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ABSTRACT 

 

 

As the demand for energy grows, all available resources will have to be utilized. 

Heavy oils are one underutilized resource that represents 50% of all the oil resources, but 

only accounts for 10% of all oil production. Heavy oils are most valuable once they have 

been refined. Current methods of breaking long hydrocarbon chains include thermal 

cracking, coking, visbreaking, hydrocracking, and catalytic cracking. This thesis 

investigates an alternate process, specifically the ability of nonthermal corona plasma to 

crack heavy and extra heavy crude oil. Preliminary experiments determined the optimal 

electrode configuration and the temperature at which the oil should be processed in order 

to achieve a maximum current. These experiments were carried out in air at atmospheric 

pressure inside a fume hood. The variables considered were the number of high voltage 

points, the distance between the surface of the oil and the high voltage electrode, the 

depth of the oil, and the temperature of the oil. It was found that a higher temperature or 

a lower viscosity increased the conductivity of the heavy oil. A hexagonal multipoint 

high voltage electrode distributed the discharge over the cross sectional area of the oil 

while increasing the maximum current that could be applied to the oil before sparking 

occurred. The optimum distances for the multipoint-to-plane corona discharge were 30 

mm between the electrodes and an oil depth of 15 mm. The preliminary experimental 

results were applied toward the final experimental determination of the cracking abilities 

of the corona reactor. 
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To capitalize on the fact that distillation towers are readily available in industry, 

one was constructed to contain the corona reactor. Distillation towers are used in 

refineries to separate different oil fractions by their boiling points. The entire tower was 

heated and the all the light condensates were separated from the heavy residue in a single 

batch process. The masses of the condensate and the residual were recorded to quantify 

the efficiency of the corona reactor in producing light oil. The corona discharge yielded 

more condensates than its control counterparts which were only thermally treated, 

however, the mass produced was often within uncertainty. 
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NOMENCLATURE 

 

AC Alternating current 

AMU Atomic mass unit 

API American Petroleum Institute 

B1 Beaker 1 located in base chamber of distillation column, contains 

 heavy oil 

B2 Beaker 2 collects condensate formed from distillation tower 

Do Depth of oil 

Dp Distance from oil surface to points of the high voltage electrode 

D Distance from ground electrode to high voltage electrode 

DBD Dielectric Barrier Discharge 

DC Direct current 

HV High voltage 

I Current 

l Length of high voltage electrode point 

n Number of high voltage electrode points 

PTP Peak-trough phenomenon 

R Resistance 

s Spacing or distance between high voltage electrode points 

SG Specific gravity 

t Time 
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T Temperature 

V Voltage 

V̇ Volumetric flow rate 

VB Voltage at breakdown 

VR Vacuum residue 

 

 vi 



 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT .......................................................................................................................ii 

ACKNOWLEDGMENTS ................................................................................................. iv 

NOMENCLATURE ........................................................................................................... v 

TABLE OF CONTENTS .................................................................................................vii 

LIST OF FIGURES ............................................................................................................ x 

LIST OF TABLES ......................................................................................................... xiii 

1. INTRODUCTION .......................................................................................................... 1 

1.1 Background and Motivation ..................................................................................... 1 
1.2 Introduction to Nonthermal Plasma ......................................................................... 2 
1.3 Thesis Objectives ..................................................................................................... 3 
1.4 Thesis Overview ....................................................................................................... 3 

2. DETAILED BACKGROUND AND LITERATURE REVIEW ................................... 4 

2.1 Plasma ...................................................................................................................... 4 
2.1.1 Thermal Plasma ................................................................................................. 6 
2.1.2 Nonthermal Plasma ........................................................................................... 7 

2.1.2.1 Dielectric Barrier Discharge ....................................................................... 7 
2.1.2.2 Corona Discharge ....................................................................................... 8 

2.1.3 Liquid and Gas-Liquid Discharges .................................................................... 9 
2.1.4 Plasma Chemistry ............................................................................................ 10 

2.2 Crude Oil ................................................................................................................ 12 
2.3 Research in Corona Discharge Configurations ...................................................... 16 

2.3.1 Electrode Geometry and Electrode Gap Distance ........................................... 16 
2.3.2 Negative vs. Positive DC Corona .................................................................... 20 
2.3.3 Aqueous/Gaseous Medium .............................................................................. 20 

2.4 Research in Reforming of Hydrocarbons ............................................................... 22 
2.4.1 Thermal Cracking of Hydrocarbons ................................................................ 22 
2.4.2 Plasma Cracking of Hydrocarbons .................................................................. 23 

 

 vii 



 

 Page 

3. EXPERIMENTAL DESIGN ........................................................................................ 28 

3.1 General Setup ......................................................................................................... 28 
3.1.1 Electrical Circuit .............................................................................................. 28 
3.1.2 Preliminary Experimental Setup ..................................................................... 30 
3.1.3 Distillation Tower ............................................................................................ 32 

