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ABSTRACT

Climate models predict that tropical lower stratospheric humidity will increase as

the climate warms, with important implications for the chemistry and climate of the at-

mosphere. We analyze this trend in 21st-century simulations from 12 state-of-the-art

chemistry-climate models (CCMs) using a linear regression model to determine the fac-

tors driving the trends. The trend in humidity in the CCMs is driven by warming of the

troposphere. This is partially offset in most CCMs by an increase in the strength of the

Brewer-Dobson circulation, which tends to cool the tropopause layer. We also apply the

regression model to individual decades from the 21st century CCM runs and compared

them to the results from a regression of a decade of lower stratospheric humidity observa-

tions. Many of the CCMs, but not all, compare well with observations, lending credibility

to their predictions. One notable deficiency in most CCMs is that they underestimate the

impact of the quasi-biennial oscillation on lower stratospheric humidity. Our analysis pro-

vides a new way to evaluate model trends in lower stratospheric humidity.
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1. INTRODUCTION

1.1 Motivation

Stratospheric water vapor plays a vital role in our atmosphere through many mecha-

nisms. As a greenhouse gas, stratospheric water vapor warms the troposphere and cools 

the stratosphere [Manabe and Wetherald, 1967; Maycock et al., 2014]. Stratospheric wa-

ter vapor also impacts ozone concentrations [Kirk-Davidoff et al., 1999; Shindell, 2001; 

Stuber et al., 2001; WMO, 2007]. Simulations conducted by Stenke and Grewe [2005] 

show that long-term increases in stratospheric water vapor increase the persistence of 

polar stratospheric clouds during Antarctic spring and enhance ozone depletion. Addi-

tionally, stratospheric water vapor variations can affect tropospheric circulation. Tandon 

et al. [2011] found that cooling the stratosphere results in a poleward-shifted jet and an 

expanded yet weakened Hadley Cell, while Maycock et al. [2013] found that changes in 

stratospheric water vapor may shift storm tracks poleward. Therefore, understanding the 

processes responsible for changing stratospheric water vapor concentrations will improve 

our understanding of the climate system, and Chemistry-Climate Models (CCMs) provide 

us a mechanism to investigate this.

1.2 History of Study of Lower Stratospheric Water Vapor

Brewer [1949], using aircraft measurements obtained over England, found the strato-

sphere to be much dryer than the ambient temperature would imply. He thought this could

be explained one of two ways: 1) by photochemical destruction of water vapor, or 2) by

transport of air vertically through the cold tropical tropopause. Considering water vapor

is photochemically destroyed in the upper atmosphere, Brewer correctly concluded that

water vapor photolysis should not occur in the lower stratosphere. Thus, he concluded
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that vertical advection through the tropical tropopause was the most logical explanation.

As air transits this region, cold temperatures found there limit water vapor entering the

stratosphere, and Brewer further hypothesized that this would be coupled with a slow

overturning circulation featuring air rising through the tropical tropopause and then mov-

ing meridionally, poleward, and sinking at higher latitudes. Dobson [1956] reached similar

conclusions using the ozone distribution, and this circulation has since became known as

the Brewer-Dobson Circulation (BDC) (shown in Figure 1.1).

Figure 1.1: Adapted from Flury et al. [2013], this schematic represents the Brewer-Dobson
Circulation. Air rises in the tropics crossing the tropopause, transporting trace gases into
the lower stratosphere. From there, the Brewer-Dobson Circulation moves air meridionally
until it sinks back towards the troposphere in the middle and upper latitudes.
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Observations show only 3.2-4.8 ppmv remain after transport through the tropical tropopause,

lower than many studies of the time expected [Brewer, 1949; Mastenbrook, 1968, 1971;

Kley et al., 1979; Jones et al., 1986]. They questioned why observed water vapor mixing

ratios in the lower stratosphere were so much smaller than expected. He concluded that

there must be some sink not yet studied. To solve this, Newell and Gould-Stewart [1981]

proposed that air crosses the tropical tropopause only at its coldest locations and at cor-

responding times of the year. According to this theory, a “stratospheric fountain” exists

over the western tropical Pacific during northern hemisphere winter, and over the Bay of

Bengal and India during monsoon. They postulated that this would explain stratospheric

air being drier than expected, assuming a mean tropical tropopause temperature of -80◦ C.

However, problems do exist with the “stratospheric fountain” hypothesis [Rosenlof ,

2003]. First, satellite data shows that air enters the stratosphere year round [Mote et al.,

1995], and is not restricted to certain times of the year. Dessler [1998] reviewed water

vapor measurements and estimated a mixing ratio of 3.8 ppmv entering the stratosphere

through the tropical tropopause, consistent with the average observed tropopause temper-

ature. He concluded that because these observed mixing ratios are similar to expected

values, the “stratospheric fountain” hypothesis is no longer necessary. Additionally, stud-

ies show that there may be net downward motion over the western Pacific contradicting

the “stratospheric fountain” hypothesis [Sherwood, 2000; Holton and Gettelman, 2001].

If a “stratospheric fountain” is not responsible for regulating water vapor entering the

lower stratosphere ([H2O]entry), what is? Temperature, wind, and tracer distributions show

that, in the tropics, the tropopause is not a sharp boundary but a transition zone [Sherwood

and Dessler, 2000; Gettelman et al., 2002; Fueglistaler et al., 2009a]. Called the tropical

tropopause layer (TTL), it contains air with both tropospheric and stratospheric properties

[Sherwood et al., 2003], and acts as a “gate to the stratosphere” for atmospheric trace

gases, including [H2O]entry [Fueglistaler et al., 2009a]. Found within the TTL is the

3



tropical cold-point tropopause (Tcpt). It represents the minimum temperature in the profile

[Gettelman and Fu, 2002; Fueglistaler et al., 2009a; Kim and Son, 2015] and is nearly

coincident with the level of minimum water vapor saturation mixing ratios [Sherwood

and Dessler, 2001; Gettelman et al., 2002; Fueglistaler et al., 2009a]. Gettelman and Fu

[2002] investigated changes in the TTL during the recent past (1960-2000) and potential

changes during the 21st century. One of their primary research questions was, how does

a changing Tcpt effect [H2O]entry? They found that variations in cold-point temperature

strongly effect [H2O]entry, consistent with Gettelman et al. [2002]. Several studies refer to

the part of the TTL coinciding with the Tcpt as the “cold trap”, and they find that tropical

upwelling through the “cold trap” regulates water vapor entering the stratosphere to its

minimum saturation vapor pressure [Sherwood and Dessler, 2000; Holton and Gettelman,

2001; Fueglistaler and Haynes, 2005; Oman et al., 2008; Garfinkel et al., 2013].

While Brewer’s original hypothesis holds with a few caveats, important questions re-

main. For example, is [H2O]entry increasing or decreasing? Previous studies have sug-

gested that past [H2O]entry has increased. For instance, using mean vapor pressure ob-

tained by the UK frost-point hygrometer, Roscoe and Rosenlof [2011] concluded that from

the 1950s until the 1970s, [H2O]entry increased by .08 ± 0.03 ppmv year−1, with a total

increase of 1 ppmv between the 1950s and 2010. Hurst et al. [2011] conducted a similar

study analyzing observational (radiosonde data from Boulder Colorado) [H2O]entry trends

from 1980 until 2010. Overall, they found [H2O]entry increased by 1.02± 0.24 ppmv dur-

ing the entire period. Similar results were found by Oltmans et al. [2000] and Rosenlof

[2003].

More recent studies cast doubt on this conclusion. Hegglin et al. [2014], using satellite

data merged with CCM meteorology and nudged to observations to fill in gaps within the

satellite data, examined stratospheric water vapor trends between the late 1980s and 2010.

In the TTL, they found [H2O]entry to decrease during this time-frame. They compared
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their results to observations taken over Boulder CO cited by Hurst et al. [2011], and they

conclude that the Boulder data-set should not be considered representative of the global

stratosphere. Dessler et al. [2014], studying [H2O]entry variations during the past 30 years,

found similar results and cite little or no trend in [H2O]entry.

