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ABSTRACT 

The enzyme, phosphofructokinase (PFK), catalyzes the phosphorylation of 

fructose-6-phosphate in the glycolysis pathway. Phosphoenolpyruvate (PEP) 

allosterically inhibits the binding of the substrate fructose-6-phosphate (Fru-6-P) in 

phosphofructokinase from Thermus thermophilus (TtPFK). The main goal of this study 

is to have a better understanding about how this allosteric inhibition signal is transmitted 

and propagated throughout the enzyme.  

TtPFK is homotetramer with four active sites and four allosteric sites. There are 

multiple heterotropic interactions between active sites and allosteric sites. The first part 

of this dissertation is to isolate the four unique heterotropic inhibition interactions in 

wild type TtPFK. Our data shows the contribution of the four interactions are not the 

same, and are additive. This result suggests that the traditional two state model, either 

the concerted or sequential model, is not sufficient to explain the allosteric regulation in 

TtPFK. Also, the relative contribution of the four interactions in TtPFK is different from 

BsPFK and EcPFK. 

The allosteric coupling between Fru-6-P and PEP in TtPFK is much weaker than 

BsPFK. N59D/A158T/S215H substitutions increase the coupling free energy of TtPFK 

similar to BsPFK. The second part of this dissertation is to isolate the four interactions in 

TtPFK N59D/A158T/S215H to see how the substitutions affect the coupling free energy 

in each of the four interactions. Our data shows that the substitutions of 

N59D/A158T/S215H can enhance all of the four interactions, but to different extents. 32 
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Å interaction exhibits the biggest increase in coupling free energy and this big increase 

makes it the second biggest contribution to TtPFK N59D/A158T/S215H. The coupling 

free energy in the isolated interactions sums to 69.5% ± 1.5% of the total coupling 

energy in the native tetramer. The discrepancy is likely due to the mutated residues not 

all interacting within a single subunit. 

The third part of this dissertation is to use a fluorescence phasor to describe the four 

species, Apo-TtPFK, TtPFK-Fru-6-P, PEP-TtPFK, and PEP-TtPFK-Fru-6-P, involved in 

the allosteric coupling between Fru-6-P and PEP. TtPFK has a smaller allosteric 

coupling between PEP and Fru-6-P as compared to other prokaryotic PFKs, which 

makes it easier to form a ternary complex. Unique ternary complexes can be detected at 

specific positions. Our results suggest that residues F140, L313, F165 and V243 may be 

in an area important for the propagation and transmission of allosteric information in 

TtPFK. These four residues are in a region that can detect the structural conflict between 

Fru-6-P binding and PEP binding. 
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NOMENCLATURE 

Abbreviations 

A Substrate or single letter code for alanine 

Å Angstroms 

AC Alternative current  

ADP Adenosine 5’-diphosphate 

ATP Adenosine 5’-triphosphate 

BCA Bicinchoninic acid 

BmPFK Phosphofructokinase from Bacillus macquariensis 

BSA Bovine serum albumin 

BsPFK Phosphofructokinase from Bacillus stearothermophilus 

DC Direct current 

E Enzyme or single letter code for glutamate 

EA Enzyme-substrate binary complex 

EcPFK Phosphofructokinase from Escherichia coli 

EDTA Ethylenediamine tetraacetic acid 

EPPS N-[2-Hydroxyethyl] piperazine-N’-3-propanesulfonic acid 

F Single letter code for phenylalanine 

Fru-6-P Fructose-6-phosphate 

K Single letter code for lysine 

KSCN Potassium thiocyanate 

L Single letter code for leucine 
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LB                               Luria Bertani broth 

LdPFK Phosphofructokinase from Lactobacillus delbrueckii 

M Modulation 

Mg Magnesium 

MOPS 3-[N-Morpholino]propanesulfonic acid 

NAD+ Nicotinamide adenine dinucleotide, oxidized form 

NADH Nicotinamide adenine dinucleotide, reduced form 

NATA                         N-acetyl-tryptophanamide 

PAGE Polyacrylamide gel electrophoresis 

PEP Phosphoenolpyruvate 

Pi Inorganic phosphate 

R Single letter code for arginine 

S Substrate 

Tris Tris[hyroxymethyl]aminomethane 

TtPFK Phosphofructokinase from Thermus Thermophilus 

V Single letter code for valine 

W Single letter code for tryptophan 

X Allosteric effector 

XE Enzyme-effector binary complex 

XEA Enzyme-substrate-effector ternary complex 

Y Allosteric inhibitor or single letter code for tyrosine 
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Mathematical Terms 

[A] Concentration of substrate or ligand 

∆Gax Coupling free energy between A and X 

∆Gay Coupling free energy between A and Y 

K1/2 Concentration of substrate when initial velocity is half maximal 

velocity  

Kia
⁰ Dissociation constants for A in the absence of effector 

Kia
∞ Dissociation constants for A in the presence of saturating 

concentration of effector 

Kix
⁰ Dissociation constant for Y in the absence of substrate 

Kix
∞ Dissociation constants for Y in the presence of saturating 

concentration of the substrate 

M Molar  

mg Milligram 

mL Milliliter 

mM Millimolar 

nH Hill number 

ns Nanosecond 

Qax Coupling constant between A and X 

Qay Coupling constant between A and Y 

R Gas constant 

T Temperature 
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v Initial velocity 

Vmax Maximal velocity 

 Fluorescence lifetime 

µg Microgram 

µM Micromolar  

Φ Phase delay 
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CHAPTER I                                                                                            

INTRODUCTION 

Phosphofructokinase background  

Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose 6-phosphate 

in glycolysis pathway. There are two types of PFK: PFK1 and PFK2. PFK1 catalyzes the 

irreversible γ-phosphoryl transfer from magnesium adenosine triphosphate (MgATP) to 

the sugar ring of fructose-6-phosphate (Fru-6-P) producing fructose-1,6-bisphosphate 

and magnesium adenosine diphosphate (MgADP), which is the first committed step of 

glycolysis pathway and one of the three irreversible steps, making it the key regulatory 

enzyme in glycolysis. PFK2 is a non-homologous isozyme. The PFK in this dissertation 

is PFK1.  

The structure and function of PFK depend on the origin. PFKs from mammals and 

yeast can have very complex structures and the subunit has a molecular weight of 85 

kDa and 110 kDa respectively. However, the enzymes from bacteria are much smaller. 

Bacterial PFKs are usually tetramers and the subunit has a molecular weight between 32 

kDa and 38 kDa (Evans, et al., 1981). PFK from eukaryotes is allosterically regulated by 

many metabolites, including citrate, ATP, AMP, fructose-1,6-bisphosphate, and 

fructose-2,6-bisphosphate (Bloxham and Lardy, 1973; Evans et al., 1981; 

Kemp and Foe, 1983; Kemp and Gunasekera, 2002). Generally PFK isolated from 

bacteria have a simpler allosteric regulation than that isolated from eukaryotes (Evans, et 

al., 1981). Bacterial PFKs are primarily regulated by two effectors: activator MgADP 

and inhibitor phosphoenolpyruvate (PEP). They are both K-type allosteric effectors 



 

2 

 

(Uyeda, 1979; Evans et al., 1981), which do not change the catalytic turnover of the 

enzyme, but change the enzyme’s binding affinity for Fru-6-P. MgADP functions as 

activator when physiological MgATP concentration is low and increases the enzyme’s 

affinity for Fru-6-P. PEP, the downstream product of glycolysis pathway, functions as 

feedback inhibitor and decreases the enzyme’s affinity for Fru-6-P.  

The crystal structure of phosphofructokinase from Bacillus stearothermophilus 

(BsPFK) with different ligands has been solved (Evans and Hudson, 1979; Evans, et al., 

1981; Evans, et al., 1986; Schirmer and Evans, 1990; Mosser et al., 2012). Each subunit 

forms a strong interaction with two neighboring subunits. Bacterial PFKs are active as 

tetramers and are inactivated upon dissociation into monomers. Analysis of crystal 

structures explains why bacterial PFKs require a tetramer to be active. Fru-6-P binds to 

two subunits; the negatively charged phosphate group also binds with Arg162 and 

Arg243 from neighboring subunit (Evans, et al., 1981). So the integrity of tetramer is 

required for the activity of PFK. The allosteric site is also on the surface of two 

neighboring subunits. Hence, the allosteric effectors, MgADP and PEP, are also bound 

with two subunits.  

PFKs from different bacterial sources have been studied (Johnson and Reinhart, 

1992, 1994 a-b 1997; Tlapak-Simmons and Reinhart, 1994; Kimmel and Reinhart, 2000; 

Riley-Lovingshimer and Reinhart, 2001; Fenton et al., 2004; Ortigosa and Reinhart, 

2004; Paricharttanakul et al., 2005; McGresham et al., 2014). EcPFK (PFK from 

Escherichia coli), BsPFK (PFK from Bacillus stearothermophilus), TtPFK (PFK from 
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Thermus thermophilus) and LdPFK (PFK from Lactobacillus delbrueckii) are all 

homotetramers with subunit molecular weight about 34kDa.  

Figure 1-1 is the amino acid sequence alignment of EcPFK, BsPFK, TtPFK and 

LdPFK. The numbering of residues in the figure is according to the EcPFK sequence but 

in the text is according to the TtPFK sequence. The overall sequence is well conserved 

with residues in the 210s, 230s and 240s along with the C-terminus being the least 

conserved. EcPFK and BsPFK have 58% and 54% identity in nucleotide and amino acid 

sequence, respectively (French and Chang, 1987). A comparison of the crystal structure 

of these two enzymes indicates the overall secondary, tertiary and quaternary structures 

are almost identical for EcPFK and BsPFK. The binding sites residues for EcPFK and 

BsPFK are also nearly identical (Evans et al., 1986; Shirakihara and Evans, 1988; 

Schirmer and Evans, 1990). LdPFK and EcPFK have 47% identity and 66% similarity in 

amino acid sequence. LdPFK and BsPFK have 56% identity and 74% similarity in 

amino acid sequence. The overall fold of the crystal structure and the substrate binding 

site is conserved between EcPFK, BsPFK and LdPFK (Paricharttanakul et al., 2005).  

Figure 1-2 is the amino acid sequence alignment of BsPFK and TtPFK. TtPFK and 

EcPFK have 46% identity and 62% similarity in amino acid sequence. TtPFK and 

BsPFK have 57% identity and 70% similarity in amino acid sequence.  

Figure 1-3 is the crystal structure of the BsPFK tetramer. There is no crystal 

structure available for TtPFK, but we have no reason to expect that the three dimensional 

structure of TtPFK will be dramatically different from BsPFK. 
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Figure 1-1. Amino acid sequence alignment of TtPFK, BsPFK, EcPFK and LdPFK. The 
sequences were aligned using MacVectorTM 7.0. The regions discussed within this 
dissertation are highlighted by red boxes. The numbering of residues is according to 
EcPFK sequence but in the text is according to the TtPFK sequence. 
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Figure 1-2. Amino acid sequence alignment of TtPFK and BsPFK. The sequences were 
aligned using MacVectorTM 7.0. The regions discussed within this dissertation are 
highlighted by red boxes. The numbering of the residues in the figure is according to the 
EcPFK sequence but in the text is according to the TtPFK sequence. 
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Figure 1-3. Crystal structure of BsPFK homotetramer with one subunit highlighted in 
green.  
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Models used to study allosteric regulation 

Researchers have been using the concerted (MWC) model (Monod et al., 1965) and 

the sequential (KNF) model (Koshland et al., 1966) to study allosteric regulation. The T-

state is the state capable of binding the inhibitor and binding substrate with low affinity. 

The R-state is the state that binds substrate or activator with high affinity. The concerted 

transition model was one of the first models to attempt to describe enzyme allosteric 

regulation. The two-state model is an oversimplification since even in the original paper 

it was recognized that more than two states may be involved; two-state refers to the 

transition of the enzyme from one state to another. In the simplest case there are only 

two forms: inactive T form and active R form. R form is better able to bind the ligand 

compared to T form. For the concerted transition, allosteric activation effects are seen as 

ligand stabilizing the R form; allosteric inhibition effects are seen as ligand stabilizing 

the T form. The concerted transition model predicts that all four allosteric sites are 

equally effective at influencing the binding of substrate. 

The KNF model predicts that conformational changes occurs when ligand binds to 

one subunit of the enzyme, which then affects the conformational change of the other 

neighboring subunits, either positively or negatively. The conversion of states occurs 

sequentially. The complete conversion from one conformational state to the other occurs 

only when all sites are bound with ligands. The first ligand binding event seems to be the 

major difference between the two models. In these two models, it is not usually expected 

that the enzyme binds substrate and inhibitor simultaneously. They only recognize 
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binary complex, either substrate bound form or allosteric effector bound form, but not 

the ternary complex bound with both substrate and allosteric effector simultaneously.  

A third model for studying allosterism is the linked-function model (Wyman, 1964, 

1967; Weber, 1972, 1975). Reinhart (1983 and 1988) applied this idea to both single 

substrate and single modifier system (monomer) and also symmetrical dimer system. 

Thermodynamic linkage analysis model provides another way to describe allosteric 

mechanism in free energy terms without assuming the nature of structural changes 

caused by ligand binding. “Linkage simply refers to the phenomenon of mutual 

interaction of two ligands bound to the same protein at distinct sites” (quote from 

Reinhart, 1983). The simplest allosteric kinetic mechanism is shown figure 1-4 involving 

a single substrate and a single allosteric effector, where E represent free enzyme, A 

represent substrate, P represent product and X represent allosteric effector. The figure is 

cited from Reinhart, 1983. EA represent enzyme bound with substrate, XE represent 

enzyme bound with allosteric effector and XEA represent enzyme bound with both 

substrate and allosteric effector. The dissociation constants are defined as follows: 

Kia
⁰ = [E][A]/[EA] 

Kix
⁰ = [E][X]/[XE] 

Kia
∞ = [XE][A]/[XEA] 

Kix
∞ = [EA][X]/[XEA] 

where Kia
⁰ and Kia

∞ are the dissociation constants for substrate in the absence and 

presence of saturating concentration of effector, and Kix
⁰ and Kix

∞ are the dissociation 

constants for the effector in the absence and presence of saturating concentration of 



 

9 

 

substrate, respectively (Cleland 1963; Reinhart 1983). The coupling constant Qax 

(Reinhart, 1983) is defined as the ratio of Kia
⁰ and Kia

∞ or the ratio of Kix
⁰ and Kix

∞
.  

Qax= Kia
⁰ / Kia

∞ = Kix
⁰ / Kix

∞ 

It describes the effect that the binding of effector has on the binding of substrate and vice 

versa. Qax also describes the disproportionate equilibrium constant for the following 

reaction:  

XE+EA      XEA+A 

Qax=([XEA] [E]) / ([EA] [XE]) 

The value of Qax describes the nature of the effect caused by X. If Qax is smaller 

than 1, the ligand is an inhibitor, if Qax is larger than 1, the ligand is an activator. If Qax 

is equal to 1, there is no allosteric effect. The common exclusive binding two-state 

model is a limiting case of the mechanism in fig 1-4. The essential difference lies in 

whether one considers the ternary complex, XEA, capable of forming.  

