wang, 

Journal of Applied Physics 114, 244301, 2013. Copyright (2013). 
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3.2 Introduction 

Vanadium dioxide (VO2) has attracted extensive research interests and shows 

great potential in various devices such as sensors [14], switches [15], 

thermo/electrochromics [16], Mott transistors [48] and thermal actuators [17], because of 

its unique physical properties. For example, VO2 single crystals exhibit an ultrafast 

(within 0.1 °C) and reversible phase transition from a semiconductor phase to a metallic 

phase (SMT) at ~68 °C during heating process [5, 6, 45]. Through such a first-order 

phase transition [6], VO2 transit from a tetragonal rutile phase (P42/mnm) to a 

monoclinic (P21/c) phase [7], which results in dramatic changes in its electrical [8-10] 

and optical properties [11-13]. 

     One of the exciting electrical properties of VO2 is that the resistivity switching 

during SMT can be as large as 10
4
 to 10

5 
times in bulk [87]. It is also desired to have a 

sharp transition and a small width of thermal hysteresis. However, it is quite challenging 

to grow such high quality of VO2 films, especially on amorphous substrates, due to the 

existence of the multivalent vanadium ions (V
2+

, V
3+

, V
4+

, V
5+

) [24] and a wide range of 

point defects [81].
 
In addition, film stress, grain size, defects density and others could 

also vary [22, 23]. To achieve high quality and high performance VO2 thin films, 

different substrates have been used [28, 176, 190, 240, 241]. Among all, c-cut sapphire 

substrate is commonly used to grow epitaxial VO2 thin films [28, 167]. The films are 

highly textured along (001) or (010) on sapphire (0001) substrate [168]. Growth of VO2 

thin films on Si and amorphous glass substrates started about a decade ago [23, 191]. Si 

substrates are cheaper compared to sapphire ones. However it is quite challenging to 
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deposit high quality VO2 thin films on Si because of the native oxide layer [169]. VO2 

films directly grown on glass substrates are in monoclinic phase [30] with preferred (011) 

out-of-plane orientation, however with random in-plane orientations [191]. A model has 

been previously proposed for the microstructure-property correlations of VO2 based on 

defect density and interfacial energies [37]. Following that, much effort has been focused 

on achieving high quality VO2 films with precise control of strain and SMT properties, 

either directly grown on sapphire and Si substrates [28, 176], or with different buffer 

layers [242, 243]. In contrast, the effort on the growth of high quality VO2 thin films on 

glass substrates is much less, despite the advantages of the low cost of glass and the 

small substrate effect on the film electrical performance, as well as the great needs of 

high performance smart windows [16]. In general, VO2 thin films on glass substrates 

have been reported to have poor electrical resistivity performance [30, 178, 191, 192]. 

For example, Hanlon et al. reported that a sputtering deposited VO2 film on glass 

substrate exhibits a phase transition width as large as 10 °C [191]. The VO2 film on glass 

substrate reported by Chiu et al. showed an 11 °C width of thermal hysteresis [178]. 

Therefore further exploration on the VO2 growth on glass is essential to enable its future 

device applications on glass.  

     In this study, VO2 thin films have been deposited on glass substrates and 

compared with the ones on c-cut sapphire and Si (111) substrates. Detailed electrical and 

microstructural characterizations have been conducted on samples on all different 

substrates. The microstructure properties, especially grain size, grain boundary 

orientation and defects density, have been correlated with the electrical performance 
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during heating and cooling process. 

 

3.3 Experimental 

VO2 thin films were deposited on amorphous glass, single crystal c-cut sapphire 

and Si (111) substrates in a pulsed laser deposition (PLD) system with a KrF excimer 

laser (Lambda Physik Compex Pro 205, λ=248 nm). The laser beam was focused to 

obtain an energy density of approximately 3 J/cm
2
 at a 45° angle of incidence. The 

depositions were conducted by using V2O5 target under oxygen deficient condition. The 

V2O5 targets were obtained by conventional powder pressing and sintering method. The 

oxygen pressure was optimized at 10 mTorr for all depositions. Substrate temperature 

was set to 500 °C during deposition for glass substrates, and 550 °C for c-cut sapphire 

and Si (111) substrates. All depositions were conducted at a repetition rate of 10 Hz and 

duration of 15 mins. Following deposition, the films were cooled down to room 

temperature under the same oxygen pressure with a cooling rate of 10 °C/min. 

The morphologies and microstructures of as-deposited films were characterized 

by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD θ-2θ 

scans were performed using a Panalytical Empyrean 2 X-ray diffractometer with Cu Kα 

radiation. Detailed cross-section microstructural characterization including TEM and 

selected-area diffraction (SAD) patterns were acquired by JEOL 2010 analytical 

microscope with a point-to- point resolution of 0.23 nm. TEM samples were prepared 

using a standard cross-section sample preparation procedure, including manual grinding, 

polishing, dimpling and a final ion milling step (PIPS 691 precision ion polishing system, 
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3.7 keV). The electrical resistances of as deposited VO2 films were measured by a 

standard four probe method with temperature varied from 17 °C (290 K) to 97 °C (370 K) 

in a physical property measurement system (PPMS, Quantum Design). 

 

3.4 Results and discussion 

Figure 3.1 shows the XRD θ-2θ scans of VO2 thin films deposited on glass, c-cut 

sapphire and Si (111) substrates. For the film on glass substrate, a strong peak appears at 

~27.8°, which corresponds to monoclinic phase VO2 (011). A minor peak at ~39.5° can 

be attributed to reflection from either VO2 (020) or (002). This indicates that, despite the 

existence of other out-of-plane orientations, VO2 prefers to texture along (011) on glass 

substrate since the (011) plane is the low-energy plane of monoclinic phase VO2 [226]. 

The VO2 on c-cut sapphire substrate shows primary peaks corresponding to monoclinic 

phase VO2 (002) and Al2O3 (0006), which indicates that the VO2 film has grown highly 

textured along c-axis. The film on Si (111) substrate shows peaks for VO2 (011) and 

(022), which indicates that the VO2 thin film deposited on Si (111) has its predominant 

texturing along (011) orientation owing to the low packing energy. 
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Figure 3.1 The XRD spectra of VO2 thin films deposited on (a) glass, (b) c-cut sapphire 

and (c) Si (111) substrates. 

 

 

 

Figure 3.2 shows the cross-section TEM images of the VO2 thin film on glass 

substrate with a film thickness of approximately 230 nm. Obvious columnar structures 

have been observed in the film, as shown in Figure 3.2(a). The columnar width varies 

from about 90 nm to more than 130 nm. The high-resolution TEM (HR-TEM) image of 

the film/substrate interface (Figure 3.2(b)) confirmed the (011) preferred out-of-plane 

orientation of the VO2 film on glass substrate. The corresponding SAD pattern, shown in 

Figure 3.2(c), was taken from the film/substrate interface area. A diffused diffraction 

ring is from the amorphous glass substrate while the diffraction dots are from the VO2 
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film. The intensive out-of-plane VO2 (011) diffraction confirmed the highly textured film. 

The slightly arced (011) and (022) diffraction dots indicate the slight misorientation of 

the grains out-of-plane. 

 

 

 

 

Figure 3.2 TEM study of VO2 thin film on glass substrate: (a) Low magnification 

cross-section TEM image of film thickness and columnar grain structures, (b) HR-TEM 

image of VO2/glass interface, (c) SAD pattern of film and substrate. 
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The VO2 thin film on c-cut sapphire substrate shows a thickness of around 130 

nm in the cross-section TEM image (Figure 3.3(a)). Ultrafine columnar domains have 

been observed in the film with an average width of approximately 5 nm. The HR-TEM 

image in Figure 3.3(b) shows a sharp and clean film/substrate interface. The (002) 

d-spacing of VO2 is measured to be ~2.16 Å. The SAD pattern of the film/substrate 

interface area, shown in Figure 3.3(c), was taken from [200] zone of VO2 ([1010] zone 

of c-cut sapphire). It further confirms the highly textured growth of the VO2 film. Based 

on the diffraction pattern, the orientation relationships are determined to be VO2 (002) // 

Al2O3 (0006) and VO2 (020) // Al2O3 (1210). Furthermore, the overlap of the VO2 (020) 

spot and the Al2O3 (1210) spot implies that along the [1210] direction of c-cut sapphire, 

VO2 and Al2O3 have almost perfect lattice matching. The SAD pattern in Figure 3.3(d) 

was taken from [020] zone of VO2 ([1210] zone of c-cut sapphire) by 30° tilting of the 

TEM sample. As the [020] zone of VO2 is perpendicular to the [200] zone, it implies that 

the in-plane orientation of VO2 on c-cut sapphire substrate has a three-fold symmetry, 

which may be attributed to the symmetry of sapphire (0001) plane. According to the 

diffraction patterns, it can be determined that the VO2 (200) is almost parallel to the 

Al2O3 (1012). And along the [1010] direction of c-cut sapphire, the VO2 and Al2O3 have 

a 3:2 in-plane domain lattice matching relationship, i.e. 3 of VO2 (200) match with 2 of 

Al2O3 (1012). 
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Figure 3.3 TEM study of VO2 thin film on c-cut sapphire substrate: (a) Low 

magnification cross-section TEM image of film thickness and columnar domain 

structures, (b) HR-TEM image of VO2/c-cut sapphire interface, (c) SAD pattern of film 

and substrate along the c-cut sapphire [1010] zone, (d) SAD pattern of film and substrate 

along the c-cut sapphire [1210] zone. 

 

 

 

It is interesting to note that the film grown on glass substrate results in a thicker 

film with a growth rate of around 0.26 Å/pulse while the film on c-cut sapphire substrate 

has that of about 0.15 Å/pulse. The different growth rate may be related with the film 

growth orientations as well as the different substrate surface energies. For example, the 

VO2 (011) plane has a lower packing energy than (002) plane, which makes the adatoms 

easier to bond on the (011) free surface and thus lead to a higher growth rate along (011) 

orientation. 
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Figure 3.4 TEM study of VO2 thin film on Si (111) substrate: (a) Low magnification 

cross-section TEM image of the layer structures and round grains in the film, (b) 

HR-TEM image of VO2/Si (111) interface, (c) SAD pattern of film and substrate along 

the Si [011] zone. 

 

 

 

The cross-section TEM images of VO2 thin film on Si (111) substrate are shown 

in Figure 3.4. The thickness of the film is estimated to be about 210 nm. A 2~3 nm 

silicon oxide (SiOx) layer was observed between VO2 films and Si (111) substrate in 

Figure 3.4(a). Instead of columnar grains/domains observed in the films on sapphire and 

glass substrates, the film on Si (111) substrate contains a layer structure with a few round 

grains. The interfaces between each layer are rough and sometimes discontinuous. The 
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(011) out-of-plane orientation of the film has been observed in the HR-TEM image of 

the film/substrate interface, as shown in Figure 3.4(b). The SAD pattern of the 

film/substrate interface area, shown in Figure 3.4(c), is taken in [011] zone of Si 

substrate. It also indicates a preferred (011) out-of-plane orientation of the film. 

