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ABSTRACT 

The interaction between sand-dune patterns and topographic obstacles is a primary 

signal of sand transport direction in the equatorial region of Saturn’s moon, Titan. A 

streamlined, tear drop appearance emerges as dune crestlines wrap around topographic 

obstacles and a dune-free zone develops on the east side of many obstacles. The 

morphologies formed by this interaction give the impression that sand transport is from 

the west to east in Titan’s equatorial region. However, this transport direction is in 

conflict with the expected wind regime based on Titan’s rotation and many global 

climate models. The physical mechanism behind the interpretation of the dune-obstacle 

interaction is not well explained, leaving a gap in the understanding of the sand 

transport and equatorial wind directions on Titan. In order to better understand this 

interaction and evaluate wind and sand transport direction on Titan, we take a two-fold 

approach to studying dune-topography interactions. We use optical imagery on Earth 

and Cassini radar imagery on Titan in ArcGIS to map spatial variations in dune crestline 

orientations proximal to obstacles. We also use digital elevation models to analyze the 

three-dimensional geometry – height, length, width and slope of the dune-topography 

relationships on Earth. We identify three types of obstacles: positive topography, neutral 

topography and negative topography. Positive topography is defined as double or more 

in relief than the surrounding dune height, neutral topography is at the surrounding dune 

height and negative topography is lower than the surrounding dune heights. Results 

show that dune patterns are deflected further away from positive relief than neutral or 
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negative relief. Furthermore, positive relief has a dune free obstacle shadow, neutral 

relief has a smaller dune free obstacle shadow to no obstacle shadow zone, and negative 

relief has an obstacle shadow zone characterized by increased dune wavelength 

proximal to the obstacle’s wind-shielded side.  The obstacle height, width, slope and 

wind variability appear to play a role in determining if a lee-dune, rather than a dune-

free lee-zone forms. These factors provide further geomorphic evidence that sand 

transport directions on Titan were from west to east during the formation of the dune-

obstacle interaction morphologies. 
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1. INTRODUCTION 

 

  Titan, a moon of Saturn, is covered by sand dunes between 30 degrees 

north and south of the equator (Lorenz et al., 2006; Radebaugh et al., 2008; Elachi et al., 

2006, 2010; Mastrogiuseppe et al., 2014). Dunes have a mean crestline length of 50 km, 

a mean crest spacing between 2 and 3 km, and are oriented 270 degrees azimuth ± 11 

degrees (Barnes et al., 2008; Radebaugh et al., 2008; Lorenz and Radebaugh, 2008; 

McDonald et al., 2016). The dune sand composition is thought to be organic materials 

such as hydrocarbon dust or nitrile grains, tholins, organic covered ice, or CO2 ice, 

based on spectral properties and atmospheric organic material production models 

(Griffith et al., 2003; Soderblom et al., 2007; Janssen et al., 2009; Barnes et al., 2015). 

These suggested materials are thought to be 300 µm based on wind tunnel modeling 

(Burr et al., 2015), and may reach the predicted sand size by sintering, lithification, 

flocculation, or evaporate formation (Barnes et al., 2015). Based on morphology, Titan’s 

dunes are linear and thought to be elongating from west to east based on the interaction 

of linear pattern with the topographic obstacles within the dune field (Lorenz et al., 

2006; Radebaugh et al., 2008; Neish et al., 2010).  

 The explanation that the dunes are elongating from west to east hinges on the 

interpretation of the landscape morphology that forms from the interaction of Titan’s 

dunes and isolated topographic obstacles within the dune field. Dunes deflect laterally 

around obstacles and transition into a streamlined, tear-drop shape on the inferred 

downwind direction (Figure 1). This streamlined shape of the dune-obstacle interaction 
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is the primary basis for the west-to-east transport direction. However, this interpretation 

conflicts with the observed rotation of Titan and the expected easterly winds that arise 

from the conservation of momentum between the spinning solid surface and the 

atmosphere. Global Circulation Models (GCMs) and geomorphic studies predict a range 

of wind conditions that cannot entirely explain the west-to-east elongation (Lebonnois et 

al., 2012; Lora et al., 2015; Tokano, 2008, 2010). Alternative explanations that offer 

hypothesis to explain an west-to-east elongation include methane storms (Charnay et al., 

2015; Huseo and Sanchez-Lavega, 2006), Intertropical Convergence Zone (ITCZ) winds 

(Tokano, 2010), and long-term climate cycles (Ewing et al., 2014).  

 This study examines how topographic obstacle shape modifies dune-field 

patterns using Earth-analog study sites in comparison to Titan’s dune fields. 

Characteristic pattern parameters such as dune orientation, spacing, and crest length are 

mapped at 25 sites in five deserts, which contain topographic obstacles within dune 

fields. The paper first discusses the analog study areas and presents results that show 

trends in dune reorientation patterns and dune spacing associated with specific regions 

around an obstacle. The discussion reviews the type and origins of obstacle-modified 

dunes and discusses the interpretation of sand transport direction, wind direction, and 

boundary conditions from dune-obstacle interactions on Earth and Titan. 
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Figure 1a.  Figure 1b.  

  

Figure 1c.  Figure 1d.  
Figure 1. Digitally polygoned obstacles from Titan’s Fensal (a,b) and Senkyo (c,d) dune fields. The target obstacles 
are in purple at center. White lines for Fensal and black lines for Senkyo are manually digitized crests. Mapping 
conducted using a mosaicked Synthetic Aperture Radar (SAR) image. Dunes are interpreted as dark lineations 
surrounding the bright area at the center of the field (polygoned in purple) interpreted to be a topographic-obstacle. 
Note the high density of dunes on the west side of the obstacle and mottled area to the east with increased dune 
spacing 
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 This study examines how topographic obstacle shape and relief modify dune 

patterns using Earth-analog study sites and comparison to Titan’s dune fields. 

Characteristic pattern parameters such as dune orientation, spacing, and crest length are 

mapped at 25 sites in five deserts, which contain topographic-obstacles within dune 

fields. The paper first discusses the analog study areas and presents results that show that 

trends in dune reorientation patterns and dune spacing changes can be associated with 

certain regions around an obstacle. The discussion reviews the type and origins of 

obstacle-modified dunes and discusses the interpretation of sand transport direction, 

wind direction, and boundary conditions from dune-obstacle interactions on Earth and 

Titan. 
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2. STUDY AREAS 

 

 Five desert regions on Earth were selected based on the presence of linear, 

longitudinal dunes and isolated topography that sits within the field of longitudinal 

dunes. These sites are within the Kalahari Desert, the Namib Desert, the Ramlat Sand 

Sea and the Irq Al Idrisi Sand Sea in Libya, the Negev and Sinai Desert, and the Western 

Sahara Desert. 

 

2.1 Namib Desert 

 The Namib Desert is a 34,000 km2 dune field (Figure 2a), located in southwest 

Africa. This desert is characterized by linear, longitudinal dunes in the central and 

northern portions of the field, with crestlines oriented roughly north to south by the 

seasonally varying winds from the northeast and southwest (Lancaster, 1981). 

Barchaniod transverse dunes can also be found in a 20-30 km wide region along the 

Namib coast (Lancaster, 1981), with the entire dune field thought to have developed in 

the Pliocene (Miller, 2014). The dunes’ sediment source has been primarily attributed to 

the Orange River (Garzanti, 2012), which delivers sediment to the coast, where the 

material is mobilized back onshore by ocean currents and subsequently by coastal winds 

from the beach sands found west of the dune field into the Namib desert (Lancaster, 

1981; Stone, 2013). Additional, but less abundant sediment sources include recycled 

underlying Tsodab sandstone bedrock and more locally along the eastern region of the 

Namib by the hinterland rivers Kuiseb and Tsonab (Garzanti, 2012; Lancaster, 1981). 
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Rock outcrops of the Tsondab and Sossus Sandstons Formations (Ward, 1988) 

are used in this study as topographic obstacles. The Tsonab Sanstone Formation is a unit 

of aeolian dune, sand sheet, fluvial, and playa deposits, while the Sossus Sandstone 

Formation is characterized by aeolian deposits (Ward, 1988).  All outcrops selected are 

surrounded on all sides by linear dunes. 