Qax can be used to calculate the coupling free energy ∆Gax (Weber, 1972, 1975; 

Reinhart, 1983, 1988; Reinhart. et al., 1989) between the substrate and allosteric effector 

based on the following equation: 

∆Gax =-RT ln (Qax) 

where R is the gas constant (8.3145J/k*mol), T is the temperature in Kelvin. If ∆Gax < 0, 

it is allosteric activation; if ∆Gax > 0, it is allosteric inhibition; and if ∆Gax = 0, there is 

no allosteric coupling. Thermodynamic linkage model applies to activation, inhibition 

and no allosteric coupling. 
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Figure 1-4. Thermodynamic linkage analysis for single substrate and single modifier. 
Figure is from Reinhart, 1983. 
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There are four different ligation states that the enzyme can adopt: E, EA or XE or 

XEA. Each ligation state is unique and can have different functional properties. This is 

in contrast to the two-state models, which only allow for the existence of either T-state 

or R-state, without the ternary complex because the enzyme can bind only one type of 

ligand, either A or X, but not both. Thermodynamic linkage analysis can not only 

describe the nature of the allosteric effect but also the magnitude of the effect. Several 

studies conducted by Reinhart (Reinhart 1983a-b, 1985, 1988; Johnson and Reinhart, 

1992, 1994a-b, 1997; Braxton, et al., 1994; Tlapak-Simmons and Reinhart, 1994, 1998; 

Kimmel and Reinhart, 2000, 2001; Riley-Lovingshimer and Reinhart, 2001; Pham and 

Reinhart, 2001; Pham, et al., 2001) have employed linked-function in the analysis of 

allosteric regulation of EcPFK and BsPFK. The ternary complexes for both EcPFK and 

BsPFK have been shown to exist (Johnson and Reinhart, 1992, 1994a-b, 1997; Tlapak-

Simmons and Reinhart, 1994, 1998; Kimmel and Reinhart, 2000; Riley-Lovingshimer 

and Reinhart, 2001). Also the crystal structures of different ligated states of both EcPFK 

and BsPFK have been solved (Evans and Hudson, 1979; Evans et al., 1981; Evans, et al., 

1986; Shirakihara and Evans, 1988; Rypniewski and Evans, 1989; Schirmer and Evans, 

1990). 

Allosteric regulation in TtPFK 

TtPFK has been purified and characterized (Yoshida et al., 1971; Yoshida, 1972; 

Xu et al., 1990; McGresham et al., 2014). Figure 1-5 is the plot of apparent dissociation 

constant for Fru-6-P versus increasing concentration of inhibitor PEP for TtPFK, BsPFK 

and EcPFK. The figure is cited from McGresham et al., 2014. TtPFK has a much higher 
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binding affinity for PEP and a smaller allosteric coupling between PEP and Fru-6-P 

compared to other prokaryotic PFKs. 

Table 1-1 is the kinetic and thermodynamic coupling parameters for TtPFK, BsPFK, 

EcPFK and LdPFK. TtPFK, BsPFK and EcPFK data is cited from McGresham et al., 

2014 and LdPFK data is cited from Paricharttanakul et al., 2005. Of the four PFKs, 

TtPFK exhibits the tightest binding affinity for PEP, while BsPFK exhibits the strongest 

inhibition by PEP. LdPFK stands out as having extremely poor PEP binding and the 

inhibition is only seen at very high concentrations of PEP (Paricharttanakul et al., 2005). 

The specific activity of TtPFK is 41 units/mg. It is much lower compared to BsPFK, 

EcPFK and LdPFK at 25°C, which is not surprising because the activity of enzymes 

from a thermophile at room temperature is expected to be lower than the activity at their 

native temperature (Jaenicke, 1991; Somero, 1978; Plou and Ballesterous, 1999). The 

dissociation constant for substrate Fru-6-P in the absence of PEP in TtPFK is close to 

BsPFK. The binding affinity of PEP for TtPFK is much tighter than BsPFK, but the 

allosteric coupling between PEP and Fru-6-P binding is much weaker, providing another 

example that the binding affinity is independent of the actual inhibition effect it exhibits. 

TtPFK and LdPFK have similar affinities for Fru-6-P, but binding affinities of LdPFK 

for MgADP and PEP are five orders of magnitude weaker than those for TtPFK.  

For TtPFK, the allosteric inhibitor PEP decreases the enzyme’s affinity for Fru-6-P 

but does not change the catalytic turnover of the enzyme as expected. Figure 1-6 shows 

the relative maximal velocity versus increasing concentration of inhibitor PEP for TtPFK. 

Figure 1-7 shows the hill number versus increasing concentration of inhibitor PEP for 
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TtPFK. There is slight positive homotropic cooperation for substrate binding. The hill 

number increases as PEP concentration increases, which is an example of 

heterotropically induced homotropic cooperativity (Reinhart 1988). Figure 1-8 shows the 

hill number for the binding of PEP in TtPFK. There is no PEP binding cooperativity in 

TtPFK.  

LdPFK has extremely poor binding affinity for PEP and the inhibition is only seen 

at very high concentrations of PEP (Paricharttanakul et al., 2005). EcPFK, BsPFK and 

TtPFK are all allosterically inhibited by PEP. In EcPFK the allosteric response to the 

inhibitor PEP decreased as a function of temperature (Johnson and Reinhart, 1997). The 

van’t Hoff analysis shows that the inhibition is enthalpy driven. In contrast, in BsPFK 

we see more inhibition by PEP at higher temperature because this process is entropy 

driven (Tlapak-Simmons and Reinhart, 1998). The inhibition by PEP of TtPFK is also 

entropy driven in (McGresham et al., 2014). The inhibition of PFK from mesophilic E. 

coli is enthalpy driven while the inhibition of PFKs from moderately thermophilic 

Bacillus stearothermophilus and extreme thermophilic Thermus thermophilus are 

entropy driven. It is possible that entropy driven allosteric regulation is a feature of 

enzymes from thermostable organisms. The other finding is that while the allosteric 

coupling in TtPFK is relatively weak at 25°C, it may be comparable to that of EcPFK 

and BsPFK at its physiological temperatures. 
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Figure 1-5. Apparent dissociation constant for Fru-6-P versus increasing concentration 
of inhibitor PEP for TtPFK, BsPFK and EcPFK at pH 8 and 25°C. Red is TtPFK, blue is 
BsPFK and green is EcPFK. Figure is from McGresham et al., 2014. 
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Table 1-1. Kinetic and thermodynamic coupling parameters for TtPFK, BsPFK, EcPFK 
and LdPFK at pH 8 and 25°C. A represent Fru-6-P, Y represent PEP and nd refers to 
“not determined”. TtPFK, BsPFK and EcPFK data is from McGresham et al., 2014. 
LdPFK data is from Paricharttanakul et al., 2005. 

 TtPFK BsPFK EcPFK LdPFK 

Kia
o (μM) 27.0 ± 0.6 31 ± 2 300 ± 10 20 ± 5 

Kiy
o (μM) 1.6 ± 0.1 93 ± 6 300 ± 10 24000 ± 2000 

Qay 0.067 ± 0.002 0.0021±0.0003 0.0080 ± 0.0003 nd 

ΔGay (kcal/mol) 1.60 ± 0.02 3.67 ± 0.1 2.7 ± 0.1 nd 

SA (unit/mg) 41 163 240 240 

kcat (s
-1) 23 91 136 136 
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Figure 1-6. Relative maximal velocity versus increasing concentration of inhibitor PEP 
for TtPFK at pH 8 and 25°C. 
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Figure 1-7. Hill number versus increasing concentration of inhibitor PEP for TtPFK at 
pH 8 and 25°C. 
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Figure 1-8. Hill number for the binding of PEP as function of Fru-6-P in TtPFK. 
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When studying allosteric regulation in PFK, we need to consider all four species of 

the enzyme, including the ternary complex. The ternary complex with both substrate and 

activator bound is easy to achieve because positive cooperativity of the binding of these 

two ligands. However, the ternary complex with both substrate and inhibitor is more 

difficult to achieve because of the antagonism of the binding of these two ligands. The 

tight binding for PEP and weaker coupling between Fru-6-P and PEP in TtPFK suggests 

that the ternary complex with both Fru-6-P and PEP is easier to form compared to PFK 

from other organisms, which can be taken advantage of when studying allosteric 

regulation mechanisms. 

McGresham and Reinhart (2015) have identified three non-conserved residues N59, 

A158 and S125 (circled in figure 1-2), which contribute to the weaker coupling between 

Fru-6-P and PEP in TtPFK. In BsPFK, the side chains of the corresponding residues D59, 

T158 are H215 are involved in the interaction network, which is missing in TtPFK. They 

were able to increase the coupling free energy by 2.4 kcal/mol by introducing the 

N59D/A158T/S215H mutations. Also, each single mutation contributes approximately 

equally to the total the increase. The strong binding affinity of TtPFK for its allosteric 

inhibitor is particularly interesting considering the extremely weak binding of PEP in 

LdPFK. McGresham and Reinhart have shown that the non-conserved R55 (circled in 

figure 1-2) is important residue for the tight binding of PEP in TtPFK (Maria S. 

McGresham unpublished data). It is possible that the positioning of the PEP molecule in 

the allosteric binding cavity is different from that of BsPFK and other PFKs due to the 

presence of arginine at position 55. This possibility is also supported by the fact that 
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E55R LdPFK did not show any enhancement in the binding affinity of PEP 

(Paricharttanakul et al., 2005). 

Hybrid study in EcPFK and BsPFK 

Allosteric regulation and how allosteric information is transmitted through the 

enzyme has been extensively studied in the past decades. Different methods have been 

use to address this question. For example, site-directed mutagenesis to study allosteric 

regulation (Lau et al., 1987; Lau and Fersht, 1987 and 1989; Wang and Kemp, 1999; 

Kimmel and Reinhart, 2000; Pham et al., 2001); determination of the crystal structure of 

enzymes in different ligated states to study allosteric regulation (Schirmer and Evans, 

1990); the use of hybrid enzymes to isolate specific allosteric interactions and 

characterize their function (Ackers et al. 1992; Kimmel and Reinhart, 2001; Fenton and 

Reinhart, 2002; Fenton et al., 2004; Ortigosa et al., 2004; Fenton and Reinhart, 2009); 

and the use of a genetic approach to make chimeric proteins and study their allosteric 

properties (Byrnes et al. 1995; Eroglu and Powers-Lee, 2002; Pawlyk and Pettigrew, 

2002). 

It is difficult to determine the allosteric pathways because most allosteric enzymes 

are oligomeric. There are multiple possible interactions. For example, tetrameric PFK 

has four active sites and four allosteric sites total. For allosteric interaction between Fru-

6-P and PEP, there are a total of 28 interactions within the homotetramer: six homotropic 

interactions between the four active sites; six homotropic interactions between the four 

allosteric sites; and sixteen heterotropic interactions between the four active sites and the 

four allosteric sites. Homotropic refers to interaction between identical ligands and 
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heterotropic refers to interaction between different ligands. Due to the symmetry of the 

enzyme, only four heterotropic interactions between the active sites and the allosteric 

sites are unique.  

Hybrid enzymes have been used to study the propagation of allosteric information 

in several systems. The hybrid strategy was adapted for phosphofructokinase by Kimmel 

and Reinhart (2001). The binding sites of PFK lie across subunit interfaces, as part of its 

oligomeric character. The active sites are aligned along one dimer-dimer interface, and 

the allosteric sites are aligned along the other dimer-dimer interface. The residues 

contributing to the active site and allosteric site are different. In BsPFK, the active site 

includes R162 and R243 from one subunit and R252, R72 and H249 from the other 

subunit. The allosteric binding site includes R211, K213 and R154 from one subunit and 

R25 and R21 from the other subunit. Mutations to only one side of a binding site can 

decrease ligand affinity dramatically. Each of the above mentioned residues has been 

mutated to glutamate to achieve the desired decrease in ligand affinity. Combination of 

specific active and allosteric site mutations with a method of reconstructing the enzyme 

allowed for the isolation of a heterotetramer of BsPFK which contained only one 

allosteric interaction. Four different heterotetrameric BsPFK molecules each of which 

contain a single unique heterotropic allosteric interaction can be created. Four 

heterotropic interactions, 22 Å interaction, 30 Å interaction, 32 Å interaction and 45 Å 

interaction, are labeled as the distance in angstroms between the ligands in the reference 

crystal structure. These distances do not imply the length of the pathway which allosteric 

signal must travel through, but rather, is a simple way of identifying which interaction is 
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being described. For EcPFK, the four heterotropic interactions are 23 Å interaction, 30 Å 

interaction, 33 Å interaction and 45 Å interaction. 

Hybrid enzymes have been used to study the propagation of allosteric inhibition 

information in BsPFK (Ortigosa et al., 2004). Figure 1-9 shows the sum of coupling free 

energy measured for the isolated interactions for BsPFK compared to the total coupling 

free energy measured for the 4|1 control hybrid. The figure is cited from Ortigosa et al., 

2004. The 4|1 control hybrid was used to eliminate PEP binding cooperativity. The 

overall inhibition pattern with pH is consistent with wild type BsPFK, the coupling free 

energy increases with pH. At pH 6, the coupling free energy of the isolated interactions 

sum to 75% of the total coupling free energy, “but the relative errors are large enough to 

make this discrepancy of questionable significance” (quote from Ortigosa et al., 2004). 

At pH 7 and 8, the sum of the isolated interactions is close to the total. At pH 8, the 22 Å 

interaction contributes 50%, the 30 Å interaction contributes 16.5%, the 32 Å interaction 

contributes 27.7%, and the 45 Å interaction contributes 5.7% to the total coupling free 

energy. 

Hybrid enzymes have also been used to study the propagation of allosteric 

inhibition information in EcPFK (Fenton and Reinhart, 2009). Figure 1-10 shows the 

sum of coupling free energy measured for the isolated interactions for EcPFK compared 

to the total coupling free energy measured for the 1|4 control hybrid. The figure is cited 

from Fenton and Reinhart, 2009. 1|4 control hybrid was used to eliminate Fru-6-P 

binding cooperativity. For EcPFK, 23 Å interaction contributes 42% ± 3%, 30 Å 

interaction contributes 31% ± 2%, 33 Å interaction contributes -8% ± 2% (actually a 
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small activation), and 45 Å interaction contributes 25% ± 1% to the total coupling free 

energy. The coupling free energy of the three isolated inhibition interactions sum to 97% 

± 4% of the total coupling free energy. After including the small activation of 33 Å 

interaction, the coupling free energy of the four interactions sum to 89% ± 4% of the 

total, suggesting that “this contribution might be inconsequential within the context of 

the overall tetramer” (quote from Fenton and Reinhart, 2009).  

In both EcPFK and BsPFK, the shortest interaction, 22 Å interaction is the 

dominant contributor, but the percentage is higher in BsPFK than EcPFK. The most 

dramatic difference is the 33 Å (32 Å) interaction. In BsPFK 32 Å interaction is the 

second largest contributor, while in EcPFK it actually has a small activation effect. In 

EcPFK, 30 Å interaction and 45 Å interaction contributes 1/3 and 1/4 respectively. 

While in BsPFK, 30 Å interaction only contributes 16.5% and 45 Å interaction only 

contributes 5.7%. The relative contributions of the interactions are different for these 

two highly homologous isoforms. This suggests that these two enzymes use two 

different pathways for the transmission of inhibitory information.  

Hybrid enzymes have also been used to study the propagation of allosteric 

activation information in EcPFK. The relative contribution of the four interactions for 

MgADP activation is dramatically different from that for PEP inhibition in EcPFK 

(Fenton and Reinhart, 2009). Although MgADP and PEP bind to the same allosteric site, 

but the propagation and transmission of allosteric information for activation and 

inhibition are different.  
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It will be very useful to employ the hybrid method to study the propagation of 

allosteric inhibition information in TtPFK and know how the relative contribution of the 

four unique heterotropic interactions in TtPFK compares to that of BsPFK and EcPFK. 

Fluorescence phasor 

Fluorescence spectroscopic properties of intrinsic fluorophore of tryptophan are 

very sensitive to local environment within the protein. Tryptophan has been used as 

fluorescence probe to detect the conformation change of allosteric regulation. 