 

 

 

 
Figure 3.5 Phase transition influence on electrical resistance of VO2 thin films grown on 

different substrates: (a) normalized resistance of all VO2 films as a function of 

temperature, (b) resistance changing rate of VO2 thin films on glass, (c) c-cut sapphire 

and (d) Si (111) substrates with temperature. 
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Figure 3.5(a) summarizes the normalized electrical resistances, ρ=R (T)/R 

(17 °C), of VO2 thin films on glass, c-cut sapphire and Si (111) substrates as a function 

of temperature. The film on glass substrate exhibits a resistance change (ΔA) of 3.2 × 

10
3
 times, which is smaller than that of the film on c-cut sapphire substrate (6.1 × 10

3
) 

but larger than that of the film on Si (111) substrate (1.0 × 10
3
). In order to determine the 

phase transition parameters, e.g. phase transition temperature (TSMT), sharpness (ΔT) and 

the width of thermal hysteresis (ΔH) for each film, the derivation of log10 (ρ) has been 

calculated and plotted with respect to temperature, as shown in Figure 3.5(b), (c) and (d). 

Comparing to the VO2 films on c-cut sapphire and Si (111) substrates, the film on glass 

substrate shows a much sharper and more reversible phase transition at a near bulk 

transition temperature. As summarized in Table 3.1, the VO2 film on glass substrate 

possesses a TSMT of around 68.4 °C during heating process, which is extremely close to 

that of the bulk single crystal VO2 samples (~68 °C). In comparison, the VO2 films on 

c-cut sapphire and Si (111) substrates exhibit higher TSMT (~76.3 °C and ~73.2 °C, 

respectively). For the sharpness of phase transition, the VO2 film on glass substrate has a 

ΔT as small as 4.3 °C for heating, and 4.6 °C for cooling processes, while the VO2 film 

on c-cut sapphire substrate exhibits a ΔT of 6.4 °C during heating process and the film 

on Si (111) substrate shows a ΔT as large as 8.3 °C during cooling process. The two 

peaks in the derivation plot of the VO2 film on glass substrate, as shown in Figure 3.5(d), 

are perfectly symmetric. This indicates that the film experienced two equal and 

reversible phase transition processes during heating and cooling. However, for the films 

on c-cut sapphire and Si (111) substrates, the width and amplitude of these two peaks are 
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quite different, which implies that the films may underwent unequal phase transition 

processes during heating and cooling. These results indicate the VO2 film on glass 

substrate experiences a more reversible phase transition and thus possesses a more 

reliable performance. Besides, the VO2 film on glass substrate exhibits a comparable ΔH 

(~9.2 °C) with the film on c-cut sapphire substrate (~8.1 °C), but much smaller than that 

of the film on Si (111) substrate (~14.7 °C). 

 

 

 

Table 3.1 Semiconductor-to-metal phase transition characteristics of VO2 thin film 

deposited on different substrates. 

Substrates     TSMT (°C)    ΔT (°C)   ΔH (°C)     ΔA 

Glass         68.4 (↑),      4.3 (↑),     9.2     3.2 × 10
3
 

              59.2 (↓),     4.6 (↓) 

c-sapphire     76.3 (↑),      6.4 (↑),     8.1     6.1 × 10
3
 

              68.2 (↓),     4.2 (↓) 

Si (111)       73.2 (↑),      3.7 (↑),    14.7    1.0 × 10
3
 

              58.5 (↓)      8.3 (↓) 

 

 

 

The phase transition temperature of the VO2 thin films are heavily influenced by 

the film strain. Thus the near bulk TSMT of the VO2 film on glass substrate indicates a 

relatively small strain in the film. It is mainly because there is no lattice mismatch issue 

for the films grown on amorphous substrates. The higher TSMT of VO2 films on c-cut 
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sapphire and Si (111) substrates imply that these films may sustain large tensile strains. 

      The ΔA, ΔT, ΔH and reversibility of phase transition of the VO2 thin films are 

strongly related with the film microstructures, such as defects density and grain (or 

domain) boundary orientation. Defects in the VO2 film will lead to scattering of 

electrons and thus increase the resistivity of the film. This influence is more obvious for 

the metallic VO2 because of its low resistivity. On the other hand, for semiconductor 

phase VO2, defects will create extra energy levels in the band gap and lead to a decrease 

of resistivity [22]. Thus, high defects density will lower the resistivity amplitude and 

limit the sharpness and reversibility of phase transition. The thermal hysteresis is 

reported to be related with the interfacial energy, which depends on the nature and 

orientation of grain (domain) boundaries [37]. 

      For the VO2 film on glass substrate, the large grain size leads to a low grain 

boundary density and associated defects density, which could be the major reason of its 

outstanding electrical performance. In comparison, the high density of domain walls in 

the VO2 film on c-cut sapphire substrate limits its properties. A large amount of random 

grain boundaries exist in the film on Si (111) substrate, which increases the density of 

defects and thus leads to a poor performance. Besides, the random boundaries increase 

the interfacial energy and contribute to a large width of thermal hysteresis of the film. 
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Figure 3.6 (a) features of the thin film varying with growth time when following 

Volmer-Weber mode, (b) features of the thin film varying with growth time following 

Stranski-Krastanov mode, (c) in-plane lattice matching schematic between VO2 film and 

c-cut sapphire substrate based on the domain matching and the three-fold symmetry and 

(d) schematic of out-of-plane lattice orientations of VO2 film on c-cut sapphire substrate 

based on the mirror symmetry. 

 

 

 

      The microstructures of VO2 films on different substrates were attributed to the 

different film growth mechanisms, which are related with the surface energy and lattice 

matching relationship between films and substrates. The surface energy of VO2 (011) 
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was reported to be 0.29 J/m
2
 [244]. As high temperature will significantly lower the 

glass surface energy, VO2 on glass substrate tends to grow in the Volmer-Weber mode 

(island growth mode), which requires the film to have a higher surface energy than the 

substrate. At the beginning of deposition, isolated VO2 nucleus could form on substrate 

surface. These islands grow larger until meet with each other and form boundaries and 

therefore become columnar grains, as shown in Figure 3.6(a). 

     The surface energy of Si (111) was reported to be 1.74 J/m
2
 when relaxed and 

1.36 J/m
2
 after 7×7 reconstruction [245], which is much higher than that of VO2 (011). 

One could expect a 2D growth of VO2 (011) on Si (111). However, the native SiOx layer 

on Si(111) tends to lower the overall substrate surface energy, which leads to that the 

VO2 film grows in the Stranski-Krastanov mode (2D-3D growth mode) on Si (111) 

substrate, as shown in Figure 3.6(b). 

     The excellent lattice matching relationship leads to a highly textured (002) 

orientation growth of VO2 on c-cut sapphire substrate. However, the three-fold 

symmetry of sapphire (0001) results in an in-plane misorientation of VO2, as shown in 

Figure 3.6(c). Interestingly, the VO2 lattice has an out-of-plane mirror symmetry, as 

shown in Figure 3.6(d). These geometric symmetries cause the formation of fine 

domains in the VO2 film on c-cut sapphire substrate. These in-plane and out-of-plane 

domain boundaries could strongly suppress the sharpness and reversibility of the phase 

transition. 
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3.5 Conclusion 

      Excellent electrical properties, i.e. a near bulk phase transition temperature (TSMT) 

of around 68.4 °C, a sharp transition (ΔT) of 4.3 °C, a large resistance change (ΔA) of 

3.2 × 10
3
 times, and 9.2 °C width of thermal hysteresis (ΔH), are reported in the single 

phase VO2 thin films on amorphous glass substrates. Their properties were compared 

with the ones on c-cut sapphire and Si (111) substrates, all deposited by PLD. VO2 thin 

film on glass substrate has its predominant texturing along (011) orientation with large 

columnar grains. On c-cut sapphire substrate, highly textured (002) orientation VO2 film 

was grown with a high density of domain boundaries both in-plane and out-of-plane. 

The VO2 film on Si (111) substrate has a (011) preferred orientation with layer by layer 

microstructure. The outstanding SMT properties of the VO2 films on glass substrates are 

related to their large grain size and low defects density. This study demonstrates that 

high performance VO2 can be grown on low cost glass substrates, which is an important 

step toward low cost VO2 based devices on glass. 
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CHAPTER IV 

ROLES OF GRAIN BOUNDARIES ON THE SEMICONDUCTOR 

TO METAL PHASE TRANSITION OF VO2 THIN FILMS* 

4.1 Overview 

Vanadium dioxide (VO2) thin films with controlled grain sizes are deposited on 

amorphous glass substrates by pulsed laser deposition. The grain boundaries (GBs) are 

found as the dominating defects in the thin films. The semiconductor to metal transition 

(SMT) properties of VO2 thin films are characterized and correlated to the GB density. 

The VO2 films with lower GB density exhibit a sharper SMT with larger transition 

amplitude. A high resolution TEM study at GB area reveals the disordered atomic 

structures along the boundaries and the distorted crystal lattices near the boundaries. The 

VO2 SMT amplitude and sharpness could be directly related to these defects at and near 

the boundaries. 

 

 

 

 

 

 

 

______________________ 

* Reprinted with permission from “Roles of grain boundaries on the semiconductor to 

metal phase transition of VO2 thin films” by Jie Jian, Wenrui Zhang, Clement Jacob, 

Aiping Chen, Han Wang, Jijie Huang and Haiyan Wang, Applied Physics Letters 107, 

102105, 2015. Copyright (2015). 
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4.2 Introduction 

Vanadium dioxide (VO2) is known to exhibit an ultrafast (within 0.1 °C) and 

reversible phase transition from a semiconductor phase to a metallic phase at ~68 °C [5, 

45]. Because of this fascinating characteristic, VO2 shows great potential in various 

devices including sensors [14], switches [15], thermo/electrochromics [16], Mott 

transistors [48], and thermal actuators [17], and thus has attracted extensive research 

interests. The semiconductor phase VO2 has a monoclinic (P21/c) crystal structure [45]. 

By the first-order semiconductor-to-metal phase transition (SMT) process [5], VO2 

transits to tetragonal crystal structure (P42/mnm) [7] which results in dramatic changes 

in its electrical [9] and optical properties [11]. 

      Compared with single crystalline VO2, the properties of VO2 thin films can be 

largely affected by many factors including defects density [22], strain [23], and the 

existence of the multivalent vanadium ions (V
2+

, V
3+

, V
4+

, V
5+

) [24]. Thus it’s quite 

challenging to synthesize high quality VO2 thin films with sharp transition width, narrow 

thermal hysteresis, and large electrical and optical property change. A model previously 

proposed by Narayan et al. has correlated some of the microstructures of VO2 to its 

properties. It suggests that the sharpness of transition (ΔT) and the amplitude of 

transition (ΔA) are both related to the overall defects density in VO2 [37]. Grain 

boundary (GB), as one of the major defects in the VO2 thin films, has a dramatic 

influence on the SMT properties of VO2 thin films [22, 203]. However, the GB effects 

on the SMT properties of VO2 thin films are still under debate. Especially, the 

mechanisms of GB influence on VO2 SMT properties are still under investigation.  
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Brassard et al. demonstrated that when VO2 grew thicker on Si3N4 /Si substrates, the 

grains gradually grow larger in the top parts of the thin films and result in a sharper 

phase transition and larger transition amplitude [22]. Aliev et al. found that the grain size 

increase of VO2 thin films on Al2O3 and Si substrates could reduce the width of thermal 

hysteresis but reduces the phase transition sharpness [203]. In addition, co-existence of 

other defects and VO2 phases is also one of the major challenges for studying the GB 

effects on VO2 SMT properties. For example, VO2 thin films grown on c-cut sapphire 

substrates usually contain high density 120° in-plane rotated domain boundaries, which 

have dominant impacts on the SMT properties [28]. VO2 films deposited on SrTiO3 

(STO) substrate contain a large amount of metastable (B) phase [246]. Furthermore, film 

thickness and the stress induced by substrates could also affect the SMT properties of 

VO2 thin films [101, 247, 248]. 