 Several rock outcroppings, which are used in this study as topographic-obstacles, 

are identifiable in this sand sea as primarily Tsonab Sandstone Formation but also 

Sossus Sandstone Formation, (Ward, 1988). The Tsonab Sanstone Formation is a unit of 

aeolian dune, sand sheet, fluvial, and playa deposits, while the Sossus Sandstone 

Formation is characterized by aeolian deposits (Ward, 1988). The outcrops range 

between 4 km to 15 km in length and width (Table 1) and are located within the Namib 

Sand Sea and are surrounded on all sides by linear dunes. 
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Figure 2a.  

 
Figure 2b.  

 
Figure 2c.  
Figure 2. Locations of obstacles studied in the Namib and Kalahari (a), Libyan and Sinai (b), and Western Sahara 
(c) deserts. World country polygon shapefile used is an ESRI provided basemap. 
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2.2 Kalahari Desert 

 The Kalahari Desert is a 100-200km wide, semi-arid desert (Figure 2a), spanning 

parts of South Africa, Botswana, and Namibia (Lancaster, 1988). Linear dunes with a 

variety of planimetric patterns are oriented northwest to southeast, with some variation, 

and occupy a majority of the Kalahari Desert (Bullard et al., 1997). The sediment 

supplying these dunes is thought to originate from the Auob River Valley based on a 

range of geologic evidence analyzed in Miller (2014), with more southerly paleo-winds 

likely shaping the present dune field, which is concluded based on a comparison 

between resultant sand drift direction, which varied greatly by year and location, and 

modern dune orientations (Bullard et al., 1996). These linear dunes are thought to have 

formed sometime 32,000 yr B.P., but have since been reactivated at various intervals 

through time (Lancaster, 1989). 

 Deflation pans, or small, enclosed basins, spaced at roughly one pan per 20 km 

occur in the study area and sit below the average interdune elevation. The pans are 

thought to be ephemeral lakes formed 12 – 20,000 years ago and are characterized today 

by downwind lunette dunes formed during periods of deflation (Lancaster, 1978; 

Holmes et al., 2008). 

 

2.3 Libyan Deserts 

 The Libyan Desert is part of the greater Sahara Desert, and contains a wide range 

of dune types within the major seas Idhan Murzuq, Ramlat Zaltan, the Great Sand Sea, 

and the Ramlat Rabyanah which all encompass a range of simple, composite, and 
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compound dune forms of longitudinal dune type (Lisenbarth, 1991) (Figure 2b). The 

southern sand seas of the Libyan Desert have not been specifically studied for their age, 

however, the Sahel, which is found just south of the Libyan sand seas, was constructed 

between 19 and 15.6 ka with periods of dune reworking more recently (Bristow and 

Armitage, 2015). Winds are from the north and east (Lisenbarth, 1991). Sediment is fed 

into the basins within which the Ramlat Rabyanah and the Irq Al Idrisi lie, by alluvial 

fans from neighboring outcroppings of the African Craton (Charman, 2010; Goudarzi, 

1970). Outcrops within the sand seas are likely composed of African Craton material 

(Goudarzi, 1970).  

 

2.4 Sinai Desert 

 The Negev and Sinai Deserts contain a 13,000 km2 dune field occupying the 

northern portion of the Sinai Peninsula in Egypt and Israel (Figure 2b) (Roskin et al., 

2011; Tsoar, 1995). Winds for this region blow the strongest in winter from the 

southwest to northwest directions, with a resultant westerly wind (Roskin et al., 2011).  

The dunes within this desert range in type, but are dominated by linear dunes (Tsoar, 

1983; Rubin et al., 2008) with crestlines oriented east-west for most the northern field, 

with some northwest to southeast crestlines found in the southwest Sinai Desert, and 

southwest to northeast trends in the western dune field (Muhs et al., 2013). Most dune 

formation occurred during the Last Glacial Period with additional aeolian activity 

occurring during the Pleistocene and Holocene. Sediment supplied to the sand sea is 
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primarily from the Nile Delta and less substantially from the Wadi El Arish drainage 

system (Muhs et al., 2013).  

 Interrupting the flow of dunes is the Gebel Maghara, or Meghara Dome, a 

carbonate outcropping of Jurassic age (Said and Barakat 1958), which has been chosen 

as an obstacle for this study. The Meghara Dome is found centrally within the Sinai 

Desert and has linear dunes found along the north, west, and south sides of the mountain. 

To the east of the Dome, along east side, are alluvial fans and few to no linear dunes 

identifiable. 

 

2.5 Western Saharan Desert 

 The western Sahara Desert comprises a series of northeast to southwest trending 

linear dune-dominated sand seas including the Azefal, Agneitir, Akchar, and Azaouad 

that traverse the borders of Mali and Mauritania (Lancaster et al., 2002; Jacobberger, 

1989) (Figure 2c). The sand seas across the western Saharan Desert experienced two 

clear episodes of dune construction during the Late Pleistocene and the later Holocene 

(Swezey, 2000; Lancaster et al., 2002). Identification of multiple dune trends in the 

region indicates changes in wind patterns with time (Fryberger, 1980, Lancaster et al., 

2002) and present day winds explain the smallest and most recent dune-field patterns 

(Lancaster et al., 2002). 

 The Azefal and Akchar sand seas overlie Precambrian basement rock in eastern 

Mauritania, Miocene-Pliocene rocks near the coast, and the Ageitir sand sea sits on top 

of the Pleistocene rocks (Lancaster et al., 2002). Based on previously completed 
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geologic mapping, the obstacles used could be outcroppings of Oujeft Group sandstones, 

or Atar Cliffs, Nouatil, Teniegouri, and Jbeliat Group sandstones, dolostones, 

conglomerates, and stromatolitic reefs (Alvaro, 2012; Shields et al., 2007). 
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3. METHODOLOGY 

 

3.1 Earth analog GIS methods 

 Five different Earth desert regions were selected based on the presence of both 

linear, longitudinal dunes and isolated topography that sits within dune field. Within 

each desert, a minimum of two topographic obstacles were selected. In total, 37 different 

topographic obstacles were selected (Table 1). 

 Landsat 8 and SPOT (Satellite Pour I’Observation de la Terre) satellite imagery 

was used as the base imagery digitize the dunes and topographic obstacles studied on 

Earth. The imagery used had a spatial resolution between 2.5m to 15m. SPOT provided 

higher spatial resolution, but had limited coverage and Landsat provided lower 

resolution, but has worldwide coverage. The imagery used was accessed using the 

ArcGIS worldwide map. 

 Advanced Spaceborne Thermal Emission and Reflection Radiometer Digital 

Elevation Models (ASTER DEMs) were used to examine the topography of the 

obstacles. ASTER DEMs are a joint Ministry of Economy, Trade, and Industry/ Earth 

Remote Sensing Data Analysis Center, (METI/ERSDAC) and National Aeronautics and 

Space Administration/ Land Processes Distributed Archive Center (NASA/ LPDAAC) 

product composed of 60km by 60km data tiles a standard deviation of vertical error of 

12.6 m and a horizontal error between 3 m and 6 m. The DEMs were processed by 

METI and NASA to remove cloudy pixels and to the remove bad values and outlier 

values from the DEMs. 
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 For each of the obstacles selected, the crestlines surrounding longitudinal dunes 

were digitized at least one-half topographic obstacle diameter or more in all directions 

using  GIS software. This was completed using an ArcMap World Imagery basemap of 

projected in Winkel Tripel. This projection was chosen based on the Tissot indiatrices 

map projection analysis (Goldberg & Gott III 2007) which preserves shape, orientation, 

and distance well for the regions in Africa where the dune fields studied are located. The 

DEMs provided by METI/NASA were in the geoid reference WGS84, and were re-

projected into Winkel Tripel. Once these topographic obstacles were selected, obstacle 

and dune parameters were measured for each topographic obstacle and surrounding dune 

crestlines. These parameters included obstacle length, width, height, and shadow zone 

length and dune crest spacing. These parameters are defined in Figure 3a and 3b.   