Luminescence results when photons are emitted from electronically excited states, 

including fluorescence and phosphorescence. As shown in the Jablonski diagram (figure 

1-11), the ground state is labeled as S0 and the first and second electron states are labeled 

as S1 and S2. The figure is cited from http://www.shsu.edu. There are three vibrational 

energy levels in each of these energy levels. At room temperature, the majority of 

electrons exist in the lowest energy level, S0. When light is absorbed electrons may gain 

enough energy to occupy some of the higher vibrational energy levels, S1 or S2. The 

excited electron can transit to the lowest vibrational level S1 through internal conversion, 

which takes about 10-12 second and is complete before light is emitted. Fluorescence 

occurs during the process of an electron falling from the lowest vibrational level S1 to the 

ground state S0 and losing its energy as light. The time for this process is on the order of 

10-8 second. It is possible for electrons in S1 to transit to the triplet state T1 through 

intersystem crossing. The emission from T1 is called phosphorescence. 
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Figure 1-9. The sum of coupling free energy measured for the isolated interactions for 
BsPFK compared to the total coupling free energy measured for the 4|1 control hybrid at 
25°C, pH 6.0, 7.0 and 8.0. Black is 22 Å interaction, dark gray is 30 Å interaction, light 
gray is 32 Å interaction, and white is 45 Å interaction. Figure is from Ortigosa et al., 
2004. 
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Figure 1-10. The sum of coupling free energy measured for the isolated interactions for 
EcPFK compared to the total coupling free energy measured for the 1|4 control hybrid at 
8.5°C and pH 8. Black is 45 Å interaction, dark gray is 33 Å interaction, light gray is 30 
Å interaction, and white is 23 Å interaction. Figure is from Fenton and Reinhart, 2009. 
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Fluorescence measurement can be categorized into two types: steady-state and 

time-resolved. In steady-state measurement, the sample is directly excited to a higher 

energy level with continuous light, and the emission spectra or intensity is recorded. In 

order to determine explicitly fluorescence decay rates, time-resolved techniques must be 

used. There are generally two methods employed in time-resolved work: the time-

domain measurement and the frequency domain measurement, which is used in this 

dissertation and will be discussed in detail.  

In the time-domain fluorescence measurement, the sample is directly excited to a 

higher energy level with an instantaneous short pulse of light, and the intensity decrease 

over time is recorded. In frequency-domain fluorescence measurement, the continuous 

excitation light is intensity modulated. The modulated emission of the fluorophores will 

have a phase delay relative to the excitation light. Figure 1-12 shows modulation and 

phase shift of the emission relative to excitation. The figure is cited from Spencer and 

Weber, 1969. The modulation factor M is defined as follows, M= 

(ACem/DCem)/(ACex/DCex), where AC is the alternative current and DC is direct current 

of the excitation light detected at the photo detector from a scatter in sample 

compartment. The modulation of the emission is defined similarly, except using the 

current of the emission of the fluorescence sample. Φ is the phase delay between the 

excitation and emission. Figure 1-13 is the experimental phase and modulation of 

Ethidium Bromide free and in presence of DNA. The phase angle shifts and relative 

modulation values increase and decrease respectively, with higher frequencies of 

modulated excitation. 
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Figure 1-11. Jablonski diagram. Figure is from http://www.shsu.edu. 
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Figure 1-12. Fluorescence modulation and phase shift of the emission relative to 
excitation. Figure adapted from Spencer and Weber, 1969. 
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Figure 1-13. Phase and modulation of Ethidium Bromide free and in presence of DNA. 
Figure is from www.iss.com. 
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The two main parameters, phase angle and modulation, determined in frequency-

domain fluorescence measurements, can be acquired with high precision. Unfortunately, 

when analyzing systems with complex decay mechanism, error is often introduced by 

the imperfect modeling. The phasor approach (Jameson et al. 1985) allows a description 

of the system utilizing only the raw phase angle and modulation data. The phase delay 

(Φ) and the modulation (M) are used to calculate G and S: G = M Cos Φ, S = M Sin Φ. 

Then these G and S are used as coordinates in the phase plot as shown in figure 1-14. 

The figure is cited from Stefl et al., 2011. Since G and S vary with frequency, plotting G 

and S as a function of frequency will form a curve, known as “universal circle”. The 

phasor point of fluorphore with single lifetime will fall on this universal circle. The exact 

location of the point will depend upon the lifetime of the fluorophore and the light 

modulation frequency. In figure 1-14-B, there are two fluorphores with single lifetime t1 

and t2 at a single frequency. If we have a mixture of these two fluorphores, the phasor 

point of this mixture will be on the line between the two individual phasor points 

weighted by the intensity of each component and produce the phasor point inside the 

universal circle. Consequently, for samples containing more than one fluorescence 

components, the phasor point of each component is inside the semicircle, the phasor 

point of this mixture will still be on the line between the two individual samples 

weighted by the intensity of each component.  

Phasor provide a useful way to study complex decays. For example, even single 

tryptophan protein exhibits very complex decays, if we consider a protein containing 

more than one tryptophan residues, it is often more difficult to analyze the lifetime and it 
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will be more challenging to study the effects of ligand binding. With the phasor plot 

there will be only one phasor point at a given frequency no matter how many 

tryptophans contribute to the emission. If ligand binding affects one or more emitting 

residues, the phasor point will move. So movement of the phasor point can be an 

indication of a conformational change of the protein. Fluorescence phasor is an easy and 

fast method to evaluate data obtained from frequency-domain measurement without the 

assumption of any exponential decay model. As discussed earlier, there are four species, 

Apo-TtPFK, TtPFK-Fru-6-P, PEP-TtPFK, and PEP-TtPFK-Fru-6-P, involved in the 

allosteric coupling between Fru-6-P and PEP in TtPFK. In chapter IV, we will employ 

fluorescence phasor method to the system of TtPFK. If the ternary complex is a mixture 

of two binary complexes, the phasor point of the ternary complex will be on the line 

between the two binary complexes. If the ternary complex is a unique conformation, the 

phasor point of the ternary complex will be off the line between the two binary 

complexes. 
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Figure 1-14. Schematic illustration of phasor plot. A. Schematic illustration of phasor 
plot. M is the modulation, Φ is the phase delay. B. Schematic illustration of phasor plot 
of mixture of two different fluorophores with lifetime 1 and 2. The dashed line is their 
hypothetical mixtures. Triangle is where the fluorescence contributions from two 
fluorophores are equal. Figure is from Stefl et al., 2011. 
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Chapter objective 

The general objective is to improve the understanding on how allosteric regulation 

occurs, and more specifically how inhibition by PEP occurs in TtPFK, in other words, 

how the inhibition signal is transmitted and propagated throughout the enzyme.  

The general objective of chapter II is to isolate the four unique heterotropic 

allosteric interactions in TtPFK using hybrid strategy and determine the contribution of 

each interaction to the total coupling free energy. Also we want to know how the relative 

contribution of each interaction in TtPFK compares to that of EcPFK and BsPFK. 

N59D/A158T/S215H substitutions increase the coupling free energy of TtPFK 

similar to BsPFK. The general objective of chapter III is to employ the hybrid strategy 

discussed in chapter II to TtPFK N59D/A158T/S215H and isolate the four unique 

heterotropic interactions in TtPFK N59D/A158T/S215H. We want to know how the 

substitutions of N59D/A158T/S215H affect the coupling free energy in each of the four 

individual heterotropic interactions. 

Ternary complex (enzyme bound with both substrate and effector) is not anticipated 

by the traditional two-state allosteric regulation model. The general objective of chapter 

IV is to identify unique conformations of ternary complex using fluorescence phasor. 

And then we want to identify residues and areas may be important for the transmission 

of allosteric inhibition information in TtPFK.  

Chapter V summarizes the results of discussed in chapter II, chapter III and chapter 

IV, and discusses the possible future study direction. 
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CHAPTER II                                                                                               

ISOLATION OF INDIVIDUAL INHIBITION ALLOSTERIC INTERACTION IN 

PHOSPHOFRUCTOKINASE FROM THERMUS THERMOPHILUS 

Introduction 

Phosphofructokinase from Thermus thermophilus (TtPFK) is a homotetramer and 

the subunit has a molecular weight of 34kDa. The enzyme displays slight positive 

homotropic cooperation for substrate binding with hill coefficient about 1.6. It is 

allosterically inhibited by PEP, which does not change the catalytic turnover of the 

enzyme, but changees the enzyme’s binding affinity for the substrate Fru-6-P. TtPFK 

has four active sites and four allosteric sites. It is difficult to determine the allosteric 

pathways since there are multiple possible interactions. For the allosteric interaction 

between Fru-6-P and PEP, there are sixteen heterotropic interactions between the four 

active sites and the four allosteric sites. But only four heterotropic interactions between 

the active sites and the allosteric sites are unique due to the symmetry of the enzyme. 

A hybrid strategy has been developed to study the single heterotropic allosteric 

interaction in PFK. The binding sites of PFK lie across subunit interfaces. The active 

sites are aligned along one dimer-dimer interface, and the allosteric sites are aligned 

along the other dimer-dimer interface. The residues contributing to the active site and 

allosteric site are different. Mutations to only one side of a binding site can decrease 

ligand affinity dramatically. So mutations were made at the active site and allosteric site 

to block both Fru-6-P binding and PEP binding and charge tag mutations were added to 

the surface of the mutant subunit to increase the charge difference, facilitating the 
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separation of different hybrids species. Hybrids were constructed between the wild-type 

enzyme and the triple mutant enzyme (active site mutation, allosteric site mutation and 

surface charge mutation). Combination of specific active and allosteric site mutations 

allowed for the isolation of a functional heterotetramer of PFK which contained only one 

allosteric interaction. This heterotetramer has no homotropic interaction and has only 

one heterotropic interaction. 

There are four unique heterotropic interactions in BsPFK (PFK from Bacillus 

stearothermophilus): 22 Å interaction, 30 Å interaction, 32 Å interaction and 45 Å 

interaction (Ortigosa et al., 2004), which are labeled as the distance in angstroms 

between the ligands in the BsPFK crystal structure. In EcPFK (PFK from Escherichia 

coli) the four interactions are 23 Å interaction, 30 Å interaction, 33 Å interaction and 45 

Å interaction (Fenton and Reinhart, 2009). These distances do not imply the length of 

the pathway which allosteric signal must travel through, but rather, is a simple way of 

identifying which interaction is being described.  

Four specific heterotropic interactions have been successfully isolated in BsPFK 

(Ortigosa et al., 2004) and EcPFK (Fenton and Reinhart, 2009). In both EcPFK and 

BsPFK, the shortest interaction, 22 Å interaction (23 Å interaction in EcPFK) is the 

dominant contributor, but the percentage is higher in BsPFK than EcPFK. The most 

dramatic difference is the 32 Å interaction (33 Å interaction in EcPFK). In BsPFK 32 Å 

interaction is the second largest contributor, while in EcPFK it actually has a small 

activation effect. In EcPFK, 30 Å interaction and 45 Å interaction contributes 1/3 and 

1/4 respectively. While in BsPFK, 30 Å interaction only contributes 16.5% and 45 Å 
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interaction only contributes 5.7%. The relative contributions of the four unique 

heterotropic interactions are different for these two highly homologous isoforms; this 

suggests that the inhibition communications are different.  

In this chapter we employ the hybrid strategy to the system of TtPFK. The aim is to 

isolate the four unique heterotropic interactions in TtPFK and quantitatively measure the 

contribution of each interaction to the total coupling free energy. Also, the inhibition in 

mesophile EcPFK is enthalpy driven (Johnson and Reinhart, 1997) while the inhibition 

in thermophile BsPFK and extreme thermophile TtPFK are entropy driven (Tlapak-

Simmons and Reinhart, 1998, McGresham et al., 2014). We want to know the relative 

contributions of the four unique heterotropic interactions in TtPFK and how the pattern 

compares to EcPFK and BsPFK.  

As discussed earlier in chapter I, the overall secondary, tertiary and quaternary 

structures are almost identical for EcPFK and BsPFK. The binding sites residues for 

EcPFK and BsPFK are also nearly identical (Evans et al., 1986; Shirakihara and Evans, 

1988; Schirmer and Evans, 1990). TtPFK and BsPFK have 57% identity and 70% 

similarity in amino acid sequence. There is no crystal structure information available for 

TtPFK, but we have no reason to expect that the three dimensional structure of TtPFK 

will be dramatically different from BsPFK. So BsPFK crystal structure was used as a 

reference to determine the active sites and allosteric sites based on the amino acid 

sequence alignment of TtPFK and BsPFK. To block the binding of Fru-6-P in BsPFK, 

two active site mutants were made: arginine 162 to glutamate and arginine 252 to 

glutamate. And the corresponding residues are arginine 163 and arginine 255 in TtPFK. 
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To block the binding of PEP in BsPFK, two allosteric site mutants were made: arginine 

25 to glutamate and arginine 211 to glutamate / lysine 213 to glutamate. And the 

corresponding residues are arginine 25 and arginine 212 and lysine 214 in TtPFK. The 

names of the four heterotropic interactions (22 Å interaction, 30 Å interaction, 32 Å 

interaction and 45 Å interaction) also follow BsPFK (Ortigosa et al., 2004). 

Materials and methods 

Materials 

All reagents were of analytical grade. Glycerol-3-phosphate dehydrogenase and 

creatine kinase were purchased from Roche (Indianapolis, IN). Phosphocreatine, Fru-6-P, 

PEP, aldolase, triose phosphate isomerase, and ATP were purchased from Sigma-

Aldrich (St. Louis, MO). The coupling enzymes (glycerol-3-phosphate dehydrogenase, 

aldolase and triose phosphate isomerase) were in ammonium sulfate suspensions. They 

were dialyzed with three exchanges of 50 mM MOPS pH 8.0 buffer, which contains 100 

mM KCl, 5 mM MgCl2 and 0.1 mM EDTA before use. The mono Q anion exchange 

column used for fast performance liquid chromatography (FPLC) was purchased from 

GE Lifescience (Charlottesville, VA). Site-directed mutagenesis follows the instruction 

manual from Stratagene (La Jolla, CA). The template was pALTER-1 (Promega) with 

wild type TtPFK gene. Oligonucleotides for quikchange site-directed mutagenesis were 

purchased from Integrated DNA Technologies Inc (Coralville, IA). Plasmid purification 

kit was purchased from Qiagen (Hilden, Germany). XL1Blue cells used for 

transformation were purchase from Stratagene (La Jolla, CA). Plasmid sequencing to 
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confirm the mutation introduced by quikchange site-directed mutagenesis is done with 

the BigDye kit of ABI (Foster City, CA) and Eton Bioscience (San Diego, CA).  

Hybrid nomenclature 

In order to differentiate different kinds of hybrids species formed in this study, two 

kinds of notations were introduced. The first one introduced by Kimmel and Reinhart 

(2000) is to use colon punctuation to separate the two numbers that define the number of 

subunits that each of the two parental tetramer enzyme contributes to the hybrid enzyme. 

The number on the left side of the colon punctuation is the number of subunit coming 

from one parental tetramer and the number on the right side of the colon punctuation is 

the number of subunit coming from the other parental tetramer. For example, notation 

1:3 refers to that in the hybrid tetramer enzyme, one subunit comes from one parental 

tetramer enzyme and three subunits come from the other parental tetramer enzyme.  

The second kind of notation introduce by Fenton and Reinhart (2002) use vertical 

bar to separate the two numbers that define the number of native active sites and the 

native allosteric sites in the hybrid tetramer enzyme, respectively. The number on the left 

side of the vertical bar is the number of native active sites and the number on the right 

side of the vertical bar is the number of native allosteric sites. For example, 1|4 refers to 

one native active site and four native allosteric sites. 

Site-directed mutagenesis 

Site-directed mutagenesis follows the instruction manual from Stratagene. Figure 2-

1 is the overview of the quikchange site-directed mutagenesis method. The figure is 

cited from stratagene quikchange site-directed mutagenesis kit instruction manual. The 
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template used for all the mutagenesis was pALTER-1 plasmid with wild type TtPFK 

gene and tetracycline resistance. A pair of complementary primers was used to construct 

mutation in the wild type TtPFK gene in the plasmid. Table 2-1 lists all the 

oligonucleotides used in this chapter. Mutant strand synthesis reaction (thermal cycling) 

follows the instruction manual of quikchange site-directed mutagenesis system from 

Stratagene. After the PCR reaction the plasmids were transformed into competent XL1-

Blue cells, colonies with tetracycline resistance were selected, and the plasmid was 

purified using a Qiagen kit and then sent to sequencing to confirm the mutated DNA 

bases. 

Protein expression and purification 

RL257 is a PFK-1 and PFK-2 deficient strain (Lovingshimer et al., 2006) was 

grown at 37°C in LB (Luria-Bertani) media which contains 10 g/L tryptone, 5 g/L yeast 

extract, and 10 g/L sodium chloride with 15 µg/mL tetracycline until OD 600 is 0.6. Then 

the cells were induced with 0.5mM IPTG and grow at 18°C for 24 hours. The cells are 

centrifuged in Beckman J6 centrifuge at 4,550 x g for 30 minutes at 4°C. The cell was 

stored in -80°C freezer for later use. 
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Figure 2-1. Overview of the quikchange site-directed mutagenesis method. Figure is 
from stratagene quikchange site-directed mutagenesis kit instruction manual. 
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Table 2-1. Oligonucleotides used in the quikchange site-directed mutagenesis. 

