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ABSTRACT 

 

The supralittoral isopod Ligia exotica Roux, 1828 is an invasive species with a 

tropical and temperate cosmopolitan distribution, frequently found in harbors and ports.  

In the New World, this isopod has a broad distribution along the Atlantic coast, being 

particularly common in the US Gulf of Mexico, where it inhabits rocky artificial 

substrates.  Although it has been suggested that L. exotica has an Old World origin, from 

where it was introduced to other regions via wooden ships and solid ballast, the native 

range of this isopod remains uncertain.  Recent molecular work in East Asia uncovered 

the presence of two highly divergent lineages of L. exotica, and suggests that this region 

is the source of the nonindigenous US populations of Georgia and O’ahu, Hawaii.  The 

goal of the present study was to better understand the evolution and invasion history of 

this isopod, based on phylogenetic analyses of a fragment of the mitochondrial 16S 

ribosomal rDNA gene.  The dataset examined included publicly available sequences 

associated with published and unpublished work, as well as newly generated sequences 

from the Gulf of Mexico, South America, Hawaii, Africa, and Asia.  Different 

Maximum Likelihood (ML) and Bayesian Inference (BI) programs were implemented to 

reconstruct the phylogeny of L. exotica. 

Ligia exotica was comprised of several highly genetically divergent lineages, 

probably corresponding to a cryptic species complex.  Most of the genetic diversity was 

detected in the region spanning Southeast to East Asia, which appears to constitute the 

native range of L. exotica.  Temperature appears to influence the distribution and levels 
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of genetic diversity of L. exotica clades.  Greater opportunities for diversification of L. 

exotica appear to have occurred in the warmer waters. 

Phylogenetic patterns suggest that multiple independent invasions of L. exotica 

have occurred around the world.  Haplotypes observed in nonnative populations belong 

only to two sister clades, suggesting that the potential to become invasive may be 

phylogenetically constrained.  In Asia, these clades akin to the nonnative populations are 

distributed in warmer regions; thus, environmental similarity between donor and 

recipient regions might have increased the chance of a successful invasion. 
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BS Bootstrap support value 
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PP Bayesian posterior probability  
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SST Sea surface temperature 
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1. INTRODUCTION 

 

Numerous marine invasive species have dispersed extensively throughout the 

world via marine vessels over the past several centuries (Banks et al., 2015; Carlton, 

1987).  Native ranges for a large number of them, however, remain elusive (i.e., they are 

cryptogenic), hampering our understanding of their invasion histories (Carlton, 1996).  

Use of molecular data can greatly aid in the identification of their native ranges, cryptic 

diversity, and of the source and recipient regions (Geller et al., 2010). 

The supralittoral isopod Ligia exotica Roux, 1828, commonly known as wharf 

roach, has been considered an invasive species with a tropical and temperate 

cosmopolitan distribution, frequently found in harbors and ports (Schmalfuss, 2003; 

Taiti et al., 2003; Van Name, 1936; Yin et al., 2013).  Numerous aspects of this isopod 

have been studied, including its ecology (Cha et al., 2013; Christofoletti et al., 2011; 

Lopes-Leitzke et al., 2009; Lopes-Leitzke et al., 2011; Sazima, 1970), physiology 

(Miyamoto et al., 2006; Miyamoto et al., 2007; Sakurai et al., 1999a; b; Tsai and Dai, 

2001; Tsai et al., 1998; Yamagishi, 2007; Yamagishi et al., 2004), biomimetic properties 

(Tani et al., 2014), and its potential use as a source of food (Chai et al., 2011), natural 

products (Kim et al., 2000), and as a biomarker for coastal toxicology (Matsunaga et al., 

2015; Qiu et al., 2016; Undap et al., 2013).  Yet, the native range of L. exotica remains 

elusive. 

An Old World origin has been proposed for L. exotica, from where it was 

unintentionally introduced around the world on wooden ships and solid ballast (Griffiths 
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et al., 2011; Van Name, 1936).  The distribution of this isopod in the New World is 

broad, ranging in the Atlantic from New Jersey (US) to Montevideo (Uruguay), 

including the Gulf of Mexico (Mulaik, 1960; Schultz, 1977).  Collections of L. exotica in 

the US Atlantic, eastern Gulf of Mexico, Brazil, and Uruguay date back to the 1880’s; 

whereas records in the western Gulf of Mexico date back to the first half of the 20th 

century (Richardson, 1905; Van Name, 1936).  Jetties and other man-made structures 

have provided suitable habitats for this isopod around the Gulf of Mexico (Schultz and 

Johnson, 1984).  In the Pacific coast of the Americas, L. exotica has been reported from 

the Gulf of California, Mexico, to Punta Arenas, Chile (Van Name, 1936), but some 

records may be dubious (see below). 

Similarly to the other coastal members of Ligia, L. exotica is a direct developer 

(i.e., lacks a planktonic larval stage; a feature of peracarids) that occupies a narrow 

vertical range between the supralittoral and the water line, mainly occurring on rocky 

substrates, man-made or natural (Hurtado et al., 2010; Santamaria et al., 2013).  The 

broad distribution of L. exotica suggests that it possesses unique invasive capabilities.  

With the exception of L. oceanica, an endemic of the Atlantic coast of Europe that has 

been introduced to some localities in the northern Atlantic coast of the US (Richardson, 

1905), all other coastal species of Ligia do not appear to have been introduced outside 

their range, or at least not to as many geographically distant places as L. exotica 

(Schmalfuss, 2003).  A set of physiological characteristics that may have contributed to 

its ability to travel to (on watercraft), and establish thriving populations at, distant 
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localities includes superior osmoregulatory ability and desiccation resistance (Tsai et al., 

1997; 1998). 

The taxonomy of L. exotica has been problematic.  It was originally described 

from Marseille (France), within the range of its congener L. italica, which is broadly 

distributed throughout the Mediterranean basin (Schmalfuss, 2003).  The invasive nature 

of L. exotica was recognized in its original description, as Roux (1828) considered that 

its origin was not France, but proposed that a ship had transported this isopod from 

Cayenne, French Guiana.  He suggested this isopod might have survived such a voyage 

at the bottom of the hold, where small amounts of water could have provided the 

required moisture.  Several species have been synonymized with L. exotica (L. 

gaudichaudii, L. grandis, and L. olfersii), whereas in the Indian and Pacific Ocean a 

number of very similar species occur, which have been identified as L. exotica, but may 

correspond to different species (Schmalfuss, 2003; Van Name, 1936).  The Caribbean-

endemic Ligia baudiniana Milne Edwards, 1840 appears to have been described based 

on individuals of L. exotica collected in Veracruz, Mexico (Santamaria et al., 2014).  

Ligia exotica may have also been confused with L. occidentalis, a native species from 

the Gulf of California and the Pacific region between the Baja Peninsula and southern 

Oregon.  Despite being reported in the Gulf of California (Mulaik, 1960; Richardson, 

1905), L. exotica was not found in a thorough collecting effort of Ligia along the shores 

of this basin and adjacent regions (Hurtado et al., 2010). 

Recent molecular studies in East Asia (Jung et al., 2008; Yin et al., 2013) 

uncovered the presence of two highly divergent lineages of L. exotica, and indicated the 
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occurrence of a closely related species in this region (L. cinerascens Budde-Lund, 1885).  

Jung et al. (2008) re-assessed the previously reported (Kwon, 1993) occurrence of L. 

exotica in South Korea.  They conducted molecular phylogenetic analyses of a fragment 

of the mitochondrial 16S ribosomal rDNA gene from individuals sampled along the 

South Korean coast, including previously reported sequences of L. exotica from two 

non-native US populations (i.e., Georgia and the Hawaiian island of O’ahu).  They found 

two highly divergent clusters: the “eastern group”, which includes haplotypes occurring 

mainly along the eastern and southeastern coastlines of South Korea; and the “western 

group”, which includes haplotypes occurring mainly along the western and southwestern 

coastlines of South Korea.  These two lineages were in turn highly divergent from the 

lineage comprised of the US haplotypes.  Jung et al. (2008) suggested that the “western 

group, “eastern group”, and the L. exotica lineage from the US, each represents a distinct 

species, and that L. exotica appeared to be absent from South Korea.  Their 

understanding on the phylogenetic relationships of the three lineages was limited, 

however, due to the lack of outgroups in their dataset.  Yin et al. (2013) conducted 

morphological and phylogenetic analyses of Ligia specimens sampled throughout the 

northeastern coastline of China.  Their phylogenetic analyses also included the 

sequences examined by Jung et al. (2008), and used several distant taxa as outgroups.  

They found two highly genetically divergent lineages, and examination of traditional 

morphological characters indicated that one corresponded to L. exotica and the other to 

L. cinerascens.  The “eastern group” sequences of South Korea, and those of Georgia 

and O’ahu, clustered within the L. exotica clade, whereas the “western group” sequences 
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of South Korea clustered within the L. cinerascens clade.  Within the L. exotica clade, 

two highly divergent lineages were observed, one of which was comprised of the 

samples from Georgia and O’ahu, as well as the South Yellow Sea, leading Yin et al. 

(2013) to suggest that East Asia was a source of invasive L. exotica populations. 

The presence of multiple divergent lineages in East Asia may indicate that the 

native range of L. exotica includes this region, which is supported by other lines of 

evidence.  First, phylogenetic analyses examining the relationships within the genus 

Ligia (unpublished) indicate that the sister taxon of L. exotica is L. cinerascens, which 

also occurs in East Asia.  Second, in other regions of the world where L. exotica is 

present, other more broadly distributed presumably native Ligia species occur. Whether 

the L. exotica clade extends further south in Asia and shows additional cryptic diversity, 

which will further support this region as the native range of this isopod, needs to be 

determined. 

Sequences for the 16S rDNA gene identified as Ligia sp. from Southeast to East 

Asia have been released in GenBank, but phylogenetic analyses have not been published 

yet.  Herein, we report phylogenetic analyses of a dataset that includes the above 

sequences, the ones reported for L. exotica and L. cinerascens from published studies, 

and new sequences we obtained from specimens of these isopods in the Gulf of Mexico, 

South America, Hawaii, Africa, and Asia.  We tested whether the new sequences from 

Asia belong to the L. exotica or L. cinerascens lineages and show further cryptic 

diversity.  We expected to find higher genetic diversity in L. exotica populations from 

Asia, as it seems to represent the native range of this isopod, than in presumed nonnative 
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populations (e.g. the New World).  Phylogenetic analyses can also shed light on the 

invasion history of L. exotica.  We conducted a thorough sampling of L. exotica in the 

Gulf of Mexico, to determine whether signatures of multiple independent invasion 

events are detectable in this basin.  Its subtropical location, high volume of maritime 

traffic, and presence of numerous artificial substrates that provide suitable habitats for 

non-indigenous species (e.g. jetties), renders the Gulf of Mexico very vulnerable to 

marine invasions, which is reflected in a high occurrence of non-indigenous marine 

species (Tunnell et al., 2009).  Examination of other introduced populations from around 

the world is expected to provide a global understanding on the invasive history of L. 

exotica. 
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2. MATERIAL AND METHODS 

 

2.1 Sampling 

Specimens of L. exotica were obtained from 40 localities around the world 

(Figure 1; Appendix 1), mainly from the Gulf of Mexico and East Asia.  We also 

obtained specimens of L. cinerascens (from East Asia), which was used as outgroup in 

the phylogenetic reconstructions.  Phylogenetic analyses including most Ligia species 

(unpublished) indicate that L. cinerascens is sister to the L. exotica clade.  Yin et al. 

(2013) also found a sister relationship between L. exotica and L. cinerascens, in a dataset 

that also included L. occidentalis, and used L. oceanica and Idotea baltica (Idoteidae) as 

outgroups.  Thus, the reciprocal monophyly of L. cinerascens and L. exotica is well-

supported.  The use of L. cinerascens as the only outgroup enabled the retention of more 

confidently-aligned characters and less homoplasy, which should enhance resolution 

within the L. exotica clade.  Specimens were preserved in 70-100% ethanol. 