      In this work, we grew VO2 thin films with controlled grain size and film 

thickness on amorphous glass substrates. Amorphous glass substrates allow a relatively 

free growth of thin films, which can minimize the existence of other kinds of defects 

including domain boundaries and misfit dislocations. As there’s no lattice matching 

relationship between the film and substrate, the substrate induced stress could also be 

minimized.
 
Electrical resistance measurements were conducted on VO2 thin films with 

different grain sizes to characterize the SMT properties. The transition amplitude and 

sharpness were correlated to grain size and GB density. The microstructures of the GB 

areas were characterized by high resolution transmission electron microscopy (HR-TEM) 

and then used to explain the GB effects on the SMT properties of VO2 films. 
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4.3 Experimental 

      VO2 thin films on glass substrates were grown by a pulsed laser deposition (PLD) 

system (KrF laser, 248 nm). A V2O5 target, obtained by conventional powder pressing 

and sintering method, was used as the material source for VO2. The phase of VO2 was 

achieved by an optimized substrate temperature of 500 °C and oxygen pressure of 10 

mTorr. The laser repetition rate was varied from 1Hz, 2Hz, 3Hz, to 10 Hz to control the 

grain size of VO2 films. Deposition time was optimized for each repetition rate to obtain 

a 250 nm thick film. The microstructures of as-deposited films were characterized by 

X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD θ-2θ scans 

were performed using a PANalytical Empyrean 2 X-ray diffractometer with Cu Kα 

radiation. Bright field and dark field TEM images were acquired by FEI Tecnai G2 F20 

analytical microscope with a point-to-point resolution of 0.24 nm. The electrical 

resistance of as-deposited VO2 films were measured by a standard four probe method 

with temperature varied from 17 °C (290 K) to 97 °C (370 K) in a physical property 

measurement system (PPMS, Quantum Design). 
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Figure 4.1 (a) The XRD θ-2θ spectra of VO2 thin film deposited on amorphous glass 

substrate with a repetition rate of 10 Hz, 3 Hz, 2 Hz and 1 Hz. (b) Enlarged VO2 (011) 

peak of VO2 thin films deposited at different rates. 
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4.4 Results and discussion 

      Figure 4.1(a) shows the XRD θ-2θ scans of VO2 thin films deposited at 1 Hz, 2 

Hz, 3 Hz, and 10 Hz. All the VO2 thin films with different deposition rates present 

similar XRD θ-2θ scan results. A strong peak appears at ~27.8°, which corresponds to 

monoclinic phase VO2 (011). The minor peak at ~42.2° is indexed as VO2 (210). The 

weak peak at ~55.7° corresponds to VO2 (220). The result indicates that, despite the lack 

of epitaxial growth, VO2 prefers to texture along (011) on glass substrate since the (011) 

plane is the low-energy plane of VO2 monoclinic phase. No obvious peaks corresponding 

to other VO2 or VOx phases have been observed, suggesting the high purity of VO2 

monoclinic phase in all the films. The rectangular area marked in Fig. 1(a), ranging from 

25° to 30°, is enlarged and shown in Figure 4.1(b). No obvious peak shift was measured 

for VO2 films with different deposition rates. It implies that limited strains were 

introduced in the film when changing deposition rate. The width of the VO2 (011) peaks 

shows a consistent change with the deposition rate. When the deposition rate reduced 

from 10 Hz to 1 Hz, the full width at half maximum (FWHM) of the VO2 (011) peaks 

decreases from 0.39° to 0.274°. As a sharper peak is attributed to larger average grain 

size in polycrystalline thin films [249], this result indicates that the VO2 films with lower 

deposition rates could have larger average grain sizes. 
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Figure 4.2 (a) Cross-section TEM image of the VO2 thin film on glass substrate 

deposited at 2 Hz. (b) The corresponding HRTEM image of the film/substrate interface. 

(c1)-(f1) Plan-view dark field TEM images of the VO2 thin films on glass substrates 

deposited at 1 Hz, 2 Hz, 3 Hz, and 10 Hz, respectively. (c2)-(f2) The corresponding grain 

size distributions of VO2 thin films deposited at different rate. 
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     The microstructures of VO2 thin films, especially the grain size distribution, were 

further characterized by TEM. Figure 4.2(a) shows the cross-section TEM image of the 

VO2 thin film deposited at 2 Hz. Figure 4.2(b) shows the corresponding high-resolution 

TEM (HRTEM) image at the film/substrate interface. All the films have a comparable 

thickness of about 250 nm with obvious columnar grain structures. A thin amorphous 

interlayer (~3.5 nm) exists in between the glass and crystalline VO2, which could be 

attributed to the amorphous nature of glass substrate and a possible film-substrate 

interaction. Following this interfacial layer, the clean contrast of the grains indicates 

limited numbers of domains and point defects in each grain in the bulk part of the film. It 

has been previously reported that the substrate induced strain and defects at the 

film/substrate interface also play a critical role in the overall SMT properties [247, 248]. 

However, for this case, because of the amorphous substrate as well as the thin interfacial 

amorphous layer, the film shows little or no obvious contrast variation along the 

interface, which indicates that the substrate induced strain and defects are limited. 

Overall these microstructural characteristics suggest that GBs are dominant defects in 

the VO2 thin films on glass substrates. Thus the GB density change is expected to be a 

major factor on the phase transition property of these films. Figure 4.2(c1)-(f1) shows 

the plan-view dark field TEM images of the VO2 thin films under different deposition 

rates. The grain size decreases with the increase of deposition rate, which is consistent 

with the XRD results. A careful grain size distribution analysis in Figure 4.2(c2)-(f2) 

shows that the average grain size of 350 (±50) nm, 100 (±15) nm, 70 (±10) nm, and 40 

(±5) nm for the films deposited at 1 Hz, 2 Hz, 3 Hz, and 10 Hz, respectively. The 
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impacts of the deposition rate on the grain size of VO2 films could be the following. A 

lower deposition rate means a longer interval between two laser pulses, which allows 

longer diffusion time for the adatoms on the substrate surface. Larger grain sizes are thus 

expected. In addition, the films deposited at a lower rate usually require a longer 

deposition time which also results in higher thermal budget and thus a larger grain size. 

 

 

 

 

Figure 4.3 Normalized resistance of VO2 films deposited at (a) 1 Hz, (b) 2 Hz, (c) 3Hz 

and (d) 10 Hz as a function of temperature. (e) The SMT width and the electrical 

resistance amplitude change of VO2 thin films varying with average grain size. 

 



124 

      The SMT properties of VO2 films with different grain sizes were characterized 

by measuring the electrical resistance change during phase transition. Figure 4.3(a)-(d) 

summarizes the normalized electrical resistances, ρ=R (T)/R (17 °C), of VO2 thin films 

as a function of temperature. The transition amplitude (ΔA), sharpness (ΔT↑, ΔT↓), and 

width of thermal hysteresis (ΔH) of each film are calculated and listed in Table 4.1. The 

ΔA and ΔT↑ vs. average grain size are plotted in Figure 4.3(e). It is clear that both ΔA 

and ΔT are directly correlated to the film average grain size (GB density). As the average 

grain size increases from 40 nm to 350 nm, the transition amplitude of electrical 

resistance increases dramatically from 720 to 3750. Meanwhile, the transition gets 

sharper from ΔT=11 K to 3 K. This result suggests that the GBs strongly affect both the 

transition amplitude and sharpness of VO2 thin films. It is noted that the ΔH values of 

VO2 films don’t completely follow the trend of grain size variation. A previous report 

suggested that ΔH could be strongly influenced by the nature and orientation of grain 

boundaries [37]. Because the in-plane grain orientations are random for all the VO2 films 

on glass substrates, their ΔH values varies but are considered in a comparable range. It is 

also noted that in Figure 4.3(a) and (b), at high temperatures after major phase 

transitions (>350 K), the samples still show different resistance values at the same 

temperature during cooling and heating processes. This transition tail could be caused by 

the existence of a small amount of other VOx phases in the samples. 
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Table 4.1 SMT characteristics of VO2 thin film deposited at different repetition rate. 

Dep. rate (Hz)   Avg. grain size (nm)    ΔA     ΔT↑ (K)    ΔT↓ (K)    ΔH (K) 

     1              350 ± 50       3750       3.0        4.0        9.1 

     2              100 ± 15       2000       7.0        7.5        9.6 

     3               70 ± 10        830       8.5        8.9       10.1 

    10                40 ± 5        720      11.0       15.0        9.5 

 

 

 

      Fig 4.4 (a) shows a high resolution TEM image of a typical GB area for the 

sample deposited at 2 Hz. As indicated in the middle of the image, the GB area is 

amorphous with a bright contrast and the GB width of around 5 nm. Right beside the GB, 

the VO2 lattice on both sides of the GB shows a gradual contrast change inwards from 

bright to dark. In the inset, the average d-spacing of VO2 lattice was plotted as a function 

of the distance from the GB. To minimize measurement errors, each d-spacing value was 

calculated by averaging the d-spacing of three neighboring lattices. The lattice close to 

the GB shows a d-spacing of around 0.3 nm. Interestingly, the d-spacing gradually 

increases with the distance from the GB and finally approaches to a constant value 

(~0.325 nm). This is very close to the d-spacing of VO2 [011] (0.322 nm) and thus the 

grain orientation of the left side grain in Figure 4.4(a) is determined to be VO2 (011). 

The d-spacing variation in the grain could be attributed to the stress field generated by 

GBs. GB-induced strain gradually decreases away from the GB area, which is similar to 

a previous report [250]. In the area next to the GB, marked in blue dashed lines, VO2 
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lattice is highly distorted due to the strain and then gradually relaxed inwards away from 

the GB. The width of the distorted region in the left grain in Figure 4(a) is estimated to 

be about 6.8 nm. 

