
A COMPRESSED SENSING APPROACH TO UNCERTAINTY PROPAGATION FOR

APPROXIMATELY ADDITIVE FUNCTIONS

A Thesis

by

KAIYU LI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Douglas Allaire
Committee Members, Raktim Bhattacharya

Richard Malak
Head of Department, Andreas A. Polycarpou

December 2016

Major Subject: Mechanical Engineering

Copyright 2016 Kaiyu Li

ABSTRACT

Computational models for numerically simulating physical systems are increasingly

being used to support decision-making processes in engineering. Processes such as de-

sign decisions, policy level analyses, and experimental design settings are often guided by

information gained from computational modeling capabilities. To ensure effective appli-

cation of results obtained through numerical simulation of computational models, uncer-

tainty in model inputs must be propagated to uncertainty in model outputs. For expensive

computational models, the many thousands of model evaluations required for traditional

Monte Carlo based techniques for uncertainty propagation can be prohibitive. This paper

presents a novel methodology for constructing surrogate representations of computational

models via compressed sensing. Our approach exploits the approximate additivity inherent

in many engineering computational modeling capabilities. We demonstrate our method-

ology on some analytical functions, with comparison to the Gaussian process regression,

and a cooled gas turbine blade application. We also provide some possible methods to

build uncertainty information for our approach. The results of these applications reveal

substantial computational savings over traditional Monte Carlo simulation with negligible

loss of accuracy.

ii

ACKNOWLEDGMENTS

I would first like to thank my advisor Dr. Douglas Allaire at Texas A&M Univer-

sity, who has supported me throughout my thesis with his patience, enthusiasm and vast

knowledge. I simply could not imagine having a better advisor for my Masters study.

I would also like to thank my committee members, Dr. Raktim Bhattacharya and Dr.

Richard Malak for their encouragement and passionate participation.

I would like to thank all my fellow labmates in Computational Design Laboratory at

Texas A&M University for their friendly advice and academic help. And I would like to

thank Dr. Kenneth Bryden and Zachary Reinhart at Iowa State University for enlightening

my first entry to the field.

Last but not the least, I would like to thank my parents for their love and continuous

support throughout my years of study. This accomplishment would not have been made

without them.

iii

NOMENCLATURE

ECDF Empirical cumulative distribution function

GP Gaussian process

HDMR High-dimensional model representation

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

NOMENCLATURE . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . x

1. INTRODUCTION AND BACKGROUND . 1

1.1 Motivation . 1
1.2 Research objective . 1
1.3 Background . 2
1.4 Thesis organization . 10

2. APPROACH . 11

2.1 Legendre polynomials basis . 11
2.2 Fourier basis . 12
2.3 Surrogate representation . 13
2.4 Subfunction approximation . 15
2.5 Gaussian process . 19
2.6 Brownian Bridge . 21
2.7 Modified Lipschitz filtering approach . 22
2.8 Modified VC-dimension filtering approach 24

3. APPLICATION AND RESULTS . 29

3.1 1-D simple Legendre function . 29
3.2 1-D complicated Legendre function . 31
3.3 1-D simple Fourier function . 33
3.4 2-D Legendre polynomials function . 36
3.5 Cooled gas turbine blade model . 41

v

3.6 Uncertainty information example . 49

4. SUMMARY AND CONCLUSIONS . 58

REFERENCES . 59

vi

LIST OF FIGURES

FIGURE Page

2.1 One dimensional Chebyshev distributed points for two inputs for estimat-
ing one input subfunctions (left). Tensor product of the one dimensional
Chebyshev distributed points for estimating a two input subfunctions (right). 16

2.2 1000 Brownian Bridges between point (0,−5) and (2, 5) 23

3.1 Compressed sensing approach with Legendre basis result and real function
comparison on 1-D simple Legendre function. 31

3.2 ECDF of compressed sensing approach with Legendre basis result and real
function on 1-D simple Legendre function. 32

3.3 Compressed sensing approach with Fourier basis result and real function
comparison on 1-D simple Legendre function. 33

3.4 ECDF of compressed sensing approach with Fourier basis result and real
function on 1-D simple Legendre function. 34

3.5 GP result and real function comparison on 1-D simple Legendre function. 35

3.6 ECDF of GP approach result and real function on 1-D simple Legendre
function. 36

3.7 Compressed sensing approach with Legendre basis result and real function
comparison on 1-D complicated Legendre function. 37

3.8 ECDF of compressed sensing approach with Legendre basis function and
real function on 1-D complicated Legendre function. 38

3.9 GP result and real function comparison on 1-D complicated Legendre
function. 39

3.10 ECDF of Gaussian process result and real function on 1-D complicated
Legendre function. 40

3.11 Compressed sensing approach with Fourier basis function and real func-
tion comparison on 1-D simple Fourier function. 41

vii

3.12 ECDF of compressed sensing approach with Fourier basis function and
real function on 1-D simple Fourier function. 42

3.13 Compressed sensing approach with Legendre basis result and real function
comparison on 1-D simple Fourier function. 43

3.14 ECDF of compressed sensing approach with Legendre basis result and real
function on 1-D simple Fourier function. 44

3.15 GP result and real function comparison on 1-D simple Fourier function. . 45

3.16 ECDF of GP approach result and real function on 1-D simple Fourier func-
tion. 46

3.17 Subfunction of input X1 and its sparse approximation (left plot) subfunc-
tion of input X2 and its sparse approximation (second left plot), validation
error as a function of the number of terms in the surrogate approximation
(second from the right plot), and the full function and its additive surrogate
approximation. 46

3.18 Surrogate approximation f̂ and full model f (Top), empirical CDF func-
tion of full model via Monte Carlo simulation (black) and surrogate ap-
proximation (red) (bottom). 47

3.19 Compressed sensing approach with Legendre basis result and real function
on 2-D Legendre polynomials function. 48

3.20 ECDF of compressed sensing approach with Legendre basis result and real
function on 2-D Legendre polynomials function. 49

3.21 GP result on 2-D Legendre polynomials function. 50

3.22 ECDF of GP approach result and real function on 2-D Legendre polyno-
mials function. 51

3.23 The cooled gas turbine blade profile and random input variables 51

3.24 Histogram of full model Monte Carlo simulation (top), histogram of sur-
rogate representation based Monte Carlo simulation (middle), empirical
cumulative distributed functions of the full model and surrogate represen-
tation (bottom). 52

viii

3.25 Validation error as a function of the number of terms in the surrogate ap-
proximation of the cooled gas turbine blade model. The red line indicates
the end of the purely additive surrogate terms and the blue line indicates
the end of the terms used in computed the results showing in figure 3.24. . 53

3.26 Brownian Bridges with modified Lipschitz approach. Black lines are for
Browian Bridges, red lines are for eligible Brownian Bridges. 54

3.27 Brownian Bridges with modified VC-dimension approach. Black lines are
for Browian Bridges, green lines are for eligible Brownian Bridges. 55

3.28 Histogram of eligible Brownian Bridges when x = −3 with modified Lip-
schitz approach. 56

3.29 Histogram of eligible Brownian Bridges when x = 3 with modified Lips-
chitz approach. 56

3.30 Histogram of eligible Brownian Bridges when x = −3 with modified VC-
dimension approach. 57

3.31 Histogram of eligible Brownian Bridges when x = 3 with modified VC-
dimension approach. 57

ix

LIST OF TABLES

TABLE Page

3.1 Cooled gas turbine blade model inputs and distribution, where T (a, b, c)
represents a triangular distribution with lower limit, a, mode, b, and upper
limit, c. 43

3.2 Approximate main effect sensitivity indices computed using the purely ad-
ditive surrogate model. 45

x

1. INTRODUCTION AND BACKGROUND ∗

1.1 Motivation

Increasingly, computational models of physical systems are used to support decision-

making processes [1]. These processes include design decisions, policy level analyses,

and experimental design decisions among other things. Typically, computational models

have uncertainty associated with their inputs and parameters, which subsequently prop-

agates through the model, begetting uncertainty in the outputs, or quantities of interest,

the model estimates. Therefore, the application of model output information to support

decision-making processes requires the effective propagation of uncertainty. The pro-

cess of propagating uncertainty from model inputs to model outputs could be conducted,

for example, via Monte Carlo simulation, but this approach traditionally requires several

thousand model evaluations. However, computational models of physical systems of prac-

tical use in engineering decision-making processes are often expensive in terms of the time

it takes to compute a set of outputs given a set of inputs. Therefore, conducting several

thousand model evaluations for something like Monte Carlo simulation is often computa-

tionally intractable.

1.2 Research objective

For the case of computationally expensive models, recourse is often made to surrogate

modeling techniques, both through approximations of the underlying physics of the mod-

eling capability, and the underlying uncertainty of the model inputs. We want to present a

novel surrogate modeling approach for uncertainty propagation constructed from the pow-

erful concept of compressed sensing. Given a functional basis representation for which
∗Reprinted with permission from "A compressed sensing approach to uncertainty propagation for
approximately additive functions" by Kaiyu Li, Douglas Allaire, 2016. ASME 2016 International
Design Engineering Technical Conferences, IDETC/CIE, Copyright 2016 by ASME.

1

the output of a computational model is sparse, we would like to demonstrate that we can

recover near-exact approximations of the computational model as a function of its inputs

with remarkably few function evaluations. The surrogate representation of the model we

proposed should be used with any supported probability distribution to provide rapid un-

certainty propagation results. We would like to make a comparison between our method

and Gaussian Process (GP) regression method to see how well our method could perform.

Based on the computational model we recover, we also want to discover some possible

methods to build uncertainty information for our method.

However, our approach is specifically catered to the class of what we refer to as approx-

imately additive functions. By this, we mean functions that depend primarily on additive

terms of subfunctions of low dimension. For example, a function of many inputs maybe

adequately represented by a sum of subfunctions of each individual input and a few sub-

functions of two input combinations (i.e., interaction terms). As discussed in the thesis,

this approximately additive characteristic is believed to be a feature of a wide-variety of

computational models often used for engineering purposes.

1.3 Background

Uncertainty propagation, in the context of computational modeling, involves mapping

the uncertainty in the inputs to uncertainty on the outputs of the computational model.

Without loss of generality, we will deal with computational models that yield a single

output, or single quantity of interest. The process of mapping uncertainty from inputs to

model output often involves a sample-based approach to gathering input settings that are

then either mapped through the full computational model by evaluating the model output

at each input setting, or are mapped through an approximation, or surrogate model, of the

computational model.

The most basic and most common approach to propagating uncertainty through com-

2

putational models is via Monte Carlo simulation. It is a widely used numerical meth-

ods in aspects like: finite mixture distribution [2], system reliability and risk analysis

[3] and uncertainty analysis [4]. For a general computational model,f(XXX), where XXX =

(X1, X2, ..., Xd)
T , and the XXX is a random vector, Monte Carlo simulation works by sam-

pling a point xxx, from the distribution of XXX , and then running the computational model to

evaluate f(xxx). If this process is repeated several times (usually thousands), then the strong

law of large numbers guarantees that the empirical distribution of the output evaluations

converges almost surely to that of f(XXX) [5]. That is

F̂n(ttt) =
1

n

n∑
i=1

111i(ttt)
a.s.−−→ F (ttt) as n −→ ∞, (1.1)

where F̂n(t) is the empirical distribution of f(XXX) generated by sampling, F is the cu-

mulative distribution function of f(XXX), 111i(ttt) is the indicator function for the event, and

xi
j ≤ tj, ∀j ∈ {1, 2, ..., d}, where xi

j is the i-th sample of the j-th input. Given this conver-

gence property, Monte Carlo simulation, with enough input samples, is often considered as

the golden standard to compare against when developing new algorithms for uncertainty

propagation. It has also seen wide use in many engineering and scientific applications

[6, 7, 8, 9, 10, 11, 12]. However, the convergence rate, which is governed by the cen-

tral limit theorem, is O(1/
√
n), thus making the method impractical for most expensive

computational models for uncertainty propagation [13]. The limiting factor in aspect of

standard Monte Carlo method accuracy is that the clumping could occur in the random

sequences or pseudo-random sequences. Clumping means that some points could lie very

close together. Clumping could occur because the points are independent in the sequences

as the points do not know anything about each other.