1.3 Processes Responsible for Stratospheric Water Vapor Variations

In the mid and upper stratosphere, water vapor is determined primarily by transport

and methane oxidation [Evans et al., 1998]. In the tropical lower stratosphere and at

least on short time scales, [H2O]entry exhibits a strong correlation with TTL temperatures

[Randel et al., 2006; Rosenlof and Reid, 2008; Solomon et al., 2010]. Thus, to understand

[H2O]entry variations, processes responsible for TTL temperature modification need to be

known. Fortunately, these processes are well documented and are discussed in subsequent

sections. On longer time scales, however, the picture is fuzzier because we do not have

good observational data sets. Models, however, suggest that long-term trends in convective

injection of ice might drive trends in [H2O]entry [Dessler et al., 2016].

1.3.1 Brewer-Dobson Circulation

As discussed earlier, the BDC (Figure 1.1) is a slow overturning meridional circulation

with an average tropical ascent rate of 0.2 mm sec−1 [Flury et al., 2013], and first hypoth-

esized by Brewer [1949] as an explanation of the aridity of the lower stratosphere. The

BDC is driven by a slow down of zonal flow within the stratosphere by vertically propagat-

ing breaking planetary and gravity waves [Haynes et al., 1991; Holton et al., 1995; Chen

and Sun, 2011; Kim and Son, 2015]. Ueyama and Wallace [2010] investigate what frac-

tion of tropical upwelling can be attributed to breaking high-latitude waves and conclude

that variability of high-latitude wave forcing affects the strength of tropical upwelling on

interseasonal, annual, and interannual time scales. Additionally, Geller and Zhou [2008]

postulates that the influence of wave drag on the interannual variability of tropical up-
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welling could help explain interannual variability of observed stratospheric water vapor.

Previous studies have investigated how the BDC changes with climate. Focusing on

climate change caused by anthropogenic forced warming, several studies show the BDC

strengthens with increasing greenhouse gas emissions [Randel et al., 2006; Birner and

Bönisch, 2011; Bönisch et al., 2011; Ploeger et al., 2015]. Randel et al. [2006] concluded

that anthropogenic forced warming sharpens the meridional temperature gradient. This

increases wave propagation in the lower stratosphere strengthening the BDC, a result also

found by Li et al. [2007]. Castanheira et al. [2012] found a significant anticorrelation

exists between [H2O]entry and tropical upwelling. One event illustrating this relationship is

the significant drop in [H2O]entry after 2001. Randel et al. [2006] concluded that a period

of enhanced tropical upwelling resulted in colder TTL temperatures and subsequently less

[H2O]entry. An abrupt drop in [H2O]entry occured in 2011 for similar reasons [Gilford

et al., 2016]. Thus, strengthening the BDC by anthropogenic forced warming should

reduce the humidity of parcels entering the tropical lower stratosphere. Fueglistaler et al.

[2014] found, in response to increasing greenhouse gases, the TTL cools by approximatly

2 K per 10% change in upwelling, and corresponds to [H2O]entry decreasing by 1 ppmv

per 10% change in vertical ascent.

1.3.2 Quasi-Biennial Circulation

By analyzing monthly zonal wind components from 1955 until 1960, Reed et al.

[1961] identified what would later become known as the Quasi-Biennial Oscillation (QBO)

(shown in Figure 1.2). Zonal winds at the equator oscillate with a period of about two

years between easterly and westerly. More importantly, the phase of the QBO impacts

TTL temperature. The westerly phase of the QBO is associated with anomalously warm

TTL temperatures, and the easterly phase is associated with anomalously cold TTL tem-

peratures [Zhou et al., 2001; Geller et al., 2002]. As a result of the QBO’s impact on
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TTL temperatures, it also is important to the transport of trace gases, such as water vapor,

into the stratosphere [O’Sullivan and Dunkerton, 1997; Randel et al., 1998; Dunkerton,

1978; Fueglistaler and Haynes, 2005; Choiu et al., 2006; Liang et al., 2011; Castanheira

et al., 2012; Khosrawi et al., 2013; Kawatani et al., 2014; Tao et al., 2015]. For instance,

Geller et al. [2002] and Kawatani et al. [2014] investigated interannual variability of both

MLS and climate model stratospheric water vapor. They found that the QBO dominates

interannual variability of stratospheric water vapor with upward propagation of anomalies

seen clearly from the lower to mid-stratosphere, and this propagation resembles the annual

tape-recorder signal found in water vapor identified by Mote et al. [1996].

Figure 1.2: This plot shows the observed QBO downloaded from CPC [2016].
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1.3.3 Tropospheric Temperatures

Climate models project the troposphere to warm by about 3◦ C during the 21st century

[Peters et al., 2013]. More water vapor can enter the lower stratosphere in one of two

ways by warming the troposphere. First, a warming troposphere can simply radiatively

heat the lower stratosphere warming the TTL and letting in more water vapor [Gettelman

et al., 2004]. The second way a warming troposphere can induce more water vapor into the

lower stratosphere is by convection. A warmer climate results in a warmer boundary layer

producing deeper and more energetic convection [Chou and Chen, 2010; Posselt et al.,

2012; Sahany et al., 2014; Tan et al., 2015; an Chen et al., 2016]. Deep convection can

penetrate the lower stratosphere [Alcala and Dessler, 2002; Dessler, 2002; Rossow and

Pearl, 2007], and significantly affect characteristics of the TTL [Dessler, 2002; Sherwood

and Dessler, 2003; Jiang et al., 2004; Riviere et al., 2006; Russo et al., 2011]. Paulik and

Birner [2012] point out a large-scale deep convective signal exists in TTL temperatures,

and this signal can be broken into two effects, adiabatic and diabatic cooling [Sherwood

and Dessler, 2001; Read et al., 2008; Jain et al., 2013]. As air rises inside a thunderstorm,

deep convection rising into the TTL induces turbulent mixing, and adiabatic cooling [Sher-

wood and Dessler, 2001; Read et al., 2008]. Diabatic cooling results from both cloud-top

radiative cooling and sublimation of ice [Sherwood and Dessler, 2001; Wu et al., 2005;

Hanisco et al., 2007; Read et al., 2008; Dessler et al., 2016].

Read et al. [2008] investigated three possible water vapor transport theories, slow uni-

form ascent across the TTL, hydrated overshooting convection (the mixing of water vapor

that retains its ice into the TTL), and convective mixing (the mixing of water vapor with-

out the retention of ice). Both slow ascent and overshooting convection advect water vapor

into the stratosphere, while convective mixing acts as a dehydration mechanism. In regards

to overshooting convection, lofted ice has become a popular study topic because ice in-
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jected into the stratosphere by deep convection can sublimate or evaporate, hydrating the

lower stratosphere [Moyer et al., 1996; Keith, 2000; Johnson et al., 2001; Kuang et al.,

2003; Wu et al., 2005; Hanisco et al., 2007; Corti et al., 2008; Read et al., 2008; Khaykin

et al., 2009; Ueyama et al., 2015; Dessler et al., 2016].

1.3.4 Volcanic Eruptions

Large volcanic eruptions can inject aerosols into the stratosphere. These aerosols

change the temperature and dynamics of the TTL and lower stratosphere [Joshi and Jones,

2009; Arfeuille et al., 2013]. Löffler et al. [2016] investigated stratospheric water va-

por perturbations generated by the El Chichon and Mt. Pinatubo eruptions using the

ECHAM/MESSy Atmospheric Chemistry (EMAC) model. Volcanic aerosols injected

near the equator radiatively heat the lower stratosphere., and they found that this warming

resulted in an increase of 0.3 ppmv of water vapor at around 90 hPa shortly after each erup-

tion. Induced warming began to cool back to pre-eruption values within approximately two

years. Dessler et al. [2014], analyzing processes varying observed [H2O]entry, found sim-

ilar results concluding that volcanic eruptions add [H2O]entry to the lower stratosphere as

a result of warming the TTL.

1.4 Climate Models

Global Climate Models (GCMs) can help predict and understand future climate change.

GCMs have limited ability to simulate the TTL and stratosphere, so to understand those

regions we turn to models specifically designed to simulate those regions. These Chem-

istry Climate Models (CCMs) have been widely used by the community for these research

questions [SPARC, 2010; Morgenstern et al., 2010; Eyring et al., 2013].

