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ABSTRACT

Impurity-helium condensates (IHCs) are a new class of non-crystalline materials

formed by injecting a gas mixture consisting of helium gas and an impurity gas into

superfluid helium. We studied dynamics of thermoluminescence during destruction

of porous structures formed by nanoclusters of nitrogen molecules containing high

concentrations of stabilized nitrogen atoms. Porous structures were formed in bulk

superfluid helium by injection of the products of discharges in nitrogen-helium gas

mixtures through the liquid helium surface. Fast recombination of nitrogen atoms

during warming-up led to explosive destruction of the porous structures accompanied

by bright flashes.

We also investigated thermoluminescence of ensembles of molecular nitrogen nan-

oclusters, containing stabilized nitrogen atoms, immersed in liquid helium. We ob-

tained experimental evidence for quantum vortex induced chemical reactions for

nitrogen atoms in HeII leading to the appearance of luminescence. Thermolumines-

cence was also observed in HeI due to the process of nanocluster association resulting

in thermal explosions of a small fraction of nanoclusters. Impurity-helium conden-

sates created by injection of nitrogen atoms and molecules as well as rare gas (RG)

atoms (Ne, Ar and Kr) into superfluid 4He also have been studied via electron spin

resonance (ESR) techniques and optical spectroscopy. Measurements of the ground-

state spectroscopic parameters of nitrogen atoms show that the nanoclusters have a

shell structure. N and O atoms reside in solid molecular layers of N2. These lay-

ers form on the surfaces of RG (Ar or Kr) nanoclusters. We studied the dynamics

of thermoluminescence spectra emitted during the warming of porous N-N2-RG-He

samples inside the superfluid helium. Using this experimental approach, it is possible
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to study chemical reactions of heavy atoms and molecules at very low temperatures

where normally diffusion and quantum tunneling in solid matrices not possible.
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1. INTRODUCTION

Although the technique of Impurity-Helium condensates (IHCs) has been known

for more than forty years, the properties of IHCs are still the subject of continuous

interest. IHCs are a new class of non-crystalline materials formed by injecting a

gas mixture consisting of helium gas and an impurity gas into superfluid helium.[1]

When the gas jet meets the surface of the superfluid helium, the formation of impurity

nanoclusters each surrounded by one or two layers of solid helium due to Van der

Waal forces occurs inside superfluid helium (see figure 1.1). These nanoclusters

aggregate to form our samples. The characteristic sizes of impurity nanoclusters are

of order 5 nm and the overall density of the impurity atoms and molecules is of order

1020 cm−3.[2, 3, 4] Pores in the condensates have a broad distribution of sizes ranging

from 8 to 860 nm.[3] All pores in the condensate are filled with liquid helium. This

method has substantially improved the efficiency of atom stabilization and has led to

achievement of relative concentrations of nitrogen atoms [N]/[N2] in the range 10-30

percent.[5, 6]

A variety of atomic and molecular impurities can be injected into bulk superfluid

helium such as N2, O2, H2, D2, and noble gases.[7, 8, 9] There are different techniques

such as electron spin resonance (ESR), [10, 11], optical spectroscopy, [12, 13, 14], x-

ray diffraction [3, 4, 15, 16], and ultrasound [3, 17, 18], that can be employed for

characterization of samples and investigation of the quantum phenomena during the

sample warming up processes. Although there exists a variety of techniques, ESR

and optical spectroscopy have been mostly used for investigation of IHCs prepared

with different impurities. Optical spectroscopy methods were extensively used in the

past for studies of atoms and molecules in solid nitrogen. Thermoluminescence of

1



Figure 1.1: An idealized view of a nitrogen-helium condensate. Red shows nitrogen-
molecules arranged in an FCC lattice. Yellow shows a monolayer of 4He solidifed
on the helium surface. The surrounding supefluid 4He is not shown. Blue shows
nitrogen atoms substituted within the molecular lattice.
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nitrogen samples containing stabilized nitrogen atoms was explained by processes of

the diffusion and recombination of nitrogen atoms. After removing liquid helium from

the sample cell, increasing the temperature of the samples initiates the recombination

of stabilized nitrogen atoms that accompanied by intense emission. The luminescence

of the α-group of atomic nitrogen N(2D →4S), the β-group emission of atomic oxygen

O(1S→1D) and Vegard-Kaplan molecular bands N2(A
3Σ+

u , 0 → X1Σ+
g , ν ′′ ) can be

detected as well as spectra of various molecules such as NO, NH, O2 during the

processes of sample destruction. The ESR method has also been extensively used

to study the properties of IHCs. The ESR technique provides the spectroscopic

characteristics of various free radicals such as N, and H atoms embedded in different

matrix environments. Linewidth, g-factor and hyperfine splitting can be obtained

from the shape and the position of the ESR spectra.

The main objective of this study is to investigate the chemical and physical prop-

erties of IHCs, and reveal the influence of the quantum properties of superfluid helium

on the behavior of porous nanoclusters containing stabilized nitrogen atoms. In this

work, we discuss optical spectroscopic studies of ensembles of nanoclusters formed in

bulk superfluid helium. Investigations of solid nitrogen containing stabilized nitrogen

atoms have a long history. [19, 20] Electrons and γ-rays were intensively used for ex-

citation of atoms and molecules in solid nitrogen. [21, 22, 23] Luminescence of atoms

and molecules from samples formed by condensation of the products of a discharge

in nitrogen gas on the surfaces cooled by liquid helium was studied by Broida et

al.[24] This study had the goal of obtaining high concentrations of stabilized atoms

at low temperatures for possible practical applications. The idea that slowing down

of the rate of any chemical reaction by lowering temperature can provide large con-

centration of stabilized atoms at low temperatures. However, the measurements of

3



magnetic susceptibilities of these samples showed only very low concentrations (0.1

%) of stabilized nitrogen atoms.[25] For the samples obtained by this method, the

first peak of thermoluminescence upon warming was observed at a temperature near

9 K.[25] Most of optical the spectra were observed by integration of light emitted by

the sample over a broad spectral range. The emission spectra of NO and O2 trapped

in N2 matrices and rare gas matrices excited by e-beam bombardment have been

studied by Peyron and Broida. [26, 27] They first identified the presence of the M-

bands (a4Π → X2Π transitions) of NO molecules in solid nitrogen. This group also

first observed the second Herzberg bands (c1Σu → X3Σg transitions) of O2 molecules

in solid nitrogen and in solid rare gas matrices, with the exception of neon. However,

there was no information on the dynamics of luminescence from these species. Dif-

ficulties in obtaining the dynamics of luminescence for a broad spectral range from

solid nitrogen containing stabilized atoms were attributed to very low concentrations

of stabilized atoms and as a result, a low intensity of sample luminescence.

Later a method for condensing the products of electrical discharges in mixtures

of nitrogen and helium gases into bulk superfluid helium was developed.[1, 28] By us-

ing this method, impurity-helium condensates (IHC) were formed in bulk superfluid

helium.[29] These condensates consist of collections of nanoclusters, which form a

porous structure similar to aerogel inside superfluid helium. ESR results shows that

the N atoms mostly reside on the surfaces of molecular nitrogen nanoclusters.[30, 31]

The addition of rare gases to nitrogen-helium condensates has substantially improved

the efficiency of atom stabilization. High concentrations of nitrogen atoms stabilized

in molecular nitrogen nanoclusters provided enough chemical energy for developing

chain recombination reactions during warming of the samples. The fast release of

stored energy resulted in intense sample thermoluminescence. In the past, studies

4



of the dynamics of thermoluminescence during destructions of impurity-helium con-

densates of N and N2 were performed for the samples which also contained atoms of

rare gases as well as small amount of oxygen.[14, 32, 33, 34] Strong emissions from

α-, α′- and δ- groups of N atoms, β- and β′- groups of O atoms, Vegard-Kaplan (VK)

bands of N2, and M- bands of NO molecules were observed. Additionally, emissions

corresponding to different transitions from XeO molecules were registered during

destructions of nitrogen-xenon-helium samples.[34] Intense luminescence of oxygen

atoms and oxygen containing molecules were explained by the shorter lifetimes of

these species. During destructions of nitrogen-helium samples, only emissions from

the β- and β′- groups of O atoms and the α-, α′- groups of N atoms were observed

in similar experiments.[14, 32] In this work we studied the dynamics of thermolumi-

nescence spectra emitted during the destruction of porous nitrogen-helium samples.

We also investigated the influence of oxygen impurities on the spectra. It was found

that a relatively small change of the oxygen impurity content drastically influenced

the spectra obtained. The bands of oxygen atoms as well as NO and O2 molecules

became more intense at the end of the nitrogen-helium sample destruction. We ob-

served the emissions corresponding to c1Σu → X3Σg and c1Σu → a1∆g transitions

of O2 molecules in solid nitrogen.[35, 36] At the end of the destruction, we observed

increasing of the relative intensity of the emission of NO molecules. This effect is a

result of the process of accumulation of NO molecules in the sample during warm-

ing up process. Upon further warming of the sample, (NO)2 dimers can be formed

in the sample. The reaction of the (NO)2 dimers with N atoms at the final stage

of destruction led to the formation of two oxygen atoms in close vicinity. The re-

combination of these pairs of O atoms results in formation of excited O2 molecules.
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Additionally, analysis of the dynamics of sample luminescence allowed us to evaluate

possible positions of the emitting species in the molecular nitrogen nanoclusters.

Apart from study of the influence of impurities during the sample destruction, we

also proposed a new experimental technique for investigation quantum turbulence

in superfluid helium. Quantum turbulence (QT) has been studied in HeII for more

than half a century.[37, 38] Since QT research started to involve atomic Bose Ein-

stein condensates, QT has recently become one of the hot-topics in low-temperature

physics. In the past, many theoretical and experimental studies were performed

for the visualization of quantized vortices.[39, 40, 41, 42] Considerable progress in

this area of research has been achieved due to applications of new experimental

methods.[43, 44, 45, 46, 47] Visualization of vortex cores has led to the observation

of the reconnection of vortices and direct observation of Kelvin waves excited by

quantized vortex reconnections.[48, 42] Dissipation of quantum turbulence was stud-

ied at the zero temperature limit.[49, 50] The technique of nano-wire formation by

ablating metallic nanoparticles from a target in HeII was realized on the basis of

coalescence of the nanoparticles on the vortices.[51, 52] All of these investigations

were performed in bulk superfluid helium. Investigations of quantum turbulence in

restricted geometries is challenging. The only example of this type of study is the

investigation of quantum vortices inside free superfluid droplets with sizes ranging

from 100 to 1000 µm.[53, 54]

In the past, many theoretical and experimental studies of the behavior of liquid

helium in porous restricted geometries were performed [55, 56]. Liquid helium has

long provided a testing ground for theories of phase transitions. Finite size effects

might shift or smear out phase transitions. The multiply-connected substrate geom-
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etry may change the effective dimensionality, or the disorder induced by the porous

material may change the nature of the transition[57, 58].

In our work we have found a unique means for investigating the influence of

the quantum properties of liquid helium on the stability and behavior of porous

nitrogen-helium condensates containing stabilized nitrogen atoms. During heating

of the IHCs sample immersed in superfluid helium, the green emission due to the

α-group of nitrogen atoms and blue emission were detected and explained as a re-

sult of N(2D) atom emission originated from N(2D)-N2 complexes.[13] The bright

blue emission was assigned to the Vegard-Kaplan bands correspond to transitions

N2(A
3Σ+

u , 0 → X1Σ+
g , ν ′′ ).[13] Recently, the thermoluminescence spectra of IHCs

immersed in superfluid helium was observed and is explained possible mechanism

as a neutralization reactions occurring in impurity nanoclusters.[59] We observed

thermoluminescence of nitrogen atoms and molecules in molecular nanoclusters im-

mersed in liquid helium while increasing the temperature from 1.3 to 4.4 K. Two

thermoluminescence maxima were observed, one in superfluid helium at T∼1.9 K

and another in normal helium at T∼3.2 K. Thermoluminescence in HeII was found

to be a result of chemical reactions of nitrogen atoms residing on surfaces of nanoclus-

ters initiated by quantum vortices. Developing our new experimental method has

provided further understanding of the behavior of quantum turbulence in this field of

research in confined geometries. We observed the thermoluminescence of ensembles

of molecular nitrogen nanoclusters containing stabilized nitrogen atoms in superfluid

helium due to the quantum turbulence. QT has been found to induce chemical re-

actions in porous ensembles of nanoclsuters. Using this new experimental approach,

it is also possible to study chemical reactions of heavy atoms and molecules at very

7



low temperatures where normally their diffusion and tunneling in solid matrices not

possible.

The structure of this dissertation reflects the fact that different samples were

studied in our investigations of impurity-helium condensates. Section 2 is dedicated

to investigations of thermoluminescence dynamics of the samples formed by nitrogen

nanoclusters. And in section 2, We give description of the experimental apparatus

and sample preparation method which we used in all the experiments. Section 3

describes our results for quantum vortices and thermally induced luminescence of

nitrogen nanoclusters immersed in liquid helium. Although the sample preparation

methods in this section is almost the same as the one described section 2, we also

employed another experimental setup which enables simultaneous electron spin res-

onance (ESR) and optical studies of nanoclusters with stabilized free radicals. And

in section 4, We investigated the addition of rare atoms (Ne, Ar, and Kr) to the

condensed N2-He gas mixture on the efficiency of stabilization of N atoms in IHCs.

We also investigated the characteristics of the dynamic of the thermoluminescence

spectra for different stabilized number of N atoms in the samples.
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2. THERMOLUMINESCENCE DYNAMICS DURING DESTRUCTIONS OF

POROUS STRUCTURES FORMED BY NITROGEN NANOCLUSTERS IN

BULK SUPERFLUID HELIUM∗

We studied dynamics of thermoluminescence during destruction of porous struc-

tures formed by nanoclusters of nitrogen molecules containing high concentrations of

stabilized nitrogen atoms. Porous structures were formed in bulk superfluid helium

by injection of the products of discharges in nitrogen-helium gas mixtures through

the liquid helium surface. After evaporation of liquid helium from the sample cell,

fast recombination of nitrogen atoms during warming-up led to explosive destruction

of the porous structures accompanied by bright flashes. Intense emissions from the

α-group of nitrogen atoms, the β-group of oxygen atoms and the Vegard-Kaplan

bands of N2 molecules were observed at the beginning of destruction. At the end of

destruction the M- and β-bands of NO molecules as well as bands of O2 molecules

were also observed. Observation of the emissions from NO molecules at the end of

destruction was explained by processes of accumulation of NO molecules in the sys-

tem due to the large van der Waals interaction of NO molecules. For the first time,

we observed the emission of the O2 molecules at the end of destruction of the porous

nitrogen structures as a result of the (NO)2 dimers formation in solid nitrogen and

subsequent processes leading to the appearance of excited O2 molecules.

∗Part of this section is reprinted with permission from ”Thermoluminescence dynamics during
destructions of porous structures formed by nitrogen nanoclusters in bulk superfluid helium”, by,
A.Meraki, S.Mao, P.T.Mccolgan, R.E.Boltnev, D.M.Lee, 2014 and V.V.Khmelenko. J. Low. Temp.
Phys., DOI 10.1007/s10909-0116-1557-1, Copyright 2016 by Springer.
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2.1 Theoretical background

In this work we studied spectra of the thermoluminescence of a nitrogen-helium

condensates during their destruction. The destruction of IHC samples are stimu-

lated by warming from 1.4 K to 14 K to initiate diffusion and the recombination of

stabilized free radicals, thus leading to formation of excited atoms and molecules.