      The variation in transition amplitude (ΔA) and sharpness (ΔT) is related to the 

strain and disorders at the GB areas. For further illustration and discussion, a schematic 

diagram representing the above GB area was shown in Figure 4.4(b). The red ball 

symbols represent the location of vanadium atoms in the lattices. Two VO2 grains with 

about 20° rotation are separated with an amorphous grain boundary area (light purple 

area in Figure 4.4(b)). This highly disordered area is usually 2~5 nm thick. Several VO2 

unit cells are labeled by blue squares to show the lattice parameter variation. The 

primary lattices shown in both grains are c-axis lattices. The lattice strain (ε) is 

represented by gradient blue color. First, due to the high disorders in GB areas, the phase 

transition during temperature change could be significantly different from the bulk 

regions. The films with smaller grain sizes have a higher GB density. It contains more 

disordered areas which lead to the decrease of transition amplitude (ΔA) and decreased 

transition sharpness (ΔT). Second, the distorted lattices also have impact on the overall 

phase transition characteristics. In the areas close to the GBs, the VO2 lattices are highly 

strained as illustrated in the gradient blue areas in Figure 4.4(b). It was reported that, for 

ceramic materials, the strain in a typical lattice decreases exponentially with the distance  
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Figure 4.4 (a) HR-TEM image of a GB area in the VO2 thin film. It contains amorphous 

boundary, distorted unit cells and uniform lattice. The inset shows the d-spacing profile 

as the distance from the GB. (b) Schematic diagram of a GB regime in the VO2 thin 

films. In the boundary (purple area), the atoms are disordered. The VO2 unit cells beside 

the boundary are distorted by stress. The stress is generated by the GB and decreases 

with distance (represented by gradient blue). The unit cells away from the GB are near 

bulk (dark blue areas). 
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from the GBs and it usually approaches to 0 within 10 nm from the GBs [115]. Thus in 

the area away from the GB, shown as uniform blue in Figure 4.4(b), the VO2 lattice is 

close to the bulk. The model of strain distribution at GBs has been widely confirmed in 

both metallic and ceramic materials; and the magnitude and effective range of 

GB-generated strain vary with materials [250, 251]. Despite the strain generated by GBs 

is in a short range (~10 nm), the distorted area becomes significant in nanocrystalline 

grains, for example, 40 nm, 70 nm, and 100 nm in this case.  

     In the stress-temperature phase diagram of VO2, the relationship between the 

transition temperature TC and the uniaxial stress σ is calculated based on the 

Clausius-Clapeyron equation, 

d𝑇𝐶/dσ = (𝜀0𝑇𝐶
0)/∆𝐻                      (4.1) 

where 𝑇𝐶
0 is the transition temperature without stress (~68 °C for VO2), ΔH is the latent 

heat of the transition, and ε0 is a coefficient [106]. Based on this theory calculation, the 

stress in the distorted area could result in the shift of the VO2 phase transition 

temperature. It was also reported that GBs with different orientations could introduce 

stress with different magnitudes [250, 251]. Thus the stress field generated by GBs could 

spread the phase transition temperature of VO2 to a wider range and lead to the 

broadening of the transition sharpness (ΔT). The theoretic result of strain effect on VO2 

phase transition was supported by several experimental reports. For example, Case 

reported that by annealing the pre-deposited VO2 thin films, the GB density decreased 

and the intrinsic stress could be released, which led to a higher phase transition 

amplitude and sharper transition width [91]. For the VO2 nanoparticles, reports also 
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show that larger particle size results in sharper phase transition with larger amplitude 

because of less surface stress and disorders [112, 249]. In the case of VO2 nanowires, 

large stress could have more significant effects on the overall transition properties such 

as metallic phase domain formation at room temperature [77, 105]. The previous reports 

and the current grain size dependent study all suggest that the stress (GB-induced stress 

for this case), played a critical role in the overall phase transition properties. 

 

4.5 Conclusion 

In conclusion, polycrystalline VO2 thin films with the average grain size of 350 

nm, 100 nm, 70 nm and 40 nm were deposited on amorphous glass substrates by PLD. 

The phase transition properties of each VO2 film were correlated with the grain size. The 

film with larger average grain sizes (thus lower GB density) exhibits better phase 

transition properties, i.e. higher transition amplitude and sharper transition (ΔA as high 

as 3750 and ΔT as narrow as 3K for the sample with the grain size of 350 nm). HR-TEM 

image at the GB area revealed that the GB is highly disordered and the VO2 lattices next 

to the GB are strained due to the stress at GBs. Both highly disordered GBs and strained 

lattices contribute to the decrease of transition amplitude and broadening of transition 

sharpness for VO2 with grain size smaller than 100 nm. This study provides a direct 

understanding of the GBs effects on VO2 phase transition properties and thus presents a 

guide for the structure designs of the VO2-based devices with desired properties. 
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CHAPTER V 

CONTINUOUS TUNING OF PHASE TRANSITION 

TEMPERATURE IN VO2 THIN FILMS ON C-CUT SAPPHIRE 

SUBSTRATES VIA STRAIN VARIATION 

5.1 Overview 

Vanadium dioxide (VO2) thin films with controlled thicknesses are deposited on 

c-cut sapphire substrates with Al-doped ZnO (AZO) buffer layers by pulsed laser 

deposition. The surface roughness of AZO buffer layers is varied by controlling oxygen 

pressure during growth. The strain in the VO2 lattice is found to be dependent on the 

VO2 thickness and the VO2/AZO interface roughness. The semiconductor-to-metal 

transition (SMT) properties of VO2 thin films are characterized and the transition 

temperature (Tc) is successfully tuned by the VO2 thickness as well as the VO2/AZO 

interface roughness. It shows that the Tc of VO2 decreases with the decrease of film 

thickness or VO2/AZO interface roughness. Other SMT properties of the VO2 films are 

maintained during the Tc tuning. Atomic model of the VO2/AZO coupling shows that the 

strain in the VO2 films is mainly generated by their lattice mismatch. High resolution 

TEM study at a rough VO2/AZO interface area reveals that the strain is localized close to 

the interface and relaxed by generating high density of dislocations. 

 

5.2 Introduction 

      Vanadium dioxide (VO2) is known to exhibit an ultrafast (within 0.1 °C) and 

reversible semiconductor to metal phase transition (SMT) at ~341 K [5, 6, 45]. Through 
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such a first-order phase transition [6], VO2 transit from a tetragonal rutile phase 

(P42/mnm) to a monoclinic (P21/c) phase [7], resulting in dramatic changes in its 

electrical[8-10] and optical properties [11-13]. Because of these unique characteristics, 

VO2 has attracted extensive research interests and shows great potential in various 

devices such as sensors [14], switches [15], thermos /electrochromics [16], Mott 

transistors [48] and thermal actuators [17]. 

      Comparing to their bulk counterparts, VO2 thin film is desired in many 

applications owing to its 2-dimentional geometry and the compatibility with current 

devices [252]. In order for VO2 thin films to be used in practical devices, the phase 

transition temperature (Tc) of VO2 is required to be tunable to satisfy the working 

environments of different devices [143, 148, 252]. In the past decade, a significant 

amount of work has been focused on the Tc tuning of VO2 thin films [192, 199, 253, 

254]. Introducing doping elements provides a common approach of Tc tuning by shifting 

the fermi level of the semiconductor VO2. VO2 thin films with different doping elements, 

including Mg, Mo, W, Ti and Cr, have been achieved and the Tc of the films has been 

tuned from less than 200 K to more than 350 K [31, 34, 255, 256]. However, as the 

properties of VO2 thin films are largely affected by defects [22, 207] and the existence of 

the multivalent vanadium ions (V
2+

, V
3+

, V
4+

, V
5+

) [24], increasing doping level in the 

VO2 films was usually accompanied with a significant drop of the transition amplitude 

and broadening of transition sharpness. N. R. Mlyuka et al. reported that the Tc of VO2 

films was tuned to ~ 320 K with 5.8 at.% doping of Mg. However, the transition 

amplitude of the films was deducted by a factor of 2 and the transition process lasted for 
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more than 40 K [31]. 

As VO2 is a Mott-insulating material [9], the Tc of VO2 could also be controlled 

by lattice strain [70]. The strain in an epitaxial thin film is mainly dominated by the 

lattice mismatch between film and substrate. Therefore, various substrates have been 

used for the growth of VO2 to tune the strain and thus the Tc of the films. VO2 thin films 

on STO (111) [51] and r-cut sapphire substrates [176] have been usually reported to have 

a lower shift of Tc, while the VO2 on MgO (111) [177] and c-cut sapphire [28] substrates 

commonly showed an upper shift of Tc. In addition, different buffer layers, such as TiO2, 

CeO2, ZnO, SnO2, etc., have been incorporated between VO2 and substrates to provide 

some range of strain tuning [136, 170, 175, 178, 179]. However, as the lattice matching 

relationship between VO2 and each individual material is pre-determined, the Tc tuning 

based on lattice mismatch strain is thus discrete. Besides, with the increase of lattice 

mismatch, more defects could be introduced in the VO2 film, which leads to the drop of 

other SMT properties [199]. Therefore, to enable device applications, it is essential for 

further exploration on continuous Tc tuning of VO2 with maintenance of other SMT 

properties. 

Based on the Stoney formula, the substrate could have more strain effects on the 

films with less thickness [257]. In addition, the interfacial roughness could further 

influence the strain status because of the different lattice matching relationships and the 

dislocations generations at local areas. Therefore in this work, we explored the 

feasibility of Tc tuning via strain in VO2 thin films by two approaches: controlling the 

VO2 film thicknesses and controlling the surface roughness of Al-doped ZnO (AZO) 
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buffer layers on c-cut sapphire substrates. Microstructural and strain characterizations 

have been conducted on all the samples. Electrical resistivity measurements were 

conducted on the VO2 thin films to characterize the SMT properties. The transition 

temperature tuning was correlated to the film thickness and VO2/AZO interface 

roughness. The lattice matching relationship between VO2 and AZO was established. 

The atomic structures and strain distribution of rough VO2/AZO interfaces were 

characterized by high resolution transmission electron microscopy (HR-TEM). 

 

5.3 Experimental 

AZO buffer layers and VO2 thin films were all deposited by a pulsed laser 

deposition (PLD) system with a KrF excimer laser (Lambda Physik Compex Pro 205, 

λ=248 nm). The laser beam was focused to obtain an energy density of approximately 3 

J/cm
2
 at a 45° angle of incidence. The AZO target was hot pressed using a mixture of 5 

wt% Al2O3 and ZnO powders and sintered at 1100 °C for 6 hours. The AZO buffer layers 

were all deposited at 750 °C on c-cut sapphire substrates. The oxygen partial pressure 

was varied from 50 mtorr, 100 mtorr, 150 mtorr, to 200 mtorr to control the surface 

roughness of AZO [258]. The deposition time was set as 6 min for 50, 100 and 150 mtorr 

samples and increased to 10 min for 200 mtorr samples in order to guarantee full 

coverage of the substrates. A V2O5 target, obtained by conventional powder pressing and 

sintering method, was then used as the material source for VO2 deposition. The VO2 thin 

films were all achieved on AZO buffer layers by an optimized oxygen pressure of 10 

mTorr and laser repetition rate of 2 Hz. The Substrate temperature was set as 450 °C to 



134 

minimize the interaction between VO2 and AZO. The thicknesses of VO2 films were 

controlled by adjusting the deposition time from 10 min, 25 min to 50 min. 

      The microstructures of the as-deposited films were characterized by X-ray 

diffraction (XRD) and transmission electron microscopy (TEM). XRD θ-2θ scans were 

performed using a PANalytical Empyrean 2 X-ray diffractometer with Cu Kα radiation. 

Bright field EM images and selected area electron diffraction (SAED) patterns were 

acquired by FEI Tecnai G2 F20 analytical microscope with a point-to-point resolution of 

0.24 nm. TEM samples were prepared using a standard cross-section sample preparation 

procedure, including manual grinding, polishing, dimpling and a final ion milling step 

(PIPS 691 precision ion polishing system, 3.7 keV). The electrical resistivity of 

as-deposited films was measured by a standard four probe method with temperature 

varied from 290 K to 370 K in a physical property measurement system (PPMS, 

Quantum Design). 
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Figure 5.1 (a) The XRD θ-2θ spectra of VO2 thin films deposited on AZO buffered c-cut 

sapphire substrates with deposition time of 50 min, 25 min and 10 min. (b) Enlarged 

VO2 (002) peaks of VO2 thin films with different thicknesses. The black dash line 

represents the bulk VO2 (002) peak position. 

