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ABSTRACT 

Transportation agencies use pavement management systems (PMSs) to make 

efficient decisions about allocating available resources to the maintenance, 

rehabilitation, and renewal of their roadway networks. One of the most costly parts of 

the PMS process is collecting pavement condition data.  The efficiency and reliability of 

decisions made based on PMSs depend upon the quality of this data. Thus, transportation 

agencies need to ensure that dollars invested in this data are well spent, and pavement 

condition data has the level of quality necessary to meet PMS requirements. Therefore, 

assessing and improving the quality of pavement management data is a major challenge 

for both researchers and practitioners.  

This study advances the quality assessment of network-level pavement condition 

data by answering the following questions: (a) How can we identify potential errors in 

pavement condition data used in PMSs? (b) How do multiple dimensions of error 

detection affect our ability to detect errors? (c) How does the accuracy of pavement 

condition data impact predictions of future road network performance? And (d) How do 

we measure multiple quality dimensions of pavement condition datasets? First, this 

research devises and implements a computational method to identify potential errors in 

pavement condition data, integrating conventional statistical methods and heuristics.  

Second, the effect of considering multiple dimensions of error detection in pavement 

condition data was investigated. These dimensions are based on data properties, 

including time series trends in pavement condition data, variability within uniform 

performance families, and the consistency between several performance indicators. 
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Third, this research presents a quantitative assessment of the impact of data accuracy on 

the estimated remaining service life (RSL) of a roadway network as an overall measure 

of network health. Finally, it provides metrics for measuring data quality dimensions for 

pavement condition datasets.   

The developed technique was validated using pavement condition field data for a 

road network in Texas. The technique has the advantage of differentiating between 

extreme yet valid data points and potential errors. In addition, accounting for several 

properties of pavement condition data to identify potential errors improves the results of 

this technique. It is hoped that this research will enable pavement engineers to identify 

potential errors in pavement condition data, and more effectively assure data quality. 
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NOMENCLATURE 

AASHTO  American Association of States Highway and Transportation Officials 

AADT  Average Annual Daily Traffic 

AC  Alligator Cracking 

ACP   Asphalt Concrete Pavement 

BC  Block Cracking 

BCA  Benefit-Cost Analysis 

CI   Condition Index 

DRUT  Deep Rutting 

DS   Distress Score 

DOT  Department of Transportation 

ESAL  Equivalent Single Axle Load 

EUAC  Equivalent Uniform Annual Cost 

FLSH  Flushing 

FAIL  Surface Failure 

FHWA  Federal Highway Administration 
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GIS   Geographic Information System 

HR   Heavy Rehabilitation 

IQR   Interquartile Range 

IRI   International Roughness Index 

LC  Longitudinal Cracking 

LR   Light Rehabilitation 

M&R   Maintenance and Rehabilitation 

MR   Medium Rehabilitation 

NCHRP  National Cooperative Highway Research Program 

OMB  Office of Management and Budget 

PM   Preventive Maintenance 

PMIS   Pavement Management Information System 

PMS   Pavement Management System 

PWV  Present Worth Value 

RAV  Raveling 

ShRUT Shallow Rutting 
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TC  Transvers Cracking 

TxDOT  Texas Department of Transportation 

USOMB United States Office of Management and Budget 

W-F  Worst-First 
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1. INTRODUCTION

Motivation and Problem Statement 

Transportation agencies use a wide range of data (e.g., safety, mobility, and 

infrastructure asset management) to make informed decisions about allocating available 

resources to construct, operate, and maintain a sustainable, safe, and efficient 

transportation system. These data are rapidly growing due to advanced data collection 

and storage technologies. New data records are added to store historical data and new 

data fields are added to store new attributes, leading to increased data management 

challenges. These challenges are further complicated by changes in data collection 

methods and equipment over the time. One of these challenges is how to measure and 

assure the quality of these large and complex datasets. This research addresses this 

challenge as it applies to pavement condition data at the network level. 

Pavement management is defined as a management approach that pavement 

owners use to make cost-effective decisions about the maintenance, rehabilitation, and 

renewal of a road network (AASHTO 2001). Pavement management is a data-driven 

process; with pavement condition data being a key component of any pavement 

management system (PMS). The quality of this data can affect not only the assessment 

of current and predicted future condition of the network, but also the quality of decisions 

regarding maintenance and rehabilitation (M&R) activities (Saliminejad and Gharaibeh 

2013). Specific gaps in the pavement management literature that this research seeks to 

fill are as follows: 
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 The large size of pavement condition data makes manual error detection

methods practically impossible to implement. Thus, automated error 

detection methods need to be developed and integrated with computerized 

PMSs.   

 Pavement condition is measured using several indicators, such as the

International Roughness Index (IRI), rutting, and various types of 

cracking. Current error detection methods in pavement management 

usually evaluate each pavement condition indicator individually to 

identify outliers. Current techniques use the time series trend for each 

condition indicator to identify any unexpected changes that may denote data 

quality issues (Pierce et al. 2013) or check for out of range values, missing 

data, and sample checks of distress ratings (Flintsch and McGhee 2009). 

By doing so, these methods ignore consistency among multiple pavement 

condition indicators. 

 Current statistical techniques used for outlier detection cannot

differentiate between an extreme data point and a potential error. Outliers 

could be extreme, yet valid, data for pavement sections that are affected 

by unusual conditions (e.g., premature failure or over-design).  

While improving the quality of pavement condition data is desired, it requires 

additional costs, such as more training for inspectors, more advanced equipment, and 

more detailed measurements (AASHTO 1993; Livneh 1994). Thus, it is important to 

measure the impact of data quality improvement on PMS outputs (e.g. predicted network 
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condition) so that the additional cost of quality can be justified. To address this issue, 

this study provides a quantitative analysis on the effect of erroneous data on PMS output.  

Research Questions and General Hypothesis 

Based on the aforementioned observations, this research addresses the following 

specific questions: 

 How can we accurately identify potential errors in pavement condition 

data at the network level?  

 How does accuracy of pavement condition data impact the predictions of 

future performance of the road network (a key capability of PMSs)?  

 How can we measure the overall quality of pavement condition datasets? 

This research hypothesizes that the integration of heuristic-based consistency 

checks and statistical outlier detection methods can improve our ability to identify 

potential errors in pavement condition data. Such method will allow for differentiating 

between a dissimilar (but valid) outlier and a potential data error, and thus improve the 

quality of pavement condition data.  This general hypothesis is based on the observation 

that for any given pavement section, different pavement condition indicators change 

over time in a consistent manner (increase, decrease, or stay the same). Thus, if the 

change in one of the indicators can be explained by the section deterioration or 

improvement (e.g., due to a treatment), changes in the other indicators should lead to the 

same conclusion, and vice versa. To test this hypothesis, an integrated heuristic-

statistical method was developed and validated using actual pavement condition data 
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from Texas. This method integrates three properties of pavement condition data to 

identify data errors and measure accuracy (Figure 1): 

 Consistency among multiple condition indicators 

 Variability within each uniform performance family 

 Time series for each condition indicator 

   

 

Figure 1  Properties of pavement condition data considered in the developed error 

detection technique. 

 

Finally, metrics are proposed for measuring several quality dimensions of 

pavement condition datasets. 

Research Objectives 

The aim of this research is to develop computational techniques for measuring 

and improving the quality of pavement condition data at the network level. This entails 

the following specific objectives:  
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Develop a Computational Technique to Detect Potential Errors in Pavement Condition 

Datasets at the Network Level 

To accomplish this objective, the following tasks were carried out: 

 Establish pavement performance families. 

 Detect statistical outliers within each pavement family for each pavement 

condition indicator. 

 Integrate outlier detection method and heuristic-based consistency checks 

to identify potential errors in pavement condition data. 

Validate the Developed Error Detection Technique 

This objective was accomplished by testing and validating the developed error 

detection method using a real world pavement condition data from Texas.  

Assess the Impact of Accuracy of Pavement Condition Data on Predictions of Future 

Performance of the Road Network 

This objective was accomplished by comparing the estimated remaining service 

life (RSL) of the road network (as a measure of network overall health) based on 

two scenarios: original database (i.e. without any modification) and clean 

database (i.e. after eliminating potential errors in condition data). 

Assess the Effect of Considering Multiple Properties of Pavement Condition Data on 

Detecting Potential Errors 

To accomplish this objective, the following task will be carried out: 
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 Define three error detection approaches such that each considered a 

different number of pavement condition data properties to identify likely 

errors.   

 Analyze pavement condition data from the Brownwood District of the 

Texas Department of Transportation (TxDOT) using these approaches 

and compare their results (i.e. detected potential error data instances) to 

each other. 

Provide Metrics for Measuring Quality Dimensions of Network-Level Pavement 

Condition Datasets  

To accomplish this objective, the following tasks were carried out: 

 Identify metrics for measuring the overall quality of pavement condition 

datasets  

 Apply the identified data quality metrics to a real world pavement 

condition data from Texas (Bryan district roadway network in east-central 

Texas). 

Organization of the Dissertation 

This dissertation is composed of eight sections. 

 Section 1 introduced the research hypothesis and objectives. 

 Section 2 provides a review of the literature on relevant topics. 

 Section 3 describes the development of a new computational technique 

for detecting potential errors in pavement condition datasets at the 
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network level. This technique integrates a statistical outlier detection 

method and heuristic consistency checks to identify likely erroneous data 

in multiple pavement condition indicators.  

 Section 4 validates and tests the developed technique. Also a sensitivity 

analysis was conducted to show the impact of changes in technique 

parameters on the results.   

 Section 5 compares multi-dimension error detection approaches with a 

single-dimension approach. 

 Section 6 provides a quantitative assessment of the impact of error values 

on the roadway network RSL. This impact is investigated using both 

frequency distribution and average RSL of the network.  

 Section 7 provides metrics to measuring network-level pavement 

condition data quality.  

 Section 8 presents summary, contributions, conclusions and 

recommendations. 
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2. LITERATURE REVIEW 

This chapter presents a review of the literature on data quality dimensions, 

pavement management systems, quality of pavement condition data, and the impact of 

data quality on PMS outputs. 

Data Quality 

Data quality is defined as a set of characteristics (e.g., accuracy, completeness, 

timeliness, and consistency) that a dataset is supposed to possess in order to be trusted to 

serve its purpose. The stringency of these characteristics can be used to measure the 

overall level of data quality (Dasu and Johnson 2003). These characteristics, also known 

as data quality dimensions, make a dataset appropriate for a specific use. Therefore, the 

importance of specific data quality dimensions varies, depending upon the database and 

the purpose of the data; a database might be of adequate quality for one purpose, but not 

for another.  

Accuracy is one of the most important dimensions of data quality. The accuracy 

of a data instance is defined as the closeness of the value in the database to the true value 

of the phenomenon in the real world. For example, in a pavement condition database, the 

accuracy of a pavement performance indicator value (e.g., Alligator Cracking [AC]) for 

a pavement section is defined as the closeness of the AC value in the database to the real 

amount of AC on the section. Since the true value is often not available, measuring 

accuracy can be difficult and expensive.  Completeness, another dimension of data 

quality, illustrates what part of the target domain is missing and what part is completely 
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denoted in the database. Completeness can be measured by dividing the portion of 

recorded data by the total target domain. Timeliness (or currency) is defined as the most 

recent time the data was updated. In many cases, even a complete and accurate dataset is 

not fit for use because it does not represent changes that may occur over time. For 

example, even accurate condition data for a roadway network cannot be used to make 

cost-effective decisions about future maintenance if it has not been recently updated. 

Consistency is another frequently-used dimension; it prevents conflicts between different 

data values.  Based on the purpose of the data, additional dimensions of data quality may 

be necessary, such as level of detail, appropriateness, and interpretability. Greater detail 

and more definitions can be found in Dasu and Johnson (2003) and Scannapieco and 

Catarci (2002). 

Many studies have defined additional data quality dimensions using a variety of 

theoretical, empirical, and intuitive approaches. Wand and Wang (1996) used a 

theoretical method to investigate how an information system (IS) represents the 

associated real-world system (RW). They defined two conditions to determine proper 

data quality for an IS. First, every object in the RW should be mapped to at least one 

data instance in the IS (it could be mapped to more than one data instance). Second, it 

should be possible, in principle, to map an IS data instance back to the “correct” RW 

object. Figure 2 shows examples of both proper and incomplete representations. 
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Figure 2  Representations of data quality: (a) Proper representation, and (b) Incomplete 

representation (adopted from Wand and Wang 1996) 

 

Wang and Strong (1996) developed an empirical approach; they used interviews 

to determine the data quality dimensions important to certain data consumers. These 

researchers proposed a two-level classification in which each of four categories was 

further divided into several sub-dimensions. Table 1 illustrates these categories and 

quality dimensions.  
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Table 1 Dimensions proposed in the Wang and Strong (1996) empirical approach (adopted 

from Batini and Scannapieca 2006). 

Category Dimension Definition 

Intrinsic Accuracy data are correct, reliable and certified free of 

error 

Believability data are accepted or regarded as true, real and 

credible 

Objectivity data are unbiased and impartial 

 

Contextual Value-added data are beneficial and provide advantages for 

their use 

Relevancy data are applicable and useful for the task at 

hand 

Timeliness the age of the data is appropriate for the task at 

hand 

Completeness data are of sufficient depth, breadth, and scope 

for the task at hand 

 

Representational Interpretability data are in appropriate language and unit and 

the data definitions are clear 

Ease of 

understanding 

data are clear without ambiguity and easily 

comprehended 

 

Accessibility Accessibility data are available or easily and quickly 

retrieved 

Access security access to data can be restricted Access security 

and hence kept secure 

 

Redman (1996) used an intuitive approach to determine data quality dimensions. 

Three categories of dimensions were proposed in his study, including: conceptual 

schema (referring to the intention of the data), data values, and data format.  
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Table 2 Dimensions proposed in the Redman (1996) intuitive approach (adopted from 

Batini and Scannapieca 2006). 

Dimension Type of Dimension Definition 

Accuracy Data value 
Distance between v and v', considered as 

correct 

Completeness Data value 
Degree to which values are present in a data 

collection 

Currency Data value Degree to which a datum is up-to-date 

Consistency Data value 

Coherence of the same datum, represented in 

multiple copies, or different data to respect 

integrity constraints and rules 

Appropriateness Data format 
One format is more appropriate than another if 

it is more suited to user needs 

Interpretability Data format 
Ability of the user to interpret correctly values 

from their format 

Portability Data format 
The format can be applied to as a wide set of 

situations as possible 

Format precision 
Data format Ability to distinguish between elements in the 

domain that must be distinguished by users 

Format flexibility Data format 
Changes in user needs and recording medium 

can be easily accommodated 

Efficient use of 

memory 

Data format Efficiency in the physical representation. An 

icon is less efficient than a code 

 

No approach will solve all of the data quality issues of a particular database. 

However, a multi-disciplinary approach is best suited to improving the overall quality of 

data (Dasu and Johnson 2003). Although data quality can be discussed according to a 

general framework, the value of each database should be assessed after considering the 

specific characteristics of that database. Such characteristics play an essential role in 

detecting potential errors. In most data quality frameworks, conducting a preliminary 

data review is the first and primary step.  Statistical quintiles, graphical representations, 

and probability distributions are examples of methods for reviewing data before 

selecting specific data quality tools (EPA 2006). 
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Data quality can be addressed in three ways: protection, measurement, and 

improvement. The first approach, protection, focuses on prevention by recommending 

careful methods for data handling and enforcing quality control procedures (Motro and 

Rakov 1998). The measurement approach concentrates on means of estimating data 

quality. It defines levels of data quality, and approximates the value of a database in 

accordance to those levels. Such estimations provide the opportunity to compare several 

sources of information in order to select the best. The improvement approach attempts to 

identify missing values and errors in the data (e.g., outlier values), and either removes 

these values or replaces them with more likely ones (Motro and Rakov 1998).  

This study focuses primarily on the improvement approach. It develops a new 

technique to detect potential errors in pavement condition databases, and reviews the 

impact of removing these erroneous data on the output. The first step in this technique is 

determining outliers in the database. Therefore, a review of existing outlier detection 

techniques is offered below. 

Outlier Detection Techniques 

Outliers are defined as data instances that depart from other data, and thus may 

have been generated by a different mechanism (Hawkins 1980).  In the statistics and data 

mining literature, outliers are also referred to as anomalies, deviants, abnormalities, and 

surprises (Banerjee et al. 2008, Aggarwal 2013).  Outliers do not conform to the 

behaviors expected of standard data. As such, they are likely to either be erroneous or 

significant. For example, an outlier in a set of credit card transaction data could be an 

incorrect value (an error) or a sign of identity theft (Bolton and Hand 2001). Similarly, 
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an outlier in a computer network traffic pattern might represent a cyber-intrusion 

(Lazarevic et al. 2005).  There have been many studies dedicated to developing 

techniques to find and repair outliers and anomalies.  In most cases these techniques are 

specifically applicable to certain fields; rarely are they general (Chandola et al. 2009).   

The detection of outliers has a vast arena of applications, such as the detection of 

network intrusions (Mukherjee et al. 1994), credit card fraud (Ngai et al. 2011), and 

disease (Wong et al. 2002), as well as image processing (Matteoli et al. 2010).  

Differences among the Outlier Detection Techniques 

Outlier detection techniques may differ in any number of ways, including the 

nature of the input data, type of outliers, data labeling, and output. Input data is a 

collection of data instances usually described as binary, categorical, continuous, etc. 

(Malik et al. 2014).  The nature of these attributes affects the applicability of the outlier 

detection technique. For example, statistical models are usually applied to continuous or 

categorical data (Chandola et al. 2009). Another aspect of outlier detection techniques is 

the desired outlier type, which can be classified as point, contextual, or collective. Point 

outliers are individual data objects identified as anomalous as compared to the rest of 

data. They are the most common type of outlier and can occur in any dataset (Gogoi et al. 

2010). A contextual outlier, also known as a conditional anomaly, is a data instance 

occurring within a specific context. Here, each data instance has two attributes: 

contextual and behavioral. A data instance may be a contextual outlier (based on its 

behavioral attributes) within a specific context, but another data instance with the same 

behavioral attributes might be identified as a normal occurrence if it occurs within a 
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different context (Chandola et al. 2009). For example, in a dataset comprised of monthly 

temperatures recorded in the Houston area over several years, time is considered a 

contextual attribute and temperature a behavioral attribute. A temperature of 50 degrees 

Fahrenheit might be considered a normal occurrence in the winter, but an outlier in the 

summer. A collective outlier is a collection of related data instances found to be 

anomalous with respect to the entire dataset. Individual data instances occurring in 

collective anomalies might be normal occurrences by themselves, but their occurrences 

together, as a collection, may be reason for suspicion (Chandola et al. 2009, Malik et al. 

2014).   

Data labels denote if the data instance is normal or anomalous. Preparing labeled 

data requires substantial effort, but it is useful in outlier detection techniques that require 

a training approach (e.g., supervised and semi-supervised outlier detection techniques). 

Supervised techniques assume the availability of a training dataset labeled for both 

normal and anomalous data instances. After building a predictive model using training 

data, any unseen data instances are identified as either normal or outliers (Gaddam et al. 

2007).  There are two major obstacles faced by supervised outlier detection techniques. 

First, the number of data objects labeled as outliers is fewer than those labeled as normal 

occurrences. Second, since labeling is usually done by experts, it is challenging and 

expensive to obtain accurately labeled data, especially for outliers (Malik et al. 2014).  

Thus, semi-supervised and unsupervised techniques have been developed to 

solve these issues. Semi-supervised techniques assume that only normal data will be 

labeled in the training data; resulting models determine normal occurrences and then use 



 

 

 

16 

 

them to identify any outliers in the unseen data (Bhuyan et al. 2012). Unsupervised 

outlier detection techniques do not require labeled training data; they assume that normal 

data instances are more frequent than any anomalies occurring in the test data (Bhuyan 

et al. 2012). Consequently, they are more widely applicable than other methods.   

Outlier detection methods may differ based on the output reporting the anomaly. 

Some techniques assign binary labels (i.e., outlier or not outlier) to each data instance. 

Other techniques provide a ranked list of anomalies and assign an anomaly score to each 

instance to show the degree to which that instance is considered an outlier (Chandola et 

al. 2009).    

Existing Outlier Detection Techniques 

There is extensive and growing literature on developing and applying outlier 

detection techniques. Much of the work belongs to specific research fields such as 

information theory and spectral theory. More general outlier detection methods can be 

categorized into classification, nearest neighbor, clustering, and statistical techniques.  

Classification outlier detection techniques develop a classifier model based on a 

set of labeled data instances (training), and use that model to classify unseen data 

instances (testing) into a class. This method is divided into two major groups: one-class 

and multi-class (Chandola et al. 2009). One-class techniques assume that all normal 

training data have only one class label; thus, any test instance not classified as a member 

of that class is an outlier. Multi-class techniques assume that training data can belong to 

more than one normal class, so the classifier model must distinguish between these 

normal classes and anomalies (Bell 2014, Chandola et al. 2009). Several classification 
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algorithms have been developed to build classifier models, such as neural networks 

(Augusteijn and Folkert 2002, Vasconcelos et al. 1995), Bayesian networks (Janakiram 

et al. 2006), and rule-based techniques (Ratsch et al. 2002).  

The nearest neighborhood outlier detection technique investigates the distances 

or similarities between each data point and the next closest point to them. This technique 

assumes that valid and normal data instances occur close to one another and thus make 

their “neighborhoods” dense; anomalies and outliers occur farther away from their 

closest neighbors (Chandola et al. 2009). One approach describes the Euclidean distance 

of the kth nearest neighbor from a data instance as its degree of outlierness; thus, data 

instances with higher degree values are more likely to be outliers (Ramaswamy et al. 

2000). This method is more robust with noisy data than the standard nearest 

neighborhood approach (Patcha and Park 2007). Another methodology uses the density 

of the neighborhood around the observation point to determine its degree of outlierness 

(Ertoz et al. 2004). 

Clustering finds patterns in unlabeled data instances and collects similar data into 

the same clusters.  Clustering-based outlier detection techniques define outliers as data 

instances that do not belong to any of the established clusters in the dataset (Patcha and 

Park 2007). Good clustering output has a high level of similarity between data instances 

within a single cluster, and high levels of difference among the various clusters 

(Bhattacharyya and Kalita 2013).  

Statistical outlier detection techniques assume that the high probability regions of 

a statistical model contain normal data values, while outliers occur in the low probability 
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regions. Statistical methods fit a certain distribution (e.g., normal distribution) to the data 

and then apply a statistical inference to see if unseen data objects belong to that 

distribution. Data objects with a low probability of following the distribution are 

identified as outliers or anomalies (Chandola et al. 2009). For example, if it is assumed 

that the data will follow a normal distribution with a 90% confidential interval, data 

objects occurring in the low probability regions (i.e., 5% each tail) are considered 

outliers. Statistical outlier detection techniques are divided into two major methods: 

parametric and non-parametric. Parametric methods assume the distribution of the data 

and use that data to estimate the distribution parameters; non-parametric data do not 

assume a knowledge of the distribution. 

Another method of detecting errors focuses on the relationships among the 

different columns (or attributes) of the database. Kinoshita et al. (2003) showed that 

adding an automated logical checking function capable of restricting the type of data and 

their range improves the overall accuracy of the database. Rule-based outlier detection 

techniques provide some rules, mostly among several attributes of the data record; 

outliers do not obey these rules. This method is often considered a subset of certain 

classification techniques, if labeled training data is used to develop the rules. Rules with 

high confidence and support (e.g., confirmed by 90% of the data instances) can define 

patterns useful in detecting outliers (Maletic and Marcus 2000). Rules between different 

attributes can be established through logical consistency checks. Consistencies can be 

spatial, temporal, attribute-based, or any combination of these three (Gong and Mu 

2000).   Consistency-based outlier detection techniques have mostly been used to detect 
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errors in GIS databases when differently shaped files and their attribute tables are 

merged together (Phillips and Marks 1996, Griffith et al. 1994 ). For example, Gong and 

Mu (2000) used a logical consistency method based on spatial relationships among the 

neighborhoods to detect errors in GIS maps.  

This study integrates both statistical outlier detection methods and consistency 

reviews to examine the data in a pavement condition dataset for anything likely to be 

erroneous. 

Pavement Management  

Pavement management is a mean of making cost-effective decisions about the 

maintenance, rehabilitation, and renewal of road networks. PMS is a set of tools or 

methods that help implement such processes (AASHTO 2001).  The decisions provide 

an acceptable level of serviceability for the roadway network by identifying, prioritizing, 

and planning of treatment activities (Arabali et al. 2016).   

Pavement management has two primary management levels: project and network. 

At the project-level, each pavement section is treated individually for detailed data 

collection, cause of deterioration assessment, and determination of cost-effective 

treatment. At the network-level, data collection and treatment/renewal decisions are 

made for the entire roadway network (Shahin 2005). In PMS, recommended M&R 

activities for various pavement sections of roadway networks are typically provided in 

network-level; however, more detailed project-level analysis is needed before the actual 

application in the field. The project-level analysis considers more factors to drive to the 

best suited decision for the section. Thus, while there is a good relationship between 
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network-level recommended and actually applied treatment activities for sections, some 

project-level analysis might lead to a different M&R recommendation. (Hosten et al. 