To improve upon the convergence performance of traditional Monte Carlo simula-

tion, different sampling strategies have been studied and applied, such as quasi-Monte

3

Carlo method, importance sampling, Latin hypercube sampling and stratified sampling

[14]. Quasi-Monte Carlo method uses quasi-random (also known as low-discrepancy) se-

quences instead of random or pseudo-random sequences, and it is designed to fill the input

space as uniform as possible (with low discrepancy) [15]. The elements of a quasi-random

sequence are correlated, which make them more uniform than the random sequences [16].

The convergence rate of Quasi-Monte Carlo is O((log n)d/n), where d is the number of

inputs, and is thus generally superior compared to the traditional Monte Carlo method

when d is not too large. However, quasi-random sequences are less versatile than random

or pseudo-random sequences due to correlations between points. They are designed for

purpose like integration, rather than simulation or optimization purposes. As the desired

result of a simulation can often be written as an integral, quasi-Monte Carlo is then being

applied. However, this method is often involved with high dimensionality, which could

limit the effectiveness of quasi-Monte Carlo sequences [16].

Importance sampling method is used for understanding distribution properties when

only the proposal distribution is known. Importance sampling weight is constructed to

pick importance values of random input variables to correctly estimate target distribution

properties. It is recently used in feed-forward multi-component systems uncertainty analy-

sis [10] and reliability calculations [17]. However, it could be hard to implement efficiently

due to multiple solutions for different problem classes in a general framework.

Latin hypercube sampling, or LHS [18] operates by sampling on what is referred to as

a Latin hypercube, which requires each sample to be the only sample in each hyperplane

it belongs to in the hypercube. Stratified sampling proceeds by placing samples in certain

subsets, or strata, in a sample space, and then weighting these points by the probability

of being in that particular stratum. Convergence rates of Latin hypercube and stratified

sampling methods tend to be superior to Monte Carlo simulation for low input dimension,

but degrade as the number of inputs increase.

4

For expensive computational models, the uses of sample based approaches that use the

full model are often computationally prohibitive. A typical strategy in these circumstances

is to create a surrogate or metamodel of the full model using a small set of samples from

the full model. Often data-fit techniques, such as response surface modeling or the use of

Gaussian processes are employed to construct such models [19, 20, 21]. Gaussian process

regression is a fully probabilistic method that is flexible and could be implemented easily.

Gaussian process regression is widely used in problems like: nonlinear signal processing

[22] and Bayes Filters [23], and localization sensor network uncertainty [24]. Gaussian

process regression provides fully probabilistic predictive distributions and knowledge of

kernel parameters, but it has a high computational cost, which grows as O(n3) [25].

Other alternatives are hierarchical surrogate models [26, 27] that consider hierarchies

of modeling assumptions or computational grids, and reduced-order models [28] that rely

on underlying knowledge of the governing equations of the computational model, such as

polynomial chaos expansion and anchored ANOVA (i.e. cut-HDMR (high dimensional

model representation)). The result of developing a surrogate model is usually a much

cheaper, in a computational sense, version of the computational model that can be used

for various purposes, such as uncertainty propagation. The reduction in runtime, however,

usually comes at the expense of some loss in accuracy, or fidelity, in the surrogate model.

Polynomial chaos expansion is a useful technique for propagating uncertainty through

partial and ordinary differential equations. Random variables are expanded in terms of

orthogonal polynomials, and the expansion coefficients could be derived from differential

equations [29]. Polynomial chaos expansion methods have found increasingly used in the

probabilistic uncertainty quantification field over the past decade [30]. Polynomial chaos

expansion method could efficiently represent and propagate complex models with large

uncertainty. However, it is strongly dependent on the tails and the shape of the objective

distributions. Polynomial chaos expansion for uncertainty qualification is widely used in

5

areas like: aeroelastic modeling, chemical reactors and switching systems [31].

The anchored ANOVA (Analysis of variance) method has recently been used in many

literatures. Specifically, it is proposed in [32, 33] to decompose statistical moments, which

is based on the covariance decomposition of output variance. The computational cost of

deterministic simulations is considerably reduced to get accurate results, and it is less sen-

sitive to the choice of the anchor point. However, it is hard to build the surrogate model as

the decomposition of higher order component functions increases exponentially in aspect

of the dimension of deterministic simulation model, and this increases the computational

cost.

Another alternative to deal with an expensive computational model in uncertainty prop-

agation is the use of a surrogate representation of the uncertainty in the inputs. Some

techniques for this include implicit uncertainty propagation, moment matching, the ad-

vanced mean value method, and unscented transforms [34, 35, 36, 37, 38, 39]. Moment

based propagation method is simple to implement and it is widely used in complex sys-

tems. Moments (i.e. mean, variance, skewness, kurtosis, and so on) are random variables

efficient descriptors. The first four moments of random variables should be sufficient, but

it requires more computational effort when dealing with large number of samples. This

method is recently used in probability analytical target cascading [40] and non-linear com-

putational fluid dynamics calculations [41]. The Most Probable Point method was firstly

developed in the reliability analysis [42]. It is then formally defined in a coordinate system

of independent and standardized normal vector. A symmetrical joint probability distribu-

tion function would be centered at the origin in the output space. The most probable point

is the point that contributes most to the probability estimation integral of the shortest dis-

tance from the origin to a point on the limit state surface in the output space. This method

is used in Pratt and Whitney (PW) Engine Design [42] and fatigue reliability analysis [43].

The approach we propose here for propagating uncertainty through a computational

6

model involves some aspects of sample based methods and the development of a data-fit

surrogate model via projection of the data onto a functional basis representation. To ensure

scalability of our approach with increasing input dimension, we rely on an assumption of

approximate additivity of the underlying full computational model. To introduce this con-

cept, we consider first the high-dimensional model representation (HDMR) of a function,

f(x), which is written as [44, 45, 46],

f(x1, x2, ..., xd) = f0+
d∑

j=1

fj(xj)+
d∑

j<l

fj,i(xj, xl)+...+f1,2,...,d(x1, x2, ..., xd) =
∑
uuu⊆D

fuuu(XuXuXu),

(1.2)

where D := 1, 2, ..., d denotes the set of input indices, uuu is a multi-index, and individual

terms in each summand are referred to as subfunctions. For square-integrable functions,

which is the class of functions we are concerning ourselves with in this paper (i.e., those

functions with finite variance when the inputs are random variables), we can write the

functions variance as

V(f) =
∑
uuu⊆D
uuu̸=∅

V(fuuu), (1.3)

which is a sum each individual subfunctions variance. In variance-based global sensitivity

analysis, sensitivity indices for different combinations of inputs are estimated by normal-

izing each individual subfunctions variance by the total variance of f [47]. We make use

of this concept in our greedy approach to determining which subfunctions to include in

our surrogate representation as discussed in the chapter 2. Given the variance of a func-

tion as written above, we can define the effective superposition dimension of the function.

Following reference [48], the effective superposition dimension is the smallest integer, ds,

such that

7

∑
uuu≤ds
uuu̸=∅

V(fuuu) ≥ αV(f), (1.4)

where α is a user defined constant, such as 0.99. If a function has a low effective su-

perposition dimension, then higher order interactions are not important in the construc-

tion of the HDMR in equation 1.2. It turns out, that a great deal of functions, partic-

ularly in the finance community, but also in engineering, have low effective dimension

[11, 12, 48, 49, 50].

For functions with low effective dimension, e.g., ds = 2, then the function is approx-

imately additive in the sense that it consists primarily of subfunctions that are a function

of only one input, with a few potentially significant subfunctions of more than one input.

We seek to exploit the approximate additivity of many computational models by using

the tools of compressed sensing to interrogate the low order subfunctions of a given func-

tion, f , and determine if the function is well-represented as approximately additive. If

so, then uncertainty propagation can be carried out with a surrogate model constructed by

summing the low-order subfunctions found by compressed sensing, which, as shown in

chapter 3, results in substantial computational savings as compared to traditional Monte

Carlo methods with nearly zero loss of accuracy.

Compressed sensing is a recently developed technique for recovering sparse signals

that relies on linear dimensionality reduction [51, 52, 53]. We provide a brief overview of

the rich field here. The general concept, as we employ it here, is that certain signals (for

us outputs of computational models) can be approximated well by a sparse representation

in a particular functional basis. Thus, the coefficient vector in the functional basis requires

only a few nonzero entries. For a given set of basis functions, {Ψk}Nk=1, we assume that a

signal, f , can be represented as a linear combination

8

f = Ψc, (1.5)

where Ψ is an N ∗ N matrix with columns, Ψk, and ccc is an N ∗ 1 vector of coefficients.

If f is sparse (or approximately sparse) in the basis, Ψ, then ccc will consist of many values

that are effectively zero. The function is called S-sparse in Ψ if there exists a c ∈ RN with

only S ≪ N nonzero entries. Samples of the signal, f , are obtained by another linear

operator, Φ, which is an M ∗ N measurement matrix, where M < N . A requirement of

compressed sensing is that Φ and Ψ be as incoherent as possible, meaning as dissimilar as

possible [53]. We accomplish this here by setting Φ equal to a random subset of the rows

of the identity matrix. Then the sampled signal is

b = Φf, (1.6)

which in our context, is just M (rather than N , or even n in the context of Monte Carlo

simulation with equation 1.1) evaluations of our computational model. The purpose of

compressed sensing is then to recover the sparsest signal, Ψccc, that produces the measure-

ments f . This can be written as an optimization problem as

ĉcc = arg min
ccc∈RN

∥ccc∥0 subject to b = ΦΨccc, (1.7)

where∥ccc∥0 is defined as the number of nonzero entries in ccc. Finding a solution to this prob-

lem would require enumeration of all possibilities and is thus of combinatorial complexity.

The fundamental insight in compressed sensing is the convex relaxation of equation 1.7

by using the l1 norm to find the coefficients as

ĉcc = arg min
ccc∈RN

∥ccc∥1 subject to b = ΦΨccc, (1.8)

9

where∥ccc∥1 =
∑N

k=1|ccck|. With enough measurements, if f is sparse in Ψ, then it can nearly

always be reconstructed from bbb using equation 1.8, as f ≈ Ψĉcc [54]. equation 1.7 can be

implemented as a linear program, for which many efficient solution algorithms exist. This

is proved by [54], if f is a superposition of|T | spikes f(t) =
∑

τ∈T f(τ)δ(t− τ) obeying

|T | ≤ CM · (logN)−1 ·|Ω| , (1.9)

where CM is some contant, which is bigger than zero, f is a discrete-time signal, and Ω is

a randomly chosen set of frequencies. With probability bigger than 1−O(N−M), f could

be reconstructed as the solution to the l1 minimization statement

min
g

N−1∑
t=0

∣∣g(t)∣∣ , s.t. ĝ(ω) = f̂(ω) for all w ∈ Ω. (1.10)

Our goal then in this work is to assume a basis exists such that the subfunctions of

a given function, f , can be represented sparsely in that basis. By assuming low effective

superposition dimension, we will then interrogate the subfunctions of f by fixing all inputs

that are not active in a given subfunction. Doing this allows us to sparsely reconstruct the

subfunctions of f with very few evaluations of f per subfunction. If the function is of

low effective superposition dimension, then only a small number of subfunctions must be

reconstructed and then added together to provide a nearly exact surrogate representation of

f . We develop our methodology for constructing such surrogates in the following section.