 

2.2 DNA extraction, PCR, and sequencing 

Total genomic DNA was isolated from pleopods or legs of Ligia specimens with 

the DNeasy Blood & Tissue kit (Qiagen Inc., Valencia, CA) following the 

manufacturer’s protocol.  A ~490-bp 16S rDNA region was amplified using published 

primers 16Sar (5’-CGCCTGTTTATCAAAAACAT-3’) and 16Sbr (5’-

CCGGTCTGAACTCAGATCACGT-3’) (Palumbi, 1996).  Each PCR reaction contained 

1-3 µl DNA template, 0.5 µl each primer (10 pmol), 0.1 µl Taq DNA polymerase, 0.5 µl
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(a) 

 
 
Figure 1. Sampled localities in (a) the global range and (b) Asia.  Shapes denote different species: dots represent L. exotica; squares represent L. 
cinerascens.  Colors correspond to clades in Figure 2. 
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(b) 

 
 
Figure 1 Continued.
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dNTPs (10 mM), and 2.5 µl 10× PCR buffer (15 mM MgCl2, 500 mM KCl, 100 mM 

Tris-HCl, pH 8.3).  PCR conditions used were: 4 min at 94°C followed by 30 cycles of 1 

min at 94°C; 30 s at 49°C, 1.5 min at 72°C; and a final extension at 72°C for 4 min.  

PCR products were cycle sequenced at the University of Arizona Genetics Core 

(UAGC).   

 

2.3 Dataset and sequence alignment 

Sequencher 4.8 (Genecodes, Ann Arbor, MI) was used to assemble the new 

sequences and trim the primer regions.  We also included all 16S rDNA sequences of L. 

exotica and L. cinerascens reported in Jung et al. (2008) and Yin et al. (2013), as well as 

16S rDNA sequences of Ligia sp. from Asia available in GenBank, but not incorporated 

into a published study (Appendix 1).  When present, primer regions were also removed 

from GenBank sequences. 

All sequences were aligned in MAFFT v.7 (Katoh, 2013) online using the Q-

INS-I strategy, which considers the secondary structure of RNA, with default parameters 

(e.g., gap opening penalty = 1.53).  Unique haplotypes were identified on the basis of 

absolute pairwise distances calculated with PAUP v.4.0b10 (Swofford, 2002), and 

redundant sequences were removed from analyses.  Gblocks 0.91b (Castresana, 2000; 

Talavera and Castresana, 2007) was used to identify positions with questionable 

homology that were removed prior to phylogenetic analyses.  The following GBlocks 

parameters were used: “Minimum Number Of Sequences For A Conserved Position” = 

50% of the number of sequences + 1 (i.e., 42); “Minimum Number Of Sequences For A 
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Flank Position” = 85% of the number of sequences (i.e., 70); “Maximum Number Of 

Contiguous Nonconserved Positions” = 4 or 8; “Minimum Length Of A Block” = 5 or 

10; and “Allowed Gap Positions” = half.   

 

2.4 Phylogenetic analyses 

To determine the most appropriate model of DNA substitution, jModelTest 

v.2.1.4 (Darriba et al., 2012) was used to calculate likelihood scores among 88 candidate 

models for 16S rDNA gene, based on the fixed BIONJ-JC tree under the Akaike 

Information Criterion (AIC), corrected AIC (AICc), and the Bayesian Information 

Criterion (BIC).  The best model selected by the BIC was employed in phylogenetic 

analyses, except in the following two cases.  First, if the selected model was not 

available in the specific Maximum Likelihood (ML) or Bayesian Inference (BI) 

program, the next most complex model was implemented.  Second, considering the 

potential problems associated with using two parameters, a proportion of invariable sites 

(I) and a Gamma distribution of rates among sites (Γ), simultaneously in the model [see 

RAxML manual and (Yang, 2006)], we chose the simpler Γ if the best model included 

both I and Γ parameters.  

For the ML analyses, RAxML v.8.0.14 (Stamatakis, 2014) and GARLI 

v.0.951GUI (Zwickl, 2006) were used.  RAxML executed 1,000 bootstrap replicates 

with a thorough ML search under the standard non-parametric bootstrap algorithm and 

the GTR+ Γ model, whereas GARLI implemented 1,000 bootstrap replicates, the BIC 

selected model, and all other settings as default.  The majority-rule consensus trees for 
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each analysis were calculated using the SumTrees command of DendroPy v.3.10.1 

(Sukumaran and Holder, 2010). 

For Bayesian Inference (BI), MrBayes v.3.2.6 (Huelsenbeck and Ronquist, 2001; 

Ronquist and Huelsenbeck, 2003; Ronquist et al., 2012) and Phycas v.1.2.0 (Lewis et al., 

2005a) were employed.  To alleviate the unpredictable behavior in Bayesian analysis 

when dealing with hard polytomies (i.e., “star-tree paradox”), which can lead to arbitrary 

resolutions and overestimation of posterior probabilities (Alfaro and Holder, 2006; 

Kolaczkowski and Thornton, 2006; Lewis et al., 2005b; Suzuki et al., 2002; Yang and 

Rannala, 2005), an analysis employing a polytomy prior was implemented in Phycas 

[see Phycas manual and (Lewis et al., 2005b)].  The following criteria were used to 

determine if the Bayesian analyses had reached convergence, and if an adequate sample 

of the posterior had been generated: (a) the posterior probability values tended to be 

stable; (b) AWTY (Nylander et al., 2008; Wilgenbusch et al., 2004) exhibited a high 

correlation between the split frequencies of independent runs; (c) the average standard 

deviation of the split frequencies of independent runs became stable and approached 

zero; (d) Potential Scale Reduction Factor (PSRF), a convergence diagnostic obtained 

after summarizing the sampled parameter values in MrBayes, was close to one; and (e) 

the Effective Sample Size (ESS) for the posterior probabilities evaluated in Tracer v.1.6 

(Rambaut et al., 2014) exceeded 200.  Samples prior to reaching stationarity were 

eliminated as “burn-in”.  The posterior probability for each node was estimated by 

computing a majority-rule consensus of post-burnin tree samples using the SumTrees 

command (Sukumaran and Holder, 2010).  
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Given the low number of alleles and shallow genetic divergences found within 

the clade involving the “Gulf of Mexico” haplotypes (see Results), we also conducted a 

maximum parsimony branch and bound search in PAUP* v.4.0a149 (Swofford, 2002) 

for this subset of specimens.  Ambiguous character optimization was achieved by the 

accelerated transformation (ACCTRAN) algorithm.  The conservative estimate of 

pairwise genetic distances with Kimura-2-parameter (K2P) correction was calculated 

with PAUP* v.4.0a149 (Swofford, 2002). 
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3. RESULTS

3.1 Model selection 

A total of 97 sequences of the L. exotica clade and 41 of the L. cinerascens clade 

were examined (Appendix 1).  The final 16S rDNA gene excluding redundant sequences 

consisted of 81 taxa (51 in the L. exotica clade and 30 in the L. cinerascens clade).  After 

alignment, a total of 454 characters (out of 488) were retained, for which homology was 

reliable, and 97 of these were parsimony informative.  Information about identical 

sequences and their corresponding groups is presented in Appendix 2.  jModelTest 

selected a complex model (i.e., TPM2uf) with five substitution parameters (see 

jModelTest manual), +I, and +Γ according to the AIC (weight = 0.2607) and AICc 

(weight = 0.3509), and a relatively simple model (i.e., HKY) with two substitution 

parameters (see jModelTest manual), +I, and +Γ according to the BIC (weight = 0.3183).  

When applicable in different programs, the exact models selected by the three criteria 

were implemented.  In addition, we implemented the GTR+Γ model, which was 

included in the 99.9% cumulative weight interval of all selection criteria, in all of the 

methods, to assess the sensitivity of clade support values to variations in the substitution 

model (Appendix 3). 

3.2 Phylogenetic results 

In general, the use of different substitution models or priors yielded similar 

overall topologies of phylogenetic trees, although some discrepancies, reflected in node 
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Figure 2. Bayesian majority consensus tree of Ligia samples from localities in Figure 1.  The tree was 
obtained by MrBayes for 16S rDNA (model GTR+Γ), and rooted with L. cinerascens.  Letters denote four 
major lineages (i.e., A, B, C, and D) of L. exotica and three clades (i.e., D1, D2, and D3) of the lineage D.  
Clade colors correspond to Figure 1.  Numbers by nodes indicate the corresponding range for Bootstrap 
Support (BS; top) for Maximum Likelihood [RAxML (left) and GARLI (right)] and Posterior Probabilities 
(PP; bottom) for Bayesian Inference [MrBayes (left) and Phycas (right)].  Each range reflects pooled 
values obtained under different substitution models (i.e., GTR+ Γ, HKY+I+ Γ, and TPM2uf+I+ Γ) in 
corresponding program.  The triangles denote new haplotypes that haven’t been reported in the previous 
studies of Jung et al. (2008) and (Yin et al., 2013).  
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support values (Appendix 3), were observed among different approaches (Figure 2; new 

haplotypes denoted with a triangle).  Our phylogenetic reconstruction recovered a highly 

supported split [Bootstrap Support (BS): 96–100; Posterior Probability (PP): 100] 

between L. exotica and L. cinerascens.  The L. cinerascens clade is restricted to the 

northern part of East Asia, in the western coast of South Korea, Honshu and Hokkaido in 

Japan, and northeastern China.  Maximum K2P divergence observed within this clade 

was 2.9% (Table 1).   

 
 
 
Table 1. Conservative estimates of evolutionary divergence among major lineages within L. exotica and 
L. cinerascens, as measured by percent Kimura-2-parameter distances.  Lower matrix: distance range.  
Upper matrix: average distance.  Values on diagonal show minimum and maximum within-clade 
divergence.  Empty cells: no ranges available because selected clade was represented by a single sample. 
 

  
L. exotica 
clade A 

L. exotica 
clade B 

L. exotica 
clade C 

L. exotica 
clade D L. cinerascens 

L. exotica clade A - 11.5 12.5 10.5 10.4 

L. exotica clade B 11.1-12.1 0.2-2.0 8.8 10.0 11.7 

L. exotica clade C 11.9-13.2 7.3-10.8 6.3 7.6 13.6 

L. exotica clade D 9.8-11.1 8.3-11.6 6.7-9.2 0.2-4.6 13.0 

L. cinerascens 9.4-11.0 10.8-13.1 12.3-15.0 11.6-14.9 0.1-2.9 
 
 
 
 

Our analyses revealed 22 new 16S rDNA haplotypes within the L. exotica clade 

(shown with triangles in Figure 2) that were not reported in the previous studies of Jung 

et al. (2008) and Yin et al. (2013).  The L. exotica clade was divided into four main 

lineages (named A, B, C, and D).  Node support for different analyses and substitution 
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models is shown in Appendix 3.  Divergences between and within main lineages are 

shown in Table 1.  At the base of the L. exotica clade, a relatively distant (K2P 

divergence = 10.0–13.2%) lineage from Japan (A) diverged from a clade that contains 

the remaining lineages (BS: 59–80; PP: 100; Appendix 3).  Within the latter clade, a 

basal split (K2P divergence = 7.3–11.6%) is observed between a lineage consisting 

mainly of samples from temperate regions in East Asia (B; BS: 61–80; PP: 100; 

Appendix 3; maximum within-clade K2P divergence = 2.0%) and a clade containing the 

remaining lineages.  Some of the populations in Clade B have overlapping distributions 

with L. cinerascens in China (e.g. Tianjin and Shandong) and the western coastline of 

South Korea (e.g. Boryeong) (Figure 1).  Within the other clade, a basal divergence 

(K2P divergence = 6.7–9.2%) is observed between a lineage from Okinawa, Japan (C; 

BS: 51–76; PP: 95–100; Appendix 3), which contains two highly divergent lineages 

from this island (6.3% K2P divergence), and a clade (D) with the remaining samples 

(BS: 50–60; PP: 99–100; Appendix 3; maximum within-clade K2P divergence = 4.6%).  