Before you can believe predictions of the CCMs, however, it is imperative that we use

observations to validate the models [Austin et al., 2003]. Gettelman et al. [2010] developed

a grading method to quantitatively evaluate the performance of 18 CCMs in reproducing
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characteristics of the TTL. For our purpose, we highlight two of their diagnostics (Tcpt

and [H2O]entry). Because Tcpt is the primary mechanism regulating [H2O]entry that enters

the stratosphere [Brewer, 1949; Gettelman and Fu, 2002; Fueglistaler et al., 2009a], do

CCMs accurately simulate the Tcpt? Gettelman et al. [2010] finds that most models re-

produce both amplitude and timing of its annual cycle in comparison to observations. It

would seem plausible that the annual cycle of [H2O]entry, in turn, is also realistically sim-

ulated. However, the annual cycle of [H2O]entry is not well reproduced, with the annual

cycle shifted by 1-2 months in comparison to observations from the Halogen Occultation

Experiment (HALOE) [Gettelman et al., 2010].

Using CCMs, previous studies not only investigate trends, both historical and future,

in [H2O]entry, but also to examine physical processes responsible for [H2O]entry variabil-

ity. For instance, Austin et al. [2007] found [H2O]entry from 1960-2000 increased during

a period of enhanced upwelling. Using coupled CCM simulations; In the mid and up-

per stratosphere, Oman et al. [2008] found stratospheric water vapor increased between

1950 and 2000 due to changes in methane concentrations, while, in the lower stratosphere,

[H2O]entry decreased during the same time-frame. Hardiman et al. [2015] found, from

CMIP5 GCMs, that microphysical and radiative processes influence [H2O]entry by mod-

ifying Tcpt and upper-tropospheric water vapor concentrations. Most studies conclude

that long-term increases in [H2O]entry coincide with warming the TTL [Fueglistaler and

Haynes, 2005; Oman et al., 2008; Gettelman et al., 2009; Garfinkel et al., 2013]. How-

ever, Dessler et al. [2016] found that lofted ice, in addition to TTL warming, accounts for

a significant portion of the positive long-term trend in [H2O]entry simulated by CCMs.

1.5 Thesis Goals

The main goal of this study is to test water vapor variability in an ensemble of CCMs.

Our goals are to use multivariate linear regressions to understand short- and long-term
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[H2O]entry variability using a few key processes as predictors (Tropospheric warming

(∆T ), the BDC, and the QBO).
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2. MODELS AND METHODOLOGY

2.1 Model Data

We analyze model output from 7 CCMs participating in Phase 2 of the Chemistry-

Climate Model Validation Project (CCMVal-2) (Morgenstern et al. [2010]; SPARC [2010];

shown in Table 2.1) and output from 5 CCMs participating in Phase 1 of the Chemistry-

Climate Model Initiative (CCMI-1) (Eyring et al. [2013]; shown in Table 2.1). These

CCMs were developed to model stratospheric chemical and dynamical processes.

We investigate simulations from the REF-B2 scenario in CCMVal-2, and the refC2

scenario in CCMI-1, which include anthropogenic forcings that drive a changing climate

in both scenarios. Greenhouse gas concentrations are initialized using observations, while

post-2000 greenhouse gas concentrations come from the A1B scenario, which lies in the

middle of the SRES scenarios [IPCC, 2001]. Ozone-depleting substances come from the

halogen emission scenario A1, which features a decline of halogen emissions during the

21st century [WMO, 2007]. For CCMVal-2, model specifics can be found in both SPARC

[2010] and Morgenstern et al. [2010], while CCMI-1 model specifics can be found in

Eyring et al. [2013].

We are concerned with [H2O]entry variations during the 21st century. Ideally, model

data would be available throughout the entire 21st century ranging from 2000-2100, how-

ever several model simulations end a few years prior to 2100. In order to maintain a

consistent reference-period between models, our analysis covers 2000-2097, which we

will refer to for convenience as “the 21st century”.

2.2 Model Variables

In this study, we analyze tropical (30 north - 30 south; see Figure 2.1) averages of

lower stratospheric water vapor and the BDC at 80 hPa, tropical tropospheric temperature
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variations at 500 hPa, and a 50-hPa QBO index. To tropically average the data, we, zonally

average each global CCM variable and, we meridionally average the data between 30 north

and 30 south, weighting it by cosine of latitude. We assume, here, that 80-hPa water vapor

volume mixing ratios is a proxy for [H2O]entry, and we use lower stratospheric diabatic

vertical velocities derived from 80-hPa radiative heating (see Fueglistaler et al. [2009b]

for details) as a proxy for BDC strength.

Figure 2.1: This plot shows MRI climatological 80-hPa water vapor (1960-2100) confined
between (30 north and 30 south), which we define as the tropics.

13



Not all CCMs simulate a QBO (SPARC [2010]; Morgenstern et al. [2010]; Eyring

et al. [2013]; shown in table 2.1). To verifiy this, we calculate a QBO index for each

CCM. We accomplish this by plotting 50-hPa zonal winds and standardized them by the

time-series standard deviation. Then, we look for an oscillation about zero with a period

of about 28 months [Anstey et al., 2016]. For instance, Figure 2.2 verifies that MRI sim-

ulates a realistic QBO, additionally we find that CCSRNIES-MIROC3.2, CMAM-CCMI,

GEOSCCM-CCMI, MRI-ESM1r1, and NIWA-UKC (all not shown) realistically simulate

a QBO.

Figure 2.2: This plot shows the 50-hPa QBO Index simulated by the MRI between 2000
and 2100. We calculate the QBO index by standardizing MRI zonal winds at the equator
by the time-series standard deviation.

Typically, among CCMs that realistically simulate a QBO, correlation between [H2O]entry
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the 50-hPa QBO index is small, generally less than 0.25. This possibly indicates that the

relationship between [H2O]entry and the QBO index at this pressure level is small. We still

use 50-hPa zonal winds instead of a level with a stronger correlation to [H2O]entry, because

CPC [2016] archives the QBO index at both 30 and 50 hPa, and we want to compare CCM

results to observations, which we will discuss in chapter 4.

All CCMVal-2 and most CCMI data is given on isobaric surfaces, however a few

CCMI-1 simulations only produce variables on hybrid pressure levels (CMAM, CCSRNIES-

MIROC3.2, and MRI-ESM1r1). In the stratosphere, hybrid pressure levels are nearly iso-

baric and do not pose much of an issue, but in the troposphere hybrid pressure levels are

not isobaric and can deviate from an isobaric surface [Kulyamin and Dymnikov, 2014].

For these models, we choose a hybrid pressure level close to the 500-hPa pressure surface

(See Table 2.1).
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Table 2.1: Details about each CCM. The resolution is listed as (lat x lon x number of
pressure levels). 31 vertical levels indicates CCM data is given on isobaric levels, while
CCMs simulating data on >31 levels are given on sigma (hybrid-pressure) levels

Chemistry Climte Model Properties
CCM Resolution Dataset Contains

QBO
Institution

CCSRNIES 2.8◦ x 2.8◦

x 31
CCMVal-2 No NIES, Tsukuba, Japan

CCSRNIES-
MIROC3.2

2.8◦ x 2.8◦

x 34
CCMI-1 Yes NIES, Tsukuba, Japan

CMAM 5.5◦ x 5.6◦

x 31
CCMVal-2 No EC, Canada

CMAM-CCMI 3.7◦ x 3.8◦

x 71
CCMI-1 Yes EC, Canada

CNRM-CM5-3 2.8◦ x 2.8◦

x 31
CCMI-1 Yes Meteo-France; France

GEOSCCM 2.0◦ x 2.5◦

x 31
CCMVal-2 No NASA/GSFC, USA

GEOSCCM-
CCMI

2.0◦ x 2.5◦

x 72
CCMI-1 Yes NASA/GSFC, USA

LMDZrepro 2.5◦ x 3.8◦

x 31
CCMVal-2 No IPSL, France

MRI 2.8◦ x 2.8◦

x 31
CCMVal-2 Yes MRI, Japan

MRI-ESM1r1 2.8◦ x 2.8◦

x 80
CCMI-1 Yes MRI, Japan

NIWA-UKCA 2.5◦ x 3.8◦

x 31
CCMI-1 Yes NIWA, NZ

WACCM 1.9◦ x 2.5◦

x 31
CCMVal-2 No NCAR, USA
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2.3 Methodology