1.4 Thesis organization

My thesis is organized as follows: the 1st chapter presents the introduction and back-

ground, the 2nd chapter presents the approach that used in this thesis, the 3rd chapter

presents the application of the approach and its results, and the 4th chapter presents the

summary and conclusions of this thesis.

10

2. APPROACH ∗

In this work we assume we have a sparse representation of a given function f in the

basis of Legendre polynomials or Fourier series. Legendre polynomials basis and Fourier

basis are first introduced. The proposed approach in this thesis is presented, followed

by some possible methods to build computational models and some possible methods to

eliminate unreasonable computational models.

2.1 Legendre polynomials basis

The Legendre polynomials in one-dimension, Ln, on [−1, 1], can be written as

Ln(x) =
1

2nn!

dn

dxn
[(x2 − 1)n], (2.1)

according to Rodrigues formula. These polynomials are orthonormal with respect to the

uniform measure on [−1, 1]. When attempting find a sparse representation of a function,

f , using equation 1.8, we randomly sample a few points in the input space to generate a

few random samples of the output space (this ensures good incoherence of Ψ and Φ). For

the case of Legendre polynomials, sampling randomly from the Chebyshev distribution,

rather than uniformly, produces better recovery of signal information [55, 56]. Thus, to

construct Ψ, we sample in the input space with the Chebyshev distribution (also known as

the arcsine distribution), whose probability density function is

p(x) =
1

π
√
1− x2

, (2.2)

∗Reprinted with permission from "A compressed sensing approach to uncertainty propagation for
approximately additive functions" by Kaiyu Li, Douglas Allaire, 2016. ASME 2016 International
Design Engineering Technical Conferences, IDETC/CIE, Copyright 2016 by ASME.

11

with support [−1, 1]. To ensure we can handle arbitrary intervals, [a, b], with the Legendre

polynomials, we sample a Chebyshev point and bijectively map it onto [a, b] as

x 7→ a+ (b− a)
x+ 1

2
. (2.3)

To construct a Legendre polynomial basis for a function of d inputs, with order 0 to

Nj − 1 one-dimensional Legendre polynomials in each dimension, j, we take tensor prod-

ucts. Let Lj be a matrix whose rows are made up of the Legendre polynomials evaluated

at given samples of xj . That is, each row has a specific sample of xj associated with it. If

we have Mj samples and order 0 through Nj − 1 Legendre polynomials for input j, then

Lj is Mj ×Nj . We can then construct the matrix Ψ as

Ψ =
d⊗

j=1

Lj, (2.4)

where
⊗

is the Kronecker product of the matrices, Lj , and Ψ is M × N , where M =∏d
j=1Mj and N =

∏d
j=1 Nj . If the tensor product is too complicated, we could use

tensor-train decomposition method to solve [57].

2.2 Fourier basis

It is apparent that some functions could be represented simpler in Fourier series basis

rather than Legendre polynomial basis, such as: sines and cosines functions. So Fourier

series basis is used to compare with Legendre polynomial basis in some examples men-

tioned in the 3rd chapter. A Fourier series is defined as an expansion of a function or

representation of a function in a series of sines and cosines [58]. It could be written as:

f(x) =
a0
2

+
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx, (2.5)

12

where

an =
1

π

∫ 2π

0

f(x) cosnxdx, (2.6)

bn =
1

π

∫ 2π

0

f(x) sinnxdx, n = 0, 1, 2, ..., (2.7)

To keep all the other influencing factors the same, the overall sampling process is

the same as the Legendre polynomials basis sampling process. Some points in the input

space are randomly sampled, and the output is generated. The sampling of the input space

comes from the Chebyshev distribution, the same bijectively map was used as mentioned

in equation 2.3. To construct a Fourier series basis for a function with Nj degrees in each

input dimension j, we would have the following basis constructed:

[1, cosxj, sinxj, cos 2xj, sin 2xj, cos 3xj, sin 3xj, ..., cos ⌈
Nj

2
⌉, sin ⌈Nj

2
⌉], (2.8)

where xj is the input of dimension j. The tensor product is calculated the same way as the

Legendre polynomials basis.

2.3 Surrogate representation

As can be seen by the formula for M , the number of samples required grows combi-

natorially with the number of inputs. Thus, even just a few samples in each dimension can

quickly become computationally infeasible if d is large and we are creating a basis over

the product space of the inputs using equation 2.4. However, if we assume f is approxi-

mately additive, then there is no need to create a basis over the product space of the inputs,

since higher order interaction terms in the HDMR of the function will be negligible. For

example, if we know that the superposition effective dimension of a function, f , is ds = 1,

then the function (which is then referred to as purely additive) can be written exactly as

13

f(xxx) = f0 +
d∑

j=1

fj(xj). (2.9)

To construct a surrogate representation of an f defined by equation 2.9, we need only

construct individual surrogates for each fj . To do this in our compressed sensing context,

we can define Ψj = Lj and solve equation 1.8 to arrive at a sparse surrogate representation,

f̂j ≈ fj + f̂0, (2.10)

of the subfunction associated with xj and an offset, f̂0. The surrogate estimates an offset

because we must fix the inputs {xl}l ̸=j to nominal values. We use f̂0 here rather than f0 or

f̂0 because the offset in this expression depends entirely on the nominal values (so it is not

unique in the sense of having only one possible f0) of the inputs chosen and it is not an

approximation. This concept is shown notionally for a two input function in the left plot

of figure 2.1, where the squares represent samples of x1 with x2 fixed to a nominal value

to estimate f1, and the circles represent samples of x2 with x1 fixed to a nominal value. In

each dimension, our approach is to start with a small number of samples (e.g., 3), and solve

equation 1.8. We then compute
∥∥ĉj∥∥0

. We then randomly add another Chebyshev point,

solve equation 1.8 , and compute
∥∥ĉj∥∥0

again. Once this l0 norm reaches equilibrium, we

assume we have arrived at a good representation of fj . This is a heuristic for determining

how many samples are required for any given input and requires further study. Certainly if∥∥ĉj∥∥0
= Nj , then we do not have sparsity in the basis representation and the representation

itself is likely a poor approximation of the subfunction fj plus an offset. If this conclusion

is reached at this point, then at worst we have spent
∑d

j=1Nj function evaluations, which

can be repurposed for another approximation approach based on random sampling or used

as part of a Monte Carlo simulation. If our sampling heuristic in each dimension of an

additive function suggests we have a good sparse representation of each subfunction, then

14

we may construct our surrogate of f as

f̂(xxx) = f̃0 +
d∑

j=1

f̂j − df̃0, (2.11)

where the offset term, f̃0 is computed by evaluating f at a nominal value of each input.

2.4 Subfunction approximation

To determine how well our additive surrogate representation is approximating f , we

conduct a validation exercise after each additional term in the surrogate HDMR is added.

we would follow a method called cross validation holdout method, or called test sample

estimation [59], which divide the data set into two mutually exclusive subsets called train-

ing set and test set. The training set is used to generate the model, and the test set is used

to evaluate the accuracy of the model. So we randomly sample a small number of points

from xxx, (e.g., 10 points), and evaluate f for each of these points. None of these points

is a part of the point set used to generate the surrogate representation. At these points

we compute the difference between our surrogate representation and the true function,

ei(xxx
i) = f(xxxi) − f̂(xxxi). We then use ∥e∥2, as an indicator of how well the surrogate is

approximating f . As a heuristic, if∥e∥2 is below a user specified threshold, we consider

the approximation sufficient. The implications of this heuristic are a topic of future work.

If, after adding all subfunctions of one input, that is, all possible f̂j terms, we are

still not approximating f well in our validation set, then we continue on to two input

subfunctions. This is assuming also that a sparse representation for each subfunction, fj ,

has been found. Moving to subfunctions of two inputs requires the tensor product of the

Ψj matrices. For example, for a subfunction approximation of fj,l, we compute the matrix

Ψj,l = Ψj

⊗
Ψl. This requires a tensor product of the onedimensional Chebyshev point

sets for xj and xl , and subsequent evaluation of f at those points. A two-dimensional

tensor product of 9 Chebyshev points in each dimension is shown in the right plot of

15

figure 2.1.

x
1

x 2

x
1

x 2
Figure 2.1: One dimensional Chebyshev distributed points for two inputs for estimat-
ing one input subfunctions (left). Tensor product of the one dimensional Chebyshev dis-
tributed points for estimating a two input subfunctions (right).

Here an original set of 18 points used to estimate two single input subfunctions would

become 81 points. Thus, to ensure that only two-input subfunctions of likely significance

in the approximation of f are incorporated, we use a greedy-based procedure for selecting

which interaction terms to use. For this, we estimate the main effect sensitivity indices for

each input xj as

Ŝj =
V(f̂j)
V(f̂)

. (2.12)

These sensitivity indices estimate the approximate main effect contribution of input,

xj , and should be estimated using the anticipated distributions of each input that will be

used in uncertainty propagation through the surrogate once its construction is complete.

Experience has shown that inputs with large main effect indices also tend to be those inputs

16

involved in significant interaction effects.

However, when the nonlinearity part and the interaction part among variables become

a considerable fraction of the output variance, the input variables with larger main effect

does not necessarily means there is large interaction effect between those inputs. For

example, in the problem mentioned in [60], a second-order polynomial function is being

considered.

f(x) = β1x1 + β2x2 + β3x3 + β4x4 + β11x
2
1 + β12x1x2, (2.13)

where β1 = β2 = β3 = 1/100, β4 = 1/10, β11 = 1, and β12 = 1, and all the input

variables are uniformly distributed in [−1, 1]. And the sensitivity of the input variables

are:

S1 = V1/V = 0.4371, S2 = S3 = V2/V = 1.639e− 4,

S4 = V4/V = 1.639e− 2, S12 = V12/V = 0.5462.

(2.14)

It is obvious to see that the input β1 and β4 has the largest main sensitivity, but the inter-

action effect between input β1 and β2 has the largest sensitivity.

As input variables has a higher main effect usually means those input variables have a

higher interactive effect, we could still add two input subfunctions by starting with the in-

put with the largest sensitivity index and the input with the second largest sensitivity index.