2015) 

Additional management levels (such as strategic and project selection levels) can 

be implemented to support foundational PMS decision-making processes (Saliminejad 

2012). The strategic-level is the foremost network-level, used to establish policies and 

goals that affect the funding allocation process for an agency’s assets. The project 

selection level is a link between the project-level and the network-level that is used to 

identify constraints not considered in the higher levels, using more detailed information, 

in order to refine alternative projects and improve cost estimates (Gurganus and 

Gharaibeh 2012). Figure 3 shows the relationship between decision making levels of 

PMSs and the corresponding detail and amount of needed data. Typically in a PMS, 

higher levels of decision making require less detailed data compared to lower levels 

which need more specific and detailed data. 

 



 

 

 

21 

 

 

Figure 3  Relationship between decision making levels and the corresponding detail and 

amount of required data 

 

 

The type of pavement condition data and their level of quality are different in 

several decision making levels. This study focuses on network-level pavement 

management and aims to assess pavement condition data in order to address data quality 

issues and their overall impact on pavement management. 

Pavement Condition Data Quality Issues 

Assessment of the current condition of pavement sections is a substantial and 

essential task of PMSs.  The information such assessments generate allows agencies to 

determine whether a pavement section is in adequate condition and provides the required 

level of service, or if M&R actions should be initiated. Moreover, historical condition 

data can be used to model future performance and identify certain needs, so that accurate 

and appropriate management plans can be developed using a reliable historical data 
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(Haas et al. 1994). Thus, the effectiveness of PMS depends greatly on the reliability and 

accuracy of the pavement condition data (Pierce et al. 2013).  

Pavement condition data can be collected either manually or automatically. In 

manual collection methods, the severity and extent of the pavement condition indicators 

(e.g., distress types) are visually assessed on site by professional raters. To obtain 

consistent values, trained raters use the same standard reference for identifying and 

measuring distress (Shahin and Kohn 1979).  Collected data are documented using either 

pen and paper or a handheld computer, usually equipped with GPS. In manual data 

collection process, raters might walk from one site to another to inspect and record the 

pavement condition, or they might perform a windshield survey and use a vehicle to 

collect data while driving (Flintsch and Bryant 2006). Windshield survey normally is 

performed in network-level data collection.  Manual data collection methods are very 

rater intensive and their results for a pavement section might vary for different inspectors.  

In automated data collection, an automated tool or device is used onsite to measure the 

pavement indicator, or image processing is used offsite to collect the necessary 

information. This method typically involves a multipurpose vehicle equipped with a 

distance-measuring device and GPS antennas to capture location data, as well as 

combinations of video cameras and laser sensors to capture and store pavement 

condition data. The vehicle also has computer hardware using special software in order 

to process the collected data (Flintsch and Bryant 2006). According to the literature, 

automated data collection is generally considered safer and faster; however, manual data 

collection is more precise (Bogus et al. 2010). Semiautomated methods are other types 
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of pavement data collection methods that use similar equipment as automated methods 

with lesser degree of automation (Flintsch and Bryant 2006).  

Inaccurate or variably assessed pavement condition data makes the PMS yield 

unreliable results. Errors in the pavement condition data can mislead the evaluation and 

analysis of the current condition, rate of deterioration, prediction of future condition, 

M&R needs, and the maintenance cost of pavement sections. It can also impact the 

M&R treatment selection strategies and the budgeting and needs estimation at the 

network-level (Tan and Cheng 2015). Consequently, pavement condition data quality is 

becoming more important; it is also becoming more complicated, due to the increasing 

size of datasets (e.g., historical data, new fields), and using more advanced data 

collection and data storage methods.   

A pavement condition data quality management plan defines policies and 

procedures to determine acceptable level of quality and ensure that the data collection 

procedure provides this level of quality (Pierce et al. 2013). Data quality management 

plan defines both quality control and quality acceptance activities; the activities can 

occur before, during, and after data collection. 

Quality control includes those activities required to assess and adjust production 

processes to obtain pavement condition data that meets the desired level of quality 

(Flintsch and McGhee 2009). The activities are defined in the quality control plan to 

quantify the variability in the data collection process and maintain it within acceptable 

level, by identifying and reducing the controllable source of variability in pavement 

condition data. The most frequent activities used for quality control are: (1) calibration 
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and verification of equipment and methods before the data collection (used by 94 percent 

of the agencies), (2) testing of known control segments before data collection (94 

percent) and during data collection (81 percent), and (3) software routines for checking 

the reasonableness (57 percent) (Flintsch and McGhee 2009). 

Quality acceptance includes those activities are performed by the agency to 

verify that the collected pavement condition data have met the established quality 

standards (Flintsch and McGhee 2009). Quality acceptance activities can be divided to 

three major groups: a) Analysis of the control, verification, and blind site testing, b) 

Global database checks, c) Sampling checks. 

Periodic testing of control sites are used for both quality control and quality acceptance. 

The site testing data are checked for accuracy, repeatability, and reproducibility; if they 

cannot meet the acceptance criteria the equipment should be recalibrated and data should be 

re-collection since the last successful site testing (Pierce et al. 2013). Global checks are 

conducted after receiving the final condition database and include checking some 

properties of the entire database such as data format, location accuracy, data 

completeness, data consistency, and data range. Sampling checks are detailed 

examination of random samples that provides an approximate estimation of the likelihood 

of errors in the whole database (Pierce et al. 2013). Primary step of this type of quality 

acceptance are establishment of acceptance criteria (data accuracy and precision, and 

reliability) and an appropriate sample size necessary to validate that the data meets these 

criteria (Flintsch and Bryant 2006). For example TxDOT uses independent auditing to 

evaluate the accuracy of collected data. The audit data is collected from approximately 5% 
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of the entire network. The difference between DS values (a composite pavement 

condition index) of audited and original data is investigated for all samples of each 

county. The collected condition data of a particular county is rejected and must be 

recollected if more than 15% of sections within that county has the difference of 10 

points or higher (Saliminejad 2012). 

The accuracy of the pavement condition data depends on several factors, 

including the angle and direction of the sunlight and the weather condition during data 

collection (Smith et al. 1998), the equipment used, the rater or operator training and 

skills, environmental condition and the shape and condition of pavement sections 

(Flintch and McGhee 2009), any inability of the collected images and videos to catch 

thin cracks, and the misclassification of distresses due to ambiguity in the distress 

definitions (Morian et al. 2002). In automated rut measuring systems errors could not 

only be related to weather conditions, but also a narrow pavement with no paved 

shoulder affects the accuracy of collected data(Scullin and Smit 1997). In windshield 

surveys, data variability can be affected by the rater’s ability to see the roadway clearly 

and the speed of the survey vehicle. The fact that the nature of rating process is 

subjective and complicated (i.e., the rater must correctly identify both the type of distress 

and the severity) also leads to data variability (Pierce et al. 2013).  

Pavement condition data have been described as variable (Migliaccio et al. 2011) 

or even erroneous (Larson et al. 2000). In practice, many departments of transportation 

(DOTs) review the quality of their pavement condition data both during and after data 

collection to assess and enhance the errors. For example, the Oklahoma DOT checks the 
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final database for out of range or missing data, and performs sampling checks of distress 

ratings (Flintch and McGhee 2009).  

Grabe (2010) categorized measurement errors as either random or systematic. 

Systematic errors cannot be minimized by repeating the measurement technique for 

several rounds. Ambiguity in the distress definitions is an example of systematic errors 

in pavement condition data (Morian et al. 2002). Conversely, the magnitude and 

direction of random errors are both unpredictable. Thus, random errors can be 

minimized by repeating data collection. Human errors are one of the primary reasons for 

random errors in pavement condition data (Flintch and McGhee 2009). Systematic errors 

are usually fixed and very difficult to detect without secondary field observations. Thus, 

this study focuses on random errors and tries to provide a method of detection applicable 

to pavement condition data. 

To sum up, there is a general agreement in the literature that errors exist in 

pavement condition data and transportation agencies need to detect and correct them to 

decrease their negative effects on the PMS. The following part represents the impact of 

these errors on PMSs output. 

Impact of Data Quality on Pavement Management Outputs 

It has generally been accepted that the quality of infrastructure condition data 

affects the reliability of the output of infrastructure management systems (Livneh 1994, 

McNeil and Humplick 1991, Shekharan et al. 2007, Saliminejad and Gharaibeh 2013).  

Therefore, improving the quality of pavement management data is an ongoing goal for 

transportation agencies.  
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The quality of pavement condition data not only affects the evaluation of current 

condition of the roadway network but also it affects the prediction of future pavement 

condition.  

Future condition of pavement sections can be predicted using complex probabilistic 

models or simpler deterministic techniques (Lytton 1987). Most of the prediction 

methods assume that the future deterioration trend of a pavement section dependent 

upon the latest available condition indicator value and parameters of the deterioration 

curve (Yu et al. 2007). Typically deterioration curves and their parameters are developed 

by assessing and analyzing historical pavement condition data. Thus future condition of 

roadway network could not be precisely predicted if database contains errors in current 

or historical performance indicator values. 

One of the most important information that a PMS provides for decision makers 

is the amount of needed funding for M&R projects to achieve the transportation 

agency’s goal (e.g. have the average condition of pavement sections higher than a 

predefined threshold). There are several methods to prioritize and select M&R projects 

such as worst-first (W-F) and benefit–cost analysis (BCA) approaches (Menendez et al. 

2013). The quality of pavement condition data affects the need analysis report of the 

PMS. Although this impact in intuitively accepted, a limited number of studies have 

been performed that attempt to economically quantify the benefit of high quality 

pavement condition data. For example, Shekharan et al. (2007) showed that a 21% 

adjustment in the predicted maintenance costs was the result of implementing an 

effective quality assurance/quality control plan for the pavement condition data 
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collection system used by the Virginia DOT.  Saliminejad and Gharaibeh (2013) showed 

that both systematic and random errors, even in ranges that in practice may be 

considered acceptable, can highly distort some PMS outputs. For instance, with 95 

percent confidence, a standard error in DS of ±10 (in range of 0-100) can cause 

overestimation of the annual budget by as much as 85 percent; In this case, needed 

rehabilitation projects and maintenance projects can have overestimation of 2 percent 

and 3.8 percent, respectively.  

Many PMSs estimate RSL of pavement sections to calculate the LCC and select 

most efficient M&R projects (Vanier 2001). Little RSL alerts that pavement sections need 

to receive treatment and adequate RSL represents that pavement sections are in good 

condition. Baladi et al. (2011) showed that RSL is an effective metric for communicating 

network health and developing pavement management plans. It demonstrates not only the 

current condition of roadway network but also the needed service and budget in future, thus 

it is of interest to decision makers. This research presents a quantitative assessment of the 

impact of pavement condition data accuracy on the estimated RSL of a roadway network 

as an overall measure of network health.   
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3. TECHNIQUE FOR DETECTING ERRORS IN PAVEMENT CONDITION 

DATA
*
 

The overall framework for the proposed technique for detecting potential errors 

in pavement condition data is depicted in Figure 4. 

 

 

Figure 4 Overall framework for the proposed error detection technique. 

                                                 

 

*
 Part of this chapter is reprinted with permission from “A Computational Technique for Detecting Errors 

in Network-Level Pavement Condition Data” by Siabil, S. Z., and Gharaibeh, N. G, 2016. Transportation 

Research Record: Journal of the Transportation Research Board, (2589), 14-19, Copyright [2016] Salar 
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The components of this methodological framework are discussed next. 

Group Pavement Sections into Performance Families 

Pavement performance is influenced by several factors (e.g. pavement type, 

traffic loading, environmental factors, and subgrade properties).  Thus, it is reasonable to 

assume that the performance of a group of pavement sections with common 

characteristics should change in a similar pattern. Therefore, the first step in the 

proposed method is to categorize the pavement sections into performance families. In 

this study, pavement sections of Texas roadway network are grouped based on pavement 

type, traffic loading, and climate and subgrade zones, as shown in Figure 5.  

 

 

 
 

Figure 5  Grouping pavement sections into uniform families (adopted from Gharaibeh et al. 

2012). 

 

Based on past studies, Texas is divided into the following four climate and subgrade 

zones as shown in Figure 6 (Gharaibeh et al. 2012).  
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Zone 1: Represents wet-cold climate and poor, very poor, or mixed subgrade. 

Zone 2: Represents wet-warm climate and poor, very poor, or mixed subgrade. 

Zone 3: Represents dry-cold climate and good, very good, or mixed subgrade. 

Zone 4: Represents dry-warm climate and good, very good, or mixed subgrade 

 

 

Figure 6  Texas climate and subgrade zones (Gharaibeh et al. 2012). 

 

To consider effects of pavement structure and material type on performance 

changes, asphalt concrete pavement (ACP) types commonly used in Texas are grouped 

into three general types as follows (Gharaibeh et al. 2012): 

Type A: This pavement type includes thick Asphalt Concrete Pavement (ACP), 

Intermediate ACP, and overlaid ACP. 

Type B:  This pavement type includes composite pavement and concrete 

pavement overlaid with ACP. 



 

 

 

32 

 

Type C: This pavement type includes thin ACP and thin-surfaced ACP. 

Since, the majority of pavement sections in Texas road network composed of 

asphalt concrete this study focuses on several types of ACP and other types of pavement 

(e.g. continuously reinforced concrete pavement (CRCP), jointed concrete pavement 

(JCP)) are not considered. However, a similar method can be developed to identify 

potential errors in CRCP and JCP roads. 

Traffic loading has significant effects of pavement performance. Higher number 

of vehicles passing a pavement section raises the amount of annual deterioration. 

Pavement sections are classified based on the following three traffic loading levels 

(Gharaibeh et al. 2012): 

Low Traffic Loading:  This level includes pavement sections that have a 20-year 

projected cumulative Equivalent Single Axle Load (ESAL) of less than 1.0 million 

ESALs. 

Medium Traffic Loading: This level includes pavement sections that have a 20-

year projected cumulative ESAL greater than or equal to 1.0 million ESALs and less 

than 10 million ESALs. 

Heavy Traffic Loading: This level includes pavement sections that have a 20-

year projected cumulative ESAL greater than or equal to 10 million ESALs. 

Detect Statistical Outliers of Each Condition Indicator within Each Performance 

Family 

Pavement condition is measured using several indicators such as IRI, rutting, and 

cracking. Annual changes in each indicator within each performance family are analyzed 
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to identify statistical outliers. A yearly change in performance indicator x is computed as 

follows: 

         Eq 1 

where ∆x represents the value of performance indicator x in current year (t) minus its 

value in the previous year (t-1).   

A classic statistical method is used to identify outliers in ∆x for each 

performance family, at any desired confidence interval. These outliers are then 

investigated (see Step 3 of this method) to delineate them into potential errors and 

dissimilar (yet valid) data points. 

If ∆x is normally distributed, the upper limit (UL) and the lower limit (LL) are 

defined as (μ ± z σ); where μ and σ are the average and the standard deviation of ∆x in 

the performance family, respectively; and z is the Z-statistic associated with a desired 

confidence level ().  Figure 7 shows an example where the extreme 5% of ∆x values on 

each tail of the distribution are considered as statistical outliers (Empirical rule). 

Figure 7  Statistical outliers of normally distributed ∆x within a performance family. 
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The Empirical rule works for data following a normal distribution. If ∆x is not 

normally distributed, Chebyshev’s theorem can be used to estimate the minimum 

confidence interval. According to this theory, at least 1- 1/k
^2 

 of data lie within k 

standard deviations of the mean (μ ± kσ) regardless of the shape of distribution (Black 

2011).  The parameter k is termed here as k-value. For example, in an unknown shape of 

the distribution, at least 75 percent of data are within μ ± 2σ.  

The reliability of this outlier detection technique improves as the sensitivity of 

the performance indicator increases. For example, the dataset used in this study indicates 

that ∆x for longitudinal cracking has high variability within any given performance 

family.  Thus, this technique is more reliable in detecting outliers in longitudinal 

cracking compared to less sensitive performance indicators (such as block cracking). 

Although, the detected outliers have extreme performance changes (compared to 

the rest of their family), some of them might be valid and there might be reasonable 

explanation behind this extreme change (e.g. receiving treatment). Therefore, in the next 

step, heuristic consistency checks will be defined to investigate whether the outliers are 

potential errors or they are likely valid values. 

Integrate Outlier Detection Method and Heuristic Consistency Checks to Identify 

Potential Errors in Pavement Condition Data 

In this step, the consistency among multiple performance indicators is evaluated 

for the statistical outliers (described earlier in Step 2) using heuristic checks. If the 

extreme behavior of an outlier can be explained by heuristic rules, the outlier is 

considered as a dissimilar (not an erroneous) data; otherwise, the outlier is determined as 
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a “potential error” and needs to be investigated further (e.g. field verification). The 

development of heuristic checks is described in the following sections of this proposal. 

Concept of Consistency  

It is logical to assume that for a given pavement section, different pavement 

condition indicators change from year to year in a consistent manner (i.e., improve, 

deteriorate, or no change). Thus, if the change in one of the indicator values can be 

explained by the section deterioration or improvement (e.g., due to treatment), the other 

indicators’ changes should lead to the same conclusion, and vies versa.  

Table 3 shows examples of consistency checks based on yearly changes in 

performance indicators (∆x). Different M&R treatments affect pavement performance in 

different ways.  Thus, the consistency rules must consider both the performance 

indicator and how it is affected by different treatment options.  Table 3 shows common 

pavement treatment types and their logical effect ( decrease,  increase, or  no 

change) on different pavement performance indicators one year after the treatment 

option is implemented. 
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Table 3  Effect of treatment options on various pavement performance indicators*. 

Treatment Option IRI RUT FAIL BC LC TC AC RAV FLSH 

Thick overlay or 

reconstruction 

 

         

Thin overlay or seal coat 

 

 

 or 

 

 or 

 

       

No treatment  or 

 

 or 

 

 or 

 

 or 

 

 or 

 

 or 

 

 or 

 

 or 

 

 or 

 

*IRI=International Roughness Index; RUT=Rutting, FAIL=Surface failure, BC=Block Cracking, 

LC=Longitudinal Cracking, TC= Transverse Cracking, AC=Alligator (Fatigue) Cracking, RAV=Raveling, 

FLSH=Flushing. = Decrease, =Increase,  = No change. 

 

Since surface failure (FAIL), block cracking (BC), longitudinal cracking (LC), 

transverse cracking (TC), alligator (also called fatigue) cracking (AC), raveling (RAV), 

and flushing (FLSH) change in a similar manner (increase, decrease, remain unchanged) 

regardless of the treatment option, they are considered collectively as one group.  For 

this group, the consistency checks are based on their majority. For example, if the 

number of positive ∆s is greater than the number of negative ∆s in this group, then the 

∆x representing this group of performance indicators (called ∆surface) is positive, and 

vies versa. In case of equal positive and negative ∆s for this group, the ∆surface is zero. 

The following sections discuss how heuristic checks of the consistency among ∆s 

is used to support or negate statistical outliers.  A support of the statistical outlier means 

that the outlier is an extreme but correct value; whereas, lack of support means that the 

outlier is a likely erroneous data. 
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Integrating Heuristic Consistency Checks and Statistical Outlier Detection 

Statistical outliers in ∆x are either extreme negative or extreme positive 

compared to the population of their respective families. Extreme negative, yet valid, ∆x 

can be explained by application of a treatment.  On the other hand, extreme positive, yet 

valid, ∆x can be explained by rapid deterioration.  Therefore, according to the logics of 

indicators consistent changes, other indicators should change in a similar manner.  

There are many possibilities to check consistency between several indicators. 

Heuristics captures these checks for each indicator. For example, for the seven surface 

condition indicators (failures, block cracking, longitudinal cracking, transverse cracking, 

alligator cracking, raveling, and flushing), ∆x is checked against ∆surface, ∆IRI, and ∆RUT 

using heuristics as shown in Figure 8 (which illustrates these checks for longitudinal 

cracking). 

For IRI, ∆IRI is checked against ∆surface and ∆RUT using the rules shown in 

Figure 9. If one of these indicators does not support the extreme change in IRI, based on 

the logics of consistency, the IRI value is considered as a potential error. A similar 

process is conducted for rutting; where ∆RUT is checked against ∆surface and ∆IRI.  
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Figure 8  Heuristic checks for detecting potential errors in LC data  

 

 

Figure 9  Heuristic checks for detecting potential errors in IRI data 
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4. VALIDATION OF THE DEVELOPED ERROR DETECTION TECHNIQUE
*
 

This section discusses the validation of the developed method for detecting 

potential errors in pavement condition data (presented in Section 3) using actual 

pavement condition data obtained from Texas. First, a brief introduction of Texas 

pavement data is presented. Then, the validation process and results are discussed. 

Finally, sensitivity of the presented technique to its parameters is investigated.  

Validation Data 

TxDOT uses private data collection vendors to collect pavement surface distress 

data every year for approximately its entire roadway network. TxDOT uses this data to 

measure the network current condition and plan future treatments.  This data is stored in 

the Pavement Management Information System (PMIS) database. The data collection 

sections are usually 0.5 mile in length and are identified by a unique combination of 

district name, county name, highway name, and beginning and ending reference mile 

markers. Distress measurement units vary depending on the distress type, such as length 

per 100-ft station for longitudinal, number of cracks for transverse cracking, and percent 

of wheel path area for rutting and alligator cracking. In this study, PMIS distress 

                                                 

 

*
Part of this chapter is reprinted with permission from “A Computational Technique for Detecting Errors 

in Network-Level Pavement Condition Data” by Siabil, S. Z., and Gharaibeh, N. G, 2016. Transportation 

Research Record: Journal of the Transportation Research Board, (2589), 14-19, Copyright [2016] Salar 

Zabihi Siabil 



 

 

 

40 

 

quantities or densities are investigated using the developed method to identify potential 

errors.  

TxDOT conducts another independent data collection, called Audit data, for 

approximately 5 percent of its roadway network to control the quality of PMIS data 

collection. This 5 percent of pavement sections are randomly chosen each year and thus 

might be completely different from one year to the other.  Distress scores (DS) are 

calculated and compared to check data collection accuracy. In each county, less than 15 

percent of sections are allowed to have more than 10 point difference between their DS 

values in PMIS and Audit data, otherwise the vendor’s condition data is rejected.   

Figure 10 shows the PMIS road network in 2014 versus the audit sections in 

2014. TxDOT collected pavement condition data for more than 193,000 road sections in 

2014. The black spots (9,166 sections) in this map represent the roadway sections that 

are used for validating the proposed error detection method since both PMIS and audit 

data are available for these sections.  
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Figure 10  PMIS roadway network in 2014 vs. audit sections in 2014 

 

Validation Process 

While the year in which the original data was collected is known, the exact date 

of collecting this data is unknown.  Thus, no true “ground truth” could be established to 

measure the accuracy of the developed technique on a section-by-section basis.  

However, as mentioned, audit data is collected on approximately five percent of 

roadway network to verify the vendor-collected data. The developed technique was 

validated by comparing Audit data to the original data for the following datasets: 

• All sections that have been audited 

Audit sections in 2014 

PMIS roadway network 2014 
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• Audited sections that have been identified by the developed technique to

contain potential errors 

The mean absolute error (MAE) was used to measure the difference between the 

Audit data and the original data for the above datasets (i.e., sections containing potential 

error and the general population of all audited sections).  A divergence between the 

above datasets in terms of MAE would indicate the ability of the developed technique to 

identify potential errors.  MAE is a well-established statistical metric for measuring 

model performance (Willmott and Matsuura 2005). In this study, MAE is computed as 

follows: 

     
 

 
∑ |  |

 
       Eq 2 

where ei is the difference between the original distress value and the audit distress in 

2014 for each pavement sections; and n is the number of pavement sections in the 

dataset. 

In addition to the MAE test, the Wilcoxon signed-rank hypothesis test was 

performed. In this statistical test, the null hypothesis is: “the difference between distress 

values that have been identified as potential error in the original data and their 

corresponding distress values in the Audit dataset comes from a distribution with zero 

median.” Analysis of 2014 Audit data and original data for several distress types showed 

that the difference between these two populations is not normally distributed; and thus 

the Wilcoxon signed-rank test (Corder and Foreman 2014) is used here.  This test is non-

parametric (i.e., does not assume that the data is normally distributed). 
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Validation Results 

The above validation process was implemented on several distress types for 

which 2014 audit data is available, including longitudinal cracking (LC), alligator 

cracking (AC), and transverse cracking (TC).  This process was not implemented on IRI 

and rutting data because these condition indicators are measured using automated data 

collection methods and thus are not audited.   