In this section we will introduce the theoretical background of α-group of nitrogen

atoms, the β-group of oxygen atoms and the Vegard-Kaplan bands of N2 molecules

as well as bands of O2 and NO molecules.

2.1.1 Atomic systems

(a)Atomic nitrogen

The nitrogen has three electrons outside closed shells, and the electronic con-

figuration is 1s22s22p3. The ground state of the nitrogen atom has all three spins

aligned in the 4S3/2. In the diagram(see figure 2.1), the 2D5/2 and 2D3/2 states lie as

2.38 eV above the 2S3/2 ground state of N atom.[60] The α-group emission provides

the characteristic green glow is due to the N(2D −4 S) transition. In the gas phase

the wavelengths of these forbidden transitions are N(2D5/2 −4 S3/2): 520.0 nm, and

N(2D3/2−4S3/2): 519.8 nm and the lifetimes, τ , are 1.6×105s and 4.4×105s, respec-

tively. Spin and parity selection rules for electric-dipole transitions strongly forbid

the N(2D5/2−4S3/2) transitions but they are dramatically enhanced in the solid phase

due to interaction with the crystalline field and lattice phonons. In solid nitrogen

this emission consists of eight main lines, the strongest lying at 522 nm (zero-phonon

line) and a 523-525 nm (phonon induced wing). Furthermore, the lifetime of 2D−4S

emission in solid nitrogen is long 40 s.[61] In addition, in the solid N2 or solid heavy
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rare gas matrices the α- group transition is shifted, as a rule, to the red. In Kr-,

Ar-, and Ne- containing IHCs the centers of α-group spectra were red-shifted by ∼4,

∼2.4, and ∼1 nm, respectively, as compared to the N(2D−4 S) transition in the gas

phase.[13] The α-group was accompanied always by a less intense second group ∼594

nm (this is called α′). In addition to the α′, the α′′ and α′′′ systems , which arise

from a simultaneous transition of an N atom (2D −4 S) with a ∆ν = ±1 transition

of a neighboring N2 molecule in ground state, were studied by Oehler et al. (1977)

[62]. These transitions (α′′ and α′′′) were not observed in our work. Dressler et al.

have shown that the transitions responsible for α, α′, α′′ and α′′′ as

N(2D)→ N(4S) + α-group, (2.1)

N(2D) +N2(X
1Σ+

g , ν
′′ = 0)→ N(4S) +N2(X

1Σ+
g , ν

′′ = 1) + α′-group; (2.2)

N(2D) +N2(X
1Σ+

g , ν
′′ = ν)→ N(4S) +N2(X

1Σ+
g , ν

′′ = ν − 1) + α′′-group; (2.3)

N(2D) +N2(X
1Σ+

g , ν
′′ = ν)→ N(4S) +N2(X

1Σ+
g , ν

′′ = ν + 1) + α′′′-group; (2.4)

where (2.1), (2.2), (2.3), and (2.4) the excited N(2D) atoms can arise in the matrix

due to energy transfer from excited N2(A
3Σ+

u ) molecules to N(4S) atoms,

N2(A
3Σ+

u ) +N(4S)→ N(2D) +N2(X
1Σ+

g ). (2.5)

(b)Atomic oxygen

The oxygen has a total of eight electrons. Considering the Pauli exclusion princi-

ple and the electron orbitals, the electron configuration of atomic oxygen is 1s22s22p4.

The 2p orbitals are partially filled, so there are three different ways to fill the elec-

trons in the 2px, 2py and 2pz states. According to Hund’s rules, the ground state

of atomic oxygen is a 3P , triplet P, state which has two unpaired electrons. The

12



configuration 1D, singlet D, is the first excited state of atomic oxygen. The second

excited state of atomic oxygen, is designated as the 1S state.

The transition 1S −1 D of O atoms is also extremely forbidden in the gas phase

but dramatically enhanced in the solid phase. A group of three broad lines centered

around the 557 nm β-group with associated vibrational sidebands at ∼ 630 nm (this

is called β′) and at ∼ 496 nm (this is called β′′), has been observed in a N2 matrix.

[63] The transfer of energy from an excited N2(A
3Σ+

u ) molecule to an oxygen atom

is also allowed;

N2(A
3Σ+

u ) +O(3P )→ O(1S) +N2(X
1Σ+

g ) (2.6)

The emissions from this state produced β-group (1S →1D) O atoms

O(1S)→ O(1D) + β-group. (2.7)

And β′, β′′ and β′′′ are as follows:

O(1S) +N2(X
1Σ+

g , ν
′′ = 0)→ O(1D) +N2(X

1Σ+
g , ν

′′ = 1) + β′-group; (2.8)

O(1S) +N2(X
1Σ+

g , ν
′′ = ν)→ O(1D) +N2(X

1Σ+
g , ν

′′ = ν − 1) + β′′-group; (2.9)

O(1S) +N2(X
1Σ+

g , ν
′′ = ν)→ O(1D) +N2(X

1Σ+
g , ν

′′ = ν + 1) + β′′′-group; (2.10)

Energy levels for these emission features are shown in fig. 2.2.
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Figure 2.2: Energy-level diagram and schematic diagram of electronic O atom doped
solid N2. Reprinted with permission from [63].
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2.1.2 Molecular systems

(a) O2

There are six bound electronic states of O2 molecule populated from the recom-

bination of ground-state O(3P ) atoms. Figure 2.3 shows potential energy curves of

O2, and three metastable states designated as the Herzberg states A3Σ+
ν , c1Σ−u and

C3∆u. The a-X transition is the Herzberg I system, the c-X transition is Herzberg II

system, and C-X transition is Herzberg III system. Three metastable states are just

below the dissociation limit, which is ∼ 41256.6 cm−1 (D0(X)) in the gas phase. In

the gas phase, O2 can be efficiently dissociated through the Schumann-Runge absorp-

tion. In solids, however, the dissociation is extremely inefficient due to the so-called

cage effect.[64] Emissions from the three upper O2 states are much weaker. In the

early work of Broida, the c1Σ−u → X3Σ−g Herzberg II system was observed in N2 and

rare gas matrices, but unfortunately they were misidentified. Later, Goodman and

Brus [36] also detected this system, and also misidentified them as C-X(Herzberg III

system). In the present work, during destruction of nitrogen nanoclusters containing

stabilzed N and O atoms for the first time we observed an intensive band which

correspond to the c1Σ−u → X3Σ−g and c1Σ−u → a1∆g transitions of O2 molecules in

solid nitorgen. Koda and Kajihara [65] have observed the c-a emission of O in solid

N2 by a KrF excimer laser. The apperance of the excited O2(c
1Σ−u ) molecules is a

result of recombination of oxygen atoms in solid nitrogen.

O(3P ) +O(3P )→ O2(c
1Σ−u ); (2.11)
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Figure 2.3: Potential energy curves of O2. Reprinted with permission from [66].
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(b) Vegard-Kaplan system

The Vegard-Kaplan (V-K) band system A3Σ+
u → X1Σ+

g of nitrogen corresponds

to an electric-dipole transition, occuring only by violating the approximate spin-

selection rule ∆S = 0. It is not ordinarily observed in either the discharge or af-

terglow regions, and has been detected only under rather special conditions. This

system of the nitrogen molecules was observed in nitrogen solids at 4.2 K, the bands

occurring very weakly at the higher oxygen concentration. The presence of oxygen

leads nitrogen combining with oxygen to form nitric oxide, which seems to be quite

effective in quenching the V-K bands.

(c) NO

Open-shell structure of the NO radical molecule is of great importance in atmo-

spheric chemistry. The electronic configuration of the X2Π ground state of the NO

radical is 1σ21σ∗22σ22σ∗23σ21π41π∗. The electron transfer π4π∗ → π3π∗2 results in

the valence states a4Π, B2Π, L2Π, and 42Π in the experimental nomenclature. The

ground X state is split into 2Π1/2 and 2Π3/2 components separated by 121.1 cm−1

and the N(4S)+O(3P ), N(4S)+O(1D) and N(2D)+O(3P ) atomic limits give birth

to a complex set of valence excited states in the 5-9 eV range. The transition of

M-band (a4Π → X2Π) is spin-forbidden in the gas phase and it was not studied as

much as the strongest spectroscopic transitions of the γ band (A2Σ→ X2Π) and β-

band (B2Π→ X2Π).[67, 68]
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2.2 Experimental setup and technique

2.2.1 Description of apparatus and procedure

The technique of preparation of IHCs was first developed in 1974 by E.B Gordon,

L.P. Mezhov-Deglin and O.F. Pugachev as an attempt to stabilize the highest pos-

sible concentrations of free radicals.[1] The schematic diagram of our experimental

setup is shown in Fig. 2.4. For sample preparation we employed a low-temperature

cryostat and an external gas handling system. The low-temperature part of the set

up consisted of two double-walled glass dewars for liquid helium (LHe) and liquid

nitrogen (LN2), an atomic source, a thermomechanical fountain pump, and an ex-

perimental cell. The inner surfaces of both dewars were partially covered with silver

films to minimize the thermal radiation. For optical study and visual observations

of sample preparation, 2 cm wide vertical strips remained uncovered by the silver

films. The radiation baffles in the throat of helium dewar are used to block thermal

radiation from top room temperature metal flange. The gas handling system con-

sists of a cylinder manifold, a vacuum system for preparation of gas mixtures and

cleaning of gaseous components, and lastly, a mass flow controller. For the prepara-

tion of nitrogen-helium gas mixtures, Linde research grade helium (99.9999% purity)

was used. Oxygen contamination in these mixtures was determined to be 1ppm in

the helium gas. The mixed gases were stored in a container at room temperature.

The prepared gas mixtures entered the helium dewar through a quartz capillary,

where they passed through a zone of RF discharge (frequency ∼ 50MHz, power ∼

75 W) that dissociated the impurity molecules. The discharge was powered by an

E&I 3100L RF amplifier which was used to amplify the RF signal generated by a

Hewlett-Packard Signal generator, Model 8656B. The RF power was applied to the
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Figure 2.4: Scheme of the experimental setup for optical study of nitrogen-helium
condensates: 1-quartz capillary, 2-feedthrough for optical fiber, 3-optical fiber, 4-
electrodes for electrical discharge, 5- nitrogen dewar, 6- helium dewar, 7- gas jet, 8-
quartz beaker for sample accumulation, 9- nitrogen-helium sample, 10- thermometer,
11- fountain pump, 12- motorized lab jack, 13- bifurcated optical fiber. Insert shows
a photo of the nitrogen-helium sample accumulation process.
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flowing gas by electrodes placed in the lower part of the capillary. The gas flow was

accurately measured and controlled by a Brooks Model 5850E Mass Flow Controller

which typically provided a constant flux of 5×1019 particles/sec. The discharge re-

gion of quartz source was constantly cooled with liquid nitrogen, which surrounded

the quartz capillary. Thermal insulation of the quartz source was provided by a

stainless steel double walled jacket. [29] After passing through the discharge, the gas

mixtures were injected into the helium dewar through an orifice with diameter 0.75

mm. In the region under the orifice a well-formed gas jet was created (see insert in

Fig.2.4). This jet was directed to a glass beaker (inner diameter of 2.2 cm, height 4

cm) filled with superfluid helium. The top of the beaker was placed 20 mm under

the orifice. A constant level of superfluid helium in the glass beaker was maintained

by means of a fountain pump placed at the bottom of the main liquid helium bath.

Sample accumulation lasted 20-40 min. The volume of the sample accumulated in

the glass beaker inside bulk He II was 10-12 cm3. During the sample formation, the

temperature of the main bath was maintained at 1.45 K with the aid of an Edwards

model E2M80 Two Stage mechanical pump which provided helium gas pressures

down to ∼ 250 Pa.

2.2.2 Systems for registration of optical spectra

We investigated the emission spectra during the process of condensation of gas

mixtures and also luminescence spectra of the nitrogen-helium solid samples during

their destruction. Recent developments in fiber optics technology have allowed us

to improve the efficiency of the collection of light from the sample emissions. In

a previous approach with our setup, the emitted light passed through slits in the

silvering of the glass dewars. The light was then collected outside of the dewars
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by a lens at the entrance of an optical fiber. Once the sample preparation was

complete, the optical system was adjusted into position for the collection of light

from the bottom of the beaker with the aid of a motorized lab jack to observe sample

destruction. Later our cryogenic setup was equipped with an optical fiber assembly,

part of which was installed inside the helium dewar (pos.3 in Fig. 2.4), where it

was able to withstand liquid helium temperatures. The fiber was manufactured by

Gulf Photonics using a special cryogenic adhesive. The open ferrules on the end of

the optical fiber were directed into the bottom of the beaker. The low temperature

fiber assembly is connected to the bifurcated fiber via a vacuum feedthrough. The

vacuum feedthrough and the bifurcated fiber are mated using splice bushings. In

our previous approach, the glass dewars restricted the accessible spectral range to

325-1100 nm. Having this new optical fiber assembly allowed us to detect emission

spectra in the broader range of 200-1100 nm (UV-VIS-IR range).

Preparation for the sample destruction process involved turning off the fountain

pump, leading to a decrease of the liquid helium level in the beaker and, as a re-

sult, the sample was compressed and collected near the bottom of the beaker. After

cutting-off the HeII flow into the beaker, we waited 20 min to allow all the liquid

helium to evaporate from the beaker. Leaving the formed solid sample in the dark for

a while allows all trapped reactants to relax to the ground state, in particular radi-

cals and excited species captured from the gas phase jet after having passed through

the discharge zone. Then, to start the process of warming the samples, we stopped

pumping the helium vapor from the cryostat. As a result, the temperature inside the

beaker rose from 1.4 K to 14 K during a period of 40-150 sec. The temperature of

the sample was recorded with a Lake Shore semiconducting thermometer calibrated

in the region from 1.1K to 40K. This thermometer was placed at the bottom of the
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glass beaker. The pressure of helium vapor in the dewar was registered by an MKS-

626B manometer covering the range from 0.1 to 100 Torr. The rising temperature in

the beaker initiated the destruction of the collected sample which was accompanied

by spontaneous flashes. After the emitted light passed through the low temperature

fiber assembly and vacuum feedthrough, the light was transferred to two different

spectrometers with the bifurcated fiber assembly. By using the bifurcated fiber as-

sembly, we could make simultaneous measurements in two different spectral ranges.

The bifurcated fiber has two outlets, one for our Ocean Optics HR2000+ spectrom-

eter and the other for an Andor Shamrock SR-500i spectrograph. The Ocean Optics

spectrometer has a spectral resolution of 1.3 nm (FWHM) in the range 200-1100

nm. The Andor spectrometer consists of the Shamrock SR-500i, with a 0.52 nm

(1st grating) resolution, equipped with a cooled EM-CCD (Newton 970) camera.

The emission spectra are registered by the Andor spectrometer with a 150 lines/mm

grating (blaze wavelength 500 nm), and a wavelength range of 340 nm (λ nm =325-

665 nm) with a Newton CCD detector unit cooled to -60 C (for higher sensitivity).