If our heuristic error indicator has not fallen below the threshold after this subfunction is

incorporated into the surrogate approximation, then we continue with the two input sub-

function of the inputs with the largest and third largest sensitivity index, and continue in

this manner until we have satisfied our error threshold, or determined it was wise to aban-

don the approximation in this particular basis representation. We note here that when two

17

input subfunctions have been added to the surrogate representation, we must take care to

avoid double-counting single input subfunction terms. That is, our two input subfunction

approximation for inputs xj and xl is:

f̂j,l(xj, xl) ≈ fj,l(xj, xl) + fj(xj) + fl(xl) + f̂0. (2.15)

Thus, if all possible two input subfunctions are added to the surrogate representation

of f , when d ≥ 3, we have

f̂(xxx) =
(d− 1)(d− 2)

2
f̃0 − (d− 2)

d∑
j=1

f̂j(xj) +
d∑

j,l=1
j<l

f̂j,l(xj, xl). (2.16)

Once we have a surrogate representation of f(xxx) that we are satisfied with, we can proceed

to propagate uncertainty through the surrogate using any supported distribution of xxx. That

is, any distribution whose probability density has values greater than zero only on the

hypercube defined by the maps for each input defined by equation 2.3 and used in the

surrogate construction. We note that our approach also provides approximations to the

main effect sensitivity indices of each input, and variability of these sensitivities with

respect to changing input distributions can rapidly be assessed.

However, this method does not work very well when the functions are not additive.

Take Breguet range equation [61] as an example,

Range = V × (
L

D
)× Isp ×

Wi

Wf

. (2.17)

This function has four input variables: V, L/D, Isp, and Wi/Wf . If the Legendre polyno-

mials degree is 50, then the tensor product matrix size is 50× 50× 50× 50, which is too

large and significantly decreases the computational efficiency.

18

2.5 Gaussian process

A Gaussian process is a collection of random variables and any finite number of ran-

dom variables would have joint Gaussian distribution [62]. Gaussian process method pro-

vides a practical and probabilistic approach to learning in kernel machines. Gaussian

process measures the similarity between the points and it gives a prediction unseen points

value. This method not only gives the prediction estimation of the point, but also gives the

uncertainty information (marginal distribution). Gaussian process is a stochastic process

specified by its mean function and covariance function. These functions contain the infor-

mation of functional form, and consist a set of parameters called hyperparameters. The

mean function is expressed as:

µ(xxx) = E[(f(xxx))]. (2.18)

The covariance function is expressed as:

k(xxx,xxx′) = E[(f(xxx)− µ(xxx))(f(xxx′)− µ(xxx′))]. (2.19)

Given a dataset, D = {(xi, yi)|i = 1, 2, ..., n}, Gaussian process regression purpose

is to predict the function value y∗ at x∗, and the actual function value is denoted as f∗.

The covariance function among all possible combinations of all the points in the dataset is

denoted as k and some variables are defined for convenience:

K =

k(x1, x1) k(x1, x2) k(x1, x3) . . . k(x1, xn)

k(x2, x1) k(x2, x2) k(x2, x3) . . . k(x2, xn)

. .

k(xn, x1) k(xn, x2) k(xn, x3) . . . k(xn, xn)

, (2.20)

19

K∗ =

[
k(x∗, x1) k(x∗, x2) k(x∗, x3) . . . k(x∗, xn)

]
, (2.21)

K∗∗ = k(x∗, x∗). (2.22)

The key assumption in Gaussian process modeling is that the data could be represented

as a sample from Gaussian distribution, so we could have the following equation:

yyy

y∗

 ∼ N (0,

K KT
∗

K∗ K∗∗

), (2.23)

It is proved that [63] the following probability is a Gaussian distribution:

y∗|yyy ∼ N (K∗K
−1yyy,K∗∗ −K∗K

−1KT
∗). (2.24)

The mean of y∗ is:

y∗ = K∗K
−1yyy, (2.25)

and the variance of y∗ is:

var(y∗) = K∗∗ −K∗K
−1KT

∗ . (2.26)

Although Gaussian process could be applied to infinite dimensional objects, the prediction

complexity of finite dataset is O(n3).

The GPML Matlab code is used in this paper to predict the function with limited input

points. The Gaussian likelihood function is used as the likelihood function. The infer-

ence method used here is exact interence for GP with Gaussian likelihood. This method

calculates a parametrization of the posterior, the negative log marginal likelihood and its

derivatives with respect to the hyperparameters. The results are being compared with

20

the compressed sensing method using Legendre polynomials basis or Fourier series basis.

From the uncertainty information from the GP method, it is obvious that there exist many

possible functions given the input points and output values. And we want to construct a

way of display such uncertainty information similar as GP method for compressed sensing

approach. Thus, some possible methods are used to explore those uncertainty information.

2.6 Brownian Bridge

Brownian motion [64] or Wiener process is defined as a sample-continuous Gaussian

Process x on T = [0,∞] with mean 0 and covariance as:

Exs,xt = min(s, t). (2.27)

Brownian Bridge is closely related to Brownian motion. Brownian Bridge is defined as a

sample-continuous Gaussian Process y on T = [0, 1] with mean as 0 and covariance as:

Eys,yt = s(1− t) for 0 ≤ s ≤ t ≤ 1. (2.28)

The expected value of Brownian Bridge is zero, and the variance at T = 0 and T = 1 is

zero, so it means y0 = y1 = 0. As a result, the starting node and the ending node of the

Brownian Bridge is at the same level. Given a Brownian motion x, a Brownian Bridge y

could be obtained with the following equation:

yt := xt − tx1, 0 ≤ t ≤ 1, (2.29)

where x1 stands for the Brownian motion value (x) when t = 1. In a more general setting,

a Brownian Bridge connecting the points (0, a) to (T, b) could be defined as [65]:

ya→b
t := a(1− t

T
) + b

t

T
+ (xt −

t

T
xT), 0 ≤ t ≤ T, (2.30)

21

where ya→b
t is a Brownian Bridge from point (0, a) to point (T, b), and xT stands for the

Brownian motion value (x) when t = T .

Random walk is a good substitute for Brownian Motion [66], thus it could be used to

construct Brownian Motion. Let Xn is an independent variable, it only has two possible

values: −1 and 1, with equal probability each, which means Xn has 0.5 probability equal

to 1, and 0.5 probability equal to −1. Then Sn is defined as a random walk process with:

Sn := X1 +X2 +X3 + ...+Xn. (2.31)

Figure 2.2 is a collection of 1000 Brownian Bridges starting from point (0,−5) and ending

at point (2, 5), using random walk process as a build for Brownian Bridges.

But in our following sections, we decide to use uniform random walk process [67]

as a method of building Brownian Bridge. This is because we could get more variability

from Brownian Bridges generation results. Currently, we are having many possible lines

going through the starting point and the ending point, and some uncertainty information for

those possible functions could be obtained. But apparently, not all the possible lines could

be considered reasonable, as some functions are really different from the real function.

For those functions that have a huge difference from the real functions, some possible

approaches are being proposed to eliminate those functions. The first method we proposed

is to use the modified Lipschitz function related filtering method, and the second method

is to use modified VC-dimension related filtering method. After filtering, we expect to get

a more accurate uncertainty information for our approach.

2.7 Modified Lipschitz filtering approach

Given two metric spaces (X, d) and (Y, e) [68], where d denotes the metric on the set

X , and e denotes the metric on the set Y , which means: f : X → Y . If there exists a real

constant k, which satisfy:

22

0 0.5 1 1.5 2
−30

−20

−10

0

10

20

30

t

y
Brownian Bridge

Figure 2.2: 1000 Brownian Bridges between point (0,−5) and (2, 5)

e(f(a), f(b)) ≤ kd(a, b), (2.32)

for all a, b ∈ X , then f is defined as a Lipschitz function and the Lipschitz constant is

defined as k. If S is a subset of X , then f is uniformly continuous on S. Obviously,

the constant k here in Lipschitz function could be used as a method to eliminate some

Brownian Bridges that do not satisfy some certain requirement.

Using equation 2.30, we try to construct a Brownian Bridge from two adjacent points

of compressed sensing approach samples, which are: (xs, ys) and (xe, ye). Map the starting

point of this Brownian Bridge as (0, a) and the ending point of this Brownian Bridge as

23

(T, b), where a = ys, T = te − ts, and b = ye. And we try to calculate the slope between

two random adjacent points from a random selected Brownian Bridge, which are: (t0, y0)

and (t1, y1). Then the slope kBB between the two adjacent points on the Brownian Bridge

is:

kBB =
1

t1 − t0
(
b− a

T
+ (xt1 − xt0)−

xT

T
), (2.33)

where xt definition is the same as it is in equation 2.30. It is obvious to see that kBB is

full related with the slope between the Brownian Bridge starting point and the Brownian

Bridge ending point as it is related to a, b and T . So, we propose a possible approach to

decrease the influence of this factor. We could calculate the angle between this part of

randomly generated Brownian Bridge (from (t0, y0) to (t1, y1)) and the line connecting the

starting point (xs, ys) and the ending point (xe, ye) of Brownian Bridge. If this angle is

within some reasonable range, we conclude that this part of Brownian Bridge satisfies our

selection requirement. If all the parts on this Brownian Bridge have angle within the rea-

sonable range, we conclude that this Brownian Bridge satisfies our selection requirement.

2.8 Modified VC-dimension filtering approach

In this section, we would like to propose another possible method to help us build

better uncertainty information for our approach, which is to build bounds on the risk for

loss functions. The concept of VC-dimension is briefly introduced here first.

Given a set system (X,F) and a subset Y ⊆ X [69], the restriction of F on Y is the

set F |Y = S ∩ Y : S ∈ F . There exist a subset A ⊆ X is defined as shattered by F , if

for some S ∈ F , each of the subsets of A arises as an interaction A ∩ S, which could

be denoted as F |Y = 2A. The VC-dimension dim(F) of F is defined as the size of the

largest subset of X which could be shattered by F . Take the following sets as an example.

Considering X as the Euclidean plane R2, F1 as the set all the possible convex polygons

24

pn the plane, and F2 as the set of all the possible halfplanes. The set system (X,F1) would

have a VC-dimension of ∞, and the set system (X,F2) would have a VC-dimension of 3.

Given R[x1, x2, ..., xd]1 as the set of all the possible linear functions in d variables, the set

Pd,1 denotes:

Pd,1 = {{x ∈ Rd : p(x) ≥ 0} : p ∈ R[x1, x2, ..., xd]1}. (2.34)

For the set system (Rd, Pd,1), the VC-dimension is d + 1. More generally, given

R[x1, x2, ..., xd]≤D as the set of all the possible real polynomials functions in d variables

of degree at most D, the set Pd,D denotes:

Pd,D = {{x ∈ Rd : p(x) ≥ 0} : p ∈ R[x1, x2, ..., xd]≤D}. (2.35)

For the set system (Rd, Pd,D), the VC-dimension is at most
(
D+d
d

)
.

After the brief introduction of the concept of VC-dimension, we would like to first

introduce methods to build bounds on the risk for simple loss functions, like indicator

loss functions. Vapnik [70] proposed an empirical method for measuring the capacity

of a learning machine, given the size of training set l, with the input-output pairs (x, ω),

x ∈ X ⊂ Rn, ω ∈ {0, 1}, (x1, ω1), ..., (xl, ωl), where all the pairs are assumed to be drawn

independently from an unknown distribution. The learning machine is characterized by

the set of binary classification functions f(x, α), and α ∈ Λ, where α is a parameter that

specifies the function, Λ is the set of all admissible parameters, the loss function between

the value ω and the output value from the learning machine f(x, α) is defined as p(α):

p(α) = E|ω − f(x, α)|. (2.36)

The empirical error v(α) is defined as:

25

v(α) =
1

l

l∑
i=1

∣∣ωi − f(xi, α)
∣∣ . (2.37)

Vapnik shows that we could establish an upper bound for p(α) based on three aspects

of knowledge, which are: the capacity of learning machine (measured by VC-dimension),

the empirical risk v(α), and the size of training set l. With probability 1− η, for all α ∈ Λ

p(α) ≤ v(α) +D[l, h, v(α), η] (2.38)

is valid, where D could be expressed as:

D[l, h, v(α), η] = c
h[ln 2l/h+ 1]− ln η

2l
{

√
1 +

4lv(α)

c[h[ln 2l/h+ 1]− ln η]
+ 1}, (2.39)

where c is defined as a universal constant, less than 1, and h is the VC-dimension.