3.2 Safety Precautions .................................................................................................. 36 
3.2.1 Petroleum ......................................................................................................... 36 
3.2.2 Hydrogen Gas .................................................................................................. 37 

4. PRELIMINARY EXPERIMENTAL RESULTS ......................................................... 38 

4.1 Electrode Geometry................................................................................................ 38 
4.1.1 High Voltage Points ........................................................................................ 38 

4.1.1.1 Single HV Point ....................................................................................... 38 
4.1.1.2 Four Linear HV Points ............................................................................. 41 
4.1.1.3 Nineteen HV Points .................................................................................. 43 

4.1.2 Electro-hydrodynamics ................................................................................... 46 
4.2 Crude Oil Temperature........................................................................................... 50 

4.2.1 Temperature Characteristics of Oil C .............................................................. 50 
4.2.2 Temperature Characteristics of Oil D ............................................................. 51 

4.3 Summary of Preliminary Results ........................................................................... 55 

5. FINAL EXPERIMENTAL RESULTS ........................................................................ 56 

5.1 Distillation Tower .................................................................................................. 56 
5.1.1 Pure H2 Gas ..................................................................................................... 56 
5.1.2 Gas Combination of H2 and CH4 ..................................................................... 78 

6. CONCLUSIONS AND FUTURE WORK .................................................................. 83 

6.1 Summary ................................................................................................................ 83 
6.2 Major Findings ....................................................................................................... 84 
6.3 Conclusion .............................................................................................................. 85 
6.4 Recommended Future Work .................................................................................. 85 

REFERENCES ................................................................................................................. 88 

 

 

 viii 



 

 Page 

APPENDIX A: PRELIMINARY EXPERIMENTAL RESULTS ADDENDUM .......... 95 

APPENDIX B: CURRENT AND VOLTAGE CHARACTERISTICS DURING 4 
HOUR CORONA TREATMENT OF OIL D .................................................................. 97 

APPENDIX C: ADDITIONAL PRETESTS FOR DISTILLATION TOWER ............. 103 

APPENDIX D: MALDI MS RESULTS ........................................................................ 104 

 

 ix 



 

LIST OF FIGURES 

 Page 

Figure 1: General current voltage characteristics for DC plasma discharge [11, 13] ........ 5 

Figure 2: Corona discharge electrical circuit ................................................................... 28 

Figure 3: 45° cut of tip of high voltage points ................................................................. 29 

Figure 4: General configuration for corona treatment of heavy oil ................................. 30 

Figure 5: Distillation tower and experimental apparatus ................................................. 33 

Figure 6: Internal configuration of the distillation tower ................................................. 34 

Figure 7: Current voltage characteristics for a single center HV point over oil c ............ 39 

Figure 8: Single HV point over oil c with Do=20 mm and Dp=10 mm ............................ 40 

Figure 9: 4-point HV electrode configuration over oil c .................................................. 41 

Figure 10: 4-point HV electrode with plasma discharge on outer two points, exposure 
time 1/15 sec. .................................................................................................... 42 

Figure 11: Current voltage characteristics for 4 linear HV points over oil c ................... 43 

Figure 12: 19-Point high voltage electrode ...................................................................... 44 

Figure 13: 19-point HV electrode over oil c with Do=20 mm and Dp=15 mm at V=15 
kV and I=0.188 mA, exposure time 1/15 sec. .................................................. 45 

Figure 14: Current voltage characteristics for 19 hexagonal HV points over oil c .......... 46 

Figure 15: Tendency of surface of oil to form a) troughs and b) peaks directly below a 
HV point ........................................................................................................... 47 

Figure 16: Formation of peak with two small troughs ..................................................... 49 

Figure 17: Current voltage characteristics for 19 hexagonal HV points over oil c as a 
function of temperature ..................................................................................... 50 

Figure 18: Effects of corona discharge treatment on oil c ............................................... 51 

Figure 19: Current voltage characteristics for 19 hexagonal HV points over oil d as a 
function of temperature ..................................................................................... 53 

 x 



 

 Page 

Figure 20: 19-point HV electrode over oil d for Do=15 mm, Dp=15 mm, T=210°C, 
V=24 kV, and I=0.372-0.536 mA a) with ambient lighting and b) without 
ambient lighting, exposure time 1.6 sec. .......................................................... 54 

Figure 21: 85 cm tall distillation tower a) without and b) with insulation ....................... 57 

Figure 22: 16 cm tall distillation tower a) without and b) with insulation ....................... 57 

Figure 23: Pretests for determination of voltage and current characteristics for oil d 
with H2 in the distillation tower ........................................................................ 60 

Figure 24: Evaluation of T1 effect on VI trend for oil d with H2 in the distillation 
tower ................................................................................................................. 62 