Within clade D, three main lineages are distinguished.  The first (D1 in tree) is restricted 

to East Asia localities (BS: <50; PP: 83–95; Appendix 3; maximum within-clade K2P 

divergence = 1.3%).  The second (D2) has haplotypes found in East Asia, but also in 

invasive populations from Hawaii and Brazil (BS: 94–99; PP: 100; Appendix 3; 

maximum within-clade K2P divergence = 0.9%).  The third (D3), a weakly supported 

lineage (BS: <50–55; PP: 68–86; Appendix 3; maximum within-clade K2P divergence = 

1.1%), has haplotypes observed in invasive populations from the Gulf of Mexico, 

Trinidad, Brazil, South Africa, Mozambique, and is also found in South to East Asia. 
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Figure 3 shows a strict consensus unrooted parsimony tree (made of the 18 most 

parsimonious trees; CI excluding uninformative characters = 0.8421; RI = 0.9552) for 

clade D (i.e., the only clade found to contain haplotypes found in invasive populations).  

The three previously described main lineages within this clade are represented by 

different haplotype colors (i.e., D1 gray circles, D2 black circles, and D3 white circles).  

Seven haplotypes were observed in invasive populations, three within D2 and four 

within D3 (denoted by stars).  D3 contains the haplotype that was most common in 

invasive populations of the Gulf of Mexico, and was also found in the US Atlantic coast 

(Georgia), Trinidad (Chaguaramas Bay), Brazil (Ilha Grande), and Cambodia.  Another 

D3 haplotype was found in Veracruz, Mexico, Trinidad (Chaguaramas Bay), and South 

Africa, but was not observed in Asia.  A third haplotype was observed in Mozambique, 

which likely represents another invasive population, and in India.  The fourth putatively 

invasive D3 haplotype was only observed in South Africa.  Within D2, a haplotype was 

found in Oahu (Pearl Harbor) and Hawaii Island, which was also observed in Japan and 

Taiwan.  Another D2 haplotype was found exclusively in Oahu (Honolulu harbor).  

Finally, a third D2 haplotype was observed in Brazil (Praia de Calhetas, Cabo de Santo 

Agostinho) and also in Taiwan.  Overall, we observed higher levels of genetic diversity 

in the putatively native range (maximum K2P divergence = 15.0%) of L. exotica than in 

putatively invasive populations.  A higher number of haplotypes and clades was detected 

in native populations.  Four of the seven haplotypes found in invasive populations were 

not found in native populations (assuming the India population is non-native), but they  
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Figure 3. A strict (unrooted) consensus of the 18 most parsimonious trees depicting the relationships among haplotypes in the lineage D of L. exotica.  
Ambiguous character optimization was achieved by the accelerated transformation (ACCTRAN) algorithm.  Slashes indicate the number of parsimony 
steps.  The branch lengths within each clade (i.e., D1, D2, and D3) reflect the number of base substitutions.  The numbers near the slashes correspond 
to the number of parsimony steps.  Localities where each haplotype was found are listed next to the circles.  Localities in bold are those outside the 
putative native range.  Underlined locality label denotes uncertainty regarding its native vs. non-native status (see text).
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were only 1–3 mutational steps away from haplotypes found in native populations (the 

maximum number of steps observed among members of clade D was 21). 
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4. DISCUSSION 

 

The L. exotica clade is comprised of highly divergent lineages, probably 

corresponding to a cryptic species complex.  The region between Southeast and East 

Asia contains most of the genetic diversity found within this clade.  In contrast, only 

seven of the 51 haplotypes found in the L. exotica clade were observed in the putative 

nonnative populations (i.e., those in the Americas, Hawaii, and Africa), four of which 

were also represented in Asia, and all are closely related to haplotypes observed in Asia.  

Furthermore, the haplotypes observed in nonnative populations belong only to two 

closely related clades, suggesting that the potential to become invasive may be 

phylogenetically constrained. 

As its name implies, since its description based on specimens from the 

Mediterranean Sea, L. exotica was considered a nonnative of this basin (Roux, 1828).  

Several lines of evidence suggest that the region spanning Southeast to East Asia 

constitutes its native range, although the exact boundaries are yet to be determined.  

First, outside of this range, L. exotica tends to occur as isolated populations within the 

range of other more broadly distributed and genetically diverse clades of Ligia.  One 

notable exception is in most of the Gulf of Mexico (a mostly sandy coastline), where L. 

exotica is common in many artificial rocky substrates in the absence of other Ligia 

species.  Nonetheless, L. exotica exhibits very low genetic diversity in this region; with a 

single haplotype observed, except for Veracruz, where a different closely related 

haplotype was observed.  Another notable exception is the Atlantic coast between Brazil 
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and Argentina, where L. exotica is found and no other Ligia species are reported 

(Schmalfuss, 2003).  We sampled two geographically distant localities in this region; 

one had the most common haplotype of the Gulf of Mexico and the other had a 

haplotype also found in Taiwan.  Secondly, L. exotica exhibits much higher genetic 

diversity within its putative native range than in all other sampled populations.  Whereas 

the native range is home to four major clades of L. exotica (clades A–D), non-native 

populations are only represented by two of the three subclades of clade D.  Thirdly, the 

sister taxon of L. exotica (i.e., L. cinerascens) is also distributed in East Asia, suggesting 

that their ancestor occupied, and diversified within, this region.  Although Southeast and 

East Asia likely constitute the native range of L. exotica, identification of its entire 

native range will require more comprehensive surveys of this and adjacent regions.  For 

example, it is possible that India constitutes part of its native range.  

Occurrence of multiple genetically divergent clades within the native range of L. 

exotica is similar to the phylogeographic patterns observed in the following recognized 

species of Ligia, whose distribution includes or is limited to tropical and/or subtropical 

coasts of other regions:  L. occidentalis, whose range spans the Pacific coast between 

central Mexico and southern Oregon, including the Gulf of California (Eberl et al., 2013; 

Hurtado et al., 2010); L. baudiniana in the Caribbean and a small Pacific region between 

Central and South America (Santamaria et al., 2014); L. hawaiensis in the Hawaiian 

archipelago (Santamaria et al., 2013); and L. italica in the Mediterranean basin (Hurtado 

et al. unpublished).  Interestingly, despite reports of the occurrence of L. exotica in the 

Gulf of California (Mulaik, 1960; Richardson, 1905), we failed to find it during 



 

 23 

extensive surveys of this and the adjacent regions (Eberl et al., 2013; Hurtado et al., 

2010).  Although it is possible that L. exotica occurs in hitherto unsampled Pacific coast 

localities of the New World, it is likely that past records of this species were 

misidentifications of the morphologically similar species L. occidentalis. 

The relatively high genetic diversity of L. exotica in its native range contrasts 

with the low diversity observed in its sister lineage L. cinerascens (maximum K2P 

divergence within this species = 2.9%), suggesting different evolutionary histories.  One 

evident difference between the two species is their geographic distributions.  Within our 

study area alone, L. cinerascens was generally found in relatively colder (mostly 

temperate) regions, including the northern Yellow Sea, Bohai Sea, Korean Peninsula, 

and the Japanese archipelago.  Other records indicate that the range of L. cinerascens 

extends further north into the Kuril Islands (Yin et al., 2013) and the Peter de Great Gulf 

(i.e., the southernmost part of Russia in the Sea of Japan; Zenkevich, 1963).  Although 

the ranges of L. exotica and L. cinerascens overlap (Figure 1), L. exotica is generally 

found in warmer (mostly tropical and subtropical) regions.  Due to its distribution at 

higher latitudes, the lower genetic diversity of L. cinerascens may reflect a history of 

recent extinction-expansion events associated with glacial and postglacial cycles.  A 

similar pattern of recognized species of Ligia from high latitudes (at least in the northern 

hemisphere) harboring low genetic diversity occurs in L. pallasi (Eberl, 2013) and L. 

oceanica (Raupach et al., 2014). 

Within L. exotica, Clade B, which is mostly restricted to temperate areas, 

exhibits comparatively lower genetic diversity (maximum K2P divergence = 2.0%) than 
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clades C and D, which occur in warmer regions.  The range and genetic diversity of 

Clade A (found at Kanagawa, Japan) has not been adequately assessed.  The pattern of 

comparatively lower diversity within Clade B, whose distribution overlaps with part of 

the range of L. cinerascens, may also be explained by a history of recent extinction-

recolonization events associated with glacial cycles.  A similar pattern of reduced 

genetic diversity at higher latitudes within a recognized coastal isopod species occurs in 

the northernmost clade of L. occidentalis in California (Eberl et al., 2013) and of Tylos 

punctatus in the northernmost range, between Southern California and the Baja 

Peninsula (Hurtado et al., 2014).  

Temperature also appears to be an important factor determining the distribution 

of the other L. exotica lineages, which are found in warmer waters.  Although the 

northern distribution of L. exotica Clade D1 overlaps with the southern range of Clade B 

in the Yellow Sea, Clade D1 was detected as far south as Taiwan.  Clade D2 was found 

in warmer waters.  A haplotype of this clade was observed in the southern coast of 

Honshu, Japan, which is in a region with warmer water, and was also found in Taiwan 

and Hawaii.  The only locality where lineage A was found is also in the southern coast 

of Honshu.  Clade D3 was restricted to warmer waters and reached the southernmost 

areas (i.e., Cambodia, possibly India) in what appears to be the native range of L. 

exotica.  Sea surface temperature (SST) has been shown to be an important factor 

determining the distribution of lineages in L. occidentalis.  In this isopod, the 

geographical limit between two main clades largely reflects the changes in SST that 

define the Point Conception biogeographical boundary in California (Eberl et al., 2013).  
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Although coastal Ligia are essentially terrestrial and do not venture into open water, SST 

influences abiotic factors likely important to their survival and reproduction, such as air 

temperature, sea and land breezes, atmospheric humidity and coastal fog (Eberl et al., 

2013). 

A dynamic past geological history in the Southeast-East Asia region (Ni et al., 

2014; Wang, 1999) may have contributed to divergences within the L. exotica clade.  

However, we cannot identify specific events.  Opportunities for long-standing isolation 

and differentiation appear to have occurred in the Japanese archipelago, such as the basal 

differentiation of lineage A, to date found at a single locality in Honshu, Japan, and the 

presence of the two highly divergent lineages from Okinawa observed within Clade C.  

It is likely that the Japanese archipelago harbors additional morphologically cryptic 

diversity.  Large divergences among the three main lineages in Clade D also suggest 

greater opportunities for diversification have occurred in the warmer waters.  The island 

of Taiwan also exhibits high levels of genetic diversity, with the presence of multiple 

divergent lineages, as observed in the present study and in a previous study based on the 

Cytochrome Oxidase I (COI) gene (Chang, 2013). 

Phylogenetic patterns suggest multiple independent invasions of L. exotica have 

occurred around the world.  Haplotypes found at invasive populations, however, belong 

only to two closely related lineages (D2 and D3).  Of the seven haplotypes observed in 

invasive populations, three were also found in Southeast-East Asia and one in India, 

which may be part of the native range.  The other three, albeit not found in the presumed 

native range, were only separated by a few substitutions from haplotypes found in the 
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native range.  It is thus possible that we failed to sample them in the native range, as in 

situ substitution is highly unlikely, given the evolutionarily short period since invasion.  

An Asian origin of L. exotica invasive populations, probably through ship transport, 

seems undisputable.  Once out of Asia, it is likely that individuals from nonnative 

populations colonized other new localities.  This may have occurred in the New World, 

for example, where the same haplotype is present in the Atlantic US coast, Gulf of 

Mexico, and Brazil. 

In Asia, lineages D2 and D3 are distributed in warmer waters, akin to the ones 

occupied by the nonnative populations examined.  Environmental similarity between 

donor and recipient regions might increase the chance of a successful invasion (Seebens 

et al., 2013).  For example, the red imported fire ant Solenopsis invicta initially 

established in regions with similar environments (Fitzpatrick et al., 2007).  It is 

remarkable, however, that the closely related lineage D1 does not harbor haplotypes 

found in invasive populations, despite being found also in Asian localities with warm 

waters (e.g. Taiwan).  Therefore, a similar environmental temperature does not appear to 

be the only factor contributing to the invasiveness of L. exotica D2 and D3 lineages. 