 DEMs available for the Earth deserts were used to characterize the three-

dimensional morphology of the obstacles. Relief was measured from the interdune 

height to highest obstacle elevation point and slope was calculated for each DEM grid 

cell. Slope values were classified with break points at 4, 9, 14, 29, and 75 degrees to 

normalize the slope maps across all topographic obstacles, and relief was normalized by 

subtracting the interdune elevation from highest elevation point of an obstacle. 

Dune crestlines surrounding each obstacle were subdivided into 50m segments. 

An azimuthal value for each 50m segment was calculated. The line trend within the 0-

180 degree range was recorded. The line data were processed using the ArcMap Near 

Function 

(http://help.arcgis.com/EN/ARCGISDESKTOP/10.0/HELP/index.html#//00080000001q
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000000) to find the distance from line segment to the nearest topographic-obstacle. 

These data were subdivided into crestlines found upwind, downwind, and at the corners 

found between perpendicular and parallel to the resultant wind direction of the obstacles. 

The corner measurements are denoted as W1, W2, S1, and S2 as shown in Figure 3a and 

Table 2.  

 

  
Figure 3a.  Figure 3b.  
Figure 3. Schematic diagram defining how measurements were taken around each topographic-obstacle for this 
study. Diagram in plan view (a) and profile view (b). 

 
 
 
3.2 Wind roses and sand roses 
 
 Wind Roses were generated using the NCEP/NCAR Reanalysis Derived data as 

created by the NOAA (National Oceanic & Atmospheric Administration). The dataset 

includes the near surface u and v wind vectors, which represent a reanalysis of long-term 

means for the daily wind measurements for the years 1981 through 2010. These u and v 

wind vectors represent a Sigma 0.995 level, which is equivalent to an elevation above 
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the earth’s surface that has a 99.5% of surface pressure. As such, this data represents 

what NOAA refers to as a surface level or roughly 42.2m above the surface (Lileo et al., 

2013). The spatial resolution of the data is 2.5 degrees by 2.5 degrees.  U and v wind 

vector values were collected for each topographic-obstacle location. Because of the grid 

cell size, several obstacles were contained within one cell and, in total, 8 grid cells were 

analyzed. The u and v data was then used to calculate the resultant wind magnitude and 

wind direction over the 29-year period (Figure 4a and 4b).  

 The magnitude and direction values for each location were compiled into rose 

diagrams using the code created by Daniel Pereira (Copyright © 2015, Daniel Pereira). 

Because not all winds can mobilize sediment, only wind speeds above the transport 

threshold value for the smallest reported grain size of each dune field was used. This 

provides for a wide range of wind data to be analyzed, while recognizing that only a 

fraction of the winds transport sand.  These data were collected from previous field 

studies at each location.  Grain size ranges included 0.1-1 mm for the Libyan Desert 

(Charman, 2010), 0.18-0.78 mm for the Namib Desert (Lancaster, 1981), 0.21-0.22mm 

for the Kalahari Desert (Lancaster, 1986), 0.075–1 mm near obstacle M-C (Benito, 

1974) and 0.25-0.1mm (Li Sen et al., 1999) in the Western Sahara, and 0.12-0.25 mm in 

the Sinai and Negev Deserts (Roskin et al., 2014). Using the smallest grain sizes 

reported for each dune field and the relationship between wind speed, grain size, and 

threshold of motion established by Bagnold (1942) (Figure 4c), a threshold wind speed 

was calculated for each of the eight sets. Wind speeds less than the calculated threshold 

were removed from the wind rose diagrams and the rose diagrams only represent wind 
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speeds above the fluid threshold. Sediment flux diagrams were generated using the 

Fryberger and Dean (1979) equation (Figure 4) where a sediment flux was  calculated 

for each 10-degree sector of each rose diagram. 

 

𝑤𝑖𝑛𝑑 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  𝑢! + 𝑣! 
u = x component 
v = y component 

𝑤𝑖𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑢
𝑣

 
u = x component 
v = y component 

Figure 4a.  Figure 4b.  
 

𝑢∗ = 𝐴 ∗
𝜎 − 𝜌
𝜌

𝑔𝑑
!

 

u* = fluid speed at threshold of motion (m/s) 
𝐴 = coefficient = 0.1 

𝜎 = density of grain = 2.65 
ρ = density of fluid (air) = 1.225 kg/m3 

g = gravity 
d = grain diameter 

 
Figure 4c.  

 

𝑞 =
𝑉∗! 𝑉∗ − 𝑉!∗ ∗ C′′𝜌

𝑔
 

q =  
g = gravity 

C’’ = empirical constant = 6.7 
 ρ = density of air = 1.225 kg/m3 

V* = shear velocity 
Vt* = minimum shear velocity to saltate 

 
Figure 4d.   
Figure 4. Equations used for the calculation of wind roses and sand roses. The equation for u* threshold of motion 
from Bagnold 1942 (a) and the equation for sediment flux modified from Fryberger and Dean 1979. 

 
 
 
3.3 Titan GIS methods 
 
 Cassini Synthetic Aperture RADAR (SAR) imagery was employed to map dunes 

and topographic obstacles on Titan. The SAR imagery collected by the Cassini 

Spacecraft is in the microwave spectrum, with a spatial resolution between 0.35 km and 
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1.7 km (Elachi, 2004). Although, previous work has derived elevation data using pairs of 

SAR images with different angles (Callegari et al., 2015), by estimating dune height 

based on atmosphere thickness (Lorenz et al., 2010), and employing radarclinometry 

techniques (Neish et al., 2010), no topography data was used in this study of Titan.  Only 

planimetric parameters of the obstacles and dunes were measured and compared to Earth 

datasets. 

 Senkyo and Fensal dune fields were chosen based on data availability, data 

quality, dune crestline visibility, and the presence of isolated topography within the dune 

field. Criteria for selecting Titan obstacles were identical to those used for Earth. This 

resulted in a total of 24 obstacles selected for all sand seas on Titan (Table 1). Crestlines 

were digitized at least one half topographic obstacle diameter or more in all directions 

away from the obstacle using ArcGIS software. Dune crestlines for each obstacle were 

subdivided into 400 m segments. 400 m segmentation was selected because of the coarse 

resolution of the SAR data as compared to the SPOT and Landsat data and because the 

obstacles on Titan cover eight times the planimetric area as Earth. Thus, the 

segmentation of crestlines was scaled accordingly. Other manipulations of the line data 

were done same as with the Earth data described above. 
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4. RESULTS

4.1 Obstacle morphology: Earth 

Obstacles morphologies were classified based on the relief of the obstacle 

relative to the crest height of the surrounding dunes. Obstacles were identified as 

positive (Fig. 5a,d) negative (Fig 5b,e) and neutral relief (Fig. 5c,f). Positive topography 

was defined as at least double the height of surrounding dunes.  Neutral topography was 

defined obstacles with heights approximately the same as the surrounding dunes. 

Negative topography is lower than the dune height. 

In this study, negative obstacles are exclusively associated with deflated playas 

within the Kalahari. The obstacles range in height between 12 and 50 meters below 

interdune elevation with an average of 10m below interdune elevation. These obstacles 

occupy the smallest range of planimetric areas of all obstacle categories studied and 

range between 0.74 km2 and 8.83 km2 (Table 1). Every playa has a rim downwind that 

rests above interdune elevation at most 30m (Table 1) and extends between 1 and 6.5km 

along the downwind edge of each playa (Figure 7e).  In-board from the rim, the basin is 

bowl shaped with steepest slopes occurring on the downwind sides at most 7 degrees. 