To analyze [H2O]entry, we use a multivariate linear regression (MLR). This type of

analysis has long been used in atmospheric science, especially to analyze stratospheric

constituents. For instance, Poulain et al. [2016] analyzed variability of several lower

stratospheric trace gases simulated by CCMs including: O3, HCl, NO2, and N2O. Focusing

on O3, several studies have utilized MLR analysis to quantify both O3 loss due to anthro-

pogenic activity [WMO, 1998, 2007, 2011], and O3 variability [Hood and McCormack,

1992; Bodeker et al., 2001; Reinsel et al., 2002; Svendby and Dahlback, 2004; Brunner

et al., 2006; Dhomse et al., 2006; Wohltmann et al., 2007; Randel and Wu, 2007; Wohlt-

mann et al., 2008]. Not many studies have used this methodology to investigate [H2O]entry

variability. Schieferdecker et al. [2015] utilized MLR methodology to investigate if a solar

signal signal exists in [H2O]entry. While, Dessler et al. [2013, 2014] investigate whether

or not [H2O]entry can be fit using a MLR through a discrete set of “explanatory” variables

(∆T , BDC, and QBO), which our study follows closely.

As its name implies, a MLR is a linear function, and this function can be described by

Equation 2.1.

ŷ =
N∑

n=o

β̂nxn + ϵ (2.1)

ŷ represents an estimate of the variable one may want to reconstruct or predict (i.e. predic-

tor), and the variables used to predict ŷ is a set of explanatory variables (x0,x1,x2,...,xn).

Ideally, explanatory variables evaluated are orthogonal to each other (little correlation with

each other), but are correlated with ŷ [Pearce and Reiter, 1985; Jaccard et al., 1990;

Montgomery and Peck, 1992a; Marrow-Howell, 1994]. As pointed out by Pearce and

Reiter [1985], a high-degree of correlation between explanatory variables (multicollinear-

ity) lessens the precision of each MLR estimate. Each β̂n (except the y-intercept term

β̂0) represents the slope term associated with each explanatory variable, and each is esti-
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mated using least-squares (this process is explained thoroughly in [Montgomery and Peck,

1992b]. ϵ represents the amount of error associated with a MLR. Specifically, it represents

the residual values (y − ŷ) between the estimated predictor estimated by MLR analysis

and the actual predictor variable (y).

The coefficient of determination (R2) has been long established as one of the primary

statistics used to measure goodness-of-fit of a regression [Montgomery and Peck, 1992b].

Formally, R2 is a measure of the amount of variance explained by regression analysis and

ranges between 0 and 1. R2 always increases as the number of predictor variables increase

[Montgomery and Peck, 1992b]. To account for this artificial inflation of R2 values, and

prevent overfitting the data being modeled, R2 is scaled by the number of predictors to

give a more realistic goodness-of-fit value (hereby adjusted R2).

In this study, we attempt to model CCM [H2O]entry using a MLR with ∆T , the

BDC, and the QBO as explanatory variables. These variables and how they interact with

[H2O]entry are discussed in chapter 1, and specifics of the regression equations we examine

are given in chapters 4 and 5.

For each β term included in this study we calculate a 95% confidence interval to ac-

count for model uncertainties. However, we are dealing with time-series data. This poten-

tially introduces problems into our regression. As explained prior, one primary assumption

of a MLR is independent residuals. Obviously, residuals correlated with residuals at prior

time-steps violates this assumption. We account for this issue by reducing the number of

independent observations (degrees of freedom) using an estimated lag-1 autocorrelation

of the residuals, as explained by Santer et al. [2000], and typically reducing the num-

ber of degrees of freedom from 100 years to on average 62 years (table 2.2). We then

use the reduced degrees of freedom to calculate β uncertainties, expecting CCMs such as

CMAM-CCMI and NIWA-UKCA with the lowest degrees of freedom, or the highest lag-1

autocorrelation, to produce the widest confidence intervals.
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Table 2.2: This table lists the total number of independent observations (degrees of free-
dom) of the 21st century regressions.

CCM Independent Observations for the 21st Century Dataset
CCM degrees of freedom (years)
CCSRNIES 75
CCSRNIES-
MIROC3.2

40

CMAM 55
CMAM-CCMI 30
CNRM-CM5-3 34
GEOSCCM 90
GEOSCCM-
CCMI

79

LMDZrepro 91
MRI 96
MRI-ESM1r1 56
NIWA-UKCA 31
WACCM 70
average 62
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3. CENTURY REGRESSIONS

3.1 Why Century Regressions?

As discussed previously, [H2O]entry plays a vital role in our climate system. Previous

studies find they can fit observational [H2O]entry using a MLR with a strong statistical

fit [Dessler et al., 2013, 2014]. Can we fit 21st century [H2O]entry simulated by CCMs?

In addition to investigating observational [H2O]entry, Dessler et al. [2013] used the same

methodology to analyze 21st century [H2O]entry simulated by GEOSCCM. They found

MLR analysis accurately reproduces GEOSCCM [H2O]entry (see Figure 3.1). We test in

this analysis whether other models behave similarly.
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Figure 3.1: Adapted from Dessler et al. [2013], 21st century annual anomalies of
[H2O]entry from the GEOSCCM (black), and it is reconstructed using a MLR (gray) with
∆T (dotted) and BDC (dashed) annual anomalies as predictor variables.

3.2 Century Regression Equation

We analyze 21st century tropically averaged annual [H2O]entry anomalies, calculated

by subtracting off the reference-period (2000-2097) average from annually averaged val-

ues, using MLR methodology (hereby century MLR; Equation 3.1).

[H2O]entry = β0 + β∆T∆T + βBDC∆BDC + ϵ (3.1)
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[H2O]entry is regressed against a set of physical processes identified in 2.2. We initially in-

cluded a QBO term in the century MLR analysis. However, after analyzing the results, we

found that including the QBO does not significantly improve the century MLRs, thus we

omit the QBO. Investigating the individual slope terms in equation 3.1: β0 represents the

y-intercept term. β∆T corresponds to the gain or loss of [H2O]entry due to changes in trop-

ical tropospheric temperatures in ppmv K−1, while βBDC measures [H2O]entry variance as

a result in changes in the BDC in ppmv K−1 Day−1. Finally, residual errors between actual

CCM [H2O]entry and MLR [H2O]entry (MLR [H2O]entry - CCM [H2O]entry) corresponds

to ϵ.

For example, Figure 3.2 shows MRI [H2O]entry increases by about 1.5 ppmv during

the 21st century. A similar trend is reconstructed by the MRI century MLR. Investigating

other simulations, (shown in Appendix A), we find all CCMs simulate [H2O]entry increas-

ing throughout the 21st century, and corresponding century MLRs are able to accurately

reconstruct the long-term trends in simulated [H2O]entry.
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Figure 3.2: 21st century annual anomalies of [H2O]entry from the MRI (black), and it re-
constructed by a multivariate linear regression (gray) using ∆T (dotted) and BDC (dashed)
annual anomalies as predictor variables.
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As expected, Figure 3.3 shows all CCM century MLRs generate large adjusted R2

values between 0.8 and 0.9±0.1. The NIWA-UKCA century MLR (shown in Appendix A)

adjusted R2 value represents the only outlier with a value of approximately 0.6. Adjusted

R2 values >0.6 are typically seen as valid indicators of a strong regression fit to actual data.

However, long-term trends exist in all variables. Even if no relationship exists between a

predictor and the explanatory variable estimated by a MLR, long-term trends bias adjusted

R2 values towards values closer to 1. Thus, additional analysis is needed.