Figure 25: Current and voltage characteristics during 4 hour corona treatment of oil d 
with H2 in the distillation tower ........................................................................ 65 

Figure 26: Condensate (left) and corona residue (right) produced from control test 
7.15.14 at 600°F V̇H2=0.40 L/min ..................................................................... 67 

Figure 27: Corona and thermally treated test 6.25.14 carbon residue (left) and 
condensate (right) ............................................................................................. 71 

Figure 28: Corona treated test 6.4.14 corona residue (left) and condensate (right) ......... 71 

Figure 29: Corona treated test 2.11.14 at V̇H2=0.10 L/min and T1≠T3 a) corona residue 
and b) condensate ............................................................................................. 72 

Figure 30: Residue (left) and condensate (right) for control test 2.14.14 at V̇H2=0.10 
L/min and T1≠T3 ............................................................................................... 73 

Figure 31: Dried oil d condensate coating on inside of B1 for test on a) 8.4.14 and b) 
8.12.14 .............................................................................................................. 74 

Figure 32: Mass spectrometry of condensate collected on 4.29.14 ................................. 75 

Figure 33: Test with H2 and CH4 oil d condensate located on a) petri dish, b) B1, and 
c) 1000 mL beaker ............................................................................................ 80 

Figure 34: Formation of carbon fibers on HV point tips due to presence of methane 
gas (varying camera focus) ............................................................................... 81 

Figure 35: Magnified photos of the carbon fibers on the HV point tips of a) point 1 
and b) point 2 .................................................................................................... 82 

 xi 



 

 Page 

Figure 36: Current and voltage trend for various HV electrodes with Do=10 mm and 
Dp=10 mm ......................................................................................................... 95 

Figure 37: Current and voltage trend for various HV electrodes with Do=10 mm and 
Dp = 15 mm ....................................................................................................... 95 

Figure 38: Current and voltage trend for various HV electrodes with Do=20 mm and 
Dp=10 mm ......................................................................................................... 96 

Figure 39: Current and voltage trend for various HV electrodes with Do=20 mm and 
Dp=15 mm ......................................................................................................... 96 

Figure 40: Test 2.11.14 current and voltage trend over time ........................................... 97 

Figure 41: VoltCurMon_179 current and voltage trend over time .................................. 97 

Figure 42: VoltCurMon_207 current and voltage trend over time .................................. 98 

Figure 43: VoltCurMon_209 current and voltage trend over time .................................. 98 

Figure 44: VoltCurMon_234 current and voltage trend over time .................................. 99 

Figure 45: VoltCurMon_236 current and voltage trend over time .................................. 99 

Figure 46: VoltCurMon_238 current and voltage trend over time ................................ 100 

Figure 47: VoltCurMon_245 current and voltage trend over time ................................ 100 

Figure 48: VoltCurMon_254 current and voltage trend over time ................................ 101 

Figure 49: Current and voltage characteristics during 4 hour corona treatment of oil d 
with H2 and CH4 in the distillation tower (VoltCurMon_155) ....................... 101 

Figure 50: VoltCurMon_155 current trend over time .................................................... 102 

Figure 51: VoltCurMon_155 voltage trend over time ................................................... 102 

Figure 52: Additional pretests for determination of voltage and current characteristics 
of oil d with H2 in the distillation tower ......................................................... 103 

 

 xii 



 

LIST OF TABLES 

 Page 

Table 1: Plasma induced chemical reaction pathways for hydrocarbon radicals [23] ..... 11 

Table 2: Oil classification based on API gravity [25, 26] ................................................ 12 

Table 3: Various point geometries in literature ................................................................ 17 

Table 4: Distances between electrodes in literature ......................................................... 18 

Table 5: Average temperature for duration of treatment for a gas of pure H2 ................. 59 

Table 6: Average temperature for preliminary tests on 8.12.14 with pure H2 ................. 61 

Table 7: Distillation tower treatment current and voltage ................................................ 64 

Table 8: Volume of oil d for corona discharge in distillation test 2.11.14 ....................... 68 

Table 9: Mass and density of condensates formed during treatment in the distillation 
tower ................................................................................................................. 69 

Table 10: Possible molecules for condensate formed from oil d [22].............................. 76 

Table 11: Energy requirements for condensate mass produced from corona treatment 
of oil d ............................................................................................................... 77 

Table 12: Average temperature for duration of treatment of oil d with a gas 
combination of H2 and CH4 .............................................................................. 79 

Table 13: Average temperature of additional pretests for distillation tower .................. 103 

 

 

 xiii 



 

1. INTRODUCTION 

1.1 Background and Motivation 

By 2040 it is expected that worldwide energy consumption will increase by 33 

million barrels of oil per day [1]. To meet increasing energy demands, unconventional 

oil reserves are one viable option. Heavy crude oil compromises half of all oil resources, 

but currently only ten percent of that is actually used in production [2]. This is in part 

due to the added costs imposed by the current market, which necessitates the refining of 

crude oil into more valuable products. This includes processing the heavy oil into lighter 

and cleaner oil fractions in oil refineries. Before the heavy oil is even able to reach the 

refining plants, it is mixed with lighter oils and liquid petroleum gas (LPG) in an effort 

to lower its viscosity enough to be able to store it and transport it by pipeline [3]. 