Temporal resolution was achieved with a camera, the output of which was amplified

200 times by electron multiplying CCD. The image detected by the camera has a

size of 1600x200 pixels. Signals obtained are decoded by the Andor & Solis software

supplied by the Andor Company. The improved spectral resolution allowed us to

observe the detailed structure of our spectra with high precision. During the sample

destruction, the registration times of spectra were 100 ms or 250 ms for the Ocean

Optics spectrometer, and only 3 ms for the Andor registration. This high detection

sensitivity system allowed us to study the dynamics of the spectra.
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2.3 Experimental results

2.3.1 Thermoluminescence spectra of samples prepared by different

nitrogen-helium gas mixtures

Increasing the temperature of the nitrogen-helium sample initiates the recombina-

tion of stabilized nitrogen atoms that is accompanied by luminescence of the sample

which lasted 150 s (final 27.5 s of destruction is shown in Fig. 2.5). The warm-up

thermogram and pressure diagram during sample destruction are presented in the

insert of Fig. 2.5. Sublimation of helium atoms adsorbed on impurity cluster sur-

faces was a trigger, initiating the recombination of the stabilized radicals, which was

accompanied both by intense emission and a rapidly increasing temperature.[14] It

was previously proved that chemical reactions of N atoms in solid N2 can proceed at

temperatures above 8 K.[69] Figure 2.5 shows the dynamics of thermoluminescence

during the final stage of destruction of the sample condensed from the gas mixture

[14N2]:[He]=1:100. Each spectrum in Fig. 2.5 was taken with an exposure time of

250 ms. At the beginning of observation, only the luminescence of the α-group of

atomic nitrogen N(2D →4S) and Vegard-Kaplan molecular bands N2(A
3Σ+

u , 0 →

X1Σ+
g , ν ′′ ) can be seen, and their intensities grow with increasing temperature. It

should also be noted that the intensity of the β-group emission of atomic oxygen

O(1S→1D) is relatively small at the beginning, but it increases very steeply with the

simultaneous appearance of the M-bands (transitions a4Π→ X2Π) of NO molecules.

This correlation between the β-group of O atoms and M-bands of NO molecules

continues during the entire destruction process. The M- bands are very broad with

unresolved structure. In addition to the β- groups of O atoms, and the sequence

of M-bands of NO molecules, the β-bands of NO molecules, corresponding to the
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Figure 2.5: Dynamics of the luminescence spectra of nitrogen-helium sample during
destruction. The sample was prepared from the gas mixture [14N2]/[He]=1/100.
Spectra were obtained by the Ocean Optics spectrometer. Each spectrum shown in
the Figure is a sum of 10 spectra detected with exposure time 250 ms. Temperature
and pressure dependences on time during sample destruction are shown in the insert.
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B2Π-X2Π transitions, and the Herzberg II system of O2 molecules, corresponding to

the (c1Σ−u →X3Σ−g ) transitions, appeared at the end of the sample destruction (see

Fig. 2.6a and 2.6b). The spectrum of the most intense flash is shown in Fig. 2.6b,

where one can see the δ -group (transition 2P- 2D) and δ′′-group of atomic nitrogen

as well as β′- and β′′- groups of O atoms in addition to the above-mentioned bands.

The positions and origins of all molecular bands in the observed spectra are listed

in Tables 2.1 and 2.2. The presence of α′-, β′-, β′′-, δ′- groups of N and O atoms in

the spectra indicates that N2 molecules are neighbors of these atoms.[14, 62]

One can also see the γ- line at 793 nm, which has now been identified as the

bound-bound transition 1D−3P of nitrogen anions N−.[70] The thermoluminescence

maximum was detected during sample destruction at a temperature of 12 K. From

comparison of the spectra shown in Fig. 2.6a and 2.6b, we can conclude that very

significant changes in the spectra occur during the final stage of sample destruction.

The most striking change was the enhancement of the luminescence from O atoms

as well as NO and O2 molecules. To study these effects in more detail, we performed

investigations of the dynamics of the luminescence spectra from a sample prepared

from the gas mixture N2:He=1:400. In this sample the ratio of oxygen to nitrogen

content should be 4 times larger in comparison with the sample prepared from the gas

mixture N2:He=1:100 as a result of somewhat larger amounts of oxygen contaminated

helium gas. Spectra were obtained by the Andor spectrometer, which provided a

better sensitivity and time resolution (3 ms). Figure 2.7a shows the dynamics of the

luminescence spectrum during the last 12 seconds of sample destruction. Spectra

were studied in the spectral range 325-665 nm where we expected to observe the

bands of NO and O2 molecules. Each spectrum presented in Fig. 2.7a represents

a sum of 500 spectra taken by the Andor spectrometer with exposure time 3 ms.
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Figure 2.6: Two spectra taken by Ocean Optics spectrometer at the end of destruc-
tion of the sample which was prepared from the gas mixture [14N2]/[He]=1/100 a)
spectrum taken 400 ms before the end of the destruction, sensitivity dependence of
Ocean Optics spectrometer is shown in the insert. b) spectrum for the most intense
final flash at the end of destruction. Exposure time for each spectrum is 250 ms.

26



Table 2.1: Positions of the NO M-bands (a4Π→ X2Π) and NO β-bands (B2Π−X2Π)
emitted during destruction of the samples prepared from gas mixtures [14N2]:[He]
=1:100 and [15N2]:[He] =1:100.

Band 14N16O 14N16O 15N16O 14N16O 14N16O 15N16O

(ν ′, ν ′′) M-bands M-bands[71] M-bands β-bands β-bands[71] β-bands
(0,4) 330.70 331.80 - - 263.40 -
(0,5) 353.56 352.10 - - 276.90 275.37
(0,6) 373.97 374.60 370.74 290.84 290.50 289.12
(0,7) 398.64 399.40 396.32 306.36 306.00 304.27
(0,8) 428.84 428.70 422.92 322.52 322.40 320.79
(0,9) 461.17 462 455.90 339.74 340.40 337.28
(0,10) 494.36 - 496.22 360.79 359.30 378.58
(0,11) - - - 383.75 381.20 -

Table 2.2: Positions of the N2 Vegard-Kaplan bands (A3Σ+
u , 0 → X1Σ+

g , ν
′′) emitted

during destruction of the samples prepared from gas mixtures [14N2]: [He] =1:100
and [15N2]: [He] =1:100.

Band (ν ′, ν ′′) 14N2
14N2[72] 15N2

15N2[72]

(0,3) 235.40 235.08 233.67 233.74
(0,4) 248.33 248.17 246.20 246.24
(0,5) 263.00 262.60 260.11 259.97
(0,6) 278.94 278.59 275.28 275.11
(0,7) 297.01 296.40 291.96 291.89
(0,8) 316.99 316.34 310.70 310.59
(0,9) 339.74 338.83 331.59 331.55
(0,10) 365.04 364.37 355.71 355.20
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As one can see from Fig.2.7a, the appearance of the NO bands starts ∼ 6 seconds

before the end of sample destruction. One of the spectra observed in the last 6

second is shown in Fig. 2.7b with identification of emitted bands. Figure 2.7c shows

the dynamics of luminescence at the final 30 ms of sample destruction. Only one

spectrum was registered during this last brief period. The details of this spectrum

with identification of all of the bands are shown in Fig. 2.7d. Surprisingly, only the

β-group of O atoms and the second Herzberg bands of molecular oxygen were found

in this spectrum. Table 2.3 shows the positions of the O2 bands emitted at the end

of the destruction of the samples prepared from gas mixture [14N2]:[He]=1:400.

As one can see from Figs. 2.5,2.6, and 2.7 we observed rather intense bands of NO

and O2 molecules during the most intense luminescence flashes at the end of sample

destruction. The NO (a4Π, 0→ X2Π, ν ′′) bands were broad. These bands correspond

to the envelope of overlapping bands from NO molecules in different environments.

NO molecules have a wide distribution of positions and orientations in the N2 matrix

which is responsible for the broadening of the bands [71].

2.3.2 Influence of oxygen on thermoluminescence spectra of nitrogen-

helium samples

As was mentioned earlier, we did not add intentionally any oxygen to the gas mix-

tures. The presence of oxygen in the samples is a result of small contaminations of

oxygen in the helium and nitrogen gases used for preparation of the samples. To

study the influence of the oxygen impurities on spectra of nitrogen-helium samples

during destruction we performed investigations of three different samples which were

formed from 15N2:He gas mixtures with different nitrogen contents - 0.1%, 0.25% and

1%. The integrated spectra of luminescence of these samples during destruction are
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Figure 2.7: Dynamics of the luminescence spectra of nitrogen-helium sample at the
end of destruction: a) dynamics of spectra which were accumulated during period 1.5
s, b) the spectrum which corresponds to 12th second in Fig. 2.7 is shown with identi-
fication of the observed bands, c) dynamics of spectra during last 30 ms of sample de-
struction, d) final spectrum registered during sample destruction with identification
of the observed bands. Sample was prepared from gas mixture [14N2]/[He]=1/400.
Spectra were obtained by the Andor spectrometer with exposure time 3 ms.
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Table 2.3: Positions of the O2 second Herzberg bands (c1Σ−u , 0→ X3Σ−g , ν ′′ ) emitted
at the end of the destruction of the sample prepared from gas mixture [14N2]:[He]
=1:400.

Band Band position Solid N2 Gas phase
(ν ′, ν ′′) λ (nm) λ (nm)[73] λ (nm)
(0,4) 377.12 377.1 376.21
(0,5) 398.43 398.7 398.03
(0,6) 423.28 422.5 422.4
(0,7) 449.02 449.0 449.1
(0,8) 478.77 478.4 479.15
(0,9) 511.07 511.3 512.88
(0,10) - 548.7 551.00
(0,11) 591.0 590.8 594.52
(0,12) 638.97 639.3 644.51
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shown in Fig.2.8. For the spectra obtained in the case of the sample prepared from

the gas mixture 15N2:He =1:100, only intense α- and β- groups are observed. In the

cases of two other samples the spectra are less intense, but in addition to α- and β-

groups, the bands of NO and O2 molecules are also present. Moreover, for the gas

mixture with smaller nitrogen content, the intensity of NO and O2 bands increased

relative to the intensity of α- and β- groups.

The most intense spectrum observed at the end of destruction of the sample

prepared from a gas mixture [15N2]:[He] =1:100 is shown in Fig. 2.9. For this

sample we have observed one more O2 band system as compared with the spectrum

obtained during destruction of the sample prepared from gas mixture [14N2]:[He]

=1:100. This system corresponds to the c1Σ−u → a1∆g transitions of O2 molecules.

Table 2.4 presents the positions of the observed bands with references to the O2

(c1Σ−u → a1∆g) system observed in solid N2. Three bands of the Herzberg II system

(c1Σ−u →X3Σ−g ) were also detected.

The difference between the thermoluminescence spectra of the samples contain-

ing various nitrogen isotopes might be explained by different oxygen contents of the

gas mixtures used. Although most of oxygen contamination is provided by the he-

lium gas, the nitrogen gases also contain oxygen impurities. For the preparation of

the gas mixture for the lighter nitrogen isotope - [14N2]: [He] =1:100, a Matheson

nitrogen research grade gas was employed with an oxygen content smaller than 0.5

ppm, whereas for preparation of the gas mixture from the heavier nitrogen isotope

- [15N2]:[He] =1:100, a Cambridge Isotope Laboratories nitrogen gas was employed

with an oxygen content 24 ppm. As a result, the oxygen content is higher in the

mixture containing 15N2 as compared with the previous mixture. This explanation

is supported by the fact that the integrated intensity ratio of the β- and α- groups
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Figure 2.8: Integrated luminescence spectra obtained during destructions of three
nitrogen-helium samples. Samples were prepared from different 15N2:He gas mix-
tures: a) 1:100, b) 1:400, c) 1:1000. Quantum efficiency for the Newton CCD detector
is shown in the insert.
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Table 2.4: Band positions of the transitions (c1Σ−u , 0 → a1∆g, ν
′′ ) of O2 molecules

emitted during the destruction of the samples prepared from a gas mixture [15N2]:[He]
=1:100.

Band Band position Solid N2 Gas phase
(ν ′, ν ′′) λ (nm) λ (nm)[35] λ (nm)[73]

(0,4) 529.28 529.52 526.39
(0,5) - 570.84 567.56
(0,6) 618.21 618.42 614.74
(0,7) 673.12 673.67 669.25
(0,8) 738.18 737.73 732.92
(0,9) 814.32 814.00 808.14
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(Iβ/Iα) for the spectrum obtained during destruction of the sample prepared from the

[14N2]: [He] =1:100 gas mixture (Iβ/Iα=0.3) was smaller than that obtained during

destruction of the sample prepared from the heavier nitrogen isotope - [15N2]:[He]

=1:100 gas mixture (Iβ/Iα=0.4).

2.4 Discussion

Impurity-helium condensates (IHCs) are porous nanomaterials formed by nanoclus-

ters of impurities injected into superfluid helium. Nanoclusters create a semi-rigid

network inside the superfluid helium. The characteristic size of impurity nanoclus-

ters is of order 5 nm and the density of impurities inside superfluid helium is of

order 1020 cm−3 as determined from x-ray experiments.[2, 3, 29] Atomic species

formed in gas phase discharges were captured mostly on the surfaces of impurity

nanoclusters.[30, 31] The average concentrations of nitrogen atoms in nitrogen-helium

condensates were found to be as high as 1019cm−3.[6] The values of local concentra-

tions of N atoms in the samples were substantially larger, (8.1020cm−3).[6] As a

result, the nitrogen-helium samples are characterized by very high specific energy

contents (up to ∼ 104 J/g).[10] One or two layers of solid helium covered the sur-

faces of impurity nanoclusters preventing connections between N atoms residing on

surface layers of the nanoclusters. These samples were rather stable while immersed

in bulk superfluid helium. Removing liquid helium from the sample led to collapsing

of the pores in the samples and compressing of the sample. During this process

the association of nanoclusters occurs as a result of developing connections between

nanoclusters, which is accompanied by sublimation of the layers of solid helium and

recombination of nitrogen atoms residing on the surfaces of nanoclusters. As a re-

sult, the temperature of the samples was increased and they emitted light. First
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we analyze the dynamics of the luminescence spectra during sample destruction ob-

tained in the experiments. At the beginning of destruction we observed that the

glowing of the samples increased in intensity with time. As in the earlier studies of

nitrogen-neon-helium and nitrogen-krypton-helium samples,[14, 32, 33] in this stage

of the nitrogen-helium sample destruction, emissions from the α-group of N atoms,

the Vegard-Kaplan (V-K) bands of N2 molecules, and also the β-groups of O atoms

were observed. The mechanism of sample luminescence at this stage of destruction is

well known.[21, 33, 62] Diffusion and recombination of nitrogen atoms in the ground

4S state produce metastable N2(A
3Σ+

u ) molecules:

N(4S) +N(4S)→ N2(A
3Σ+

u ) (2.12)

The excitations from these molecules were efficiently transferred along the N2 matrix

to the stabilized N(4S) and O(3P ) atoms, resulting in excitation of 2D- state of N

atoms and 1S- state of O atoms

N2(A
3Σ+

u ) +N(4S)→ N(2D) +N2(X
1Σ+

g ), (2.13)

N2(A
3Σ+

u ) +O(3P )→ O(1S) +N2(X
1Σ+

g ) (2.14)

The emissions from those excited states produced the α-group (2D →4S) of N atoms

and β-group (1S →1D) of O atoms

N(2D)→ N(4S) + α-group, (2.15)

O(1S)→ O(3P ) + β-group. (2.16)
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The intensity of the β-group emission of O atoms is considerably larger than the

intensity of α-group emission of N atoms because of the much higher (∼ 105 times)

probability of the O(1S →1D) transition as compared with that of the N(2D →4S)

transition in a nitrogen matrix.[14, 74] Although the concentration of stabilized N

atoms in the clusters is two or three orders of magnitude larger than that of the O

atoms, the significantly larger probability of the transition of O atoms leads to a

stronger emission from the O atoms. Some of the metastable N2(A
3Σ+

u ) molecules

emitted light, providing Vegard-Kaplan bands. Recombination of N atoms did occur

mostly near the surfaces of N2 nanoclusters and the energy released in chemical

reactions was transferred inside nanoclusters. The energy was captured by N and O

atoms stored in the layers closest to the surface.