Figure 3.3: Each bar corresponds to both trended (dark grey) and detrended (light grey)
adjusted R2 values. The dark grey star represents the CCM ensemble mean trended ad-
justed R2 value, while the light grey star represents to the CCM ensemble mean detrended
adjusted R2 value. Error bars, for both ensemble means, corresponds to the standard devi-
ation of all CCM century (trended and detrended) adjusted R2 values.
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3.3 Detrended Variables

To eliminate the influence of long-term trends on adjusted R2, we detrend each variable

and analyze effectiveness of the MLR in capturing the short-term (interannual) variability

in [H2O]entry. We accomplish this by applying a fast fourier transform (fft) to each variable

[Donnelly, 2006], removing signals in each variable corresponding to periods ¿ 10 years

(shown in Figure 3.4), and applying an inverse fft to obtain the detrended time series

of each variable. We then regress the detrended [H2O]entry against detrended ∆T and

BDC. We now can test each MLR’s ability in capturing [H2O]entry interannual variability.

Figure 3.4: This plot shows signals in the annual anomalies of MRI [H2O]entry (gray)
produced using a fft. To detrend [H2O]entry. As represented by the square wave (black;
average [H2O]entry signal constrained to [-10,10] years), signals corresponding to fft peri-
ods ¿ 10 years are removed.

Reviewing Figure 3.3, we see that large differences exist between the unfiltered (previously
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century MLR, now trended MLR) and detrended adjusted R2 values for certain CCMs.

For instance, the CCSRNIES trended century MLR captures approximately 90% of the

variance in [H2O]entry, while the detrended century MLR only explains about 40% of

interannual variance; similar patterns exist in CMAM-CCMI, CNRM-CM5-3, and NIWA-

UKCA. As discussed previously, long-term trends skew adjusted R2 values. Thus, to

identify MLRs accurately reconstructing [H2O]entry interannual variability, we look for

small differences between both adjusted R2 values, or large detrended adjusted R2 values.

Examining results from the MRI, Figure 3.5 shows that the detrended MLR looks very

similar to detrended [H2O]entry. Figure 3.3 confirms this, showing MRI’s detrended MLR

analysis producing an adjusted R2 value of approximately 0.83. For MRI, the linear sta-

tistical model accurately reproduces interannual variability of [H2O]entry. Looking at the

model ensemble average detrended adjusted R2 value, most CCMs effectively reproduce

[H2O]entry interannual variability as indicated by detrended adjusted R2 values > 0.7. In

particular, CMAM, LMDZrepro, and (previously discussed) MRI perform exceptionally

well, explaining > 80% of [H2O]entry interannual variability.
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Figure 3.5: 21st century annual anomalies of detrended [H2O]entry from the MRI (black),
and it is reconstructed by a multivariate linear regression (gray) using ∆T and BDC (both
not shown) annual anomalies as predictors. For this plot, all variables have been detrended
by filtering long-term >10 years variations out.
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3.4 Physical Process Effects

MLR analysis provides an excellent pathway to understanding how each predictor vari-

able affects the regression. Investigating the sign and magnitude of each slope term, β1

(∆T regression coefficient) and β2 (BDC regression coefficient), gives us the relationship

between each process and [H2O]entry. For MRI, [H2O]entry increases by about 1.5 ppmv

during the 21st century. Figure 3.2 shows that ∆T accounts for the [H2O]entry increase,

while a strengthening BDC reduces [H2O]entry entering the stratosphere by approximately

0.25 ppmv. Now that we know the effect of each process on MRI [H2O]entry, the next

questions that we must answer for all CCMs are: 1) How does [H2O]entry change as each

process changes? and 2) Why does [H2O]entry increase or decrease as a result of changing

each process?
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Figure 3.6: This plot shows the magnitude of each century regression coefficient (trended
(dark grey) and detrended (light grey)), and error bars corresponding to each bar references
the uncertainty (95th percentile confidence interval) in the regression coefficients. Each
⋆ represents the CCM ensemble average century regression coefficients (trended (dark
grey) and detrended (light grey)), and corresponding error bars represent the variability
(±standard deviation) in all CCM century regression coefficients
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3.4.1 Tropospheric Warming

For all CCMs, Figure 3.6 shows that [H2O]entry increases as ∆T increases. Addition-

ally, the ∆T regression coefficients corresponding to trended and detrended MLRs are

similar in sign and within a factor of 2. This indicates that ∆T affects both [H2O]entry

trended and detrended variability similarly. On average, [H2O]entry increases by about

0.3±0.1 ppmv K−1. LMDZrepro and MRI century MLRs generate the largest ∆T re-

gression coefficients, approximately 0.5 ppmv K−1, while the CCSRNIES century MLR

produces the smallest ∆T regression coefficients, approximately 0.1 ppmv K−1. For all

other CCMs, the ∆T regression coefficient does not deviate far from the model average

∆T regression coefficient. Thus, the CCMs all predict that a warming climate increases

[H2O]entry in the lower stratosphere.

3.4.2 Brewer-Dobson Strength

Figure 3.6 shows that the BDC reduces [H2O]entry in all CCMs except CNRM-CM5-3

and NIWA-UKCA . As shown for ∆T , BDC regression coefficients for century MLRs

(both detrended and trended) are similar in sign and magnitude suggesting that both have

a similar effect on [H2O]entry. In general, the BDC regression coefficient is responsible

for a decrease of 5±1 ppmv (K/Day)−1. The MRI’s BDC regression coefficient accounts

for a reduction of about 12 ppmv (K/Day)−1, larger than BDC regression coefficients from

all other models. As mentioned previously, the BDC coefficient produced by both the

CNRM-CM5-3 and NIWA-UKCA is positive, which is contrary to our expectations of a

strong BDC cooling the TTL. Overall, though, we find a strengthening BDC results in

less [H2O]entry advected through the TTL into the lower stratosphere in the CCMs. From

Figure 3.7, we see that large detrended BDC regression coefficients typically correspond

to large detrended adjusted R2 values, and CCM detrended MLRs producing the small-

est in magnitude BDC regression coefficients typically perform the poorest. In particular,
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CCSRNIES, CNRM-CM5-3, and NIWA-UKCA generate some of the smallest BDC re-

gression coefficients of any CCM, and they subsequently reproduce [H2O]entry the poorest

with detrended adjusted R2 values <0.5.

Figure 3.7: Scatter plot of CCM detrended BDC regression coefficients (ppmv
(K/Day)−1), vs. detrended adjusted R2 values.

3.5 Physical Process Relative Magnitude

Because each regression coefficient has different units, we cannot directly compare

relative magnitude of each coefficient in order to determine which one is more important.

To address this, we standardize each time-series by its standard deviation and rerun each

century MLR (hereby standardized century MLR). This effectively creates unitless vari-

ables and regression coefficients allowing us to compare the relative magnitude of each

coefficient.
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Figure 3.8: Each set of bars corresponds to the trended regression coefficients (β∆T (dark
grey) and βBDC (light grey)) produced by MLR analysis after standardizing each variable
(∆T and BDC) by dividing out the time-series (2000-2097) ±standard deviation, and
error bars corresponding to each bar represents the uncertainty of each coefficient as the
95th percentile confidence interval. Trended CCM ensemble average values for β∆T (dark
grey) and βBDC (light grey) are both represented by a ⋆, and corresponding error bars show
variability (as the ±standard deviation) in all CCM standardized regression coefficients.

From Figure 3.8, we see that ∆T effects [H2O]entry more than the BDC. Standardized

∆T regression coefficients average 0.7±0.1, and are generally similar in magnitude be-

tween all CCMs. The GEOSCCM standardized ∆T regression coefficient is an outlier in

comparison to all other CCMs with a value of <1.5. While, standardized BDC regression

coefficients are generally small averaging -0.3/pm0.1, and are much smaller than their ∆T

counter parts. However, the GEOSCCM, GEOSCCM-CCMI, and MRI standardized BDC

regression coefficients are much larger than those from all other models >0.7. Addition-

ally, both standardized regression coefficients from the GEOSCCM, GEOSCCM-CCMI,

and MRI are much closer in magnitude than those from the other CCMs. Thus, Figure 3.8
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quantifies what we already know by looking at the time-series plot of each regression com-

ponent, in that ∆T increases [H2O]entry to a much larger degree than the BDC decreases

[H2O]entry.