 Oligonucleotides sequence 

R306E 5’GGAGGCGGTGGAGGAAAGGAAGGACATCAACCGGG3’ 

R163E 5’CGCGGCGAGCCACGAGGAAGTCTTCTTCATAGAGG3’ 

R212E&K214E 5’GAGGCCTCCCAGAGGGAAGGGAAGGAAAGCTCCATC

GTGGTG3’ 

R25E 5’CCGGGCGGTGGTGGAACAGGCCCACGCCC3’ 

R255E 5’GGGGCACATCCAGGAAGGCGGGAGCCCCAC3’ 
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The cell was resuspended in 20 mM pH 8 Tris-HCl buffer with 0.5 mM EDTA. The 

cells were lysed using Sonic Dismembrator Model 550 (Fisher Scientific).The program 

is 15 second sonication and 45 second delay to cool down and the total sonication time is 

8 minutes. The lysate was centrifuged in Beckman J2-21 centrifuge at 22,500 x g for 30 

min at 4°C. The supernatant was heated at a 70°C water bath for 15 minutes, cool on ice 

for 10 min and then centrifuged at 22,500 x g for 30 min at 4°C. The supernatant was 

applied to 35% ammonium sulfate precipitation and then centrifuged at 22,500 x g for 

another 30 min at 4°C. The protein pellet was resuspended in purification buffer A and 

then dialyzed to get rid of any residual ammonium sulfate in the protein solution with 

two each exchange of buffer, each 1 hour. The protein was then applied to 10/10 mono 

Q anion exchange column. SDS-PAGE with 4% polyacrylamide stacking gel and 10% 

polyacrylamide resolving gel was used to check the purity of the protein. If there are 

multiple bands on the gel, proteins will be applied to another anion exchange column. 

Protein concentration was measured by pierce BCA assay (Smith et al., 1985).  

Hybrid formation and separation 

Hybrid formation and separation follow the method developed by Kimmel and 

Reinhart (2001) generally. TtPFK are active as tetramers and are inactivated upon 

dissociation into monomers by potassium thiocyanate (KSCN), a mild denaturant. They 

can rehybridize to tetramer given enough time of dialysis. R306E mutation was 

introduced to the surface of the mutant subunit to increase charge difference, facilitating 

the separation of hybrids through anion exchange chromatography. Wild type TtPFK 

enzyme and mutant TtPFK enzyme were incubated with 5M KSCN for 30 minutes to 
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dissociate the tetramer to monomers. Protein concentration is 2M and volume is 5-10 

mL. Mixture of wild type enzyme monomers and mutant enzyme monomers were 

dialyzed together against purification buffer A for total 4.5 hours with 3 exchange of 

buffer, each 1.5 hours. The hybrid mixture was then applied to Mono-Q FPLC anion-

exchange column to separate the different hybrid species. Purification buffer B was used 

to elute different hybrid species from the column. The absorbance at 280 nm was 

monitored. In figure 2-2, the elution profile shows the isolation of five different hybrid 

species: from left to right are 4:0 (wild type enzyme), 3:1, 2:2, 1:3 and 0:4 (mutant 

enzyme). Fractions were run on native PAGE gel to identify all the five hybrid species. 

Figure 2-3 is the identification of five hybrid species using 7.5% native PAGE gel. Lane 

1 is all the five species before separation. Lane 2 is 4:0 hybrid (wild type enzyme); Lane 

3 is 3:1 hybrid; Lane 4 is 2:2 hybrid; Lane 5 is 1:3 hybrid; Lane 6 is 0:4 hybrid (mutant 

enzyme). Hybrid of interest was dialyzed against 20mM Tris-HCl (pH 8) and stored at 

4°C. No re-hybridization is observed after at least four weeks and confirmed by native 

PAGE. 
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Figure 2-2. Elution profile of the isolation of hybrids between wild type TtPFK and 
combined mutant of TtPFK containing R163E, R212E/K214E and R306E mutations. Y 
axis is absorbance at 280nm and X axis is elution volume with increasing concentration 
of NaCl. 
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Figure 2-3. Identification of hybrids between wild type TtPFK and combined mutant of 
TtPFK containing R163E, R212E/K214E and R306E mutations using 7.5% native 
PAGE gel. Lane 1 is all the five species before separation. Lane 2 is 4:0 hybrid (wild 
type enzyme); Lane 3 is 3:1 hybrid; Lane 4 is 2:2 hybrid; Lane 5 is 1:3 hybrid; Lane 6 is 
0:4 hybrid (mutant enzyme). 
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Enzymatic activity assay 

The activity of TtPFK enzyme was measured at 600 µL of EPPS-KOH buffer (pH 8, 

50 mM EPPS, 100 mM KCl, 5 mM MgCl2, 0.1 mM EDTA, 2 mM dithiothreitol), with 

0.2 mM NADH, coupling enzymes (250 µg of aldolase, 50 µg of glycerol-3-phosphate 

dehydrogenase, 5 µg of triose phosphate isomerase) and 0.5mM MgATP. For maximal 

velocity assay, 3mM Fru-6-P was used. To measure the coupling between Fru-6-P and 

PEP, various concentration of Fru-6-P and PEP were used. All enzyme activity assays 

were measured by Beckman Series 600 spectrophotometer. The decrease in absorbance 

at 340nm was converted to enzyme rate. Figure 2-4 shows the coupling system for 

measuring TtPFK enzyme activity (Babul, 1978; Kolartz and Buc, 1982). 

Data analysis 

All data were fit using Kaleidagraph software (Synergy). The initial velocity data 

were fit to Hill equation (Hill, 1910): 

                                                                                                         (2-1) 

where v is the initial velocity, [A] is the concentration of substrate Fru-6-P, Vmax is the 

maximal velocity, nH is the hill coefficient, and K1/2 is the concentration of Fru-6-P when 

initial velocity is half maximal velocity. 
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Figure 2-4. Coupling system for measuring TtPFK enzyme activity.  
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Since K1/2 increase with the increasing concentration of PEP, the K1/2 data versus 

increasing concentration of PEP were fit to the following equation (Reinhart, 1983): 

                                                                               (2-2) 

where Kia
0 is the dissociation constant for Fru-6-P in the absence of PEP, Kiy

0 is the 

dissociation constant for PEP in the absence of Fru-6-P, [Y] is the PEP concentration, 

Qay is the coupling constant between of PEP and Fru-6-P. 

For hybrid data which has two binding affinities for Fru-6-P and two maximal 

velocities, initial velocity were fit to the following equation: 

                                                                        (2-3) 

where Vmax is the maximal velocity for the high binding affinity site, K1/2 is the 

concentration of Fru-6-P when initial velocity is half maximal velocity for the high 

binding affinity site, V’max is the maximal velocity for the low binding affinity site, K’1/2 

is the concentration of Fru-6-P when initial velocity is half maximal velocity for the low 

binding affinity site, [A] is concentration of Fru-6-P. 

The coupling free energy can be calculated from the following equation (Reinhart, 

1983): 

                                                                                                    (2-4) 

where ∆Gay is the coupling free energy between Fru-6-P and PEP, R is the gas constant, 

T is the temperature in Kelvin. 
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Results 

Strategy 

TtPFK is homotetramer with four active sites and four allosteric sites. The active 

sites lie along one dimer-dimer interface and the allosteric sites lie along the other 

dimer-dimer interface. The residues contributing to the active site and allosteric site are 

different. In figure 2-5, figure A is schematic illustration of one subunit of TtPFK, active 

sites R163 and R255 are labeled as a and b, and mutation at either a side or b side 

decreases the binding of Fru-6-P dramatically. The figure is cited from Ortigosa et al., 

2004. Allosteric sites R212/K214 and R25 are labeled as α and β, and mutations at either 

α side or β side decreases the binding of PEP dramatically. Figure B is schematic 

representation of TtPFK tetramer. Four heterotropic interactions, 22 Å interaction, 30 Å 

interaction, 32 Å interaction and 45 Å interaction, are labeled as the distance in angstrom 

between the ligands in the reference BsPFK crystal structure.  

The strategy is to construct a hybrid that has one subunit from wild type enzyme 

and three subunits from triple mutant enzyme, which has both active site and allosteric 

site mutations to block the binding of substrate and allosteric inhibitor to isolate each of 

the four heterotropic interactions. Figure 2-6 is schematic illustration of the four 

heterotropic interactions isolated in TtPFK. The figure is cited from Ortigosa et al., 2004. 

Shaded shape refers to the mutated active residues or allosteric residues. Open shape 

refers to the native active residues or allosteric residues. Combination of specific active 

and allosteric site mutations allowed for the isolation of a functional heterotetramer of 
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PFK which contained only one allosteric interaction. Table 2-2 is the summary of 

mutations used in each of the four heterotropic interactions. 

TtPFK is active as tetramers and is dissociated into monomers by high 

concentration KSCN. Incubation of monomer mixture of wild type TtPFK and mutant 

TtPFK form five different combinations (4:0, 3:1, 2:2, 1:3 and 0:4). R306E mutation 

was introduced to the surface of the mutant subunit to increase the charge difference, 

facilitating the separation of hybrids through anion exchange chromatography. 

The active site and allosteric site mutations 

To block the binding of Fru-6-P, two active site mutants were made: arginine 163 to 

glutamate and arginine 255 to glutamate. Enzyme activities versus increasing 

concentration of Fru-6-P in the absence of PEP was measured and fitted to equation 2-1. 

Figure 2-7 is Fru-6-P saturation profile for wild type TtPFK and two active site mutants. 

After incorporating R163E mutation in the substrate binding site, the K1/2 for Fru-6-P 

increases significantly compared to wild type (about 400-fold). After incorporating 

R255E mutation in the substrate binding site, the K1/2 for Fru-6-P also increases 

significantly compared to wild type (about 40-fold). 
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Figure 2-5. Schematic illustration of one subunit of TtPFK and TtPFK tetramer. A. 
Schematic illustration of one subunit of TtPFK. Active sites R163 and R255 are labeled 
as a and b; allosteric sites R212/K214 and R25 are labeled as α and β. B. Schematic 
representation of TtPFK tetramer. Four heterotropic interactions are labeled as the 
distance between the interacting ligands in angstrom. Figure adapted from Ortigosa et al., 
2004. 
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Figure 2-6. Schematic illustration of the four heterotropic interactions isolated in TtPFK. 
R306E mutation was introduced to the surface of the mutant subunit to increase charge 
difference, facilitating the separation of hybrids through anion exchange 
chromatography. Shaded shape refers to the mutated active residues or allosteric 
residues that substantially diminish binding to that site, as described in figure 2-5A and 
table 2-2. Figure is from Ortigosa et al., 2004. 
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Table 2-2. Mutations used in each of the four heterotropic interactions. 

Heterotropic interaction  Active site Allosteric site 

22Å R163E R212E/K214E 

30Å R255E R25E 

32Å R255E R212E/K214E 

45Å R163E R25E 
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To block the binding of PEP, two allosteric site mutants were made: arginine 25 to 

glutamate and arginine 212 to glutamate / lysine 214 to glutamate. Enzyme activities 

versus increasing concentration of Fru-6-P at different PEP concentration was measured 

and fitted to equation 2-1. Then the K1/2 data versus increasing concentration of PEP 

were fit to equation 2-2. Figure 2-8 is the plot of apparent dissociation constant for Fru-

6-P versus increasing concentration of PEP for wild type TtPFK and two allosteric site 

mutants. After incorporating R25E mutation in the allosteric site, it requires three orders 

of magnitude more PEP to see increase in K1/2 for Fru-6-P. After incorporating 

R212E/K214E mutations in the allosteric site, it requires three orders of magnitude more 

PEP to see increase in K1/2 for Fru-6-P. All of the four active site and allosteric site 

mutants are stable throughout the whole purification and kinetic characterization process. 

Table 2-3 is the summary of kinetics parameters for wild type TtPFK, two active 

site mutants and two allosteric site mutants. The specific activity of two active site 

mutants decreased about 25% compared to wild type. While the specific activity of two 

allosteric site mutants are not affected significantly. The K1/2 for Fru-6-P of two 

allosteric site mutants increases about 2-fold compared wild type. The hill coefficients 

are not affected for all four mutants. 
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Figure 2-7. Fru-6-P saturation profile for wild type TtPFK and two active site mutants at 
pH 8 and 25°C. Closed circle is wild type TtPFK, open circle is R163E TtPFK and open 
square is R255E TtPFK. 
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Figure 2-8. Apparent dissociation constant for Fru-6-P versus increasing concentration 
of PEP for wild type TtPFK and two allosteric site mutants at pH 8 and 25°C. Closed 
circle is wild type TtPFK, open circle is R25E TtPFK and open square is R212E/K214E 
TtPFK. 
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Table 2-3. Kinetics parameters for wild type TtPFK, two active site mutants and two 
allosteric site mutants at pH 8 and 25°C with [MgATP]=0.5 mM. 

Enzyme Vmax(units/mg) K1/2 (mM) for Fru-6-P nH 

Wild type 41±0.2 0.027±0.002 1.63±0.05 

R163E 30±0.9 9.8±0.6 1.56±0.12 

R255E 31±0.5 1.0±0.1 1.65±0.09 

R25E 35±0.9 0.055±0.003 1.60±0.09 

R211E/K214E 36±0.8 0.057±0.003 1.50±0.11 
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Control hybrid 

The isolated 1:3 hybrid tetramer with only one native active site has no homotropic 

cooperativity for Fru-6-P binding. So the inhibition coupling free energy cannot be 

compared to wild type which has four native active sites. 1|4 control was made to 

eliminate substrate Fru-6-P binding cooperativity. As shown in figure 2-9, the R163E 

mutation was introduced to block Fru-6-P binding in the 1|4 control.  

The isolated 1:3 hybrid tetramer has one native allosteric site and three mutated 

allosteric sites. To eliminate the contribution of these mutated sites to the apparent 

inhibition effect exhibited in the hybrid, two 1|0 hybrids were made, 1|025 control and 

1|0211/214 control, as shown in figure 2-9. The R25E mutation was introduced to block 

PEP binding in the 1|025 control. 1|025 control is the 1:3 hybrid with one subunit from 

TtPFK R25E and three subunits from TtPFK R25E/R163E. 1|025 serves as control for 30 

Å interaction and 45 Å interaction, which have R25E mutation in the allosteric site. The 

K211E/K214E mutation was introduced to block PEP binding in the 1|0211/214 control. 

1|0211/214 control is the 1:3 hybrid with one subunit from TtPFK R212E/K214E and three 

subunits from TtPFK R212E/K214E/R255E. 1|0211/214 serves as control for 22 Å 

interaction and 32 Å interaction, which have R212E/K214E mutation in the allosteric 

site. The K1/2 for each of the 1|1 hybrid was corrected by K1/2 of the corresponding 1|0 

control hybrid using this equation: 

(2-5) 
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Figure 2-9. Schematic illustration of the controls used in this study. Figure adapted from 
Fenton et al., 2004. 
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Isolating the four unique heterotropic interactions 

Specific active site mutation and allosteric site mutation are combined with the 

charge tag mutation to make triple mutant enzyme. Hybrids between wild type enzyme 

and triple mutant enzyme were made, separated and confirmed as described in methods. 

The 1:3 hybrid has both high binding affinity site for Fru-6-P, exhibited by the subunit 

from wild type enzyme and low binding affinity site for Fru-6-P, exhibited by the 

subunit from triple mutant enzyme. The initial velocity data were fit to equation 2-3, 

which has two K1/2 and two Vmax. Table 2-4 is the summary of kinetics parameters for 

wild type TtPFK and the isolated interactions. As expected, the K1/2 for the high affinity 

site is similar to wild type, the K1/2 for the low affinity site is close to the corresponding 

active site mutant. And the specific activity of the high affinity site is about 1/4 of wild 

type. 