At the next stage, when the temperature was raised further and the diffusion

of atoms became faster, the conditions for chain reactions involving N atoms to

take place were satisfied and we observed explosion-like destruction of the samples,

which was accompanied by bright light flashes. At this stage the recombination

of N atoms was more frequent and the rate of energy release became much larger,

allowing excitation of atoms and molecules stored in all layers of the nanoclusters.

The emission from the species with short lifetimes became more intense. In the

spectra the broad M-band of NO molecules and intense β-group of O atoms were

observed at this stage (see Fig.2.7a). The intensities of emission of the V-K bands

of N2 molecules were substantially decreased. At the final stage, in addition to the

above mentioned bands, the β-bands of NO molecules, the second Herzberg bands

of O2 molecules, the β′- and β′′-group of O atoms as well as α′-, δ- and δ′′- groups of

N atoms were observed (see Fig. 2.6b). The weak luminescence of the α′-, δ- , δ′′-
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and the β′- and β′′- corresponded to the following processes:

N(2D) +N2(X
1Σ+

g , ν
′′ = 0)→ N(4S) +N2(X

1Σ+
g , ν

′′ = 1) + α′-group; (2.17)

N2(A
3Σ+

u ) +N(4S)→ N(2P ) +N2(X
1Σ+

g ); (2.18)

N(2P )→ N(2D) + δ- group; (2.19)

N(2P ) +N2(X
1Σ+

g , ν
′′ = 1)→ N(2D) +N2(X

1Σ+
g , ν

′′ = 0) + δ′′-group; (2.20)

O(1S) +N2(X
1Σ+

g , ν
′′ = 0)→ O(3P ) +N2(X

1Σ+
g , ν

′′ = 1) + β′-group; (2.21)

O(1S) +N2(X
1Σ+

g , ν
′′ = 1)→ O(3P ) +N2(X

1Σ+
g , ν

′′ = 0) + β′′-group. (2.22)

As can be seen from Fig. 2.7b, at the end of the destruction of the nitrogen-helium

samples the most intense bands in the luminescence spectra corresponded to the

species containing oxygen, such as is O, NO and O2. This fact provides evidence

for the existence of a mechanism for accumulating oxygen-containing species in the

nanoclusters during the whole process of sample destruction. We will discuss this

mechanism later.

We will emphasize that only investigations of the dynamics of the sample lumi-

nescence permitted observation of bands of NO and O2 molecules in the spectra at

the very end of the destruction process. In earlier studies of luminescence during the

destruction of nitrogen-helium samples prepared from the gas mixture N2:He=1:100,

the integrated spectra did not show any bands of NO and O2 molecules.[32] Similar

results were obtained in this work. Those bands were absent in the integrated spectra

for the sample prepared from gas mixture N2:He=1:100 as shown in Fig. 2.8a. In

this sample the ratio between oxygen and nitrogen molecules (O2/N2) (taking into

consideration the contamination of oxygen in the helium gas of 1 ppm) should be of
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order 10−4. We investigated the influence of increasing the relative oxygen content

in the nitrogen-helium gas mixtures on the luminescence spectra of the nitrogen-

helium samples during destruction. As can be seen from Fig. 2.8b, increasing the

ratio O2/N2 to 4×10−4 in the gas mixture N2:He=1:400 used for sample preparation

led to the appearance of the M bands of NO and the second Herzberg bands of O2

molecules in integrated luminescence spectra obtained during sample destruction.

Further increasing the ratio O2/N2 to 10−3 in the gas mixture N2:He=1:1000 pro-

vided evidence that most of the luminescence at the very end of sample destruction

occurs from oxygen atoms and oxygen-containing molecules (NO, O2) (see Fig. 2.8c).

It should be mentioned that the overall intensity of luminescence for the last sample

was one order magnitude smaller than that for sample prepared from gas mixture

N2:He=1:100.

The precise registrations of the luminescence spectra during the destruction of the

samples provide information about the emitting species. Table 2.1 list the positions of

the M- and β- bands of 14N16O and 15N16O molecules. Table 2.2 shows the positions of

V-K bands of 14N2 and 15N2 molecules. Tables 2.3 and 2.4 show the band positions of

the second Herzberg system and the bands corresponding to the transitions (c1Σ−u →

a1∆g) of O2 molecules. Comparisons between the experimentally observed N2, NO

and O2 band positions with the results of previous work [35, 36, 71, 72, 73] actually

lead us to conclude that the species emitting light in our experiments were indeed

in a N2 matrix. Emission spectra of NO/N2 system have been reported earlier using

direct depostion of nitrogen from an electrical discharge [26, 21] as well as after

excitation by electronic impact on O2 doped N2 solids [74], and also after excitation

of NO doped N2 solids by VUV lamps [75], by synchrotron radiation or an ArF

laser.[71]
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The effects of increasing emissions from NO and O2 molecules in the samples

prepared mainly from N2 molecules and N atoms are of special interest. First, let us

consider an analysis of the nanocluster compositions. Nanoclusters were formed in

the cold helium gas upon injection of the products of a nitrogen-helium gas phase

discharge through the surface of superfluid helium. In the gas mixture N2:He=1:100

a small quantity of oxygen is present. The ratio of O2 to N2 is equal to 10−4. For

such a small content of the oxygen in helium gas (10−6) all oxygen molecules should

be dissociated in discharge. The dissociation efficiency of N molecules is also high

(of order 30%).[5] Part of the nitrogen atoms recombined in the cold dense helium

gas, producing the so-called nitrogen afterglow in the jet. We can suggest that the

recombination of N and O atoms can only rarely occur in the gas phase to produce

NO molecules. NO molecules have a high van-der Waals interaction and become the

centers of formation of nanoclusters, which contain mostly N2 molecules and also

small quantities of N and O atoms. From the results of x-ray and ESR investigations

of nitrogen-helium condensates, we can estimate the composition of the nanoclusters.

As was mentioned earlier, the density of the impurities is of order 1020 cm−3 and the

average size of nanoclusters is equal to 5 nm. This allows an estimate of the number

of molecules in the nanocluster to be ∼ 5000 and the concentration of nanoclusters to

be ∼ 2×1016cm−3. It is known from ESR experiments that ratio N/N2 in the sample

is approximately equal to 10%.[6] This means that on average 500 nitrogen atoms

should be in each cluster. The quantity of O atoms in one cluster should be equal

to 5000 × 10−4 = 0.5. On average each two clusters should have one oxygen atom.

Summarizing the above arguments, we can conclude that each cluster in as-prepared

samples contain on average of ∼4500 N2 molecules and 500 N atoms. The O atom

could be found in half of the nanoclusters and the NO molecules could be found even
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more rarely in the nanoclusters of as-prepared samples. In the nanoclusters where

the NO molecules are present they reside in the centers of nanoclusters, whereas the

N and O atoms mostly occupied the surfaces of nanoclusters.

The structure and content of the nanoclusters makes it possible to understand the

observed dynamics of sample luminescence. At the initial stage of sample destruc-

tion, diffusion of N atoms led to their recombination and formation of metastable

N2(A
3Σ+

u ) molecules. The energy from these molecules is delivered to N and O atoms

stabilized in the upper layers of an N2 cluster. At the same time the nanoclusters

fused together forming larger crystallites.[4] Some N atoms and N2 molecules subli-

mate from the surfaces of nanoclusters when the temperature had risen substantially.

Further increases in the temperature speed up the diffusion rate of atomic nitrogen

and provide even more efficient recombination of N atoms and further growth in the

sizes of crystallites. As a result the concentration of metastable N2 (A3Σ+
u ) molecules

increased leading to an increase of Vegard-Kaplan N2 molecular emissions. At this

stage the excitation of NO molecules stabilized at the centers of clusters also became

possible as well as the formation of new NO molecules due to recombination of N

and O atoms, leading to the appearance of NO molecular emission. The following

processes are responsible for the formation of the NO excited states and the emission:

N2(A
3Σ+

u ) +NO(X2Π)→ N2(X
1Σ+

g ) +NO(a4Π); (2.23)

N(4S) +O(3P )→ NO(a4Π); (2.24)

NO(a4Π)→ NO(X2Π) + hν (M -bands); (2.25)

N2(A
3Σ+

u ) +NO(X2Π)→ N2(X
1Σ+

g ) +NO(B2Π); (2.26)
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N(2D) +O(3P )→ NO(B2Π); (2.27)

NO(B2Π)→ NO(X2Π) + hν (β-bands). (2.28)

The quenching of metastable N2(A
3Σ+

u ) due to the excitation of NO molecules

was studied by Piper et al.[76] After formation, the NO molecules remained in the

nanoclusters due to the higher value of their van-der-Waals interaction compared to

that of all other species in the nanoclusters, providing a mechanism for keeping oxy-

gen in the samples. We think that this is the main process for preventing the escape

of O atoms initially present in the sample and the accumulation of NO molecules in

the nanoclusters. At the final stage of destruction the chain reactions of N atoms

lead to a high efficiency of excitation for all species in the sample. At this stage the

emission from the species with shorter lifetimes such as O atoms and NO molecules

became more efficient. The appearance of the emissions from O2 molecules at the

end of destruction is very unusual. It might be explained as result of recombination

of two O atoms. How can two oxygen atoms find each other in the sample with

substantially larger concentrations of N atoms? These events have a very low prob-

ability. All of the single O atoms should meet N atoms in the sample and form NO

molecules. The appearance of pairs of O atoms in close vicinity might be a conse-

quence of the appearance of (NO)2 dimers in the sample. If temperature inside the

growing clusters increases to ∼ 26 K, the process of dimerization of NO molecules

in N2 matrix becomes very efficient.[77] The increase in local temperature inside the

nanoclusters (above the average temperature as measured by thermometer) was pos-

sible due to the recombination of N atoms in the nanoclusters. The (NO)2 dimers can

react with two N atoms resulting in the release of two oxygen atoms and two nitrogen

molecules. Being formed in close vicinity to each other, these two oxygen atoms can

recombine, forming excited O2 molecules which provide the emissions recorded at
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the end of destruction, as indicated below:

O(3P ) +O(3P )→ O2(c
1Σ−u ); (2.29)

O2(c
1Σ−u )→ O2(X

3Σ−g ) + hν; (2.30)

O2(c
1Σ−u )→ O2(a

1∆g) + hν. (2.31)

Another possibility to explain the appearance of excited O2 molecules involves

the transfer of excitation from N2(A
3Σ+

u ) molecules to (NO)2 dimers, leading to the

formation of two NO molecules. Following the reaction of NO molecules with N

atoms[78], two O atoms can also be produced in close vicinity. These pairs of O

atoms can recombine and create excited states of O2 molecules.
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3. QUANTUM VORTICES AND THERMALLY INDUCED LUMINESCENCE

OF NITROGEN NANOCLUSTERS IMMERSED IN LIQUID HELIUM

We studied thermoluminescence of ensembles of molecular nitrogen nanoclusters,

containing stabilized nitrogen atoms, immersed in liquid helium. We obtained exper-

imental evidence for quantum vortex induced chemical reactions for nitrogen atoms

in HeII leading to the appearance of luminescence. Thermoluminescence was also

observed in HeI due to the process of nanocluster association resulting in thermal

explosions of a small fraction of nanoclusters. This research opens new possibilities

for studying a broad range of chemical reactions initiated by quantum vortices in

HeII and for studying quantum turbulence in porous materials.

3.1 Theoretical background

In this section, we will introduce a brief physical properties of liquid helium and

superfluidity, the two-fluid model and quantum vortices. It will help us to explain

the effects taking place in the experiments, such as thermoluminescence which was

observed in He I and He II.

3.1.1 He I and He II

In the experiments we start with helium-4 above 2.17K which is the normal liquid

with characteristics behaving like a Newtonian fluid. As shown in a phase diagram

figure 3.1, He I boils at 4.2 K at atmospheric pressure, and compare to the all other

substances, the solid state is only obtainable in helium at pressure above 25 bar.

When He I is cooled to a lower temperature, a phase transition occurs across so-called

λ-point of 4He in the phase diagram. The transition occurs at the temperature of
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Figure 3.1: Phase diagraam of 4He.
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2.177 K under the saturated vapor pressure of liquid helium. As shown by the specific

heat in figure 3.2, the name lambda-line comes due to the temperature plot which

is resemble to the Greek letter λ. We have performed the experiments described in

this work mostly at very low temperatures. Below the λ-line the liquid is known

as superfluid helium which is mostly referred to as He II. The superfluid state has

remarkable properties such as zero viscosity, and zero entropy, and an extraordinary

high thermal conductivity, though He II shows all these truly exceptional property

only at absolute zero. Another remarkable feature of the new state is the appearance

of vortices with quantized circulation.

3.1.2 The two-fluid model and quantum vortices

Below the λ-point the liquid is not purely a superfluid as long as for temperatures

above absolute zero. He II can be regarded as two interpenetrating fluids: a normal

fluid and superfluid with different velocity fields and density, νn and ρn and νs and

ρs, respectively. The sum of the densities of the two liquids gives the total density

of the liquid: ρ = ρs + ρn. Laszlo Tisza first propsed the two-fluid model and Dingle

presents this model as shown in figure 3.3. The ratios of the respective densities

ρs/ρ and ρn/ρ vary with temperature in the way shown in figure 3.3. Below 1 K the

helium is almost pure superfluid phase. On the other hand, at the lambda point He

II is completely normal fluid.

According to Landau, the equation of motion for two fluid system can be found

as

ρn
∂νn
∂t

= −ρn
ρ
∇P + ρsS∇T + η∇2νn (3.1)

ρs
∂νs
∂t

= −ρs
ρ
∇P − ρsS∇2νn (3.2)
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Figure 3.2: Heat capacity of 4He at saturated vapor pressure as function of the
temperature.
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Figure 3.3: Temperature dependence of the relative normal and superfluid compo-
nents ρs/ρ and ρn/ρ as functions of T.
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where S is entropy, P pressure, η viscosity, and T temperature.

Due to the the quantum mechanical probability current
−→
j , the flow is completely

irrotational in the bulk of the superfluid helium;

−→
j =

~
2mi

(Ψ∗∇Ψ−Ψ∇Ψ∗), (3.3)

Here ~ is the Planck constant, m is the particle mass, and i is the imaginary

unit. When we insert the Madelung transform Ψ =
√
ρse

iφ, where ρs represents the

number density of the superfluid helium part, and ψ is the order parameter’s phase.

−→
j can be expressed as;

−→
j =

~ρs
m
∇φ, (3.4)

This probability current is the mass flux per unit area, in units of kg/(sm2). To

obtain the superfluid velocity field, divide by the superfluid density;

−→νs =
~
m
∇φ, (3.5)

As a result,

∇×−→νs = ∇× (
~
m
∇φ) = 0. (3.6)

This equations yields the result that the vorticity of the superflow is zero everywhere

in the fluid. It was not correct totally at any point in the fluid since the superfluid

can have circulation.

According to the Stokes theorem, ∇×−→νs = 0 can be expressed as

∮
νsdr = 0, (3.7)
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where the integration is taken any contour in the fluid. However, we can rewrite the

above expression in terms of the superfluid velocity, and the complex field Ψ that

remains single valued if the macroscopic phase φ changes by ±2πn, where n is an

integer. ∮
c

−→νs ·
−→
dl =

∮
c

(
~
m
∇φ) ·

−→
dl =

~
m

(2π)n, n = 0, 1, 2.... (3.8)

As a result, for n = 0 the circulation is zero, and for the case of n = 1 we named

this feature quantized vortex.