Potential Errors in LC Data   

LC runs approximately parallel to the pavement centerline. LC values in PMIS 

represent the total length of longitudinal cracks in feet per 100-ft station of the rated 

lane. The developed error detection method was applied to the LC values of PMIS data 

in 2014 and 2013 and identified 336 sections with potential errors in LC values (out of 

9,166 sections for which both audit and PMIS data is available). The locations of these 

sections of potential LC errors are shown in Figure 11. 
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Figure 11  Sections with potential LC errors based on PMIS2014 and PMIS2013  

 

To check the normality of the difference between Audit2014 and PMIS2014 LC 

data, a chi-square test is applied and its q-q plot was developed, as shown in Figure 12. 

The chi-square test was rejected with a 95 percent confidence level and thus it can be 

concluded that these values are not normally distributed.  Therefore, the Wilcoxon 

signed-rank test is used to determine whether Audit2014 and PMIS2014 of potential 

errors are significantly different. 

Sections with potential LC errors 

PMIS roadway network  
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Figure 12  Q-Q plot of the difference between LC values in Audit2014 and LC values in 

PMIS2014 for sections with potential LC error  

 

In the Wilcoxon signed-rank test, the null hypothesis is:  “the difference between 

LC values that are potential error in Audit2014 and PMIS2014 comes from a distribution 

with zero median.”  This hypothesis is rejected with 95 percent confidence (α =0.05). 

The p-value associated with the hypothesis is calculated as 0.016. Since the p-value is 

less than α, it can be inferred that the difference between LC values that have been 

identified as potential error in the PMIS2014 dataset and their corresponding LC values 

in the Audit2014 dataset comes from a distribution with nonzero median. In other words, 

for potential errors, Audit2014 data and PMIS2014 data come from populations with 

different medians. 

Table 4 compares the MAE of LC values for all audited sections in 2014 

(Audit2014) and PMIS sections with potential LC errors (PMIS2014). It can be seen that 

sections with potential LC errors have higher MAE compared to all audited sections.  
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Table 4  MAE of LC values for sections with potential LC error vs. MAE of LC values for 

all audited sections. 

Population MAE of LC, ft /100ft Number of Sections 
All Audited Sections 6.48 9166 

Sections with Potential LC Errors 21.671 336 

 

Potential Errors in AC Data 

AC consists of interconnecting cracks which form small shaped blocks like 

alligator's skin. AC values in PMIS represent the percentage of the wheel path area that 

is covered by AC in the rated lane of the data collection section. The developed method 

was applied to AC values in PMIS 2014 and 2013 and detected 242 sections with 

potential AC errors. The locations of these sections are shown in Figure 13. 

 

Figure 13  Sections with potential ac errors based on PMIS2014 and PMIS2013 

Sections with potential AC errors 

PMIS roadway network  



 

 

 

47 

 

The normality of the difference between Audit2014 and PMIS2014 AC data was 

checked using the chi-square test and q-q plot (see Figure 14).  The chi-square test was 

rejected with a 95 percent confidence level and thus it can be concluded that these values 

are not normally distributed.  Therefore, the Wilcoxon signed-rank test is used to 

determine whether Audit2014 and PMIS2014 of potential errors are significantly 

different. In the Wilcoxon signed-rank test, the null hypothesis is:  “the difference 

between AC values that are potential error in Audit2014 and PMIS2014 comes from a 

distribution with zero median.”  This hypothesis was rejected with 95 percent confidence 

(α =0.05) and it can be inferred that the difference between AC values that have been 

identified as potential error in the PMIS2014 dataset and their corresponding AC values 

in the Audit2014 dataset comes from a distribution with nonzero median.. 

 

 

Figure 14  Q-Q Plot of the difference between AC values in Audit2014 and AC values in 

PMIS2014 for sections with potential AC error  
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Table 5 compares the MAE of AC values for all audited sections in 2014 

(Audit2014) and PMIS sections with potential AC errors (PMIS2014). It can be seen that 

sections with potential AC errors have higher MAE compared to all audited sections.  

 

Table 5 MAE of AC values for sections with potential AC error vs. MAE of AC values for 

all audited sections. 

Population MAE for AC, % Number of Sections 
  All Audited Sections 0.9564 9166 

Sections with Potential AC Errors 6.152 242 

 

Potential Errors in TC Data 

TC values in PMIS represent the number of visually observed transverse cracks 

per 100-ft long station. The developed method was applied to TC values in PMIS 2014 

and 2013 and detected 230 sections with potential TC errors. The locations of these 

sections are shown in Figure 15. 

Similar to LC and AC data, the chi-square test (95 percent confidence level) and 

q-q plot (see Figure 16) suggest that the difference between Audit2014 and PMIS2014 

TC data is not normally distributed.  However, the null hypothesis of the Wilcoxon 

signed-rank test for TC data could not be rejected with α =0.05 because p-value was 

0.121.  The MAE of TC values for PMIS sections with potential AC errors (PMIS2014) 

remains noticeably higher than that for all audited sections in 2014 (Audit2014) (see 

Table 6). 
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Figure 15  Sections with potential TC errors based on PMIS2014 and PMIS2013  

 

 

Figure 16  Q-Q Plot of the difference between TC values in Audit2014 and TC values in 

PMIS2014 for sections with potential TC error  

Sections with potential TC errors 

PMIS roadway network  
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Table 6 MAE of TC Values for sections with potential AC error vs. MAE of TC values for 

all audited sections. 

Population MAE of TC, number/100ft Number of Sections 
All Audited Sections 0.2877 9166 

Sections with Potential TC Errors 1.5217 230 

 

Summary of Validation Results 

Potential errors in pavement condition data from 2013 and 2014 (i.e., PMIS2014 

and PMIS2013) were detected using the proposed error detection method. Validation 

process was implemented on several distress types for which 2014 audit data is 

available, including longitudinal cracking, alligator cracking, and transverse cracking. 

The Wilcoxon signed-rank test with α =0.05 validated the developed error detection 

method for both longitudinal cracking and alligator cracking. Table 7 compares the 

MAE for all audited sections in 2014 (Audit2014 dataset) to the MAE for sections that 

have been identified to have potential errors. For all cracking types, sections with 

potential errors have higher MAE compared to the general population (i.e., all audited 

sections). 

Figure 17 shows the distribution of Texas roadway sections with potential errors 

in 2014 condition data. Out of 9,166 audited pavement sections, 681 sections were 

detected to have potentially erroneous cracking data. This map shows that these potential 

errors are randomly distributed across the Texas roadway network and are not related to 

a specific geographic region, district, climatic zone, etc. 
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Table 7 MAE for cracking data identified as potential error vs. MAE for all audited 

sections. 

Distress Potential Errors All Audit Data 

 MAE  
Number of 

Sections (n) 
MAE  

Number of 

Sections (n) 

Longitudinal 

Cracking 
21.67 (ft /100ft) 336  6.48 (ft /100ft) 9,166 

Alligator 

Cracking 
6.15 (%) 242 0.96 (%)  9,166 

Transverse 

Cracking 
1.52 (No./100ft) 230 0.29 (No./100ft) 9,166 

 

 

 

Figure 17  Sections identified by the developed technique to have potential error in at least 

one cracking type out of all audited sections in 2014.    

Texas Roads

Audited Sections with Detected Error in Original Data

Audited Sections with no Detected Error in Original Data
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Sensitivity of Error Detection Technique 

This section evaluates the sensitivity of the developed error detection technique 

to changes in k-value in outlier and potential error identification process.  

As discussed earlier, in each performance family, the data instances (∆x ) lie 

within the k standard deviations of the mean are considered as regular data, and the ones 

greater than UL (μ + k σ ) or less than LL (μ –k σ ) are identified as outliers.  Therefore, 

as k-value increases, the number of ∆x outliers decreases, and thus the consistency 

checks are applied to fewer pavement sections. On the other hand, selecting small k-

value results in detecting ∆x data points with even a slight distance from the median as 

outliers.  Because the developed technique considers outliers as irregular subjects that 

need to be investigated, an extremely small k-value leads to higher number of suspicious 

data points that need to be checked for consistency.  In this case, some of these 

pavement sections that have been flagged as outliers might be incorrectly investigated, 

and eventually identified, as potential errors.  The question becomes what k-value should 

be used? To answer this question, a sensitivity analysis on the k-value was carried out 

and discussed next. 

In this analysis, two variables are considered: number of sections that have 

outliers and number of sections that have potential errors.  Figure 18 shows that the 

number of sections that have outliers decreases as the k-value increases.  For example, k 

equals to 4 yields 7,199outliers (i.e. 4.5 percent of the population is identified as 

outliers) and a k of one yields 63,899 outliers (35.6 percent of the population is 

identified as outliers).  
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Figure 19 shows that the relationship between k-value and the number of 

potential errors is similar to that between k-value and number of outliers. For example, a 

k of 4 yields 3802 potential error (2.3 percent of the population is identified as potential 

errors) and a k of one yields 38600 potential errors (23.3 percent of the population is 

identified as potential errors).  

Ideally, sections with potential errors should be re-inspected.  Thus, the selection 

of appropriate value for k-value is dependent on availability of resources to audit and re-

inspect these sections.  For example, a k of 2 yields 15606 potential errors (i.e., 9.5 

percent of the population).  Typically, highway agencies audit about 5-10 percent of 

their networks.  Thus, a k-value of 2 is used in the next Section of this study to 

investigate the impact of erroneous data on the PMS output. Different highway agencies 

might select different values of k-value based on these sensitivity results. 
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Figure 18  Relationship between k-value and number of sections with outliers  

 

 

Figure 19  Relationship between k-value and number of sections with potential errors   
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5. EFFECT OF CONSIDERING MULTIPLE DIMENSIONS OF ERROR 

DETECTIONS IN PAVEMENT CONDITION DATA 

As discussed earlier, the technique developed in this study considers three 

properties of pavement condition data as a means for detecting potential errors. These 

properties are: 

 Time series trend for each condition indicator 

 Variability within each uniform performance family 

 Consistency between multiple condition indicators. 

In this section, the influence of these dimensions of pavement condition data on error 

detection is investigated, as follows: 

 Case 1 - Time series for the entire network (one-dimensional technique):  this 

case is similar to some of the current error detection techniques used in PMSs. It 

compares annual distress changes (time series) in pavement condition indicators, 

and recognizes outliers as likely errors. It does not consider variability in uniform 

performance families or consistency checks. For example, in this investigation, 

this technique assumed that points with normal changes would lie within the 

distance of twice standard deviation from the average (μ ± 2σ). The reminders 

(which had annual changes outside of this range) were likely errors. 

 Case 2 - Time series for individual performance families (two-dimensional 

technique): this case defines uniform performance families for pavement 

sections, based on their performance characteristics (e.g., climate zone, traffic 
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loading, pavement type, etc.). Pavement sections in any given family generally 

have the similar attributes and are supposed to deteriorate in a similar fashion. 

Thus, the outlierness of an indicator’s annual change is determined respective to 

the changes of other members of the family.  An annual change of one indicator 

might be recognized as an anomaly in one performance family, but the same 

amount of change could be seen as a normal data instance in another family.   

 Case 3 - Potential errors (three-dimensional technique): this is the new technique 

that was developed as part of this research. It not only considers annual changes 

in uniform families in order to detect outliers, but also implements a heuristic 

consistency check as an additional level of investigation (as discussed in Section 

3). Therefore, this technique has the advantage of differentiating irregular, yet 

valid outliers, from potential errors. 

 

In this analysis, false positive and false negative outliers were investigated.  False 

positive outliers are data points incorrectly identified as errors; while in fact they are 

correct (e.g., dissimilar but valid data). False negative outliers are data points that are 

indeed erroneous but were not detected by the technique.  

Each of the above analysis cases was conducted for each condition indicator for 

the entire TxDOT network.  The results for LC are shown in Figures 20, 21, and 22 (the 

results for the other condition indicators are presented in Appendix B). From 165,400 

pavement sections considered in this analysis, Case 1 analysis identified 8,892 pavement 

sections as having outlier LC values. After considering the various pavement families 
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(Case 2 analysis), the number of sections with outlier LC values decreased to 8,521. 

Although both cases detected approximately similar number of pavement sections as 

having irregular LC values, they did not identify the same exact sections. The two cases 

agreed on 6,623 pavement outlier sections in terms of LC values. There were 2,269 LC 

values identified as statistical outliers in Case 1, but were considered non-outlier in case 

2 analysis.  This is because these sections were non-outlier with respect to the other 

members of their pavement families. On the other hand, the case 1 analysis missed 1,898 

sections that, based on their performance families, should have been classified as 

outliers.  

The Case 3 analysis, which considers both consistency checks among multiple 

condition indicators and performance families, identified only 4,656 pavement sections 

as potential errors. Of those potential errors, 3,577 sections were correctly detected by 

Case 1 analysis, missing 1,079 sections (i.e. false negatives).  Table 8 shows a summary 

of the results in a pairwise comparison matrix. Each cell lists the number of pavement 

sections detected by the pair of analyses as potential errors in LC values. For example, 

6,623 pavement sections were detected by both Case 1 analysis and Case 2 analysis as 

likely to have errors in their LC values (representing 74 percent agreement between Case 

1 and Case 3). Similarly, 3,577 pavement sections were detected by both Case 1 analysis 

and Case 3 analysis as likely to have errors in their LC values (representing 40 percent 

agreement between Case 1 and Case 3). Since the results of the three-dimensional 

technique were a subset of the two-dimensional technique result, their intersection was 

the number of pavement sections detected by the three-dimensional technique.   
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Figure 20  Results of Case 1 analysis: sections with erroneous LC values  

 

 

Figure 21  Results of Case 2 analysis: sections with erroneous LC values   

 

Sections with LC statistical outliers 
Roads 

Sections with LC outliers in families 
Roads 
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Figure 22  Results of Case 3 analysis: sections with erroneous LC values 

 

 

Table 8 Agreement between the three case analyses expressed in terms of number of 

pavement sections detected as potential errors in LC values (entire TxDOT network). 

 Case 1 Analysis 

 

Case 2 Analysis 

 

Case 3 Analysis 

 

Case 1 Analysis 8,892 - - 

Case 2 Analysis 6,623 8,521 - 

Case 3 Analysis 3,577 4,659 4,659 

 

Texas is a vast state with an extensive roadway network that encompasses many 

different types of performance families (e.g., climate zone, pavement type, traffic 

loading, etc.). Thus, it is not surprising that considering all pavement sections to be of 

one performance family leads to inaccuracy and provides many false positive and 

negative outliers. Therefore, similar analyses were conducted on a single TxDOT district 

(Brownwood District) to demonstrate the effect of considering multiple error detection 

Sections with potential AC errors 
Roads 
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dimensions for a smaller network with fewer performance families. The results for LC 

are shown in Figures 23, 24, and 25. Table 9 shows the agreement between the three 

cases in terms of the number of pavement sections detected as potential errors in LC 

values. Based on the changes in LC values for 5,505 pavement sections, 245 sections 

were identified as statistical outliers by Case 1 analysis (i.e., without considering 

performance families or consistency checks).  For Case 2 analysis, 267 sections were 

detected as outliers, including and 219 sections in common with Case 1 analysis 

(representing 89 percent agreement between Case 1 and Case 2).  For Case 3 analysis, 

only 135 sections were detected as outliers that are potential LC errors, including 113 

sections in common with Case 1 analysis (representing 46 percent agreement between 

Case 1 and Case 3).  While this analysis shows that for a smaller network there is more 

agreement between Case 1 and Cases 2 and 3, differences remain noticeable. 

 

Table 9 Agreement between the three case analyses expressed in terms number of 

pavement sections detected as potential errors in LC values (Brownwood District). 

 Case 1 Analysis 

 

Case 2 Analysis 

 

Case 3 Analysis 

 

Case 1 Analysis 245 - - 

Case 2 Analysis 219 267 - 

Case 3 Analysis 113 135 135 
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Figure 23  Results of Case 1 analysis: sections with erroneous LC values (Brownwood 

District)  

 

 

Figure 24  Results of Case 2 analysis: sections with erroneous LC values (Brownwood 

District)   

Sections with LC statistical outliers 
Roads 

Sections with LC outliers in families 
Roads 
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Figure 25  Results of Case 3 analysis: sections with erroneous LC values (Brownwood 

District) 

 

Discussion of Results (Case 1 Analysis vs. Case 2 Analysis) 

The causes of difference in results between Case 1 and Case 2 analyses are 

discussed through examples. Table 10 shows examples of detected potential errors by 

Case 1 analysis, Case 2 analysis, or both. Section US0084R05321.0 belongs to climate 

zone 3, pavement family A, and medium traffic loading.  The change in LC value 

between 2013 and 2014 is 41 (i.e., Δx = 41). This Δx is outside the UL and LL for both 

cases (i.e., entire network and the section’s performance family). Thus, 2014 LC value is 

detected as potential error by both Case 1 and Case 2 analyses. 

Section SH0071K04461.0 belongs to climate zone 3, pavement family A, and 

medium traffic loading.  The change in LC value between 2013 and 2014 is 41 (i.e., Δx 

Sections with potential LC errors 
Roads 
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= 41). This Δx is outside the UL and LL for the performance family; however, it is 

within the LL and UL range for both cases entire network. Thus, 2014 LC value is 

detected as potential error by Case 2 analysis only. 

Section FM1176K03440.5 belongs to climate zone 3, pavement family C, and 

low traffic loading.  The change in LC value between 2013 and 2014 is -32 (i.e., Δx = -

32). This Δx is outside the UL and LL for the entire network; however, it is within the 

LL and UL range for the 3-C-Low performance family. Thus, 2014 LC value is detected 

as potential error by Case 1 analysis only. 

 

Table 10 Examples of sections detected as potential errors by Case 1 analysis and Case 2 

analysis. 

Section number 

Change 

in LC 

value 

(Δx) 

Case 1 

Analysis 

Case 2                     

Analysis 
Potential Error? 

LL UL 
Performance 

family* 
LL UL 

 

US0084R05321.0 41 -31.3 30.7 3-A-Medium -25.8 26.6 Both 

SH0071K04461.0 30 -31.3 30.7 3-A-Medium -25.8 26.6 Case 2 

FM1176K03440.5 -32 -31.3 30.7 3-C-Low -34.2 32.6 Case 1 

FM0502K04501.0 -50 -31.3 30.7 3-C-Low -34.2 32.6 Both 

US0067K05440.5 -30 -31.3 30.7 3-A-Medium -25.8 26.6 Case 2 

* Climate Zone – Pavement Family – Traffic Loading 
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Discussion of Results (Case 1 Analysis vs. Case 3 Analysis) 

Similar to the previous discussion of Case 1 analysis vs. Case 2 analysis, the 

causes of difference in results between Case 1 and Case 3 analyses are discussed through 

examples. 

Figure 26 shows an actual pavement section along with changes in LC and other 

condition indicators after being normalized (condition changes from 2013 to 2014). The 

LC values for the section were detected as potential error by both Case 1 and Case 3 

analyses.  This is because Δx was outside the LL and UL range for the entire network 

(Case 1 analysis) and at the same time, this Δx is inconsistent with the Δx for the 

majority of the other condition indicators (i.e., violating the consistency checks). Thus, 

LC data was detected as potential error by both Case 1 and Case 2 analyses. 

 

 

(a)       (b) 

Figure 26 An actual example pavement section with correctly detected outlier: (a) 

normalized Δx for multiple condition indicators in 2013 and 2014, and (b) Location of the 

pavement section 
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Figure 27 shows an actual pavement section that serves as an example of a false 

positive outlier by Case 1 analysis. This section was detected by Case 1 analysis as a 

statistical outlier based on its LC change. However, this Δx is consistent with the Δx for 

the majority of the other condition indicators for this particular pavement section (i.e., 

passing the consistency checks). All Δx values are negative; suggesting that the 

condition of this pavement section has improved likely due to applying a thick overlay 

(which results in reduction to all surface cracking as well as rutting and IRI).  

 

 

(a)      (b) 

Figure 27 An actual example pavement section with false positive LC error identification 

by Case 1 analysis: (a) normalized Δx for multiple condition indicators in 2013 and 2014, 

and (b) Location of the pavement section 

 

Figure 28 shows an actual pavement section that serves as an example of a false 

negative outlier by Case 1 analysis. This section was not detected by Case 1 analysis as a 

statistical outlier based on its LC change. However, this Δx is outside the LL and UL for 

its performance family and thus it warrants a consistency check.  Figure 37 shows that 
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this Δx is inconsistent with the Δx for the majority of the other condition indicators (i.e., 

violating the consistency checks). Thus, this is a likely error. 

 

 

(a)      (b) 

Figure 28 An actual example pavement section with false negative LC error identification 

by Case 1 analysis: (a) normalized Δx for multiple condition indicators in 2013 and 2014, 

and (b) Location of the pavement section 

 

Figure 29 shows false positive and false negative in LC error identification for 

Brownwood district. Case 3 analysis detects more false positives compare with false 

negatives. 

Table 11 shows the differences between pavement sections detected by Case 1 

analysis and Case 3 analysis for all performance indicators in Brownwood District. This 

table shows that the developed technique has the advantage of recognizing false 

positives in traditional statistical methods because of its ability to consider consistency 

among multiple condition indicators.  Also, the developed technique has the advantage 

in reducing false negatives in traditional statistical techniques because of its ability to 
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consider performance families. It can be seen that the developed technique has greater 

power in reducing false positives compared to reducing false negatives. 

 

 

(a)     (b) 

Figure 29 False positive and false negative in LC error identification (a) false positive (b) 

false negative 
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Table 11 Number of pavement sections from the Brownwood District detected by Case 1 

and Case 3 analyses. 

Condition 

Indicator 

No. of Section with 

Potential Errors 

(Case 3 Analysis) 

No. of Section with 

Potential Errors 

(Case 1 Analysis) 

No. of Section 

detected by  

both cases 

False 

negative 

False 

positive 

LC 135 245 113 22 132 

AC 87 176 76 11 100 

TC 99 291 99 0 192 

RUT 184 287 165 19 122 

IRI 131 256 115 16 141 

False negative: Sections were detected by Case 3 to have potential error values but Case 

1 failed to detect them 

False Positive: Sections were detected by Case 3 to have extreme yet valid data but Case 

1 falsely detected them as errors 
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6. IMPACT OF ACCURACY IN PAVEMENT CONDITION DATA ON THE 

ASSESSMENT OF NETWORK HEALTH 

This part of the research addresses the second research question; which is: How 

does accuracy of pavement condition data impact the predictions of future performance 

of the road network? The impact was investigated in both project and network level. In 

project level investigation, the effect of potential erroneous indicators was investigated 

on the health measurement of sections detected to have these potential errors. To answer 

the question in network level, the road network health is measured based on two 

scenarios: original database and clean database.  The original database includes all 

original data (without any modifications).  The clean database does not include data 

points that are identified by the developed method as potential errors. Remaining Service 

Life (RSL) is used as an overall measure of network health to compare these two 

scenarios.  RSL represents the timeframe within which the pavement is expected to 

require an M&R treatment. RSL indicates not only the current condition of roadway 

network but also the needed service and budget in future, thus it is of interest to decision 

makers.  

In this chapter, first the RSL estimation process is described. Then, the presented 

technique is used to identify potential errors. Next, impact of accuracy on RSL of the 

sections detected to have potential errors was investigated. Finally original database and 

clean database are compared based on the estimated RSL of the network (i.e. the average 

RSL of the network and the distribution of RSL for the network).   
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RSL Estimation Process 

RSL is defined as the estimated number of years from the last data collection 

year to the time when the pavement condition indicator (e.g. distress index) reaches a 

threshold value of minimum acceptable service level (Baladi and Novak 1992, Baladi et 

al. 2011). Figure 30 shows the estimation of RSL using measured and predicted distress 

index over time. Elkins et al. (2013) suggested that predicting the remaining life of 

pavement is an essential capability for PMSs.   

 

 

Figure 30  Estimation of RSL using measured and predicted distress index over time 

(adopted from Baladi et al. 2011) 

 

Since, pavement condition is measured using several indicators, RSL is 

calculated for each indicator individually. The minimum RSL among the multiple 

condition indicators is the pavement section’s overall RSL. 
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RSL of a given pavement network is computed as the weighted average of all 

network pavement sections, as below: 

             
∑         

 
   

∑    
 
   

Eq 3

where RSLi is the RSL of pavement section i, and SLi is the length of section. 

Figure 31 shows a step by step method implemented in this study to compute 

RSL for any given pavement section. Pavement performance indicators are used to 

measure pavement condition and specify whether the pavement section needs to receive 

an M&R treatment. In the RSL estimation process, considered indicators are required to 

have current values and reliable deterioration models to predict the pavement future 

condition. Naturally, more accurate current condition data and deterioration model 

results in more accurate estimation of RSL. 

Figure 31  RSL estimation process 
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Threshold values are defined as the amount of distress that shows the pavement 

section needs corrective treatment because preventive maintenance can no longer 

effectively improve pavement condition. In this study, these values are determined based 

on needs estimate trigger criteria defined by TxDOT to receive at least Light 

Rehabilitation (RL) treatment (Gharaibeh et al. 2012). Threshold values are different 

based on Average Daily Traffic (ADT) levels of pavement sections. Table 12 shows 

selected indicators and their threshold values for different ADT levels in the RSL 

estimation process. There indicators are defined as follows (TxDOT 2015): 

 Alligator cracking (AC): Percentage of the rated lane's total wheelpath 

area that is covered by alligator cracking 

 Longitudinal Cracking  (LC): Linear feet per station (i.e. average feet of 

cracking in each 100 feet of surface) 

 Transverse Cracking (TC): number of transverse cracks per 100-ft station. 