Figure 3.9: Each set of bars corresponds to the detrended regression coefficients (β∆T

(dark grey) and βBDC (light grey)) produced by MLR analysis after standardizing each
variable (∆T and BDC) by dividing out the time-series (2000-2097) ±standard deviation,
and error bars corresponding to each bar represents the uncertainty of each coefficient as
the 95th percentile confidence interval. Detrended CCM ensemble average values for β∆T

(dark grey) and βBDC (light grey) are both represented by a ⋆, and corresponding error
bars show variability (as the standard deviation) in all CCM ±standardized regression
coefficients.

Investigating the detrended MLRs, Figure 3.9 shows that both ∆T and BDC contri-

butions to the interannual variability on [H2O]entry are about equal, with the contribution

of ∆T being slightly larger. Standardized ∆T regression coefficients from the detrended

MLRs are similar in magnitude and average about 0.7±0.1. We see that ∆T ’s contributes

less to the interannual variability of [H2O]entry than it does to long-term variability of
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[H2O]entry. Average contribution of the BDC to interannual [H2O]entry variability between

all CCMs is about -0.4±0.3. Similar variability in individual BDC detrended standardized

coefficient values exist as shown in Figure 3.8, however the BDC contributes more to the

interannual variability of [H2O]entry than to its long-term variability.

3.6 Century Regression Conclusion

We show that Century MLR analysis does a good job explaining the long-term trends

and internanual variability in [H2O]entry in the CCMs. Increases in ∆T produce in-

creases in [H2O]entry. Increases in the strength of the BDC produce negative changes

in [H2O]entry, which offset some, but not all, of the increase due to ∆T .
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4. DECADAL REGRESSIONS

4.1 Why Decadal Regressions?

Ideally, we would compare the results of the previous chapter to observations. Unfor-

tunately, we don’t have 100 years of observations to test the models against. Instead, we

will compare 10-year segments from the model to regressions of 10-years of observations

Dessler et al. (2014).

4.2 Decadal Regression Equation

We use the same regression equation used in previous chapters to analyze [H2O]entry

monthly anomalies (defined in Appendix A.2) (Equation 4.1). Specifically, we split the

reference-period into 10 time-frames (2000-2010,2010-2020,2020-2030,2040-2050,etc.)

and examine each time-frame using a MLR (hereby decadal MLR). Monthly anomalies

are calculated for each time-frame by subtracting the average annual cycle of each variable

from monthly average values.

[H2O]entry = β0 + β∆T∆Tlag3 + βBDC∆BDC lag1 + βQBO∆QBOlag3 + ϵ (4.1)

β0, β1, and β2 represent the same slope terms as represented in chapter 4, while β3 is the

slope term explaining how [H2O]entry varies with the QBO in ppmv. Primary differences

between the decadal and century MLR terms are: 1) For the decadal MLRs, each regres-

sion term discussed in this chapter refers to its monthly anomaly as opposed to annual

anomalies discussed in chapter 4. 2) Decadal regression terms are lagged in order to maxi-

mize the amount of explained variance: we lag ∆T by 3 months, the BDC by 1 month, and

the QBO by 3 months. We chose these lags to be the same as those used by Dessler et al.

[2014]. Additionally, these lags are all plausible because it takes time for each regression
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coefficient to impact [H2O]entry.

4.3 Decadal Explained Variance

Figure 4.1 shows the median±one standard deviation value of the decadal adjusted

R2 values generated by each CCM. The model average adjusted R2 is approximately

0.6±0.25, indicating that there exists a large spread in the ability of the MLR to fit

[H2O]entry in the models. Several CCM decadal MLRs explain a large portion of [H2O]entry

variability (large decadal adjusted R2 values). CCSRNIES-MIROC3.2, CMAM, CMAM-

CCMI, GEOSCCM, GEOSCCM-CCMI, MRI, MRI-ESM1r1 all explain >60% of the

variance in [H2O]entry. These R2 are similar to the values obtained by MLR of obser-

vations performed by [Dessler et al., 2014].

However, decadal MLR analysis does not work well with all CCMs. The CCSRNIES,

CNRM-CM5-3, and NIWA-UKCA have decadal adjusted R2 values approximately <0.4.

Above this, but below the observations, is the LMDZrepro, which has a median decadal

adjusted R2 values of 0.5.
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Figure 4.1: Each ⋆ represents the median decadal adjusted R2 value for each CCM, and
the error bars correspond to the ±standard deviation of the range of each decadal adjusted
R2 distribution. The △, corresponds to the CCM ensemble average decadal adjusted R2

value, and the error bars correspond to the ±standard deviation of the range of all (every
CCM) decadal adjusted R2 values. Found by Dessler et al. [2014], each line corresponds
to observational-based MLR adjusted R2 values (eraI (dotted) and MERRA (dashed)).

4.4 Physical Process Effects

Similar to the century MLRs, we can examine each physical process’s contribution

to [H2O]entry monthly anomalies and compare those to observational MLR of Dessler

et al. [2014]. For each model, we will calculate the median and standard deviation of

each decadal regression coefficient for comparison. By examining which CCM decadal

regression coefficients fall within 95% confidence of the observational-based coefficients,

we can identify CCMs realistically capturing each physical process’s effect on [H2O]entry,

and determine which CCMs are doing the best job on shorter timescales.
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Figure 4.2: For each distribution of CCM decadal MLR regression coefficients (β∆T ,
βBDC , and βQBO), Each ⋆ represents each median decadal regression coefficient, and asso-
ciated error bars correspond to variability (±one standard deviation) of each distribution of
regression coefficients. Each △ represents the mean regression coefficient of the set of all
coefficients from all CCMs, and associated error bars correspond to total variability (±one
standard deviation) in all coefficients. Observational-based (eraI (light grey) and MERRA
(dark grey)) coefficients obtained by Dessler et al. [2014] are represented by each bar, and
associated error bars represent the uncertainty (95th percentile confidence interval) of each
Observational-based regression coefficient.

4.4.1 Tropospheric Warming

On decadal timescales, Figure 4.2 shows the model ensemble average [H2O]entry in-

creases by about 0.18±0.2 ppmv K−1 and range between about 0 and 0.35 ppmv K−1.

Only the MRI ∆T regression coefficient distribution is large in comparison to all other

CCMs at about 0.37±0.05. Most CCM decadal ∆T regression coefficient distributions

are confined to a narrow range between approximately ±0.1 ppmv K−1. However, both

the LMDZrepro and NIWA-UKCA ∆T regression coefficient distributions are large in

comparison with a range of ±0.4 ppmv K−1.
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In comparison to both observational-based ∆T regression coefficients, the MERRA

∆T regression coefficient is 0.30±0.20 ppmv K−1 and the eraI coefficient is 0.34±0.17

ppmv K−1. Looking at the CCM consensus ∆T regression coefficient distribution, the

CCM decadal MLRs generate ∆T regression coefficients smaller than both observational-

based values. Thus, less CCM tropospheric water vapor is advected into the lower strato-

sphere as a result of interannual ∆T variability than in observations. Most CCM decadal

∆T regression coefficients fall within 95% confidence of both observational-based val-

ues. The only CCM decadal ∆T regression coefficient distribution not contained within

MERRA ∆T 95% confidence are CCSRNIES and CMAM-CCMI, and the only decadal

∆T regression coefficient distributions not contained by eraI ∆T 95% confidence are CC-

SRNIES, CMAM-CCMI, and CNRM-CM5-3.

4.4.2 Brewer-Dobson Circulation

From Figure 4.2, we see that there exists a high degree of variability in the CCM

decadal BDC regression coefficients, with a CCM ensemble average value of about -4±2

ppmv (K/Day)−1. Investigating variability of individual CCM decadal BDC regression

coefficients, all CCMs, except LMDZrepro, MRI, and NIWA-UKCA, decadal BDC re-

gression coefficients range between approximately ±1 ppmv (K/Day)−1. LMDZrepro,

MRI, and NIWA-UKCA decadal BDC regression coefficients exist over a much wider

range with values between approximately ±2 ppmv (K/Day)−1. As we expect for longer

timescales, a strengthening BDC should cool the TTL and reduce [H2O]entry entering the

lower stratosphere. CNRM-CM5-3 and NIWA-UKCA generate coefficients contrary to

our expectations. Both models show that [H2O]entry decreases by about 2 ppmv (K/Day)−1

as a result of a strengthening BDC. All other CCMs produce negative decadal BDC regres-

sion coefficients.