Slopes of the rims range between 0 and 35 degrees (Figure 7e, f) and are highest on the 

downwind side. The obstacle shadow zone of negative obstacles shows an increase in 

dune spacing along the wind-shielded side of the topography on average 1.67x, and a 

decrease of 0.93x along the windward side compared to the wavelength of the 

surrounding field. Negative obstacles have dune occupied obstacle shadow zones. 
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Within the shadow zone, both lunette dunes and linear dunes form directly adjacent to 

the wind-shielded side of the obstacle in most instances (Figure 8a, b). The increased 

dune crest wavelength found immediately behind the obstacle transitions back to a 

wavelength that matches the surrounding dune field within 8 km from the edge of the 

obstacle, but frequently less. Unlike other obstacles, the shadow zone does not sit below 

the interdune elevation, but rather is at the interdune elevation (Figure 5d). 

 

   

Figure 5a.  Figure 5b.  Figure 5c.  

   

Figure 5d.  Figure 5e.  Figure 5f.  
Figure 5. 15m resolution Landsat satellite image of a negative relief obstacle in Kalahari (a), a neutral relief 
Libyan obstacle (b), and a positive relief Libyan obstacle (c) with elevation profiles for the negative (d), neutral (e), 
and positive (f) relief obstacles displayed directly below them. 
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Figure 6a.  Figure 6b.  

  
Figure 6c.  Figure 6d.  

  
Figure 6e.  Figure 6f.  
Figure 6. 15m resolution Landsat satellite image of a positive relief, Namib obstacle (a), positive relief Libya 
obstacles (b,c), a dune-shadow shaped lake found in a depression along the wind-shielded side of an obstacle in 
Mali near Timbuktu (d), and neutral relief, Kalahari obstacles (e,f). 
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Figure 7a.  Figure 7b.  

 

 

Figure 7c.  Figure 7d.  

 

 

Figure 7e. Figure 7f.  
Figure 7. Slope parameter maps with associated slope values of a neutral relief obstacle in Libya (a, b), positive 
relief obstacle in Libya (c,d), and a negative relief obstacle in Kalahari (e,f). 
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Figure 8a.  Figure 8b.  

  
Figure 8c.  Figure 8d.  

  
Figure 8e.  Figure 8f.  
Figure 8. Digitally polygoned negative relief obstacle in Kalahari (a,b), neutrl relief obstacles from Libya (c) and 
Mauritania (d), positive relief obstacles in Libya (e,f). Top right inset is a wind rose. Top left inset is a sand flux 
diagram. Resultant sand rose and sand flux vectors are plotted on top of the roses respectively. 
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Neutral obstacles represent outcroppings in our study. These obstacles fall between 51 

and 164m above interdune elevation, with an average height of 39m, and dip below 

interdune elevation at most 81m (Table 1). Neutral obstacles represent a narrower range 

of planimetric areas between 20.9 km2 and 175.0 km2 when compared to positive 

obstacles, but occupy greater areas than negative obstacles. These obstacles range in 

slope between 0 and 46 degrees but are dominated by slopes in the 4-9 degree range, and 

a few slopes in the 29-75 degree range (Figure 7c, d). Obstacles categorized as neutral 

are associated with an obstacle shadow zone along the wind-shielded face (Figure 6e). 

For neutral obstacles, the obstacle shadow zone typically does not have dunes 

immediately behind the wind-shielded obstacle face, but develops dunes one dune crest 

wavelength or two at most behind the obstacle, and returns to dune field mean within 22 

km. Dune crest wavelength is an average 1.47x the surrounding dune field mean along 

the wind-shielded side, and 0.79x along the windward side. Furthermore, there is no 

depression found on the wind-shielded side (Figure 5e). 

 Positive obstacles chosen for the study represent outcroppings through 

mountains. These topographic features range in height between 121m above interdune 

elevation and 729 m, with an average height of 294 m (Table 1). Positive obstacles 

represent the widest range in planimetric area of all obstacles studied, from 2.7 km2 to 

437.4 km2. The topography occasionally dips below interdune elevation by at most 44m, 

with slopes ranging between 0 and 59 degrees. Slope values are dominated by values in 

the 4-9 degree range, but positive obstacles have a higher percentage of slopes within the 

29-75 degree range than neutral or negative obstacles, with a concentration of high 
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slopes along the windward side (Figure 7a,b). Along the windward side dune wavelength 

is .62x to 1.03x  dune field mean, while the wind-shielded side wavelength is 1.05 – 

1.28x field mean. For the positive obstacles associated with an obstacle shadow zone 

that is completely void of dunes, the obstacle shadow zone is widest on the wind-

shielded side of the obstacle, and narrows to a point downwind of the obstacle. The 

length of the shadow zones varies greatly from obstacle to obstacle across all the study 

areas, between 1.3 km and 58.5 km (Table 1).  Shadows that are void of dunes 

altogether, such as in Libya (Figure 8e) or Western Sahara (Figure 8d), are also 

associated with a depression on the wind-shielded side of the obstacle that varies in 

depth from obstacle to obstacle between 20 and 44m below interdune elevation.  

 In addition to variation in the obstacle relief, the geomorphology associated with 

the different obstacles is highly varied. All obstacles within the Namib were flanked on 

all sides by large alluvial fans before giving way downslope to the dune field (Figure 

6a), while Libyan obstacles had a few, isolated alluvial fans. Obstacles within the 

Kalahari and the Western Sahara had no alluvial fans. Furthermore is the inferred 

amount of material piling found along the windward side versus the wind-shielded side 

for various obstacles. For all positive obstacles and some neutral obstacles studied in 

Libya, West Sahara, and Namib there is a gradual increase in landscape elevation on the 

windward side, which drops directly behind the obstacle’s highest slopes or sharpest 

peaks into a depression (Figure 5c, 5f). Additionally, there is sand found to occupy the 

region right up to or against the high slopes windward, which are not present along the 
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wind-shielded side. This relationship in slope trends is not true for the Kalahari, negative 

obstacles.  

 The geomorphology of dune-free shadow zones of the obstacles also varied 

greatly. All obstacles within the Namib had dune-free shadow zones (Figure 6b). 

Although the dune-free shadow zones in the Namib are covered by sandsheets, obstacle 

shadow zones in Libya are characterized by evaporite playas (Figure 6c) and 

alternatively sand sheets. In yet another example, standing water existed within the 

dune-free shadow zone (Figure 6d) in the Western Sahara. In other Western Sahara 

studied examples, obstacle shadow zones were defined by playas or sand sheets with 

isolated patches of vegetation. Overall the range of geomorphic environments 

recognized within the dune-free shadow zones studied included sandsheets, standing 

water, playas, vegetation, or some combination among those geomorphologies.  

 

 

 

 

 

 

 

 

 

 



 

 26 

4.2 Obstacle morphology: Titan 

 Target obstacles on Titan for this study exhibit a broad range of planimetric 

morphologies and have been interpreted as topographic obstacles based on the radar 

bright, or rough, appearance of these features in SAR imagery (Elachi et al., 2006; 

Radebaugh et al., 2007) (Figure 9). These obstacles range in size between 1 to 33 km in 

width and 3 to 130 km length with a range in planimetric area between 21.4 and 3149.8 

km2 (Table 1).  

 

 
Figure 9. Plot of obstacle width against obstacle profile in km for each and every obstacle study on both Earth and 
Titan. Not the Titan obstacles occupy more of the larger width to profile sizes than the Earth obstacle analogs. 

 
 
 
 On Titan no wind data is available and the obstacle shadow zones are inferred to  
 
be radar bright zones within which no dune-shaped radar dark surfaces are visible and 
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which extend in the direction of the linear dune crestline orientation.  These radar bright  
 
areas vary in brightness giving a mottled appearance, which results from a combination  
 
of the incidence angle of the SAR microwave signal and the backscatter efficiency of the  
 
imaged material (Elachi, 2004). As such, previous studies have interpreted the RADAR  
 
bright areas to be rough, rocky terrain while the dark absorbing areas are interpreted to  
 
be smooth absorbing features such as dunes (Lorenz et al., 2006; Radebaugh et al., 2008;  
 
Elachi et al.,2006., 2010; Mastrogiuseppe et al., 2014). Based on the criteria of dune free  
 
regions, a shadow zone occurs on the east side in 8% of studied obstacles. However,  
 
defining the shadow zone to be a region where an increase in dune wavelength and a  
 
greater exposure of the radar bright, interdune material exists, 92% of the obstacles  
 
measured in Fensal and Senkyo dune fields having dune occupied obstacle shadow  
 
zones on the east side. 
 