The chemical composition of petroleum can drastically vary depending on the 

location and depth of the formation from which it was extracted. Petroleum can be 

composed of 83.0 to 87.0 percent carbon, 10.0 to 14.0 percent hydrogen, 0.05 to 6.0 

percent sulfur, 0.05 to 1.5 percent oxygen, 0.1 to 2.0 percent nitrogen, and less than 0.1 

percent of metallic compounds [4]. The presence of the metallic compounds can have a 

significant detrimental effect in the cracking process, especially with heavy oils in which 

there is a more concentrated amount. However, at the same time the metals increase the 

conductivity of the oil permitting a charge to be passed through it. Research with 

medium heavy crude oil (SG ≈ 0.9) has shown that the resistivity of the oil decreases 

exponentially with increasing temperature [5]. Many solid hydrocarbons are even 

semiconductors [5]. Residua have many similarities in composition to heavy crude oil. 
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However, they have a higher concentration of asphaltene, sulfur, nitrogen and metal 

compounds [6]. The conductivity of heavy oils, although still relatively low, and 

especially residua is one property that enables the possibility of the application of a 

plasma discharge for the refining of the oil. 

1.2 Introduction to Nonthermal Plasma 

A nonthermal plasma is an ionized gas in which the electron temperature is much 

greater than the ion temperature. It consists of active chemical radicals and other excited 

species which are known to accelerate reactions causing the formation of new stable 

compounds, similar to the effects of catalysts [7, 8]. This includes the ability of the 

plasma to enhance molecular dissociation and produce free radicals [9]. Where 

conventional catalytic cracking methods are unable to proceed due to the complex 

components in crude oils reacting negatively with the catalyst, plasmas are unaffected 

[7]. Neither do plasmas decay over time. Nonthermal plasmas can be used at 

atmospheric pressures, which allows for easier and less costly implementation in 

industry than low and high pressure options. They do not require long initiation periods 

and consume relatively low amounts of electrical power [7]. Unlike with thermal 

plasmas, the majority of the electrical energy goes directly into the plasma channel 

which initiates the chemical reaction; energy is not lost to heating. In addition, the 

nonthermal plasma does not require the same high temperatures that thermal cracking 

mechanisms need to initiate chemical reactions within the petroleum. Thus the amount 

of electrode erosion is lowered and less energy is consumed [10]. For these reasons, 
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nonthermal plasma technology has the potential to be an advantageous method of 

petroleum refining. 

1.3 Thesis Objectives 

The main objective of this thesis is to investigate the ability of a nonthermal 

corona discharge to crack long hydrocarbon chains. This includes determining the 

economic feasibility of the refining process developed. As such, the efficiency of the 

process must be maximized, both in terms of the energy efficiency and the amount of 

heavy oil converted to lighter oils. 

1.4 Thesis Overview 

Section 2 discusses in detail nonthermal plasma discharges, specifically the 

corona discharge. It provides a background of current hydrocarbon cracking techniques 

used in industry and notes recent activities in related research. Section 3 describes the 

general electrical circuit to create the corona discharge. It also provides the details of the 

set-up for the preliminary experimentations in the fume hood and the final 

experimentations in the distillation tower and lists several safety precautions. The results 

of the preliminary experimentations determining the electrode configuration and oil 

depth and temperature are described in Section 4. Based on these results, the distillation 

tower procedure and the effects of the corona reactor inside the tower were determined 

and inscribed in Section 5. Section 6 contains all concluding remarks about the heavy oil 

and corona discharge experiment, including the major findings and future 

recommendations. All supporting documents are attached in the Appendix. 
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2. DETAILED BACKGROUND AND LITERATURE REVIEW 

2.1 Plasma 

Plasma, as the fourth state of matter, comprises 99% of the known universe. It is 

so called because of the progression between the states of matter with increasing 

temperature. Just as an increase in temperature yields a change from a solid to a liquid, 

the energized molecules of a gas produces plasma. The increase of energy results in 

collisions within the gas causing the gas to become ionized. Several mechanisms of 

ionization include ionization by electron impact and photoionization. Plasmas are 

considered to be quasi-neutral in the fact that the electron and ion densities are 

approximately equivalent [11]. In order to be classified as a plasma the following 

conditions must be met: 

1. the Debye length must be much smaller than the system dimensions,  

2. the number of particles in a Debye Sphere must be much greater than one, and  

3. the frequency of oscillations multiplied by the average time between collisions 

must be greater than one [12].  