The K1/2 data for the high affinity site is corrected by equation 2-5 and fitted to 

equation 2-2. Figure 2-10 is apparent dissociation constant for Fru-6-P versus increasing 

concentration of PEP for the isolated interactions in TtPFK. The allosteric coupling of 

22 Å interaction is the strongest of the four while 45 Å interaction only has a very small 

coupling. Table 2-5 is the summary of thermodynamic coupling parameters for wild type 

TtPFK and the isolated interactions. Qay increased and ∆Gay decreased compared to wild 

type by different extent.  
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Table 2-4. Kinetics parameters for wild type TtPFK and the isolated interactions at pH 8 
and 25°C with [MgATP]=0.5 mM, and [PEP]=0 mM. 

  High affinity site Low affinity site 

Enzyme Vmax(units/mg) K1/2 (mM) Vmax(units/mg) K1/2 (mM) 

Wild type 41.0±0.2 0.027±0.002 n/a n/a 

22Å 11.2±0.6 0.028±0.004 19.4±0.8 2.3±0.2 

30Å 10.2±0.7 0.062±0.010 20.4±0.9 2.8±0.3 

32Å 10.4±0.7 0.069±0.010 20.2±0.9 2.8±0.3 

45Å 10.3±0.7 0.022±0.004 20.6±1.1 1.1±0.1 



 

63 

 

 

Figure 2-10. Apparent dissociation constant for Fru-6-P versus increasing concentration 
of PEP for the isolated interactions (22 Å, 30 Å, 32 Å and 45 Å) in TtPFK at pH 8 and 
25°C. Closed circle is 22 Å interaction, closed square is 30 Å interaction, open circle is 
32 Å interaction and open square is 45 Å interaction. 
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Table 2-5. Thermodynamic coupling parameters for wild type TtPFK and the isolated 
interactions at pH 8 and 25°C with [MgATP]=0.5 mM. 

Enzyme K⁰ia (mM) K⁰iy (mM) Qay ∆Gay (kcal/mol) 

Wild type 0.027±0.002 0.0016±0.0002 0.07±0.005 1.46±0.04 

22Å interaction 0.026±0.001 0.004±0.001 0.24±0.014 0.84±0.03 

30Å interaction 0.063±0.001 0.019±0.004 0.58±0.012 0.32±0.01 

32Å interaction 0.068±0.001 0.0008±0.0001 0.72±0.007 0.19±0.01 

45Å interaction 0.021±0.001 0.79±0.36 0.92±0.010 0.05±0.01 
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Figure 2-11 is coupling free energy for the isolated interactions in TtPFK. 22Å 

interaction is the dominant contributor, 30Å interaction is the second biggest contributor, 

32Å interaction is the third and 45Å interaction only has a very small contribution. 

Figure 2-12 is the sum of coupling free energy measured for the isolated interactions for 

TtPFK compared to the total coupling free energy measured for the control hybrid. 22Å 

interaction contributes 57.5% ± 2.5%, 30Å interaction contributes 21.9% ± 0.9%, 32Å 

interaction contributes 13.0% ± 0.5%, and 45Å interaction contributes 3.4% ± 0.4% with 

respect to the total coupling free energy. The free energies of the isolated interactions 

sum to 95.8% ± 2.7% of the total.  

Discussion 

        To separate each of the four unique heterotropic interactions in TtPFK, the first step 

is to introduce a charge tag mutation to the surface of the protein without altering the 

kinetic and thermodynamic coupling parameters dramatically. R306E is the only mutant 

that meets these criteria of the ten mutants we constructed. The second step is to 

construct active site mutants and allosteric site mutants to block the binding of Fru-6-P 

and PEP, respectively. The specific activity of the two active site mutants does not 

decrease dramatically compared to wild-type and the specific activity of the two 

allosteric site mutants are very close to wild-type as shown in table 2-3. Also, only one 

amino acid mutation or two amino acid mutations in the active site and allosteric site can 

decrease Fru-6-P binding affinity and PEP binding affinity dramatically.  
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Figure 2-11. Coupling free energy for the isolated interactions in TtPFK. 

 



 

67 

 

 

Figure 2-12. The sum of coupling free energy measured for the isolated interactions for 
TtPFK compared to the total coupling free energy measured for the 1|4 control hybrid at 
25°C and pH 8. Dark grey is 22 Å interaction, grey is 30 Å interaction, white is 32 Å 
interaction and black is 45 Å interaction. 
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All of the four mutants are stable, so we can combine them with the charge tag 

mutation to make triple mutant enzyme, which can be used construct 1:3 hybrid 

containing only one heterotropic interaction. The dissociation constant for Fru-6-P in the 

absence of PEP (K⁰ia) of 22 Å interaction and 45 Å interaction are very close to wild-

type as shown in table 2-5. The dissociation constant for Fru-6-P in the absence of PEP 

of 30 Å interaction and 32 Å interaction increases by about 3-fold when compared to 

wild-type, which suggests decreased binding affinity. The dissociation constant for PEP 

in the absence of Fru-6-P (K⁰iy) of all the interactions increases to different extent except 

for 32 Å interaction. 

For EcPFK, the dissociation of tetramer to monomer can be achieved at only 0.4M 

KSCN (Deville-Bonne et al., 1989; Johnson et al., 2001), while BsPFK requires 2M 

KSCN (Fenton and Reinhart, 2002; Kimmel and Reinhart, 2001) and TtPFK requires 

5M KSCN to achieve the same results. It is reasonable that BsPFK is more stable than 

EcPFK and TtPFK is more stable than BsPFK at room temperature. Because optimal 

growth temperature for Bacillus stearothermophilus is about 50°C and  for Thermus 

thermophilus is above 70°C. 

TtPFK has slight positive cooperativity for Fru-6-P binding. The isolated 1:3 hybrid 

tetramer with only one native active site has no homotropic cooperativity for Fru-6-P 

binding. So the coupling free energy cannot be compared to wild-type which has four 

native active sites. 1|4 control was made to eliminate Fru-6-P binding cooperativity. 

TtPFK has no cooperativity for PEP binding, so 4|1 control is not required. While in 
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BsPFK, 4|1 control is required to eliminate PEP binding cooperativity. And in EcPFK, 

1|4 control is required to eliminate Fru-6-P binding cooperativity. 

Table 2-6 is the summary of coupling free energy for the isolated interactions in 

EcPFK, BsPFK and TtPFK. EcPFK data is cited from Fenton and Reinhart 2009 and 

BsPFK data is cited from Ortigosa et al., 2004. 22Å interaction is the dominant 

contributor for all of the three. 30 Å interaction and 45 Å interaction make much smaller 

contribution in BsPFK and TtPFK than EcPFK. 32 Å interaction is the second biggest 

contributor and 30 Å interaction is the third contributor in BsPFK, while in TtPFK, 30 Å 

interaction and 32 Å interaction switch their positions. 

The good agreement of the sum of the coupling free energy measured for the 

isolated interactions compared to the total coupling free energy suggest that we can 

relate the coupling we observed in the isolated individual interactions to their 

corresponding interactions in the native tetramer.  

Each of the isolated interactions contribution to inhibition is unique and is additive, 

which agrees with the EcPFK and BsPFK. This suggests that the traditional two state 

model, either concerted model or sequential model is not sufficient to explain the 

allosteric regulation in TtPFK. The sequential model predicts that one of the four 

interactions will inhibit to a significant extent, not the other three. The concerted model 

predicts that each single interaction will fulfill all of the allosteric effect, while in TtPFK 

all four interactions are required to produce total allosteric effect.  
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Table 2-6. Coupling free energy for the isolated interactions in EcPFK, BsPFK and 
TtPFK and the corresponding control hybrids. EcPFK data is from Fenton and Reinhart 
2009. BsPFK data is from Ortigosa et al., 2004. 

Enzyme EcPFK 

∆Gay (kcal/mol) 

BsPFK 

∆Gay (kcal/mol) 

TtPFK 

∆Gay (kcal/mol) 

1|4 or 4|1 control 2.38±0.03 2.92±0.08 1.46±0.04 

22/23 Å 0.99±0.07 1.48±0.15 0.84±0.03 

30 Å 0.73±0.04 0.49±0.11 0.32±0.01 

32/33 Å - 0.19±0.04 0.82±0.12 0.19±0.01 

45 Å 0.59±0.02 0.17±0.20 0.05±0.01 
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The use of hybrid enzymes provides an important experimental approach to study 

the allosteric regulation in oligomeric proteins because it can reduce the number of 

homotropic interaction to zero and reduce the number of heterotropic interactions to only 

one. Other than this, hybrid enzyme has also been used to study mechanism of substrate 

inhibition in EcPFK (Fenton and Reinhart, 2003). 

TtPFK is a very good model to study allosteric regulation in prokaryotes system. 

First, the high native growth temperature can be taken advantage during the protein 

purification process. We express TtPFK in RL257, so heating the cell lysate at 70°C can 

denature most of the protein from E.coli while TtPFK is not affected, which is the most 

efficient purification step. Second, the binding affinity of PEP for TtPFK is 60-fold 

tighter than BsPFK, but the allosteric coupling between PEP and Fru-6-P binding is 30-

fold weaker. It is easier to achieve PEP saturation when measuring the allosteric 

coupling between Fru-6-P and PEP without extrapolation. It will be very hard to employ 

hybrid to LdPFK (PFK from Lactobacillus delbrueckii) because LdPFK has extremely 

poor binding affinity for PEP and the inhibition is only seen at very high concentrations 

of PEP (Paricharttanakul et al., 2005). Last, the 1:3 hybrids that we use to measure the 

allosteric coupling of individual interactions are very stable at 4°C and no 

rehybridization is observed after four weeks, which is especially important when using 

hybrid to study allosteric regulation. 

Hybrid has also been used to study the propagation of allosteric activation 

information in EcPFK. The relative contribution of the four interactions for MgADP 

activation is dramatically different from that for PEP inhibition in EcPFK (Fenton and 
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Reinhart, 2009). Although MgADP and PEP bind to the same allosteric site, but the 

propagation and transmission of allosteric information for activation and inhibition are 

different. Further study can isolate the four individual activation interactions in TtPFK 

and see how the relative contribution of the four activation interactions compares to that 

of inhibition interactions. 
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CHAPTER III                                                                                                    

STUDY OF THE ALLOSTERIC INHIBITION IN PHOSPHOFRUCTOKINASE 

N59D/A158T/S215H FROM THERMUS THERMOPHILUS 

Introduction 

The allosteric coupling between Fru-6-P and PEP in phosphofructokinase from the 

extreme thermophile Thermus thermophilus is much weaker compared to 

phosphofructokinase from the moderate thermophile Bacillus stearothermophilus. 

McGresham and Reinhart (2015) have identified three non-conserved residues N59, 

A158 and S125 (circled in figure 1-2), which contribute to the weaker coupling between 

Fru-6-P and PEP in TtPFK. In BsPFK, the side chains of the corresponding residues 

aspartate 59, threonine 158 are histidine 215 are involved in the interaction network, 

which is missing in TtPFK due to the nature of the amino acid residues. They were able 

to increase the coupling free energy by about 2.4 kcal/mol by introducing the 

N59D/A158T/S215H mutations. And each of the substitution can increase the coupling 

free energy by about 0.8 kcal/mol. Due to the difference in the numbering of TtPFK and 

BsPFK primary sequence, the actual residue in TtPFK corresponding to BsPFK N59, 

A158 and S125 are N59, A159 and S216, respectively. We still use the numbering of 

BsPFK when referring to TtPFK in this chapter. 

Table 3-1 summarizes the kinetic and thermodynamic coupling parameters for 

TtPFK, TtPFK N59D/A158T/S215H and BsPFK. BsPFK data is cited from McGresham 

et al., 2014. The binding for Fu-6-P of TtPFK N59D/A158T/S215H is slightly tighter 

compared to wild type TtPFK, which resulted from the substitution of A158T. And the 
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binding affinity for PEP of TtPFK N59D/A158T/S215H dramatically decreased 

compared to wild type TtPFK, which resulted from the substitution of N59D. N59D 

substitution decrease PEP binding affinity by about 50-fold but has no dramatic effect on 

Fru-6-P binding. A158T substitution increase Fru-6-P binding slightly and decrease PEP 

binding slightly. S215H has no dramatic effect on PEP binding and Fru-6-P binding 

(McGresham and Reinhart, 2015). N59D/A158T/S215H substitutions increase the 

coupling free energy by 2.4 kcal/mol. The coupling free energy in TtPFK 

N59D/A158T/S215H is 4.00 kcal/mol, which is even slightly higher than the coupling 

free energy of BsPFK (3.67 kcal/mol). The hill number for Fru-6-P binding is about 1.0 

for this triple variant of TtPFK, which suggests there is no substrate binding 

cooperativity in TtPFK N59D/A158T/S215H. From the prospective of total coupling 

free energy and PEP binding affinity, TtPFK N59D/A158T/S215H behaves more like 

BsPFK than TtPFK. 

In chapter II, we have isolated the four unique heterotropic interactions in wild type 

TtPFK and quantitatively measure the coupling free energy of each interaction. In this 

chapter we employ the hybrid strategy discussed in chapter II to TtPFK 

N59D/A158T/S215H and isolate the four interactions in TtPFK N59D/A158T/S215H. 

We want to know how the substitutions affect the coupling free energy in each of the 

four interactions. One possibility is that substitutions of N59D/A158T/S215H can only 

enhance the coupling in some of the four unique interactions; the other possibility is that 

substitutions of N59D/A158T/S215H can enhance all of the four unique interactions, 

either to the same extent or to different extent. Also since the total coupling free energy 
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in TtPFK N59D/A158T/S215H is very close to BsPFK, we want to know how the 

relative contribution of the four interactions in TtPFK N59D/A158T/S215H compares to 

BsPFK. 

Materials and methods 

Refer to materials and methods in chapter II. 

Results 

Strategy 

The strategy is to construct hybrid that has one subunit from TtPFK 

N59D/A158T/S215H enzyme and three subunits from mutant enzyme, which has 

mutations at active site and allosteric site. The three subunits from mutant enzyme do not 

have N59D/A158T/S215H substitution. Figure 3-1 is schematic illustration of the four 

heterotropic interactions isolated in TtPFK. The figure is cited from Ortigosa et al., 2004. 

Shaded shape refers to the mutated active residues or allosteric residues. Open shape 

refers to the native active residues or allosteric residues. Subunit with R163E and 

R212E/K214E mutations are [aα]; subunit with R163E and R25E mutations are [aβ]; 

subunit with R255E and R212E/K214E mutations are [bα]; subunit with R255E and 

R25E [bβ].  
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Table 3-1. Kinetic and thermodynamic coupling parameters for wild type TtPFK, TtPFK 
N59D/A158T/S215H and BsPFK at pH 8 and 25°C. A represent Fru-6-P, Y represent 
PEP. BsPFK data is from McGresham et al., 2014. 

Enzyme Wild Type TtPFK TtPFK 

N59D/A158T/S215H 

BsPFK 

Kia
o (μM) 27.0 ± 0.6 13.0 ± 0.4 31± 2 

Kiy
o (μM) 1.6 ± 0.1 83 ± 3 93±6 

Qay 0.067 ± 0.002 0.0011 ± 0.0008 0.0021±0.0003 

ΔGay (kcal/mol) 1.60 ± 0.02 4.00 ± 0.04 3.67±0.1 

SA (unit/mg) 41 45 163 

kcat (s
-1) 23 25 91 

Hill number 1.5 ± 0.1 1.0 ± 0.1 1.30±0.09 
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1 N59D/A158T/S215H:3[aα] 1 N59D/A158T/S215H:3[aβ]

1 N59D/A158T/S215H:3[bβ]1 N59D/A158T/S215H:3[bα]
 

Figure 3-1. Schematic illustration of the four heterotropic interactions isolated in TtPFK 
N59D/A158T/S215H. Circle with negative sign refers to charge mutation. R306E 
mutation was introduced to the surface of the mutant subunit to increase charge 
difference, facilitating the separation of hybrids through anion exchange 
chromatography. Shaded shape refers to the mutated active residues or allosteric 
residues. Figure adapted from Ortigosa et al., 2004. 
 