The presence of invasive haplotypes only in clades D2 and D3 may also suggest 

that some characteristics conferring invasive advantages arose only in these lineages, 

and not in lineage D1.  Because lineages D2 and D3 appear to be sisters, notwithstanding 

the low clade support values, the “invasiveness” traits were most likely present in their 

common ancestor.  Such characteristics may have allowed invasive individuals to endure 

long journeys in the holds of wooden ships, into which they were likely unintentionally 
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loaded along with the ballast stones that were commonly used during the 18th and 

19th centuries (Griffiths et al., 2011; Van Name, 1936).  This rocky cargo was usually 

dumped once a ship reached its destination.  Surviving in the holds of ships, however, 

would have been challenging to Ligia isopods due to limited access to seawater.  Low 

desiccation resistance is a feature of these isopods, constituting one of the factors that 

constrains their distribution to a very narrow vertical range between the supralittoral and 

the water line (Carefoot and Taylor, 1995).  A superior desiccation resistance and 

osmoregulation ability, which would enhance survival of such journeys, has been 

reported in L. exotica from Taiwan (Tsai et al., 1997; 1998), where clades D2 and D3, 

along with D1, indeed occur.  Once in a new harbor, the rather homogeneous rocky 

habitat occupied by Ligia (Santamaria et al., 2016), similar temperatures to source 

localities, and high reproductive rates would have contributed to their successful 

establishment.  Indeed, high reproductive rates have been reported for L. exotica in a 

nonnative Brazilian population (Lopes et al., 2006).  Comparable to L. exotica, all 

invasive populations of the leafmining fly pest Liriomyza sativae, distributed at a global 

scale, cluster in a single clade (Scheffer and Lewis, 2005). 
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5. CONCLUSIONS 

 

Ligia exotica was comprised of several highly genetically divergent lineages, 

probably corresponding to a cryptic species complex.  Most of the genetic diversity was 

detected in the region spanning Southeast to East Asia, which appears to constitute the 

native range of L. exotica.  In contrast, very little genetic diversity was found outside the 

above region.  Temperature appears to influence the distribution and levels of genetic 

diversity of L. exotica clades.  A clade that is mostly restricted to temperate areas, 

exhibits comparatively lower genetic diversity than clades restricted to warmer areas.  

Similarly, the sister lineage of L. exotica, L. cinerascens, whose range partly overlaps 

with that of L. exotica in a relatively cold region, exhibits comparatively lower genetic 

diversity.  Greater opportunities for diversification of L. exotica appear to have occurred 

in the warmer waters, and the Japanese archipelago harbors several highly divergent 

endemic lineages.   

Phylogenetic patterns suggest that multiple independent invasions of L. exotica 

have occurred around the world.  An Asian origin of L. exotica invasive populations, 

probably through ship transport, seems indisputable.  Once out of Asia, it is likely that 

individuals from nonnative populations colonized other new localities, which appears to 

have occurred in the New World.  Haplotypes observed in nonnative populations belong 

only to two sister clades, suggesting that the potential to become invasive may be 

phylogenetically constrained.  In Asia, these lineages are distributed in warmer regions, 

akin to the ones occupied by the nonnative populations examined; thus, environmental 
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similarity between donor and recipient regions might have increased the chance of a 

successful invasion. 
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APPENDIX 1 

Localities included in this study, with corresponding GenBank accession numbers, and geographic information.  ID labels correspond with those used in 
other figures. 
 

Species Locality Names ID 
Accession 
Numbers Sources Lat Long 

L. exotica Goodland, FL, USA Goodland_Florida_Goodland1 KX447715 This study 25°55'57''N 81°39'21''W 
L. exotica Palacios, TX, USA Palacios_Texas_PAL1 KX447716 This study 28°44'18''N 96°24'6''W 
L. exotica Cedar Key, FL, USA CedarKey_Florida_Cedar2 KX447717 This study 29°8'8''N 83°2'11''W 

L. exotica 
Biloxi Small Craft Harbor, Biloxi, 

MS, USA Biloxi_Mississippi_Biloxi1 KX447718 This study 30°23'31''N 88°53'8''W 

L. exotica 

Sunshine Skyway Bridge North 
Rest Area, St. Petersburg, FL, 

USA StPetersburg_Florida_Tampa2 KX447719 This study 27°39'14''N 82°40'41''W 

L. exotica 
Municipal Harbor, Port Aransas, 

TX, USA PortAransas_Texas_Aransas1 KX447720 This study 27°50'24''N 97°3'50''W 

L. exotica 
Long Beach Harbor, Biloxi, MS, 

USA 
Biloxi_Mississippi_LBeachFL

2 KX447721 This study 30°20'41''N 89°8'42''W 
L. exotica Pensacola, FL, USA Pensacola_Florida_Pensacola1 KX447722 This study 30°25'11''N 87°11'36''W 
L. exotica South Padre Island, TX, USA SouthPadreIsland_Texas_SPI1 KX447723 This study 26°4'44''N 97°10'9''W 
L. exotica Parangipetta, India Parangipetta_India_India1_1 KX447724 This study 11°29'24''N 79°45'36''E 

L. exotica 
Praia de Calhetas, Cabo de Santo 

Agostinho, Brazil 
CalhetasBeach_Brazil_CAR3

4_1 KX447725 This study 8°20'38''S 34°56'43''W 

L. exotica 
Lagoa Azul, Ilha Grande, Costa 

Verde, Brazil IlhaGrande_Brazil_LEB1 KX447726 This study 23°11'S 44°18'W 
L. exotica Kanagawa, Japan Kanagawa_Japan_Japan2_1 KX447727 This study 35°9'25''N 139°36'43''E 
L. exotica Hilo Harbor, Hawai’i, HI, USA HiloHarbor_Hawaii_LexHilo1 KX447728 This study 19°43'57''N 155°3'26''W 

L. exotica Pearl Harbor, O’ahu, HI, USA 
PearlHarbor_Hawaii_LexOah

1 KX447729 This study 21°21'50''N 
157°57'37''

W 
L. exotica Avery Island, LA, USA AveryIsland_Louisiana_AVI1 KX447730 This study 29°54'57''N 91°54'14''W 

L. exotica 
San Juan de Ulúa Fort, Veracruz, 

Mexico 
SanJuandeUluaFort_Veracruz

_Mexico_CAR30_1 KF546552 
Santamaria et 

al. 2013 19°12'34''N 96°7'51''W 
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Species Locality Names ID 
Accession 
Numbers Sources Lat Long 

L. exotica 
Jetty by Adolfo Ruiz Cortines 

statue, Veracruz, Mexico 
Jetty_Veracruz_Mexico_CAR

31_1 KX447731 This study 19°11'40''N 96°7'24''W 

L. exotica 
Chaguaramas Bay, Trinidad, 

Trinidad and Tobago 
ChaguaramasBay_Trinidad_C

AR6_1 KX447732 This study 10°40'57''N 61°37'21''W 

L. exotica 
Chaguaramas Bay, Trinidad, 

Trinidad and Tobago 
ChaguaramasBay_Trinidad_C

AR6_2 KX447733 This study 10°40'57''N 61°37'21''W 
L. exotica Eastpoint, FL, USA Eastpoint_Florida_EastPt1 KX447734 This study 29°44'21''N 84°52'25''W 
L. exotica Lutao, Taitung, Taiwan Lutao_Taiwan_tait_1 KX447735 This study N/A N/A 

L. exotica Vilankulos, Mozambique 
Vilankulos_Mozambique_EA

_L1_1 KX447736 This study 21°59'52''S 35°19'30''E 
L. exotica Beira, Mozambique Beira_Mozambique_EA_L2_3 KX447737 This study 19°50'53''S 34°53'35''E 
L. exotica Kitadaito son, Okinawa, Japan Okinawa_Japan_TOYA4 KX447738 This study 25°56'45''N 131°17'56''E 
L. exotica Zhujiajian Island, Zhejiang, China Zhujiajian_China_ZH2_5 KX447739 This study 29°54''N 122°53'E 

L. exotica Pingtung County, Taiwan 
PingtungCounty_Taiwan_UF3

546 KX447740 This study 22°29'44''N 120°36'52''E 
L. exotica Toyohashi, Japan Toyohashi_Japan_JTO2 KX447741 This study N/A N/A 
L. exotica Okinawa, Japan Okinawa_Japan_OK2_7 KX447742 This study 26°28'46''N 127°55'40''E 
L. exotica Ulleungdo Island, South Korea Ulleungdo_SouthKorea_UL13 KX447743 This study 37°30'6''N 130°51'11''E 

L. exotica Boryeong, South Korea 
Boryeong_SouthKorea_Daech

en1 KX447744 This study 38°4'53''N 127°38'16''E 

L. exotica Woojuk, South Korea 
Woojuk_SouthKorea_Woojuk

1 KX447745 This study N/A N/A 
L. exotica Fukuoka, Japan Fukuoka_Japan_JFU11 KX447746 This study 33°35'N 130°24'E 
L. exotica Niigata, Japan Niigata_Japan_JNI17 KX447747 This study 37°54'58''N 139°2'11''E 
L. exotica Qingdao, Shandong, China Qingdao_China_QD1_14 KX447748 This study 36°3'58''N 120°22'10''E 

L. exotica 
Durban Harbor, KwaZulu-Natal, 

South Africa 
DurbanHarbor_SouthAfrica_Z

AR16 KX447749 This study N/A N/A 

L. exotica 

Blue Lagoon, Umgeni River 
Mouth, KwaZulu-Natal, South 

Africa 
BlueLagoon_SouthAfrica_ZA

R17 KX447750 This study 29°48'36''S 31°2'8''E 
L. cinerascens Otaru, Japan Otaru_Japan_JOR1 KX447751 This study 43°11'N 141°E 
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Species Locality Names ID 
Accession 
Numbers Sources Lat Long 

L. cinerascens Tianjin, China Tianjin_China_TJ1 KX447752 This study 39°08'N 117°11'E 
L. cinerascens Sendai, Japan Sendai_Japan_JSN7 KX447753 This study 38°16'N 140°52'E 
L. cinerascens Boryeong, South Korea Boryeong_SouthKorea_BR26 KX447754 This study 38°4'53''N 127°38'16''E 
L. cinerascens Boseong, South Korea Boseong_SouthKorea_GH11 KX447755 This study 34°48'28''N 127°8'15''E 
L. cinerascens Cheju, South Korea Cheju_SouthKorea_Cheju1 KX447756 This study 33°22'N 126°32'E 

Ligia sp. Western Group, South Korea Western_SouthKorea_H36 AY545635 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H35 AY545634 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H34 AY545633 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H33 AY545632 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H32 AY545631 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H31 AY545630 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H30 AY545629 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H29 AY545628 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H28 AY545627 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H27 AY545626 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H26 AY545625 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H25 AY545624 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H24 AY545623 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H23 AY545622 
Jung et al. 

2008 N/A N/A 
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Species Locality Names ID 
Accession 
Numbers Sources Lat Long 

Ligia sp. Western Group, South Korea Western_SouthKorea_H22 AY545621 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H21 AY545620 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H20 AY545619 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H19 AY545618 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H18 AY545617 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H17 AY545616 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H16 AY545615 
Jung et al. 

2008 N/A N/A 

Ligia sp. Western Group, South Korea Western_SouthKorea_H15 AY545614 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H39 EU213044 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H38 EU213043 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H37 EU213042 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H14 AY545613 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H13 AY545612 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H12 AY545611 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H11 AY545610 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H10 AY545609 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H9 AY545608 
Jung et al. 

2008 N/A N/A 
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Species Locality Names ID 
Accession 
Numbers Sources Lat Long 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H8 AY545607 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H7 AY545606 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H6 AY545605 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H5 AY545604 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H4 AY545603 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H3 AY545602 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H2 AY545601 
Jung et al. 

2008 N/A N/A 

Ligia sp. Eastern Group, South Korea Eastern_SouthKorea_H1 AY545600 
Jung et al. 