Plasmas can exist over a wide range of temperatures and pressures. They naturally occur 

in the form of the sun, lightning, and the aurora borealis. Both the sun and lightning are 

thermal plasmas. The aurora borealis is a nonthermal plasma. 

The most common method of generating a plasma discharge is through an 

external electric field. The few naturally occurring electrons and ions present within a 

gas are accelerated by the electric field, causing them to collide with other molecules in 

the gas creating what is known as the avalanche effect [13]. As the avalanche propagates 
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between the anode and cathode, it amplifies the external electric field and forms a thin 

ionized channel or streamer between the electrodes [11]. With a high enough current the 

streamer creates a closed loop between the electrodes and a spark is produced. For a 

direct current external electric field different types of plasmas are generated as shown in 

Figure 1 as the voltage and current of the system are altered. The three main types are 

the dark discharge, the glow discharge, and the arc discharge. 

 

 

 

Figure 1: General current voltage characteristics for DC plasma discharge [11, 13] 
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The period from A to B is background ionization from cosmic rays. The dark Townsend 

discharge, which does not depend on the current and is self-sustained, is from C to E. D 

to E is the corona discharge. The transient period of breakdown of the corona discharge 

to the glow discharge from E to F is called a spark discharge; it begins at the breakdown 

voltage VB. Electric breakdown is the process by which a dielectric material is changed 

into a conductor when the applied electric field is sufficiently strong [14]. The point at 

which breakdown of the plasma occurs is described by Paschen’s curve for various 

gases. For each gas there exists a minimum breakdown voltage based on the electrode 

gap distance and the material used for the cathode. Pashchen’s law shows that the 

voltage is a function of the similarity parameter pd [cm·Torr], which refers to the 

product of the gas pressure and the distance between the electrodes [14]. The normal 

glow discharge from F to G is independent of voltage and has a fixed current density. 

When the entire cathode is covered, an increase in the current results in an increase of 

the current density and the abnormal glow discharge (G to H). The abnormal glow to arc 

transition occurs from H to I. From I to J and J to K is the nonthermal arc and the 

thermal arc, respectively [11]. 

2.1.1 Thermal Plasma 

A thermal plasma is one in which the electron temperature Te and ion Ti or bulk 

gas temperature Tgas are in local equilibrium. The gas temperature is normally 18,000°F 

(10,000°C) or above. Some applications of thermal plasmas include arc welding, thermal 

plasma chemical vapor deposition, and tokamaks. However, in regards to plasma 

chemical reactions, thermal plasmas lack the ability to selectively treat the reactants. 
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Additionally, the high temperature causes overheating of the reactants which leads to 

energy inefficiencies [11]. 

2.1.2 Nonthermal Plasma 

A nonthermal plasma has a higher electron temperature than ion temperature. 

𝑇𝑇𝑒𝑒 > 𝑇𝑇𝑣𝑣 > 𝑇𝑇𝑟𝑟 ≈ 𝑇𝑇𝑖𝑖 ≈ 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔 

(1) 

The vibrational temperature Tv in Equation (1) is smaller than the electron temperature 

and larger than the rotational temperature Tr. The electron temperature is on the order of 

magnitude of 18,000°F (10,000°C) while the gas temperature can range from room 

temperature to 1500°F (800°C). The difference in temperature between the electron and 

ion arises from the variance in weight; because the electron is lighter it is able to move 

faster and has a higher collision rate [11]. For hydrocarbon cracking, rotationally and 

vibrationally excited molecules have too short of a lifetime and too low of energy (<2 

eV) to be of use; the bonds between hydrocarbons normally falls between 3 and 6 eV. 

Instead, the chemical reactions occur as a result of electron-impact dissociation and 

ionization [15]. 

2.1.2.1 Dielectric Barrier Discharge 

A dielectric barrier discharge (DBD) is a low-temperature discharge operable at 

atmospheric pressure. It is typically initiated by an alternating current (AC), has a 

voltage with an amplitude ranging from 1 to 100 kV, and a frequency up to several 

megahertz [16]. The discharge is formed between two parallel plate electrodes separated 

by one or more dielectric materials. The distance between the electrodes is usually on the 
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order of millimeters [17]. The DBD was first used in 1857 by Siemens to create ozone 

[11] and continues to be one of the most popular plasmas to use for plasma chemical 

reactions. In regards to organic compounds including hydrocarbons, it is limited by the 

complexity of the chemical reaction and a low product yield per unit energy input 

[17].This renders the DBD inefficient for large scale industrial operations. 