 
4.3 Crestline modification around negative obstacle relief 

 The range of crestline deflection around negative relief obstacles varies between 

0 and 70 degrees.  82% of the deflected dunes occur within 3 km of the pan (Figure 10), 

which is 18 dune wavelengths from the pan. However, for the windward side dune 

orientation returns to dune field mean between 1 – 4 wavelengths. Beyond 3 km from 

the obstacle sides, dune orientation begins to recover to the mean dune field orientation 

of 127 degrees. This contrasts with positive and neutral obstacle types where 

reorientation ranged up to 70 degrees (Figure 8).  
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Figure 10. Plot of dune crests azimuthal orientation values subdivided into 50m segments against the how far the 
dune crest is away from the obstacle. This plot depicts dunes around negative relief obstacles in the Kalahari Desert 
only. 

 
 
 
 Crest wavelength varies by position around the obstacle. Dunes adjacent to the 

windward side of the obstacle have an average wavelength of 158.5m, which is 93% of 

the mean wavelength of the surrounding longitudinal dune field at 170m. Within 1 km of 

the obstacles windward edges, wavelength decreases to an average of 81% and 64% 

wavelengths respectively (Table 2a) with a coincident high-degree of reorientation  

(Figure 10). Dune wavelength increases along the southeast and south edges, as well as 

immediately downwind of the obstacle to between 1.1x and 1.7x field-mean wavelength 

(Table 2a). The distance between the downwind edge of the obstacle and a return to 

field-mean dune spacing and orientation varies by locality between 0.7 and 8.3 km 

(Table 1).  Dune crestlines returned to the field-mean wavelength at 2.0-2.5 km for the 

windward side recognized by the narrowing of the distribution of wavelengths at 2.5 km 

from the obstacle(Figure 10). Dunes on the wind-shielded side gradually return to field-

mean orientation at around 5.5 km. 
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4.4 Crestline modification around neutral obstacle relief 

 Crestlines adjacent to neutral relief obstacles typically recover to the field mean 

orientation at a shorter distance, measured in dune wavelengths, from the obstacle than 

all positive and most negative obstacles. Dune crestline reorientation occurs up to 5 km 

or 3 field-mean wavelengths from the windward obstacle edge (Figure 8c), but most are 

modified within 3 dune wavelengths and, more typically, not modified at all (Figure 8d). 

A comparison between crestline orientation and distance from obstacle demonstrates 

crestline reorientation ranges from 10 degrees (e.g., Western Sahara, Figure 11b) to 45 

degrees (e.g., Libya, Figure 11a) from the field mean and within our estimated error 

range of crestline orientation mapping. 
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Figure 11a.  

 
Figure 11b.  
Figure 11. Plots of dune crests azimuthal orientation values divided into 50m segments against how far the dune 
crest is away from the obstacle. Plots depict neutral relief obstacles only for Libya (a) and Sahara (b). 

 
 

As with negative relief dune-obstacle interactions, the dune crest wavelengths vary  

depending on proximity and location relative to the obstacle. The crestline wavelength  

along the windward face of the Sahara study areas shows a slight increase in wavelength  

at 103% of the field mean, whereas the Libya desert study area shows a decrease in  

wavelength at 93% of the field mean (Table 2a). Neutral relief obstacles are associated  

with an increase in crest wavelength on the wind-protected side of the obstacles,  

however there is a region 1 – 3 wavelengths in length where no dunes are present behind  

the obstacles (Figure 7b). For neutral relief obstacles, the obstacle shadow zone also 

varies widely from obstacle to obstacle, between 3.0 and 39.0 km (Table 1). 



 

 31 

4.5 Crestline modification around positive relief obstacle 

 Positive relief obstacles can be found in the Libyan Desert, Sinai Desert, Western 

Sahara Desert, and Namib Desert. The relationships and interactions between the 

surrounding dune field and positive relief obstacles are not unlike those found for 

negative and neutral relief obstacles, but can still be characterized independently.  

 Among the negative, neutral, and positive relief obstacles, positive relief 

obstacles are associated with the greatest amount of dune crest deflection between 4 and 

7 crest wavelengths out from the topographic-obstacle (Figure 8e and 8f) or at most 15 

km on the windward side. Yet, crestlines do not reorient the dunes away from the 

surrounding dune field orientation more than 60 degrees for most study areas plotted 

(Figure 12a, b, c, d). Furthermore, the change in dunes from reoriented away from the 

field mean to matching dune field mean occurs along the windward side at roughly 20 

km, but this transition occurs nearer 30 km away along wind-shielded side in the Sahara 

(Figure 15d), with a similar but less marked trend observable for the Sinai obstacles of 

11km and 13 km respectively (Figure 15b). 
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Figure 12a.  

 
Figure 12b.  

 
Figure 12c.  

 
Figure 12d.  
Figure 12. Plots of dune crests azimuthal orientation values divided into 50m segments against how far the dune 
crest is away from the obstacle.  Plots depict dunes around positive obstacles in Libya (a), West Sahara (b), Namib 
(c), and Sinai (d). 
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Figure 13. Plot of dune crests azimuthal orientation values subdivided into 50m segments against the how far the 
dune crest is asway from the obstacle. This plot depicts dunes around neutral relief obstacles in the Libyan Desert 
only. 

 

 

Figure 14a.  

 

Figure 14b.  
Figure 14. Plots of dune crests azimuthal orientation values divided into 50m segments against how far the dune 
crest is away from the obstacle. .  Plot depicts dunes around neutral obstacles in Libya. 
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Figure 15a. 

 
Figure 15b.  

 
Figure 15c.  

 
Figure 15d.  
Figure 15. Plot of dune crests azimuthal orientation values subdivided into 50m segments against the how far the 
dune crest is away from the obstacle. This plot depicts dunes around the wind facing side of the obstacle (a,c) and 
the wind shielded side of the obstacle (b,d) for the Sinai and West Sahara obstacles respectively. 
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 Similarly to the negative and neutral relief dune-obstacle interactions, there are 

different wavelength changes dependent on dune crest location relative to the obstacle. 

Crestlines near the windward face are on average between 62% and 103% of dune field 

mean, while the wind-shielded dunes between 105% and 128% field mean dependent on 

desert area. As such, positive obstacles have more closely spaced dunes along the 

windward face and larger wavelengths along the wind-shielded face coincide with the 

faces of the obstacles that experience the highest wind exposure are associated (Figure 

12 a, b, c, d). Like other obstacle relief types, the further away from the obstacle, the 

more dune crestlines match the orientation and wavelength of the unmodified dune field. 

Furthermore, all positive relief obstacles are associated with either a dune free, obstacle 

shadow zone and coincident landscape depression on the wind-shielded side of the 

topography (Figure 8e, f) or alternatively greater wavelength dune crests. 

 

4.6 Crestline modification in Fensal and Senkyo dune fields 

 Many of the same observations can be made for the Titan dune fields of Fensal 

and Senkyo as can be made for their Earth counterparts. However, without elevation 

data, Titan’s dune-topography interactions do not have the context of obstacle 

morphology (that is positive, negative, or neutral relief). Nonetheless, there exist 

comparable relationships to the dune-topography interactions on Earth.  

 First, dunes are reoriented more proximally to an obstacle than are distally, as 

can be seen by graphing the dune crestline orientation against distance the dune is from 

the obstacle (Figure 16). Second, the west side of the obstacles the dune reorientation 
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returns to field-mean by 50-60 km out in the Senkyo field (Figure 16a), yet to the east 

side the dune crests do not match the surrounding dune field orientation until 90 – 

100km away from the east edge (Figure 16b), with a similar trend seen in the Fensal 

plots (Figure 16c and 16d). 