2008 N/A N/A 
Ligia sp. Cambodia Cambodia_I07 AY606092 GenBank N/A N/A 
Ligia sp. Cambodia Cambodia_I06 AY606091 GenBank N/A N/A 
Ligia sp. Cambodia Cambodia_I05 AY606090 GenBank N/A N/A 
Ligia sp. Cambodia Cambodia_I04 AY606089 GenBank N/A N/A 
Ligia sp. Cambodia Cambodia_I03 AY606088 GenBank N/A N/A 
Ligia sp. Cambodia Cambodia_I02 AY606087 GenBank N/A N/A 
Ligia sp. Cambodia Cambodia_I01 AY606086 GenBank N/A N/A 
Ligia sp. Chinmen Tao, Taiwan ChinmenTao_Taiwan_I08 AY606099 GenBank N/A N/A 
Ligia sp. Chinmen Tao, Taiwan ChinmenTao_Taiwan_I07 AY606098 GenBank N/A N/A 
Ligia sp. Chinmen Tao, Taiwan ChinmenTao_Taiwan_I06 AY606097 GenBank N/A N/A 
Ligia sp. Chinmen Tao, Taiwan ChinmenTao_Taiwan_I05 AY606096 GenBank N/A N/A 
Ligia sp. Chinmen Tao, Taiwan ChinmenTao_Taiwan_I04 AY606095 GenBank N/A N/A 
Ligia sp. Chinmen Tao, Taiwan ChinmenTao_Taiwan_I03 AY606094 GenBank N/A N/A 
Ligia sp. Chinmen Tao, Taiwan ChinmenTao_Taiwan_I01 AY606093 GenBank N/A N/A 
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Species Locality Names ID 
Accession 
Numbers Sources Lat Long 

Ligia sp. Okinawa, Japan Okinawa_Japan_I06 AY606110 GenBank N/A N/A 
Ligia sp. Okinawa, Japan Okinawa_Japan_I05 AY606109 GenBank N/A N/A 
Ligia sp. Okinawa, Japan Okinawa_Japan_I04 AY606108 GenBank N/A N/A 
Ligia sp. Okinawa, Japan Okinawa_Japan_I02 AY606107 GenBank N/A N/A 
Ligia sp. Okinawa, Japan Okinawa_Japan_I01 AY606106 GenBank N/A N/A 
Ligia sp. Chilung, Taiwan Chilung_Taiwan_I05 AY606105 GenBank N/A N/A 
Ligia sp. Chilung, Taiwan Chilung_Taiwan_I04 AY606104 GenBank N/A N/A 
Ligia sp. Chilung, Taiwan Chilung_Taiwan_I02 AY606103 GenBank N/A N/A 
Ligia sp. Chilung, Taiwan Chilung_Taiwan_I01 AY606102 GenBank N/A N/A 
Ligia sp. HuapingHsu, Taiwan HuapingHsu_Taiwan_I02 AY606101 GenBank N/A N/A 
Ligia sp. HuapingHsu, Taiwan HuapingHsu_Taiwan_I01 AY606100 GenBank N/A N/A 

L. exotica Tianjin and Shandong, China 
TianjinAndShandong_China_

LH8 JX414122 
Yin et al. 

2013 N/A N/A 

L. exotica Rushan, Shandong, China Rushan_China_LH9 JX414123 
Yin et al. 

2013 36°50'59''N 121°36'50''E 

L. exotica Rushan, Shandong, China Rushan_China_LH10 JX414124 
Yin et al. 

2013 36°50'59''N 121°36'50''E 

L. exotica Rushan, Shandong, China Rushan_China_LH11 JX414125 
Yin et al. 

2013 36°50'59''N 121°36'50''E 

L. exotica Shandong, China Shandong_China_LH12 JX414126 
Yin et al. 

2013 N/A N/A 

L. exotica Weihai, Shandong, China Weihai_China_LH13 JX414127 
Yin et al. 

2013 37°26'14''N 122°9'42''E 

L. exotica 
Qingdao-Zhanqiao, Shandong, 

China Qingdao_China_LH14 JX414128 
Yin et al. 

2013 36°3'41''N 120°19'10''E 

L. exotica 
Qingdao-Zhanqiao, Shandong, 

China Qingdao_China_LH15 JX414129 
Yin et al. 

2013 36°3'41''N 120°19'10''E 

L. exotica 
Qingdao-Zhanqiao, Shandong, 

China Qingdao_China_LH16 JX414130 
Yin et al. 

2013 36°3'41''N 120°19'10''E 

L. exotica 
Qingdao-Hongdao, Shandong, 

China Qingdao_China_LH17 JX414131 
Yin et al. 

2013 36°10'58''N 120°16'57''E 
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Species Locality Names ID 
Accession 
Numbers Sources Lat Long 

L. exotica 
Qingdao-Hongdao, Shandong, 

China Qingdao_China_LH18 JX414132 
Yin et al. 

2013 36°10'58''N 120°16'57''E 

L. exotica 
Qingdao-Hongdao, Shandong, 

China Qingdao_China_LH19 JX414133 
Yin et al. 

2013 36°10'58''N 120°16'57''E 

L. exotica Lianyungang, Jiangsu, China Lianyungang_China_LH20 JX414134 
Yin et al. 

2013 34°46'32''N 119°26'34''E 

L. exotica Jiangsu, China Jiangsu_China_LH21 JX414135 
Yin et al. 

2013 N/A N/A 

L. exotica Nantong, Jiangsu, China Nantong_China_LH22 JX414136 
Yin et al. 

2013 32°5'7''N 121°35'51''E 

L. exotica Nantong, Jiangsu, China Nantong_China_LH23 JX414137 
Yin et al. 

2013 32°5'7''N 121°35'51''E 

L. exotica Nantong, Jiangsu, China Nantong_China_LH24 JX414138 
Yin et al. 

2013 32°5'7''N 121°35'51''E 
L. exotica East Asia EastAsia_h9 KJ802850 GenBank N/A N/A 
L. exotica East Asia EastAsia_h10 KJ802851 GenBank N/A N/A 
L. exotica East Asia EastAsia_h11 KJ802852 GenBank N/A N/A 
L. exotica East Asia EastAsia_h12 KJ802853 GenBank N/A N/A 
L. exotica East Asia EastAsia_h13 KJ802854 GenBank N/A N/A 

L. exotica Honolulu Harbor, O'ahu, HI, USA Oahu_Hawaii_h99 AY051339 
Yin et al. 

2013 N/A N/A 

L. exotica Cumberland Island, GA, USA 
CumberlandIsland_Georgia_U

SA AF260861 
Yin et al. 

2013 30°51'N 81°27'W 

L. cinerascens Northeast and East China NortheastAndEastChina_LH1 JX414115 
Yin et al. 

2013 N/A N/A 

L. cinerascens Liaoning, China Liaoning_China_LH2 JX414116 
Yin et al. 

2013 N/A N/A 

L. cinerascens Liaoning and Shandong, China 
LiaoningAndShandong_China

_LH3 JX414117 
Yin et al. 

2013 N/A N/A 

L. cinerascens Huludao, Liaoning, China Huludao_China_LH4 JX414118 
Yin et al. 

2013 40°40'30''N 120°49'33''E 

L. cinerascens Tianjin and Shandong, China 
TianjinAndShandong_China_

LH5 JX414119 
Yin et al. 

2013 N/A N/A 
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Species Locality Names ID 
Accession 
Numbers Sources Lat Long 

L. cinerascens Liaoning and Shandong, China 
LiaoningAndShandong_China

_LH6 JX414120 
Yin et al. 

2013 N/A N/A 

L. cinerascens Dalian-Heishijiao, Liaoning, China Dalian_China_LH7 JX414121 
Yin et al. 

2013 38°57'53''N 121°18'53''E 
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APPENDIX 2 

Haplotype information about identical sequences and corresponding representatives preserved in the phylogenetic analyses. 
 

Haplotype Representative Members 
      

The 
number 

of 
members 

1 

Goodland_Flor
ida_Goodland

1 
Palacios_Te
xas_PAL1 

CedarKey_Fl
orida_Cedar2 

Biloxi_Missis
sippi_Biloxi1 

StPetersburg
_Florida_Ta

mpa2 

PortAransas
_Texas_Ara

nsas1 

Biloxi_Mis
sissippi_L
BeachFL2 

Pensacola
_Florida_
Pensacola

1 16 

  

SouthPadreI
sland_Texas

_SPI1 

AveryIsland_
Louisiana_A

VI1 

Chaguaramas
Bay_Trinidad

_CAR6_2 

Eastpoint_Fl
orida_EastPt

1 

IlhaGrande_
Brazil_LEB

1 
Cambodia_

I07 
Cambodia

_I06  

 
 

Cambodia_I
05 

CumberlandIs
land_Georgia

_USA      
 

2 

HiloHarbor_H
awaii_LexHilo

1 

PearlHarbor
_Hawaii_Le

xOah1 
Lutao_Taiwa

n_tait_1 
Toyohashi_Ja

pan_JTO2 
    

3 

3 

SanJuandeUlu
aFort_Veracru
z_Mexico_CA

R30_1 

Jetty_Veracr
uz_Mexico_
CAR31_1 

Chaguaramas
Bay_Trinidad

_CAR6_1 

BlueLagoon_
SouthAfrica_

ZAR17 
    

3 
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Haplotype Representative Members       

The 
number 

of 
members 

4 
Parangipetta_I
ndia_India1_1 

Vilankulos_
Mozambiqu
e_EA_L1_1 

Beira_Moza
mbique_EA_

L2_3 
     

2 

5 
Western_Sout
hKorea_H23 

Otaru_Japan
_JOR1 

Western_Sout
hKorea_H15      2 

6 
Ulleungdo_Ko

rea_UL13 

Boryeong_K
orea_Daeche

n1 
Woojuk_Kor
ea_Woojuk1 

Fukuoka_Jap
an_JFU11 

Niigata_Jap
an_JNI17 

Eastern_Sou
thKorea_H2 

Weihai_Ch
ina_LH13 

Eastern_S
outhKorea

_H9 7 

7 Cambodia_I01 
Cambodia_I

02       1 

8 
ChinmenTao_
Taiwan_I03 

ChinmenTa
o_Taiwan_I

08 
ChinmenTao
_Taiwan_I05 

ChinmenTao
_Taiwan_I04 

    
3 

9 
ChinmenTao_
Taiwan_I01 

ChinmenTa
o_Taiwan_I

07 
      

1 

10 
Okinawa_Japa

n_OK2_7 
Okinawa_Ja

pan_I05 
Okinawa_Jap

an_I02 
Okinawa_Jap

an_I01 

Okinawa_Ja
pan_TOYA

4 
   

4 

11 
Okinawa_Japa

n_I04 
Okinawa_Ja

pan_I06 
      

1 
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Haplotype Representative Members       

The 
number 

of 
members 

12 
Chilung_Taiw

an_I05 

Zhujiajian_
China_ZH2

_5 
Jiangsu_Chin

a_LH21 
Nantong_Chi

na_LH22 
EastAsia_h1

0 
   

4 

13 
Chilung_Taiw

an_I01 
Chilung_Tai

wan_I02 
HuapingHsu_
Taiwan_I01 

     
2 

14 

CalhetasBeach
_Brazil_CAR3

4_1 

HuapingHsu
_Taiwan_I0

2       1 

15 
Rushan_China

_LH10 
Rushan_Chi

na_LH9 
Rushan_Chin

a_LH11 
     

2 

16 

TianjinAndSha
ndong_China_

LH8 
Shandong_C
hina_LH12       1 

17 
Qingdao_Chin

a_LH19 
Qingdao_Ch

ina_LH18 
      

1 

18 

NortheastAnd
EastChina_LH

1 

TianjinAndS
handong_Ch

ina_LH5 
      

1 

19 
Western_Sout
hKorea_H22 

Cheju_Kore
a_Cheju1 

      
1 

20 
Boseong_Kore

a_GH11 

Western_So
uthKorea_H

16 
      

1 
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APPENDIX 3 

Clade support obtained from different methods under different substitution model (i.e., GTR+Γ, TPM2uf+I+Γ, and HKY+I+Γ) with the dataset that only 
included unique sequences (Appendix 6). 
 