 Shallow Rutting (ShRUT):  Percent of the section's total wheel path area 

that is rutted between 0.25 in and 0.49 in. 

 Deep Rutting (DRUT):  Percent of the section's total wheel path area that 

is rutted between 0.5 in and 0.99 in. 

 FAIL: Total number of failures observed along the entire rated section. 

 Block Cracking (BC): percentage of the rated lane's total surface area 

with block cracking. 

 Patching: Percentage of the rated lane's total surface area with patching. 
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Table 12 Performance indicators and threshold values (adopted from Gharaibeh et 

al. 2012). 

Condition Indicator 
Threshold Value to Receive LR 

ADT ≤ 99 99 < ADT ≤ 999 999 < ADT ≤ 4,999 4,999 < ADT 

AC (%) 25 20 15 10 
LC (ft/100ft) 126 101 101 101 

TC (No./100ft) 7 7 7 5 
ShRUT (%) 12 12 10 10 
DRUT (%) 9 9 9 9 
FAIL (No.) 3 2 2 2 

BC (%) 16 16 16 12 
Patch (%) 42 32 22 12 

DS 70 70 70 70 
* A Distress Score (DS_ below 70 indicates that the pavement section is in Poor or Very Poor Condition

TxDOT performance prediction models for different distress types are used for 

estimating RSL. These models are s-shaped (Figure 32) and have the following general 

equation: 

      
  

 

   
  

Eq 4

where: 

 Li: represents the density of distress i (i.e., distress quantity normalized for section 

length or percent ride quality lost). 

 Age: number of years since last construction on the pavement section 

 α: maximum loss factor which controls the maximum Li 

 β: slope factor which controls how steeply Li increases in the middle of the curve 

 A: prolongation factor controls the location of the Li curve’s inflection point.  
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For Equation 4, separate values of α, β, and A were developed in previous research for 

all combinations of pavement type, distress type, subgrade type, climate and traffic level 

(Gharaibeh et al. 2012). These coefficients are presented in Appendix A. 

Figure 32  Typical S-shaped pavement performance prediction models used by TxDOT 

(Gharaibeh et al. 2012) 

The change of DS versus age follows a sigmoidal curve too, and estimated using 

the following equation (Gharaibeh et al. 2014): 

       [   
  

 

   
  
] Eq 5 

   where DS0 is the DS immediately after M&R treatment or construction; Age is 

the number of years after the last treatment on the pavement section; β and ρ are the 

slope factor and prolongation factor, respectively.  These coefficients change for 

different combination of climate zone, pavement family, loading traffic, and the type of 
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last treatment. For example, Figure 33 shows the pavement DS prediction model for a 

pavement section in climate zone one, pavement family B, and medium loading traffic 

which has received a LR as its last treatment.  

DS ranges from 0 to 100; where DS value equal to 100 represents a recently 

constructed pavement section in a great condition. Pavement sections with DS values 

less than threshold value (e.g. 70) are in poor condition and need to receive M&R 

treatment. 

 

 

Figure 33  Example DS prediction model (pavement B, Zone 1, medium traffic loading, and 

LR treatment). 

 

RSL for each performance indicator is the difference between the pavement age 

based on the condition indicator value in current year and the pavement age when the 

indicator reaches its threshold value. Thus, any given pavement section has several 

estimated RSL (i.e. one for each condition indicator). The minimum RSL among the 
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multiple indicators is considered as the pavement section overall RSL. Figure 34 shows 

how several condition indicators of a pavement section might reach their thresholds in 

different periods of time (age).  This example pavement section is located in climate 

zone one, pavement family B, and medium loading traffic road and has recently received 

MR (thus all condition indicators have zero value and DS is equal to 100). Therefore, 

estimated RSL of each indicator is equal to the period of time for that indicator to reach 

its threshold limit. The estimated RSL for this example pavement section is controlled 

by alligator cracking (AC) and is estimated to be 16 years. If the current value of anyone 

of the condition indicators changes, the section’s RSL would be different.  For example 

if the shallow rutting in current year was equal to 5 percent, then the current age of 

shallow rutting would be equal to 14 and the pavement section RSL would change to 6 

years (i.e. 20 year threshold age minus 14 year current age of shallow rutting).  
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Figure 34  Pavement age at which several indicators reach their threshold values for an 

example pavement section (pavement B, Zone 1, medium traffic loading, MR treatment, 

AADT >4999) 

 

Erroneous data might wrongly increase or decrease current age by denoting an 

invalid current condition values. In next section, the impact of erroneous data instances 

on the estimated RSL of pavement sections is investigated. 

Impact of Condition Data Accuracy on RSL for Sections Affected by Bad 

Condition Data 

Detecting a potentially invalid performance indicator value of a pavement section 

does not necessarily mean that other indicator values of the section are erroneous too. 
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However, even only one invalid data value might change the estimated RSL of the 

section, and thus deceive the PMS decision making process. In order to assess the impact 

of erroneous condition data on the estimated RSL of pavement sections with potential 

errors, the following scenarios were investigated:  

 First, RSL of the section was estimated considering all data, including 

potentially erroneous values (Original RSL).  

 Second, a condition indicator with erroneous values was removed from 

the RSL process, and the RSL of the section was estimated again 

(Permuted RSL). 

To prevent effects of other indicators on the result of removing suspicious data, 

the process was conducted on the sections that were detected to have only one potential 

error value (e.g., AC or LC). For example, if a given pavement section was identified to 

have likely error data for both AC and TC values it was not considered in individual 

checking, however it has been considered in checking all indicator effects. 

Since all distress types studied here affect the computed DS, errors in any 

condition indicator affects the DS value. Thus, in this analysis, RSL is computed without 

considering DS. 

Table 13 shows the results of removing suspicious indicators (one at the time) 

from the RSL estimation process. Figure 35 compares the distribution of permuted RSL 

and original RSL for the sections affected by bad condition data.   
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Table 13 Effect of data errors in individual condition indicators on estimated RSL. 

Condition 

Indicator 

Sections with Likely 

Error  Data (No.) 

Average RSL (Years) 

Original Data Permuted Data 

AC 2,094 3.5 7.7 

TC 1,287 7.1 9.2 

LC 3,615 5.8 10.1 

RUT 3,761 1.7 16.7 

All 12,127 4.2 11.9 

Figure 35  Distribution of original RSL vs. permuted RSL for sections affected by bad 

condition data 

Impact of Condition Data Accuracy on RSL for Entire Network 

In this section, the influence of pavement condition data accuracy on the 

predictions of future performance is investigated using all 165,469 PMIS pavement 

sections. The following procedure was implemented: 
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 First: RSL of all pavement sections were estimated using 2014 pavement 

condition data, as original data RSL. 

 Second: Potential errors in condition data (i.e., PMIS2014 and 

PMIS2013) were detected using the proposed method in Section 3 

 Third: Sections with potential errors were removed from the original data 

and the reminder was considered as clean data. RSL of clean data was 

compared to the RSL of original data to evaluate the impact of condition 

data accuracy. 

The RSL comparison of these scenarios (i.e. origin data and clean data) is 

expressed in terms of the weighted average RSL (weighted by pavement section length) 

and the distribution of RSL for network. Weighted average RSL represents the overall 

health of the network. Assessing the distribution of RSL enables decision makers to 

focus on different parts of the network (e.g., parts needing M&R work in the near future 

vs. parts needing M&R work in the long-term). 

Table 14 shows the percent of roadway network in different RSL categories for 

both original and clean data. Figure 36 compares the distribution of RSL of Texas 

roadway network using these categories (i.e. clean condition data vs. original condition 

data). 
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Table 14 Number of sections and percent of Texas roadway network in each RSL 

categories based on clean data and original condition data 

RSL 

Category 

(Year) 

Number of Sections Percent of Network 

Original Data Clean Data Original Data Clean Data 

0_2 46,594 37,939 28.2% 25.3% 

2_5 21,723 19,985 13.1% 13.3% 

5_8 19,812 18,416 12.0% 12.3% 

8_12 32,457 30,644 19.6% 20.4% 

12_16 21,368 20,291 12.9% 13.5% 

16_24 17,680 16,939 10.7% 11.3% 

>24 5,835 5,649 3.5% 3.8% 

Figure 36  Distribution of RSL of the Texas roadway network using original data vs. 

clean data 
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The largest difference between the two scenarios occurs in the first category, 

where RSL is less than 2 years. Based on the original data, 28.2 percent of the network 

needs rehabilitation in the next two years; however, based on the clean data 25.4 percent 

of the roadway network is expected to need rehabilitation in the next two years. Thus, 

according to the clean data, the M&R budget in the next two year is 3,276 million dollar 

(i.e. assuming all pavement sections receive LR); which is 361 million dollar (i.e., 11% 

difference) less than the required budget estimated using the original data for the same 

period of time. Both clean and original data determine almost the same percent of the 

roadway network in the range of 2 to 8 year RSL. For the categories with RSL greater 

than eight years, the percent of network in these categories is greater for the clean data 

than for the original data. This outcome may be attributed to the fact that the developed 

error detection method identifies fewer potential errors among sections in good 

condition.  

This analysis reveals that errors in pavement condition data results in the 

overestimation of required budget for short term plans (i.e. 1-2 year M&R planning). 

There is an 11 percent difference in estimated budget for the next two years between the 

two scenarios (i.e. original data and clean data). This difference decreases when the two 

scenarios are compared based on longer planning period, since clean data shows that a 

greater portion of the network needs M&R after 2 years (Figure 26).  

The weighted average RSL (weighted by section length) of all network is 

calculated using Equation 3 for both original and clean data. The average RSL of the 

network increased after removing sections with potential errors in condition data.  Table 
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15 shows statistical parameters of estimated RSL for both scenarios. The original PMIS 

data underestimates the overall condition of the roadway network compared to the clean 

data (i.e. after removing about 10 percent of pavement sections with potentially 

erroneous data). These results suggest that, in this particular database, errors mostly 

exaggerate the amount of deterioration. The condition of sections with potentially 

erroneous data is worse than the average condition of total roadway network. This can be 

explained by the fact that inspecting and rating pavement sections with few or no 

distress is easier than inspecting sections that have several types of distress with different 

levels of severity. 

 

Table 15 Statistical parameters of estimated RSL for original data vs. clean data 

Population Mean* Std Min 
1

st
 

Quartile 
Median 

3
st
 

Quartile 
Max 

Number of 

Sections 

Original 

Data 
8.00 7.3 0 1.2 7.4 12.2 30.3 165,469 

Clean Data 8.39 7.3 0 1.9 7.7 12.9 30.3 149,863 

* Weighted average RSL of all network 

 

Based on the original data, on average, the roadway network needs at least a LR 

treatment in 8 years, however without considering the erroneous data roadway network 

needs to receive the same treatment in 8.39 years. In order to show the economic effect 

of these results, the Present Worth Value (PWV) and the Equivalent Uniform Annual 

Cost (EUAC) of both scenarios are calculated by discounting future treatment costs to 

the current year as shown in Equation 6 and Equation 7. 
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             ∑           [
 

       
] 

           Eq 6 

           [
      

        
]          Eq 7 

where:  

Costinit: represents the cost of initial treatment. 

i: represents discount rate. 

k: is the number of future treatment applied during the analysis period (k= 1 to N). 

nk: shows the year at which the kth treatment is applied.  

m: is the number of years in analysis period.  

The magnitude of difference between the PWVs for these scenarios is related to 

three factors: the treatment cost, the year of treatment application, and the discount rate. 

The average unit cost of LR, treatment is estimated to $76,086 per lane mile (Gharaibeh 

et al. 2014). This unit cost is used in estimating the PWV for both scenarios.  The 

difference between the PWV for the two scenarios comes from the difference in the 

timeframe (i.e., number of years into the future) for applying the treatment. PWV has a 

negative relationship with the timeframe; the longer the timeframe is, the lower the 

PWV would be. Thus, PWV is lower for the clean data scenario than for the original 

data scenario.  The discount rate represents the rate of change in the value of money over 

time. Several studies have indicated the significant influence of the discount rate on Life 

Cycle Cost Analysis (LCCA) results. Thus, the discount rate should be as realistic as 

possible (Hall et al. 2003; Ferreira and Santos 2012). The U.S. Office of Management 

and Budget (OMB) annually update nominal and real discount rates. Real discount rates 

represent the true time value of money with removing the inflation premium; however, 
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the nominal discount rate includes an inflation component. The real discount rate is 

commonly used in pavement management LCCA (Hall et al. 2003; Wall and Smith 

1998). In 2015, the OMB has recommended the real interest rate value equal to 0.9 

percent for a 10-year analysis period (USOMB 2015). Beside the OMB report, historical 

trends and previous studies should be considered in determining discount rates.   Figure 

37 shows real discount rates for various analysis periods published by OMB in last 20 

years.  

 

 

Figure 37  Trends of the real discount rates for 10-year analysis period in last 20 

years 

 

To account for the uncertainty in discount rate value in this study, the difference 

between the two data scenarios is calculated using several discount rates in the range of 
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0 percent to 5 percent. Figure 38 shows the difference between PWV of required 

treatment for clean data and original data versus discount rate.  The amount of difference 

varies between zero and 170 million dollar based on the discount rate. The value most 

often used in federal LCCA is 4 percent (Kim et al. 2014), making the difference 

between the two PWVs equal to 145 million dollar ($9.43 Billion for original dataset vs. 

$9.29 billion for clean dataset, or about 1.5 percent difference).  

 

 

Figure 38 Difference between PWV of required treatment for clean data and 

original data vs. discount rate 

 

Figure 39 shows the difference between the EUAC of required treatment for the 

clean data and original data, at varying discount rate. For a 4 percent discount rate, the 

difference between EUAC for clean data and original data is equal to 21 million dollar. 
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In other words, in next 8 years the yearly needed budget would be overestimated by 21 

million dollars due to errors in the pavement condition data. Although this is only 1.5 

percent of total estimated yearly budget, 21 million dollars remains a significant amount 

of money.  These results may vary for other pavement networks. 

 

 

Figure 39 Difference between EUAC of required treatment for clean data and original data 

vs. discount rates 
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7. METRICS FOR MEASURING PAVEMENT CONDITION DATA QUALITY 

Transportation agencies own large amounts of pavement condition data that feed 

into PMSs.  Assuring the overall quality of these datasets is critical to the reliability of 

the outputs of PMSs.  The quality of a pavement condition dataset has several 

dimensions, such as accuracy (closeness between a data value and the real-world value 

that it represents), completeness (absence of missing values in the dataset), consistency 

(captures the violation of semantic rules defined over a set of data items), and timeliness 

(how up-to-date the data is with respect to the task at hand).  This chapter provides 

metrics for measuring these quality dimensions for pavement condition datasets.  

Ultimately, these metrics can be used by transportation agencies to determine if 

pavement condition datasets are of acceptable quality.  As a case study, the metrics are 

applied to a pavement condition dataset for TxDOT’s Bryan district roadway network in 

east-central Texas.  This dataset consists of approximately 7,000 records and 70 

columns.  Each record represents a pavement section (approximately 0.5-mile in length).  

The columns include pavement inventory, individual distress types, and pavement 

condition indexes.  It is hoped that these metrics will enable pavement engineers to 

better assess the overall quality of pavement condition datasets. 

Methodology 

In this research, data quality is defined as a set of characteristics (e.g., accuracy, 

completeness, timeliness, and consistency) that a dataset is supposed to possess in order 

for it to be trusted to serve its purpose. The stringency of these characteristics can be 
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used to measure the overall level of data quality (Dasu and Johnson 2003). These 

features, also known as data quality dimensions, make a dataset appropriate for a 

specific use. Therefore, the importance of specific data quality dimensions varies, 

depending upon the database and the purpose of the data; a database might be of 

adequate quality for one purpose, but not for another. These dimensions can be defined 

using theoretical, empirical, or intuitive approaches, as is discussed in Chapter 2. This 

work defines six major quality dimensions for network-level pavement condition data, as 

shown in Figure 40. Each dimension is explained below, as well as the metrics that were 

determined to quantify the quality of the pavement condition data with respect to the 

particular dimensions required for this research. Other dimensions could be added if 

transportation agencies or other users found them to be important. 

 

 

 Figure 40 Pavement condition data quality dimensions 
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Timeliness 

Timeliness represents the most recent time the pavement condition data was 

updated. It can also demonstrate the frequency of change in the particular database. 

Timeliness is one of the easiest data quality dimensions to measure. The unit of 

timeliness can be either months or years. Pavement continuously deteriorates because of 

factors such as traffic loading, aging, and environmental effects. Thus, it is important 

that decision makers use data representing the most recent condition of the particular 

roadway network. Old data might not be useful for making pavement management 

decisions; even if the data were both accurate and complete at the time the decision was 

made. Typically, the frequency of the pavement condition data collection depends upon 

the state’s DOT policy; most DOTs collect data either annually or biennially. 

Uniqueness 

Uniqueness means that each data record should be distinctive and there should be 

no duplicates. In pavement condition data, there may be two records providing 

information about the same pavement section. This can affect PMS decisions and result 

in either an over- or under-estimation of needs. Thus, one of the first steps in reviewing 

the quality of pavement condition data is detecting and removing duplicated sections. 

Following equation calculates uniqueness of network-level pavement condition data. 

                  
∑              

∑              
       Eq 8 
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where, Li is the length of pavement section i; ESALi is the current 18 kip equivalent 

single axel load value of the section; D is the set of pavement sections that are duplicated 

in the dataset; and I is the entire set of pavement sections in the dataset. 

 Completeness 

Completeness represents the extent to which the desired attribute data has been 

provided. It shows the percentage of the real world that is covered in the database. In 

most databases, completeness can be very difficult to measure because the actual 

inventory is not specifically known. In pavement condition data, completeness 

demonstrates the number of pavement sections for which surface conditions have been 

collected and recorded in the database, as compared to the total roadway network 

inventory. It should reflect both pavement sections missing from the database and 

pavement sections in the database that have blank (or missing) values for desired 

attributes. Completeness of pavement condition data can be calculated using following 

equation: 

                 
∑              

∑              
        Eq 9 

where Li is the length of pavement section i; ESALi is the current 18 kip equivalent 

single axel load value of the section; A is the set of pavement sections in the dataset with 

available condition data; and I is the entire set of pavement sections in the dataset. 

Validity 

Validity is defined as the degree to which the data values pass the necessary 

validity criteria (within a set of predefined accepted values). For example, Alligator 
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Cracking (AC) ratings represent the percentage of the rated lane's total wheel path area 

that is covered by alligator cracking. Thus, AC values must range from 0 to 100 percent; 

any number outside of this range is invalid. Validity criteria (or validation checks) are 

usually based upon expert opinions or logical facts and can be defined as a simple rule 

(e.g., not exceeding a specific threshold) or several complex rules. 

             
∑              

∑              
      Eq 10 

where Li is the length of pavement section i; ESALi is the current 18 kip equivalent 

single axel load value of the section; V is the set of pavement sections  in the inventory 

with valid data; and A is the set of pavement sections in the dataset with available 

condition data. 

Figure 41 compares completeness with validity. This chart represents the length 

of the entire roadway network that is expected to be collected (Li). The completeness 

demonstrates the lengths of the sections with valid and invalid values, divided by the 

length of the entire roadway network. The validity represents the length of the sections 

with valid values divided by the length of the sections with available data (i.e., both 

valid and invalid data). 
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 Figure 41  Illustration of completeness and validity measure (Wang et al. 1995) 

Consistency 

Consistency can consider several aspects. It can refer to the provision of the same 

data for the same object, even if these data are collected at another location or time. In 

pavement condition data it refers to the reliability of performance indicator definitions 

and data collection methods. For example, the equipment calibration method should 

produce the same results, even when data collection occurs at different times and 

locations. In order to have consistent data, some agencies inspect the control site each 

time data collection is initiated in a new district, or each time the data collection vehicle 

leaves the state. Inspection results are more consistent if the collectors are well-trained 

raters using identical distress rating guides (Pierce et al. 2013). 
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Another aspect of consistency that this study focuses on is the degree to which a 

dataset agrees with itself. In this sense, the values in one dataset must align with the 

values in another dataset. The necessary alignment can be in a variety of directions, 

depending on the context (Loshin 2006), including between one set of attribute values 

and another attribute set within the same record (record-level consistency), between one 

set of attribute values and another attribute set in different records (cross-record 

consistency), and between one set of attribute values and the same attribute set within 

the same record at different points in time (temporal consistency). Consistency may also 

take into account the concept of reasonableness, in which some range of acceptability is 

imposed upon the values of a set of attributes. 

In a consistent database, information comes from several attributes of a data 

instance that must not be in conflict with one another. Based on the attributes’ 

dependencies, certain rules and constraints can be defined to capture violations of 

consistency. For example, pavement conditions cannot improve if the section in question 

receives no treatment. In other words, data consistency checks are performed to look for 

data that does not make sense. A type of logic test is usually implemented to check for 

unexpected values. Although the conflict might be explained in some data instances, the 

more conflicts that are found, the higher the chance of errors. Values for different 

attributes must satisfy both logical and statistical constraints. Increasing the number of 

constraints also increases the number of data instances (i.e., pavement sections) and thus 

escalates the likelihood of suspicious data values. The consistency of an entire database 

is calculated using the following equation: 
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∑              

∑              
      Eq 11 

where Li is the length of pavement section i; ESALi is the current 18 kip equivalent  

single axel load value of the section; S is the set of pavement sections  in the inventory 

with available data that satisfy the required consistency rules; and A is the set of  

pavement sections in the dataset with available condition data. 

For demonstration purposes, consistency of the Bryan dataset was measured for 

IRI data only by comparing the IRI for the right wheel path and left wheel path.  

Consistency of IRI Data

TxDOT collects IRI data for every 0.1 mile at both wheel paths. An average IRI 

value is used to characterize surface roughness. The lower the calculated IRI, the 

smoother the pavement will ride (and vice versa); higher IRI values represent rougher 

pavement. The calculated IRI values at the two wheel paths should be close to one 

another; otherwise, the average will overestimate the pavement condition of one wheel 

path and underestimate it in the other (Jai et al. 2016). Thus, the difference between the 

calculated IRI values along the two wheel paths demonstrate the variability of the data 

collected. Although the difference in the IRI of the two wheel paths might be true (e.g., 

due to true differences in the actual pavement condition of the two wheel paths), 

significant differences usually represent inconsistencies in the IRI data that should raise 

suspicion. Figure 42 shows the correlation between the IRI values of the two wheel paths 

in a set of Texas pavement condition data collected in 2014. In most sections, the 

calculated IRI values from the left wheel path (IRI_LT) are similar to the calculated IRI 
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values collected from the right wheel path (IRI_RT). This fact can be used to determine 

a general consistency rule for IRI data that should be satisfied if the overall data 

consistency is to be verified.  

Figure 42 Comparison of the IRI values of both wheel paths for Texas roadways in 2014 

The difference in IRI values between the two wheel paths represents the 

variability of the roughness data; Equation 12 is used to define the variability of such IRI 

values (Jai et al. 2016). 

    
|           |

|           |
      Eq 12 

where Er is the relative error of the roughness data. 
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A high relative number of errors represents inconsistencies between the IRI 

values of the two wheel paths. In order to define a consistency rule for the IRI data, a 

threshold for acceptable Er values should be determined. The threshold may differ based 

on the desired confidence level. Figure 43 shows the cumulative distribution of relative 

errors in the IRI data collected for Texas roadways in 2014. More than 90 percent of the 

roadway network had Er values of less than 18.1 percent. Thus, in this study it was 

assumed that relative errors of more than 18.1 percent represented inconsistencies. In 

other words, the IRI data for a given section was considered consistent if the Er values 

were less than 18.1 percent.    

 

 

Figure 43 Cumulative distribution of relative IRI value errors for Texas roadways in 2014 
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Accuracy 

Accuracy is the degree to which a value in the database is close to the true value 

of the phenomenon in the real world. This dimension of data quality is also referred to as 

data correctness. In pavement condition data, accuracy represents the closeness of 

several types of distress ratings to their real values in the field.  