2.1.2.2 Corona Discharge 

The corona discharge has a lower electron density and higher breakdown voltage 

than the DBD [16]. A corona discharge appears around sharp edges and points with 

small radii of curvature where there is a sufficiently large electric field. It is considered a 

partial discharge in that the current flows from one electrode but does not reach the 

other. As such, the current is transferred by ions [18]. It emits a weak light that is 

strongest at the electrode with a high electric field. A positive corona is distinguished by 

a high electric field at the anode; a negative corona has a high electric field at the 

cathode. The negative corona propagates by impact ionization of the gas molecules 

[9].This thesis focuses on the positive corona discharge (see Section 2.1.4 and 2.3.2 for 

detailed explanation). 

The positive corona depends largely on photoionization and forms when the ion 

density is large enough to extend the discharge into the inter-electrode gap [9, 19]. The 

positive corona has four phases dependent on increasing voltage. It begins with a burst 

pulse corona characterized by a concentration of light around the sharp point, steady 

current at a fixed voltage, and no sparking [9]. With increasing voltage and 

photoionization it develops into a noisy streamer corona that appears as a larger volume, 
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albeit still narrow channel reaching out from the anode toward the cathode [9]. During 

this phase the current is unsteady for a constant voltage. The ion temperature is in the 

hundreds of Kelvin [9]. The final two stages are the glow corona and spark, which is a 

high-temperature fully ionized plasma that connects the two electrodes. Transition to the 

spark is prevented by limiting the voltage, thereby creating a space charge accumulation 

around the sharp electrode [20] called the ionization region. The remaining discharge 

volume consists of a low electric field drift region that connects it to the cathode [21].  

2.1.3 Liquid and Gas-Liquid Discharges  

Traditionally plasma discharges have been created in gases. Liquid plasmas have 

also been studied extensively, although in most tests the liquid component has been 

water. Much of the information obtained from gas discharges can be applied to liquid 

discharges, but the actual method of discharge formation and propagation in the liquid is 

poorly understood. Plasma liquid reactions are dependent on the electrode geometry, 

electrode materials, presence of gas and liquid phases, and solution conductivity and 

composition. Electrohydraulic discharges are ones in which both electrodes are 

submerged in a liquid. In point-to-plane electrohydraulic corona discharges, when the 

large electric field is at the high-voltage electrode it causes extensive wear on the 

electrode, eventually making it incapable of sustaining a discharge. Studies of corona 

discharges in gases above water have shown that the conductivity of the water 

determines how the discharge channel propagates, the length of the channel, and the 

current. Compared to a pulsed arc, the corona discharge is more sensitive to the liquid 

solution conductivity. Furthermore, the gas phase affects the formation of gas-phase 

 9 



 

species which then transfer into the liquid. If the liquid evaporates, it will in turn affect 

the gas-phase reaction. Radicals and other reactive species formed by the discharge may 

lead to post-discharge reactions. As of yet, there have been no studies analyzing the 

chemical reactions that occur at the gas-liquid interface for a corona discharge [18]. 

2.1.4 Plasma Chemistry 

An important component of plasma is the chemical reactions that occur from the 

ionization process. The reaction components depend on both the gas and liquid mediums 

through which the plasma is formed. For the experiments within this thesis, the gas 

components are hydrogen (H2) and methane (CH4) and the liquid is a hydrocarbon. For a 

positive point-to-plane corona discharge, the neutral gas molecules ionize producing H+, 

H2
+, H3

+, and CH3
+, depending on the components of the original gas, as well as a free 

electron. The electrons are accelerated by the applied power preventing recombination. 

For the corona reactor developed herein, positively charged ions flow towards the 

ground electrode and the oil covering it. As the ions bombard the oil surface, 

hydrogenation of the heavy hydrocarbons occurs, effectively cracking the long chains 

into smaller ones and reducing the C/H ratio. Several types of chemical reactions 

involving the produced radicals are listed in Table 1. A radical is an unstable atom or 

molecule that has an unpaired electron such as CH3, H, O, and OH [22]. The three main 

chemical reactions are initiation, propagation, and termination. 
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Table 1: Plasma induced chemical reaction pathways for hydrocarbon radicals [23] 

Process Chemical Reaction 
Initiation e-+CH3CH32CH3

•+e- 

e-+CH4CH3
•+H•+e- 

Propagation – Hydrogen Abstraction CH3
•+ CH3CH3CH4+CH3CH2

• 
Propagation – Decomposition CH3CH2

•CH2=CH2+H• 
Propagation - Polymerization CH3CH2

•+CH2=CH2CH3CH2CH2CH2
• 

Termination – Hydrogenation CH3
•+H•CH4 

Termination – Recombination CH3
•+CH3CH2

•CH3CH2CH3 
Termination – Disproportionation CH3CH2

•+CH3CH2
•CH2=CH2+CH3CH3 

 

 

Chain initiation is the process by which a radical is formed from a stable species as a 

result of collisions with free electrons. Chain propagation has different radicals on the 

reactant and product sides of a chemical reaction; however the number of radicals 

remains constant. Through termination, the radicals recombine to form a stable product 

[22].  