 
ML BI 

Clade 
RAxML - 
GTR+Γ 

RAxML - 
HKY+I+Γ 

GARLI - 
GTR+Γ 

GARLI - 
TPM2uf+I+Γ 

GARLI - 
HKY+I+Γ 

MrBayes - 
GTR+Γ 

MrBayes - 
TPM2uf+I+Γ 

MrBayes - 
HKY+I+Γ 

Phycas - 
GTR+Γ 

Phycas - 
HKY+I+Γ 

A 100 100 99 96 99 100 100 100 100 100 
B 80 70 61 74 61 100 100 100 100 100 
C 76 73 65 51 65 95 96 97 99 100 
D 60 55 52 59 50 99 99 99 100 100 

D1 n/a n/a n/a n/a n/a 90 87 83 95 85 
D2 99 98 94 99 96 100 100 100 100 100 
D3 55 n/a n/a n/a n/a 83 81 72 86 68 

D2+D3 52 55 n/a 56 n/a 60 63 72 60 76 
C+D 57 60 n/a 51 n/a 89 94 94 99 99 

B+C+D 80 73 60 75 59 100 100 100 100 100 
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APPENDIX 4 

Settings for Maximum Likelihood and Bayesian analyses.  A All others default; B Average Standard Deviation of Split Frequencies; C estimated in 
Tracer v.1.6; D Effective Sample Size; E Potential Scale Reduction Factor for all parameters. 
 

Method 
Model and 

Priors A 

Iterations 
Generations / 

Bootstrap 
Replicates 

Sample 
Frequency Runs/Chains Burn-in ASDSF B 

Bayes Factors / ML 
Scores (-lLn) C ESS>200 D PSRF E 

RAxML GTR+Γ 1,000 n/a n/a n/a n/a -1936.5887 n/a n/a 
RAxML HKY+I+Γ 1,000 n/a n/a n/a n/a -1946.8587 n/a n/a 
GARLI GTR+Γ 1,000 n/a n/a n/a n/a -1802.5711 n/a n/a 
GARLI TPM2uf+I+Γ 1,000 n/a n/a n/a n/a -2055.0212 n/a n/a 
GARLI HKY+I+Γ 1,000 n/a n/a n/a n/a -1650.6554 n/a n/a 

MrBayes GTR+Γ 100,000,000 10,000 4 10% 0.003743 -2213.7510 Yes 1 
MrBayes TPM2uf+I+Γ 100,000,000 10,000 4 10% 0.003915 -2218.5443 Yes 1 
MrBayes HKY+I+Γ 100,000,000 10,000 4 10% 0.003395 -2217.5341 Yes 1 
Phycas GTR+Γ 1,000,000 10 1/1 10% n/a -2193.3224 Yes n/a 
Phycas HKY+I+Γ 1,000,000 10 1/1 10% n/a -2201.1564 Yes n/a 
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APPENDIX 5 

Sequences alignment in Nexus format (a separate file). 
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APPENDIX 6 

Phylogenetic trees of 81 unique samples reconstructed by RAxML, GARLI, MrBayes, and Phycas, and 
that of 138 samples reconstructed by RAxML. 
 
A to I. Majority-rule consensus trees of 81 samples summarized the results from RAxML (A and B), 
GARLI (C, D, and E), MrBayes (F and G) and Phycas (H and I) under different substitution models (i.e., 
GTR+Γ, HKY+I+Γ and TPM2uf+I+Γ).  Colors correspond to clades in Figure 2.  Numbers by the nodes 
indicate the corresponding Bootstrap Support (BS) for Maximum Likelihood (RAxML and GARLI) 
analyses or Posterior Probabilities (PP) for Bayesian Inference (MrBayes and Phycas).  J. Majority-rule 
consensus tree (RAxML bootstrap) of 138 samples under GTR+Γ model.  Colors correspond to clades in 
Figure 2.  Numbers by the nodes indicate the corresponding Bootstrap Support (BS) for Maximum 
Likelihood (RAxML) analysis.  
 
A. Majority-rule consensus tree of 81 samples reconstructed by RAxML under GTR+Γ model. 
B. Majority-rule consensus tree of 81 samples reconstructed by RAxML under HKY+I+Γ model. 
C. Majority-rule consensus tree of 81 samples reconstructed by GARLI under GTR+Γ model. 
D. Majority-rule consensus tree of 81 samples reconstructed by GARLI under HKY+I+Γ model. 
E. Majority-rule consensus tree of 81 samples reconstructed by GARLI under TPM2uf+I+Γ model. 
F. Majority-rule consensus tree of 81 samples reconstructed by MrBayes under HKY+I+Γ model. 
G. Majority-rule consensus tree of 81 samples reconstructed by MrBayes under TPM2uf+I+Γ model. 
H. Majority-rule consensus tree of 81 samples reconstructed by Phycas under GTR+Γ model. 
I. Majority-rule consensus tree of 81 samples reconstructed by Phycas under HKY+I+Γ model. 
J. Majority-rule consensus tree of 138 samples reconstructed by RAxML under GTR+Γ model. 
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Appendix 6 Continued. 

A.  

 0.03

Eastern coast of South Korea (H6)

Okinawa, Japan

Northeast and East China

Liaoning, China (LH2)

Durban Harbor, South Africa (ZAR16)

Western coast of South Korea (H36)

East Asia (h13)

Huludao, China (LH4)

Western coast of South Korea (H25)

Qingdao, China (LH14)

Dalian, China (LH7)

Western coast of South Korea (H28)

Eastern coast of South Korea (H38)

Eastern coast of South Korea (H11)

East Asia (h9)

East Asia (h12)

Nantong, China (LH23)

Western coast of South Korea (H26)

Western coast of South Korea (H33)

Cambodia

Eastern coast of South Korea (H3)

Mozambique and India

Eastern coast of South Korea (H14)

Western coast of South Korea (H32)

Nantong, China (LH24)

Western and southwestern coasts of South Korea

Western coast of South Korea (H27)

Chilung and HuapingHsu, Taiwan

Western coast of South Korea (H30)

Mexico (Veracruz), Trinidad and South Africa

Qingdao, China (LH15)

ChinmenTao, Taiwan (I06)

South Korea, Japan, and China

Qingdao, China (LH16)

Western coast of South Korea (H19)

Western coast of South Korea (H21)

Eastern coast of South Korea (H39)
Kanagawa, Japan (Japan2_1)

Qingdao, China (QD1_14)

Tianjin and Shandong, China

Eastern coast of South Korea (H13)
Eastern coast of South Korea (H1)

Cambodia (I04)

Western coast of South Korea (H20)

Rushan, China

Liaoning and Shandong, China (LH3)

ChinmenTao, Taiwan

Western coast of South Korea (H31)

Eastern coast of South Korea (H5)

Western coast of South Korea (H29)

Cheju and western coast of South Korea

Eastern coast of South Korea (H7)

Okinawa, Japan

Hawaii, Taiwan, and Japan

Tianjin, China (TJ1)

Eastern coast of South Korea (H4)

Western coast of South Korea (H35)

Chilung, Taiwan and East China

ChinmenTao, Taiwan

Liaoning and Shandong, China (LH6)

Eastern coast of South Korea (H12)

Chilung, Taiwan (I04)

Qingdao, China (LH17)

East Asia (h11)

Cambodia (I03)

Western coast of South Korea (H34)

Western coast of South Korea (H24)

Praia de Calhetas, Brazil and HuapingHsu, Taiwan

Pingtung County, Taiwan (UF3546)

Qingdao, China

Eastern coast of South Korea (H37)

Boryeong, SouthKorea (BR26)

Lianyungang, China (LH20)

Eastern coast of South Korea (H8)

Oahu, Hawaii (h99)

Western coast of South Korea (H17)
Sendai, Japan (JSN7)

Western coast of South Korea (H18)

Western coast of South Korea and Japan

Eastern coast of South Korea (H10)

Gulf of Mexico, Georgia (USA), Trinidad, Brazil, and Cambodia

A

East 

 

L. cinerascens

80

80

57
76

60

52

99

B

C

DD2

D3

L. cinerascens

L. exotica

55

100
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B.  

 0.03

Mozambique and India

Praia de Calhetas, Brazil and HuapingHsu, Taiwan

Kanagawa, Japan (Japan2_1)

South Korea, Japan, and China

Western coast of South Korea (H27)

ChinmenTao, Taiwan (I06)

Qingdao, China (LH15)

Cambodia (I04)

Pingtung County, Taiwan (UF3546)

Mexico (Veracruz), Trinidad and South Africa

Cambodia (I03)

ChinmenTao, Taiwan

Western coast of South Korea (H17)

Okinawa, Japan

Western coast of South Korea (H21)

Tianjin and Shandong, China

Western coast of South Korea (H19)

Liaoning, China (LH2)

Qingdao, China (QD1_14)

Liaoning and Shandong, China (LH6)

Eastern coast of South Korea (H10)

Western coast of South Korea (H30)

Western coast of South Korea (H32)

Western and southwestern coasts of South Korea

Gulf of Mexico, Georgia (USA), Trinidad, Brazil, and Cambodia

Sendai, Japan (JSN7)

East Asia (h13)

Qingdao, China (LH14)

Huludao, China (LH4)

Eastern coast of South Korea (H6)
Eastern coast of South Korea (H38)

Eastern coast of South Korea (H5)

Nantong, China (LH23)

Rushan, China

East Asia (h12)

Eastern coast of South Korea (H39)

Chilung, Taiwan and East China

Western coast of South Korea (H34)

Western coast of South Korea (H31)

Qingdao, China (LH17)

Eastern coast of South Korea (H11)

Western coast of South Korea (H18)

Western coast of South Korea (H28)

Qingdao, China

Eastern coast of South Korea (H12)

Western coast of South Korea (H36)

Qingdao, China (LH16)

Okinawa, Japan

Chilung and HuapingHsu, Taiwan

Tianjin, China (TJ1)

Western coast of South Korea (H25)

Eastern coast of South Korea (H3)
Eastern coast of South Korea (H4)

East Asia (h9)

Eastern coast of South Korea (H13)

Liaoning and Shandong, China (LH3)

Oahu, Hawaii (h99)

Western coast of South Korea (H29)

East Asia (h11)

Western coast of South Korea (H20)

Chilung, Taiwan (I04)

Hawaii, Taiwan, and Japan

Western coast of South Korea (H24)

Eastern coast of South Korea (H14)

Northeast and East China

Western coast of South Korea (H26)

Eastern coast of South Korea (H7)

Cambodia

ChinmenTao, Taiwan

Lianyungang, China (LH20)

Durban Harbor, South Africa (ZAR16)

Nantong, China (LH24)

Eastern coast of South Korea (H1)
Eastern coast of South Korea (H37)

Western coast of South Korea and Japan

Boryeong, SouthKorea (BR26)
Cheju and western coast of South Korea

Dalian, China (LH7)

Western coast of South Korea (H33)

Eastern coast of South Korea (H8)

Western coast of South Korea (H35)

A

East 

 

L. cinerascens

73

70

60
73

55

55

98

B

C

D

D2

L. exotica

L. cinerascens

100
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C.  