From Dessler et al. [2014], using eraI reanalysis as a surrogate for the atmosphere, a
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strengthening BDC reduces observed [H2O]entry by -2.51±0.83 ppmv (K/Day)−1, whereas

MERRA reanalysis reduces observed [H2O]entry entering the lower stratosphere by -3.48±1.62.

Thus, eraI produces a higher degree of confidence in the BDC’s effect on [H2O]entry than

MERRA. We expect more CCM decadal BDC regression coefficients to fall within 95%

confidence of the MERRA regression coefficient than the eraI coefficient. In fact, CC-

SRNIES, CCSRNIES-MIROC-3.2, CMAM, CMAM-CCMI, LMDZrepro, MRI-ESM1r1,

and WACCM decadal BDC regression coefficients fall within 95% confidence of MERRA,

and only CCSRNIES, LMDZrepro, and WACCM generate realistic decadal BDC regres-

sion coefficient in comparison to eraI. Even with individual CCM decadal BDC regres-

sion coefficients occurring over a larger range of values, the CCM ensemble average

median decadal BDC regression coefficient is contained within 95% confidence of both

observational-based coefficients. Observational regressions verify that, on decadal timescales,

[H2O]entry should decrease with a strengthening BDC. As discussed previously, CNRM-

CM5-3 and NIWA-UKCA BDC regression coefficient distributions are both >0, indi-

cating possible issues with these models simulation of the BDC’s interaction with TTL

temperatures.

4.4.3 Quasi-Biennial Osscilation

Figure 4.2 shows that the CCM ensemble average decadal QBO coefficient is ap-

proximately 0.03±0.04 ppmv. The largest increases in [H2O]entry occur in CCSRNIES-

MIROC3.2 and CMAM-CCMI with [H2O]entry increasing by approximately 0.07 ppmv

as the QBO strengthens. For all other CCMs, [H2O]entry remains about constant as the

QBO strengthens with decadal QBO regression coefficients either ranging about zero or

within 0.02 ppmv of zero. Most CCM decadal QBO regression coefficient distributions are

confined to a narrow range of values, ≤ | 0.02 | ppmv, however MRI and NIWA-UKCA

decadal MLRs generate a large range of coefficients in comparison, approximately ±0.05.

40



It is clear that the QBO’s impact on [H2O]entry is underestimated by the CCMs inves-

tigated, with all decadal MLRS generating QBO regression coefficients smaller than the

observational-based coefficients (MERRA coefficient: 0.09±0.05 ppmv, eraI coefficient:

0.11±0.04 ppmv). Only CCSRNIES-MIROC3.2 and CMAM-CCMI decadal MLRs pro-

duce at least a portion of QBO regression coefficients falling within 95% confidence of

both observational-based coefficients. Two possible reasons exist to explain. First, simply,

the CCM does not simulate a QBO [SPARC, 2010; Morgenstern et al., 2010; Eyring et al.,

2013], or the QBO’s impact on the lower stratosphere is poorly simulated. Anstey et al.

[2016] found that climate models, generally, struggle to replicate the QBO’s penetration

into the lower stratosphere. As a result, they incorrectly impact TTL temperatures, and

subsequently [H2O]entry.

4.5 Physical Process Relative Magnitude

When standardized, all three variables contribute approximately equally to [H2O]entry

variance on decadal timescales in the observations (Figure 4.3). In the CCMs, on the other

hand, the BDC impacts [H2O]entry more than ∆T , with standardized decadal ∆T regres-

sion coefficients on the order of about 0.3 and BDC regression coefficients on the order

of about -0.4. For both models, CCSRNIES-MIROC3.2 and CMAM-CCMI, producing

similar decadal QBO regression coefficients to the observational-based regressions, we

see that the QBO also impacts [H2O]entry more than ∆T , on the order of 0.5. Over longer

timescales, we found that tropospheric water vapor advected into the lower stratosphere as

a result of tropospheric warming acts to increase [H2O]entry more than cooling the TTL

with a strengthening BDC reduces [H2O]entry. On decadal timescales, long-term trends

in ∆T are not evident, and as a result increases in tropospheric water vapor available for

advection into the lower stratosphere do not have as large of an impact.
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Figure 4.3: This plot displays the set of standardized decadal regression coefficients. Fo-
cusing on individual CCM distributions, β∆T (red ⋆), βBDC (green ◁), and βQBO (turquoise
▷) coefficients correspond to the median value of each coefficient distribution, and asso-
ciated error bars correspond to variability (±one standard deviation) of each distribution.
Focusing on a combined set of all CCM decadal regression coefficients, each coefficient,
β∆T (red ⋆), βBDC (green ◁), and βQBO (turquoise ▷) represents the ensemble average,
and associated error bars corresponds to variability (±one standard deviation) in the entire
ensemble. Observational-based coefficients, found in Dessler et al. [2014], correspond
to bars, β∆T (red), βBDC (green), and βQBO (turquoise), plotted with corresponding error
bars representing the uncertainty (95th percentile confidence interval) of the observational-
based coefficients

4.6 Century and Decadal Regression Coefficient Comparison

One question we yet directly addressed is, how do the regression coefficients corre-

sponding to the simulated century and decadal MLRs compare? First, we compare each

∆T coefficient. From Figure 4.4, the trended ∆T coefficient is larger than the decadal ∆T

coefficient for all CCMs. These simulations, following the A1B scenario [IPCC, 2001],

warm the climate by approximately 3.5◦ C, and they also simulate increasing [H2O]entry.

As mentioned prior, on century time-scales, we show ∆T is primarily responsible for 21st
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century [H2O]entry increases. Again, On short time-scales, long-term ∆T trends are not as

evident. So, the century ∆T coefficients must be larger than the decadal ∆T coefficients

to account for long-term increases in both ∆T and [H2O]entry. With respect to the BDC

regression coefficients for both time-scales, Figure 4.4 shows most CCM (trended and

decadal) BDC coefficients are similar in magnitude with most CCM century coefficients

not deviating much from their decadal counterparts. By comparing the detrended regres-

sion coefficients to the decadal regression coefficients (not shown) and the standardized

(trended and detrended) regression coefficients to the decadal regression coefficients, we

find conclusions to end up being the same.

Figure 4.4: Scatter plots of (upper) trended ∆T regression coefficients (ppmv K−1) vs.
decadal ∆T regression coefficients (ppmv K−1), and (lower) trended BDC regression co-
efficients (ppmv (K/Day)−1) vs. decadal BDC regression coefficients (ppmv (K/Day)−1).
Black lines in both plots correspond to a 1:1 relationship.
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4.7 Decadal Regression Conclusion

We find that not only can we use MLR analysis to predict monthly anomolies of

[H2O]entry, but several CCM decadal MLRs actually explain more [H2O]entry variance

than the observational-based regressions. Analyzing how CCM decadal regression coef-

ficients compare to observational-based coefficients, we find that: 1) all CCMs generate

decadal ∆T regression coefficients contained within 95% confidence of both observational-

based ∆T coefficients 2) There is more variance in decadal BDC regression coefficients

than the other regression coefficients, and only CCSRNIES, CCSRNIES-MIROC3.2, LMDZre-

pro, and WACCM BDC regression coefficients fall within 95% confidence of both observational-

based BDC coefficients 3) Of the CCMs that simulate a QBO, only CCSRNIES-MIROC3.2

and CMAM-CCMI produce regression coefficients similar to observational-based coeffi-

cients. Additionally, both the BDC and QBO impact monthly anomalies of [H2O]entry

more than ∆T .
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5. CONCLUSIONS

Can we model [H2O]entry simulated during the 21st century using a MLR? To answer

this question, we fit CCM [H2O]entry by regressing three processes (∆T , the BDC, and

the QBO) important to [H2O]entry. Specifically, we analyze [H2O]entry on two separate

time-scales: 1) across the entire 21st century, and 2) on decadal timescales. For our anal-

ysis of the entire 21st century, we fit [H2O]entry using ∆T and the BDC as explanatory

variables. We do not include QBO variations in this analysis, because it has been shown

that the QBO’s effect on TTL temperatures is poorly simulated [Anstey et al., 2016]. we

produce MLRs of [H2O]entry on decadal time-scales, because long-term datasets of obser-

vational [H2O]entry are not available. [Dessler et al., 2013, 2014] use the same method-

ology to analyze 2004-2014 MLS [H2O]entry. We compare MLR regression coefficients

corresponding to those simulated [H2O]entry to those found by Dessler et al. [2014]. Our

analysis on decadal time-scales as opposed to century time-scales includes the QBO as

one of the regression coefficients, because it significantly improves the fit of each decadal

MLR.