Although accuracy is one of the most important dimensions of data quality, it is 

very difficult to quantify because the true value is not known for every instance in the 

dataset. In pavement management, to verify and control the accuracy of collected 

pavement condition data, independent auditors resurvey and reanalyze random samples 

from the data collection (Flintsch and McGee 2009). For instance, TxDOT uses private 

vendors to collect pavement condition data every year for nearly its entire roadway 

network. These data, called PMIS, are used to measure the network’s current condition 

and plan M&R treatments. TxDOT also conducts an independent data collection survey, 

called audit data, on approximately five percent of its network, in order to verify the 

vendor-collected data (Siabil and Gharaibeh 2016).  It is assumed that audited data 

represent the true values and can be used to measure the accuracy of the vendor-

collected data. For each data instance (i.e., pavement section), the distance function in 

Equation 13 (Heinrich et al. 2007) can be used to quantify the distance between the 

distress rating in the PMIS database (Xp) and the corresponding attribute value in the 

audit data (Xa): 

 (     )  
|     |

   (     )
                  Eq 13 
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where d (Xp, Xa) represents the distance between any distress rating (e.g., TC, AC, and 

LC) in the database and its corresponding true value in the field. d (Xp, Xa) is computed 

using a sample of the dataset.  In this case, the audited sections represent the sample 

used for computing d (Xp, Xa). 

Large distance values represent a lack of accuracy in the data for the pavement 

section; conversely, when d = 0 the distress value should be considered accurate.  If both 

Xp and Xa = 0, then d = 0 because the data instance correctly represents the real world. 

Thus, accuracy has a negative correlation with distance, d (Xp, Xa), and is defined as 

within a range of 0 to 100. The accuracy of a pavement section data for any indicator can 

be calculated using Equation 14: 

               (     )  Eq 14 

where accuracyi is the accuracy of a data instance (i.e. pavement section i) for an 

indicator (X); and d(Xp, Xa) represents the distance between any distress rating (e.g., TC, 

AC, and LC) in the database and its corresponding true value in the field. 

The accuracy of the entire data collection for any indicator can be represented by 

the weighted average accuracy of the sections with audit data, as shown in Equation 15. 

               
∑                       

∑              
      Eq 15 

where Li is the length of pavement section i; ESALi is the current 18 kip equivalent 

single axel load value of the section; accuracyi is the accuracy of a data instance (i.e. 

pavement section i) for the indicator; and T is the set of pavement sections with audit 

data  (i.e., sample size). 
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Results 

The above metrics for measuring data quality were implemented for network-

level pavement condition data collected for the Bryan district roadway network in 2014.  

This dataset consisted of approximately 7,000 records and 70 columns.  Each record 

represented a pavement section (approximately 0.5-miles in length).  The columns 

included pavement inventory, individual distress types, and pavement condition indexes. 

Metrics were applied individually to several pavement performance indicators, including 

IRI and surface cracking data (i.e., LC, AC, TC, and BC). The results are summarized in 

Table 16. TxDOT collects pavement condition data annually, so all data points had the 

same timeliness value. All of the records were unique and there were no duplicates in the 

database. It was assumed that the only missing data was contained in the blank records, 

which were rarely found in this database. The IRI values were more complete but less 

valid than the surface cracking data. Audit data were not available for the IRI dataset, so 

the accuracy could not be measured. Overall, the Bryan roadway network dataset had a 

very high level of quality based on the proposed metrics. However, the consistency and 

accuracy dimensions had less strength than the other quality dimensions.  

Generally, there is a greater chance of collecting inaccurate data if the pavement 

is deteriorated and distress value is not zero. Therefore, distress types that are less 

sensitive and rarely change (like BC), tend to have more zero values and less erroneous 

data. This might be why there were more accurate data for the BC values.       
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Table 16 Quantified data quality dimension for several performance indicators in 

Bryan roadway network in 2014. 

Performance 

Indicator 

Timeliness 

(year) 

Completeness 

(%) 

Validity 

(%) 

Uniqueness 

(100) 

Consistency 

(%) 

Accuracy 

(%) 

IRI 1 100 99.1 100 95.2 NA 

AC 1 99.5 100 100 NA 77.2 

LC 1 99.5 100 100 NA 77.4 

TC 1 99.5 100 100 NA 79.7 

BC 1 99.5 100 100 NA 99.7 
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8. SUMMARY, CONTRIBUTION, CONCLUSIONS, AND 

RECOMMENDATIONS 

Summary 

Transportation agencies allocate a portion of their annual budget to collecting 

pavement condition data as a part of their PMSs. These PMSs help agencies make 

efficient decisions about allocating available resources to the maintenance, 

rehabilitation, and renewal of roadway networks. Due to their use of more advanced 

technologies in collecting, storing, and manipulating data, the size of these pavement 

condition databases are growing rapidly, which makes controlling the quality of data 

even more complicated and expensive. On the other hand, high quality data is essential 

to efficient and reliable decision making. Thus, transportation agencies need to ensure 

that the dollars they invest in data are well spent, and their data is of the level of quality 

necessary to meet the requirements of their PMSs (e.g., data is complete, accurate, 

consistent, and up-to-dated). Despite the importance of this area, the majority of 

pavement management literature has been dedicated to data collection processes, data 

analysis, and decision making modeling. Only a few studies have investigated the quality of 

pavement condition data and its effect on PMS results. In order to fill this gap, this 

research assesses and enhances the quality of network-level pavement condition data. 

First, this research devised and implemented a new computational technique to 

identify potential errors in pavement condition data. This technique integrates 

conventional statistical methods and heuristics.  The statistical methods are used to 
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identify outliers in uniform performance families, and the heuristics are used to delineate 

potential errors from extreme yet valid behaviors within these outliers. Compared to 

conventional statistical methods, the developed technique has the advantage of 

differentiating between extreme, yet valid, data points and potential errors. Second, the 

new technique was validated using actual pavement condition data from Texas. Audit 

data was compared with original data for two datasets: all sections that were audited, and 

the audited sections that were identified by the developed technique as containing 

potential errors. Third, the effect of considering multiple dimensions of error detection in 

pavement condition data was investigated. These dimensions are based on data 

properties, including time series trends in pavement condition data, variability within 

uniform performance families, and the consistency between several performance 

indicators. The results of the error detection using single or multi-dimensional 

techniques were compared using data from TxDOT’s Brownwood district. Next, an 

assessment was made of the impact of the data’s accuracy on predictions of the road 

network’s future performance. RSL was used as an overall measure of network health in 

order to quantify this impact at both the project and network levels. Finally, several metrics 

were proposed for measuring quality dimensions of pavement condition data. The 

metrics were applied to the Bryan district roadway network dataset 

Contribution 

The key contributions of this research include the following: 

a) Developing a new computational technique to detect potential errors in 

network-level pavement condition data 
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b) Providing a quantitative assessment of the impact of data accuracy on the 

output of PMSs (i.e., assessing the estimated RSL). 

c) Providing metrics for measuring quality dimensions of network-level 

pavement condition datasets 

The main merit of the developed technique is the ability to distinguish between 

extreme data points and potential errors, as compared to conventional statistical 

methods. The impact of data accuracy was quantitatively investigated and the 

overestimation (i.e., because of erroneous data) of the required budgets for future M&R 

plans was calculated. Provided metrics enables engineers to assess the quality of 

pavement condition datasets, and ultimately can be used to determine if pavement 

condition datasets (as a whole) are of acceptable quality.  

Conclusions 

Key conclusions of this study are defined in four categories and summarized as 

follows: 

 A new technique was developed to detect potential errors in pavement 

condition data. In order to validate the results, the technique was tested 

on Texas pavement sections that had been audited in 2014. The 

following key conclusions can be made based on the new technique and 

validated sections: 

o Potential errors in pavement condition data can be identified and 

delineated by integrating statistical methods and heuristic consistency 
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checks.  This new technique has the advantage of differentiating 

between extreme yet valid data instances (pavement sections that had 

unusual but explainable performances such as receiving treatments or 

rapid deterioration) and potential errors. 

o A Wilcoxon signed-rank test with α =0.05 (i.e., 95 percent 

confidence) validated the developed error detection method for both 

LC and AC.  For all cracking types (i.e., LC, AC, and TC), the data 

points identified as potential errors had higher MAEs, as compared to 

the general population of audited pavement sections. 

o Potential errors were found to be randomly distributed across the 

Texas roadway network and were not related to a specific geographic 

regions, districts, climatic zones, etc. 

 Accounting for several properties of pavement condition data (i.e. 

multiple dimensions of error detection) to identify potential errors 

improves the results of pavement condition error detection techniques: 

o The impact of considering performance families increases as the 

networks get larger and more diverse 

o Considering consistency among several indicators significantly 

improves the results of the error detection techniques by identifying 

false positives (i.e., the valid data instances that falsely detected as 

outliers). 
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o Considering the variability in pavement performance families in 

conjunction with consistency checks improve error detection by 

identifying false negatives. 

 The impact of pavement condition data accuracy on the estimated RSL of 

a road network was assessed using data obtained from Texas. The 

following conclusions are related to the impact investigation segment of 

this research:  

o Pavement sections detected to have potential errors had lower RSLs 

than the average roadway network. This meant that the errors mostly 

occurred in deteriorated sections with many distresses; the data for 

these sections cannot be easily and precisely collected, as compared 

with pavement sections in good condition and with little or no 

distress. 

o Considering the entire roadway network, errors in pavement condition 

data result in the underestimation of RSL and overestimation of 

required budget for short term plans (i.e. 1-2 year M&R planning).  

o The estimated RSLs of pavement sections detected to have potentially 

erroneous indicator values were highly sensitive to suspicious values 

of condition data. Ignoring these suspicious data (i.e., potential errors) 

in the RSL estimation process dramatically increased the amount of 

the RSL. From 165,469 pavement sections in the Texas roadway 

network, 12,127 sections were detected to have potential errors in at 
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least one of their condition indicators (i.e., rutting, AC, LC, TC). The 

average estimated RSL of these sections increased from 4.2 years to 

11.9 years when the suspicious data was removed.  

 Several metrics are provided to measure quality dimensions of pavement 

condition datasets. The metrics were applied to a pavement condition 

dataset for TxDOT’s Bryan district roadway network: 

o Metrics for measuring several dimensions of pavement condition data 

quality were defined. 

o The developed metrics were demonstrated on a case study; however 

they should be validated in future research. 

Recommendations 

The following are recommendations based on this research for both practitioners 

and researchers. 

 This research provided a new computational technique for detecting 

errors in network-level pavement condition datasets. The technique can 

be used by transportation agencies to determine candidate sections for 

field audits.  

 The developed technique can be applied to check the accuracy of data 

collected by vendors.   
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 Similar techniques could be developed to detect errors in condition data 

for other infrastructure systems such as bridges, traffic signs, pipelines, 

etc. 

 This study provided metrics for measuring quality dimensions of 

pavement condition datasets. Further testing and validation of these 

metrics are needed.  

 Develop a composite metric for measuring the overall quality of 

pavement condition datasets.  

 Errors and outliers can affect performance prediction models. Thus, it is 

recommended that this technique be implemented on datasets to remove 

potential errors before the development of pavement deterioration 

models.  

 Field data collection can be used to provide ground truth of likely errors 

and consequently improve the effectiveness and reliability of the 

proposed technique.   

 Future research could continue the process of data quality assessment 

and improvement by introducing the best method to correct and impute 

uncovered errors.  
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APPENDIX A 

COEFFICIENTS OF PERFORMANCE PREDICTION MODELS 

Table A.1 Model coefficients for Zone 1-pavement family A 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.41 75.16 100.00 0.43 102.38 100.00 0.39 58.34 

LR 100.00 0.47 79.75 100.00 0.47 107.18 100.00 0.42 66.85 

MR 100.00 0.52 80.38 100.00 0.55 121.09 100.00 0.47 67.14 

HR 100.00 0.53 91.69 100.00 0.58 122.99 100.00 0.55 70.69 

 

Deep 

Rutting 

PM 100.00 0.54 88.24 100.00 0.76 60.35 100.00 0.58 95.02 

LR 100.00 0.55 101.18 100.00 0.80 68.37 100.00 0.60 113.20 

MR 100.00 0.56 115.81 100.00 0.88 80.79 100.00 0.65 116.07 

HR 100.00 0.57 133.23 100.00 1.01 83.07 100.00 0.73 123.10 

 

Failures PM 20.00 1.11 23.48 20.00 1.30 19.85 20.00 3.61 8.86 

LR 20.00 1.17 24.55 20.00 1.33 20.51 20.00 3.88 9.10 

MR 20.00 1.26 27.30 20.00 1.37 21.50 20.00 4.19 9.14 

HR 20.00 1.40 30.05 20.00 1.40 21.49 20.00 4.54 9.18 

 

Block 

Cracking 

PM 100.00 3.73 114.51 100.00 0.96 45.92 100.00 6.75 83.46 

LR 100.00 3.81 130.91 100.00 1.83 47.93 100.00 7.69 94.98 

MR 100.00 4.46 142.20 100.00 2.58 48.74 100.00 8.80 108.82 

HR 100.00 4.98 146.76 100.00 3.14 58.32 100.00 10.10 125.49 

 

Alligator 

Cracking 

PM 100.00 0.58 101.42 100.00 0.49 96.93 100.00 4.24 8.20 

LR 100.00 0.62 104.61 100.00 0.53 113.11 100.00 5.10 9.67 

MR 100.00 0.72 115.98 100.00 0.58 133.61 100.00 5.73 11.28 

HR 100.00 0.73 135.90 100.00 0.65 159.49 100.00 6.06 11.90 

 

Longitudinal 

Cracking 

PM 500.00 0.52 116.51 500.00 0.53 90.24 500.00 0.44 69.52 

LR 500.00 0.60 133.63 500.00 0.54 104.52 500.00 0.50 71.55 

MR 500.00 0.67 146.86 500.00 0.56 123.32 500.00 0.51 81.25 

HR 500.00 0.71 153.66 500.00 0.59 146.45 500.00 0.58 84.37 

 

Transverse 

Cracking 

PM 20.00 0.71 95.12 20.00 0.49 68.47 20.00 0.88 20.33 

LR 20.00 1.11 109.50 20.00 0.54 68.87 20.00 0.92 21.07 

MR 20.00 1.52 125.33 20.00 0.55 77.01 20.00 0.99 22.61 

HR 20.00 1.95 143.04 20.00 0.61 78.23 20.00 1.09 25.68 

 

Patching PM 100.00 0.38 101.23 100.00 0.64 49.65 100.00 0.52 87.67 

LR 100.00 0.41 105.68 100.00 0.65 53.60 100.00 0.52 100.95 

MR 100.00 0.48 119.25 100.00 0.65 57.65 100.00 0.53 115.41 

HR 100.00 0.50 119.67 100.00 0.78 61.64 100.00 0.54 131.59 
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Table A.2 Model coefficients for Zone 1-pavement family B 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.39 90.81 100.00 0.73 51.56 100.00 0.30 99.51 

LR 100.00 0.41 106.60 100.00 0.74 56.02 100.00 0.33 103.93 

MR 100.00 0.43 127.73 100.00 0.75 60.38 100.00 0.38 115.99 

HR 100.00 0.46 130.80 100.00 0.76 64.74 100.00 0.39 137.75 

           

Deep 

Rutting 

PM 100.00 0.60 101.99 100.00 0.73 82.60 100.00 0.51 101.42 

LR 100.00 0.67 121.58 100.00 0.86 91.14 100.00 0.58 120.33 

MR 100.00 0.78 124.74 100.00 0.98 96.09 100.00 0.68 122.26 

HR 100.00 0.94 131.24 100.00 1.08 97.65 100.00 0.83 127.33 

           

Failures PM 20.00 0.42 118.33 20.00 0.68 97.50 20.00 0.57 109.25 

LR 20.00 0.62 129.27 20.00 0.72 98.24 20.00 1.18 126.57 

MR 20.00 0.66 153.80 20.00 0.79 102.39 20.00 1.71 144.27 

HR 20.00 0.89 167.58 20.00 0.90 110.55 20.00 2.12 160.90 

           

Block 

Cracking 

PM 100.00 0.63 118.81 100.00 3.89 50.61 100.00 7.79 25.39 

LR 100.00 0.80 133.78 100.00 4.21 55.19 100.00 9.31 26.85 

MR 100.00 0.90 140.54 100.00 4.58 59.86 100.00 9.62 29.82 

HR 100.00 1.18 165.32 100.00 4.99 65.57 100.00 10.32 34.55 

           

Alligator 

Cracking 

PM 100.00 0.46 74.29 100.00 0.54 53.38 100.00 3.34 9.15 

LR 100.00 0.53 78.08 100.00 0.56 58.71 100.00 3.64 9.28 

MR 100.00 0.57 93.06 100.00 0.59 66.42 100.00 4.03 9.49 

HR 100.00 0.57 104.61 100.00 0.63 75.32 100.00 4.56 9.71 

           

Longitudinal 

Cracking 

PM 500.00 0.57 25.48 500.00 0.49 67.22 500.00 0.54 72.19 

LR 500.00 0.62 27.71 500.00 0.58 78.01 500.00 0.61 74.44 

MR 500.00 0.71 33.43 500.00 0.74 80.44 500.00 0.64 85.46 

HR 500.00 0.73 34.89 500.00 0.74 87.33 500.00 0.75 91.01 

           

Transverse 

Cracking 

PM 20.00 1.58 6.58 20.00 0.29 107.15 20.00 6.98 6.29 

LR 20.00 1.81 7.59 20.00 0.32 116.81 20.00 7.87 6.95 

MR 20.00 1.92 8.34 20.00 0.33 118.06 20.00 8.78 7.89 

HR 20.00 2.25 9.50 20.00 0.38 133.00 20.00 9.69 9.66 

           

Patching PM 100.00 0.36 55.57 100.00 0.59 77.35 100.00 1.08 10.30 

LR 100.00 0.38 63.16 100.00 0.68 82.08 100.00 1.27 11.72 

MR 100.00 0.41 74.20 100.00 0.75 82.76 100.00 1.46 13.35 

HR 100.00 0.47 75.09 100.00 0.78 95.87 100.00 1.62 14.48 
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Table A.3 Model coefficients for Zone 1-pavement family C 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.30 111.93 Not Enough Data 

LR 100.00 0.35 125.82       

MR 100.00 0.38 134.17       

HR 100.00 0.39 134.69       

           

Deep 

Rutting 

PM 100.00 0.51 97.89       

LR 100.00 0.54 99.55       

MR 100.00 0.61 106.95       

HR 100.00 0.71 119.97       

           

Failures PM 20.00 0.60 85.56       

LR 20.00 0.72 96.57       

MR 20.00 0.85 107.31       

HR 20.00 0.99 116.75       

           

Block  

Cracking 

PM 100.00 5.51 112.31       

LR 100.00 6.28 113.75       

MR 100.00 7.34 119.19       

HR 100.00 8.79 127.92       

           

Alligator 

Cracking 

PM 100.00 0.76 48.31       

LR 100.00 0.91 50.79       

MR 100.00 1.07 52.81       

HR 100.00 1.23 53.91       

           

Longitudinal 

Cracking 

PM 500.00 0.64 84.90       

LR 500.00 0.77 94.96       

MR 500.00 0.90 104.07       

HR 500.00 1.03 111.74       

           

Transverse 

Cracking 

PM 20.00 9.15 58.53       

LR 20.00 10.19 60.41       

MR 20.00 10.63 69.24       

HR 20.00 12.48 74.90       

           

Patching PM 100.00 0.41 69.14       

 LR 100.00 0.46 70.51       

MR 100.00 0.47 80.20       

HR 100.00 0.54 83.32       
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Table A.4 Model coefficients for Zone 2-pavement family A 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.42 110.20 100.00 0.50 91.77 100.00 0.52 71.62 

LR 100.00 0.47 121.74 100.00 0.52 107.61 100.00 0.58 74.26 

MR 100.00 0.50 125.66 100.00 0.55 129.57 100.00 0.61 85.16 

HR 100.00 0.59 145.28 100.00 0.59 132.43 100.00 0.71 90.54 

           

Deep 

Rutting 

PM 100.00 0.62 85.47 100.00 0.70 76.20 100.00 0.89 44.97 

LR 100.00 0.75 95.17 100.00 0.83 83.33 100.00 1.05 46.10 

MR 100.00 0.89 104.45 100.00 0.88 89.09 100.00 1.18 54.08 

HR 100.00 1.03 112.31 100.00 1.53 93.10 100.00 1.28 61.40 

           

Failures PM 20.00 0.87 21.95 20.00 0.55 111.45 20.00 0.78 69.14 

LR 20.00 0.91 23.32 20.00 0.63 122.81 20.00 0.86 82.97 

MR 20.00 1.00 25.56 20.00 0.66 126.71 20.00 1.02 90.45 

HR 20.00 1.12 29.47 20.00 0.78 145.99 20.00 1.10 105.81 

           

Block 

Cracking 

PM 100.00 0.57 97.50 100.00 0.54 89.19 100.00 0.88 85.46 

LR 100.00 0.60 113.66 100.00 0.55 102.78 100.00 1.04 94.11 

MR 100.00 0.64 131.51 100.00 0.57 119.77 100.00 1.20 101.08 

HR 100.00 0.66 151.23 100.00 0.58 139.97 100.00 1.34 105.18 

           

Alligator 

Cracking 

PM 100.00 0.49 68.28 100.00 0.54 35.51 100.00 0.95 19.85 

LR 100.00 0.55 68.53 100.00 0.62 42.29 100.00 0.99 20.93 

MR 100.00 0.56 76.35 100.00 0.66 46.25 100.00 1.05 22.33 

HR 100.00 0.62 76.19 100.00 0.78 47.48 100.00 1.13 23.74 

           

Longitudinal 

Cracking 

PM 500.00 0.65 41.91 500.00 0.39 75.34 500.00 0.47 115.36 

LR 500.00 0.76 42.71 500.00 0.45 79.93 500.00 0.54 131.06 

MR 500.00 0.85 50.70 500.00 0.50 80.72 500.00 0.60 142.35 

HR 500.00 0.91 57.23 500.00 0.52 93.19 500.00 0.63 146.90 

           

Transverse 

Cracking 

PM 20.00 0.66 50.51 20.00 0.51 68.85 20.00 0.63 60.35 

LR 20.00 0.67 54.85 20.00 1.21 81.97 20.00 0.67 65.17 

MR 20.00 0.67 59.12 20.00 1.38 86.76 20.00 0.69 69.94 

HR 20.00 0.68 63.36 20.00 1.95 98.37 20.00 0.69 74.61 

           

Patching PM 100.00 0.58 54.80 100.00 0.42 110.20 100.00 0.60 67.13 

 LR 100.00 0.61 61.13 100.00 0.47 121.74 100.00 0.66 79.75 

MR 100.00 0.64 69.17 100.00 0.50 125.66 100.00 0.79 86.73 

HR 100.00 0.70 80.26 100.00 0.59 145.28 100.00 0.85 101.63 
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Table A.5 Model coefficients for Zone 2-pavement family B 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.49 93.49 100.00 0.74 46.21 Not Enough Data 

LR 100.00 0.51 110.67 100.00 1.01 53.71    

MR 100.00 0.55 112.98 100.00 1.09 57.91    

HR 100.00 0.61 118.76 100.00 1.40 68.24    

           

Deep 

Rutting 

PM 100.00 0.82 55.66 100.00 0.59 118.61    

LR 100.00 0.84 61.69 100.00 0.69 137.57    

MR 100.00 0.88 69.12 100.00 0.78 153.66    

HR 100.00 0.94 78.38 100.00 0.85 164.70    

           

Failures PM 20.00 2.87 10.68 20.00 1.22 19.56    

LR 20.00 3.20 11.67 20.00 1.25 20.57    

MR 20.00 3.75 13.25 20.00 1.29 21.63    

HR 20.00 3.86 15.73 20.00 1.33 22.69    

           

Block 

Cracking 

PM 100.00 4.58 37.62 100.00 4.64 34.94    

LR 100.00 5.44 44.08 100.00 5.43 39.55    

MR 100.00 5.88 46.13 100.00 5.69 40.32    

HR 100.00 6.93 52.43 100.00 6.41 43.43    

           

Alligator 

Cracking 

PM 100.00 0.74 53.56 100.00 0.73 39.14    

LR 100.00 0.76 59.13 100.00 0.83 46.76    

MR 100.00 0.79 65.12 100.00 0.90 52.78    

HR 100.00 0.82 72.21 100.00 0.92 56.47    

           

Longitudinal 

Cracking 

PM 500.00 0.28 111.35 500.00 0.37 86.61    

LR 500.00 0.32 124.55 500.00 0.37 99.37    

MR 500.00 0.34 132.67 500.00 0.38 113.92    

HR 500.00 0.35 159.94 500.00 0.39 131.58    

           

Transverse 

Cracking 

PM 20.00 1.08 22.90 20.00 0.79 16.22    

LR 20.00 1.14 24.49 20.00 0.81 16.46    

MR 20.00 1.23 26.20 20.00 0.84 16.62    

HR 20.00 1.36 28.91 20.00 0.89 17.79    

           

Patching PM 100.00 0.34 102.28 100.00 0.71 94.44    

LR 100.00 0.37 107.66 100.00 0.74 111.07    

MR 100.00 0.43 123.83 100.00 0.78 111.41    

HR 100.00 0.46 127.92 100.00 0.85 114.06    
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Table A.6 Model coefficients for Zone 2-pavement family C 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.58 49.93 100.00 0.46 96.74 Not Enough Data 

LR 100.00 0.59 53.87 100.00 0.49 98.00    

MR 100.00 0.60 58.23 100.00 0.54 104.16    

HR 100.00 0.60 62.57 100.00 0.63 115.82    

           