 

 

 

5.4 Results and Discussion 

5.4.1 Tc tuning by VO2 film thickness 

VO2 thin films with different layer thicknesses were deposited on AZO buffered 

c-cut sapphire substrates. All the AZO buffer layers were deposited at the oxygen partial 

pressure of 50 mtorr. Figure 5.1(a) shows the XRD θ-2θ scans of VO2 thin films with 

deposition time of 50 min, 25 min and 10 min, respectively. The AZO (002) peak 

appears at 33.45° for all samples. It shifts to lower angle compared to the standard ZnO 

(002) peak position (34.5°), which indicates the effective doping of Al in ZnO lattice. All 

the VO2 films show primary peaks corresponding to monoclinic phase VO2 (002), which 
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indicates that the VO2 films have grown highly textured along c-axis. The decrease of 

VO2 (002) peak intensity is caused by the decrease of film thickness. The rectangular 

area marked in Figure 5.1(a), ranging from 38.2° to 41°, is enlarged and shown in Figure 

5.1(b). The black dash line represents the strain free VO2 (002) peak position (39.73°). 

The (002) peaks of all the VO2 thin films shift to the lower angle side of the black dash 

line, which indicates tensile strains along the c-axis of VO2 for all the films. The red 

dash line shows that with the decrease of VO2 deposition time, the peak position of VO2 

(002) gradually shifts to lower angle and gets further away from the strain free VO2 (002) 

peak (black dash line). This indicates that the decrease of VO2 film deposition time leads 

to an increase of tensile strain along the VO2 c-axis. Based on the XRD results, the 

tensile strains along the c-axis of VO2 were calculated as 0.09%, 0.5% and 1.3% for the 

films deposited by 50 min, 25 min and 10 min, respectively. The d-spacing and strain of 

all the films are summarized in Table 5.1. 

 

 

 

Table 5.1 Thicknesses of VO2 thin films on 50 mtorr deposited AZO buffer layers, and 

the corresponding d-spacing and lattice strain along c-axis. 

Dep. time (min)     VO2 thickness (nm)      d-spacing (c-plane, nm)    lattice strain (%) 

     50                 120                     0.2271             +0.08 

    25                  65                     0.2280              +0.5 

     10                  30                     0.2298              +1.3 
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      The microstructures of VO2 thin films, especially the film thickness and 

VO2/AZO interface, were further characterized by TEM. Figure 5.2(a)-(c) show the 

cross-section TEM images of VO2 thin films with different deposition time. The AZO 

buffer layers have a similar thickness of around 20 nm for all the samples. The 

VO2/AZO interfaces are smooth and clean, indicating minimal surface roughness for the 

50 mtorr deposited AZO buffer layers and limited interaction between VO2 and AZO. 

The VO2 thicknesses are around 120 nm, 65 nm and 30 nm for the films deposited by 50 

min, 25 min and 10 min. All the VO2 films show columnar grain structures. The average 

grain width shows no obvious change with the layer thickness. In contrast to the VO2 

films directly deposited on c-cut sapphire substrates, the VO2 films with AZO buffer 

layers show relatively clean contrast of grains without obvious 120° domain boundaries 

[101], indicating lower defects density in these films. Figure 5.2(d) and (e) are the SAED 

patterns of the 65 nm VO2 sample, taken from the zone axes of Al2O3 [1010] and Al2O3 

[1210], respectively. The distinguished diffraction dots from the SAED patterns suggest 

a good epitaxial quality of the VO2 films. The slightly arced diffraction dots of VO2 

indicate a minor mosaic rotation of the domains. Based on the SAED patterns, the 

out-of-plane matching relations are determined as VO2 (002)//AZO (0002)//Al2O3 

(0006). In the in-plane orientation, VO2 and AZO have a domain lattice matching 

relationship with VO2 (020) // AZO (1100) and VO2 (402) // AZO (1120). 
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Figure 5.2 Cross-section TEM images of the VO2 thin films on AZO buffered c-cut 

sapphire substrates with deposition time of (a) 50 min, (b) 25 min and (c) 10 min. The 

AZO buffer layers were all deposited at an oxygen pressure of 50 mtorr. (d) SAED 

pattern of the film with 65 nm VO2 along the Al2O3 [1010] zone. (e) SAED pattern of the 

film with 65 nm VO2 along the Al2O3 [1210] zone. 
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      The SMT properties of VO2 films with different layer thicknesses were 

characterized by measuring the electrical resistivity change during phase transition. 

Figure 5.3(a) shows the schematics of the resistivity measurements. In order to get the 

resistivity of the individual VO2 layers, six Au contacts were coated on each sample. The 

four contacts on the VO2 film (marked as I+, I-, V+ and V-) were used for the film 

in-plane resistivity measurement. The two contacts on the AZO buffer layer were used to 

measure AZO resistivity. The VO2 layer resistivity was then calculated by considering 

VO2/AZO as two parallel resistors. Figure 5.3(b1)-(d1) show the normalized electrical 

resistivity, ρ=ρ (T)/ρ (290K), of VO2 thin films as a function of temperature. In order to 

determine the phase transition parameters, e.g. transition amplitude (ΔA), transition 

temperature (Tc), sharpness (ΔT) and the width of thermal hysteresis (ΔH) for each film, 

the derivation of log10 (ρ) has been calculated and plotted with respect to temperature, as 

shown in Figure 5.3(b2)-(d2). The plots show a clear peak position shift, indicating 

obvious Tc changing with VO2 layer thickness. As summarized in Table 5.2, the Tc of 

VO2 gradually decreases with the decrease of film thickness, which is attributed to the 

increase of film lattice strain. For 120 nm VO2 film, the Tc is close to the bulk VO2 

transition temperature (341 K, 66.85 °C) because of limited lattice strain. With the 

increase of strain, the 30 nm VO2 film shows a Tc of 320.8K (47.6 °C), much lower than 

the bulk Tc. The Tc of VO2 films varying with lattice strain is plotted in Figure 5.3(e). 

Meanwhile, the ΔT slightly increases with the decrease of film thickness, indicating a 

tiny broadening of the transition. It could be related to the slightly increase of the overall 

defects density, such as dislocations and point defects, with the increase of film internal 
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Figure 5.3 (a) Plan-view and cross-section schematics of the VO2 electrical resistivity 

measurement set up. (b1)-(d1) Normalized resistivity of VO2 films with different 

thicknesses as a function of temperature. (b2)-(d2) Resistivity changing rate of VO2 

films with different thicknesses. (e) The phase transition temperature as a function of 

VO2 film thickness. 
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strain. Similar transition broadening due to additional defects and strain has been 

previously reported [37]. Despite of the broadening, the transition sharpness of these 

VO2 films is still outstanding comparing to many of the VO2 films with doping elements 

[31, 34, 255, 256]. The transition amplitude (ΔA) shows no significant change with the 

VO2 thickness. It suggests that the increase of overall defects density has less influence 

on ΔA. In addition, the ΔH decreases with the VO2 thickness, indicating a smaller 

thermal hysteresis of the thinner films. It could be related to that the thinner VO2 films 

have less vertical grain boundaries, which contain less interfacial energies for switching 

as reported previously [37]. 

 

 

 

Table 5.2 SMT characteristics of VO2 thin film with different layer thicknesses 

VO2 thickness (nm)      strain (%)     Tc (K)      ΔA      ΔT↑ (K)     ΔH (K) 

120              +0.08       338.2      7800       2.6         11.6 

      65               +0.5       331.8      6600       4.5         13.0 

       30               +1.3       320.8      7200       8.3          5.3 

 

 

 

   The Tc tuning of VO2 by varying film thickness is realized by the strain tuning of 

the VO2 lattice. The film strain is introduced by the lattice mismatch between VO2 and 

AZO. The strain continuously increases with the decrease of film thickness because of 
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more strain effects in thinner films [259]. It is noted that, with the VO2 thickness 

variation, the films remain similar epitaxial qualities. Therefore, the strained buffer 

approach coupled with film thickness tuning provides a simple and straightforward 

approach to tune Tc continuously without significant deterioration of other STM 

properties. 

 

5.4.2 Tc tuning by VO2/AZO interface roughness 

   When the VO2 film is grown on a rough AZO surface, the film growth is quite 

different from the smooth AZO cases discussed above. First, the VO2 films could have 

lower epitaxial quality at the interface area, where the lattice matching between VO2 and 

AZO plays a less significant role. Therefore the strain in the VO2 film is not only 

dominated by the VO2/AZO lattice mismatch but also influenced by the surface 

roughness of AZO buffer layers. In order to study the strain effects of VO2/AZO 

interface roughness and its influence on the Tc and other SMT properties of VO2, AZO 

buffer layers with different surface roughness conditions were synthesized on c-cut 

sapphire substrates under different oxygen partial pressures: 200 mtorr, 150 mtorr and 

100 mtorr. The VO2 films with similar thicknesses were then grown on these AZO buffer 

layers with the deposition time of 10 min. 
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Figure 5.4 (a) The XRD θ-2θ spectra of 30 nm VO2 thin films on AZO buffered c-cut 

sapphire substrates with the buffer layers grown under oxygen pressure of 200 mtorr, 

150 mtorr, 100 mtorr and 50 mtorr. (b) Enlarged VO2 (002) peaks of VO2 thin films on 

different AZO buffer layers. The black dash line represents the bulk VO2 (002) peak 

position. 

 

 

 

Figure 5.4(a) shows the XRD θ-2θ scans of VO2 thin films on AZO buffer layers 

deposited at 200 mtorr, 150 mtorr and 100 mtorr, respectively. The θ-2θ spectrum of 

VO2 on 50 mtorr deposited AZO was replotted as a reference. The AZO (002) peak 

appears at ~33.5° for all samples, indicating that the oxygen pressure has limited 

influence on the doping level of Al in ZnO lattice. All the VO2 films show primary peaks 

corresponding to monoclinic phase VO2 (002), indicating that single phase VO2 (M1) 

films texturing along c-axis were achieved in all samples. The similar intensity of VO2 
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(002) peaks suggests a comparable quality of VO2 films on different AZO buffer layers. 

The rectangular area marked in Figure 5.4(a), ranging from 38.2° to 41°, is enlarged and 

shown in Figure 5.4(b). The black dashed line represents the bulk VO2 (002) peak 

position (39.73°). The shift of VO2 (002) peaks indicates tensile strain along the c-axis 

for all the VO2 films. The red dashed line shows that with the decrease of oxygen partial 

pressure during AZO buffer layer deposition, the peak position of VO2 (002) gradually 

shifts to lower angle, indicating an increase of tensile strain in the VO2 films along the 

c-axis. Based on the XRD results, the tensile strains along the c-axis of VO2 were 

calculated as 0.10%, 0.15%, 0.93% and 1.3% for the films on AZO buffer layers 

deposited at 200 mtorr, 150 mtorr, 100 mtorr and 50 mtorr, respectively. The d-spacing 

and strain of all the VO2 films were summarized in Table 5.3. 