For a negative corona discharge, the electrons instead of the ions are accelerated 

towards the oil surface [24]. The indirectness of the process limits the amount of 

hydrocracking that takes place. Utilization of the positive corona discharge ensures that 

the hydrogen ions travel directly to the oil so a maximum amount of hydrocracking 

ensues. 
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2.2 Crude Oil 

Oil is classified by the American Petroleum Institute (API) gravity which is 

related to the specific gravity SG of the oil at 60°F according to Equation (2) and has 

units of degrees. 

𝐴𝐴𝐴𝐴𝐴𝐴 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
141.5
𝑆𝑆𝑆𝑆

− 131.5 

(2) 

The three generally accepted classifications of the oil types are listed in Table 2. A 

viscosity range is assigned in conjunction with the API gravity: extra heavy oil has a 

viscosity greater than 10,000 cP, light and heavy oil have a viscosity less than 10,000 cP 

at reservoir conditions [4]. The viscosity at 100°F is shown in Table 2. 

 

 

Table 2: Oil classification based on API gravity [25, 26] 

Classification API Gravity [°] Viscosity [cP] 
Light Oil >40 <10 
Medium Oil 22.3-40 10-250 
Heavy Oil 10-22.3 250-1300 
Extra Heavy Oil <10 >1300 

 

 

Additionally, atmospheric residual oils typically have an API gravity ranging from 10° 

to 15° and the range for vacuum residua is 2° to 8° [4]. Oils with an API gravity greater 

than 10° float on water. 
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To become a useable product, the crude oil must be refined. This involves the 

separation of the various oil fractions, the conversion of heavier hydrocarbons to lights, 

and any subsequent finishing treatments [4].  

Cracking is the process by which a long hydrocarbon chain is broken into smaller 

chains. A long hydrocarbon chain is one in which there are more of the relatively heavy 

carbon atoms (as compared to hydrogen), making it heavier than shorter chains with less 

carbon atoms. Hydrocarbons dissociate through either their C-C bonds or their C-H 

bonds. Dissociation of the C-C bonds leads to the formation of lighter hydrocarbons 

while dissociation of the C-H bonds results in the decomposition to hydrogen [27]. 

Typically the cracking of hydrocarbons involves high temperatures and pressures and 

chemical catalysts. Various methods include thermal cracking, catalytic cracking, 

visbreaking, hydrocracking, coking and gasification. 

Thermal cracking is the application of heat for the lowering of petroleum 

viscosities. Often times it is used for the conversion of heavy oils and residua. The 

products produced depend upon the length of time the crude oil is held at a certain 

temperature. Visbreaking, or viscosity breaking, is a low temperature thermal cracking 

process carried out at 480°C (896°F) and 100 psi [4]. After a period of time at the high 

temperature, the product is quenched to prevent the formation of coke [6]. Coking is 

another thermal method. It can either be a continuous process as in fluid coking or the 

semi-continuous process of delayed coking [4]. In general, hydrogen is transferred from 

the heavy molecules to form lighter oil [6]. Coking produces gases, naphtha, fuel oil, 

gasoil, and coke and concentrates pollutants such as sulfur [4]. Delayed coking is able to 

 13 



 

operate with any type of residua, however it has a high coke formation and low light oil 

yield [6]. Gasification completely cracks a residue into gaseous products. At 

temperatures exceeding 1000°C (1832°F), it produces syngas, carbon black, and ash as 

its major products and has therefore received less attention than other conversion 

methods [6]. With the addition of a catalyst, catalytic cracking can produce gas with a 

higher octane number and more of the stable iso-paraffins and aromatics than thermal 

process without a catalyst [4]. The range of operating temperatures and pressures is from 

900 to 1000°F (482 to 538°C) and 1.5 to 3 atm respectively. As the demand for higher 

octane numbers has increased, catalytic cracking has replaced thermal cracking [28]. 

However, it can only treat oils with a high hydrogen to carbon ratio and low metal 

content, therefore it is limited to the treatment of atmospheric residue [6]. 

Hydroprocessing is based on the idea that the presence of hydrogen during the thermal 

reaction of the crude oil will terminate many of the coke forming reactions and promote 

the production of oil fractions with lower boiling points [4]. Hydroprocessing treats 

residues at low temperatures and high hydrogen pressures. Most of the time it involves a 

metal sulfide catalyst; the exception is for hydrovisbreaking which is visbreaking with 

the addition of hydrogen [6]. It can either be a destructive process where heavy 

hydrocarbons are converted to lighter ones, or a nondestructive process that improves the 

quality of the oil without altering its boiling point [4]. Although hydroprocessing has a 

high yield of light oil, it can be expensive. Thermal processes tend to be cheaper, but 

they do not have as high light oil yields, producing low-grade materials that require 

further refining [29]. 
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A distillation unit is often used in conjunction with the cracking process. The 

purpose of this unit is to separate the different oil fractions based on the boiling points of 

the hydrocarbons. The typical range of boiling points is from 90°F (32°C) to over 800°F 

(427°C) [28]. This refining process begins with a desalting process to remove any salts 

which can cause fouling and corrosion of the equipment and deactivation of catalysts. 