Deep 

Rutting 

PM 100.00 0.60 90.24 100.00 0.65 103.52    

LR 100.00 0.60 101.52 100.00 0.71 108.86    

MR 100.00 0.80 112.77 100.00 0.82 122.33    

HR 100.00 1.01 123.06 100.00 0.86 145.53    

           

Failures PM 20.00 0.78 100.18 20.00 4.36 90.05    

LR 20.00 0.84 101.50 20.00 4.70 104.11    

MR 20.00 0.93 108.45 20.00 5.11 121.38    

HR 20.00 1.08 120.54 20.00 5.59 141.92    

           

Block 

Cracking 

PM 100.00 3.17 42.00 100.00 9.87 33.50    

LR 100.00 3.38 44.69 100.00 11.39 34.21    

MR 100.00 3.61 48.17 100.00 12.65 39.69    

HR 100.00 3.87 51.67 100.00 13.49 44.76    

           

Alligator 

Cracking 

PM 100.00 0.62 65.51 100.00 0.47 92.92    

LR 100.00 0.67 77.95 100.00 0.49 110.43    

MR 100.00 0.79 82.99 100.00 0.52 111.54    

HR 100.00 0.83 94.98 100.00 0.58 116.91    

           

Longitudinal 

Cracking 

PM 500.00 0.48 117.56 500.00 0.48 105.14    

LR 500.00 0.56 136.53 500.00 0.53 112.14    

MR 500.00 0.63 152.26 500.00 0.63 129.81    

HR 500.00 0.68 162.75 500.00 0.69 137.24    

           

Transverse 

Cracking 

PM 20.00 0.84 49.84 20.00 0.77 111.83    

LR 20.00 0.84 53.07 20.00 0.86 122.68    

MR 20.00 1.00 55.46 20.00 0.90 124.05    

HR 20.00 1.16 56.55 20.00 1.03 138.96    

           

Patching PM 100.00 1.16 28.63 100.00 0.37 101.70    

 LR 100.00 1.25 31.85 100.00 0.44 120.93    

MR 100.00 1.41 36.46 100.00 0.54 122.24    

HR 100.00 1.67 36.09 100.00 0.68 125.78    

 

 



 

 

 

122 

 

Table A.7 Model coefficients for Zone 3-pavement family A 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.60 38.00 100.00 0.72 49.36 100.00 0.39 93.20 

LR 100.00 0.69 45.74 100.00 0.72 52.28 100.00 0.41 111.05 

MR 100.00 0.75 51.83 100.00 0.86 54.69 100.00 0.45 113.92 

HR 100.00 0.76 55.28 100.00 1.01 57.32 100.00 0.50 121.25 

           

Deep 

Rutting 

PM 100.00 0.60 38.00 100.00 0.66 93.30 100.00 1.47 19.47 

LR 100.00 0.69 45.74 100.00 0.68 109.59 100.00 1.50 19.24 

MR 100.00 0.75 51.83 100.00 0.72 131.53 100.00 1.50 22.99 

HR 100.00 0.76 55.28 100.00 0.78 134.19 100.00 1.79 27.66 

           

Failures PM 20.00 0.95 45.35 20.00 0.68 87.47 20.00 9.56 100.94 

LR 20.00 1.11 46.06 20.00 0.69 98.27 20.00 10.69 110.36 

MR 20.00 1.25 53.97 20.00 0.82 110.18 20.00 11.17 112.24 

HR 20.00 1.35 61.19 20.00 0.97 122.22 20.00 13.09 128.18 

           

Block 

Cracking 

PM 100.00 0.91 52.14 100.00 6.17 57.67 100.00 7.31 14.32 

LR 100.00 0.92 55.67 100.00 6.34 69.79 100.00 8.45 14.39 

MR 100.00 0.92 59.56 100.00 7.18 77.09 100.00 9.86 14.54 

HR 100.00 1.10 63.36 100.00 7.46 77.46 100.00 11.59 15.69 

           

Alligator 

Cracking 

PM 100.00 0.60 94.44 100.00 0.50 95.69 100.00 0.70 73.43 

LR 100.00 0.63 111.68 100.00 0.53 96.07 100.00 0.79 75.55 

MR 100.00 0.67 113.84 100.00 0.58 100.16 100.00 0.83 87.17 

HR 100.00 0.74 119.43 100.00 0.66 108.68 100.00 0.96 92.43 

           

Longitudinal 

Cracking 

PM 500.00 0.39 84.13 500.00 0.44 57.29 500.00 0.30 70.76 

LR 500.00 0.47 94.78 500.00 0.46 64.57 500.00 0.33 74.03 

MR 500.00 0.56 106.02 500.00 0.51 76.98 500.00 0.34 86.91 

HR 500.00 0.66 117.05 500.00 0.58 79.33 500.00 0.40 95.59 

           

Transverse 

Cracking 

PM 20.00 0.41 84.04 20.00 0.55 33.12 20.00 0.32 113.93 

LR 20.00 0.49 94.64 20.00 0.62 38.69 20.00 0.37 129.94 

MR 20.00 0.58 105.72 20.00 0.64 42.05 20.00 0.41 141.41 

HR 20.00 0.68 116.56 20.00 0.74 49.59 20.00 0.43 146.17 

           

Patching PM 100.00 0.55 93.11 100.00 0.59 60.92 100.00 0.58 97.59 

 LR 100.00 0.59 96.04 100.00 0.63 70.20 100.00 0.62 98.90 

MR 100.00 1.12 106.52 100.00 0.71 70.67 100.00 0.69 104.70 

HR 100.00 2.26 126.90 100.00 0.84 75.60 100.00 0.79 116.03 
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Table A.8 Model coefficients for Zone 3-pavement family B 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.56 49.36 100.00 0.57 76.78 100.00 0.51 87.86 

LR 100.00 0.57 52.75 100.00 0.65 81.89 100.00 0.52 101.12 

MR 100.00 0.57 57.01 100.00 0.72 82.44 100.00 0.52 115.75 

HR 100.00 0.57 60.89 100.00 0.74 93.67 100.00 0.53 133.15 

           

Deep 

Rutting 

PM 100.00 0.56 49.36 100.00 0.76 76.78 100.00 0.92 51.94 

LR 100.00 0.57 52.75 100.00 0.87 81.03 100.00 0.92 55.58 

MR 100.00 0.57 57.01 100.00 0.93 95.61 100.00 1.11 59.38 

HR 100.00 0.57 60.89 100.00 0.93 106.60 100.00 1.32 62.07 

           

Failures PM 20.00 0.78 83.75 20.00 0.65 84.70 20.00 0.71 80.98 

LR 20.00 0.92 92.56 20.00 0.78 94.81 20.00 0.86 88.21 

MR 20.00 1.06 99.13 20.00 0.90 103.75 20.00 1.67 92.33 

HR 20.00 1.17 101.83 20.00 1.03 111.23 20.00 2.42 92.55 

           

Block 

Cracking 

PM 100.00 5.92 91.20 100.00 6.49 47.84 100.00 2.83 93.88 

LR 100.00 6.00 95.02 100.00 6.87 54.13 100.00 3.25 98.62 

MR 100.00 6.64 108.23 100.00 7.75 63.40 100.00 3.40 113.26 

HR 100.00 6.66 111.74 100.00 9.23 64.24 100.00 3.87 117.22 

           

Alligator 

Cracking 

PM 100.00 0.58 84.99 100.00 0.51 104.29 100.00 0.65 97.12 

LR 100.00 0.69 95.36 100.00 0.56 110.31 100.00 0.69 97.17 

MR 100.00 0.81 104.94 100.00 0.66 126.22 100.00 0.75 101.11 

HR 100.00 0.94 114.17 100.00 0.71 130.35 100.00 0.86 109.48 

           

Longitudinal 

Cracking 

PM 500.00 0.31 72.86 500.00 0.39 91.01 500.00 0.47 54.04 

LR 500.00 0.35 77.01 500.00 0.40 106.77 500.00 0.49 60.22 

MR 500.00 0.38 91.16 500.00 0.42 107.08 500.00 0.52 68.45 

HR 500.00 0.39 102.18 500.00 0.46 109.77 500.00 0.57 79.80 

           

Transverse 

Cracking 

PM 20.00 0.79 8.48 20.00 0.31 66.46 20.00 1.50 20.04 

LR 20.00 1.04 9.98 20.00 0.34 66.58 20.00 1.53 20.29 

MR 20.00 1.28 11.90 20.00 0.35 74.21 20.00 1.65 20.07 

HR 20.00 1.50 13.83 20.00 0.39 74.97 20.00 1.76 21.27 

           

Patching PM 100.00 2.55 9.44 100.00 0.81 65.89 100.00 0.51 69.04 

 LR 100.00 2.86 9.78 100.00 0.88 77.37 100.00 0.57 70.04 

MR 100.00 3.41 11.48 100.00 1.01 80.31 100.00 0.58 78.29 

HR 100.00 3.62 11.18 100.00 1.04 89.06 100.00 0.65 79.75 
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Table A.9 Model coefficients for Zone 3-pavement family C 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.47 92.92 100.00 0.42 116.22 Not Enough Data 

LR 100.00 0.49 110.43 100.00 0.49 133.09    

MR 100.00 0.52 111.54 100.00 0.55 147.01    

HR 100.00 0.58 116.91 100.00 0.59 155.54    

           

Deep 

Rutting 

PM 100.00 0.60 89.57 100.00 0.97 40.67    

LR 100.00 0.61 103.70 100.00 1.11 48.60    

MR 100.00 0.63 120.53 100.00 1.19 54.91    

HR 100.00 0.64 140.51 100.00 1.20 57.54    

           

Failures PM 20.00 0.65 90.72 20.00 1.47 23.67    

LR 20.00 0.67 105.15 20.00 1.52 25.05    

MR 20.00 0.69 122.36 20.00 1.60 26.29    

HR 20.00 0.71 142.82 20.00 1.69 27.52    

           

Block 

Cracking 

PM 100.00 2.55 35.71 100.00 0.60 91.96    

LR 100.00 2.69 38.13 100.00 0.62 107.20    

MR 100.00 2.87 40.74 100.00 0.65 126.58    

HR 100.00 3.08 44.03 100.00 0.69 127.51    

           

Alligator 

Cracking 

PM 100.00 0.58 84.99 100.00 0.49 87.29    

LR 100.00 0.69 95.36 100.00 0.49 99.18    

MR 100.00 0.81 104.94 100.00 0.50 113.35    

HR 100.00 0.94 114.17 100.00 0.50 129.52    

           

Longitudinal 

Cracking 

PM 500.00 0.59 60.92 500.00 0.36 61.59    

LR 500.00 0.63 70.20 500.00 0.39 72.32    

MR 500.00 0.71 70.67 500.00 0.45 75.19    

HR 500.00 0.84 75.60 500.00 0.46 83.94    

           

Transverse 

Cracking 

PM 20.00 0.53 83.84 20.00 0.36 99.89    

LR 20.00 0.63 93.93 20.00 0.39 103.99    

MR 20.00 0.73 103.18 20.00 0.45 116.06    

HR 20.00 0.84 111.02 20.00 0.46 137.82    

           

Patching PM 100.00 0.51 104.29 100.00 0.37 86.61    

 LR 100.00 0.56 110.31 100.00 0.37 99.37    

MR 100.00 0.66 126.22 100.00 0.38 113.92    

HR 100.00 0.71 130.35 100.00 0.39 131.58    
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Table A.10 Model coefficients for Zone 4-pavement family A 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.43 95.69 100.00 0.47 92.92 100.00 0.55 94.44 

LR 100.00 0.46 96.07 100.00 0.49 110.43 100.00 0.58 111.97 

MR 100.00 0.51 100.16 100.00 0.52 111.54 100.00 0.62 114.49 

HR 100.00 0.59 108.68 100.00 0.58 116.91 100.00 0.69 120.47 

           

Deep 

Rutting 

PM 100.00 0.57 116.22 100.00 0.86 54.62 100.00 0.88 60.35 

LR 100.00 0.74 126.95 100.00 0.88 60.15 100.00 0.92 65.17 

MR 100.00 0.78 151.64 100.00 0.91 66.05 100.00 0.94 69.94 

HR 100.00 0.98 166.84 100.00 0.94 73.03 100.00 0.94 74.61 

           

Failures PM 20.00 0.63 90.15 20.00 0.77 60.53 20.00 4.54 102.37 

LR 20.00 0.64 103.93 20.00 0.81 69.42 20.00 5.11 102.51 

MR 20.00 0.66 120.95 20.00 0.90 81.88 20.00 5.94 107.28 

HR 20.00 0.68 141.16 20.00 1.03 84.21 20.00 7.12 115.03 

           

Block 

Cracking 

PM 100.00 3.46 19.85 100.00 1.32 22.04 100.00 6.71 93.11 

LR 100.00 3.94 21.92 100.00 1.37 22.78 100.00 8.00 93.95 

MR 100.00 3.98 25.31 100.00 1.43 24.21 100.00 8.38 100.35 

HR 100.00 4.29 25.89 100.00 1.51 25.45 100.00 9.26 112.37 

           

Alligator 

Cracking 

PM 100.00 0.61 56.90 100.00 0.58 50.13 100.00 1.20 17.56 

LR 100.00 0.64 63.85 100.00 0.58 53.97 100.00 1.22 18.31 

MR 100.00 0.69 74.32 100.00 0.59 58.41 100.00 1.23 18.18 

HR 100.00 0.77 88.47 100.00 0.60 62.86 100.00 1.33 18.05 

           

Longitudinal 

Cracking 

PM 500.00 0.47 70.47 500.00 0.33 93.68 500.00 0.47 86.52 

LR 500.00 0.53 71.91 500.00 0.34 112.74 500.00 0.47 98.81 

MR 500.00 0.55 81.85 500.00 0.38 117.63 500.00 0.47 112.61 

HR 500.00 0.63 86.34 500.00 0.43 128.00 500.00 0.47 128.33 

           

Transverse 

Cracking 

PM 20.00 1.37 20.99 20.00 0.79 34.85 20.00 1.20 27.59 

LR 20.00 1.41 21.59 20.00 0.85 41.99 20.00 1.28 30.55 

MR 20.00 1.45 22.62 20.00 1.43 47.89 20.00 1.43 34.93 

HR 20.00 1.49 23.81 20.00 1.89 52.75 20.00 1.66 41.19 

           

Patching PM 100.00 0.34 61.02 100.00 0.35 78.21 100.00 0.53 61.40 

 LR 100.00 0.36 71.17 100.00 0.41 85.05 100.00 0.57 70.64 

MR 100.00 0.42 73.91 100.00 0.46 89.16 100.00 0.64 72.63 

HR 100.00 0.43 82.53 100.00 0.51 89.88 100.00 0.77 79.45 
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Table A.11 Model coefficients for Zone 4-pavement family B 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.36 96.83 100.00 0.42 97.79 Not Enough Data 

LR 100.00 0.38 98.63 100.00 0.45 100.03    

MR 100.00 0.43 106.47 100.00 0.50 107.93    

HR 100.00 0.51 119.87 100.00 0.60 123.21    

           

Deep 

Rutting 

PM 100.00 0.60 101.99 100.00 0.66 79.17    

LR 100.00 0.65 105.86 100.00 0.83 87.75    

MR 100.00 0.75 117.40 100.00 0.94 96.08    

HR 100.00 0.77 137.53 100.00 0.98 102.67    

           

Failures PM 20.00 9.95 99.32 20.00 1.11 23.48    

LR 20.00 10.88 104.94 20.00 1.17 24.55    

MR 20.00 12.95 121.25 20.00 1.26 27.30    

HR 20.00 14.05 127.01 20.00 1.40 30.05    

           

Block 

Cracking 

PM 100.00 9.31 97.21 100.00 0.71 46.78    

LR 100.00 10.33 104.85 100.00 0.84 49.16    

MR 100.00 10.64 105.51 100.00 0.98 50.18    

HR 100.00 12.27 119.35 100.00 1.12 59.95    

           

Alligator 

Cracking 

PM 100.00 0.65 47.36 100.00 0.58 49.93    

LR 100.00 0.93 54.93 100.00 0.59 53.87    

MR 100.00 1.03 59.34 100.00 0.60 58.23    

HR 100.00 1.38 69.90 100.00 0.60 62.57    

           

Longitudinal 

Cracking 

PM 500.00 0.46 45.45 500.00 0.29 107.15    

LR 500.00 0.55 47.42 500.00 0.32 116.81    

MR 500.00 0.65 48.67 500.00 0.33 118.06    

HR 500.00 0.75 50.03 500.00 0.38 133.00    

           

Transverse 

Cracking 

PM 20.00 0.44 114.98 20.00 0.42 70.47    

LR 20.00 0.50 130.98 20.00 0.54 80.58    

MR 20.00 0.56 142.26 20.00 0.75 96.06    

HR 20.00 0.59 146.80 20.00 1.05 98.42    

           

Patching PM 100.00 0.34 89.86 100.00 0.88 10.30    

 LR 100.00 0.35 105.32 100.00 1.05 11.84    

MR 100.00 0.36 125.24 100.00 1.23 13.58    

HR 100.00 0.39 126.92 100.00 1.40 15.99    
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Table A.12 Model coefficients for Zone 4-pavement family C 

Distress 

Type 

Treatment 

Type 

Low Traffic Medium Traffic High Traffic 

α β A α β A α β A 
Shallow 

Rutting 

PM 100.00 0.42 97.79 100.00 0.39 56.14 Not Enough Data 

LR 100.00 0.45 100.03 100.00 0.41 63.30    

MR 100.00 0.50 107.93 100.00 0.44 74.46    

HR 100.00 0.60 123.21 100.00 0.51 75.50    

           

Deep 

Rutting 

PM 100.00 0.68 97.50 100.00 0.49 116.13    

LR 100.00 0.72 98.24 100.00 0.56 132.55    

MR 100.00 0.79 102.39 100.00 0.63 145.77    

HR 100.00 0.90 110.55 100.00 0.67 152.57    

           

Failures PM 20.00 0.59 70.95 20.00 0.42 100.84    

LR 20.00 0.67 72.62 20.00 0.83 113.32    

MR 20.00 0.68 82.87 20.00 1.00 122.16    

HR 20.00 0.78 86.41 20.00 2.16 126.34    

           

Block 

Cracking 

PM 100.00 3.39 84.04 100.00 0.33 114.03    

LR 100.00 3.65 96.43 100.00 0.50 120.85    

MR 100.00 3.96 110.73 100.00 0.81 136.54    

HR 100.00 4.34 129.03 100.00 0.90 163.92    

           

Alligator 

Cracking 

PM 100.00 0.65 55.86 100.00 0.28 111.35    

LR 100.00 0.68 62.31 100.00 0.32 124.55    

MR 100.00 0.72 70.46 100.00 0.34 132.67    

HR 100.00 0.79 81.70 100.00 0.35 159.94    

           

Longitudinal 

Cracking 

PM 500.00 0.48 82.69 500.00 0.29 72.09    

LR 500.00 0.57 92.51 500.00 0.33 75.44    

MR 500.00 0.66 101.42 500.00 0.36 88.61    

HR 500.00 0.75 107.54 500.00 0.36 99.25    

           

Transverse 

Cracking 

PM 20.00 5.71 16.32 20.00 1.76 23.96    

LR 20.00 5.89 18.04 20.00 1.81 24.66    

MR 20.00 6.75 19.05 20.00 1.85 25.50    

HR 20.00 7.18 22.38 20.00 1.87 26.34    

           

Patching PM 100.00 0.39 71.42 100.00 0.32 40.19    

 LR 100.00 0.46 76.60 100.00 0.37 41.03    

MR 100.00 1.05 80.33 100.00 0.42 48.60    

HR 100.00 1.62 80.71 100.00 0.47 56.73    
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APPENDIX B 

 CODE OF COMPUTER PROGRAM DEVELOPED FOR CALCULATING 

REMAINING SERVICE LIFE  

## LAST TREATMENT 

# Data for the year of 2014 

PMIS_CONDITION_SUMMARY_14 < - read.csv ("C:/RR-

PMIS/PMIS_CONDITION_SUMMARY_14.txt"); 

PMIS_CONDITION_SUMMARY_14$Unique = paste 

(PMIS_CONDITION_SUMMARY_14$SIGNED_HIGHWAY_RDBD_ID,PMIS_CONDITION

_SUMMARY_14$BEG_REF_MARKER_NBR,format(PMIS_CONDITION_SUMMARY_14$

BEG_REF_MARKER_DISP,digit=2),sep =""); 

PMIS_CONDITION_SUMMARY_14 = 

PMIS_CONDITION_SUMMARY_14[PMIS_CONDITION_SUMMARY_14$RATING_CYCL

E_CODE=='P',] 

PMIS_DATA_COLLECTION_SECTION_14 <- read.csv("C:/RR-

PMIS/PMIS_DATA_COLLECTION_SECTION_14.txt"); 

PMIS_DATA_COLLECTION_SECTION_14$Unique = paste 

(PMIS_DATA_COLLECTION_SECTION_14$SIGNED_HIGHWAY_RDBD_ID,PMIS_DATA

_COLLECTION_SECTION_14$BEG_REF_MARKER_NBR,format(PMIS_DATA_COLLECT

ION_SECTION_14$BEG_REF_MARKER_DISP,digit=2),sep =""); 

PMIS_COLLECTION_14= PMIS_DATA_COLLECTION_SECTION_14 [, c("Unique", 

"COUNTY_NBR","PVMNT_TYPE_DTL_RD_LIFE_CODE","CURRENT_18KIP_MEAS","A

ADT_CURRENT_YEAR")]; 

PMIS_JOIN_COLLECTION_SUMMARY_14= merge 

(PMIS_CONDITION_SUMMARY_14,PMIS_COLLECTION_14, "Unique"); 

Condition_Sum_14= 

PMIS_JOIN_COLLECTION_SUMMARY_14[PMIS_JOIN_COLLECTION_SUMMARY_14$

CONDITION_SCORE>4 & 

PMIS_JOIN_COLLECTION_SUMMARY_14$PVMNT_TYPE_DTL_RD_LIFE_CODE>3,]; 

names (Condition_Sum_14)[names(Condition_Sum_14)=="CONDITION_SCORE"]<-"CS_14" 

Condition_Sum_14 = 

Condition_Sum_14[,c(setdiff(names(Condition_Sum_14),"CS_14"),"CS_14")] 

# Data for the year of 2013 

PMIS_CONDITION_SUMMARY_13 <- read.csv("C:/RR-

PMIS/PMIS_CONDITION_SUMMARY_13.txt"); 
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Condition_Sum_13= 

PMIS_CONDITION_SUMMARY_13[PMIS_CONDITION_SUMMARY_13$RATING_CYCL

E_CODE=='P',]; 

Condition_Sum_13$Unique = paste 

(Condition_Sum_13$SIGNED_HIGHWAY_RDBD_ID,Condition_Sum_13$BEG_REF_MARK

ER_NBR,format(Condition_Sum_13$BEG_REF_MARKER_DISP,digit=2),sep =""); 

Distress_13 = Condition_Sum_13[,c("CONDITION_SCORE","Unique")]; 

names(Distress_13)[names(Distress_13)=="CONDITION_SCORE"]<-"CS_13" 

# Data for the year of 2012 

PMIS_CONDITION_SUMMARY_12 <- read.csv("C:/RR-

PMIS/PMIS_CONDITION_SUMMARY_12.txt"); 

Condition_Sum_12= 

PMIS_CONDITION_SUMMARY_12[PMIS_CONDITION_SUMMARY_12$RATING_CYCL

E_CODE=='P',]; 

Condition_Sum_12$Unique = paste 

(Condition_Sum_12$SIGNED_HIGHWAY_RDBD_ID,Condition_Sum_12$BEG_REF_MARK

ER_NBR,format(Condition_Sum_12$BEG_REF_MARKER_DISP,digit=2),sep ="") 

Distress_12 = Condition_Sum_12[,c("CONDITION_SCORE","Unique")]; 

names(Distress_12)[names(Distress_12)=="CONDITION_SCORE"]<-"CS_12" 

# Data for the year of 2011 

PMIS_CONDITION_SUMMARY_11 <- read.csv("C:/RR-

PMIS/PMIS_CONDITION_SUMMARY_11.txt") 

Condition_Sum_11= 

PMIS_CONDITION_SUMMARY_11[PMIS_CONDITION_SUMMARY_11$RATING_CYCL

E_CODE=='P',]; 

Condition_Sum_11$Unique = paste 

(Condition_Sum_11$SIGNED_HIGHWAY_RDBD_ID,Condition_Sum_11$BEG_REF_MARK

ER_NBR,format(Condition_Sum_11$BEG_REF_MARKER_DISP,digit=2),sep ="") 

Distress_11 = Condition_Sum_11[,c("CONDITION_SCORE","Unique")]; 

names(Distress_11)[names(Distress_11)=="CONDITION_SCORE"] <- "CS_11" 