Where (3.8)

κ0 =
2πh

m
, (3.9)

is the quantum circulation with κ0 = 9.97× 10−8m2/s in He-4.

According to the two-fluid model, heat transport through superfluid helium is as

follows; basically, heat is transported by opposing superfluid flow and normal fluid

flow giving a counterflow. Superfluid part rushes toward at the hot surface where

it receives energy, and as a result it is converted to normal state. A very effective

way of transporting heat due to the counter flow of the two fluids for He II leads to

an immense effective thermal conductivity. The counterflow can be characterized by

νns which is the difference in velocities between the normal fluid and the superfluid

parts averaged over time and space.[79] Tough et al.[80] shows that the flow becomes

unsteady at counterflow velocities of a few mm/s for small channels. Superflow

becomes turbulent above a certain critical heat flux. The critical velocity νc ∼

0.2cm/s is temperature independent. Vortex lines are generated and the vortex line

density is  L1/2 = γ(T )(ν − νc), where ν is the mean superflow velocity and the

coefficient γ(T ) has been measured experimentally.[81]
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3.2 Experimental setup and method

The sample preparation method in this section is almost the same as the one

described in previous section. The main difference is that the experimental setup

enables simultaneous electron spin resonance (ESR) and optical studies of nanoclus-

ters with stabilized free radicals. The ESR measurements were collected on a Bruker

spectrometer operating in the X-band (8.91GHz). The cryogenic fluids are contained

in a Janis Super VariTemp (SVT) liquid helium cryostat, whose tail was centered

between the pole faces of a homogeneous Varian 7800 electromagnet (see figure 3.4).

The Janis cryostat incorporated in a variable temperature insert (VTI), which is

thermally insulated from the main 4K helium bath. The main helium bath and VTI

are connected via a needle valve which allows helium flow from the main reservoir

into the VTI. Figure 3.5 shows a homemade insert for sample formation and optical

and ESR investigations of atoms contained in the IHCs. ESR measurements were

taken for samples immersed in superfluid helium at ∼ 1.32 K which can be achieved

by pumping on the VTI with a roots blower backed by a mechanical pump. Gas

mixtures containing N2 and (Ne, Ar and Kr) atoms along with helium gas were

prepared in a container at room temperature and transported through Mass Flow

Controller (a Brooks Model 5850E) with a constant flux of 5×1019 particles/sec to

the cryogenic region. When the prepared gas mixtures pass through a quartz capil-

lary surrounding by liquid nitrogen, high-power radio-frequency (f∼53 Mhz, power∼

75 W) was applied to electrodes which were placed around the lower portion of the

capillary to dissociate the nitrogen molecules into atomic free radicals. The pres-

ence of the helium gas in the gas mixture increase the efficiency of dissociation of the

N2 molecules in the discharge due to interaction between the energetic metastable

helium atoms and impurity atoms. A gas jet was created as the mixed gases passed
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Figure 3.4: Magnet and cryostat front view.
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Figure 3.5: Low temperature insert for VTI used in the ESR investigation of IHCs.
1- quartz capillary, 2- tubes for displacement of the beaker in vertical direction, 3-
liquid nitrogen, 4- quartz tube, 5- discharge electrodes, 6- orifice, 7- teflon blade, 8-
sample collection beaker, 9- beaker rotation gear, 10- modulation coil, 11- horizontal
slits on cavity, 12- ruby crystal 13- fountain pump.
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through an orifice with diameter 0.75 mm at the bottom of the quartz capillary. The

jet impinged on the surface of superfluid helium placed in a small beaker below an

orifice at the capillary outlet at a distance of 2.5 cm between the orifice and the top

of the beaker. A fountain pump placed at the bottom of the liquid helium bath in

the VTI maintained a constant level of superfluid helium in the beaker. Once the

jet meets cold helium vapor evaporating from the liquid helium, formation of nan-

oclusters containing nitrogen molecules and N and O atoms trapped in the clusters

took place. The presence of oxygen in the samples is due to the small contamination

of oxygen in the helium (1ppm) gas. The jet penetrated through the superfluid He

surface and a gel-like sample was created. This process continued as sample was

accumulated on the conical part of the beaker. A set of teflon blades was employed

to scrape the sample from the walls of the funnel while the beaker was rotated so

that all of the sample collected onto funnel surface fell into the cylindrical part of

the beaker. Sample accumulation lasted 10 min. During the sample formation, the

temperature was 1.5 K which was maintained with the aid of the needle valve.

Once we have ∼ 0.3-0.4 cm3 of sample in the cylindrical part of the beaker,

sample accumulation was terminated, and the beaker was lowered into the ESR

cavity by a pair of sliding tubes. The lower part of the cryostat with the experimental

cell is shown in figure 3.5. The cavity operating in the TE011 mode was situated

at the bottom of the cryostat in the center of an electromagnet, allowing optical

access to the sample. ESR signals were typically detected for samples immersed in

superfluid helium at ∼1.32 K. The level of liquid helium in the sample tube was

measured by a superconducting wire sensor connected to an LM500 level meter. The

modulation frequency was set at 100 kHz, and derivatives of the ESR absorption

lines were obtained at magnetic field ∼0.32 T by a lock-in amplifier. For recording
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Figure 3.6: Schematic of the set-up for electron spin resonance and spectroscopic
study of the ensembles of nanoclusters immersed in liquid helium. 1-sample tube
containing the main helium bath, 2-level of liquid helium in the sample tube, 3-
quartz beaker, 4-sample, 5-microwave cavity with optical access, 6-quartz windows,
7- ruby crystal, 8-fountain pump, 9-liquid nitrogen shield, 10-thermometer, 11-lens
for collecting light from the sample.
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the ESR spectra of stabilized atoms we used a Bruker EPR EMX console. ESR

measurements were initially performed to provide an estimate of the average and

local concentrations of N(4S) atoms. After that, we ceased the pumping on the

helium vapor from the sample reservoir, and let the temperature rise from T∼ 1.32 to

2.16 K. The temperature of the sample was recorded with a germanium thermometer

attached to the top of the cavity. Warming up the nitrogen-helium condensates led to

intense thermoluminescence. The emitted light passes through the fused silica quartz

cylinder in the cavity, then through the holes in the microwave cavity, and finally

through the quartz window in the cryostat. The window material and the fused silica

quartz are transparent for the wavelength range 200-1100nm. In this experiment,

the luminescence from the sample was collected by a lens attached to the end of

an optical fiber (see 11 on Fig.3.6).The fiber then transfers light to the entrance of

the Andor spectrometer. The Shamrock SR-500i Andor spectrometer with a 0.52 nm

(1st grating) resolution, was equipped with a cooled EM-CCD (Newton 970) camera.

The emission specrta are detected by the Andor spectrometer with a 150 lines/nm

grating (blaze wavelength 500 nm), and a wavelenght range of 340 nm (mostly λ

nm= 240-580 nm) with a Newton CCD detector unit cooled to -60 C. During the

sample warm up, the registration times of spectra were 50 ms. We opened the main

pumping line just before passing the λ-point and cooled down the liquid helium

with the sample to an initial temperature T∼ 1.32 K and then would perform ESR

registration.
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Table 3.1: Average concentration of N atoms in the samples prepared from different
nitrogen-helium gas mixtures.

Gas mixtures [14N2]/[He] Average concentration, cm−3

1/100 5.09×1018

1/400 2.47×1018

1/800 1.21×1018
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3.3 Experimental results and discussion

3.3.1 ESR measurements of nitrogen atoms stabilized in N-N2-He sam-

ples immersed in superfluid helium

The ESR method can provide the spectroscopic signature for N atoms stabilized

in solid matrices. Linewidth, hyperfine splitting and g-factor can be obtained from

the shape and position of the ESR spectra. From this data, the average and local

concentration of N atoms were determined in our work. To obtain the average

concentration of N(4S), we permanently placed a ruby crystal at the bottom of the

microwave cavity (see figure 3.5), and the calibration of the signal from ruby crystal

was made by reference to a diphenyl-picrylhydrazil (DPPH), sample with a known

number of spins ∼ 2.4·1017. We thus used the ruby crystal as a secondary standard.

The average concentrations of N(4S) were calculated by comparison between double

integrals of ESR signals of the N(4S) atoms and that from ruby signals under the

same experimental conditions. Table 3.1 shows the average concentrations of N atoms

stabilized in the samples prepared from different nitrogen-helium gas mixtures.

We also determined the local concentration of N atoms from the broadening of

the ESR spectra. The characteristic features of the ESR spectra of N atoms in

as-prepared samples of nitrogen-helium condensates are the broad wings and weak

triplet at the central part. All these features of the spectra were fitted with a sum

of three triplets of Lorentzian lines, as shown in figure 3.7. The fitting process was

performed by a Graphic User Interface (GUI) program written in Matlab. This GUI

program can simulate the experimental signal using up to eight Lorentzian/Gaussian

function components. It automatically searches for the best hyperfine splitting con-

stant and line-width corresponding to each triplet. When the difference between
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the simulated and experimental curves becomes minimal, the program stops search-

ing and gives the corresponding parameters. Figure 3.7(a) shows an experimen-

tal ESR spectrum for N atoms in the collection of nanoclusters prepared from the

[14N2]/[He]=1/100 gas mixture, and the sum of the three fitting triplets which pro-

vide a rather good agreement to the experimental spectra. Figure 3.7(b) shows three

fitting lines composed from the triplets with different hyperfine splittings and line

widths. Each of the triplets is assigned to atoms in specific environments. A similar

analysis was performed on all spectra obtained for samples prepared from different

nitrogen-helium gas mixtures. The results of this analysis are presented in Table 3.2.

The local concentrations of N atoms were obtained[82] from equation

∆Hpp = 2.3gµ0

√
S(S + 1)nl, (3.10)

(3.10) was modified for N atoms ( nl=5.4 · 1018 ∆Hpp) where ∆Hpp is the peak to

peak width of the ESR lines in Gauss, and nl is the local concentration of the atoms

per cm3. In a previous study, it has been found that the spectrum with larger line

widths belongs to the N atoms located on the surface of the N2 nanoclusters, and the

smaller line width can be assigned to N atoms stabilized inside the N2 nanoclusters.

From the results obtained for different nitrogen-helium samples, we can conclude

that decreasing the size of the nanoclusters by reducing content of N2 molecules in a

condensed nitrogen-helium gas mixture leads to increasing of local concentration of

N atoms residing on the surfaces of the N2 nanoclusters.

59



Table 3.2: Hyperfine constants, A, peak to peak line widths, ∆Hpp, and local
concentrations of N atoms in nitrogen-helium condensates obtained from ESR line
fittings.

Gas mixtures, Curve type A, G ∆Hpp, G Local concentration, Weight, %
N2:He nN cm−3

1:100 Lorentzian 4.00 19.1 1.03-1020 77.9
Lorentzian 4.20 8.7 4.69-1019 18.4
Lorentzian 4.10 3.2 1.73-1019 3.7

1:400 Lorentzian 4.00 24.7 1.33-1020 80.2
Lorentzian 4.20 10.1 5.45-1019 19.8

1:800 Lorentzian 4.00 35.2 1.90-1020 67.2
Lorentzian 4.20 12.5 6.75-1019 32.8
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Figure 3.7: Experimental ESR spectrum of N atoms for an as-prepared nitrogen-
helium sample formed by the [14N2]/[He]=1/100 gas mixture is shown as a black
line with open-triangles (a). The sum of the fitting lines is shown as red line with
circles (a). Three triplet of fitting lines used for decomposing the experimental ESR
spectrum are shown in (b): blue line with circles is a triplet of Lorentzian lines with
the width 3.2 G, red line with open triangles is a triplet of Lorentzian lines with the
width 8.7 G, black line with squares is a triplet of Lorentzian lines with the width
19.1 G.
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3.3.2 Studies of thermoluminescence during warming up of N-N2-He

samples immersed in superfluid helium

We warmed up the samples immersed in liquid helium, by closing off the pumping

of helium vapors from the sample tube and waited as the temperature rose from T

∼ 1.2 to 2.16 K. After that we pressurized the cryostat with helium gas to 780 torr

and waited as temperature of the sample increased to 4.4 K. Then we opened the

main pumping line and cooled down the liquid helium along with the sample to T ∼

1.32 K. Usually warming up to T ∼ 2.16 K lasted ∼ 8 min and warming up to T ∼

4.4 K lasted ∼ 35 min. The level of liquid helium in the sample tube was measured

by a superconducting wire sensor connected to an LM500 level meter.

We studied the thermoluminescence of nitrogen-helium condensates containing

stabilized nitrogen atoms during the entire temperature sweeps. Warming up the

nitrogen-helium condensates led to intense luminescence. Figure 3.8a shows the dy-

namics of thermoluminescence of a nitrogen-helium sample prepared from the gas

mixture [N2]:[He] =1:400 in the spectral range of 260 - 600 nm. The integrated in-

tensity of the spectra obtained during the thermoluminescence process is shown in

figure 3.8b. The α-group, the α′-group of nitrogen atoms, the β-group of oxygen

atoms and Vegard-Kaplan (VK) bands of N2 molecules are present in the spectra.

The α-group corresponds to the 2D →4S transition of nitrogen atoms, the β-group

corresponds to the 1S→1D transition of oxygen atoms and the V-K band corresponds

to transitions A3Σ+
u → X1Σ+

g of N2 molecules.[62] Figure 3.8c shows the time depen-

dence of α-group and β-group intensities during warming from 1.2 to 4.4 K. There

are two intensity maxima of luminescence in this temperature range. The first maxi-

mum occurs in superfluid helium at T ∼ 1.9 K and the second one appears in normal

helium at T ∼ 3.25 K. In order to understand the nature of the appearance of two
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Figure 3.8: Thermoluminescence of nitrogen - helium sample immersed in liquid
helium. a) Dynamics of thermoluminescence spectra of nitrogen-helium sample dur-
ing warming up from 1.3 to 4.4 K. Each spectrum in the figure is a sum of 10
spectra taken with exposure time 10 ms. Sample was prepared from gas mixture
[14N2]/[He]=1/400. b) Integrated thermoluminescence spectra obtained during en-
tire warming process. Inset shows spectrum of the α-group obtained with the spectral
resolution 0.05 nm. c) Time dependence of sample temperature (1). Vertical arrow
shows a position of λ-point. Time dependence of thermoluminescence intensity for
nitrogen (2) and oxygen(3) atoms.
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Figure 3.9: Temperature dependence of thermoluminescence of nitrogen-helium con-
densates. a) Thermoluminescence of nitrogen atoms during warming up from 1.25 to
2.15 K for as prepared sample - 1, during second warming - 2, during third warming -
3, during fourth warming - 4. Heat conductivity function for turbulent HeII - 5.[83].
b) Thermoluminescence of nitrogen (1) and oxygen (2) atoms during warming up
from 1.25 to 4.4 K of as prepared sample and during second warming (3) and (4),
correspondingly. Samples were prepared from gas mixture [14N2]/[He]=1/100.