But it is apparent that not all the function values could fit in the range set {0, 1}, those

real-valued functions would have a more general bound on the risk for loss functions. In

1998, Vapnik [71]defines the loss function Q(x, α) as:

Q(x, α) = (y − f(x, α))2, (2.40)

where y is the real function value from the training set (xi, yi), and f(x, α) is the output

of the approximate function. If we assume the loss function is a set of totally bounded

functions, which means (0 ≤ Q(x) ≤ B), then with the probability at least 1 − η the

bound

R(α) < Remp(α) +
Bε(l)

2
(1 +

√
1 +

4Remp(α)

Bε(l)
) (2.41)

26

is valid, where R(α) is the risk function:

R(α) =

∫
Q(x, α)dx, α ∈ Λ, (2.42)

Remp(α) is the empirical risk function:

Remp(α) =
1

l

l∑
i=1

Q(x, α), α ∈ Λ, (2.43)

where α is a parameter that specifies the function, Λ is the set of all admissible parameters,

l is the size of training set, and ε(l) could be expressed as:

ε(l) = 4
h(ln(2l/h) + 1)− ln(η/4)

l
, (2.44)

where h is the VC-dimension. In our problem, we would assume within range [x1, x2],

the real function f(x) would be within the range: [Rl, Ru], and the result from compressed

sensing approach is within the range: [CSl, CSu]. Thus, it is safe to conclude that the B

in equation 2.41 would satisfy:

B ≤ (max (CSu, Ru)−min (CSl, Rl))
2. (2.45)

We would propose a preliminary method to find the appropriate value for B. We

would decrease the B starting from (max (CSu, Ru) − min (CSl, Rl))
2, and ending at a

number where we determine that this modified VC-dimension approach would give us a

reasonable uncertainty information for our compressed sensing approach. Thus, we would

use equation 2.41 as our main equation in eliminating unreasonable Brownian Bridges.

The first step is to calculate the right side of equation 2.41, which is an upper bound

distance measurement (expressed as d1) between the real function and the function result

from compressed sensing method. Then we would calculate the left side of equation 2.41

27

based on the distance measurement (expressed as d2) between possible Brownian Bridges

and function result from compressed sensing method in aspect of fixed input intervals. If

for one Brownian Bridge, we find that d2 > d1, it is safe to conclude that this Brownian

Bridge is not a possible substitute function for the real function using this modified VC-

dimension related method, and this Brownian Bridge is filtered.

28

3. APPLICATION AND RESULTS ∗

We demonstrate our compressed sensing approach for uncertainty propagation on a one

dimensional simple Legendre basis function, one dimensional complicated Legendre basis

function, one dimensional simple Fourier basis function, two dimensional Legendre basis

function, and a finite element model of a cooled gas turbine blade. The possible Brownian

Bridges are built based on the sample points from compressed sensing approach. All the

analytical functions are designed to show the effectiveness of our approach under perfect

conditions, with comparison to Gaussian process method. The cooled gas turbine blade

model was treated as a black box, and thus, nothing was known about the sparsity of this

model in the Legendre basis. This is the type of scenario we expect to encounter gener-

ally. Finally, we use a simple example from compressed sensing approach with Legendre

basis to demonstrate the process of using Brownian Bridges, modified Lipschitz filtering

approach, and modified VC-dimension filtering approach to build uncertainty information

for our method.

3.1 1-D simple Legendre function

The function that we applied in this section is:

f(x) = 1 + x+ x2, (3.1)

where x ∈ [−1, 1]. This function could be expressed in Legendre polynomials in three

terms, which could be expressed as the following way:

f(x) =
4

3
∗ 1 + 1 ∗ x+

2

3
∗ 1

2
(3x2 − 1), (3.2)

∗Reprinted with permission from "A compressed sensing approach to uncertainty propagation for
approximately additive functions" by Kaiyu Li, Douglas Allaire, 2016. ASME 2016 International
Design Engineering Technical Conferences, IDETC/CIE, Copyright 2016 by ASME.

29

where 1, x, and 1
2
(3x2−1) are the first three terms in Legendre polynomials. As we could

use sparse Legendre basis to represent this function, it could be approximated perfectly

with a few of evaluations and 5 samples are used in the compressed sensing approach. The

reason of using 5 samples comes from the example of 2-D Legendre polynomials function

in section 3.4. As 5 samples are enough to have a reasonable result for 2-D Legendre

polynomials function, we would assume that 5 samples should be enough for the other

relatively simpler functions. The estimated function and the real function are being shown

in figure 3.1. The red line is the result from the compressed sensing method with Legendre

basis and the black line is the real function. The blue dots are the samples randomly

selected from compressed sensing method. In figure 3.2, the red line and the black line

are the empirical cumulative distribution function (ECDF) line of the real function and the

result from compressed sensing with Legendre basis separately. We want to use ECDF

graph as a way of demonstration because we are trying to propogate input uncertainty x

with uniform distribution on [−1, 1] through the equation 3.1. It is obvious to see those two

lines are basically the same, which means the result from compressed sensing approach

with Legendre basis could give us the correct function.

However, if we try to use compressed sensing approach with Fourier basis with the

same 5 samples as above, totally different result would be obtained. In figure 3.3, result

from compressed sensing with Fourier basis and the real function are shown. In figure

3.4, the ECDF of result from compressed sensing method with Fourier basis and the real

function are shown. As we could not use Fourier basis to express Legendre polynomials

in limited terms (or in a sparse matrix), this method with Fourier basis does not work well

on Legendre functions.

Using Gaussian process (GP) as a machine learning approach, the result from GP

method and the real line are shown in figure 3.5. In figure 3.6, the ECDF of the result

from GP method and the real function are shown. The mean function is composite, which

30

−1 −0.5 0 0.5 1
0.5

1

1.5

2

2.5

3
CS (Legendre) line and Real line, y=1+x+x2

Input, x

O
ut

pu
t,

y

Random sample points
CS (Legendre) line
Real line

Figure 3.1: Compressed sensing approach with Legendre basis result and real function
comparison on 1-D simple Legendre function.

is set as the sum of polynomial mean and constant mean. The covariance function is set as

Matern form with isotropic distance measure. The hypermeters are minimized based on

the sample points, the mean function and the covariance function. The likelihood function

is set as Gaussian. Two of the five samples are set at the starting point and the ending point

of the interval, which are: −1 and 1. The other three samples are randomly selected from

the interval [−1, 1]. From the graph, we could use the GP method works as well as our

method in this testing example.

3.2 1-D complicated Legendre function

The function that we applied in this section is more complicated than the previous

section, which is:

31

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Output,y

E
C

D
F

ECDF of CS (Legendre) and Real, y=1+x+x2

CS (Legendre) ECDF line
Real CDF line

Figure 3.2: ECDF of compressed sensing approach with Legendre basis result and real
function on 1-D simple Legendre function.

y =
1

128
(12155x9 − 25740x7 + 18018x5 − 4620x3 + 315x). (3.3)

This function seems complicated, but it is the 9th term in Legendre polynomials, which

means only one number is used to represent the function in Legendre basis. As we can see

from the previous section, using compressing sensing with Fourier basis approach does not

apply well on Legendre polynomials. As a result, only GP approach and compressed sens-

ing approach with Legendre basis are considered in this section. In figure 3.7 and figure

3.8, we could see that compressed sensing with Legendre basis method work much better

than the GP method in figure 3.9 and figure 3.10. As this function could be represented in

a sparsely in Legendre basis, the compressed sensing approach with Legendre basis works

great in this example. However, in GP approach, there are not enough samples for the

32

−1 −0.5 0 0.5 1
−2

−1

0

1

2

3
CS (Fourier) line and Real line, y=1+x+x2

Input, x

O
ut

pu
t,

y

Random sample points
CS (Fourier) line
Real line

Figure 3.3: Compressed sensing approach with Fourier basis result and real function com-
parison on 1-D simple Legendre function.

approach to learn the function itself, and it could not obtain a perfect solution. For the

samples used in GP approach, two of five samples are fixed at the interval starting point

and ending point, and the other three samples are randomly selected.

With comparison among different Legendre polynomials functions using different meth-

ods, we could find that using compressing sensing approach with Legendre basis works

better than Fourier basis while simulating Legendre polynomials functions. When the

function could be expressed in Legendre polynomials in a sparse matrix, the compressed

sensing approach is better than GP approach when the function is complicated.

3.3 1-D simple Fourier function

Apparently, not all the functions could be expressed sparsely in Legendre polynomials,

for example, the Fourier series functions. However, simple Fourier function could be

33

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Output,y

E
C

D
F

ECDF of CS (Fourier) and Real, y=1+x+x2

CS (Fourier) ECDF line
Real CDF line

Figure 3.4: ECDF of compressed sensing approach with Fourier basis result and real func-
tion on 1-D simple Legendre function.

expressed sparsely with Fourier series basis. Compressed sensing method with Fourier

series basis is applied into some Fourier function examples to see the effectiveness of our

method. The function being applied in this section is:

y = sin(15x). (3.4)

This function could be expressed in Fourier series basis in a sparse matrix, which is only

one non-zero number in the matrix. This problem is solved with compressed sensing

approach with Fourier basis as shown in figure 3.11 and ECDF of the result and real

function are shown in figure 3.12. This problem is also solved with compressed sensing

approach with Legendre basis and GP method for comparison, as they are shown in figure

3.13, figure 3.14, figure 3.15, and figure 3.16 separately.

34

−1 −0.5 0 0.5 1
0.5

1

1.5

2

2.5

3

Input, x

O
ut

pu
t,

y

GP line and Real line, y=1+x+x2

Random sample points
GP line
Real line

Figure 3.5: GP result and real function comparison on 1-D simple Legendre function.

It is noticeable here that the number of samples used in different methods are different.

Only 5 samples are used in both compressed sensing approach with Legendre basis and

Fourier basis. However, 50 samples are used in the GP approach. If the number of sample

used in GP approach is 5, it could not even give a reasonable function compared the real

function. Even if we put 50 samples into the GP method, it still could not give an accurate

function compared to the real function. A small part of GP function result is being enlarged

to show the difference between the result and the real function, which is shown in figure

3.15. From the figures, we can see the compressed sensing method with Fourier series

basis is better than the other two methods in this simple Fourier function example. It is

obvious to see that, if we could have the same basis for compressed sensing approach as

the basis used in the function, our method works well. However, if we apply the wrong

basis to the function, our method does not work.

35

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Output,y

E
C

D
F

ECDF of GP and Real, y=1+x+x2

GP ECDF line
Real ECDF line

Figure 3.6: ECDF of GP approach result and real function on 1-D simple Legendre func-
tion.