 0.03

Western coast of South Korea (H35)

Western coast of South Korea (H30)

Okinawa, Japan

Qingdao, China (LH14)

Eastern coast of South Korea (H13)

Eastern coast of South Korea (H5)

Western coast of South Korea (H36)

Western coast of South Korea (H27)

Hawaii, Taiwan, and Japan

Eastern coast of South Korea (H39)

Western and southwestern coasts of South Korea

Nantong, China (LH23)

Qingdao, China (QD1_14)

Western coast of South Korea and Japan

Western coast of South Korea (H20)

Western coast of South Korea (H18)

Oahu, Hawaii (h99)

Boryeong, SouthKorea (BR26)

East Asia (h12)

Western coast of South Korea (H33)

Eastern coast of South Korea (H4)

Qingdao, China (LH17)

ChinmenTao, Taiwan

Liaoning and Shandong, China (LH3)

Eastern coast of South Korea (H7)

Western coast of South Korea (H28)

Western coast of South Korea (H32)

Northeast and East China

Rushan, China
Tianjin and Shandong, China

Eastern coast of South Korea (H37)

Cambodia

East Asia (h13)

Okinawa, Japan

East Asia (h9)
Nantong, China (LH24)
Lianyungang, China (LH20)

Tianjin, China (TJ1)

Chilung, Taiwan (I04)

Qingdao, China

Pingtung County, Taiwan (UF3546)

Durban Harbor, South Africa (ZAR16)

Cheju and western coast of South Korea

ChinmenTao, Taiwan (I06)

Cambodia (I04)

Eastern coast of South Korea (H11)

Sendai, Japan (JSN7)

Eastern coast of South Korea (H38)

South Korea, Japan, and China

Qingdao, China (LH15)

Praia de Calhetas, Brazil and HuapingHsu, Taiwan

Western coast of South Korea (H29)

Liaoning, China (LH2)

Eastern coast of South Korea (H6)
Eastern coast of South Korea (H8)

Chilung and HuapingHsu, Taiwan

ChinmenTao, Taiwan

Western coast of South Korea (H24)

Cambodia (I03)

Huludao, China (LH4)

Western coast of South Korea (H31)

Western coast of South Korea (H26)

Qingdao, China (LH16)

Liaoning and Shandong, China (LH6)

Chilung, Taiwan and East China

Western coast of South Korea (H19)

Western coast of South Korea (H17)

Eastern coast of South Korea (H10)

Mexico (Veracruz), Trinidad and South Africa

Western coast of South Korea (H21)

Western coast of South Korea (H34)

Gulf of Mexico, Georgia (USA), Trinidad, Brazil, and Cambodia
Mozambique and India

Eastern coast of South Korea (H1)

Dalian, China (LH7)

Eastern coast of South Korea (H12)

Eastern coast of South Korea (H3)

Kanagawa, Japan (Japan2_1)

East Asia (h11)

Eastern coast of South Korea (H14)

Western coast of South Korea (H25)

A
C

B

D

L. cinerascens

60

65

61

52

94

L. exotica

D2

99
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D.  

0.03

Western coast of South Korea (H27)

Kanagawa, Japan (Japan2_1)

Western coast of South Korea (H21)

Eastern coast of South Korea (H14)

Qingdao, China (LH15)

Eastern coast of South Korea (H3)

Gulf of Mexico, Georgia (USA), Trinidad, Brazil, and Cambodia

Western coast of South Korea (H19)

South Korea, Japan, and China
Qingdao, China (QD1_14)

Durban Harbor, South Africa (ZAR16)

Eastern coast of South Korea (H10)

Western coast of South Korea (H29)

Western coast of South Korea (H35)

Eastern coast of South Korea (H11)

Huludao, China (LH4)

Liaoning and Shandong, China (LH3)

Liaoning, China (LH2)

Okinawa, Japan

Nantong, China (LH23)

Praia de Calhetas, Brazil and HuapingHsu, Taiwan

Eastern coast of South Korea (H39)

Qingdao, China (LH16)

ChinmenTao, Taiwan

East Asia (h12)

Western coast of South Korea (H28)

Qingdao, China (LH14)

Western coast of South Korea (H24)

Cheju and western coast of South Korea

Eastern coast of South Korea (H6)
Eastern coast of South Korea (H8)

Eastern coast of South Korea (H7)

Western coast of South Korea (H32)

Chilung and HuapingHsu, Taiwan

Eastern coast of South Korea (H13)

ChinmenTao, Taiwan (I06)
Hawaii, Taiwan, and Japan

Okinawa, Japan

Chilung, Taiwan (I04)

Western coast of South Korea (H31)

Mexico (Veracruz), Trinidad and South Africa

Western and southwestern coasts of South Korea

Nantong, China (LH24)

Sendai, Japan (JSN7)

Qingdao, China

East Asia (h9)

Tianjin and Shandong, China

Western coast of South Korea (H30)

Mozambique and India

Eastern coast of South Korea (H12)

ChinmenTao, Taiwan

Cambodia (I03)

Western coast of South Korea (H20)

Western coast of South Korea (H33)

Cambodia (I04)
Pingtung County, Taiwan (UF3546)

Cambodia

East Asia (h11)

Western coast of South Korea (H17)

Western coast of South Korea (H34)

Western coast of South Korea (H36)

Western coast of South Korea and Japan

Western coast of South Korea (H18)

Qingdao, China (LH17)

Boryeong, SouthKorea (BR26)

East Asia (h13)

Northeast and East China

Dalian, China (LH7)

Rushan, China

Tianjin, China (TJ1)

Liaoning and Shandong, China (LH6)

Western coast of South Korea (H26)

Chilung, Taiwan and East China
Lianyungang, China (LH20)

Eastern coast of South Korea (H38)

Western coast of South Korea (H25)

Eastern coast of South Korea (H1)

Eastern coast of South Korea (H5)

Eastern coast of South Korea (H37)

Oahu, Hawaii (h99)

Eastern coast of South Korea (H4)

A
C

B

 

D

L. cinerascens

59

65

61

50

96

L. exotica

D2

99



 

 57 

E.  

0.03

Rushan, China

Western and southwestern coasts of South Korea

Eastern coast of South Korea (H7)

Cheju and western coast of South Korea

Western coast of South Korea (H34)

Oahu, Hawaii (h99)

Qingdao, China (QD1_14)

Qingdao, China

Hawaii, Taiwan, and Japan

Eastern coast of South Korea (H3)

Chilung and HuapingHsu, Taiwan

Western coast of South Korea (H20)

Sendai, Japan (JSN7)

Huludao, China (LH4)

Eastern coast of South Korea (H38)

East Asia (h9)
Lianyungang, China (LH20)

Western coast of South Korea (H17)

Western coast of South Korea (H28)

Okinawa, Japan

Qingdao, China (LH14)

Liaoning and Shandong, China (LH6)

Western coast of South Korea (H31)

Western coast of South Korea and Japan

Western coast of South Korea (H33)

Kanagawa, Japan (Japan2_1)

Eastern coast of South Korea (H5)

Boryeong, SouthKorea (BR26)

ChinmenTao, Taiwan

Cambodia

Cambodia (I04)

Eastern coast of South Korea (H13)

East Asia (h12)

Western coast of South Korea (H35)

Eastern coast of South Korea (H10)

Eastern coast of South Korea (H12)

Gulf of Mexico, Georgia (USA), Trinidad, Brazil, and Cambodia

Eastern coast of South Korea (H8)

Eastern coast of South Korea (H39)

Tianjin and Shandong, China

ChinmenTao, Taiwan (I06)

Qingdao, China (LH17)

Pingtung County, Taiwan (UF3546)

Tianjin, China (TJ1)

Eastern coast of South Korea (H37)

Western coast of South Korea (H25)

Mexico (Veracruz), Trinidad and South Africa

Western coast of South Korea (H21)

Dalian, China (LH7)

ChinmenTao, Taiwan

Western coast of South Korea (H32)

Liaoning and Shandong, China (LH3)

Western coast of South Korea (H18)

Northeast and East China

Western coast of South Korea (H30)

Durban Harbor, South Africa (ZAR16)

Western coast of South Korea (H29)

Okinawa, Japan

Mozambique and India

Qingdao, China (LH16)

Praia de Calhetas, Brazil and HuapingHsu, Taiwan

South Korea, Japan, and China

Eastern coast of South Korea (H14)

Nantong, China (LH23)

Western coast of South Korea (H19)

Chilung, Taiwan and East China

Western coast of South Korea (H26)

Nantong, China (LH24)

Western coast of South Korea (H36)

Chilung, Taiwan (I04)

Cambodia (I03)

Western coast of South Korea (H27)

Eastern coast of South Korea (H6)

East Asia (h11)

Qingdao, China (LH15)

Eastern coast of South Korea (H11)

Western coast of South Korea (H24)

Eastern coast of South Korea (H4)

Liaoning, China (LH2)

Eastern coast of South Korea (H1)

East Asia (h13)

A

C

B

D

L. cinerascens

75

74

50
51

99

L. exotica

D2

56

59

96
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F.  

0.4

Eastern coast of South Korea (H12)

Cheju and western coast of South Korea

Mexico (Veracruz), Trinidad and South Africa

Pingtung County, Taiwan (UF3546)

Huludao, China (LH4)

Mozambique and India

Eastern coast of South Korea (H6)

Gulf of Mexico, Georgia (USA), Trinidad, Brazil, and Cambodia

ChinmenTao, Taiwan (I06)

Western coast of South Korea (H26)

Liaoning and Shandong, China (LH6)

Kanagawa, Japan (Japan2_1)

Eastern coast of South Korea (H13)

Eastern coast of South Korea (H10)

Liaoning, China (LH2)

Eastern coast of South Korea (H8)

Eastern coast of South Korea (H11)

Eastern coast of South Korea (H7)

Northeast and East China

Western coast of South Korea (H29)

Eastern coast of South Korea (H5)

Qingdao, China (LH17)

East Asia (h12)

Western coast of South Korea (H18)

Western coast of South Korea and Japan

Western coast of South Korea (H28)

Durban Harbor, South Africa (ZAR16)

Nantong, China (LH24)

Western coast of South Korea (H36)

ChinmenTao, Taiwan

Western coast of South Korea (H17)

Dalian, China (LH7)

Chilung, Taiwan (I04)

Nantong, China (LH23)
Lianyungang, China (LH20)

Qingdao, China (QD1_14)

Western coast of South Korea (H25)

Chilung, Taiwan and East China

Sendai, Japan (JSN7)

Rushan, China

Western coast of South Korea (H32)

Western coast of South Korea (H19)

Praia de Calhetas, Brazil and HuapingHsu, Taiwan

Western coast of South Korea (H33)

Eastern coast of South Korea (H14)

Oahu, Hawaii (h99)

Western coast of South Korea (H27)

Western coast of South Korea (H21)

Cambodia

Tianjin, China (TJ1)

Western coast of South Korea (H30)

Western coast of South Korea (H31)

Okinawa, Japan

Western and southwestern coasts of South Korea

Western coast of South Korea (H35)

Qingdao, China (LH15)

South Korea, Japan, and China

East Asia (h9)

Chilung and HuapingHsu, Taiwan

Western coast of South Korea (H24)

Western coast of South Korea (H34)

Qingdao, China (LH14)

Okinawa, Japan
Qingdao, China (LH16)

Cambodia (I04)

Eastern coast of South Korea (H39)

Eastern coast of South Korea (H4)

Boryeong, SouthKorea (BR26)

Western coast of South Korea (H20)

Cambodia (I03)

Eastern coast of South Korea (H1)

Hawaii, Taiwan, and Japan

Liaoning and Shandong, China (LH3)

ChinmenTao, Taiwan

Tianjin and Shandong, China

East Asia (h13)

Eastern coast of South Korea (H37)

Eastern coast of South Korea (H3)

Qingdao, China

East Asia (h11)

Eastern coast of South Korea (H38)

A

 

B

C

 

D

L. cinerascens

100

94

100

97

99

83

72

100

72

L. exotica

D1

D3

100
D2
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G.  

0.4

Eastern coast of South Korea (H37)

Cambodia

Eastern coast of South Korea (H39)

Western coast of South Korea (H32)

ChinmenTao, Taiwan

Liaoning, China (LH2)

Oahu, Hawaii (h99)

Northeast and East China

Pingtung County, Taiwan (UF3546)

Hawaii, Taiwan, and Japan

Eastern coast of South Korea (H8)

Chilung and HuapingHsu, Taiwan

Western coast of South Korea (H36)

Cambodia (I03)

Western coast of South Korea (H24)

Eastern coast of South Korea (H11)

Qingdao, China (LH17)
Qingdao, China (LH15)

Western coast of South Korea (H27)

Western coast of South Korea and Japan

Tianjin and Shandong, China

Eastern coast of South Korea (H14)

Western coast of South Korea (H17)

Cambodia (I04)

Cheju and western coast of South Korea

Western coast of South Korea (H30)

Liaoning and Shandong, China (LH3)

Eastern coast of South Korea (H12)

Western coast of South Korea (H34)

East Asia (h9)

Mexico (Veracruz), Trinidad and South Africa

Lianyungang, China (LH20)

Okinawa, Japan

ChinmenTao, Taiwan

Qingdao, China (QD1_14)

Kanagawa, Japan (Japan2_1)

Qingdao, China

Eastern coast of South Korea (H10)

Eastern coast of South Korea (H5)

ChinmenTao, Taiwan (I06)

Eastern coast of South Korea (H3)

Rushan, China

Huludao, China (LH4)

Durban Harbor, South Africa (ZAR16)

Western coast of South Korea (H20)

Chilung, Taiwan (I04)

Western and southwestern coasts of South Korea

Western coast of South Korea (H19)

East Asia (h11)

Nantong, China (LH24)

Western coast of South Korea (H18)

Western coast of South Korea (H21)

Western coast of South Korea (H29)

Western coast of South Korea (H31)

Tianjin, China (TJ1)

Dalian, China (LH7)

Gulf of Mexico, Georgia (USA), Trinidad, Brazil, and Cambodia

Sendai, Japan (JSN7)

Eastern coast of South Korea (H1)

Nantong, China (LH23)

Eastern coast of South Korea (H13)

Praia de Calhetas, Brazil and HuapingHsu, Taiwan

Chilung, Taiwan and East China

Western coast of South Korea (H28)

Liaoning and Shandong, China (LH6)

Qingdao, China (LH14)

Western coast of South Korea (H33)

East Asia (h12)

Western coast of South Korea (H26)

East Asia (h13)

Mozambique and India

Boryeong, SouthKorea (BR26)

Eastern coast of South Korea (H7)

Qingdao, China (LH16)

Eastern coast of South Korea (H4)

South Korea, Japan, and China

Western coast of South Korea (H25)

Eastern coast of South Korea (H38)

Western coast of South Korea (H35)

Eastern coast of South Korea (H6)

Okinawa, Japan

A

 

B

C

 

D

L. cinerascens

100

94

100

96

99

87

63

100

81

L. exotica

D1

D2

D3

100
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H.  