# Data for the year of 2010 

PMIS_CONDITION_SUMMARY_10 <- read.csv("C:/RR-

PMIS/PMIS_CONDITION_SUMMARY_10.txt") 

Condition_Sum_10= 

PMIS_CONDITION_SUMMARY_10[PMIS_CONDITION_SUMMARY_10$RATING_CYCL

E_CODE=='P',]; 
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Condition_Sum_10$Unique = 

paste(Condition_Sum_10$SIGNED_HIGHWAY_RDBD_ID,Condition_Sum_10$BEG_REF_M

ARKER_NBR,format(Condition_Sum_10$BEG_REF_MARKER_DISP,digit=2),sep ="") 

Distress_10 = Condition_Sum_10[,c("CONDITION_SCORE","Unique")]; 

names(Distress_10)[names(Distress_10)=="CONDITION_SCORE"]<-"CS_10" 

# Data for the year of 2009 

PMIS_CONDITION_SUMMARY_09 <- read.csv("C:/RR-

PMIS/PMIS_CONDITION_SUMMARY_09.txt") 

Condition_Sum_09= 

PMIS_CONDITION_SUMMARY_09[PMIS_CONDITION_SUMMARY_09$RATING_CYCL

E_CODE=='P',]; 

Condition_Sum_09$Unique = 

paste(Condition_Sum_09$SIGNED_HIGHWAY_RDBD_ID,Condition_Sum_09$BEG_REF_M

ARKER_NBR,format(Condition_Sum_09$BEG_REF_MARKER_DISP,digit=2),sep ="") 

Distress_09 = Condition_Sum_09[,c("CONDITION_SCORE","Unique")]; 

names(Distress_09)[names(Distress_09)=="CONDITION_SCORE"]<-"CS_09" 

# Data for the year of 2008 

PMIS_CONDITION_SUMMARY_08 <- read.csv("C:/RR-

PMIS/PMIS_CONDITION_SUMMARY_08.txt") 

Condition_Sum_08= 

PMIS_CONDITION_SUMMARY_08[PMIS_CONDITION_SUMMARY_08$RATING_CYCL

E_CODE=='P',]; 

#Condition_Sum_08= Condition_Sum_08[Condition_Sum_08$DISTRESS_SCORE>10,] 

Condition_Sum_08$Unique = 

paste(Condition_Sum_08$SIGNED_HIGHWAY_RDBD_ID,Condition_Sum_08$BEG_REF_M

ARKER_NBR,format(Condition_Sum_08$BEG_REF_MARKER_DISP,digit=2),sep ="") 

Distress_08 = Condition_Sum_08[,c("CONDITION_SCORE","Unique")]; 

names(Distress_08)[names(Distress_08)=="CONDITION_SCORE"]<-"CS_08" 

 

# Merge CS of different years together  

CS14_13 = merge(Condition_Sum_14,Distress_13,by.x="Unique",by.y="Unique", all.x=TRUE); 

CS14_12 = merge(CS14_13,Distress_12, by.x="Unique",by.y="Unique", all.x=TRUE); 

CS14_11 = merge(CS14_12,Distress_11, by.x="Unique",by.y="Unique", all.x=TRUE); 

CS14_10 = merge(CS14_11,Distress_10, by.x="Unique",by.y="Unique", all.x=TRUE); 
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CS14_09 = merge(CS14_10,Distress_09, by.x="Unique",by.y="Unique", all.x=TRUE); 

CS14_08 = merge(CS14_09,Distress_08, by.x="Unique",by.y="Unique", all.x=TRUE); 

# Last treatment and Year of treatment on CS14_08 

For (i in 1:nrow(CS14_08)){ 

  CS14_08$Last_TR[i]= "HR"  

  CS14_08$Year_TR[i]=2008 

    if (!is.na(CS14_08$CS_09[i]) && !is.na(CS14_08$CS_08[i]) ) { 

    if (CS14_08$CS_09[i]>4 && CS14_08$CS_08[i] >4){ 

      if (CS14_08$CS_09[i] - CS14_08$CS_08[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2009 

      }else if(CS14_08$CS_09[i] - CS14_08$CS_08[i] >30){ 

        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2009 

      }else if(CS14_08$CS_09[i] - CS14_08$CS_08[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 

        CS14_08$Year_TR[i]=2009 

      }else if(CS14_08$CS_09[i] - CS14_08$CS_08[i] >=5){ 

        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2009 

      } 

    } 

  } 

   

  if (!is.na(CS14_08$CS_10[i]) && !is.na(CS14_08$CS_09[i]) ) { 

    if (CS14_08$CS_10[i]>4 && CS14_08$CS_09[i] >4){ 

      if (CS14_08$CS_10[i] - CS14_08$CS_09[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2010 

      }else if(CS14_08$CS_10[i] - CS14_08$CS_09[i] >30){ 

        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2010 

      }else if(CS14_08$CS_10[i] - CS14_08$CS_09[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 
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        CS14_08$Year_TR[i]=2010 

      }else if(CS14_08$CS_10[i] - CS14_08$CS_09[i] >=5){ 

        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2010 

      } 

    } else if (CS14_08$CS_10[i]>4 && !is.na(CS14_08$CS_08[i]) && 

CS14_08$CS_08[i] >4 && CS14_08$CS_09[i]==0){ 

      if (CS14_08$CS_10[i] - CS14_08$CS_08[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2009 

      }else if(CS14_08$CS_10[i] - CS14_08$CS_08[i] >30){ 

        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2009 

      }else if(CS14_08$CS_10[i] - CS14_08$CS_08[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 

        CS14_08$Year_TR[i]=2009 

      }else if(CS14_08$CS_10[i] - CS14_08$CS_08[i] >=5){ 

        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2009 

      } 

    } 

  } 

  if (!is.na(CS14_08$CS_11[i]) && !is.na(CS14_08$CS_10[i]) ) { 

    if (CS14_08$CS_11[i]>4 && CS14_08$CS_10[i] >4){ 

      if (CS14_08$CS_11[i] - CS14_08$CS_10[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2011 

      }else if(CS14_08$CS_11[i] - CS14_08$CS_10[i] >30){ 

        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2011 

      }else if(CS14_08$CS_11[i] - CS14_08$CS_10[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 

        CS14_08$Year_TR[i]=2011 

      }else if(CS14_08$CS_11[i] - CS14_08$CS_10[i] >=5){ 

        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2011 

      } 
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    } else if (CS14_08$CS_11[i]>4 && !is.na(CS14_08$CS_09[i]) && 

CS14_08$CS_09[i] >4 && CS14_08$CS_10[i] == 0){ 

      if (CS14_08$CS_11[i] - CS14_08$CS_09[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2010 

      }else if(CS14_08$CS_11[i] - CS14_08$CS_09[i] >30){ 

        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2010 

      }else if(CS14_08$CS_11[i] - CS14_08$CS_09[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 

        CS14_08$Year_TR[i]=2010 

      }else if(CS14_08$CS_11[i] - CS14_08$CS_09[i] >=5){ 

        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2010 

      } 

    } 

  } 

    if (!is.na(CS14_08$CS_12[i]) && !is.na(CS14_08$CS_11[i]) ) { 

    if (CS14_08$CS_12[i]>4 && CS14_08$CS_11[i] >4){ 

      if (CS14_08$CS_12[i] - CS14_08$CS_11[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2012 

      }else if(CS14_08$CS_12[i] - CS14_08$CS_11[i] >30){ 

        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2012 

      }else if(CS14_08$CS_12[i] - CS14_08$CS_11[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 

        CS14_08$Year_TR[i]=2012 

      }else if(CS14_08$CS_12[i] - CS14_08$CS_11[i] >=5){ 

        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2012 

      } 

    } else if (CS14_08$CS_12[i]>4 && !is.na(CS14_08$CS_10[i])&& 

CS14_08$CS_10[i] >4 && CS14_08$CS_11[i]== 0){ 

      if (CS14_08$CS_12[i] - CS14_08$CS_10[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2011 

      }else if(CS14_08$CS_12[i] - CS14_08$CS_10[i] >30){ 
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        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2011 

      }else if(CS14_08$CS_12[i] - CS14_08$CS_10[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 

        CS14_08$Year_TR[i]=2011 

      }else if(CS14_08$CS_12[i] - CS14_08$CS_10[i] >=5){ 

        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2011 

      } 

    } 

  } 

    if (!is.na(CS14_08$CS_13[i]) && !is.na(CS14_08$CS_12[i]) ) { 

    if (CS14_08$CS_13[i]>4 && CS14_08$CS_12[i] >4){ 

      if (CS14_08$CS_13[i] - CS14_08$CS_12[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2013 

      }else if(CS14_08$CS_13[i] - CS14_08$CS_12[i] >30){ 

        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2013 

      }else if(CS14_08$CS_13[i] - CS14_08$CS_12[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 

        CS14_08$Year_TR[i]=2013 

      }else if(CS14_08$CS_13[i] - CS14_08$CS_12[i] >= 5){ 

        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2013 

      } 

    }else if (CS14_08$CS_13[i]>4 && !is.na(CS14_08$CS_11[i])&& 

CS14_08$CS_11[i] >4 && CS14_08$CS_12[i] ==0){ 

      if (CS14_08$CS_13[i] - CS14_08$CS_11[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2012 

      }else if(CS14_08$CS_13[i] - CS14_08$CS_11[i] >30){ 

        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2012 

      }else if(CS14_08$CS_13[i] - CS14_08$CS_11[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 

        CS14_08$Year_TR[i]=2012 

      }else if(CS14_08$CS_13[i] - CS14_08$CS_11[i] >= 5){ 
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        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2012 

      } 

} 

  } 

    if (!is.na(CS14_08$CS_14[i]) && !is.na(CS14_08$CS_13[i]) ) { 

    if (CS14_08$CS_14[i]>4 && CS14_08$CS_13[i] >4){ 

      if (CS14_08$CS_14[i] - CS14_08$CS_13[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2014 

      }else if(CS14_08$CS_14[i] - CS14_08$CS_13[i] >30){ 

        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2014 

      }else if(CS14_08$CS_14[i] - CS14_08$CS_13[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 

        CS14_08$Year_TR[i]=2014 

      }else if(CS14_08$CS_14[i] - CS14_08$CS_13[i] >= 5){ 

        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2014 

      } 

    }else if (CS14_08$CS_14[i]>4 && !is.na(CS14_08$CS_12[i]) && 

CS14_08$CS_12[i] >4 && CS14_08$CS_13[i] ==0){ 

      if (CS14_08$CS_14[i] - CS14_08$CS_12[i] >40){ 

        CS14_08$Last_TR[i]= "HR"  

        CS14_08$Year_TR[i]=2013 

      }else if(CS14_08$CS_14[i] - CS14_08$CS_12[i] >30){ 

        CS14_08$Last_TR [i]= "MR" 

        CS14_08$Year_TR[i]=2013 

      }else if(CS14_08$CS_14[i] - CS14_08$CS_12[i] >20){ 

        CS14_08$Last_TR[i]= "LR" 

        CS14_08$Year_TR[i]=2013 

      }else if(CS14_08$CS_14[i] - CS14_08$CS_12[i] >=5){ 

        CS14_08$Last_TR[i]= "PM" 

        CS14_08$Year_TR[i]=2013 

      } 

    } 

  } 
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} 

# Define climate zone  

ClimateZone <- read.csv("C:/RR-PMIS/ClimateZone.csv"); 

ClimateZone = ClimateZone[,c(1,2)] 

CS14_08= merge(CS14_08,ClimateZone, by.x = "COUNTY_NBR",by.y="CountyNum", all.x=TRUE); 

 

# Define pavement families 

PvFamily <- read.csv("C:/RR-PMIS/PvFamily.csv"); 

CS14_08= merge(CS14_08,PvFamily, by.x = 

"PVMNT_TYPE_DTL_RD_LIFE_CODE",by.y="PVMNT_TYPE_DTL_RD_LIFE_CODE", 

all.x=TRUE); 

# Define loading type 

CS14_08$Loading = 

ifelse(CS14_08$CURRENT_18KIP_MEAS<1000,'Low',ifelse(CS14_08$CURRENT_18KIP_M

EAS<10000,'Medium','High')); 

#Write the output 

write.csv(CS14_08,"C:/RR-PMIS/CS14_08.txt"); 

## RSL ESTIMATION  

# Bring Coeficient table and merge it to the current CS14_08 and make TX_14 

CS14_08 <- read.csv("C:/RR-PMIS/CS14_08.txt"); 

Coeficients <- read.csv("C:/RR-PMIS/Coeficients.csv") 

CS14_08$Unique_Coef = 

paste(CS14_08$ClimateZone,CS14_08$PvFamily,CS14_08$Loading,CS14_08$Last_TR,sep 

=""); 

Coeficients$Unique_Coef = 

paste(Coeficients$ClimateZone,Coeficients$PvFamily,Coeficients$Loading,Coeficients$Last_T

R,sep =""); 

Coeficients = 

Coeficients[,c("AC1","AC2","AC3","LC1","LC2","LC3","TC1","TC2","TC3","ShRUT1","ShR

UT2","ShRUT3","DRUT1","DRUT2","DRUT3","Fail1","Fail2","Fail3","BC1","BC2","BC3","P

atch1","Patch2","Patch3","DS2","DS3","Unique_Coef" )]; 

TX_14= merge (CS14_08,Coeficients,by.x="Unique_Coef",by.y="Unique_Coef"); 

TX_14 = 

TX_14[complete.cases(TX_14[,c("ACP_ALLIGATOR_CRACKING_PCT","ACP_LONGITUD



 

 

 

137 

 

E_CRACKING_PCT","ACP_TRANSVERSE_CRACKING_QTY", 

"ACP_RUT_AUTO_SHALLOW_AVG_PCT","ACP_RUT_AUTO_DEEP_AVG_PCT","ACP_

FAILURE_QTY","ACP_BLOCK_CRACKING_PCT","ACP_PATCHING_PCT", 

"DISTRESS_SCORE")]),]; 

# Drop some unimportant columns 

drops = 

c("AC_Cur_Age","ACP_RUT_VISUAL_DEEP_PCT","ACP_RUT_VISUAL_SEVERE_PCT","

PCC_AVG_CRACK_SPACING_AUTO_QTY","AC_CurAge","SSI_SCORE","SCI_ADJ","SSI

_DEFLECT_7_ADJ","CRCP_PCC_PATCHES_QTY","CRCP_AVG_CRACK_SPACING_QT

Y","PCC_PUNCHOUT_AUTO_SMRY_QTY","PCC_CRCK_OUT_WP_AVG_AUTO_PCT", 

"PCC_CRCK_RWP_AVG_AUTO_PCT","PCC_CRCK_BET_WP_AVG_AUTO_PCT", 

"PCC_SPALLED_CRACKS_AUTO_SMRY_QTY","PCC_LONG_CRACKS_AUTO_SMRY_

MEAS", "JCP_SHATTERED_SLABS_QTY", "JCP_APPARENT_JNT_SPACE_MEAS", 

"JCP_FAILURES_QTY","JCP_PCC_PATCHES_QTY", 

"JCP_FAILED_JNTS_CRACKS_QTY","JCP_LONGITUDE_CRACKS_QTY", 

"PCC_CRCK_LWP_AVG_AUTO_PCT", "ACP_CRCK_OUT_WP_AVG_AUTO_PCT", 

"ACP_CRCK_BET_WP_AVG_AUTO_PCT", "ACP_CRCK_LWP_AVG_AUTO_PCT", 

"ACP_LONG_CRACKS_AUTO_SMRY_MEAS", "ACP_RUT_VISUAL_SHALLOW_PCT", 

"ACP_RUT_VISUAL_FAILURE_PCT", "CRCP_SPALLED_CRACKS_QTY", 

"CRCP_ACP_PATCHES_QTY", "CRCP_PUNCHOUT_QTY", "TEXTURE_RIGHT_SCORE", 

"TEXTURE_LEFT_SCORE","ACP_ALLIG_CRACKS_AUTO_SMRY_PCT", 

"ACP_CRCK_RWP_AVG_AUTO_PCT", "ACP_TRANS_CRACKS_AUTO_SMRY_QTY"); 

TX_14 = TX_14[,!(names(TX_14) %in% drops)]; 

# Calculate Current Age based on each indicator 

TX_14$AC_CurAge = 

ifelse(TX_14$ACP_ALLIGATOR_CRACKING_PCT==100,(TX_14$AC3)*((log(TX_14$AC1/99))^(-

1/(TX_14$AC2))),(TX_14$AC3)*((log(TX_14$AC1/TX_14$ACP_ALLIGATOR_CRACKING_PCT))^(

-1/(TX_14$AC2)))); 

TX_14$LC_CurAge = ifelse(TX_14$ACP_LONGITUDE_CRACKING_PCT>400, 

(TX_14$LC3)*((log(TX_14$LC1/400))^(-

1/(TX_14$LC2))),(TX_14$LC3)*((log(TX_14$LC1/TX_14$ACP_LONGITUDE_CRACKING_PCT))^(-

1/(TX_14$LC2)))); 

TX_14$TC_CurAge = ifelse(TX_14$ACP_TRANSVERSE_CRACKING_QTY>19, 

(TX_14$TC3)*((log(TX_14$TC1/19))^(-

1/(TX_14$TC2))),(TX_14$TC3)*((log(TX_14$TC1/TX_14$ACP_TRANSVERSE_CRACKING_QTY))

^(-1/(TX_14$TC2)))); 

TX_14$ShRUT_CurAge = 

(TX_14$ShRUT3)*((log(TX_14$ShRUT1/TX_14$ACP_RUT_AUTO_SHALLOW_AVG_PCT))^(-

1/(TX_14$ShRUT2))); 

TX_14$DRUT_CurAge = 

(TX_14$DRUT3)*((log(TX_14$DRUT1/TX_14$ACP_RUT_AUTO_DEEP_AVG_PCT))^(-

1/(TX_14$DRUT2))); 

TX_14$Failure_CurAge = ifelse(TX_14$ACP_FAILURE_QTY>19, 

(TX_14$Fail3)*((log(TX_14$Fail1/19))^(-
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1/(TX_14$Fail2))),(TX_14$Fail3)*((log(TX_14$Fail1/TX_14$ACP_FAILURE_QTY))^(-

1/(TX_14$Fail2)))); 

TX_14$BC_CurAge = ifelse(TX_14$ACP_BLOCK_CRACKING_PCT>99, 

(TX_14$BC3)*((log(TX_14$BC1/99))^(-

1/(TX_14$BC2))),(TX_14$BC3)*((log(TX_14$BC1/TX_14$ACP_BLOCK_CRACKING_PCT))^(-

1/(TX_14$BC2)))); 

TX_14$Pathc_CurAge = ifelse(TX_14$ACP_PATCHING_PCT>99, 

(TX_14$Patch3)*((log(TX_14$Patch1/99))^(-1/(TX_14$Patch2))), 

(TX_14$Patch3)*((log(TX_14$Patch1/TX_14$ACP_PATCHING_PCT))^(-1/(TX_14$Patch2)))); 

TX_14$DS_CurAge = (TX_14$DS2)*((log(100/(100-TX_14$DISTRESS_SCORE)))^(-

1/(TX_14$DS3))); 

# Define AADT groups 

TX_14$AADT_Group = 

ifelse(TX_14$AADT_CURRENT<100,1,ifelse(TX_14$AADT_CURRENT<1000,2,ifelse(TX_1

4$AADT_CURRENT<5000,3,4))); 

# Read Threshold Matrix and add it to the TX 

Thresholds <- read.csv("C:/RR-PMIS/Thresholds.csv") 

TX_14= merge (TX_14,Thresholds,"AADT_Group"); 

#Calculate the age for Thresholds 

TX_14$AC_Thresh_Age = (TX_14$AC3)*((log(TX_14$AC1/TX_14$AC_Threshold))^(-

1/(TX_14$AC2))); 

TX_14$LC_Thresh_Age = (TX_14$LC3)*((log(TX_14$LC1/TX_14$LC_Threshold))^(-

1/(TX_14$LC2))); 

TX_14$TC_Thresh_Age = (TX_14$TC3)*((log(TX_14$TC1/TX_14$TC_Threshold))^(-

1/(TX_14$TC2))); 

TX_14$ShRUT_Thresh_Age = 

(TX_14$ShRUT3)*((log(TX_14$ShRUT1/TX_14$ShRUT_Threshold))^(-1/(TX_14$ShRUT2))); 

TX_14$DRUT_Thresh_Age = (TX_14$DRUT3)*((log(TX_14$DRUT1/TX_14$DRUT_Threshold))^(-

1/(TX_14$DRUT2))); 

TX_14$Failure_Threshold_Age = (TX_14$Fail3)*((log(TX_14$Fail1/TX_14$Failure_Threshold))^(-

1/(TX_14$Fail2))); 

TX_14$BC_Threshold_Age = (TX_14$BC3)*((log(TX_14$BC1/TX_14$BC_Threshold))^(-

1/(TX_14$BC2))); 

TX_14$Pathc_Threshold_Age = (TX_14$Patch3)*((log(TX_14$Patch1/TX_14$Patch_Threshold))^(-

1/(TX_14$Patch2))); 

# TX_14$RS_Threshold_Age = (TX_14$RS3)*((log(TX_14$RS1/TX_14$RS_Threshold))^(-

1/(TX_14$RS2))); 
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TX_14$DS_Threshold_Age = (TX_14$DS2)*((log(100/(100-TX_14$DS_Threshold)))^(-

1/(TX_14$DS3))); 

# Calculate RSL for each indicators 

TX_14$AC_RSL = pmax(TX_14$AC_Thresh_Age - TX_14$AC_CurAge,0); 

TX_14$LC_RSL = pmax(TX_14$LC_Thresh_Age - TX_14$LC_CurAge,0); 

TX_14$TC_RSL = pmax(TX_14$TC_Thresh_Age - TX_14$TC_CurAge,0); 

TX_14$ShRUT_RSL = pmax(TX_14$ShRUT_Thresh_Age - TX_14$ShRUT_CurAge,0); 

TX_14$DRUT_RSL = pmax(TX_14$DRUT_Thresh_Age - TX_14$DRUT_CurAge,0); 

TX_14$Failure_RSL = pmax(TX_14$Failure_Threshold_Age - TX_14$Failure_CurAge,0); 

TX_14$BC_RSL = pmax(TX_14$BC_Threshold_Age - TX_14$BC_CurAge,0); 

TX_14$Pathc_RSL = pmax(TX_14$Pathc_Threshold_Age - TX_14$Pathc_CurAge,0); 

TX_14$DS_RSL = pmax(TX_14$DS_Threshold_Age - TX_14$DS_CurAge,0); 

# Calculate the minimum RSL 

TX_14$Section_RSL = pmin(TX_14$AC_RSL, TX_14$LC_RSL, TX_14$TC_RSL, 

TX_14$ShRUT_RSL, TX_14$DRUT_RSL,TX_14$Failure_RSL, TX_14$BC_RSL, TX_14$Pathc_RSL, 

TX_14$DS_RSL ); 

TX_14$Section_RSL_Indicator = 

ifelse(TX_14$Section_RSL==TX_14$AC_RSL,"AC",ifelse(TX_14$Section_RSL==TX_14$LC_RSL,"L

C",ifelse(TX_14$Section_RSL==TX_14$TC_RSL,"TC",ifelse(TX_14$Section_RSL==TX_14$ShRUT_

RSL,"ShRUT",ifelse(TX_14$Section_RSL==TX_14$DRUT_RSL,"DRUT",ifelse(TX_14$Section_RSL=

=TX_14$Failure_RSL,"FAIL",ifelse(TX_14$Section_RSL==TX_14$BC_RSL,"BC",ifelse(TX_14$Secti

on_RSL==TX_14$Pathc_RSL,"Patch",ifelse(TX_14$Section_RSL==TX_14$DS_RSL,"DS","NN"))))))))

); 

# Filter NA data and Take necessary columns 

TX14_RSL = 

TX_14[complete.cases(TX_14[,c("ACP_ALLIGATOR_CRACKING_PCT","ACP_LONGITUDE_CRA

CKING_PCT","ACP_TRANSVERSE_CRACKING_QTY", 

"ACP_RUT_AUTO_SHALLOW_AVG_PCT","ACP_RUT_AUTO_DEEP_AVG_PCT","ACP_FAILUR

E_QTY","ACP_BLOCK_CRACKING_PCT","ACP_PATCHING_PCT", "DISTRESS_SCORE")]),]; 

TX14_RSL = TX14_RSL[,c("Unique", "AC_RSL", "LC_RSL", "TC_RSL", "ShRUT_RSL", 

"DRUT_RSL", "Failure_RSL", "BC_RSL", "Pathc_RSL", "DS_RSL", "Section_RSL")]; 

# Output 

write.csv(TX14_RSL,"C:/RR-PMIS/TX14_RSL.txt"); 
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APPENDIX C 

 EFFECT OF CONSIDERING MULTIPLE DIMENSIONS OF ERROR 

DETECTIONS IN PAVEMENT CONDITION DATA 

As mentioned in Section 6, the influence of considering multiple error detection 

dimensions of pavement conditions data was investigated. Three error detection 

techniques were defined such that each considered a different number of these 

dimensions when used to identify likely errors. The results were then assessed and 

compared to one another to determine the general impact of using these multiple 

dimensions in error detection. Following figures present results for AC, TC, IRI, and 

rutting for Brownwood District roadway network. 