 

 

 

 



 

78 

 

Isolating the four individual heterotropic interactions 

Hybrids between enzyme TtPFK N59D/A158T/S215H and triple mutant enzyme 

(same as the mutant enzyme in chapter II) which has active site mutation, allosteric 

mutations and charge tag mutation were made, separated and confirmed as described in 

methods. The initial velocity data were fit to equation 2-3, which has two K1/2 and two 

Vmax. Table 3-2 is the summary of kinetics parameters for TtPFK N59D/A158T/S215H 

and the isolated interactions. As expected, the K1/2 for the high affinity binding site is 

close to the K1/2 of TtPFK N59D/A158T/S215H: 22 Å interaction and 45 Å interaction 

agrees very well while 30 Å interaction and 32 Å interaction shows slightly decreased 

Fru-6-P binding affinity. The K1/2 for the low affinity binding site is comparable to the 

corresponding active site mutant. The specific activity of the high affinity binding site is 

about 1/4 of the specific activity of TtPFK N59D/A158T/S215H and the specific activity 

of the high affinity binding site is about 3/4 of the specific activity of the corresponding 

mutant tetramer. 

Figure 3-2 is the comparison of apparent dissociation constant for Fru-6-P versus 

increasing concentration of PEP for the isolated interactions in wild type TtPFK and 

TtPFK N59D/A158T/S215H. For all of the isolated interactions, the coupling between 

Fu-6-P and PEP is enhanced, but to different extent. Also, the dissociation constant for 

Fu-6-P in the absence of PEP is smaller in TtPFK N59D/A158T/S215H than wild type, 

which resulted from the substitution of A158T (McGresham and Reinhart, 2015).  
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Table 3-2. Kinetics parameters for TtPFK N59D/A158T/S215H and the isolated 
interactions at pH 8 and 25°C with [MgATP]=0.5 mM, and [PEP]=0 mM. 

                                             High affinity site                       Low affinity site 

Enzyme Vmax(units/mg) K1/2(mM) Vmax(units/mg) K1/2(mM) 

TtPFK 

N59D/A158T/S215H 

45±0.5 0.013±0.004 n/a n/a 

22Å 11.7±0.5 0.014±0.002 19.4±0.7 2.3±0.2 

30Å 11.1±0.5 0.027±0.004 19.3±0.7 2.3±0.2 

32Å 11.6±0.6 0.027±0.004 19.5±0.8 2.3±0.2 

45Å 11.8±0.6 0.015±0.002 21.5±1.0 1.1±0.1 
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Figure 3-2. Apparent dissociation constant for Fru-6-P versus increasing concentration 
of PEP for the isolated interactions in wild type TtPFK and TtPFK N59D/A158T/S215H 
at pH 8 and 25°C. Figure A is the comparison of 22 Å interaction. Open circle is 22 Å 
interaction with TtPFK N59D/A158T/S215H, and closed circle is 22 Å interaction with 
wild type TtPFK. Figure B is the comparison of 30 Å interaction. Open circle is 30 Å 
interaction with TtPFK N59D/A158T/S215H, and closed circle is 30 Å interaction with 
wild type TtPFK. Figure C is the comparison of 32 Å interaction. Open circle is 32 Å 
interaction with TtPFK N59D/A158T/S215H, and closed circle is 32 Å interaction with 
wild type TtPFK. Figure A is the comparison of 45 Å interaction. Open circle is 45 Å 
interaction with TtPFK N59D/A158T/S215H, and closed circle is 45 Å interaction with 
wild type TtPFK. 
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Figure 3-3 is the apparent dissociation constant for Fru-6-P versus increasing 

concentration of PEP for the isolated interactions in TtPFK N59D/A158T/S215H. Table 

3-3 is the summary of thermodynamic coupling parameters for TtPFK 

N59D/A158T/S215H and four isolated interactions. ∆Gay of the individual interaction 

decreased to different extent compared to TtPFK N59D/A158T/S215H as Qay increased.  

Figure 3-4 is the coupling free energy for the isolated interactions in wild type 

TtPFK and TtPFK N59D/A158T/S215H. In wild type TtPFK, 22Å interaction is the 

dominant contributor, 32Å interaction is the second biggest contributor, 30Å interaction 

is the third and 45Å interaction only has a very small contribution. In TtPFK 

N59D/A158T/S215H, 22Å interaction is still the dominant contributor and 45Å 

interaction still has relatively small contribution. The most dramatic difference is that 

30Å interaction becomes the second biggest contributor and 32Å interaction becomes 

the third contributor, which is same as the relative inhibition pattern in BsPFK. 

A shown in figure 3-5, there is no PEP binding cooperativity in TtPFK 

N59D/A158T/S215H, no control hybrid is required. Figure 3-6 is the sum of coupling 

free energy measured for the isolated interactions for TtPFK N59D/A158T/S215H 

compared to the total coupling free energy measured for the TtPFK 

N59D/A158T/S215H tetramer. 22Å interaction contributes 28.0% ± 1.0%, 30Å 

interaction contributes 13.0% ± 0.3%, 32Å interaction contributes 22.0% ± 1.0%, and 

45Å interaction contributes 6.5% ± 0.3% with respect to the total coupling free energy. 

The free energies of the isolated interactions sum to 69.5% ± 1.5% of the total. But 

previous hybrid study in EcPFK (Fenton et al., 2004, Fenton and Reinhart, 2009), 
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BsPFK (Ortigosa et al., 2004) and wild type TtPFK (chapter II) all showed good 

agreement of the sum of the coupling free energy measured for the isolated interactions 

compared to the total coupling free energy measured for the control hybrid. One possible 

reason for this non-agreement is that the three mutant subunits we use to create 1:3 

hybrid does not have N59D/A158T/S215H substitution. 

Discussion 

From the prospective of total coupling free energy, entropy and enthalpy of 

inhibition and PEP binding affinity, TtPFK N59D/A158T/S215H behaves more like 

BsPFK than TtPFK. Table 3-4 is the summary of coupling free energy for the isolated 

interactions in wild type TtPFK, TtPFK N59D/A158T/S215H and BsPFK. By 

introducing the substitutions, the coupling free energy for the 22 Å interaction increases 

by about 0.28 kcal/mol; 30 Å interaction increases by about 0.20 kcal/mol; 32 Å 

interaction increases by about 0.69 kcal/mol; and 45 Å interaction increases by about 

0.21 kcal/mol. The substitutions of N59D/A158T/S215H can enhance all of the four 

interactions, but to different extent. 32 Å interaction exhibits the biggest increase in 

coupling free energy and this big increase makes 32 Å interaction become the second 

biggest contributor to the total coupling free energy in TtPFK N59D/A158T/S215H. The 

coupling free energy of the 30 Å and 32 Å interactions in this triple variant is very close 

to BsPFK. But But the free energies of the isolated interactions in TtPFK triple variant 

sum to 69.5% of the total. One possible reason for this large discrepancy is that the three 

mutant subunits we use to create 1:3 hybrid does not have these three substitutions. 
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Figure 3-3. Apparent dissociation constant for Fru-6-P versus increasing concentration 
of PEP for the isolated interactions in TtPFK N59D/A158T/S215H at pH 8 and 25°C. 
Closed circle is 22 Å interaction, closed square is 30 Å interaction, open circle is 32 Å 
interaction and open square is 45 Å interaction. 
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Table 3-3. Thermodynamic coupling parameters for TtPFK N59D/A158T/S215H and 
the isolated interactions at pH 8 and 25°C with [MgATP]=0.5 mM. 

Enzyme K⁰ia (mM) K⁰iy (mM) Qay ∆Gay 

(kcal/mol) 

TtPFK 

N59D/A158T/S215H 

0.013±0.004 0.083±0.003 0.0011±0.0008 4.00±0.04 

22Å interaction 0.016±0.001 0.070±0.01 0.15±0.011 1.12±0.04 

30Å interaction 0.027±0.004 0.008±0.0005 0.42±0.007 0.52±0.01 

32Å interaction 0.028±0.002 0.002±0.0004 0.23±0.017 0.88±0.04 

45Å interaction 0.015±0.003 0.003±0.0007 0.65±0.014 0.26±0.01 
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Figure 3-4. Coupling free energy for the isolated interactions in wild type TtPFK and 
TtPFK N59D/A158T/S215H. Black bar is the isolated interactions in wild type TtPFK 
and grey bar is isolated interactions in TtPFK N59D/A158T/S215H. 
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Figure 3-5. Hill number for the binding of PEP as function of Fru-6-P in TtPFK 
N59D/A158T/S215H. 
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Figure 3-6. The sum of coupling free energy measured for the isolated interactions for 
TtPFK N59D/A158T/S215H compared to the total coupling free energy measured for 
TtPFK N59D/A158T/S215H at 25°C and pH 8. Dark grey is 22 Å interaction, grey is 30 
Å interaction, white is 32 Å interaction and black is 45 Å interaction. 
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The coupling free energy for TtPFK N59D/A158T/S215H and BsPFK are 4.00 

kcal/mol and 3.67 kcal/mol, respectively. The summary of coupling free energy for the 

isolated interactions in TtPFK N59D/A158T/S215H and BsPFK are 2.78 kcal/mol and 

2.96 kcal/mol, respectively. The large discrepancy between 3.67 kcal/mol and 2.96 

kcal/mol is due to PEP binding cooperativity in BsPFK. The coupling free energy for 4|1 

control hybrid is BsPFK is 2.92 kcal/mol, which agrees well with the sum of coupling 

free energy measured for the isolated interactions. The discrepancy between 4.00 

kcal/mol and 2.78 kcal/mol for still exists since there is no PEP binding cooperativity in 

TtPFK N59D/A158T/S215H.  

Figure 3-7 shows the positions of D59, T158 and H215 in BsPFK structure relative 

to the four individual interactions. 32 Å interaction shows the strongest enhancement in 

coupling free energy after introducing these three substitutions. The residues colored in 

yellow are the three residues from one subunit; the residues colored in green are the 

three residues from the other subunit. T158 and H215 from one subunit are interacting 

with D59 from the other subunit as shown in the red box, and this D59 is missing in the 

1:3 hybrid we construct. This may be the reason for the large discrepancy between the 

sum of the coupling free energy measured for the isolated interactions and the total 

coupling free energy in the native tetramer. The discrepancy is likely due to the mutated 

residues not all interacting within a single subunit. 
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Table 3-4. Coupling free energy for the isolated interactions in TtPFK, TtPFK 
N59D/A158T/S215H and BsPFK. BsPFK data is from Ortigosa et al., 2004. 

Enzyme TtPFK 

∆Gay (kcal/mol) 

TtPFK N59D/A158T/S215H 

∆Gay (kcal/mol) 

BsPFK  

∆Gay (kcal/mol) 

22Å 0.84±0.03 1.12±0.04 1.48±0.15 

30Å 0.32±0.01 0.52±0.01 0.49±0.11 

32Å 0.19±0.01 0.88±0.04 0.82±0.12 

45Å 0.05±0.01 0.26±0.01 0.17±0.20 

Total 1.40±0.03 2.78±0.06 2.96±0.30 

Tetramer 1.46±0.04  4.00±0.04 2.92±0.08 

 

 

 

 

 

 

 

 



 

90 

 

 

Figure 3-7. The positions of D59, T158 and H215 in BsPFK dimer structure. Active site 
residues are colored in red and allosteric site residues are colored in blue. D59, T158 and 
H215 from one subunit are colored in yellow; D59, T158 and H215 from the other 
subunit are colored in green. T158 and H215 from one subunit is interacting with D59 
from the other subunit, as shown in the red box.  
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CHAPTER IV  

IDENTIFICATION OF UNIQUE CONFORMATIONS AND REGIONS INVOLVED 

IN THE INHIBITION OF PHOSPHOFRUCTOKINASE FROM THERMUS 

THERMOPHILUS 

Introduction 

Researchers have been using the concerted (MWC) model (Monod et al., 1965) and 

the sequential (KNF) model (Koshland et al., 1966) to study allosteric regulation. In the 

two-state models, it is not usually expected that the enzyme binds substrate and inhibitor 

simultaneously. They only recognize binary complex, either substrate bound form or 

allosteric effector bound form, but not the ternary complex bound with both substrate 

and allosteric effector simultaneously. Thermodynamic linkage analysis model (Reinhart, 

1983, 1988) provides another way to describe allosteric mechanism in free energy terms 

without assuming the nature of structural changes caused by ligand binding. There are 

four different ligation states that the enzyme can adopt, including the apo enzyme, 

enzyme bound with substrate, enzyme bound with allosteric effector, and enzyme bound 

with both substrate and allosteric effector simultaneously. Each ligation state is unique 

and can have different functional properties. This is in contrast to the two-state models, 

which only allow for the existence of either T-state or R-state, without the ternary 

complex because the enzyme can bind only one type of ligand, but not both. 

When studying allosteric regulation in PFK, we need to consider all four species of 

the enzyme. The ternary complex with both substrate and activator bound is easy to 

achieve because positive cooperativity of the binding of these two ligands. However, the 
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ternary complex with both substrate and inhibitor is more difficult to achieve because of 

the antagonism of the binding of these two ligands. The tight binding for PEP and 

weaker coupling between Fru-6-P and PEP in TtPFK (PFK from Thermus thermophilus) 

suggests that the ternary complex with both Fru-6-P and PEP is easier to form compared 

to PFK from other organisms, which can be taken advantage of when studying allosteric 

regulation mechanisms. 

As discussed in chapter I, fluorescence phasor is an easy and fast method to 

evaluate data obtained from frequency-domain measurement without the assumption of 

any exponential decay model. It allows a description of the system utilizing only the raw 

phase angle and modulation. The movement of the phasor point can be an indication of a 

conformational change of the protein. The aim of this chapter is to use fluorescence 

phasor plot to describe the four species, Apo-TtPFK, TtPFK-Fru-6-P, PEP-TtPFK, and 

PEP-TtPFK-Fru-6-P, involved in the allosteric coupling between Fru-6-P and PEP. If the 

ternary complex is a mixture of two binary complexes, the phasor point of the ternary 

complex will be on the line between the two binary complexes. If the ternary complex is 

a unique conformation, the phasor point of the ternary complex will be off the line 

between the two binary complexes as the position of the fluorescence reporter. We want 

to know whether the ternary complex exhibits a unique phasor value independent of 

whether it is formed by titrating the substrate followed by the inhibitor or vice versa and 

is also off the line between binary complex, in other words, whether we can show the 

presence of the four unique conformations that correspond to the different ligated states 

of the enzyme. 
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Fluorescence spectroscopic properties of intrinsic fluorophore of tryptophan are 

very sensitive to local environment within the protein. Tryptophan has been used as 

fluorescence probe to measure the dynamic properties and identify important residues 

for the allosteric regulation of PFKs (Riley-Lovingshimer et al., 2002; Pham and 

Reinhart, 2003; Riley-Lovingshimer and Reinhart, 2005; Fenton et al., 2003). There is 

no native tryptophan in TtPFK. To monitor the dynamic properties corresponding to 

ligand binding at different positions throughout the whole protein (Vivian and Callis, 

2001), the mutagenesis strategy will be employed to locate the tryptophan at different 

positions in TtPFK without altering the kinetic and thermodynamic coupling parameters 

of the protein dramatically. We selected these positions: Y41, L69, F140, Y165, V197, 

Y226, A230, V243 and L313, since corresponding sites have been shown to be involved 

in allosteric communication in EcPFK and BsPFK (Cuijuan Tie and Stephanie Perez, 

unpublished data). We want to identify areas may be important for the propagation and 

transmission of allosteric information in TtPFK. 