64



maxima in the intensity of thermoluminescence, we studied of the behavior of the

samples during cycling of warming up and cooling down of the samples immersed in

liquid helium. Figure 3.9a shows the dependence of the thermoluminescence during

four consecutive warm ups after subsequent cool downs cycles of a sample immersed

in superfluid helium from 1.3 to 2.16 K. Figure 3.9a shows that the thermolumi-

nescence intensity for each successive warming process is completely different. The

thermoluminescence starts at a higher temperature and monotonically increases with

increasing temperature. Also the intensity of thermoluminescence became smaller for

each successive warming process. Next, we studied the temperature dependence of

thermoluminescence of a nitrogen-helium sample during the two consecutive warming

up processes over an even broader temperature range from 1.2 to 4.4 K and cooling

back (see Fig. 3.9b). In this case, during the first warming up of the as-prepared

sample, the thermoluminescence intensity has two maxima. However, during the

second warm up, the thermoluminescence only starts at a higher temperature, T ∼

4.1 K, which is close to the final temperature (T ∼ 4.4) achieved in the first warming,

and monotonically increases with temperature (see figure 3.9b).

We assigned the appearance of thermoluminescence to the recombination of ni-

trogen atoms stabilized in nanoclusters. We performed ESR experiments on the

behavior of N atoms during the process of warming the samples immersed in liquid

helium.The ESR spectra of N(4S) atoms were obtained for three different samples at

temperature T ∼ 1.32 K, just before warming the samples and again after cycles of

warming up to temperatures of either 2.16 K or 4.4 K followed by cooling down to T

∼ 1.2 K. It was found that annealing of the samples to 2.16 K does not change the

ESR signals. However, annealing of the samples to 4.4 K resulted in an increase of

the ESR signals for two of the samples but does not change the signal of the sample
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Figure 3.10: Comparison of the ESR spectra for as-prepared samples (black) and
after warming to 4.4 K (red). Spectra were obtained for samples prepared from
nitrogen-helium mixtures [N2] :[He] = 1:100 (a), 1:400 (b) and 1:800 (c).
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prepared from the [N2] :[He] = 1:800 gas mixture(see figure 3.10). All of the samples

studied contained high concentrations of stabilized nitrogen atoms. We recorded

the ESR spectra of N atoms with the average concentrations in the range between

1 · 1018 cm−3 and 5 · 1018 cm−3 and the local concentrations of atoms which were

mostly residing on the surfaces of nanoclusters were even larger (1− 2) · 1020 cm−3.

The ESR measurements show that high concentrations of N atoms do not changed

during the process of warming samples in liquid helium and do not show any sign of

N atom recombination.

We performed experiments to determine the absolute number of photons emitted

from the sample prepared from gas mixture [14N2]/[He]=1/400 during the entire

process of warming from 1.2 to 4.4 K. A Hamamatsu photomultiplier tube (PMT)

R928 was used to detect the emitted light. Figure 3.11 illustrates the scheme for

collection of the emitted light from the sample located in the center of the cavity. The

emitted light passes along the fused silica quartz cylinder in the cavity, then through

the holes in the cavity, and finally through the quartz window in the cryostat. The

window material and the fused silica quartz are transparent for the wavelength range

200 nm-1100 nm. The emitted light was collected from the cell at an angle of 11.73◦,

and guided to the photon-multiplier tube with the help of the lens (f=100 mm). The

output of the PMT was fed into a LeCroy Waverunner 62Xi-A Oscilloscope. Figure

3.12 shows the time dependence of the PMT signal for the sample prepared from the

[14N2]/[He]=1/400 gas mixture during the process of warming. We also performed a

calibration of the PMT response to the light emitted from an Ocean Optics DH-2000

balanced halogen source with known output power (see Fig 3.13a.). For the PMT

calibration, we used a dichroic filter transmitting the specific portion of the spectrum

(see Fig 3.13b.). A low band-pass filter was also used to attenuate the signal. For
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the PMT with an applied voltage of 800 V, a filter with a transmission of 4.75%

was used to prevent overloading. After considering the effect of these two filters, the

TOTAL power radiated within a given wavelength range was measured to be equal

to 11.1 µW/cm2 (see Fig 3.13c.). Since at the entrance of the source we used a cosine

corrector with 39 micron diameter, the overall power reaching the tube is equal to

1.32×10−4 µW. For this amount of radiated light to the tube, the read out on the

scope was 3.1 V.

This result indicated that, the signal with amplitude 1 Volt on the scope corre-

sponds to 4.27×10−5 µW power of light irradiated onto the tube. From Figure 3.12,

the integrated signal was calculated as 2411 V·s during the ENTIRE warming of the

sample. We collected only the part of the emission from the sample in the solid angle

dΩ which can be estimated from the formula:

dΩ =
πr2

R2
= 0.033, (3.11)

where above r=1.57 cm is the radius of the circle on the lens which is illuminated, and

R=15.3 cm is the distance between the lens and light source. The total energy of the

radiated light from the sample during the entire warming period can be calculated

as follows:

4.27× 10−5
µW

V
× 2411V · s× 4π

dΩ
= 3.92× 10−5J, (3.12)

We consider that the most intense emission was from the α-group of nitrogen

atoms at λ ∼ 523 nm, and the energy of a photon at 523nm is 3.8×10−19 J. We

can find the number of emitted photons by dividing the total energy of radiated

light from the sample by the quantum of energy of a photon at 523 nm. From these
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considerations, the total number of emitted photons from the sample during the

entire process of warming up, was found to be ∼1×1014.

This fact means that only a small fraction (∼4·10−5) of all atoms participated in

processes generating luminescence. The integrated intensity of thermoluminescence

in HeII is approximately one order magnitude less than that in HeI, leading us to

the estimate that an even smaller fraction of nitrogen atoms (∼4·10−6) recombine

in HeII. Such small magnitudes of changes of N atom concentrations can not be

determined by the ESR method.

Thermoluminescence of samples in HeI can be explained by thermal explosions

of a small fraction of the nanoclusters initiated by the process of association of

nanoclusters. It has been observed in X ray experiments that the nanoclusters grow

during warming in HeI[2, 84, 29]. Thus the density of the porous material increases.

The increase of the ESR signals of N atoms during samples warming in HeI, observed

in this work, also indicate increase of the density of the sample due to the entrance of

additional sample material which was initially accumulated in the beaker above the

sensitive zone of the ESR cavity. The growth of the nanoclusters and collapsing of

the pores in the samples in HeI led to their compression. As the nanoclusters make

contact, N atoms on the surfaces recombine, eventually, leading to recombination

of other N atoms contained in these nanoclusters. The poor thermal conductivity

of liquid helium above Tλ does not allow the heat, released as a result of chemical

reactions, to spread rapidly to other nanoclusters.

The observation of thermoluminescence in HeII is an unusual phenomenon even

if we consider that nitrogen-helium condensates contain a high density of stored en-

ergy. Existing explanations of this phenomenon as a result of association of N(2D)

atoms and N2 molecules in solidified helium[13] and electron-ion recombination of
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charged particles stored in the samples[59] are not supported enough by experimen-

tal evidence. We explain thermoluminescence in HeII as a result of recombination

of nitrogen atoms stabilized on the surfaces of nanoclusters. The process of atom

recombination might be initiated by quantum vortices. The temperature dependence

of thermoluminescence for an as-prepared sample is similar to the temperature de-

pendence of the thermal conductivity function due to turbulence in HeII (see curve 5

in figure 3.9a) and, more importantly, is similar to the temperature dependence of the

mutual friction between the normal and superfluid components of liquid helium.[83]

Mutual friction is responsible for the formation of quantum vortices in the counter-

flow of normal and superfluid components when heat flux is applied. Our estimate

of the heat flux during the process of warming up of our samples is 50 mW/cm2.This

value is larger than the critical value for the creation of turbulence in bulk HeII[79]

These facts provide evidence for the importance of the vortices formed in superfluid

helium for the initiation of the thermoluminescence of nitrogen atoms at such low

temperatures. Vortices can attract and capture in the vortex cores the strands of the

sample. The force arising in this process, as well as, the process of reconnection of

the vortices can lead to contacts of the surfaces of nanoclusters in different strands.

This is the first observation of chemical reactions initiated by vortices in superfluid

helium. Suppression of thermoluminescence during the second and later processes of

warming can be explained by a reduction in the number of available sites for recom-

bination of nitrogen atoms. This may be a consequence of the formation of chemical

bonds between adjacent nanoclusters during the first warm-up. It is clear why ther-

molumoinescence in HeII is less efficient than in HeI. After recombination of N atoms

the N2 molecules are formed at high vibrational states. The vibrational relaxation

of N2 molecules is rather slow (∼ 1 s)[85, 86] and the energy released can be eas-
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ily removed in superfluid helium[83] preventing thermal explosions of nanoclusters

containing stabilized nitrogen atoms.

The suggestion that we observed quantum vortices induced thermoluminescence

was also supported by experiments with ensembles of nanoclusters with different

sizes. Figure 3.14 shows the time dependence of thermoluminescence for samples

formed by nanoclusters with different average size. It is known that reducing the

ratio of concentration of the impurity relative to that of helium in the gas jet leads

to a decrease in the size of nanoclusters forming the samples.[16] Reducing the con-

centration of N2 molecules from 1% to 0.25% substantially increases the intensity of

luminescence of the sample. During the investigation of the sample prepared from an

even more dilute mixture, containing 0.125% of N2 molecules, we observed a thermal

explosion of nanoclusters inside HeII. The local concentration of N atoms stabilized

in this sample was equal to 2·1020 cm−3. The explosion provided an intense emission,

shown as a sharp peak on the red curve of Fig.3.14. Vortex induced recombination

of stabilized atoms in this sample results in the initiation of thermal explosions of

only a small fraction of the nanoclusters immersed in HeII as is indicated by the

small number of photons detected during the explosion. The ESR signal of N atoms

was almost unchanged. The peak observed at T ∼ 1.9 K might be a result of two

opposite trends; the frequency of thermal fluctuation increases exponentially with

temperature while the tension of vortex lines decreases (vanishing at 2.17K) hence,

the impact of vortex lines should be strongest somewhere between 1.6K and 2.17K.

Another piece of evidence that thermoluminescence is connected to the density of

the vortices in HeII was obtained from our investigations of the decay of thermolu-

minescence at constant temperatures T=1.82, 1.95, and 2.12 following step heating.

The nitrogen-helium sample was prepared from a gas mixture N2:He=1:400 at T ∼
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Figure 3.15: Kinetics of thermoluminescence intensity for nitrogen-helium sample
(blue-line), under step heating from 1.47K to 2.12K (green-line). Red dashed curves
were obtained by computer fitting of experimental results in accordance with a hy-
perbolic law. The sample was prepared from gas mixtures N2:He=1:400.
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1.5 K during ∼20 min of accumulation. After stopping the discharge, we waited

until the afterglow became weak. The sample was submerged inside superfluid he-

lium during the entire warming process. Increasing the temperature led to a strong

enhancement of the thermoluminescence. A typical dependence of the thermolu-

minescence intensity on the temperature of the nitrogen-helium sample during the

three-stage step heating is presented in figure 3.15. The time dependence of themolu-

minescence intensity (I) at constant temperature is best described by hyperbolic law

I∼t−1. A similar result for thermoluminescence decay was also observed in earlier

work.[13]. Thus the thermoluminescence decay is consistent with a hyperbolic law

decay of the vortex densities in superfluid helium.[87, 88] The long time decay of the

vortex density with similar characteristic time (hours) was observed in Ref.[88]. We

suggested that the long decay of the vortices occurred in the voids of the sample.

From the decay time of the luminescence observed in the experiment the size of the

voids in the sample was estimated as following:

τ =
10d2

κ
, (3.13)

where τ is vortex density relaxtion time, d is characteristic size, and κ is quantum

circulation given by

κ =
h

m4

= 10−3cm2s−1, (3.14)

where h is Planck’s constant and m4 is the mass of a 4He atom. As a result, the size

of the voids appears to be as large as ∼0.3cm.
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4. OPTICAL AND ELECTRON SPIN RESONANCE STUDIES OF

NITROGEN-RARE GASES-HELIUM CONDENSATES IMMERSED IN

SUPERFLUID HELIUM

Impurity-helium condensates created by injection of nitrogen atoms and

molecules as well as rare gas (RG) atoms (Ne, Ar and Kr) into superfluid 4He

have been studied via electron spin resonance (ESR) techniques and optical spec-

troscopy. Measurements of the ground-state spectroscopic parameters of nitrogen

atoms show that the nanoclusters have a shell structure. N and O atoms reside

in solid molecular layers of N2. These layers form on the surfaces of RG (Ar or

Kr) nanoclusters. We studied the dynamics of thermoluminescence spectra emitted

during the warming of porous N-N2-RG-He samples inside the superfluid helium. We

have shown an experimental evidence that quantum vortices may initiate chemical

reactions in porous ensembles of nanoclusters. Using this experimental approach,

it is possible to study chemical reactions of heavy atoms and molecules at very

low temperatures where normal diffusion and quantum tunneling in solid matrices

should not occur.

4.1 Experimental results

The experimental setup for preparing and investigating simultaneous electron spin

resonance (ESR) and optical studies of nanoclusters with stabilized free radicals,

immersed in liquid helium has been described in more detail in the section 3. In

this work, we again injected nitrogen atoms and molecules into superfluid 4He, but

additionally we injected rare gas (RG) atoms (Ne, Ar and Kr) into superfluid 4He.

First, we investigated the addition of rare atoms (Ne, Ar and Kr) to the condensed
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N2-He gas mixture on the efficiency of stabilization of N atoms in IHCs. Second,

we also investigated thermoluminescence dynamics during the warming of samples

immersed in superfluid helium.

4.1.1 ESR measurements

We performed ESR investigations of the samples formed by injecting the

[N2]:[Ne]:[He] and [N2]:[Ar]:[He] gas mixtures with different ratios into HeII. We be-

gin by describing of the effect of addition of Ne gas to the condensed nitrogen-helium

gas mixtures. The ratio of nitrogen molecules to neon atoms [N2]/[Ne] in the gas

mixtures were changed from 1/50 to 1/1. However, the ratio between the impurity

gas ([N2]+[Ne]) and He gas in the mixtures was fixed at 1/20. Figure 4.1 displays the

ESR spectra of N atoms in samples prepared from different nitrogen-neon-helium gas

mixtures. For the ESR spectra from [N2]/[Ne]: 1/1, 1/5, and 1/50 the amplitudes of

the signals were increased by a factor of 4, 2 and 1.3, respectively. We detected very

broad ESR spectra of N atoms stabilized in the sample prepared from gas mixture

[N2]:[Ne]:[He]=1:1:50. The increasing of the [N2]:[Ne] ratio in the condensed gas

mixture led to a increasing of the amplitude and decreasing of broadening of the N

atom signal. As we can see the Fig.4.1, the most resolved, spectra of N atoms were

obtained for the sample prepared from tha gas mixture [N2]:[Ne]:[He]=1:50:1000.

We also studied the effect of adding different quantities of Ar atoms into the

nitrogen-helium gas mixture on the efficiency of stabilization of N atoms in IHCs.