 Second, most dune-topography interactions show an increase in wavelength of 

crest lines along the eastward side of the obstacles (Table 2b). The east side shows a 

dune wavelength change between 104% and 106% when compared to the field mean 

wavelength. However, along the west side of the obstacles dune wavelength decreases 

between 98% and 83% of dune field mean. Along the northeast, northwest, southeast, 

and southwest edges of obstacles, a decrease in crest wavelength is observable, between 

75% and 98% of the surrounding average dune field wavelength. As with the Earth 

analog obstacles, the obstacle shadow zone length varies widely from obstacle to 

obstacle between 3.2 and 42.3 km in Fensal and 3.7 to 47.4 km in Senkyo (Table1). 
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Figure 16a.  

 
Figure 16b. 

 
Figure 16c.  

 
Figure 16d. 
Figure 16. Plot of dune crests azimuthal orientation values subdivided into 400m segments against the how far the 
dune crest is away from the obstacle. This plot depicts dunes around the west side of the obstacle (a,c) and the east 
side of the obstacle (b,d) for the Senkyo and Fensal obstacles respectively. 
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5. DISCUSSION 

 

Do dune-obstacle interactions show a signature of wind speed and wind and sand 

transport direction? Researchers have compared the appearance of Titan’s linear dune-

obstacle interactions to similar features on Earth (Radebaugh 2013, 2010; Lorenz et al., 

2006; Neish et al., 2010), but have not examined the variability among the dune-obstacle 

interactions, the formative processes, or the reliability of morphology to interpret winds 

or sand transport direction. This study examines a range of topographic obstacle 

morphologies and the resulting dune-patterns around obstacles in order to develop 

hypotheses about the formative mechanisms and application to interpreting Titan’s 

aeolian equatorial landscape. 

 

5.1 A review of obstacle-influenced dune types 

A wide range of obstacle-modified dunes occur on Earth as a consequence of the 

interaction between winds and topographic obstacles. Recognizing these dune types and 

the formative mechanisms of these dune types provides a basis to evaluate the type of 

dune-obstacle interactions on Titan. Obstacle-modified dunes include echo dunes, sand 

drifts, lee dunes or sand shadows, climbing dunes, falling dunes, and sand ramps 

(Lancaster and Tchakerian, 1996; Xiao et al., 2015; Xianwan et al., 1999; Tsoar, 1983). 

Echo dunes form upwind of obstacles via a reverse-flow eddy resulting from the 

interaction of the wind and the obstacle (Tsoar, 1983). Sand drifts form in the lee of two 

adjacent obstacles as a result of the deceleration of flow downwind of the gap between 
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two obstacles (Luo et al., 2014; Bagnold, 1942). Lee dunes or sand shadows form in the 

wind-sheltered lee of an obstacle and can extend parallel to the wind into a linear dune 

ridgeline (Figure 17a).  (Xiao et al., 2015; Bagnold, 1942). Climbing and falling dunes, 

also called mountain dunes, migrate up and down a gently sloped terrain (Xianwan et al., 

1999) (Figure 17c and d). Sand ramps are the buildup of sediment up against the 

windward side of an obstacle primarily by aeolian but additionally by deposition of 

fluvial and talus processes (Lancaster & Tchakerian, 1996) (Figure 17b). Although this 

suite of obstacle-modified dunes may exist on Titan, the scale of these dune types on 

Earth, with the exception of lee dunes, is below the spatial resolution of Titan SAR data. 

Lee dunes, which form at a scale detectable by the Titan SAR data typically develop as a 

singular, elongate dune in the lee of an obstacle. The linear dunes observed on Titan are 

found to populate all sides of obstacles, thus lee dune formation alone cannot explain the 

range of observed morphologies on Titan. At the dune-field scale, Titan’s dunes appear 

to reflect regional sediment supply, sediment availability and wind conditions rather than 

localized conditions created by obstacles as with other obstacle modified dunes. Similar 

to obstacle-modified dunes, however, dune-field patterns adjacent to the obstacle appear 

to be modified by the size, shape and slope of the obstacle, which in turn, modify wind 

flow and sediment availability.  

 

 

 

 



 

 40 

  

Figure 17a.  Figure 17b.  

 
 

Figure 17c.  Figure 17d.  
Figure 17. Schematic diagrams depicting obstacle-influenced dunes, including sand drifts modified from Luo et al., 
2014 (a), sand ramps based on the descriptions of and figures in Lancaster & Tchakerian 1996 (b), and mountains 
dunes, that is climbing (c) and falling (d), modified from Xianwan et al. 1999. 

 
 
 
5.2 Formative mechanisms obstacle morphology and dune patterns 
 
 The topographic characteristics that appear to most strongly influence the dune  
 
patterns adjacent to an obstacle are the magnitude of the relief of an obstacle and the  
 
windward slope of an obstacle. Why does windward slope modify dune orientation? As  
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with echo dunes, reverse and deflected wind flow is expected at the windward side of an  
 
obstacle. The modification of wind conditions could in turn locally affect dune  
 
orientation, however, detailed observations of dune-modification around obstacles  
 
reveals that dunes, which are clearly impacted by flow modification, only occur within a  
 
500 m of the obstacle (Cisneros, 2014) for a 2 km by 4 km obstacle. This suggests that  
 
wind modification by the obstacle alone effect cannot account for crestline deflection  
 
several kilometers away from the obstacle as we have observed.   
 
 Upwind reverse wind flow would also promote sand deposition upwind of the 

obstacle. The magnitude of the flow reversal depends on the windward facing slope and 

wind strike angle such that higher slopes promote more sand deposition (Qian et al., 

2011, Tsoar, 1983). In turn, more sand deposition upwind of the obstacle changes 

sediment availability and forces the pattern modification away from the obstacle. In 

contrast, obstacles with a more gently sloped windward slopes would promote the 

bypassing of sediment around the obstacle and result in less pattern modification. 

 The relationships between obstacle windward slope, wind strike angle, and wind 

velocity have been determined both mathematically and experimentally to play a role in 

how material interacts with an obstacle. These parameters in conjunction determine 

whether sediment is exclusively deposited along the windward slopes of an obstacle, 

both deposited and carried up the windward face, or solely transported up the windward 

face in the form of climbing dunes. Tsoar (1983) experimentally and mathematically 

determined that a stagnation point occurs along windward slopes of 38 degrees or 

greater. Below the stagnation point a reverse eddy forms depositing material on the 
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windward face and above which flow passes over the obstacle. Furthermore, these 

experiments demonstrated that the higher the windward slope, the greater the amount of 

material was deposited windward at a constant wind speed. Thus, when considering 

windward slope and a constant flow speed alone, obstacles with slopes 38 degrees or 

greater will accumulate material along the windward face. Xianwan (1999) considered 

changes in flow speed and strike angle of the wind. The study’s experimental approach 

demonstrated that greater wind strike angle, greater windward slopes, and lower wind 

speeds result in more windward deposition. Notably, material can accumulate along the 

windward slopes of an obstacle with slopes lower than 38 degrees given a high enough 

wind strike angle. Xianwan (1999) experimentally found windward deposition can occur 

at slopes as low as 30 degrees but higher than 15 degrees if the wind strike angle is 

sufficiently high or wind speed sufficiently low.  

 These previous studies provide some possible context to what is observed in the 

studied obstacle dune interactions, where greater windward slope angles resulted in 

greater reorientation of dunes laterally. This could offer an explanation as to why the 

positive obstacles, with up to 59 degree windward slopes saw the greatest reorientation 

of dunes at 4 – 7 crest wavelengths, where the higher slopes promoted a greater amount 

of material deposited windward, resulting in more material forced laterally to reorient 

dunes further out. By extension, the neutral obstacles, which have low windward slopes, 

most in the 4 – 9 degree range (Figure 7d), show minimal to no deflection of dune crests. 