3.4 2-D Legendre polynomials function

The function we seek to develop a surrogate approximation for in this demonstration

is:

f(x1, x2) = 1 + x1 +
1

2
(3x2

2 − 1) + x1x2, (3.5)

where (x1, x2) ∈ [−1, 1]2. This function has four modes in the Legendre basis spanned by

the tensor product of the one dimensional Legendre bases for each individual dimension

and no other components. Therefore, this function is known to be 4-sparse in the Legen-

dre basis, and should be approximated exactly with very few function evaluations by our

approach. We estimate the subfunctions, f̂1 and f̂2, as shown in figure 3.17. Here, the

exact signal for each, (e.g., f1 + f̂0 for the x1 component) is also plotted on each figure.

36

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
CS (Legendre) line and Real line, y=1/128*(12155*x9−25740*x7+18018*x5−4620*x3+315*x)

Input, x

O
ut

pu
t,

y

Random sample points
CS (Legendre) line
Real line

Figure 3.7: Compressed sensing approach with Legendre basis result and real function
comparison on 1-D complicated Legendre function.

The approximations of these subfunctions are exact, thus, only one curve is seen in each

plot on the figure. In this case, f̂0 is computed with (x1, x2) = (0, 0). The construction of

each subfunction required 5 evaluations of the function, f(x1, x2) each. To determine this,

we began with 2 samples for each subfunction construction independently and computed∥∥ĉj∥∥0
for each input as described in chapter 2. We continued with this process for 3, 4,

and 5 samples, where it was revealed that the
∥∥ĉj∥∥0

terms for each input were no longer

varying increasing sample size. Thus, the process was stopped at 5 samples each. The

third plot in the figure shows the validation error,∥e∥2, which was computed for each suc-

cessive approximation with 10 randomly chosen values of (x1, x2) that were propagated

through each approximation, as well as the full function, f(x1, x2). The first error value

is the error from using just f̂0 to estimate f(x1, x2). The second error value is associated

with using f̂1, and the last error value is associated with using f̂1 + f̂2 − f̂0. As can be

37

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Output,y

E
C

D
F

ECDF of CS (Legendre) and Real, y=1/128*(12155*x9−25740*x7+18018*x5−4620*x3+315*x)

CS (Legendre) ECDF line
Real CDF line

Figure 3.8: ECDF of compressed sensing approach with Legendre basis function and real
function on 1-D complicated Legendre function.

seen from the plot, the error is decreasing as we add more terms to the approximation, but

we still have not recovered the full signal from just the one input subfunctions. This can

also be seen in the fourth plot of figure 3.17, where the functions f1,2 = f(x1, x2) and f̂1,2

are plotted as a function of (x1, x2). The surfaces differ because the f̂1,2 function cannot

account for the interaction effect of x1 and x2 in f1,2 with only additive terms of one input

subfunctions. We note that thus far, we have evaluated f(x1, x2) a total of 20 times. These

evaluations consist of 5 for each one input subfunction construction, and 10 for validation.

The next step in our modeling process then, is to add the two input subfunction of

(x1, x2) following the procedure described in chapter 2. The result of adding the two input

subfunction to our original surrogate representation is shown in figure 3.18. The top plot

overlays the surrogate approximation, f̂x1,x2, and the full model, f(x1, x2). The surrogate

model is an exact match in this case. The bottom plot shows the ECDF of f(x1, x2),

38

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Input, x

O
ut

pu
t,

y

GP line and Real line, y=1/128*(12155*x9−25740*x7+18018*x5−4620*x3+315*x)

Random sample points
GP line
Real line

Figure 3.9: GP result and real function comparison on 1-D complicated Legendre function.

with X1 ∼ U [0, 1] and X2 ∼ U [−0.5, 0.5]. This ECDF was estimated via Monte Carlo

simulation using 1000 full model evaluations and is shown as a black line. Also shown on

this plot is the ECDF of f̂x1,x2 , which was estimated using 1000 samples of the surrogate

approximation. This ECDF is shown as a dashed red line and matches the true ECDF

exactly. To construct the surrogate approximation required only 25 full model evaluations,

plus another 10 full model evaluations for validation. We use the tensor product of the

previously computed sample points when constructing the two input subfunction, which

allows us to reuse the 10 full model evaluations acquired in the construction of the one

input subfunctions.

After implementation of compressed sensing approach with Legendre basis, GP ap-

proach is being applied to the same function. As 25 random sample points are randomly

selected from compressed sensing approach, we want to use the sample number of sam-

39

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Output,y

E
C

D
F

ECDF of GP and Real, y=1/128*(12155*x9−25740*x7+18018*x5−4620*x3+315*x)

GP ECDF line
Real ECDF line

Figure 3.10: ECDF of Gaussian process result and real function on 1-D complicated Leg-
endre function.

ple points in the GP approach for comparison. During experiment, we use 21 randomly

selected sample points, with four sample points on the four vertexes of the sample space,

which are: (−1,−1), (−1, 1), (1,−1) and (1, 1).

The result from compressed sensing approach and the real function are shown in figure

3.19. The ECDF of compressed sensing approach with Legendre basis result and real

function are shown in figure 3.20. The result from GP approach and the real function are

shown in figure 3.21. The ECDF of GP approach result and real function are shown in

figure 3.22.

Although the result from compressed sensing approach with Legendre basis, result

from GP approach and the real function all look similar in the graphs, actually compressed

sensing approach with Legendre basis works better than GP approach in this example.

10,000 points are random generated from the sample space, the difference between the

40

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
CS (Fourier) line and Real line, y=sin(15*x)

Input, x

O
ut

pu
t,

y

Random sample points
CS (Fourier) line
Real line

Figure 3.11: Compressed sensing approach with Fourier basis function and real function
comparison on 1-D simple Fourier function.

two methods function result and the real function is calculated. The compressed sensing

approach with Legendre basis gives a total norm two error as 5.2897e-04, but the GP

appraoch gives a total norm two error as 0.7039, which is much more than the error from

our approach.

3.5 Cooled gas turbine blade model

For this demonstration we consider a finite element model of a cooled gas turbine

blade modeled after that provided in reference [72]. The blade profile and the random

inputs to the finite element model are shown in figure 3.23. The computational model is a

heat transfer model that simulates a cooled gas turbine blade in a hot gas path flow. The

uncertain inputs to this system, their units, and their probability distributions are provided

in table 3.1. Here, k is the thermal conductivity of the blade, Tgas is the external gas

41

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Output,y

E
C

D
F

ECDF of CS (Fourier) and Real, y=sin(15*x)

CS (Fourier) ECDF line
Real ECDF line

Figure 3.12: ECDF of compressed sensing approach with Fourier basis function and real
function on 1-D simple Fourier function.

temperature, hLE is the leading edge heat transfer coefficient, hTE is the trailing edge

heat transfer coefficient, Tcool is the cooling passage temperature, and hcool is the cooling

passage heat transfer coefficient. It is assumed that a failure will occur when the maximum

temperature or temperature gradients become too large. This is modeled by combining

damage due to high temperature and damage due to high temperature gradients as:

D :=
Tmax − T des

max

Tlimit − T des
max

+
|∇T |max −|∇T |desmax

|∇T |limit −|∇T |desmax

, (3.6)

where Tlimit = 1, 500K is the limiting value of the temperature, |∇T |limit = 80, 000K/m

is the limiting value of the temperature T des
max = 1, 430K is the maximum temperature

at design intent conditions, and |∇T |desmax = 70, 000K/m is the maximum temperature

gradient at design-intent conditions. We consider the damage, D, as the quantity of interest

42

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

8
CS (Legendre) line and Real line, y=sin(15*x)

Input, x

O
ut

pu
t,

y

Random sample points
CS (Legendre) line
Real line

Figure 3.13: Compressed sensing approach with Legendre basis result and real function
comparison on 1-D simple Fourier function.

Table 3.1: Cooled gas turbine blade model inputs and distribution, where T (a, b, c) repre-
sents a triangular distribution with lower limit, a, mode, b, and upper limit, c.

Input Units Distribution
k W/(mK) T (28.5,30,31.5)

Tgas K T (1400,1500,1600)
hLE W/(m2K) T (15000,16000,17000)
hTE W/(m2K) T (3500,4000,4500)
Tcool K T (550,600,650)
hcool W/(m2K) T (1400,1500,1600)

of this system. Thus, our goal is to efficiently propagate uncertainty from the inputs to this

particular output.

Using the methodology outlined in the 2nd chapter, we construct a compressed sensing

surrogate representation of the damage output of the computational model of the cooled

43

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Output,y

E
C

D
F

ECDF of CS (Legendre) and Real, y=sin(15*x)

CS (Legendre) ECDF line
Real ECDF line

Figure 3.14: ECDF of compressed sensing approach with Legendre basis result and real
function on 1-D simple Fourier function.

gas turbine blade. We construct this surrogate as an approximately additive function of

the inputs using a sparse representation in the Legendre polynomial basis. After initially

creating a purely additive surrogate (i.e., containing only the one input subfunctions), the

approximate sensitivity indices, Ŝj , for j = 1, 2, ..., 6, were computed according to equa-

tion 2.12. The results of this computation are presented in table 3.2. According to our

greedy strategy for incorporating higher order subfunctions, which was described in the

2nd chapter, we would first consider adding the two input subfunction of (Tgas, Tcool),

followed by the two input subfunction of (Tgas, hcool), and so on.

In figure 3.24, the results for uncertainty propagation through the surrogate representa-

tion containing all subfunctions of one variable and five subfunctions of two inputs, along

with the results from Monte Carlo simulation with the full computational model are shown.

The two input subfunctions included in the surrogate representation are the pairs of Tgas

44

Figure 3.15: GP result and real function comparison on 1-D simple Fourier function.

Table 3.2: Approximate main effect sensitivity indices computed using the purely additive
surrogate model.

Input k Tgas hLE hTE Tcool hcool

Ŝ 0.01 0.93 0.01 0.01 0.03 0.02

and each other variable. In figure 3.24, the top plot displays the histogram of Damage

as computed by a 1,000 sample Monte Carlo simulation of the full model. The mid-

dle plot presents the histogram computed by sampling from the surrogate representation

1,000 times. The surrogate representation itself required only 115 full model evaluations,

which consisted of 5 evaluations for each one input subfunction, 15 additional function

45

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Output,y

E
C

D
F

ECDF of GP and Real, y=sin(15*x)

GP ECDF line
Real ECDF line

Figure 3.16: ECDF of GP approach result and real function on 1-D simple Fourier func-
tion.

Figure 3.17: Subfunction of input X1 and its sparse approximation (left plot) subfunction
of input X2 and its sparse approximation (second left plot), validation error as a function
of the number of terms in the surrogate approximation (second from the right plot), and
the full function and its additive surrogate approximation.

46

Figure 3.18: Surrogate approximation f̂ and full model f (Top), empirical CDF function of
full model via Monte Carlo simulation (black) and surrogate approximation (red) (bottom).

evaluations for each two input subfunction included, and 10 full model evaluations for the

validation set. As can be seen from the two histograms, the surrogate model provides an

accurate representation of the full model. In the bottom plot of the figure, the empirical

cumulative distribution function for the Monte Carlo simulation of the full model and the

surrogate representation are plotted. As is clear from the plot, these functions are nearly

identical.

47

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−2

0

2

4

Real line

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−2

0

2

4

CS (Legendre) line and Real line, y=1+x1+0.5*(3*x22−1)+x1*x2

CS (Legendre) line

Figure 3.19: Compressed sensing approach with Legendre basis result and real function
on 2-D Legendre polynomials function.