Materials and methods 

Materials 

All reagents were of analytical grade. Glycerol-3-phosphate dehydrogenase and 

creatine kinase were purchased from Roche (Indianapolis, IN). Phosphocreatine, Fru-6-P, 

PEP, aldolase, triose phosphate isomerase, and ATP were purchased from Sigma-

Aldrich (St. Louis, MO). The coupling enzymes (glycerol-3-phosphate dehydrogenase, 

aldolase and triose phosphate isomerase) were in ammonium sulfate suspensions. They 

were dialyzed with three exchanges of 50 mM MOPS pH 8.0 buffer, which contains 100 
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mM KCl, 5 mM MgCl2 and 0.1 mM EDTA before use. The mono Q anion exchange 

column used for fast performance liquid chromatography (FPLC) was purchased from 

GE Lifescience (Charlottesville, VA). Site-directed mutagenesis follows the instruction 

manual from Stratagene (La Jolla, CA). The template was pALTER-1 (Promega) with 

wild type TtPFK gene. Oligonucleotides for quikchange site-directed mutagenesis were 

purchased from Integrated DNA Technologies Inc (Coralville, IA). Plasmid purification 

kit was purchased from Qiagen (Hilden, Germany). XL1Blue cells used for 

transformation were purchase from Stratagene (La Jolla, CA). Plasmid sequencing to 

confirm the mutation introduced by quikchange site-directed mutagenesis is done with 

the BigDye kit of ABI (Foster City, CA) and Eton Bioscience (San Diego, CA). 

Site-directed mutagenesis 

Site-directed mutagenesis follows the instruction manual of QuikChange 

mutagenesis from Stratagene. The template was pALTER-1 plasmid with wild type 

TtPFK gene and tetracycline resistance. A pair of complementary primers was used to 

construct mutation in the wild type TtPFK gene in the plasmid. Table 4-1 lists all the 

oligonucleotides used in this chapter. Mutant strand synthesis reaction (thermal cycling) 

follows the instruction manual of quikchange site-directed mutagenesis system from 

Stratagene. After the PCR reaction the plasmids were transformed into competent XL1-

Blue cells, colonies with tetracycline resistance were selected, and the plasmid was 

purified using a Qiagen kit and then sent to sequencing to confirm the mutated DNA 

bases. 
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Table 4-1. Oligonucleotides used in the quikchange site-directed mutagenesis. 

 Oligonucleotides sequence 

Y41W 5’CGGGATCCGCCGCGGCTGGGCCGGCATGATCC3’ 

L69W 5’CGGGGCGGGACGATCCTCTGGACGGCGAGGAGCCAGGAG3’ 

F165W  5’AGCCACGAGCGGGTCTGGTTCATAG3’ 

V197W  5’CGTCCCCGAGGAGCCCTGGGACCCCAAGGCCGTGG3’ 

Y226W  5’GGCCCCGCCGGGCCAGGCCCCCTCGGC3’ 

A230W 5’GCCTACCCCGGCGGGGCCTGGGGGCTTCTCGCCGCCATC3’ 

V243W 5’CGGGAGCACCTCCAGTGGGAGGCCCGGGTCACCGTC3’ 

L313W  5’GGACATCAACCGGGCCTGGTTGCGCCTATCGC3’ 
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Protein expression and purification 

The RL257 cells a PFK-1 and PFK-2 deficient strain (Lovingshimer et al., 2006) 

was grown at 37°C in LB (Luria-Bertani) media which contains 10 g/L tryptone, 5 g/L 

yeast extract, and 10 g/L sodium chloride with 15 µg/mL tetracycline until OD 600 is 0.6. 

Then the cells were induced with 0.5mM IPTG and grow at 18°C for 24 hours. The cells 

are centrifuged in Beckman J6 centrifuge at 4,550 x g for 30 minutes at 4°C. The cell 

was stored in -80°C freezer for later use. The cell was resuspended in 20 mM pH 8 Tris-

HCl buffer with 0.5 mM EDTA. The cells were lysed using Sonic Dismembrator Model 

550 (Fisher Scientific).The program is 15 second sonication and 45 second delay to cool 

down and the total sonication time is 8 minutes. The lysate was centrifuged in Beckman 

J2-21 centrifuge at 22,500 x g for 30 min at 4°C. The supernatant was heated at a 70°C 

water bath for 15 minutes, cool on ice for 10 min and then centrifuged at 22,500 x g for 

30 min at 4°C. The supernatant was applied to 35% ammonium sulfate precipitation and 

then centrifuged at 22,500 x g for another 30 min at 4°C. The protein pellet was 

resuspended in purification buffer A and then dialyzed to get rid of any residual 

ammonium sulfate in the protein solution with two each exchange of buffer, each 1 hour. 

The protein was then applied to mono Q anion exchange column. SDS-PAGE with 4% 

polyacrylamide stacking gel and 10% polyacrylamide resolving gel was used to check 

the purity of the protein. If there are multiple bands on the gel, proteins will be applied to 

another anion exchange column. Protein concentration was measured by pierce BCA 

assay (Smith et al., 1985). 
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Enzymatic activity assay 

The activity of TtPFK enzyme was measured at 600 µL of EPPS-KOH buffer (pH 8, 

50 mM EPPS, 100 mM KCl, 5 mM MgCl2, 0.1 mM EDTA, 2 mM dithiothreitol), with 

0.2 mM NADH, coupling enzymes (250 µg of aldolase, 50 µg of glycerol-3-phosphate 

dehydrogenase, 5 µg of triose phosphate isomerase) and 0.5mM MgATP. For maximal 

velocity assay, 3mM Fru-6-P was used. To measure the coupling between Fru-6-P and 

PEP, various concentration of Fru-6-P and PEP were used. All enzyme activity assays 

were measured by Beckman Series 600 spectrophotometer. The decrease in absorbance 

at 340nm was converted to enzyme rate.  

Frequency-domain fluorescence measurement 

Frequency-domain fluorescence measurement was done by ISS K2 multi-frequency 

fluorometer with 280nm Light Emitting Diode (LED). Different modulation frequencies 

(from 10MHz to 200MHz) were produced by Marconi 2022A Synthesizer. The emission 

polarizer was oriented at 35.3° (the magic angle) (Spencer and Weber, 1970; Weber, 

1971, 1977 and 1978). Apo TtPFK was titrated with either Fru-6-P or PEP to form 

binary complex, EA and YE respectively. Then subsequently add PEP after Fru-6-P 

saturation, Fru-6-P after PEP saturation to form ternary complex YEA. The frequency 

dependent phase and modulation change at all four ligated state (apo enzyme, enzyme 

bound with Fru-6-P, enzyme bound with PEP and enzyme bound with both Fru-6-P and 

PEP simultaneously) is measured at 12 different frequencies (10MHz, 13MHz, 17MHz, 

23MHz, 30MHz, 39MHz, 51MHz, 67MHz, 88MHz, 116MHz, 152MHz, and 200MHz). 

All measurements were done in 0.4cm× 1cm fluorescence cuvette. Low concentration of 
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EPPS buffer was used for all fluorescence measurement with EPPS-KOH buffer pH 8 (5 

mM EPPS, 0.5 mM MgCl2, 10 mM KCl, and 0.01 mM EDTA. NATA (N-acetyl-

tryptophanamide, phosphate buffer pH 7.0, Kodak) (Lackowicz and Gryczynski, 1991) 

with lifetime of 2.87ns was used to measure reference phase and modulation in all the 

measurement to avoid “color effect”. For lifetime analysis, data were fit to Lorentzian 

model with combination of single exponential and continuous distribution (Alcala et al., 

1987 a-b-c) because the decay of tryptophan emission in proteins is multi-exponential 

(Ghisaidoobe and Chung, 2014). All frequency domain measurements were corrected for 

blank contribution by measuring blank phase and modulation change at the same ligand 

concentration. 

Data analysis 

All data were fit using Kaleidagraph software (Synergy). The initial velocity data 

were fit to Hill equation (Hill, 1910): 

                                                                                                         (4-1) 

where v is the initial velocity, [A] is the concentration of Fru-6-P, Vmax is the maximal 

velocity, nH is the hill coefficient, and K1/2 is the concentration of Fru-6-P when initial 

velocity is half maximal velocity. 

Since K1/2 increase with the increasing concentration of PEP, the K1/2 data versus 

increasing concentration of PEP were fit to the following equation:  

                                                                               (4-2) 
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where Kia
0 is the dissociation constant for Fru-6-P in the absence of PEP, Kiy

0 is the 

dissociation constant for PEP in the absence of Fru-6-P, [Y] is the PEP concentration, 

Qay is the coupling constant between of PEP and Fru-6-P. 

Blank subtraction 

Data output from fluorometer is composite DC, composite phase delay, composite 

modulation, blank AC, blank DC, blank phase delay, blank modulation and reference 

modulation. The blank subtraction uses the raw data and generally follows the idea in 

Figure 4-1 (Reinhart et al., 1991). The figure is cited from Reinhart et al., 1991. The 

phase delay and modulation was calculated by subtracting the blank contribution using 

vector algebra, and then corrected relative to that of reference signal. The full names for 

the abbreviation are: (AC)C is composite AC, (DC)C is composite DC, MC is composite 

modulation, (AC)B is blank AC,  (DC)B is blank DC, MB is blank modulation, Sx is x-

coordinate of phasor difference, Sy is y-coordinate of phasor difference, ΦC is composite 

phase delay, ΦB  is blank phase delay, ACS is sample AC, DCS is sample DC, MS is 

sample modulation, ΦS is sample phase delay, MR is reference modulation, f is the 

frequency and R is reference lifetime. The detailed equations used for the calculation 

are as follows. 

(1). Calculating composite AC and blank AC 

(AC)C = (DC)C*MC 

(AC)B = (DC)B* MB 

(2). Calculating x-coordinate and y-coordinate difference 

Sx = (AC)C*cos(ΦC) - (AC)B*cos (ΦB) 
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Sy = (AC)C*sin(ΦC) - (AC)B*sin (ΦB) 

(3). Calculating sample AC and sample DC 

ACS = sqrt[(Sx)2 + (Sy)2] 

DCS = (DC)C - (DC)B 

(4). Calculating sample modulation and sample phase delay  

MS= ACS/DCS 

ΦS = invtan (Sy/ Sx) 

(5). Calculating sample modulation and sample phase delay corrected for reference 

M = MS/{MR[sqrt1+(2π*f* R )
2]} 

Φ =ΦS + invtan(2π* R) 

The blank subtraction method was confirmed by using standard fluorophore to 

mimic background contamination. P-Terphenyl has a standard single exponential decay 

lifetime of 1.35ns in ethanol and POPOP (1, 4-bis (5-phenyloxazole-2-yl) benzene) has a 

standard single exponential decay lifetime of 1.05ns in ethanol. This method was applied 

to subtracting 5% p-terphenyl from mixture of 95% POPOP and 5% p-Terphenyl and 

subtracting 40% p-terphenyl from mixture of 60% POPOP and 40% p-Terphenyl. The 

phasor point of mixture of POPOP and p-terphenyl is inside the “universal circle”. After 

blank subtraction, the phasor point lies on the “universal circle”. 

Structural analysis  

All structural analysis was done by Pymol software. 
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Figure 4-1. Vector representation of blank subtraction. Figure is from Reinhart et al., 
1991. 
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Result 

Tryptophan mutants characterization 

The first step is to construct fluorescence probe that can be used to measure the 

dynamic properties of TtPFK. TtPFK contains no tryptophan and tryptophan mutants 

studied in this study are as follows: Y41W, L69W, F140W, F165W, V197W, Y226W, 

A230W, V243W, and L313W. Figure 4-2 shows the positions of the nine tryptophan 

mutants in BsPFK tetramer structure from different views. Figure 4-3 shows the 

positions of the nine tryptophan mutants in BsPFK monomer structure from different 

views. Generally these nine mutants cover most regions of the enzyme. Table 4-2 

summarizes the distance of the nine tryptophan mutations to the nearest active site and 

allosteric site based on the reference BsPFK structure. A230W was removed from 

consideration because it is heat sensitive and very unstable. Table 4-3 summarizes the 

kinetic parameters of the eight tryptophan mutants. The dissociation constants for Fru-6-

P and PEP and the coupling constant between Fru-6-P and PEP are all relatively 

unchanged in all the tryptophan mutants compared to wild type. 

 

 



 

103 

 

 
Figure 4-2. The positions of the nine tryptophan mutants in BsPFK tetramer structure 
from different views. Tryptophan residues are colored in yellow. 
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Figure 4-3. The positions of the nine tryptophan mutants in BsPFK monomer structure. 
Tryptophan residues are colored in yellow, active site residues are colored in red and 
allosteric site residues are colored in blue. 
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Table 4-2. The distance of the nine tryptophan mutations to the nearest active site and 
allosteric site. 

Tryptophan position Active site  Allosteric site 

41 14.2Å 19.8Å 

69 11.5Å 19.8Å 

140 10.2Å 21.7Å 

165 4.0Å 17.0Å 

197 19.4Å 21.4Å 

226 19.7Å 21.7Å 

230 12.6Å 21.2Å 

243 6.6Å 11.0Å 

313 19.7Å 19.3Å 
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Table 4-3. Kinetic parameter of the eight tryptophan mutants at pH 8 and 25°C with 
[MgATP]=0.5 mM. 

Enzyme K⁰ia ( μM) K⁰iy ( μM) Qay 

Wild type 27±2 1.6±0.2 0.070±0.005 

Y41W 13±2 1.5±0.3 0.045±0.008 

L69W 17±2 15±2 0.045±0.006 

F140W 6.3±0.5 3.5±0.4 0.073±0.006 

F165W 26±3 1.4±0.2 0.060±0.008 

V197W 26±4 3.7±0.7 0.056±0.008 

Y226W 15±4 2.2±0.7 0.028±0.008 

V243W 28±3 1.5±0.2 0.071±0.008 

L313W 14±3 1.2±0.1 0.067±0.002 
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Fluorescence lifetime analysis of L313W TtPFK 

TtPFK contains no tryptophan, and the first tryptophan mutant examined was 

L313W because EcPFK has one native tryptophan at position 311 which has been used 

as fluorescence probe to measure the dynamic properties of EcPFK, and the 

corresponding residue in TtPFK is 313. The fluorescence intensity of L313W has a 25% 

decrease with the binding of PEP and 10% decrease with the binding of Fru-6-P. Figure 

4-4 is the fluorescence phasor plot of Fru-6-P titration and PEP titration of L313W 

TtPFK at 12 different excitation frequencies logarithmically from 10 to 200 MHz. From 

right to left is low frequency to high frequency. Since the decay of tryptophan emission 

in proteins is very complex, not single exponential decay, so the phasor point is within 

the semi-circle. The fluorescence of residue 313 responds to PEP binding much more 

strongly than to Fru-6-P binding. Fluorescence lifetime parameters of L313W TtPFK at 

different ligand concentrations were measured. The data were fit best to Lorentzian 

model. Table 4-4 is the fluorescence lifetime analysis of L313W TtPFK at different Fru-

6-P concentrations. Table 4-5 is the fluorescence lifetime analysis of L313W TtPFK at 

different PEP concentrations. The first component lifetime tau is described as the center 

of the distribution. The second component is the width of the distribution. The third 

component is fluorescence intensity contribution. The lifetime exhibits significant 

variation depending on the ligation states of the enzyme. In addition, the lifetime 

variations mimic the dynamic changes that results from the binding of the ligands. The 

lifetime of tryptophan 313 in TtPFK decreased approximately 0.03 ns with Fru-6-P 

bound relative to that of apo form. The lifetime of tryptophan 313 in TtPFK decreased 
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approximately 0.5 ns with PEP bound relative to that of apo form. Figure 4-5 is the 

phasor plot of TtPFK L313W and TtPFK F165W titrated with different ligands at 67 

MHz. Red is Apo TtPFK, blue is Fru-6-P titration and purple is PEP titration to form 

binary complex; black is PEP titration after Fru-6-P saturation and green is Fru-6-P 

titration after PEP saturation to form ternary complex. The PEP titration in TtPFK 

L313W is curved, which may due to the unsymmetrical binding of PEP to the four 

subunits. 