 

 

Figure C1 Results of Case 1 analysis: sections with erroneous AC values (Brownwood 

District) 

Sections with AC statistical outliers 
Roads 
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Figure C2 Results of Case 2 analysis: sections with erroneous AC values (Brownwood 

District) 

 

    

Figure C3 Results of Case 3 analysis: sections with erroneous AC values (Brownwood 

District) 
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Figure C4 Results of Case 1 analysis: sections with erroneous TC values (Brownwood 

District)   

 

 

Figure C5 Results of Case 2 analysis: sections with erroneous TC values (Brownwood 

District)   
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Figure C6 Results of Case 3 analysis: sections with erroneous TC values (Brownwood 

District) 

 

 

Figure C7 Results of Case 1 analysis: sections with erroneous IRI values (Brownwood 

District)  
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Figure C8 Results of Case 2 analysis: sections with erroneous IRI values (Brownwood 

District) 

 

 

Figure C9 Results of Case 3 analysis: sections with erroneous IRI values (Brownwood 

District) 

Sections with potential IRI errors 
Roads 

Sections with IRI outliers in families 
Roads 



 

 

 

145 

 

   

 

Figure C10 Results of Case 1 analysis: sections with erroneous RUT values (Brownwood 

District)   

 

 

Figure C11 Results of Case 2 analysis: sections with erroneous RUT values (Brownwood 

District)  
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Figure C12 Results of Case 3 analysis: sections with erroneous RUT values (Brownwood 

District) 
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APPENDIX D 

CODE OF COMPUTER PROGRAM DEVELOPED FOR DETECTING ERRORS 

CONSIDERING DIFFERENT PROPERTIES OF PAVEMENT CNDITION 

DATA  

# Get data 

Condition14_13 = read.csv("C:/R_Dissertation/Condition14_13.csv"); 

# This code should be activated when it is only considering BrownWood District data 

Condition14_13 = Condition14_13[Condition14_13$RESPONSIBLE_DISTRICT==23,]; 

 

# Calculate the Diff 

Condition14_13$D_AC = Condition14_13$ACP_ALLIGATOR_CRACKING_PCT - 

Condition14_13$ACP_ALLIGATOR_CRACKING_PCT_13; 

Condition14_13$D_LC = Condition14_13$ACP_LONGITUDE_CRACKING_PCT - 

Condition14_13$ACP_LONGITUDE_CRACKING_PCT_13; 

Condition14_13$D_TC = Condition14_13$ACP_TRANSVERSE_CRACKING_QTY - 

Condition14_13$ACP_TRANSVERSE_CRACKING_QTY_13; 

Condition14_13$D_Failure = Condition14_13$ACP_FAILURE_QTY - 

Condition14_13$ACP_FAILURE_QTY_13; 

Condition14_13$D_Flush = Condition14_13$ACP_FLUSHING_CODE - 

Condition14_13$ACP_FLUSHING_CODE_13; 

Condition14_13$D_Patch = Condition14_13$ACP_PATCHING_PCT - 

Condition14_13$ACP_PATCHING_PCT_13; 

Condition14_13$D_Ravel = Condition14_13$ACP_RAVELING_CODE - 

Condition14_13$ACP_RAVELING_CODE_13; 

Condition14_13$D_RUT = (Condition14_13$ACP_RUT_AUTO_DEEP_AVG_PCT + 

Condition14_13$ACP_RUT_AUTO_SEVERE_AVG_PCT + 

Condition14_13$ACP_RUT_AUTO_FAILURE_AVG_PCT + 

Condition14_13$ACP_RUT_AUTO_SHALLOW_AVG_PCT) - 

(Condition14_13$ACP_RUT_AUTO_DEEP_AVG_PCT_13 + 

Condition14_13$ACP_RUT_AUTO_SEVERE_AVG_PCT_13 + 

Condition14_13$ACP_RUT_AUTO_FAILURE_AVG_PCT_13 + 

Condition14_13$ACP_RUT_AUTO_SHALLOW_AVG_PCT_13); 
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Condition14_13$D_IRI = ((Condition14_13$IRI_LEFT_SCORE + 

Condition14_13$IRI_RIGHT_SCORE) - (Condition14_13$IRI_LEFT_SCORE_13 + 

Condition14_13$IRI_RIGHT_SCORE_13))/2; 

Condition14_13$D_BC = Condition14_13$ACP_BLOCK_CRACKING_PCT - 

Condition14_13$ACP_BLOCK_CRACKING_PCT_13; 

# Merge 2013 and 2014 data to calculate normalization coeficients  

Condition14_13$My_IRI_14 = (Condition14_13$IRI_LEFT_SCORE + 

Condition14_13$IRI_RIGHT_SCORE)/2 

Condition14_13$My_RUT_14 = Condition14_13$ACP_RUT_AUTO_DEEP_AVG_PCT + 

Condition14_13$ACP_RUT_AUTO_SEVERE_AVG_PCT + 

Condition14_13$ACP_RUT_AUTO_FAILURE_AVG_PCT + 

Condition14_13$ACP_RUT_AUTO_SHALLOW_AVG_PCT; 

Condition14_13$My_IRI_13 = (Condition14_13$IRI_LEFT_SCORE_13 + 

Condition14_13$IRI_RIGHT_SCORE_13)/2 

Condition14_13$My_RUT_13 = Condition14_13$ACP_RUT_AUTO_DEEP_AVG_PCT_13 + 

Condition14_13$ACP_RUT_AUTO_SEVERE_AVG_PCT_13 + 

Condition14_13$ACP_RUT_AUTO_FAILURE_AVG_PCT_13 + 

Condition14_13$ACP_RUT_AUTO_SHALLOW_AVG_PCT_13; 

ForNorm_IRI = c(Condition14_13$My_IRI_14,Condition14_13$My_RUT_13); 

ForNorm_RUT = c(Condition14_13$My_RUT_14,Condition14_13$My_RUT_13); 

ForNorm_AC = 

c(Condition14_13$ACP_ALLIGATOR_CRACKING_PCT,Condition14_13$ACP_ALLIGATO

R_CRACKING_PCT_13); 

ForNorm_LC = 

c(Condition14_13$ACP_LONGITUDE_CRACKING_PCT,Condition14_13$ACP_LONGITUD

E_CRACKING_PCT_13); 

ForNorm_TC = 

c(Condition14_13$ACP_TRANSVERSE_CRACKING_QTY,Condition14_13$ACP_TRANSV

ERSE_CRACKING_QTY_13); 

ForNorm_Fail= c(Condition14_13$ACP_FAILURE_QTY, 

Condition14_13$ACP_FAILURE_QTY_13); 

ForNorm_Flush = c(Condition14_13$ACP_FLUSHING_CODE, 

Condition14_13$ACP_FLUSHING_CODE_13); 

ForNorm_Ravel = 

c(Condition14_13$ACP_RAVELING_CODE,Condition14_13$ACP_RAVELING_CODE_13); 

ForNorm_BC = c(Condition14_13$ACP_BLOCK_CRACKING_PCT, 

Condition14_13$ACP_BLOCK_CRACKING_PCT_13); 

# Coeficient to normalize Changes 
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Norm_Coef= matrix(0,nrow = 9,ncol=2); 

colnames(Norm_Coef)=c("Mean","Std"); 

rownames(Norm_Coef)= 

c("AC_D","LC_D","TC_D","FAIL_D","FLUSH_D","RAV_D","RUT_D","IRI_D","BC_D");           

Norm_Coef[1,1]= mean(ForNorm_AC);         

Norm_Coef[1,2]= sd(ForNorm_AC); 

Norm_Coef[2,1]= mean(ForNorm_LC);         

Norm_Coef[2,2]= sd(ForNorm_LC); 

Norm_Coef[3,1]= mean(ForNorm_TC); 

Norm_Coef[3,2]= sd(ForNorm_TC); 

Norm_Coef[4,1]= mean(ForNorm_Fail); 

Norm_Coef[4,2]= sd(ForNorm_Fail); 

Norm_Coef[5,1]= mean(ForNorm_Flush); 

Norm_Coef[5,2]= sd(ForNorm_Flush); 

Norm_Coef[6,1]= mean(ForNorm_Ravel); 

Norm_Coef[6,2]= sd(ForNorm_Ravel); 

Norm_Coef[7,1]= mean(ForNorm_RUT); 

Norm_Coef[7,2]= sd(ForNorm_RUT); 

Norm_Coef[8,1]= mean(ForNorm_IRI); 

Norm_Coef[8,2]= sd(ForNorm_IRI); 

Norm_Coef[9,1]= mean(ForNorm_BC); 

Norm_Coef[9,2]= sd(ForNorm_BC);  

 

#  Normalize annual changes 

Condition14_13$N_AC_D = ((Condition14_13$ACP_ALLIGATOR_CRACKING_PCT-

Norm_Coef[1,1])/Norm_Coef[1,2])-

((Condition14_13$ACP_ALLIGATOR_CRACKING_PCT_13-

Norm_Coef[1,1])/Norm_Coef[1,2]); 

Condition14_13$N_LC_D = ((Condition14_13$ACP_LONGITUDE_CRACKING_PCT-

Norm_Coef[2,1])/Norm_Coef[2,2])-

((Condition14_13$ACP_LONGITUDE_CRACKING_PCT_13-

Norm_Coef[2,1])/Norm_Coef[2,2]) 
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Condition14_13$N_TC_D = ((Condition14_13$ACP_TRANSVERSE_CRACKING_QTY-

Norm_Coef[3,1])/Norm_Coef[3,2])-

((Condition14_13$ACP_TRANSVERSE_CRACKING_QTY_13-

Norm_Coef[3,1])/Norm_Coef[3,2]); 

Condition14_13$N_FAIL_D = ((Condition14_13$ACP_FAILURE_QTY-

Norm_Coef[4,1])/Norm_Coef[4,2])-((Condition14_13$ACP_FAILURE_QTY_13-

Norm_Coef[4,1])/Norm_Coef[4,2]); 

Condition14_13$N_FLUSH_D = ((Condition14_13$ACP_FLUSHING_CODE-

Norm_Coef[5,1])/Norm_Coef[5,2])-((Condition14_13$ACP_FLUSHING_CODE_13-

Norm_Coef[5,1])/Norm_Coef[5,2]); 

Condition14_13$N_RAV_D = ((Condition14_13$ACP_RAVELING_CODE-

Norm_Coef[6,1])/Norm_Coef[6,2])-((Condition14_13$ACP_RAVELING_CODE_13-

Norm_Coef[6,1])/Norm_Coef[6,2]); 

Condition14_13$N_RUT_D = ((Condition14_13$My_RUT-Norm_Coef[7,1])/Norm_Coef[7,2])-

((Condition14_13$My_RUT_13 - Norm_Coef[7,1])/Norm_Coef[7,2]); 

Condition14_13$N_IRI_D = ((Condition14_13$My_IRI-Norm_Coef[8,1])/Norm_Coef[8,2])-

((Condition14_13$My_IRI_13-Norm_Coef[8,1])/Norm_Coef[8,2]); 

Condition14_13$N_BC_D =  ((Condition14_13$ACP_BLOCK_CRACKING_PCT-

Norm_Coef[9,1])/Norm_Coef[9,2]) - ((Condition14_13$ACP_BLOCK_CRACKING_PCT_13-

Norm_Coef[9,1])/Norm_Coef[9,2]); 

# Get Median and Q1 and Q3 

Z=2; 

require(plyr); 

LIMIT_Measures =  

ddply(Condition14_13,c("ClimateZone","PvFamily","Loading"),summarize,Count= 

length(D_AC),  

                        Mean_AC=mean(D_AC),SD_AC=sd(D_AC),UL_AC=Mean_AC + (Z*SD_AC), 

LL_AC= Mean_AC - (Z*SD_AC), 

                        Mean_LC=mean(D_LC),SD_LC=sd(D_LC),UL_LC=Mean_LC + (Z*SD_LC), 

LL_LC= Mean_LC - (Z*SD_LC), 

                        Mean_TC=mean(D_TC),SD_TC=sd(D_TC),UL_TC=Mean_TC + (Z*SD_TC), 

LL_TC= Mean_TC - (Z*SD_TC), 

                        Mean_IRI=mean(D_IRI),SD_IRI=sd(D_IRI),UL_IRI=Mean_IRI + (Z*SD_IRI), 

LL_IRI= Mean_IRI - (Z*SD_IRI), 

                        Mean_RUT=mean(D_RUT),SD_RUT=sd(D_RUT),UL_RUT=Mean_RUT + 

(Z*SD_RUT), LL_RUT= Mean_RUT - (Z*SD_RUT)) 
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Cond14_13=merge(Condition14_13,LIMIT_Measures,by=c("ClimateZone","PvFamily","Loadin

g")); 

 # Check for Not Errors 

                            Cond14_13$pos_surf = 

(Cond14_13$D_AC>0)+(Cond14_13$D_TC>0)+(Cond14_13$D_LC>0)+(Cond14_13$D_Flush

>0)+(Cond14_13$D_Failure>0)+(Cond14_13$D_Ravel>0)+(Cond14_13$D_BC>0); 

                            Cond14_13$Neg_surf = 

(Cond14_13$D_AC<0)+(Cond14_13$D_TC<0)+(Cond14_13$D_LC<0)+(Cond14_13$D_Flush

<0)+(Cond14_13$D_Failure<0)+(Cond14_13$D_Ravel<0)+(Cond14_13$D_BC<0); 

                            Cond14_13$D_surf = (Cond14_13$pos_surf > Cond14_13$Neg_surf) - 

(Cond14_13$Neg_surf> Cond14_13$pos_surf); 

                            Cond14_13$SurfCrack_NotError_pos = (Cond14_13$D_surf>0 & 

Cond14_13$D_IRI >= 0 & Cond14_13$D_RUT >=0); 

                            Cond14_13$SurfCrack_NotError_Neg = (Cond14_13$D_surf<0 & 

((Cond14_13$D_IRI >= 0 & Cond14_13$D_RUT >=0) | (Cond14_13$D_IRI < 0 & 

Cond14_13$D_RUT < 0))); 

                            Cond14_13$IRI_RUT_NotError = (Cond14_13$D_IRI>0 & 

Cond14_13$D_RUT>0) | (Cond14_13$D_IRI<0 & Cond14_13$D_RUT<0 & 

Cond14_13$D_surf<0)|(Cond14_13$D_IRI>=0 & Cond14_13$D_RUT>=0 & 

Cond14_13$D_surf>0); 

# Select Outlier and detect Errors as TRUE variables 

Cond14_13$LC_Error = ((Cond14_13$D_LC > Cond14_13$UL_LC)& 

(Cond14_13$SurfCrack_NotError_pos==FALSE)) | ((Cond14_13$D_LC < 

Cond14_13$LL_LC)&(Cond14_13$SurfCrack_NotError_Neg==FALSE)); 

Cond14_13$AC_Error = ((Cond14_13$D_AC > Cond14_13$UL_AC)& 

(Cond14_13$SurfCrack_NotError_pos==FALSE)) | ((Cond14_13$D_AC < 

Cond14_13$LL_AC)&(Cond14_13$SurfCrack_NotError_Neg==FALSE)); 

Cond14_13$TC_Error = ((Cond14_13$D_TC > Cond14_13$UL_TC)& 

(Cond14_13$SurfCrack_NotError_pos==FALSE)) | ((Cond14_13$D_TC < 

Cond14_13$LL_TC)&(Cond14_13$SurfCrack_NotError_Neg==FALSE)); 

Cond14_13$IRI_Error = ((Cond14_13$D_IRI > Cond14_13$UL_IRI)|(Cond14_13$D_IRI < 

Cond14_13$LL_IRI)) & (Cond14_13$IRI_RUT_NotError==FALSE); 

Cond14_13$RUT_Error = ((Cond14_13$D_RUT > Cond14_13$UL_RUT)|(Cond14_13$D_RUT 

< Cond14_13$LL_RUT)) & (Cond14_13$IRI_RUT_NotError==FALSE); 

Cond14_13$Errroneous = (Cond14_13$LC_Error==TRUE)| (Cond14_13$AC_Error==TRUE) | 

(Cond14_13$TC_Error==TRUE) | (Cond14_13$IRI_Error==TRUE) | 

(Cond14_13$RUT_Error==TRUE); 

Cond14_13$LC_Outlier = (Cond14_13$D_LC > Cond14_13$UL_LC)|(Cond14_13$D_LC < 

Cond14_13$LL_LC); 
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Cond14_13$AC_Outlier = (Cond14_13$D_AC > Cond14_13$UL_AC)|(Cond14_13$D_AC < 

Cond14_13$LL_AC); 

Cond14_13$TC_Outlier = (Cond14_13$D_TC > Cond14_13$UL_TC)|(Cond14_13$D_TC < 

Cond14_13$LL_TC); 

Cond14_13$IRI_Outlier = (Cond14_13$D_IRI > Cond14_13$UL_IRI)|(Cond14_13$D_IRI < 

Cond14_13$LL_IRI); 

Cond14_13$RUT_Outlier = (Cond14_13$D_RUT > 

Cond14_13$UL_RUT)|(Cond14_13$D_RUT < Cond14_13$LL_RUT); 

Cond14_13$Outlier = Cond14_13$LC_Outlier>0 

|Cond14_13$AC_Outlier>0|Cond14_13$TC_Outlier>0|Cond14_13$IRI_Outlier>0 | 

Cond14_13$RUT_Outlier>0; 

#CurrentTechniques 

              

Mean_AC_Current=mean(Cond14_13$D_AC);SD_AC_Current=sd(Cond14_13$D_AC);UL_A

C_Current=Mean_AC_Current + (Z*SD_AC_Current); LL_AC_Current= Mean_AC_Current - 

(Z*SD_AC_Current);   

Mean_LC_Current=mean(Cond14_13$D_LC);SD_LC_Current=sd(Cond14_13$D_LC);UL_LC_

Current=Mean_LC_Current + (Z*SD_LC_Current); LL_LC_Current= Mean_LC_Current - 

(Z*SD_LC_Current);   

Mean_TC_Current=mean(Cond14_13$D_TC);SD_TC_Current=sd(Cond14_13$D_TC);UL_TC_

Current=Mean_TC_Current + (Z*SD_TC_Current); LL_TC_Current= Mean_TC_Current - 

(Z*SD_TC_Current);     

Mean_IRI_Current=mean(Cond14_13$D_IRI);SD_IRI_Current=sd(Cond14_13$D_IRI);UL_IRI

_Current=Mean_IRI_Current + (Z*SD_IRI_Current); LL_IRI_Current= Mean_IRI_Current - 

(Z*SD_IRI_Current);    

Mean_RUT_Current=mean(Cond14_13$D_RUT);SD_RUT_Current=sd(Cond14_13$D_RUT);U

L_RUT_Current=Mean_RUT_Current + (Z*SD_RUT_Current); LL_RUT_Current= 

Mean_RUT_Current - (Z*SD_RUT_Current);    

Cond14_13$AC_Outlier_Current = Cond14_13$D_AC > UL_AC_Current | Cond14_13$D_AC 

< LL_AC_Current ; 

Cond14_13$LC_Outlier_Current = Cond14_13$D_LC > UL_LC_Current | Cond14_13$D_LC < 

LL_LC_Current ; 

Cond14_13$TC_Outlier_Current = Cond14_13$D_TC > UL_TC_Current | Cond14_13$D_TC < 

LL_TC_Current ; 

Cond14_13$IRI_Outlier_Current = Cond14_13$D_IRI > UL_IRI_Current | Cond14_13$D_IRI < 

LL_IRI_Current ; 

 Cond14_13$RUT_Outlier_Current = Cond14_13$D_RUT > UL_RUT_Current | 

Cond14_13$D_RUT < LL_RUT_Current ; 
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Cond14_13$Outlier_Current = 

(Cond14_13$AC_Outlier_Current>0)|(Cond14_13$LC_Outlier_Current>0)|(Cond14_13$TC_Ou

tlier_Current>0)|(Cond14_13$IRI_Outlier_Current>0)|(Cond14_13$RUT_Outlier_Current>0); 

# Define Output 

Cond14_13$AC_14 = Cond14_13$ACP_ALLIGATOR_CRACKING_PCT; 

 Cond14_13$LC_14 = Cond14_13$ACP_LONGITUDE_CRACKING_PCT; 

Cond14_13$TC_14 = Cond14_13$ACP_TRANSVERSE_CRACKING_QTY; 

Cond14_13$FAIL_14 = Cond14_13$ACP_FAILURE_QTY; 

Cond14_13$FLUSH_14 = Cond14_13$ACP_FLUSHING_CODE; 

Cond14_13$RAV_14 = Cond14_13$ACP_RAVELING_CODE; 

Cond14_13$RUT_14 = Cond14_13$ACP_RUT_AUTO_DEEP_AVG_PCT+ 

Cond14_13$ACP_RUT_AUTO_SEVERE_AVG_PCT + 

Cond14_13$ACP_RUT_AUTO_FAILURE_AVG_PCT + 

Cond14_13$ACP_RUT_AUTO_SHALLOW_AVG_PCT; 

Cond14_13$IRI_14 = (Cond14_13$IRI_LEFT_SCORE+Cond14_13$IRI_RIGHT_SCORE)/2 

Cond14_13$BC_14 = Cond14_13$ACP_BLOCK_CRACKING_PCT 

                         

 Errors = 

Cond14_13[Cond14_13$Errroneous==1,c("Unique","LC_Error","AC_Error","TC_Error","IRI_E

rror","RUT_Error","Errroneous","LC_Outlier","AC_Outlier","TC_Outlier","IRI_Outlier","RUT_

Outlier","Outlier","LC_Outlier_Current","AC_Outlier_Current","TC_Outlier_Current","IRI_Outl

ier_Current","RUT_Outlier_Current","Unique_GIS","D_AC","D_LC","D_TC","D_Failure","D_

Flush","D_Ravel","D_RUT","D_IRI","D_BC")]; 

  Outliers = 

Cond14_13[Cond14_13$Outlier==1,c("Unique","LC_Error","AC_Error","TC_Error","IRI_Error

","RUT_Error","Errroneous","LC_Outlier","AC_Outlier","TC_Outlier","IRI_Outlier","RUT_Out

lier","Outlier","LC_Outlier_Current","AC_Outlier_Current","TC_Outlier_Current","IRI_Outlier

_Current","RUT_Outlier_Current","Unique_GIS","D_AC","D_LC","D_TC","D_Failure","D_Flu

sh","D_Ravel","D_RUT","D_IRI","D_BC")]; 

Outliers_Current = 

Cond14_13[Cond14_13$Outlier_Current==1,c("Unique","LC_Error","AC_Error","TC_Error","I

RI_Error","RUT_Error","Errroneous","LC_Outlier","AC_Outlier","TC_Outlier","IRI_Outlier","

RUT_Outlier","Outlier","LC_Outlier_Current","AC_Outlier_Current","TC_Outlier_Current","IR

I_Outlier_Current","RUT_Outlier_Current","Unique_GIS","D_AC","D_LC","D_TC","D_Failure

","D_Flush","D_Ravel","D_RUT","D_IRI","D_BC")]; 

General = 

Cond14_13[( Cond14_13$Outlier_Current==1|Cond14_13$Outlier==1|Cond14_13$Errroneous=

=1),c("Unique","LC_Error","AC_Error","TC_Error","IRI_Error","RUT_Error","Errroneous","L

C_Outlier","AC_Outlier","TC_Outlier","IRI_Outlier","RUT_Outlier","Outlier","LC_Outlier_Cur

rent","AC_Outlier_Current","TC_Outlier_Current","IRI_Outlier_Current","RUT_Outlier_Curren
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t","Unique_GIS","D_AC","D_LC","D_TC","D_Failure","D_Flush","D_Ravel","D_RUT","D_IR

I","D_BC","LL_LC","UL_LC","LL_AC","UL_LC","LL_TC","UL_TC","LL_IRI","UL_IRI","L

L_RUT","UL_RUT", "AC_14", "LC_14", "TC_14", "FAIL_14", "FLUSH_14", "RAV_14", 

"RUT_14","IRI_14","BC_14","ClimateZone","PvFamily","Loading", 

"N_AC_D","N_LC_D","N_TC_D","N_FAIL_D","N_FLUSH_D","N_RAV_D","N_RUT_D","N

_IRI_D","N_BC_D")]; 

                             

# Output 

library(foreign) 

write.dbf(Errors,"C:/Dissertation/Effect of multiple dimensions/Errors.dbf"); 

write.dbf(Outliers,"C:/Dissertation/Effect of multiple dimensions/Outliers.dbf"); 

write.dbf(Outliers_Current,"C:/Dissertation/Effect of multiple dimensions/Outliers_Current.dbf"); 

write.dbf(General,"C:/Dissertation/Effect of multiple dimensions/General.dbf"); 

                         

                             

                         

                         

 