While the results from the surrogate representation constructed from 115 points and

12 terms (the offset term, 6 one input subfunctions, and 5 two input subfunctions) are

excellent and represent substantial computational savings, more could have been saved

depending on the desired threshold for the validation error. As we did in the case of the

analytical function in the previous example, we randomly sampled 10 points in the input

space, propagated them through the full model, and used the results as a validation set to

test against with our surrogate representations. The results of this test as we added more

terms to our approximation are shown in figure 3.25. The figure clearly shows that the

validation error did not decrease anymore after the first 7 terms (the offset and the one

48

−1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Output,y

E
C

D
F

ECDF of CS (Legendre) and Real, y=1+x1+0.5*(3*x22−1)+x1*x2

CS (Legendre) ECDF line
Real CDF line

Figure 3.20: ECDF of compressed sensing approach with Legendre basis result and real
function on 2-D Legendre polynomials function.

input subfunctions). Indeed, the results shown in figure 3.24 can be reproduced just as

well with only the first 7 terms of the surrogate representation, which required only 40 full

model evaluations to construct (including the 10 for the validation set). Had a reasonable

threshold for the validation error been set, we would not have greedily added the two input

subfunctions and the surrogate representation would have been essentially identical. The

development of robust algorithms for constructing sparse surrogate representations that

incorporate such heuristics is a topic for future work.

3.6 Uncertainty information example

In this section, a 1-D simple Legendre function is used to demonstrate of some pos-

sible methods to build uncertainty information for our compressed sensing method. The

example used in this section is:

49

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−2

0

2

4

Real line

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−2

0

2

4

GP line and Real line, y=1+x1+0.5*(3*x22−1)+x1*x2

GP line

Figure 3.21: GP result on 2-D Legendre polynomials function.

f(x) =
1

2
(3x2 − 1), (3.7)

where x ∈ [−5, 5], and this function is the third term in Legendre polynomials. As it is

demonstrated in previous chapters and sections, using compressed sensing method with

Legendre basis could solve this problem only within several model evaluations with very

few randomly selected samples. However, in this section, the sample points are fixed at

certain point for purpose of comparison and demonstration. The sample points are chosen

as: (−4.5, 29.8750), (0,−0.5), (1, 1), (1.5, 2.8750), and (4, 23.5). As a result, 4 different

Brownian Bridge section are built from all adjacent points. Each Brownian Bridge building

section would have 1000 randomly generated Brownian Bridges. It is shown in figure 3.26

50

−1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Output,y

E
C

D
F

ECDF of GP and Real, y=1+x1+0.5*(3*x22−1)+x1*x2

GP ECDF line
Real ECDF line

Figure 3.22: ECDF of GP approach result and real function on 2-D Legendre polynomials
function.

Figure 3.23: The cooled gas turbine blade profile and random input variables

and figure 3.27. All the Browian Bridge are built from uniform random walk Brownian

motion.

The black lines in figure 3.26 and figure 3.27 are the randomly generated Brownian

Bridges. The step size used in generating Brownian Bridges is 0.01. After using the

51

−4 −2 0 2 4
0

20

40

60
Full Model Monte Carlo Simulation

Damage

−4 −2 0 2 4
0

20

40

60
Surrogate Representation

Damage

−2 −1 0 1 2
0

0.5

1

Damage

Cumulative Distribution Function

1,000 Full Model
Evaluations

115 Full Model
Evaluations

Full Model
Surrogate

Figure 3.24: Histogram of full model Monte Carlo simulation (top), histogram of surrogate
representation based Monte Carlo simulation (middle), empirical cumulative distributed
functions of the full model and surrogate representation (bottom).

modified Lipschitz filtering approach and the modified VC-dimension filtering approach to

filter original Brownian Bridges that do not satisfy the requirement mentioned in equation

2.32 and equation 2.41 separately, the red lines and the green lines are the ones which

are still eligible separately. The angle used in modified Lipschitz filtering approach is 45

degrees, and the B used in modified VC-dimension filtering approach is 1.

52

1 6 11 16 21
0

1

2

3

4

5

6

Number of Terms

V
al

id
at

io
n

S
et

 E
rr

or

1st Set of Greedy
Interactions Cutoff

Purely Additive
Approximation

Cutoff

Figure 3.25: Validation error as a function of the number of terms in the surrogate approx-
imation of the cooled gas turbine blade model. The red line indicates the end of the purely
additive surrogate terms and the blue line indicates the end of the terms used in computed
the results showing in figure 3.24.

The histogram for the modified Lipschitz filtering approach with x = −3 and x = 3 are

shown in figure 3.28 and figure 3.29. And the histogram for the modified VC-dimension

filtering approach with x = −3 and x = 3 are shown in figure 3.30 and figure 3.31.

There might be some concerns about those two graphs: figure 3.26 and figure 3.27.

For some concave and convex functions, Brownian Bridge could have some possibility

that they never have any intersections with the real function. However, changing step size

of generating Brownian Bridges process would resolve this problem. With less step size,

the Brownian Bridge would become more variable, the difference between the upper limit

of all the Brownian Bridges and the lower limit would be larger. This would make sure

that the Brownian Bridges would finally intersect with the real function while decreasing

the step size.

For the figure using modified Lipschitz filtering approach, it is common to see with

53

−5 0 5
−20

−10

0

10

20

30

40

50
Modified Lipschitz filter approach

x

y

Figure 3.26: Brownian Bridges with modified Lipschitz approach. Black lines are for
Browian Bridges, red lines are for eligible Brownian Bridges.

a large interval between Brownian Bridge starting point and ending point, this approach

could filter many Brownian Bridges. This could be explained by equation 2.33. It is

obvious to see the Brownian Bridge slope is related to the term xT

T
, where this term is

related to the interval distance of the Brownian Bridge. The sum of uniform distribution

would become IrwinHall distribution [73], with central limit theorem, it would become

normal distribution [74]. In other words, when T or the interval distance become larger,

most of the Brownian Bridges would have a smaller xT

T
term, which increases the kBB, and

this could make modified Lipschitz filtering approach to filter more Brownian Bridges.

For the figure using modified VC-dimension filtering approach, it is common to see

with a small interval between Brownian Bridge starting point and ending point, this ap-

proach could hardly filter any Brownian Bridges. This could be explained by the method

mentioned in ending part in section 2.8. When the compared Brownian Bridge have a

54

−5 0 5
−20

−10

0

10

20

30

40

50
Modified VC−dimension filter approach

x

y

Figure 3.27: Brownian Bridges with modified VC-dimension approach. Black lines are
for Browian Bridges, green lines are for eligible Brownian Bridges.

small input range, this would generate a relatively small estimation for value d2. As d2

could always be less than d1 on small intervals, it is possible that modified VC-dimension

filtering approach never filter any Brownian Bridges.

55

10 15 20 25
0

0.5

1

1.5

2

y

Histogram when x==−3

Figure 3.28: Histogram of eligible Brownian Bridges when x = −3 with modified Lips-
chitz approach.

0 5 10 15 20 25
0

5

10

15

20

y

Histogram when x==3

Figure 3.29: Histogram of eligible Brownian Bridges when x = 3 with modified Lipschitz
approach.

56

10 15 20 25
0

0.5

1

1.5

2

y

Histogram when x==−3

Figure 3.30: Histogram of eligible Brownian Bridges when x = −3 with modified VC-
dimension approach.

0 5 10 15 20 25
0

50

100

150

200

250

y

Histogram when x==3

Figure 3.31: Histogram of eligible Brownian Bridges when x = 3 with modified VC-
dimension approach.

57

4. SUMMARY AND CONCLUSIONS ∗

We have presented a compressed sensing approach to uncertainty propagation by con-

structing a sparse surrogate representation of a computational model. The approach relied

on the assumption of approximate additivity. We demonstrated our approach on some

approximately additive functions that was known to be sparse in the Legendre basis and

Fourier basis, and the results revealed the effectiveness of our approach under perfect cir-

cumstances. We made a comparison with GP regression method using the same analytical

functions. We also demonstrated our approach on a finite element model of a cooled gas

turbine blade for which we had no pre-requisite knowledge of sparsity in the Legendre

basis or approximate additivity. We propose to build the corresponding uncertainty infor-

mation for our method with Brownian Bridges, and some possible approaches are used to

filter unreasonable function lines. Nevertheless, our approach yielded significant compu-

tational savings as compared to Monte Carlo simulation with negligible loss of accuracy

in the uncertainty propagation results. We hypothesize that many other engineering com-

putational models are approximately additive and can be represented well in a polynomial

basis (or other bases as necessary). If this hypothesis is true, then the concept of using

compressed sensing to efficiently find a sparse representation of the underlying function is

promising. To ensure the exploitation of sparsity and approximate additivity in these situ-

ations, robust algorithms that identify a good basis to search for sparseness in, and when a

good sparse representation has been found in that basis, are necessary. We have provided

several heuristics in this work that have some potential for providing this robustness, and

their study is a topic of future work.

∗Reprinted with permission from "A compressed sensing approach to uncertainty propagation for
approximately additive functions" by Kaiyu Li, Douglas Allaire, 2016. ASME 2016 International
Design Engineering Technical Conferences, IDETC/CIE, Copyright 2016 by ASME.

58

REFERENCES

[1] K. Li and D. Allaire, “A compressed sensing approach to uncertainty propagation for

approximately additive functions,” ASME 2016 International Design Engineering

Technical Conferences, IDETC/CIE, 2016.

[2] S. Brooks, “Markov chain monte carlo method and its application,” Journal of the

royal statistical society: series D (the Statistician), vol. 47, no. 1, pp. 69–100, 1998.

[3] E. Zio, The Monte Carlo simulation method for system reliability and risk analysis.

Springer, 2013.

[4] F.-C. Wu and Y.-P. Tsang, “Second-order monte carlo uncertainty/variability analysis

using correlated model parameters: application to salmonid embryo survival risk

assessment,” Ecological Modelling, vol. 177, no. 34, pp. 393 – 414, 2004.

[5] A. Van der Waart, “Asymptotic statistics, volume 27 of cambridge series in statistical

and probabilistic mathematics 03,” 1998.

[6] J. Z. Ma and E. Ackerman, “Parameter sensitivity of a model of viral epidemics sim-

ulated with monte carlo techniques. ii. durations and peaks,” International journal of

bio-medical computing, vol. 32, no. 3, pp. 255–268, 1993.

[7] R. MacDonald, J. Campbell, et al., “Valuation of supplemental and enhanced oil re-

covery projects with risk analysis,” Journal of petroleum technology, vol. 38, no. 01,

pp. 57–69, 1986.

[8] R. J. Eggert, “Design variation simulation of thick-walled cylinders,” Journal of Me-

chanical Design, vol. 117, no. 2A, pp. 221–228, 1995.

[9] J. Rastegar and B. Fardanesh, “Geometric synthesis of manipulators using the monte

carlo method,” Journal of Mechanical Design, vol. 112, no. 3, pp. 450–452, 1990.

59

[10] S. Amaral, D. Allaire, and K. Willcox, “A decomposition-based approach to uncer-

tainty analysis of feed-forward multicomponent systems,” International Journal for

Numerical Methods in Engineering, vol. 100, no. 13, pp. 982–1005, 2014.

[11] D. Allaire and K. Willcox, “Uncertainty assessment of complex models with appli-

cation to aviation environmental policy-making,” Transport Policy, vol. 34, pp. 109–

113, 2014.

[12] D. Allaire, G. Noel, K. Willcox, and R. Cointin, “Uncertainty quantification of an

aviation environmental toolsuite,” Reliability Engineering & System Safety, vol. 126,

pp. 14–24, 2014.