Fluorescence phasor plot of Y226W, Y41W, L69W and V197W TtPFK 

Figure 4-6 is the fluorescence phasor plot of Y226W TtPFK titrated with different 

ligands. Apo TtPFK (red) was titrated with either Fru-6-P (blue) or PEP (purple) to form 

binary complex, EA and YE respectively. The subsequent addition of PEP after Fru-6-P 

saturation (black) and the addition of Fru-6-P after PEP saturation (green) form ternary 

complex YEA. The ternary complex is in the same position as the apo form and two 

binary complexes in the phasor plot. The fluorescence of this residue shows response to 

neither Fru-6-P binding nor PEP binding. The fluorescence of this residue shows 

response to neither F6P binding nor PEP binding. This residue cannot monitor the 

conformational change of neither F6P binding nor PEP binding, so only one enzyme 

conformation can be detected at this position. 
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Figure 4-4. Fluorescence phasor plot of Fru-6-P titration and PEP titration of L313W 
TtPFK at different excitation frequencies. From right to left (10MHz, 13MHz, 17MHz, 
23MHz, 30MHz, 39MHz, 51MHz, 67MHz, 88MHz, 116MHz, 152MHz, and 200MHz). 
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Table 4-4. Fluorescence lifetime analysis of L313W TtPFK at different Fru-6-P 
concentrations. 

Fru-6-P ( μM) Tau(ns) Width(ns) Contributions Chi square 

0 2.981 2.620 0.9711 0.41 

1 2.987 2.575 0.9734 3.20 

2.15 2.979 2.585 0.9780 0.87 

4.64 2.956 2.627 0.9819 0.91 

10 3.017 2.504 0.9729 1.29 

21.5 2.989 2.433 0.9758 0.68 

46.4 2.948 2.454 0.9782 0.98 

100 2.922 2.475 0.9805 0.70 

215 2.942 2.418 0.9777 0.39 

464 2.983 2.370 0.9734 0.58 

1000 2.953 2.352 0.9745 0.46 
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Table 4-5. Fluorescence lifetime analysis of L313W TtPFK at different PEP 
concentrations. 

PEP( μM) Tau(ns) Width(ns) Contributions Chi square 

0 2.924 2.752 0.9544 0.91 

1 2.993 2.594 0.9479 0.80 

2.15 2.931 2.637 0.9497 0.71 

4.64 2.778 2.682 0.9595 2.12 

10 2.651 2.641 0.9603 0.60 

21.5 2.572 2.696 0.9700 0.82 

46.4 2.505 2.755 0.9707 0.45 

100 2.432 2.855 0.9752 0.68 

215 2.475 2.787 0.9675 0.24 

464 2.439 2.875 0.9710 0.47 

1000 2.408 2.904 0.9741 0.21 
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Figure 4-5. Phasor plot of L313W TtPFK and F165W TtPFK titrated with different 
ligands. Red is Apo TtPFK, blue is Fru-6-P titration and purple is PEP titration to form 
binary complex; black is PEP titration after Fru-6-P saturation and green is Fru-6-P 
titration after PEP saturation to form ternary complex. 
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Figure 4-7 is the fluorescence phasor plot of Y41W TtPFK titrated with different 

ligands. The fluorescence of this residue shows response to Fru-6-P binding but not PEP 

binding. PEP binary complex is at the same position as the apo. Either the titration of 

PEP on top of F6P or the titration of F6P on top of PEP produced the ternary complex 

does not vary much from the F6P binary complex. This residue can only monitor the 

conformational change of F6P binding, so only two enzyme conformations can be 

detected at this position.  

Figure 4-8 is the fluorescence phasor plot of L69W TtPFK and V197W TtPFK 

titrated with different ligands. The fluorescence of these two residues shows response to 

PEP binding but not Fru-6-P binding. F6P binary complex is at the same position as the 

apo. Either the titration of PEP on top of F6P or the titration of F6P on top of PEP 

produced the ternary complex does not vary much from the PEP binary complex. These 

two residues can only monitor the conformational change of PEP binding, so only two 

enzyme conformations can be detected at these two positions. 

Fluorescence phasor plot F140W, F165W, V243W and L313W TtPFK 

Figure 4-9 is the fluorescence phasor plot of F140W TtPFK, F165W TtPFK titrated 

with different ligands. Figure 4-10 is the fluorescence phasor plot of V243W TtPFK and 

L313W TtPFK titrated with different ligands. Apo TtPFK (red) was titrated with either 

Fru-6-P (blue) or PEP (purple) to form binary complex, EA and YE respectively. The 

fluorescence of these four residues show response to both Fru-6-P binding and PEP 

binding. The phasor plot shows clearly the formation of these complexes. The 

subsequent addition of the inhibitor PEP after the Fru-6-P saturation (black) and the 
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addition of Fru-6-P after saturation with PEP (green) form the same ternary complex 

YEA. The titration of a second ligand to the binary complex, either EA or YE, produced 

the displacement of the phasor values to a common and unique phasor point in the plot 

and is also off the line between binary complexes, meaning the ternary complex is a 

unique conformation instead of a mixture of two binary complexes. These results 

suggest the presence of the four different conformations at these four positions, each of 

them characterized by a unique phasor value. We also have identified four residues that 

may be important for the propagation and transmission of allosteric inhibition 

information in TtPFK. 

Discussion 

Of the nine tryptophan mutants we studied in this chapter, one is removed from 

consideration because it is heat sensitive and very unstable; one responds to neither Fru-

6-P binding nor PEP binding; one responds to Fru-6-P binding but not PEP binding; two 

respond to PEP binding but not Fru-6-P binding and four respond to both Fru-6-P 

binding and PEP binding. 

Figure 4-11 shows the positions of all the 8 tryptophan mutants in BsPFK monomer 

structure from different views. Unique ternary complex can be detected at F140W, 

F165W, V243W and L313W. These four residues are in a region that can detect the 

conformational conflict between Fru-6-P binding and PEP binding. 
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Figure 4-6. Fluorescence phasor plot of Y226W TtPFK, which shows no response to 
either Fru-6-P binding or PEP binding. Red is Apo TtPFK, blue is Fru-6-P titration and 
purple is PEP titration to form binary complex, EA and YE respectively; black is PEP 
titration after Fru-6-P saturation and green is Fru-6-P titration after PEP saturation to 
form ternary complex YEA. 
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Figure 4-7. Fluorescence phasor plot of Y41W TtPFK, which shows response to Fru-6-P 
binding but not PEP binding. Red is Apo TtPFK, blue is Fru-6-P titration and purple is 
PEP titration to form binary complex, EA and YE respectively; black is PEP titration 
after Fru-6-P saturation and green is Fru-6-P titration after PEP saturation to form 
ternary complex YEA. 
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Figure 4-8. Fluorescence phasor plot of L69W TtPFK and V197W TtPFK, which shows 
response to PEP binding but not Fru-6-P binding. Red is Apo TtPFK, blue is Fru-6-P 
titration and purple is PEP titration to form binary complex, EA and YE respectively; 
black is PEP titration after Fru-6-P saturation and green is Fru-6-P titration after PEP 
saturation to form ternary complex YEA. 
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Figure 4-9. Fluorescence phasor plot of F140W TtPFK, F165W TtPFK, which shows 
response to both Fru-6-P binding and PEP binding. Red is Apo TtPFK, blue is Fru-6-P 
titration and purple is PEP titration to form binary complex, EA and YE respectively; 
black is PEP titration after Fru-6-P saturation and green is Fru-6-P titration after PEP 
saturation to form ternary complex YEA. 
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Figure 4-10. Fluorescence phasor plot of V243W TtPFK and L313W TtPFK, which 
shows response to both Fru-6-P binding and PEP binding. Red is Apo TtPFK, blue is 
Fru-6-P titration and purple is PEP titration to form binary complex, EA and YE 
respectively; black is PEP titration after Fru-6-P saturation and green is Fru-6-P titration 
after PEP saturation to form ternary complex YEA. 
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Y226W shows response to neither Fru-6-P binding nor PEP binding. Based on the 

reference BsPFK crystal structure, residue 226 is 19.7Å to the nearest active site and 

21.7Å to the nearest allosteric site. This far away distance may be the reason it is 

responding to neither Fru-6-P binding nor PEP binding. Y41W shows response to Fru-6-

P binding but not PEP binding. Residue 41 is 14.2Å to the nearest active site and 19.8Å 

to the nearest allosteric site. L69W show response to PEP binding but not Fru-6-P 

binding. Residue 69 is 11.5Å to the nearest active site and and 19.8Å to the nearest 

allosteric site. It is much closer to active site than allosteric site while it responds to PEP 

binding instead of Fru-6-P binding. V197W show response to PEP binding but not Fru-

6-P binding. Residue 197 is 19.4Å to the nearest active site and and 21.4Å to the nearest 

allosteric site. It is about equal distance to active site and allosteric site but only responds 

to PEP binding. These two examples suggest that distance is not the only reason 

accounting for whether it is involved in ligand binding and allosteric communication or 

not. 

F140W, F165W, V243W and L313W show response to both Fru-6-P binding and 

PEP binding. Figure 4-11 shows the position of F140W mutation in the BsPFK tetramer 

structure. Residue 140 is 10.2Å to the nearest active site and 21.7Å to the nearest 

allosteric site. It may play roles in the allosteric communication of 30Å interaction and 

32Å interaction considering the close distance of residue 140 to active site R255. 

Figure 4-12 shows the position of L313W mutation in the BsPFK tetramer structure. 

Residue 313 is 19.7Å to the nearest active site and 19.3Å to the nearest allosteric site. It 
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is relatively far away from the active site and allosteric site, but it is directly between 

sites that comprise the 32 Å interaction. 

Figure 4-13 shows the positions of F165W and V243W mutations in the BsPFK 

tetramer structure and the zoom-in view of the position of F165W and V243W mutations 

with the active site and allosteric site. Residue 165 is 4.0Å to the nearest active site and 

17.4Å to the nearest allosteric site. Residue 243 is 6.6Å to the nearest active site and 

11.0Å to the nearest allosteric site. Both these two residues are very close to active site 

R163 and the 22Å interaction, which suggest they may play roles in the allosteric 

communication of the 22Å interaction.  

Our results suggest that residues F140, L313, F165 and V243 maybe in an area 

important for the propagation and transmission of allosteric information in TtPFK. 

Previous work shows that residues Y164 and F240 are in a dynamic area important for 

the allosteric communication of the 22Å interaction in BsPFK (Stephanie Perez, 

unpublished data). These results suggest that residue Y164 in BsPFK (F165 in TtPFK) 

and F240 in BsPFK (V243 in TtPFK) may be involved in an interaction network 

common for BsPFK and TtPFK. For the future study we can combine the hybrid strategy 

discussed in chapter II and chapter II with the fluorescence phasor method to investigate 

the role of these residues in the potential individual interactions. 
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Figure 4-11. The positions of the 8 tryptophan mutants in BsPFK monomer structure 
from different views. Active site residues are colored in red, allosteric site residues are 
colored in blue, residue that responds to neither Fru-6-P binding nor PEP binding is 
colored in yellow (Y226W), residue that that responds to Fru-6-P binding is colored in 
light red (Y41W), residues that responds to PEP binding is colored in light blue (L69W 
and V197W) and residues that responds to both Fru-6-P and PEP binding are colored in 
green (F140W, F165W, V243W and L313W).  
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Figure 4-12. Position of F140W mutation in the BsPFK homotetramer with one subunit 
highlighted in green. Residue 140 is colored in yellow, active site residue is in red and 
allosteric site residue is in blue. 
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Figure 4-13. Position of L313W mutation in the BsPFK homotetramer with one subunit 
highlighted in green. Residue 313 is colored in yellow, active site residue is in red and 
allosteric site residue is in blue. 
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Figure 4-14. Position of F165W and V243W mutations in the BsPFK homotetramer with 
one subunit highlighted in green and the zoom-in view of the position of F165W and 
V243W mutations with the active site and allosteric site. Residue 165 and 243 is colored 
in yellow, active site residue is in red and allosteric site residue is in blue. 
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TtPFK is a very good model to study allosteric regulation in prokaryotes system. 

First, since we need to consider all the four species of the enzyme including the ternary 

complex when studying allosteric regulation, the much tighter binding for PEP and much 

weaker coupling between Fru-6-P and PEP in TtPFK suggests that the ternary complex 

with both Fru-6-P and PEP is easier to form compared to PFK from other organisms, 

which can be taken advantage of. Second, to use tryptophan as fluorescence probe to 

measure the dynamic properties and identify important residues for the allosteric 

regulation of PFK, we need to locate the tryptophan at different positions in PFK 

without altering the kinetic and thermodynamic coupling parameters of the protein 

dramatically. There is no native tryptophan in TtPFK, only one mutation is required to 

locate tryptophan at different positions of the protein instead of introducing two 

mutations to get tryptophan-shift mutant in BsPFK and EcPFK because they have native 

tryptophan at position 179 and 311 respectively. 

Fluorescence phasor is a relatively new approach for the time-resolved studies on 

intrinsic protein fluorescence. It is a direct visual display of the raw data without any 

lifetime analysis model. The movement of the phasor point can be an indication of a 

conformational change of the protein. This method can be utilized with many protein 

studies to describe the overall excitation state decay process. Using fluorescence phasor 

to study protein dynamics coupled with placing the tryptophan fluorescence probe at 

different positions in the protein may be used as an alternative tool to map the dynamic 

properties of other proteins as well. 
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CHAPTER V                                                                                                    

SUMMARY 

PFK catalyzes the phosphorylation of fructose 6-phosphate in glycolysis pathway. 

PEP allosterically inhibits the binding of substrate Fru-6-P in TtPFK. TtPFK is 

homotetramer with four identical active sites and four identical allosteric sites. There are 

multiple homotropic and heterotropic allosteric interactions within the enzyme. The 

main goal of this study is to have a better understanding about the allosteric inhibition 

regulation in TtPFK. Crystal structures of overall secondary, tertiary and quaternary 

structures are generally conserved for bacteria source PFK, but the functional properties 

are dramatically different.  

Four unique inhibition interactions have been successfully isolated in BsPFK and 

EcPFK. Chapter II applied the hybrid strategy to TtPFK and isolated the four individual 

inhibition interactions. The relative contribution of the four interactions in TtPFK is 

different from BsPFK and EcPFK. Each of the four interactions contribution to 

inhibition is unique and additive. The sum of the coupling free energy measured for the 

isolated interactions agrees well with the total coupling free energy measured for the 

control hybrid, which suggests that we can relate the coupling observed in the four 

isolated individual interactions to their corresponding interactions in the native tetramer. 

Further study can isolate the four individual activation interactions in TtPFK and see 

how the relative contribution of the four activation interactions compares to that of 

inhibition interactions. 
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The allosteric coupling between Fru-6-P and PEP in TtPFK is much weaker than 

BsPFK. N59D/A158T/S215H substitutions increase the coupling free energy of TtPFK 

by 2.4 kcal/mol. From the prospective of coupling free energy, entropy and enthalpy of 

inhibition and PEP binding affinity, TtPFK N59D/A158T/S215H behaves more like 

BsPFK than TtPFK. Chapter III applied the hybrid strategy to TtPFK 

N59D/A158T/S215H and isolated the four individual inhibition interactions. The 

substitutions can enhance all of the four heterotropic interactions, but to different extent. 

32 Å interaction exhibits the biggest increase in coupling free energy and this big 

increase make it become the second biggest contribution in TtPFK N59D/A158T/S215H. 

The discrepancy between the sum of the coupling free energy in the isolated interactions 

and the total coupling free energy in the native tetramer is likely due to the mutated 

residues not all interacting within a single subunit. Further study can isolate each of the 

four individual interactions in each single substitution and see how these three 

substitutions act to enhance the coupling in TtPFK. 

TtPFK has a smaller allosteric coupling between PEP and Fru-6-P compared to 

other prokaryotic PFKs which makes it easier to form ternary complex. Chapter IV used 

fluorescence phasor to describe the four species, Apo-TtPFK, TtPFK-Fru-6-P, PEP-

TtPFK, and PEP-TtPFK-Fru-6-P, involved in the allosteric coupling between Fru-6-P 

and PEP. The titration of a second ligand to the binary complex produced the 

displacement of the phasor values to a common and unique phasor point and is also off 

the line between binary complexes. These results suggest the presence of the four 

different conformations at residues F140W, F165W, V243W and L313W, which is not 
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anticipated by the traditional two-state model. Residues F140, L313, F165 and V243 

may be in an area important for the propagation and transmission of allosteric 

information in TtPFK. Further study can combine the hybrid strategy with the 

fluorescence phasor to investigate the role of these residues in the inhibition allosteric 

interaction in TtPFK. 
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