 

 

 

Table 5.3 The d-spacing and lattice strain (along c-axis) of VO2 thin films on 200 mtorr, 

150 mtorr, 100 mtorr and 50 mtorr deposited AZO buffer layers. 

AZO growth pressure (mtorr)      d-spacing (c-plane, nm)    lattice strain (%) 

         200                        0.2271                +0.1 

        150                        0.2273               +0.15 

         100                        0.2290               +0.93 

          50                        0.2298                +1.3 
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Figure 5.5 Cross-section TEM images of the VO2 thin films on AZO buffered c-cut 

sapphire substrates with the buffer layers grown under oxygen pressure of (a) 100 mtorr, 

(b) 150 mtorr, and (c) 200 mtorr. The VO2/AZO interfaces were marked by dash lines. 
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      The microstructures of VO2 thin films and AZO buffer layers were characterized 

by TEM. Figure 5.5 shows the cross-section TEM images of VO2 thin films on different 

AZO buffer layers. The AZO buffer layers show very different surface roughness with 

different oxygen pressure during growth. The VO2/AZO interfaces were marked by dash 

lines in the images. It clearly shows that the surface roughness of AZO increases with 

the increase of oxygen pressure. The AZO buffer layers deposited at 100 mtorr and 150 

mtorr show a thickness of around 20 nm, comparable to the AZO deposited at 50 mtorr 

(Figure 5.2(c)). The AZO deposited at 200 mtorr has an average thickness of around 40 

nm. Since it has the largest roughness, the increase of thickness could guarantee a full 

coverage of the sapphire substrate. The VO2 films show a similar thickness of around 30 

nm. They are all columnar grains with vertical grain boundaries. The VO2 films have 

similar surface roughness as the AZO buffer layers, indicating uniform coverage of the 

AZO surfaces. 

      The SMT properties of VO2 films on different AZO buffer layers were 

characterized by measuring the electrical resistivity change during phase transition. 

Figure 5.6(a1)-(c1) show the normalized electrical resistivity of VO2 thin films as a 

function of temperature. Figure 5.6(a2)-(c2) plotted the derivation of log10 (ρ) with 

respect to temperature. Based on the plots, the SMT properties, i.e. Tc, ΔA, ΔT and ΔH 

were characterized for each film and summarized in Table 5.4. The SMT properties of 

the VO2 film on 50 mtorr deposited AZO were also listed as a reference. The plots show 

that, with the decrease of buffer layer growth pressure, the VO2 phase transition 

gradually shifts to lower temperatures. It means that more strain is introduced in the VO2 
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film with the decrease of VO2/AZO interface roughness, which leads to more significant 

shift of Tc. For the VO2 film on 200 mtorr deposited AZO buffer layer, the Tc is around 

337.2 K (64.0 °C), close to the bulk Tc (341K, 67.84 °C). With the decrease of VO2/AZO 

interface roughness, the Tc decreases to 324.5 K (51.35 °C) for the VO2 on 100 mtorr 

deposited AZO buffer layer. The VO2 film on 50 mtorr deposited AZO shows an even 

lower Tc owing to a smoother VO2/AZO interface. The Tc of VO2 films varying with 

buffer layer growth pressure is plotted in Figure 5.6(d). It is interesting that the Tc of 

VO2 on 150 mtorr and 200 mtorr deposited AZO is close with each other, despite of the 

dramatic difference of the VO2/AZO interface roughness shown in Figure 5.5. As both of 

the films have a Tc close to the bulk transition temperature, it suggests that the film strain 

is almost fully relaxed when the roughness of VO2/AZO interface is beyond a threshold. 

The ΔA and ΔT are comparable for the VO2 films on 50 mtorr and 100 mtorr deposited 

AZO. However the VO2 films on 150 mtorr and 200 mtorr deposited AZO show an 

obvious drop of ΔA and increase of ΔT. It implies that with dramatic increase of the 

VO2/AZO interface roughness, more defects could be introduced in the film. Meanwhile, 

the ΔH is in a comparable range for all the samples, which indicates that the buffer layer 

roughness has limited influence on the interfacial energies of the VO2 film grain 

boundaries. 
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Figure 5.6 Normalized resistivity-temperature plots of VO2 films on AZO buffer layers 

deposited under oxygen pressure of (a1) 200 mtorr, (b1) 150 mtorr and (c1) 100 mtorr. 

(a2)-(c2) The corresponding resistivity changing rate of VO2 films on different AZO 

buffer layers. (d) The phase transition temperature of VO2 as a function of AZO buffer 

layer growth oxygen pressure. 
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Table 5.4 SMT characteristics of VO2 thin film on AZO buffer layers deposited under 

different oxygen pressures. 

AZO growth pressure (mtorr)    VO2 strain (%)    Tc (K)      ΔA     ΔT↑ (K)    ΔH (K) 

200                    +0.1        337.2      3200      11.1       4.9 

        150                   +0.15        335.7      4600       9.1       3.5 

         100                   +0.93        324.5      6800       8.4       5.1 

          50                    +1.3        320.8      7200       8.3       5.3 

 

 

 

5.4.3 Discussion 

   For both of the above two cases, i.e. VO2 thickness change and VO2/AZO 

interface roughness variation, the Tc tuning was achieved by VO2 lattice strain control. 

In the stress-temperature phase diagram of VO2, the relationship between the transition 

temperature Tc and the uniaxial stress σ is calculated based on the Clausius-Clapeyron 

equation, 

d𝑇𝐶/dσ = (𝜀0𝑇𝐶
0)/∆𝐻                       (5.1) 

where σ is the stress along c-axis of M1 phase VO2 (a-axis of R phase VO2), 𝑇𝐶
0 is the 

transition temperature without stress (~68 °C for VO2), ΔH is the latent heat of the 

transition, and ε0 is a coefficient [106]. Based on this theory calculation, the increase of 

tensile strain along c-axis of VO2 leads to a decrease of Tc, which agrees with the above 

experimental results. For epitaxial VO2 films, the lattice strain is mainly dominated by 

VO2/AZO lattice mismatch. Figure 5.7 shows the atomic modeling of the VO2/AZO 

interface coupling. The AZO lattice parameters were set on the basis of the XRD results. 
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The red and blue ball symbols represent the locations of vanadium and zinc atoms in the 

lattices, respectively. The unit cells are marked by the dashed blue frames. It can be 

noted that along both the a- and b-axis of VO2, the d-spacing of AZO is much smaller 

than that of VO2. Therefore, compressive strain will be introduced in both a- and b-axis 

of VO2 when it matches on top of AZO. In order to sustain the volume of the unit cell, 

tensile strain will then be introduced in the c-axis of VO2, as observed in the XRD 

results. The strain effect of AZO buffer layers decreases with the distance from the 

interface [259]. Therefore, with the increase of VO2 film thickness, the lattice mismatch 

strain is gradually relaxed, which leads to a close-to-bulk Tc in the 120 nm VO2. 

 

 

 

 

Figure 5.7 Atomic modeling of the VO2/AZO interface coupling along (a) AZO [1120] 

zone and (b) AZO[1100] zone. The red and bule ball symbols represent the locations of 

vanadium and zinc atoms in the lattices, respectively. The unit cells are marked by the 

dashed blue frames. 
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Figure 5.8 (a) High magnification TEM image of the interface of VO2 on 200 mtorr 

deposited AZO. (b) HR-TEM image of the squared area in (a). The strain is localized 

within 8 nm region around the interface. (c) IFFT of the strained area by selecting the 

diffraction dots of AZO (1100). 
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      For the VO2 films on rough AZO surfaces, the XRD results show a strain 

relaxation with the increase of AZO surface roughness. Figure 5.8(a) shows a high 

resolution image of the interface of VO2 on 200 mtorr deposited AZO. The interface 

region shows a darker contrast compared to other areas, indicating a high strain around 

the interface. The HR-TEM image of the squared area is shown in Figure 5.8(b). It 

suggests that the highly strained area is localized within ~8 nm region around the 

interface, 5 nm on the VO2 side and 3 nm on the AZO side. The inverse Fast Fourier 

Transform (IFFT) was performed on the strained area, as shown in Figure 5.8(c). The 

diffraction dots of AZO (1100) were selected for the IFFT. High density dislocations can 

be observed in this area. It suggests that for the VO2 on a rough AZO surface, the lattice 

mismatch strain is relaxed by the generation of dislocations in the region close to the 

interface. Thus most of the VO2 lattices could remain almost strain free, which leads to a 

close-to-bulk Tc of the overall film, such as the VO2 on 150 mtorr and 200 mtorr 

deposited AZO. 

      Based on the SMT property characterizations in this work, during the Tc tuning 

of VO2, the transition amplitude of the films shows a maximum degradation of around 2 

times, while the transition sharpness exhibits a maximum broadening of 8.5 K. 

Comparing to the Tc tuning with doping elements, this strain induced Tc tuning leads to 

less degradations of the phase transition amplitude and sharpness, and even results in the 

reduction of the thermal hysteresis. The dopants in the VO2 films usually cause broken 

bonds in the VO2 lattice and generate intrinsic strained areas around the elements [209]. 

Furthermore, dopants and the corresponding oxide compounds could form clusters in the 
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VO2 films with high doping levels, which could result in significant degradations of the 

film SMT properties [211]. In contrast, the substrate and buffer layer induced strain 

applies on the entire VO2 films, and thus introduces fewer defects in the films. The 

misfit dislocations are mainly concentrated near the interface areas, which has less 

effects on the overall film properties. Therefore, the VO2 SMT properties, i.e. phase 

transition amplitude, sharpness, and thermal hysteresis, are better maintained during the 

Tc tuning via strain variation. 

 

5.5 Conclusion 

      In summary, we have demonstrated two simple and effective approaches in 

tuning the Tc of VO2 films using AZO buffers. One is to couple film thickness and the 

strain effect from AZO buffer. Epitaxial VO2 thin films with thickness of 120 nm, 65 nm 

and 30 nm were deposited on AZO buffered c-cut sapphire substrates by PLD.  The 

second approach is to tune the film strain by AZO buffer surface roughness. The oxygen 

pressures for AZO buffer layers growth were varied from 50 mtorr, 100 mtorr, 150 mtorr, 

to 200 mtorr to achieve different surface roughness. Through these two approaches, the 

Tc of VO2 films was continuously tuned from 338.2 K (65.05 °C) to 320.8 K (47.65 °C). 

With the decrease of VO2 thickness or VO2/AZO interface roughness, tensile strain 

increases along the c-axis of VO2 lattice, which leads to the decrease of Tc. No 

significant degradation of other SMT properties, i.e. ΔA, ΔT and ΔH, has been observed. 