The ratio of nitrogen molecules to argon atoms [N2]/[Ar] in the gas mixture was

increased from 1/50 to 1/1. However, the ratio between impurity species ([N2]+[Ar])

and He in the gas mixture was fixed to 1/100. In Fig. 4.2, one can see that less

resolved ESR spectra are obtained for the sample prepared from the gas mixture
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Figure 4.1: Experimental ESR spectra of N atoms stabilized in sample prepared
from different nitrogen-neon-helium gaseous mixtures: [N2]:[Ne]:[He]=1:1:50 (a),
[N2]:[Ne]:[He]=1:5:100 (b), [N2]:[Ne]:[He]=1:20:400 (c), [N2]:[Ne]:[He]=1:50:1000 (d).
All spectra were obtained at 1.35 K.
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Figure 4.2: Experimental ESR spectra of N atoms stabilized in sample prepared
from different nitrogen-argon-helium gaseous mixtures: [N2]:[Ar]:[He]=1:1:200 (a),
[N2]:[Ar]:[He]=1:5:600 (b), [N2]:[Ar]:[He]=1:20:2000 (c), [N2]:[Ar]:[He]=1:50:5000 (d).
All spectra were obtained at 1.35 K.
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[N2]:[Ar]:[He]=1:5:600, and the amplitude of the signal is half the size compared to

the spectra obtained from the gas mixture [N2]:[Ar]:[He]=1:1:200. More resolved

ESR spectra of N atoms was detected for the sample prepared from the gas mixture

[N2]:[Ar]:[He]=1:1:200. Further the increases of the [N2]/[Ar] ratio to 1/20 and 1/50

led to even better resolved N atom signals. Finally, we investigated two types of

samples obtained by condensation of gaseous mixtures of different compositions:

[N2]:[He], and nitrogen-krypton-helium [N2]:[Kr]:[He]. We can estimate the average

concentration of N atoms in the samples by doubly integrating the derivatives of

the ESR signals of the N(4S) and comparing with ruby reference signals. Table 4.1

gives the conditions of sample preparation and the calculated average concentration

of N(4S) atoms as well as the efficiency of capturing of N atoms in the samples

obtained for different gas mixtures. It can be seen from Table 4.1 that adding neon

atoms to nitrogen-helium gas mixtures does not affect the efficiency of stabilization

of N atoms. However, the addition of the Ar atoms to nitrogen-helium gas mix-

ture led to an increase in the efficiency of stabilization of N atoms. The average

concentration of N atoms is equal to ∼ 5×1018 in the sample prepared from the

gas mixture [N2]:[He]=1:100, whereas for the sample prepared from the gas mixture

[N2]:[Ar]:[He]=1:1:200 the capturing efficiency is 4 times higher than that without

the addition of Ar atoms to N2-He gas mixture, and the average concentration of N

atoms in this sample is equal to ∼ 1×1019. It has also been found that addition of Kr

atoms to nitrogen-helium gas mixtures leads to even larger increase in the average

concentration of N atoms in the sample. For instance, for the [N2]:[He]=1:400 gas

mixture the average concentration of N(4S) atoms is ∼ 2.5×1018, whereas for the

[N2]:[Kr]:[He]=1:1:400 gas mixture it is ∼ 1×1019. Further increasing the addition

of Kr atoms to the condensed nitrogen-helium gas mixture led to further increasing
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Table 4.1: Experimental conditions for condensing IHCs, and average concentration
of N(4S) atoms in IHCs with capturing efficiency.

Gas mixture N2 Sample Average N atoms
Flow Accum. concent. Capture,

Rate/s time, s cm−3 Efficiency, %

[14N2]:[He]=1:100 5.00×1017 600 5.09×1018 1.0 %
[14N2]:[He]=1:400 1.25×1017 600 2.47×1018 1.95 %
[14N2]:[He]=1:800 6.25×1016 600 1.21×1018 1.90 %

[14N2]:[Ne]:[He]=1:1:50 1.00×1018 600 9.06×1018 0.9 %
[14N2]:[Ne]:[He]=1:5:100 5.00×1017 600 5.19×1018 1.0 %
[14N2]:[Ne]:[He]=1:20:400 1.25×1017 600 2.11×1018 1.7 %
[14N2]:[Ne]:[He]=1:50:1000 5.00×1016 600 1.56×1018 3.1 %

[14N2]:[Ar]:[He]=1:1:200 2.50×1017 600 9.85×1018 4.0 %
[14N2]:[Ar]:[He]=1:5:600 8.30×1016 600 5.96×1018 7.0 %
[14N2]:[Ar]:[He]=1:20:2000 2.50×1016 600 2.58×1018 10.0 %
[14N2]:[Ar]:[He]=1:50:5000 1.00×1016 600 2.00×1018 20.0 %

[14N2]:[Kr]:[He]=1:1:400 1.11×1017 600 9.93×1018 8.75 %
[14N2]:[Kr]:[He]=1:2:600 7.76×1016 600 2.16×1019 27.0 %
[14N2]:[Kr]:[He]=1:5:1200 4.25×1016 600 3.04×1019 70.0 %
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the efficiency of N atom capture. For samples prepared from [N2]:[Kr]:[He]=1:2:600

and [N2]:[Kr]:[He]=1:5:1200 gas mixtures the efficiencies of N atom capture are 27

% and 70 %, respectively.

Analysis of the shape and width of the ESR spectra can also provide valuable

information about structure of IHCs and matrix environments of stabilized nitrogen

atoms. ESR linewidths ∆Hpp, the local concentrations, and hyperfine constants A of

nitrogen atoms in N-Ne-He and N-Ar-He IHCs investigated in this work are shown

in Table 4.2. The dipole-dipole broadening due to the electron spin-spin interactions

between N atoms leads to broadening of ESR spectra of the N(4S) atoms. We

can determine the local concentration of N atoms in a specific environments by

having determined the width of an individual triplet of the spectrum. The local

concentrations of N atoms were obtained from equation as indicated earlier:

∆Hpp = 2.3gµ0

√
S(S + 1)nl, (4.1)

[82] (4.1) was modified for N atoms ( nl=5.4 · 1018 ∆Hpp) where ∆Hpp is the peak

to peak width of the ESR lines in Gauss, and nl is the local concentration of the

atoms per cm3. For determination of the width of individual components, and the

hyperfine splitting constant we employed a Graphic User Interface (GUI) program.

The fitting process by GUI program was described in more detail section 3. As is seen

in Fig. 4.3(a), Experimental ESR spectra of the nitrogen atoms can be convoluted as

a sum of three triplets of Lorentzian lines as shown previously. Each of the triplets is

assigned to N(4S) atoms stabilized in different environment. We might identify the

triplet (red-line) in Fig. 4.3(b) with N atoms trapped in the Ar matrix (A=4.30G);

the narrow triplet (blue-line) in Fig. 4.3(b) is assigned to the N atoms inside the N2

nanoclusters (A=4.20G); and the broad triplet (black-line) in Fig. 4.3(b) belongs to
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Table 4.2: Analysis of ESR spectra of N atoms for different N2/Ne/He and N2/Ar/He
samples, where A is the hyperfine structure constant, g corresponds to the g factors
for N atoms, and ∆Hpp is the peak to peak width.

Sample Curve A, G ∆Hpp Local Weight g
type concent. %

cm−3

[14N2]:[Ne]:[He]=1:1:50 L 4.12 28.47 1.54-1020 69 2.0021
L 4.10 10.54 5.69-1019 30.5 2.0021
L 4.20 1.34 7.24-1018 0.5 2.0021

[14N2]:[Ne]:[He]=1:5:100 L 4.12 23.94 1.29-1020 70.2 2.0025
L 4.10 9.23 4.98-1019 28.1 2.0025
L 4.20 1.61 8.69-1018 1.6 2.0025

[14N2]:[Ne]:[He]=1:20:400 L 4.12 26.58 9.19-1019 69.2 2.0022
L 4.10 8.50 4.17-1019 25 2.0022
L 4.20 3.20 9.40-1018 5.7 2.0022

[14N2]:[Ne]:[He]=1:50:1000 L 4.12 22.17 8.88-1019 73.1 2.0021
L 4.10 5.02 6.05-1019 22.6 2.0021
L 4.20 1.95 4.13-1019 4.2 2.0021

[14N2]:[Ar]:[He]=1:1:200 L 4.12 26.02 1.41-1020 76.5 2.0020
L 4.30 14.73 7.95-1019 19.6 2.0020
L 4.20 2.40 1.30-1019 3.8 2.0020

[14N2]:[Ar]:[He]=1:5:600 L 4.12 27.41 1.48-1020 79.6 2.0022
L 4.30 12.37 6.68-1019 18.8 2.0022
L 4.20 2.34 1.26-1018 1.5 2.0022

[14N2]:[Ar]:[He]=1:20:2000 L 4.12 14.33 7.74-1019 80.1 2.0020
L 4.30 6.95 3.75-1019 13.6 2.0020
L 4.20 1.19 6.43-1018 6.2 2.0020

[14N2]:[Ar]:[He]=1:50:5000 L 4.12 14.06 7.59-1019 70.9 2.0022
L 4.30 6.24 3.37-1019 20 2.0022
L 4.20 0.76 4.10-1018 9.1 2.0022
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Figure 4.3: Experimental ESR spectrum of N atoms for an as-prepared nitrogen-
helium sample formed from [14N2]/[Ar]/[He]=1//1/200 gas mixture is shown as a
black line with squares and the sum of the fitting lines is shown as red line with
circles (a). The three triplets of fitting lines used for deconvoluting the experimental
ESR spectrum are shown in (b): blue line with triangles is a triplet of Lorentzian
lines with the width 3.9 G, red line with circles is a triplet of Lorentzian lines with
the width 22.4 G, black line with squares is a triplet of Lorentzian lines with the
width 39.5 G.
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N atoms located on the surface of the N2 nanoclusters (A=4.12G), where A is the

hyperfine constant.

4.1.2 Studies of thermoluminescence during warming up of N-N2-Ne-He

and N-N2-Ar-He samples immersed in superfluid helium

We also studied thermoluminescence of N-N2-Ne-He and N-N2-Ar-He condensates

containing stabilized nitrogen atoms during the warming up from 1.35 K to 2.16 K.

After performing the registrations of ESR signals for as-prepared samples at T=1.35

K, the samples were heated to 2.16 K by ceasing pumping on the helium vapor. It is

worth noting that the samples remain inside the superfluid helium during the entire

period of warming up. Dynamics of the thermolumniesnce of a nitrogen-argon-helium

sample prepared from the gas mixture [N2]:[Ar]:[He]=1:1:200 is presented in Fig. 4.4

(a). Fig. 4.4(b) shows the integrated intensity of the spectra detected during the

thermoluminescence process. The integrated spectra consists of an intense Vegard-

Kaplan molecular band N2(A
3Σ+

u , 0 → X1Σ+
g , ν ′′ ), the luminescence of the α-group

of atomic nitrogen N(2D →4S), the β-group emission of atomic oxygen O(1S→1D).

In addition to above-mentioned bands, a weak β′′- groups of O atoms can be seen

as a result of N2 molecules being neighbors of the emitting O atoms. Fig. 4.4(c)

presents the time dependence of the α- group, the Vegard-Kaplan bands, and the

β-group intensities during warming from 1.32 K to 2.16K. It can be seen from Fig.

4.4(c), that there are a maxima of intensity of the luminescence at T ∼ 1.9 K for all

three lines.

The maxima at T ∼ 1.9 K in the intensity of thermoluminescence may hold

the key to understanding the nature of thermoluminescence at very low tempera-

tures. Therefore, we performed studies of the behavior of the thermoluminescence
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Figure 4.4: Thermoluminescence of nitrogen-argon-helium sample immersed in su-
perfluid helium. Sample was prepared from gas mixture [14N2]/[Ar]/[He]=1/1/200.
a) Dynamics of thermoluminescence spectra of the sample during warming up from
1.3 to 2.15 K. Each spectrum in the figure is a sum of 100 spectra taken with expo-
sure time 50 ms. b) Integrated thermoluminescence spectra obtained during entire
warming process. c) Time dependence of sample temperature (red-line). Time de-
pendence of thermoluminescence intensity for nitrogen molecules (black-line with
squares), nitrogen (blue-line with circles) and oxygen(magenta-line with triangles)
atoms.
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dynamics for the samples prepared from gaseous mixtures of different compositions.

Fig. 4.5 shows the temperature dependence of thermoluminescence for samples

formed by injecting the gas mixtures of [N2]:[Ar]:[He] with different ratios. In Fig.

4.5 intensity of thermoluminescence for the samples prepared from gas mixtures

[N2]:[Ar]:[He]=1/5/600 and [N2]:[Ar]:[He]=1/20/2000 were increased by a factor of

4 and 50, respectively. As one can see in Fig. 4.5 the position of the peak does

not change for the three temperature dependence. In addition, it should be em-

phasized that the temperature dependence of thermal conductivity function of HeII

due the turbulence (see in Fig. 4.5; green-line) fits fairly well with the temperature

dependence of thermoluminescence for an as-prepared sample.

We also investigated the effect of adding different quantities of Ne atoms to the

nitrogen-helium gas mixture on the behavior of the luminescence of N atoms in

IHCs. Fig. 4.6(a) presents the dynamics of the thermoluminescence of a nitrogen-

neon-helium sample prepared from the gas mixture [14N2]/[Ne]/[He]=1/1/100. The

integrated intensity of the spectra obtained during the thermoluminescence process

is shown in Fig. 4.6(b). Figure 4.6(c) shows the time dependence of intensity of

α-group and Vegard-Kaplan bands. The intensities of α-group and Vegard-Kaplan

bands for this sample are smaller due to lower the average concentration of N atoms

(5.00×1018) in contrast the sample formed from to 1/1/200 in the case of nitrogen-

argon-helium gas mixtures, where the average concentration of N atoms is equal to

10×1018. The integrated spectra of thermoluminescence of three different samples

which were formed from 14N2:Ne:He gas mixtures during warming up are shown in

Fig. 4.7. Although only α-, β- groups and Vegard-Kaplan bands are detected for

the sample prepared from the gas mixture [14N2]/[Ne]/[He]=1/1/100, in the case

of [14N2]/[Ne]/[He]=1/20/400 and [14N2]/[Ne]/[He]=1/50/1000 samples the spectra
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Figure 4.6: Thermoluminescence of nitrogen-neon-helium sample immersed in super-
fluid helium. Sample was prepared from gas mixture [14N2]/[Ne]/[He]=1/1/100. a)
Dynamics of thermoluminescence spectra of the sample during warming up from 1.3
to 2.15 K. Each spectrum in the figure is a sum of 100 spectra taken with exposure
time 50 ms. b) Integrated thermoluminescence spectra obtained during entire warm-
ing process. c) Time dependence of sample temperature (red-line). Time dependence
of thermoluminescence intensity for nitrogen molecules (blue-line with circles), ni-
trogen (black-line with squares).
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are half as intense, but in addition the bands of NO molecules are also present. In

the case of samples prepared from the gas mixture [14N2]/[Ne]/[He]=1/1/100 and

[14N2]/[Ne]/[He]=1/50/1000 the optical spectra were obtained in the spectral range

240-580 nm. The spectral range is 300-640 nm for the sample that was formed from

[14N2]/[Ne]/[He]=1/20/400 gas mixture. As can be seen from Fig. 4.7(b), the bands

at ∼ 589 nm and ∼ 629 nm are present in the spectrum. These bands were assigned

to the B3Π-A3Σ1 transition of N2 molecules. Figure 4.8 also shows the integrated

spectra of thermoluminescence of three different samples which were formed from

14N2:Ar:He gas mixtures during warming up.

The temperature dependence of thermoluminescence for samples formed by

injecting different gas mixtures of [14N2]:[Ne]:[He] are shown in Fig. 4.9. For the

temperature dependence of thermoluminescence from [14N2]:[Ne]:[He]=1/5/100,

1/20/400, and 1/50/1000 were increased by a factor of 4, and 2, respectively. Again

the maxima of the intensity of thermoluminescence is at T∼1.9 K for all studied

samples. This provides convincing evidence that the peak behavior has a common

cause for all the different samples.