 The negative obstacles, despite the proximally reoriented dunes, do not have 

slopes sufficiently high enough along the windward edges to result in the deposition of 



 

 43 

material and by extension the lateral reorientation of dune crestlines. As such, the model 

we propose for neutral and positive obstacles does not work for our negative relief 

obstacles. Yet, previous studied have established that negative relief landforms within 

the Kalahari, specifically dried river valleys, are associated with the deflection of dune 

crests (Bullard et al., 1995). Previous work suggests that the modification of wind flow 

as well as sediment supply that results from the river valleys presence could explain the 

modification of dune field patterns (Bullard et al., 1998). While the modification of wind 

flow does not work at the larger scales associated with the neutral and positive obstacles, 

the negative obstacles are small enough to work with more current obstacle modified 

flow studies (Cisneros et al., 2014). 

 

5.3 Variations in the shadow zone behind obstacles 

Although dune deflection around an obstacle is a defining characteristic of the dune-

obstacle interactions, the dune-free shadow zones that form on one side of an obstacle 

are widely used to infer wind and transport direction. Are dune-free shadow zones 

typical of the leeward side of obstacles? The results show that dune-free zones correlate 

strongly with positive relief obstacles and form downwind of an obstacle in the resultant 

wind and sand transport directions (Figure 8e,f). The heights and slopes of the obstacles 

imply the shadow zones form from a sediment shielding mechanism whereby sediment 

is simply blocked from deposition behind the obstacle, rather than removal of sediment 

through wind modification by the obstacle. Interestingly, in an obtuse bimodal wind, 

sand deposition behind the obstacle would be expected as sediment is moved into the 
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shadow zone from the sides (Cisneros et al., 2014) for a 2 km by 4 km obstacle. 

However, the size and shape of the shadow zone does not appear to vary with wind 

regime alone, which suggests other boundary conditions such as sediment supply, 

sediment availability, the presence of a near surface water table, and vegetation, may 

control the size and shape of the shadow zone.   

 In many instances a depression occurred within the dune-free shadow zones 

behind positive relief obstacles. The presence of a depression found in the wind-shielded 

side of an obstacle could mean elevations low enough to interact with the underlying 

water table, as an increase in moisture could trap sediment, preventing the formation and 

migration of dunes. For example, the shadow zone of obstacles in Libya extends 44 m 

below the mean interdune elevation surface, which is within the range of the near surface 

Nubian Sandstone Aquifer System (Sefelnasr et al., 2015). In one instance, a lacustrine 

feature is formed within the shadow zone of an obstacle in Mali (Figure 6d) and in other 

instances evaporites are observed within the obstacle shadow zone (Figure 6c).  

 In negative relief obstacles, dunes occupy the leeward side of the obstacle, but 

formed at a spacing greater than that of the surrounding dune field (Table 2a). Although 

a number of factors affect dune wavelength, low sediment availability appears to play a 

strong role in creating the wider spaced dunes in the Kalahari. In this case, some 

sediment likely bypasses through the pans and is deposited downwind. Alternatively, 

various generations of dunes are recognized to have formed within the Kalahari over the 

past 20,000 years (Lancaster, 1989) and the wider spacing may reflect previous 

formative wind and sediment availability conditions.  
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5.4 Titan dune-topography interaction comparisons 

 By using the observed relationships on Earth between topography and dune 

morphology, interpretations can be made about the topographic obstacles observed on 

Titan. Many of Titan’s obstacles appear to exhibit the strong dune deflection of a 

positive relief Earth obstacle (Fig. 8e, f and Fig.1a-1c), implying that the obstacles are 

both positive relief and have steep windward slopes. Several obstacles on Titan, 

however, show little or no deflection of dune crestlines (Figure 1d). This is consistent 

with the neutral topography on Earth. Notably, the up to 70-degree deflection of 

crestlines observable along the windward face negative topography on Earth (Figure 10) 

can be found for a few obstacles on Titan (Figure 16a, c). Although this could be 

interpreted to mean that negative topography exists on Titan, the steep slopes found 

along the windward side of the Earth negative topography may drive the deflection in 

negative topography as it does in positive topography and thus we cannot discriminate 

between positive and negative topography on Titan.  

 Despite the archetypical image of Titan’s tear-dropped shaped obstacles, 92% of 

the obstacles we measured on Titan do not have a shadow zone void of dunes. This 

could imply a number of conditions about the dune fields on Titan.  The absence of a 

shadow zone may imply that Titan’s obstacles are more like the neutral topography 

measured in this study or do not have exceptionally high windward slopes that would 

affect the sediment transport. It could also imply that sediment supply is abundant and 

that winds are strongly bimodal, which would allow sand to enter the shadow zone from 

the sides. Lastly, the range of boundary conditions on Titan is different from Earth and 
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may variably promote or limit the formation of a dune-free shadow zone. For example, 

dune-free shadow zones could form where the dune-free zone is a depression and 

interacts with a shallow liquid table, which would be consistent with observations of 

sediment availability limited dune morphologies in Titan’s dune fields (Ewing et al., 

2015).  

5.5 Sediment availability and wind direction 

Identifying a resultant wind and sand transport direction is possible on Titan 

when considering the analysis done for the Earth analogs where we know wind 

conditions. It is clear based on the wind data and resultant sand flux roses that the dune-

shadow zone is associated exclusively with the wind-shielded side of an obstacle (Figure 

8b, d, e,f,). However, while the shadow zone indicates a net wind and sediment transport 

direction, it does not match those two parameters exactly in orientation (Figure 18a), and 

so can only be used as a broad indicator of wind and sediment transport direction. 

Furthermore, this obstacle shadow zone is characterized by either a dune free zone or a 

widening of crestlines between 1.05 and 1.67x the dune-field mean (Table 2b). For 

Titan, where only 8% of the obstacles studied have an identifiable dune-free shadow 

zone, the dune free regions are found only along the east-southeast obstacle sides in 

Fensal, and the east-northeast obstacle sides in Senkyo. Additionally, a widening of 

crestlines between 1.04 and 1.06x the dune-field mean is also associated solely with the 

east-southeast and east-northeast obstacle sides of Fensal and Senkyo, respectively 

(Table 2a).  
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Average dune wavelength along the windward side of the obstacles for the Earth 

analogs indicate another trend. While three of the five earth deserts show a decrease in 

dune wavelength on the windward side, between 62% and 93% of field mean, two of the 

five deserts show a slight increase in wavelength between 103% and 101%x (Table 2a) 

field mean. But, even when the windward side exhibits a slight increase in dune spacing, 

the accompanying wind-shielded side exhibits an even greater increase in dune spacing, 

so for one of the deserts with a slight dune spacing increase on the windward edge of 

1.01x, the wind-shielded edge has an even greater dune spacing of 1.28x to the dune 

field mean. The other desert with a dune wavelength increase of 1.03x dune-field mean 

wavelength has a dune free shadow zone and so we cannot compare the two sides. Titan 

demonstrates the same trend, where there is a greater dune spacing along the east side, 

between 104% and 106% and a decrease in dune spacing along the west side, between 

89% and 98%.  

The distance away from an obstacle that reorientation of dunes occurs can be 

identified by the magnitude of the moving standard deviation (red) plotted on Figures 

14, 15, and 16. For all of the Earth study areas, the moving standard deviation 

approaches to dune field mean 65% nearer the obstacle on the windward side when 

compared to the wind-shielded side. When applying these observations to the Titan west 

face and east face dune orientation plots (Figure 16a – d), we see that standard deviation 

returns to near dune field mean nearer the obstacle on the West side than the East side. 

This suggests the windward facing side is along the West and the wind-shielded side is 

along the east. 
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These analysis of the obstacle shadow zone, dune spacing, and deflection of 

crests relative to known wind and sediment transport directions for the Earth analogs 

would suggest a net sediment transport and wind direction from west to east across both 

Titan study areas, where more locally Fensal is more east-southeast and Senkyo is more 

east-northeast.  

5.6 Interpreting wind and sand transport direction on Titan 

Identifying a resultant wind and sand transport direction is possible on Titan 

when considering the analysis done for the Earth analogs where we know wind 

conditions. It is clear based on the wind data and resultant sand flux roses that the dune-

shadow zone is associated exclusively with the wind-shielded side of an obstacle (Figure 

8b, d, e,f,). However, while the shadow zone indicates a net wind and sediment transport 

direction, it does not match those two parameters exactly in orientation (Figure 18a), and 

so can only be used as a broad indicator of wind and sediment transport direction. 