The strain in the VO2 thin films was mainly generated by the lattice mismatch between 

VO2 and AZO. With the increase of VO2/AZO interface roughness, the VO2 film strain 
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was gradually released by generating high density of dislocations around the interface 

area. This study provides two effective approaches to tune the Tc of VO2 thin films 

continuously with minimal impacts on the other SMT properties, which could make VO2 

a step further toward its practical applications in devices. 
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CHAPTER VI 

PHASE TRANSITION STABILITY OF VO2 THIN FILM ON 

C-CUT SAPPHIRE SUBSTRATE PROBED BY EX SITU AND 

IN SITU HEATING STUDIES 

6.1 Overview 

Epitaxial vanadium dioxide (VO2) thin films have been deposited on c-cut 

sapphire substrate by pulsed laser deposition. The stability of the 

semiconductor-to-metal phase transition (SMT) properties with multiple thermal cycles 

has been investigated. The film shows the broadening of transition sharpness (ΔT) and 

width of thermal hysteresis (ΔH) after 30 cycles. In situ transmission electron 

microscopy (TEM) heating studies reveal that the film contains high density 120° 

domain boundaries. During thermal cycles, large strain was accumulated around the 

domain boundaries, which was correlated with the phase transition induced lattice 

constant change and the thermal expansion. It suggests that the degradation of domain 

boundary structures in the VO2 films caused the transition property reduction (e.g., the 

decrease of ΔT and ΔH), but also played an important role to prevent the film from 

fracture during thermal cycles. 

 

6.2 Introduction 

Vanadium dioxide (VO2) single crystal is known to exhibit an ultrafast (within 

0.1 °C) and reversible phase transition from a semiconductor phase to a metallic phase 

(SMT) at ~68 °C during heating process [5, 6, 45]. Through such a first-order phase 
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transition [6], VO2 transits from a monoclinic phase (P21/c) to a tetragonal rutile phase 

(P42/mnm) [7], accompanied with significant changes in the electrical [8-10] and optical 

properties [11-13]. Owing to the fascinating characteristics, VO2 shows great potential in 

various devices including gas sensors [14], electrical switches [15], thermochromics 

[137], thermal actuators [17], and memory devices [18], and thus has attracted extensive 

research interests. 

To enable practical device applications of VO2, it is desired to have high stability 

during multiple cycles of phase transitions. The SMT process is accompanied with a 

strain change in the VO2 lattice, which is caused by the lattice constant difference 

between two phases. The bulk VO2 was reported to have poor ductility (<0.2%) [77]. 

Therefore during multiple thermal cycles, it showed a degradation of the SMT properties 

because of the strain generated micro-cracks [260]. In contrast, the nanostructured VO2 

was reported to have much higher capability to sustain strain. Among all, the VO2 thin 

films have attracted particular interest because of the 2-dimentional geometry and the 

compatibility with current device manufacture. However, the stability of the SMT 

properties of VO2 thin films is still under investigation. Especially, the previous reports 

showed quite different results on the stability of different VO2 thin films. In 1996, 

Guzman et al. reported that the SMT behaviors of the sol-gel synthesized VO2 films 

were still maintained after 10
8
 cycles of current-voltage induced Joule heating [261]. Ko 

et al. then reported a consistent result, in which the sputtered polycrystalline VO2 thin 

films showed no obvious degradation of the SMT properties up to successive 102 

thermal cycles [262]. However, Crunteanu et al. showed that the transition amplitude of 
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the pulsed laser deposition (PLD) prepared VO2 thin films had a decrease of ~20dB after 

multiple cycles of electrical field induced phase transitions [133]. Moreover, 

Balakrishnan et al. reported the fractures of VO2 thin films deposited on Si3N4 substrates 

during the phase transition processes, which resulted in a large degradation of the SMT 

properties [228]. These studies indicated that the stability of VO2 thin films could be 

highly dependent on the synthesis processes and the film microstructures. 

The c-cut sapphire substrate is one of the most commonly used substrates for 

epitaxial VO2 film growth [28]. In this work, we reported the first phase transition 

stability study on the VO2 thin films grown on c-cut sapphire substrates. Electrical 

resistance measurements were conducted on the VO2 thin films to characterize the SMT 

property changes with multiple thermal cycles. In situ TEM heating experiments were 

then conducted to investigate the film microstructure evolutions during phase transition 

cycles. The SMT property variations were correlated with the strain effects at the domain 

boundaries of the VO2 films. 

 

6.3 Experimental 

VO2 thin films on c-cut sapphire substrates were grown by a pulsed laser 

deposition (PLD) system (KrF laser, 248 nm). The laser beam was focused to obtain an 

energy density of approximately 3 J/cm
2
 at a 45° angle of incidence. A V2O5 target, 

obtained by conventional powder pressing and sintering method, was used as the 

material source for VO2. Monoclinic phase VO2 was achieved by optimizing substrate 

temperature to 600 °C and oxygen pressure at 10 mTorr. The depositions were conducted 
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at a laser repetition rate of 10 Hz and duration of 10 mins. The microstructures of the 

as-deposited films were characterized by X-ray diffraction (XRD) using a PANalytical 

Empyrean 2 X-ray diffractometer with Cu Kα radiation. The electrical resistance of the 

VO2 films were measured by a standard four probe method with temperature varied from 

17 °C (290 K) to 97 °C (370 K) for 30 cycles in a physical property measurement system 

(PPMS, Quantum Design). Detailed cross-section microstructural characterization 

including transmission electron microscopy (TEM) images and selected-area diffraction 

(SAD) patterns were acquired by JEOL 2010 analytical microscope with a point-to-point 

resolution of 0.23 nm. The in situ TEM heating experiments were conducted using an in 

situ heating holder manufactured by Gatan Inc. 

 

6.4 Results and discussion 

Figure 6.1 shows the XRD θ-2θ scan of the VO2 thin film on c-cut sapphire 

substrate. A primary peak appears at ~40.0°, which corresponds to monoclinic phase 

VO2 (002). This peak is slightly shifted to higher angle compared to the bulk VO2 (002) 

peak position (39.73°), indicating a compressive strain along the c-axis of the VO2 film. 

The sharp width of the peak indicates that the VO2 film has grown highly textured along 

c-axis. No extra film peaks are observed in the θ-2θ scan, which suggests a high purity 

and single phase of the film. 
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Figure 6.1 XRD θ-2θ spectra of the VO2 thin film on c-cut sapphire substrate. 

 

 

 

The SMT properties of the VO2 thin film were characterized by measuring the 

electrical resistance changes during phase transitions. Totally 30 thermal cycles were 

applied on the film. During each cycle, the temperature was varied from 17 °C (290 K) 

to 97 °C (370 K) as a loop. Figure 6.2(a) shows the normalized electrical resistance, ρ=R 

(T)/R (17 °C), of VO2 thin film at the 1
st
 and 30

th
 cycle as a function of temperature. The 

1
st
 cycle of the film phase transition shows an electrical resistance switching of about 

6000 times. Very limited change of the phase transition amplitude (ΔA) is observed after 

30 thermal cycles. In order to determine the other SMT parameters, e.g. transition 

temperature (Tc), sharpness (ΔT) and the width of thermal hysteresis (ΔH) for the film, 
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the derivation of log10 (ρ) has been calculated and plotted with respect to temperature, as 

shown in Figure 6.2(b) and (c). At the first cycle, the film shows a Tc of 75.7 °C during 

heating process. The Tc shifts to higher temperature compared to bulk VO2 (68 °C), 

which was commonly reported for VO2 films on c-cut sapphire. It is mainly caused by 

the film/substrate lattice mismatch induced strain. During the 1
st
 cycle, the phase 

transition shows a relatively sharp ΔT of ~6.3 °C and a narrow ΔH of ~7.4 °C. After 30 

cycles of phase transition, as shown in Figure 6.2(c), the Tc slightly decreases to 73.4 °C, 

possibly because of the relaxation of lattice misfit strain by thermal treatment. Compared 

to the 1
st
 cycle, the 30

th
 transition cycle shows a much broader ΔT of ~12.3 °C and a 

much wider ΔH of ~11.5 °C. The changes of ΔT and ΔH with the cycling numbers are 

plotted in Figure 6.2(d). Both of their values increase with the cycling numbers. These 

results demonstrate that the VO2 film has a degradation of the SMT behaviors, especially 

the transition width and thermal hysteresis, but maintains the transition amplitude after 

multiple cycles of phase transitions. More interestingly, the ΔT and ΔH show higher 

increasing rates at the first several thermal cycles and then increase slower after 15-20 

cycles, indicating a saturation mechanism of the degradation of SMT properties. 
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Figure 6.2 Phase transition properties of the VO2 thin film on c-cut sapphire substrates. 

(a) Normalized resistance change of the film at the 1
st
 and 30

th
 thermal cycles as a 

function of temperature. (b)-(c) Resistance changing rate of the VO2 film at the 1
st
 and 

30
th

 thermal cycles. (d) The phase transition sharpness and width of thermal hysteresis as 

a function of cycling numbers. 
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Figure 6.3 (a) Cross-section TEM image of the VO2 thin film on c-cut sapphire substrate 

before thermal cycling. (b) SAD pattern of the film and substrate along the Al2O3 [1210] 

zone at the specimen temperature of 70 °C. (c) Simulated electron diffraction pattern of 

the monoclinic phase VO2 along the zone axis of [020]. (d) SAD pattern of the film and 

substrate along the Al2O3 [1210] zone at the specimen temperature of 80 °C. (e) 

Simulated electron diffraction pattern of the tetragonal rutile phase VO2 along the zone 

axis of [200]. 
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In order to investigate the mechanisms of the VO2 SMT property degradation, in 

situ TEM heating experiments were conducted on the as-deposited sample. Figure 6.3(a) 

shows the bright field TEM image of the VO2 thin film on c-cut sapphire substrate 

before the 1
st
 thermal cycle. The film shows a thickness of around 120 nm. It contains 

high density of ultrafine columnar domains with the width of about 5 nm. These domains 

are induced by the three-fold symmetry of the sapphire (0006) plane and form 120° 

boundaries with each other. Most of the domains have clear boundaries with coherent 

connection to the nearby domains, which indicates low interfacial strains around the 

domain boundaries. The different contrast throughout the film implies a non-uniform 

distribution of the substrate induced strain in the film. Figure 6.3(b) shows the SAD 

pattern of the film and substrate at an elevated temperature of 70 °C. It was taken from 

[020] zone of VO2 ([1210] zone of c-cut sapphire). The SAD pattern suggests a good 

epitaxial quality of the VO2 film. The slightly arced diffraction dots of VO2 indicate the 

slight misorientation of the domains. Based on the SAD pattern, it can be determined 

that in the out-of-plane orientation, VO2 (002) is parallel to Al2O3 (0006), and in the 

in-plane orientation, VO2 (200) is parallel to Al2O3 (1012) with a 3:2 domain matching 

relationship. 

It is very difficult to distinguish the phase transition of VO2 by TEM imaging 

because the transition process is accompanied with just a small amount of lattice change. 

Therefore, the SAD patterns were used to identify the phase transition processes. The 

electron diffraction theory indicates that the monoclinic lattice has strong higher-order 

Laue zone (HOLZ) reflections of the electron beam, which results in secondary 
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diffraction dots in the diffraction patterns. Figure 6.3(c) shows the simulation result of 

the monoclinic VO2 electron diffraction pattern. It shows secondary diffractions at VO2 

(001), (201), etc. These secondary diffraction dots are also observed in the experimental 

result in Figure 6.3(b) (marked by red arrows), which further confirms the monoclinic 

phase of the VO2 film at low temperatures. With the increase of temperature on the TEM 

holder, the intensity of the secondary diffraction dots gradually decreases and finally 

disappears at a temperature close to 80 °C, as shown in Figure 6.3(d). The SAD pattern 

in Figure 6.3(d) matches well with the simulated diffraction pattern of the tetragonal 

rutile VO2 shown in Figure 6.3(e). It indicates a complete phase transition of the VO2 

film within 10 °C, which is consistent with the ex situ electrical measurement results. 