[13] G. Grimmett and D. Stirzaker, Probability and random processes. Oxford university

press, 2001.

[14] J. C. Helton and F. J. Davis, “Latin hypercube sampling and the propagation of un-

certainty in analyses of complex systems,” Reliability Engineering & System Safety,

vol. 81, no. 1, pp. 23–69, 2003.

[15] H. Niederreiter, Quasi-Monte Carlo Methods. Wiley Online Library, 2010.

[16] R. E. Caflisch, “Monte carlo and quasi-monte carlo methods,” Acta numerica, vol. 7,

pp. 1–49, 1998.

[17] S. Au and J. L. Beck, “A new adaptive importance sampling scheme for reliability

calculations,” Structural safety, vol. 21, no. 2, pp. 135–158, 1999.

[18] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods

for selecting values of input variables in the analysis of output from a computer

code,” Technometrics, vol. 42, no. 1, pp. 55–61, 2000.

60

[19] T. W. Simpson, D. K. Lin, and W. Chen, “Sampling strategies for computer exper-

iments: design and analysis,” International Journal of Reliability and Applications,

vol. 2, no. 3, pp. 209–240, 2001.

[20] R. Jin, W. Chen, and A. Sudjianto, “On sequential sampling for global metamodeling

in engineering design,” in ASME 2002 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference, pp. 539–

548, American Society of Mechanical Engineers, 2002.

[21] M. C. Kennedy and A. O’Hagan, “Bayesian calibration of computer models,” Journal

of the Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3,

pp. 425–464, 2001.

[22] F. Pérez-Cruz, S. Van Vaerenbergh, J. J. Murillo-Fuentes, M. Lázaro-Gredilla, and

I. Santamaria, “Gaussian processes for nonlinear signal processing: An overview of

recent advances,” IEEE Signal Processing Magazine, vol. 30, no. 4, pp. 40–50, 2013.

[23] J. Ko and D. Fox, “Gp-bayesfilters: Bayesian filtering using gaussian process predic-

tion and observation models,” Autonomous Robots, vol. 27, no. 1, pp. 75–90, 2009.

[24] M. Jadaliha, Y. Xu, J. Choi, N. S. Johnson, and W. Li, “Gaussian process regression

for sensor networks under localization uncertainty,” IEEE Transactions on Signal

Processing, vol. 61, no. 2, pp. 223–237, 2013.

[25] J. Quinonero-Candela, C. E. Rasmussen, and C. K. Williams, “Approximation meth-

ods for gaussian process regression,” Large-scale kernel machines, pp. 203–224,

2007.

[26] M. S. Eldred, A. A. Giunta, S. S. Collis, N. Alexandrov, R. Lewis, et al., “Second-

order corrections for surrogate-based optimization with model hierarchies,” in Pro-

61

ceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Con-

ference, Albany, NY„ Aug, pp. 2013–2014, 2004.

[27] D. Allaire and K. Willcox, “Surrogate modeling for uncertainty assessment with ap-

plication to aviation environmental system models,” AIAA journal, vol. 48, no. 8,

pp. 1791–1803, 2010.

[28] A. C. Antoulas, Approximation of large-scale dynamical systems, vol. 6. Siam, 2005.

[29] J. M. Pasini and T. Sahai, “Polynomial chaos based uncertainty quantification in

hamiltonian and chaotic systems,” in 52nd IEEE Conference on Decision and Con-

trol, pp. 1113–1118, IEEE, 2013.

[30] H. N. Najm, “Uncertainty quantification and polynomial chaos techniques in com-

putational fluid dynamics,” Annual Review of Fluid Mechanics, vol. 41, pp. 35–52,

2009.

[31] M. Villegas, F. Augustin, A. Gilg, A. Hmaidi, and U. Wever, “Application of the

polynomial chaos expansion to the simulation of chemical reactors with uncertain-

ties,” Mathematics and Computers in Simulation, vol. 82, no. 5, pp. 805–817, 2012.

[32] K. Tang, P. M. Congedo, and R. Abgrall, “Sensitivity analysis using anchored anova

expansion and high-order moments computation,” International Journal for Numer-

ical Methods in Engineering, vol. 102, no. 9, pp. 1554–1584, 2015.

[33] K. Tang, P. M. Congedo, and R. Abgrall, “Adaptive surrogate modeling by anova and

sparse polynomial dimensional decomposition for global sensitivity analysis in fluid

simulation,” Journal of Computational Physics, vol. 314, pp. 557–589, 2016.

[34] W. Yao, X. Chen, W. Luo, M. van Tooren, and J. Guo, “Review of uncertainty-based

multidisciplinary design optimization methods for aerospace vehicles,” Progress in

Aerospace Sciences, vol. 47, no. 6, pp. 450–479, 2011.

62

[35] X. S. Gu, J. E. Renaud, and C. L. Penninger, “Implicit uncertainty propagation for

robust collaborative optimization,” Journal of Mechanical Design, vol. 128, no. 4,

pp. 1001–1013, 2006.

[36] M. McDonald and S. Mahadevan, “Uncertainty quantification and propagation for

multidisciplinary system analysis,” in 12th AIAA/ISSMO Multidisciplinary Analysis

and Optimization Conference, Victoria, BC, Canada, Sep, pp. 9–12, 2008.

[37] M. Kokkolaras, Z. P. Mourelatos, and P. Y. Papalambros, “Design optimization of

hierarchically decomposed multilevel systems under uncertainty,” in ASME 2004 In-

ternational Design Engineering Technical Conferences and Computers and Infor-

mation in Engineering Conference, pp. 613–624, American Society of Mechanical

Engineers, 2004.

[38] S. Mahadevan and N. Smith, “Efficient first-order reliability analysis of multidis-

ciplinary systems,” International Journal of Reliability and Safety, vol. 1, no. 1-2,

pp. 137–154, 2006.

[39] S. J. Julier, “The scaled unscented transformation,” in Proceedings of the 2002 Amer-

ican Control Conference (IEEE Cat. No. CH37301), vol. 6, pp. 4555–4559, IEEE,

2002.

[40] H. Liu, W. Chen, M. Kokkolaras, P. Y. Papalambros, and H. M. Kim, “Probabilistic

analytical target cascading: a moment matching formulation for multilevel optimiza-

tion under uncertainty,” Journal of Mechanical Design, vol. 128, no. 4, pp. 991–1000,

2006.

[41] M. M. Putko, A. C. Taylor, P. A. Newman, and L. L. Green, “Approach for input un-

certainty propagation and robust design in cfd using sensitivity derivatives,” Journal

of Fluids Engineering, vol. 124, no. 1, pp. 60–69, 2002.

63

[42] X. Du and W. Chen, “A most probable point-based method for efficient uncertainty

analysis,” Journal of Design and Manufacturing Automation, vol. 4, no. 1, pp. 47–66,

2001.

[43] S. Rahman and D. Wei, “A univariate approximation at most probable point for

higher-order reliability analysis,” International journal of solids and structures,

vol. 43, no. 9, pp. 2820–2839, 2006.

[44] I. M. Sobol, “Theorems and examples on high dimensional model representation,”

Reliability Engineering & System Safety, vol. 79, no. 2, pp. 187–193, 2003.

[45] H. Rabitz and Ö. F. Aliş, “General foundations of high-dimensional model represen-

tations,” Journal of Mathematical Chemistry, vol. 25, no. 2-3, pp. 197–233, 1999.

[46] X. Ma and N. Zabaras, “An adaptive high-dimensional stochastic model representa-

tion technique for the solution of stochastic partial differential equations,” Journal of

Computational Physics, vol. 229, no. 10, pp. 3884–3915, 2010.

[47] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,

and S. Tarantola, Global sensitivity analysis: the primer. John Wiley & Sons, 2008.

[48] M. Griebel and M. Holtz, “Dimension-wise integration of high-dimensional func-

tions with applications to finance,” Journal of Complexity, vol. 26, no. 5, pp. 455–

489, 2010.

[49] X. Wang and K.-T. Fang, “The effective dimension and quasi-monte carlo integra-

tion,” Journal of Complexity, vol. 19, no. 2, pp. 101–124, 2003.

[50] X. Wang and I. H. Sloan, “Why are high-dimensional finance problems often of

low effective dimension?,” SIAM Journal on Scientific Computing, vol. 27, no. 1,

pp. 159–183, 2005.

64

[51] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information theory,

vol. 52, no. 4, pp. 1289–1306, 2006.

[52] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections:

Universal encoding strategies?,” IEEE transactions on information theory, vol. 52,

no. 12, pp. 5406–5425, 2006.

[53] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From theory to ap-

plications,” IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4053–4085,

2011.

[54] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information,” IEEE Transactions

on information theory, vol. 52, no. 2, pp. 489–509, 2006.

[55] L. Brutman, “Lebesgue functions for polynomial interpolation-a survey,” Annals of

Numerical Mathematics, vol. 4, pp. 111–128, 1996.

[56] H. Rauhut and R. Ward, “Sparse legendre expansions via 1-minimization,” Journal

of approximation theory, vol. 164, no. 5, pp. 517–533, 2012.

[57] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Comput-

ing, vol. 33, no. 5, pp. 2295–2317, 2011.

[58] G. B. Arfken, Mathematical methods for physicists. 3rd ed. George Arfken. Orlando

: Academic Press, [1985], 1985.

[59] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy estimation

and model selection,” in Ijcai, vol. 14, pp. 1137–1145, 1995.

[60] W. Chen, R. Jin, and A. Sudjianto, “Analytical variance-based global sensitivity anal-

ysis in simulation-based design under uncertainty,” Journal of mechanical design,

vol. 127, no. 5, pp. 875–886, 2005.

65

[61] A. J. Eggers Jr, H. J. Allen, and S. E. Neice, “A comparative analysis of the perfor-

mance of long-range hypervelocity vehicles,” 1955.

[62] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.

Adaptive Computation and Machine Learning, The MIT Press, 2006.

[63] M. Ebden, “Gaussian processes for regression: A quick introduction,” The Website

of Robotics Research Group in Department on Engineering Science, University of

Oxford, 2008.

[64] R. M. Dudley, Real analysis and probability, vol. 74. Cambridge University Press,

2002.

[65] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, vol. 113.

Springer Science & Business Media, 2012.

[66] F. B. Knight, “On the random walk and brownian motion,” Transactions of the Amer-

ican Mathematical Society, vol. 103, no. 2, pp. 218–228, 1962.

[67] T. Antal and S. Redner, “Escape of a uniform random walk from an interval,” Journal

of statistical physics, vol. 123, no. 6, pp. 1129–1144, 2006.

[68] M. O’Searcoid, Metric spaces. Springer Science & Business Media, 2006.

[69] V. Koltun, “Advanced geometric algorithms lecture notes,” 2006.

[70] V. Vapnik, E. Levin, and Y. Le Cun, “Measuring the vc-dimension of a learning

machine,” Neural Computation, vol. 6, no. 5, pp. 851–876, 1994.

[71] V. N. Vapnik and V. Vapnik, Statistical learning theory, vol. 1. Wiley New York,

1998.

[72] D. L. Darmofal, “16.901 computational methods in aerospace engineering, spring

2005,” 2016.

66

[73] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate distributions,

vol. 2 of wiley series in probability and mathematical statistics: applied probability

and statistics. Wiley, New York„ 1995.

[74] E. R. Ziegel and J. Rice, Mathematical Statistics and Data Analysis. JSTOR, 1995.

67