Furthermore, this obstacle shadow zone is characterized by either a dune free zone or a 

widening of crestlines between 1.05 and 1.67x the dune-field mean (Table 2b). For 

Titan, where only 8% of the obstacles studied have an identifiable dune-free shadow 

zone, the dune free regions are found only along the east-southeast obstacle sides in 

Fensal, and the east-northeast obstacle sides in Senkyo. Additionally, a widening of 

crestlines between 1.04 and 1.06x the dune-field mean is also associated solely with the 

east-southeast and east-northeast obstacle sides of Fensal and Senkyo, respectively 

(Table 2a).  
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Figure 18a.  

 
Figure 18b.  
Figure 18. Plot of resultant wind direction and resultant sand flux against average obstacle dune shadow orientation 
for the Kalahari, Libya, West Sharaha, Namibia, and Sinai deserts (a). Plot of the stoss-ward and lee-ward crestline 
spacing against dune-field average crestline spacing for the Kalahari, Libya, Namibia, Sinai, West Sahara, Fensal, 
and Senkyo dune fields. 
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 Average dune wavelength along the windward side of the obstacles for the Earth 

analogs indicate another trend. While three of the five earth deserts show a decrease in 

dune wavelength on the windward side, between 62% and 93% of field mean, two of the 

five deserts show a slight increase in wavelength between 103% and 101%x (Table 2a) 

field mean. But, even when the windward side exhibits a slight increase in dune spacing, 

the accompanying wind-shielded side exhibits an even greater increase in dune spacing, 

so for one of the deserts with a slight dune spacing increase on the windward edge of 

1.01x, the wind-shielded edge has an even greater dune spacing of 1.28x to the dune 

field mean. The other desert with a dune wavelength increase of 1.03x dune-field mean 

wavelength has a dune free shadow zone and so we cannot compare the two sides. Titan 

demonstrates the same trend, where there is a greater dune spacing along the east side, 

between 104% and 106% and a decrease in dune spacing along the west side, between 

89% and 98%.  

 The distance away from an obstacle that reorientation of dunes occurs can be 

identified by the magnitude of the moving standard deviation (red) plotted on Figures 

14, 15, and 16. For all of the Earth study areas, the moving standard deviation 

approaches to dune field mean 65% nearer the obstacle on the windward side when 

compared to the wind-shielded side. When applying these observations to the Titan west 

face and east face dune orientation plots (Figure 16a – d), we see that standard deviation 

returns to near dune field mean nearer the obstacle on the West side than the East side. 

This suggests the windward facing side is along the West and the wind-shielded side is 

along the east. 
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 These analysis of the obstacle shadow zone, dune spacing, and deflection of 

crests relative to known wind and sediment transport directions for the Earth analogs 

would suggest a net sediment transport and wind direction from west to east across both 

Titan study areas, where more locally Fensal is more east-southeast and Senkyo is more 

east-northeast. 
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6. CONCLUSIONS 

 

The interaction between sand dune patterns and topographic obstacles is 

considered a primary signal of sand transport direction in the equatorial region of 

Saturn’s moon, Titan. We find a robust connection between the spatial manifestation of 

topographic-obstacle morphology and dune pattern changes that provide a means to 

interpret dune-obstacle interaction on Titan. The primary conclusions from the analog 

study of Earth dune-obstacles are that obstacles types vary in type and morphology and 

may be positive, negative or neutral relief formed by bedrock or deflation of dune-field 

sediments. The degree of deflection of dunes around an obstacle recognized by the 

deviation of the dune orientation from the mean dune-field crestline orientation relates to 

the steepness of the windward slope of an obstacle. Dune-free zones adjacent to 

obstacles typically form on the leeward side of positive relief obstacles, but a number of 

boundary conditions, including surface moisture, play a role in determining the size and 

shape of the shadow zone. Where shadow zones do form, these zones align with the 

resultant wind and sand transport directions. These key relationships support the west to 

east sediment transport direction inferred on Titan based on dune-obstacle interactions. 

However, the range of dune-obstacle morphologies on Titan also reveal that Titan’s 

obstacles may also form with the same range of diversity as on Earth and that boundary 

conditions on Titan, as on Earth, may play a significant role in determining the 

morphology of dune-interactions. 
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APPENDIX  

WIND TUNNEL MODELING 

 

 To support and elaborate on the mapping and spatial characterization of dune 

topography interactions, a series of wind tunnel experiments were planned. Wind tunnel 

experiments examine the formation of linear ripples in the presence of obstacles of 

different shapes. The use of ripple morphology as a proxy for dune morphology is based 

on the idea that both dunes and ripples show a similar pattern–scale of bedform, which 

has similar fundamental processes (Pelletier, 2009; Ewing, 2006). As such, we could test 

a range of obstacle morphologies under a more controlled and uniform setting that that 

found in nature. 

 For the methodology we planned to vary obstacle height, length, and width ratios 

to test how ripples will respond to various types of topography observed for the Earth 

obstacles studied. A series of 40 to 50 images at a range of heights and locations around 

the wind tunnel platform ripples and obstacle were planned at timed intervals to import 

into a photogrammetric program. This would provide a way to digitize and quantitatively 

analyze how the ripples respond to varies obstacle morphologies placed in the wind 

tunnel. 

 Preliminary runs were conducted to demonstrate that linear dunes could be 

established in the wind tunnel. We started out experiments with a flat bed of mixed 

bimodal sediment size of 0.18 mm and 0.55 mm in a bed of around 2.5 cm in thickness. 

The bimodal size distribution was chosen so that the coarser grains would migrate to the 
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ripple crests, effectively highlighting ripple crest location. Rotating the wind tunnel 

platform 135 degrees every couple of minutes successfully resulted in linear ripples. 

Sediment was added incrementally outside the rotating platform to avoid surface 

armoring and my extension cessation of ripple migration. At this point an obstacle 

(wooden block in Figure 19a) was placed at the center of the rotating platform. The 

experiment was then repeated but this time a sloped obstacle made of green clay (Figure 

19b) was placed at the center of the platform.  

 Preliminary results were encouraging for a couple of reasons: first we 

successfully produced linear ripples in the wind tunnel, and second we observed similar 

pattern-scale bedform morphology to what we observed for the Earth dune-obstacle 

interaction counterparts. For the preliminary run where we placed a wooden block in the 

center of the rotating platform, we observed ripple crest line deflection along the 

windward side of the block, scouring along the windward side of the block, and a lack of 

observed sediment transport along the wind-shielded side of the block (Figure 19a). For 

the clay obstacle preliminary run, we observed ripple crest line deflection on the 

windward side of the obstacle, scouring along the windward side of the obstacle, 

however not as much as observed with the wooden block, and a lack of observed 

sediment transport along the wind-shielded side of the block (Figure 19b).  

 Were we able continue to test a series of different obstacle morphologies and the 

resulting ripple patterns, we believe these experiments would help us better understand 

the relationships between obstacle morphology and dune patterns on both Earth and 

Titan. Due to the break down of the University of Texas at Austin wind tunnel, which 
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could not be repaired in time to conduct these experiments, we were not able to complete 

this portion of the study. 

 

 
Figure 19a.  

 
Figure 19b.  
Figure 19. Image looking down on linear ripples formed in the wind tunnel with a wooden block (a), and a clay 
object (b) serving as a topographic-obstacle analog. 
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Table 1. Physical parameters of all the obstacles studied. Obstacle IDs are assigned based on desert location, a 
alphabetic letter, and a numeric value if the obstacle is within one obstacle diameter of another obstacle, where both 
obstacles will then have the same letter but a different number. 
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Table 2a.  

 
Table 2b.  
Table 2. Ratio of obstacle face dune spacing to the dune-field average dune spacing recorded at all sides of each 
target obstacle, with dune spacing averaged across each Desert study area on Earth (a) and each dune field study 
area on Titan (b) 

 