In Figure 6.4(a), a significant change of the film microstructures can be observed 

after 5 cycles of phase transitions. The non-uniform contrast of the film is reduced, 

indicating a relaxation of the substrate induced strain in the lattice. However, the domain 

boundaries become much thicker with large contrast difference from nearby areas. It 

suggests that large strains are accumulated around the domain boundaries after multiple 

thermal cycles. The SAD pattern in Figure 6.4(b) shows more concentrated film 

diffraction dots compared to the pattern before 1
st
 cycle (Figure 6.3(b)), indicating an 

increase of domain texturing quality after thermal treatment. The intensity of the 

secondary diffraction dots in the SAD pattern starts to decrease at around 65 °C. 

However, they still exist after 10 °C of temperature increase, as shown in Figure 6.4(c), 

indicating an incomplete phase transition of the film. Moreover, when the temperature 

keeps increase to 85 °C, the diffraction dot corresponding to VO2 (201) can still be 
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Figure 6.4 (a) Cross-section TEM image of the VO2 thin film on c-cut sapphire substrate 

after 5 cycles of phase transitions. (b)-(e) SAD pattern of the film and substrate along the 

Al2O3 [1210] zone at the specimen temperature of 65 °C, 75 °C, 85 °C and 90 °C, 

respectively. Secondary diffraction dots from monoclinic VO2 completely disappear at 

90 °C. 
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observed, as shown in Figure 6.4(d). The low intensity of the dot implies the small 

amount of the existing monoclinic phase VO2. The phase transition process is fully 

accomplished at a temperature close to 90 °C, as shown in Figure 6.4(e), where no 

secondary diffraction dots are observed any more. The result of the 5
th

 cycle in situ 

heating experiment shows a phase transition process lasts for over 20 °C, which is much 

wider than the 1
st
 transition cycle. This result is consistent with the ex situ electrical 

measurement and the ΔT broadening is more obvious, which could be because the small 

size of the TEM specimen. 

Based on the lattice matching relationship, the monoclinic VO2 has a lattice 

misfit of ~2.6% along the [200] direction with the sapphire substrate. This leads to a 

compressive strain along the a-axis and results in the increase of Tc of the as-deposited 

VO2 film. During thermal cycles, the heat treatment leads to the strain relaxation by 

slightly reorganizing the domain orientations, which contributes to the slightly decrease 

of Tc. 

As observed in Figure 6.4, with the multiple thermal cycles, large strain is 

accumulated around the domain boundaries in the VO2 thin films. The strain 

accumulation could mainly be caused by the phase transition. The VO2 phase transition 

is described as a martensitic transformation [23], during which nano-size tetragonal 

phase nuclei emerge from the monoclinic host and increase in numbers and sizes to form 

a percolating transition [112, 155]. Meanwhile, the VO2 exhibits ~1% of lattice constant 

change when transit from the monoclinic phase to tetragonal phase. Therefore, when the 

tetragonal nuclei are formed in the matrix, the strain will be generated around the phase 
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boundaries. Furthermore, with the growth of the tetragonal nuclei, the strain will 

propagate together with the phase boundaries. The previous in situ TEM heating 

experiments conducted by Beteille et al. revealed that in polycrystalline VO2 film, each 

grain exhibited the phase transition independently, without any collective transformation 

through the film [38]. Thus for the VO2 film on c-cut sapphire substrate, the domains 

could undergo phase transition processes independently. Based on this hypothesis, 

tetragonal phase nuclei are formed in each individual domain during the thermal cycles, 

introducing strain inside the domain. Then with the completion of phase transition of the 

entire domain, the strain finally propagates to the domain boundaries. In addition, the 

thermal expansion of VO2 could also introduce strain in the domain boundaries. The 

VO2 was reported to have a large anisotropy of the thermal expansion [263]. As each 

domain has different orientations, the misfit of the thermal expansion coefficients will 

generate interfacial strain with temperature variations. 

The strain accumulated around the domain boundaries is believed as the main 

reason that caused the broadening of ΔT and ΔH. Based on the stress-temperature phase 

diagram of VO2, the strain around the domain boundaries will result in the shift of the 

VO2 phase transition temperature. As the strain at each boundary is different and 

gradually decreases towards the inside of the domain, it will spread the phase transition 

temperature of VO2 to a wider range and lead to the broadening of ΔT. As observed in 

the in situ heating process of the 5
th

 cycle, some parts of the film start to transit to 

tetragonal phase at the temperature as low as 65 °C, while some particular areas remain 

in monoclinic phase at the temperature as high as 85 °C. The ΔH was reported to be 
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related with the interfacial energy of boundaries in the VO2 film. With the accumulation 

of the strain at the domain boundaries, their interfacial energies are increased, which 

results in the increase of the thermal hysteresis width. The strain at the domain 

boundaries could be generated more significantly within the first several thermal cycles 

because of the initial low strain status of the film. Therefore, more rapid degradations of 

the ΔT and ΔH are observed in the first 15 thermal cycles of the ex situ electrical 

measurements. 

The phase transition amplitude (ΔA) is impacted by several factors. With the 

thermal treatment, the VO2 film gets more epitaxial by reorganization of the domains, 

which will result in the increase of ΔA. On the other hand, the strain at domain 

boundaries could generate more defects including point defects and dislocations, and 

therefore will lead to the decrease of ΔA. As a combination result of these effects, the ΔA 

was observed to be almost stable throughout the 30 cycles of phase transitions in this 

study. 

Despite that the domain boundaries in the VO2 film caused the degradation of 

SMT behaviors, they actually provided an effective way to accommodate the thermal 

and phase transition induced strain. For the VO2 film with very low boundary density, 

such as the VO2 film on Si3N4 reported by Balakrishnan et al., micro-cracks could easily 

be generated during phase transition cycles because of the poor ductility of VO2 single 

crystals [228]. Therefore the boundaries actually play an important role to sustain the 

strain and protect the film from fracture. Optimized boundary densities are desired in the 

VO2 films to balance between the phase transition stability and the failure of the film. 
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6.5 Conclusion 

In conclusion, epitaxial VO2 thin film was deposited on c-cut sapphire substrate 

by PLD. The SMT properties were characterized throughout 30 thermal cycles. The film 

maintains high transition amplitude (ΔA~6000) but exhibits the degradations of the 

transition width and thermal hysteresis with cycling numbers, where ΔT increases from 

6.3 °C to 12.3 °C and ΔH increases from 7.4 °C to 11.5 °C after 30 cycles. Moreover, the 

degradations of the ΔT and ΔH are more rapid within the first 15 cycles. In situ TEM 

heating studies revealed that the film contains high density of domain boundaries, 

around which large strain is accumulated during thermal cycles. The strain accumulation, 

which could be caused by the phase transition induced lattice constant change and the 

film thermal expansions, is correlated with the degradations of ΔT and ΔH. Despite of 

that, the boundaries actually provide an effective way to accommodate the strain 

generated during thermal cycles and thus protect the film from failure. This study 

provides fundamental understandings of the SMT property degradation as well as the 

strain accommodation mechanisms of the VO2 thin films, and thus presents a guide for 

the high stability VO2 films for future device applications. 
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CHAPTER VII 

SUMMARY 

      In this dissertation, the VO2 thin film phase transition properties were 

systematically investigated and correlated with the film microstructures and strain status. 

      First, VO2 thin films with excellent electrical properties, i.e. a near bulk phase 

transition temperature (TSMT) of around 68.4 °C, a sharp transition (ΔT) of 4.3 °C, a 

large resistance change (ΔA) of 3.2 × 10
3
 times, and 9.2 °C width of thermal hysteresis 

(ΔH), were achieved on amorphous glass substrates. Their properties were compared 

with the ones on c-cut sapphire and Si (111) substrates, all deposited by PLD. VO2 thin 

film on glass substrate has its predominant texturing along (011) orientation with large 

columnar grains. On c-cut sapphire substrate, highly textured (002) orientation VO2 film 

is grown with a high density of domain boundaries both in-plane and out-of-plane. The 

VO2 film on Si (111) substrate has a (011) preferred orientation with layer by layer 

microstructure. The outstanding SMT properties of the VO2 films on glass substrates are 

related to their large grain size and low defects density. 

In order to investigate the grain boundary effects on VO2 film SMT properties, 

polycrystalline VO2 thin films with the average grain size of 350 nm, 100 nm, 70 nm and 

40 nm were then deposited on amorphous glass substrates by PLD. The phase transition 

properties of each VO2 film were correlated with the grain size. The film with larger 

average grain sizes (thus lower GB density) exhibits better phase transition properties, 

i.e. higher transition amplitude and sharper transition (ΔA as high as 3750 and ΔT as 

narrow as 3K for the sample with the grain size of 350 nm). HR-TEM image at the GB 
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area revealed that the GB is highly disordered and the VO2 lattices next to the GB are 

strained due to the stress at GBs. Both highly disordered GBs and strained lattices 

contribute to the decrease of transition amplitude and broadening of transition sharpness 

for VO2 with grain size smaller than 100 nm. 

      Third, two simple and effective approaches in tuning the Tc of VO2 films were 

demonstrated using AZO buffers. One is to couple film thickness and the strain effect 

from AZO buffer. Epitaxial VO2 thin films with thickness of 120 nm, 65 nm and 30 nm 

were deposited on AZO buffered c-cut sapphire substrates by PLD. The second approach 

is to tune the film strain by AZO buffer surface roughness. The oxygen pressures for 

AZO buffer layers growth were varied from 50 mtorr, 100 mtorr, 150 mtorr, to 200 mtorr 

to achieve different surface roughness. Through these two approaches, the Tc of VO2 

films was continuously tuned from 338.2 K (65.05 °C) to 320.8 K (47.65 °C). With the 

decrease of VO2 thickness or VO2/AZO interface roughness, tensile strain increases 

along the c-axis of VO2 lattice, which leads to the decrease of Tc. No significant 

degradation of other SMT properties, i.e. ΔA, ΔT and ΔH, has been observed. The strain 

in the VO2 thin films was mainly generated by the lattice mismatch between VO2 and 

AZO. With the increase of VO2/AZO interface roughness, the VO2 film strain was 

gradually released by generating high density of dislocations around the interface area. 

Finally, the stability of SMT properties of epitaxial VO2 thin film on c-cut 

sapphire substrate was investigated. The SMT properties were characterized throughout 

30 thermal cycles. The film maintains high transition amplitude (ΔA~6000) but exhibits 

the degradations of the transition width and thermal hysteresis with cycling numbers, 
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where ΔT increases from 6.3 °C to 12.3 °C and ΔH increases from 7.4 °C to 11.5 °C 

after 30 cycles. Moreover, the degradations of the ΔT and ΔH are more rapid within the 

first 15 cycles. In situ TEM heating studies revealed that the film contains high density 

of domain boundaries, around which large strain is accumulated during thermal cycles. 

The strain accumulation, which could be caused by the phase transition induced lattice 

constant change and the film thermal expansions, is correlated with the degradations of 

ΔT and ΔH. Despite of that, the boundaries actually provide an effective way to 

accommodate the strain generated during thermal cycles and thus protect the film from 

failure. 
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