0.02

Mozambique and India

Eastern coast of South Korea (H14)

Nantong, China (LH23)

Western coast of South Korea (H28)

Eastern coast of South Korea (H39)

Eastern coast of South Korea (H4)

Cambodia (I04)

Eastern coast of South Korea (H5)

Tianjin and Shandong, China

East Asia (h9)

Kanagawa, Japan (Japan2_1)

Eastern coast of South Korea (H11)

East Asia (h13)

Cambodia (I03)

Eastern coast of South Korea (H37)

Eastern coast of South Korea (H7)

Cambodia

Liaoning and Shandong, China (LH6)

Eastern coast of South Korea (H38)

Pingtung County, Taiwan (UF3546)

Oahu, Hawaii (h99)

Eastern coast of South Korea (H3)
Eastern coast of South Korea (H1)

Eastern coast of South Korea (H10)

Western coast of South Korea (H35)

Western coast of South Korea (H27)

Okinawa, Japan

ChinmenTao, Taiwan (I06)

Western coast of South Korea (H36)

Okinawa, Japan

East Asia (h12)

Liaoning and Shandong, China (LH3)

Praia de Calhetas, Brazil and HuapingHsu, Taiwan

Western coast of South Korea (H31)

Lianyungang, China (LH20)

Northeast and East China

Chilung and HuapingHsu, Taiwan

Western and southwestern coasts of South Korea

Gulf of Mexico, Georgia (USA), Trinidad, Brazil, and Cambodia

Western coast of South Korea (H34)

Western coast of South Korea (H20)

Eastern coast of South Korea (H8)

Mexico (Veracruz), Trinidad and South Africa

Western coast of South Korea (H30)

Western coast of South Korea (H19)

Cheju and western coast of South Korea

Hawaii, Taiwan, and Japan

Durban Harbor, South Africa (ZAR16)

Eastern coast of South Korea (H6)

Western coast of South Korea and Japan

Qingdao, China

Western coast of South Korea (H18)

Huludao, China (LH4)

South Korea, Japan, and China

Western coast of South Korea (H33)

Chilung, Taiwan and East China

Tianjin, China (TJ1)

Qingdao, China (LH16)

Eastern coast of South Korea (H12)

Qingdao, China (LH14)

Dalian, China (LH7)

Sendai, Japan (JSN7)

Western coast of South Korea (H17)

Qingdao, China (QD1_14)

ChinmenTao, Taiwan

Western coast of South Korea (H21)

Western coast of South Korea (H29)

Boryeong, SouthKorea (BR26)

Western coast of South Korea (H26)

Eastern coast of South Korea (H13)

Nantong, China (LH24)

Western coast of South Korea (H32)

Chilung, Taiwan (I04)

Qingdao, China (LH17)

ChinmenTao, Taiwan

Liaoning, China (LH2)

Western coast of South Korea (H25)

East Asia (h11)

Western coast of South Korea (H24)

Rushan, China

Qingdao, China (LH15)

A

 
B

C

 

D

L. cinerascens

100

100

99

99

100

95

60

100

86

L. exotica

D1

D2

D3

100



 

 61 

I.  

 0.02

Cambodia (I04)

East Asia (h9)

Eastern coast of South Korea (H1)

Western coast of South Korea (H28)

Western and southwestern coasts of South Korea

Lianyungang, China (LH20)
Chilung, Taiwan and East China

Cheju and western coast of South Korea

Okinawa, Japan

Liaoning and Shandong, China (LH6)

Western coast of South Korea (H31)

Kanagawa, Japan (Japan2_1)

Dalian, China (LH7)

South Korea, Japan, and China

Liaoning and Shandong, China (LH3)

Boryeong, SouthKorea (BR26)

ChinmenTao, Taiwan

Eastern coast of South Korea (H10)

Rushan, China

Cambodia

Northeast and East China

Durban Harbor, South Africa (ZAR16)

East Asia (h11)

Hawaii, Taiwan, and Japan

Mexico (Veracruz), Trinidad and South Africa

Western coast of South Korea (H29)

Chilung, Taiwan (I04)

Tianjin, China (TJ1)

Western coast of South Korea (H35)

Pingtung County, Taiwan (UF3546)

Eastern coast of South Korea (H8)
Eastern coast of South Korea (H6)

Mozambique and India

Eastern coast of South Korea (H5)

Praia de Calhetas, Brazil and HuapingHsu, Taiwan

Eastern coast of South Korea (H13)

Western coast of South Korea and Japan

Western coast of South Korea (H32)

Qingdao, China (LH15)

Gulf of Mexico, Georgia (USA), Trinidad, Brazil, and Cambodia

Western coast of South Korea (H24)

Western coast of South Korea (H25)

East Asia (h13)

ChinmenTao, Taiwan

Liaoning, China (LH2)

Qingdao, China

Oahu, Hawaii (h99)

Western coast of South Korea (H21)

Sendai, Japan (JSN7)

Eastern coast of South Korea (H3)

Nantong, China (LH24)

Western coast of South Korea (H34)

Eastern coast of South Korea (H11)

Western coast of South Korea (H33)

Qingdao, China (LH16)

Qingdao, China (LH17)

Cambodia (I03)

Western coast of South Korea (H26)

Eastern coast of South Korea (H12)

Eastern coast of South Korea (H4)
Eastern coast of South Korea (H7)

ChinmenTao, Taiwan (I06)

Qingdao, China (QD1_14)

Chilung and HuapingHsu, Taiwan

Huludao, China (LH4)

Western coast of South Korea (H17)

East Asia (h12)

Western coast of South Korea (H30)

Eastern coast of South Korea (H37)

Okinawa, Japan

Western coast of South Korea (H19)

Nantong, China (LH23)

Eastern coast of South Korea (H14)

Western coast of South Korea (H18)

Qingdao, China (LH14)

Eastern coast of South Korea (H39)

Eastern coast of South Korea (H38)

Western coast of South Korea (H27)

Western coast of South Korea (H36)

Tianjin and Shandong, China

Western coast of South Korea (H20)

A

 

B

C

 

D

L. cinerascens

100

100

99

100

100

85

76

100

68

L. exotica

D1

D2

D3

100
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J.  

 

Niigata, Japan (JNI17)

Biloxi, Mississippi (Biloxi1)

Chilung, Taiwan (I01)

Ulleungdo, South Korea (UL13)

Cambodia (I04)

Qingdao, China (LH15)

Qingdao, China (LH14)

Okinawa, Japan (I02)

Chilung, Taiwan (I02)

Lutao, Taiwan (tait_1)

Nantong, China (LH23)

East Asia (h10)

Qingdao, China (LH19)

South Padre Island, Texas (SPI1)

Chilung, Taiwan (I04)

Chinmen Tao, Taiwan (I01)

Qingdao, China (LH16)

Blue Lagoon, South Africa (ZAR17)

St Petersburg, Florida (Tampa2)

Qingdao, China (LH17)

Palacios, Texas (PAL1)

Chaguaramas Bay, Trinidad (CAR6_1)

Chinmen Tao, Taiwan (I04)

East Asia (h11)

Rushan, China (LH11)

Chilung, Taiwan (I05)

Qingdao, China (QD1_14)

Eastern coast of South Korea (H9)

Western coast of South Korea (H20)

Eastern coast of South Korea (H5)

Okinawa, Japan (I06)

Eastern coast of South Korea (H8)

Lianyungang, China (LH20)

Cambodia (I01)

Nantong, China (LH22)

Beira, Mozambique (EA_L2_3)

Western coast of South Korea (H15)

Port Aransas, Texas (Aransas1)

Chinmen Tao, Taiwan (I07)

Western coast of South Korea (H29)

Western coast of South Korea (H24)

Western coast of South Korea (H30)

Zhujiajian, China (ZH2_5)

Goodland, Florida (Goodland1)

Durban Harbor, South Africa (ZAR16)

Ilha Grande, Brazil (LEB1)

Cambodia (I05)

East Asia (h12)

Western coast of South Korea (H26)

Boryeong, South Korea (Daechen1)

Otaru, Japan (JOR1)

Eastern coast of South Korea (H10)

Fukuoka, Japan (JFU11)

Rushan, China (LH9)

Jiangsu, China (LH21)

Okinawa, Japan (I04)

HuapingHsu, Taiwan (I02)

Biloxi, Mississippi (LBeachFL2)

Chinmen Tao, Taiwan (I05)

Cedar Key, Florida (Cedar2)

Chinmen Tao, Taiwan (I03)

Woojuk, South Korea (Woojuk1)

HuapingHsu, Taiwan (I01)

Pensacola, Florida (Pensacola1)

Eastern coast of South Korea (H1)

East Asia (h9)

Toyohashi, Japan (JTO2)

San Juan de Ulua Fort, Veracruz, Mexico (CAR30_1)

East Asia (h13)

Pearl Harbor, Hawaii (LexOah1)

Cumberland Island, Georgia, USA

Chinmen Tao, Taiwan (I06)

Eastern coast of South Korea (H13)

Veracruz, Mexico (CAR31_1)

Nantong, China (LH24)

Eastpoint, Florida (EastPt1)

Okinawa, Japan (I01)

Praia de Calhetas, Brazil (CAR34_1)

Shandong, China (LH12)

Eastern coast of South Korea (H6)

Tianjin and Shandong, China (LH8)

Okinawa, Japan (I05)

Cambodia (I03)

Eastern coast of South Korea (H4)

Okinawa, Japan (TOYA4)

Eastern coast of South Korea (H3)

Eastern coast of South Korea (H39)

Western coast of South Korea (H23)

Pingtung County, Taiwan (UF3546)

Eastern coast of South Korea (H12)

Qingdao, China (LH18)

Chaguaramas Bay, Trinidad (CAR6_2)

Western coast of South Korea (H19)

Cambodia (I07)

Eastern coast of South Korea (H37)

Western coast of South Korea (H34)

Eastern coast of South Korea (H2)

Rushan, China (LH10)

Tianjin, China (TJ1)

Weihai, China (LH13)

Eastern coast of South Korea (H14)

Eastern coast of South Korea (H38)

Okinawa, Japan (OK2_7)

Hilo Harbor, Hawaii (LexHilo1)

Eastern coast of South Korea (H7)

Chinmen Tao, Taiwan (I08)

Avery Island, Louisiana (AVI1)

Sendai, Japan (JSN7)

Oahu, Hawaii (h99)

Eastern coast of South Korea (H11)

Kanagawa, Japan (Japan2_1)

Cambodia (I06)

Western coast of South Korea (H31)

Parangipetta, India (India1_1)
Vilankulos, Mozambique (EA_L1_1)

Cambodia (I02)

A

 
B

C
 

D

74

73

53

70

66

52

98
D2

L. cinerascens

L. exotica

100