4.2 Discussion

The results obtained by ESR spectroscopy for N2-Ne-He, N2-Ar-He and N2-Kr-

He solids and optical spectroscopy for N2-Ne-He, N2-Ar-He solids allow us to study

free radicals, molecules and nanoclusters stabilized in solidified helium. Impurity-

helium condensates (IHCs) are a new class of non-crystalline nanomaterials formed

by injecting a beam composed of helium and impurity gases into superfluid helium

4He. When the gas jet meets the surface of the superfluid helium, the formation of

nanoclusters each surrounded by one or two layers of solid helium due to Van der
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Waal forces aggregate inside superfluid helium. Matrix isolation of highly reactive

atoms in IHCs leads to high concentrations of these atoms. Upon the injection of

impurity particles in bulk superfluid helium, a shell structures of nanoclusters are

formed in such a way that heavier impurities form cores which are surrounded by

shells lighter impurities.

In the present work, we studied the effect of addition of rare gas (RG) atoms (Ne,

Ar, and Kr) to the condensed N2-He gas mixture on the efficiency of stabilization of

N atoms in IHCs. In experiments involving krypton-nitrogen-helium jets, high local

and average concentrations of N atoms were achieved.[31] The average concentration

of nitrogen atoms without addition of RG atoms to N2-He gas mixture is ∼1018

cm−3, and the efficiency of N atom capture for the N2:He=1:100 is 1% while for the

N2:He=1:400 and N2:He=1:800 gas mixtures the efficiencies of N atom capture are

∼ 2% (see Table 4.1). Decreasing the size of clusters by reducing the content of N2

relative to that of helium in the gas jet led to increase of the efficiency of N atom

capture. As one can see in Table 4.1, a small increase of the capturing efficiency by

the adding different quantities of neon atoms to the N2-He gas mixtures might be also

explained due to the differences in size of nanoclusters. However, the results of the

measurements of the average concentrations of N atoms in N2-Ar-He and N2-Kr-He

condensates shows that argon and especially krypton atoms play very important role,

for increasing in the overall efficiency of stabilization of N atoms. Previous studies

of H-H2-Kr-He and D-D2-Kr-He condensates demonstrated [11, 89] that the addition

of Kr atoms to the condensed H2-He or D2-He gas mixture leads to a substantial

increase in the average concentration of impurity atoms in the sample.

As one can see from table 4.3, as the size of the noble gas atoms increases,

the melting temperature of the noble gases also increases. In addition, the melting
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Table 4.3: The noble gases and other gases

Element Melting Atomic Relative molar/
temperature/oC Number Molecular mass

He -272at 26 atm 2 4
Ne -249 10 20
Ar -189 18 40
Kr -157 36 84
Xe -112 54 131
O2 -218 - 32
N2 -210 - 28
NO -164 - 30
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temperature of N2 and O2 molecules are lower than melting temperature of Ar, Kr

and Xe atoms, but higher than for Ne atoms. For noble gases the magnitude of the

van der Waals forces increases by increasing the size of the atoms (see table 4.3). Van

der Waals interaction between Ar-Ar and Kr-Kr are much stronger than for Ne-Ne

atoms, so for the case of injection N2-Ar-He and N2-Kr-He jets into superfluid helium

the Ar and Kr atoms initially form the cores of nanoclusters. After that, N atoms and

N2 molecules are attached to the surface of the Ar or Kr nanoclusters. In a previous

study [31, 34], it was shown that the nanoclusters in the sample prepared from the

mixture N2-Kr-He and N2-Xe-He exhibit a shell structure. Ar has an atomic number

smaller than Kr and Xe but it might still be expected that the nanoclusters in the

sample prepared from the mixture N2-Ar-He should also exhibit a shell structure due

to the stronger a Van der Waals interaction between Ar-Ar atoms compared to that

of the other atoms. From the results of analysis of the shapes of the ESR spectra

given in Table 4.2. we can conclude that the most N atoms (70%-90%) reside on the

surface of N2 layers, a smaller fraction of N atoms reside in the N2 layer (1%-10%),

and 13%-20% of N atoms reside inside the Ar clusters. On the other hand, the shell

structure nanoclusters formed by condensing the jet containing (N2-N-O-Ne-He) is

quite different. After the jet cools down, first the nanoclsuters of N2 are formed,

later N and O atoms bind to the surface of the N2 nanoclusters. At the next stage

the layers of Ne atoms surround the nanoclusters, and finally a few layer of solidified

helium atoms cover whole nanoclusters.

So far, investigations have been confined to the result of analyzing ESR spectra

to give an understanding of the matrix environments of stabilized nitrogen atoms.

Now we will turn our attention to investigation of the luminescence spectra detected

during the warming up of the samples in superfluid helium from 1.32 K to 2.16 K.
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The dynamics of the thermoluminescence spectra collected during the warming up of

sample differ from the spectra that accompanied the destruction of the sample was

discussed previously in section 2. Increasing the temperature of the sample immersed

in liquid helium led to intense luminescence. At the beginning of warming up we

observed emissions from the α-group of N atoms, the Vegard-Kaplan bands of N2

molecules, and also the β-group of O atoms. Recombination of nitrogen atoms in the

ground 4S state is the main source of the excitation of atoms and molecules during

the sample warming since the excitations from metastable N2(A
3Σ+

u ) were efficiently

transferred to the N(4) and O(3P ) atoms, resulting in formation of 2D- state of N

atoms and 1S- state of O atoms. Some of the metastable N2(A
3Σ+

u )molecules emitted

light, producing Vegard-Kaplan bands. All processes leading to light emission can

be represented by following equations:

N(4S) +N(4S)→ N2(A
3Σ+

u ), (4.2)

N2(A
3Σ+

u ) +N(4S)→ N(2D) +N2(X
1Σ+

g ), (4.3)

N2(A
3Σ+

u ) +O(3P )→ O(1S) +N2(X
1Σ+

g ), (4.4)

N(2D)→ N(4S) + α-group, (4.5)

O(1S)→ O(3P ) + β-group. (4.6)

N2(A
3Σ+

u )→ N2(X
1Σ+

g ) + V -K bands, (4.7)

The glowing of the samples increased in intensity with increasing temperature,

and reached the maxima at ∼ 1.9 K. It should be pointed out that the position of the

peak does not depend on concentration of N atoms stabilized in the sample prepared
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from different gas mixtures. The temperature dependence of the turbulence buildup

expression is similar to the temperature dependence of thermoluminescence for an

as-prepared sample. This similarity provides evidence that the quantum vortices

which formed as result of mutual friction between the normal and superfluid helium

may initiate chemical reactions. Strands of the stabilized nitrogen atoms can contact

each other, resulting in forming metastable N2(A
3Σ+

u ) due to the processes of the

reconnection of the vortices. As a result of these processes the emission of the V-K

bands of molecular nitrogen, α-group of nitrogen and β-group of oxygen atoms could

have been produced.

The thermoluminescence of IHCs inside the superfluid helium was observed in

previous studies [13, 28] and α-group is explained with the emission of N(2D) from

two-body N(2D)−N2 complexes. According to this model, a single impurity atom or

molecule is surrounded by a shell of localized helium atoms. Later structural stud-

ies of IHCs, however show clusters of impurities surrounded by thin layers of solid

helium.[3, 4, 15, 16] Recently, another study suggested that thermoluminescence of

IHCs submerged in helium is a result of neutralization reactions of thermally acti-

vated electrons with nitrogen cations.[34] This model could perhaps explain emission

of the α-group by recombination of nitrogen cations and electrons, but it does not

explain all other observed emission such as the β-group of O(1S) atoms, M-bands

of NO molecules etc. The presence of β-group and M-bands of NO emission in the

spectra shows that energy transfer occurs from excited nitrogen molecules to either

N or O atoms isolated in a neon or argon matrix. The ESR measurements show

that the number of stabilzed N(4S) atoms did not change during the warming of

the samples in bulk HeII, but the total number of emitted photons from the sample

during the entire process of warming up was found to be ≤ 1× 1013 for HeII. Thus
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ESR measurements can not determine such small magnitudes of changes N atom

concentrations. Therefore, the ESR studies do not confirm neutralization reactions

for luminescence of IHCs inside superfluid helium. Furthermore, the observed effect

of temperature dependence of thermoluminescence cannot be explained by dynamics

of thermal relaxation because the characteristic of thermoluminescence dynamic do

not change at different rates of warming (see figure 4.5 and 4.9 ).

One can see from Fig. 4.10 that there is a correlation between dependence of the

average concentration of N atoms stabilized in the prepared sample and dependence

of α-group of N atom emission intensity during the sample warm up. During the

sample warming the overall integrated emission of intensity of the α-group increases

with increasing the stabilized number of nitrogen atoms in the samples. On the

other hand, the characteristics of the dynamics of the thermoluminescence spectra

are same for different stabilized numbers of N atoms in the samples. Thus, it can be

concluded that the relaxation of the stored energy in the nanoclusters is not respon-

sible for observed the temperature dependence of the thermoluminescence. Now

we shall discuss the observed features of the spectra from the samples prepared from

nitrogen-neon-helium gas mixtures. In section 2 the effect of oxygen impurities on the

luminescence spectra of nitrogen-helium condensates during the sample destruction

was investigated. In the present work, we study the influence of oxygen impurities

on the luminescence spectra of nitrogen-neon-helium condensates during the warm-

ing up inside the superfluid helium. The M-bands of NO molecules were absent in

the integrated spectra for the sample prepared from gas mixture N2:Ne:He=1:1:100

(O2/N2 = 10−4 due to contamination of oxygen in the helium gas) as presented in

Fig. 4.7a. However, increasing the ratio of O2/N2 from 10−4 to 4×10−4 in the sample

prepared from gas mixture N2:Ne:He=1:20:400 led to the appearance of the M-bands
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Figure 4.10: Dependence of the average concentration of N atoms stabilized in N2-
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of NO molecules. Similar results are also seen for the case of samples prepared from

gas mixture N2:Ar:He=1:5:600, N2:Ar:He=1:20:2000, and N2:Ar:He=1:20:2000 (see

figure 4.8). The NO molecules were formed as a result of recombination of N(4S)

and O(3P ) atoms, leading to the appearance of NO molecular emission. According

to the following processes:

N(4S) +O(3P )→ NO(a4Π); (4.8)

NO(a4Π)→ NO(X2Π) + hν (M -bands); (4.9)

In addition to the appearance of the M-bands of NO, the emission of the 1+ system of

molecules were also detected for this sample. The presence of the excited N2(B
3Πg)

state might be explained by the fact that the B state has vibrationally resonant levels

with the N2(A
3Σ+

u ) state.

For the case of the sample prepared from the gas mixture N2:Ne:He=1:1:100

the positions of the V-K bands of N2 molecules shows that emissions occur from

the N2 matrix. On the other hand, for the case of sample prepared from the gas

mixture N2:Ne:He=1:20:400 and N2:Ne:He=1:50:1000 the V-K bands of N2 and the

M-band of NO positions correspond to that obtained for Ne matrices. The po-

sition of the α-group also reveals the environment of the emitting N atoms dur-

ing sample warming-up. The α-group spectra in the integrated spectra during the

warming-up for the sample prepared from the gas mixture N2:Ne:He=1:1:100 had

a maximum at 522 nm, whereas for the case of the sample prepared from the gas

mixture N2:Ne:He=1:20:400, and N2:Ne:He=1:50:1000, the peaks were detected at

521 nm and 520 nm, respectively. These spectral features lead to the conclusion

that during the warming-up for the sample prepared from the N2:Ne:He=1:1:100

gas mixture the emitting N(2D) atoms was surrounded mostly by N2 molecules,
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while during the warming-up for the case of sample prepared from the gas mixtures

N2:Ne:He=1:20:400 and N2:Ne:He=1:50:1000 the N atoms and NO molecules were

surrounded mostly by Ne atoms. This interpretation, is in reasonable agreement

with the differences of the dynamics of the α-group emission observed in Fig. 4.8.

The differences of the temperature dependence of the α-group emission in Fig. 4.8

apparently result from differences in the environment of the N(2D) metastable atom

in the IHCs. Typical decay times of the α-group for Ne-containing IHCs samples

are noticeably longer than for a N2 matrix. For the IHCs samples obtained by the

condensation of N2:Ne:He mixtures decay times of the α-group is ∼300 s, whereas

for the N2 matrix they are only ∼30 s.

It is possible that the helium adsorbed on the surfaces is weakly bound as to allow

the clusters to approach one another until their surfaces touch. The interaction

of nitrogen and oxygen atoms due to the quantum vortices in superfluid helium

can initiate local recombination of the atoms residing on surfaces of clusters. The

detection of NO molecules during warming up confirms the assumption of a chemical

reaction proceeding in the IHCs at low temperature.
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5. CONCLUSION

In section 2, dynamics of thermoluminescence from nitrogen-helium condensates

formed by the collection of nanoclusters containing stabilized N and O atoms was

studied during their destruction. At the beginning of the destruction, the fusion of

nanoclusters was accompanied by the emission from N atoms and N2 molecules as a

result of recombination of N atoms. At the final stage the emission by O atoms as

well as NO and O2 molecules became dominant. The influence of oxygen impurities

on the luminescence spectra of nitrogen-helium condensates was studied. Increasing

the relative content of oxygen in molecular nitrogen nanoclusters from 10−4 to 10−3

led to domination of the bands from oxygen atoms as well as NO and O2 molecules in

the integrated thermoluminescence spectra. The mechanism of excitation of emitting

species during destruction of nitrogen-helium condensates was revealed. Recombina-

tion of nitrogen atoms within molecular nitrogen nanoclusters produce metastable

N2(A
3Σ+

u ) molecules which are responsible for energy transfer to stabilized N and

O atoms and NO molecules. The mechanism of oxygen accumulation during de-

struction of nitrogen-helium condensates was revealed. Oxygen atoms recombine

with nitrogen atoms resulting in formation NO molecules. These NO molecules are

stored in the samples due to their high van der Walls interaction. The accumulation

of NO molecules in the samples was accompanied by a growth of the luminescence

of oxygen-containing species with time. For the first time the O2 (c1Σ−u → a1∆g),

and (c1Σ−u →X3Σ−g ) molecular bands were observed at the end of the destruction of

nitrogen-helium condensates. This effect was explained by the formation of (NO)2

dimers in solid nitrogen crystallites during fusion of nanoclusters. The dissociation

of (NO)2 dimers and their recombination with nitrogen atoms released pairs of O
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atoms in close vicinity. These pairs of O atoms can recombine and create excited

states of O2 molecules.

In section 3, we developed a new experimental approach for studying quantum

vortices in HeII in porous materials. We observed quantum vortix induced chemical

reactions in porous ensembles of nanoclusters immersed in superfluid helium. These

observations open new possibilities for studying chemical reactions of heavy species

induced by vortices at very low temperatures in HeII where diffusion and tunneling

in solid nanocrystallites are completely suppressed. We also observed the thermolu-

minescence of ensembles of nitrogen nanoclusters in normal liquid helium which was

initiated by association of the nanoclusters resulting in thermal explosion of a small

fraction of nanoclusters. Thermal explosions occur due to chain reactions of nitrogen

atoms stabilized in nanoclusters for the conditions of poor thermal heat removal by

the surrounding liquid helium.

In section 4, the impurity-helium solids created by injection of nitrogen atoms and

molecules together with rare gas atoms (Ne, Ar or Kr) into superfluid helium have

been studied by the ESR method and optical spectroscopy. ESR results show that

most of stabilized N atoms reside on surfaces of nanoclusters. Argon and krypton

atoms significantly increase the overall efficiency of stabilization of N atoms in IHCs.

Also, we showed that behavior of the dynamics of the thermoluminescence spectra

are same for different stabilized numbers of N atoms in the samples.
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