5.1 Century Multivariate Linear Regressions

By investigating tropical annual [H2O]entry simulated over the 21st century, all CCMs

predict [H2O]entry will increase as the climate warms, and century MLRs largely capture

simulated long-term trends with adjusted R2 values >0.85. Not only are we concerned

with effectively reproducing [H2O]entry, but we want to capture its variability as well.

Because long-term trends can artificially inflate adjusted R2, we detrend each variable by

filtering out variability of >10 years essentially focusing on interannual variance. After

detrending the data, we re-run the MLR and analyze the results. By removing any influ-

ence long-term trends may have on the MLR, we see that most models not only replicate
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[H2O]entry long-term trends, but also accurately reproduce [H2O]entry interannual variabil-

ity with detrended adjusted R2 values >0.7. However, this is not the case for all models.

For instance, a detrended MLR of NIWA-UKCA [H2O]entry produces an adjusted R2 value

of approximately 0.2 indicating a poor fit to actual [H2O]entry.

In analyzing the century MLR regression coefficients, we see that ∆T corresponds to

more water vapor entering the lower stratosphere. A strengthening BDC, however, results

in less water vapor transported into the lower stratosphere, because a strengthing BDC

cools the TTL [Butchart et al., 2006; Li et al., 2007; Garcia and Randel, 2008; Bönisch

et al., 2011; Castanheira et al., 2012; Fu et al., 2015]. Also, on century time-scales, we

find ∆T to be the most important of the two processes analyzed to [H2O]entry increases

simulated by CCMs.

5.2 Decadal Multivariate Linear Regressions

Looking at [H2O]entry variability on decadal time-scales, we show that decadal MLRs,

for most CCMs, explain much of the variability in [H2O]entry with adjusted R2 values

typically >0.7. Additionally, several CCM decadal regressions actually outperform both

observation-based regressions investigated in Dessler et al. [2014]. However, a large

spread in adjusted R2 values (about ±0.2) does exist among CCMs with certain CCMs

(CCSRNIES, CNRM-CM5-3 and NIWA-UKCA) decadal MLRs performing poorly based

on adjusted R2. Additionally, CCMs corresponding to small decadal MLR adjusted R2 val-

ues are (except CNRM-CM5-3) the same CCMs corresponding to small detrended MLR

adjusted R2 values.

Investigating how CCM decadal regression coefficients compare to the observational-

based coefficients, we see several key characteristics. First, simulated decadal ∆T regres-

sion coefficients are all contained within both observational-based ∆T 95% confidence.

There is more variance among simulated decadal BDC coefficients, and only CCSRNIES,
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CCSRNIES-MIROC3.2, LMDZrepro, and WACCM decadal MLRs generate BDC coeffi-

cients similar (within 95% confidence of) to the observational-based coefficients. Most

CCMs do not simulate a QBO. So, for most CCMs, the QBO coefficient is approxi-

mately zero. Even among CCMs that do simulate a QBO, only CCSRNIES-MIROC3.2

and CMAM-CCMI coefficients are similar to both observation-based coefficients.
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APPENDIX A

OTHER CCM TRENDED MULTIVARIATE LINEAR REGRESSIONS

Figure A.1: 21st century annual anomalies of detrended [H2O]entry from the CCSRNIES
(black), and it reconstructed by a multivariate linear regression (gray) using ∆T and BDC
(both not shown) annual anomalies as predictors. For this plot, all variables have been
detrended by filtering long-term >10 years variations out.
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Figure A.2: 21st century annual anomalies of detrended [H2O]entry from the CCSRNIES-
MIROC3.2 (black), and it reconstructed by a multivariate linear regression (gray) using
∆T and BDC (both not shown) annual anomalies as predictors. For this plot, all variables
have been detrended by filtering long-term >10 years variations out.

Figure A.3: 21st century annual anomalies of detrended [H2O]entry from the CMAM
(black), and it reconstructed by a multivariate linear regression (gray) using ∆T and BDC
(both not shown) annual anomalies as predictors. For this plot, all variables have been
detrended by filtering long-term >10 years variations out.
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Figure A.4: 21st century annual anomalies of detrended [H2O]entry from the CMAM-
CCMI (black), and it reconstructed by a multivariate linear regression (gray) using ∆T
and BDC (both not shown) annual anomalies as predictors. For this plot, all variables
have been detrended by filtering long-term >10 years variations out.

Figure A.5: 21st century annual anomalies of detrended [H2O]entry from the CNRM-CM5-
3 (black), and it reconstructed by a multivariate linear regression (gray) using ∆T and
BDC (both not shown) annual anomalies as predictors. For this plot, all variables have
been detrended by filtering long-term >10 years variations out.
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Figure A.6: 21st century annual anomalies of detrended [H2O]entry from the GEOSCCM
(black), and it reconstructed by a multivariate linear regression (gray) using ∆T and BDC
(both not shown) annual anomalies as predictors. For this plot, all variables have been
detrended by filtering long-term >10 years variations out.

Figure A.7: 21st century annual anomalies of detrended [H2O]entry from the GEOSCCM-
CCMI (black), and it reconstructed by a multivariate linear regression (gray) using ∆T
and BDC (both not shown) annual anomalies as predictors. For this plot, all variables
have been detrended by filtering long-term >10 years variations out.
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Figure A.8: 21st century annual anomalies of detrended [H2O]entry from the LMDZrepro
(black), and it reconstructed by a multivariate linear regression (gray) using ∆T and BDC
(both not shown) annual anomalies as predictors. For this plot, all variables have been
detrended by filtering long-term >10 years variations out.
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Figure A.9: 21st century annual anomalies of detrended [H2O]entry from the MRI-ESM1r1
(black), and it reconstructed by a multivariate linear regression (gray) using ∆T and BDC
(both not shown) annual anomalies as predictors. For this plot, all variables have been
detrended by filtering long-term >10 years variations out.
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Figure A.10: 21st century annual anomalies of detrended [H2O]entry from the NIWA-
UKCA (black), and it reconstructed by a multivariate linear regression (gray) using ∆T
and BDC (both not shown) annual anomalies as predictors. For this plot, all variables have
been detrended by filtering long-term >10 years variations out.

Figure A.11: 21st century annual anomalies of detrended [H2O]entry from the WACCM
(black), and it reconstructed by a multivariate linear regression (gray) using ∆T and BDC
(both not shown) annual anomalies as predictors. For this plot, all variables have been
detrended by filtering long-term >10 years variations out.

72


	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Motivation
	History of Study of Lower Stratospheric Water Vapor
	Processes Responsible for Stratospheric Water Vapor Variations
	Brewer-Dobson Circulation
	Quasi-Biennial Circulation
	Tropospheric Temperatures
	Volcanic Eruptions

	Climate Models
	Thesis Goals

	MODELS AND METHODOLOGY
	Model Data
	Model Variables
	Methodology

	CENTURY REGRESSIONS
	Why Century Regressions?
	Century Regression Equation
	Detrended Variables
	Physical Process Effects
	Tropospheric Warming
	Brewer-Dobson Strength

	Physical Process Relative Magnitude
	Century Regression Conclusion

	DECADAL REGRESSIONS
	Why Decadal Regressions?
	Decadal Regression Equation
	Decadal Explained Variance
	Physical Process Effects
	Tropospheric Warming
	Brewer-Dobson Circulation
	Quasi-Biennial Osscilation

	Physical Process Relative Magnitude
	Century and Decadal Regression Coefficient Comparison
	Decadal Regression Conclusion

	CONCLUSIONS
	Century Multivariate Linear Regressions
	Decadal Multivariate Linear Regressions

	REFERENCES
	APPENDIX OTHER CCM TRENDED MULTIVARIATE LINEAR REGRESSIONS