From there the crude oil is heated in a furnace then flows into an atmospheric distillation 

unit. The bottom of the distillation unit has the highest temperature. As the oil 

evaporates and travels up the column the temperature is reduced; the lowest temperature 

is at the very top of the tower. The tower either is packed with a material that has a large 

surface area to increase mass transfer or contains 30 to 50 trays positioned at intervals 

that collect the various oil fractions as they rise and condense [4, 28]. The heavy oil 

residue left in the bottom of the tower, with a boiling temperature exceeding 343°C 

(649°F), is then transferred to a vacuum distillation unit with a larger diameter column 

[4, 6]. Vacuum distillation lowers the boiling point of the oil and enables separation at 

lower temperatures [4, 28]. The vacuum residua, with boiling temperatures greater than 

565°C (1049°F), can be further refined in a coking unit [6, 28]. The energy required for 

atmospheric distillation is 658 Btu/yr.; for vacuum distillation it is 242 Btu/yr. [28]. 

This thesis will use a combination of the different cracking processes described 

above. The main reactor and chemical reaction initiator is the corona plasma discharge, 

which can be considered as a type of unconventional catalyst. It will also involve a form 

of non-catalytic (in the traditional sense of an additive material) hydroprocessing. A 

hydrogen rich gas will be used to attach to the long hydrocarbon chains as the chains are 
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cracked to both prevent the formation of coke and increase the amount of shorter 

hydrocarbon chains produced. Simultaneously to the corona and hydrogenation 

treatment, the crude oil will be heated in a distillation tower to separate the light and 

heavy oil fractions in a single batch process. 

2.3 Research in Corona Discharge Configurations 

There is limited literature concerning the cracking of heavy oil via corona 

discharges. As such, a number of different corona reactors lacking a heavy liquid oil 

component were studied with the assumption that the corona discharge would behave 

similarly regardless of experimental specifics. Each corona reactor is distinguished by its 

physical construction: point-to-point, point-to-plane, packed bed, and coaxial. They are 

further defined by the method in which they are generated: alternating current, direct 

current, or pulsed direct current [9]. There also exists a dependence upon the medium 

through which the plasma discharge flows, whether it is gaseous, aqueous, or a hybrid 

arrangement with only one electrode submersed in a liquid [30]. Knowledge gained from 

these studies aided in determination of the optimal configuration for the corona reactor 

evaluated within this thesis. 

2.3.1 Electrode Geometry and Electrode Gap Distance 

The classic method of generating corona discharges is between two asymmetric 

electrodes: a wire point and a plane electrode. Other geometries have been suggested, 

with emphasis on the type of electrode used for the high electric field. The material and 

dimensions of the points for different experiments are described in Table 3. When the 
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diameter of the wire used for the point is increased, the thickness of a plasma discharge 

is increased [24].  

 

 

Table 3: Various point geometries in literature 

Material Diameter 
[mm] 

Tip Angle [°] 
(Radius of 

Curvature [mm]) 

Length 
[mm] 

Spacing 
[mm] 

Source 

Tungsten 0.5 30 10 5-20 [8] 
Various 
metals & 
ceramics 

0.75 - 15 - [30] 

Steel 0.6 (0.05) >3 0-2.5 [31] 
- 0.5 30 - - [32] 

Thumbtack - (0.11) 5.5 25.4-27.0 [33] 
Brass - (0.073-0.567) 5.5-25.5 - [33] 

- 1 (0.035, 0.095) 6  [34] 
Stainless 

steel 0.5 30  20 [35] 

 

 

Suarasan et al. experimented with the ozonization of liquids from two different 

multipoint AC corona discharge electrode geometries. The quantity of ozone produced 

depended on both the applied voltage and the duration of plasma exposure with a higher 

voltage yielding more ozone. Increasing the density of the discharge points increased the 

amount of ozone generated until a threshold of no significant effect was reached. 

Thinner liquid layers that were grounded and shorter electrode gaps also improved the 

ozone production [36]. The shorter electrode gap ensured that the entire space was filled 

with corona-induced plasma [9]. The various electrode gap distances for a number of 
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experiments are listed in Table 4. The first seven values are extracted from experiments 

that do not involve oil and are more focused on the electrode geometry. 

 

 

Table 4: Distances between electrodes in literature 

Inter-electrode Distance [mm] Source 
0-15 [8] 
7 [9] 
60 [30] 
3-25 [31] 
0-20 [32] 
55.7-70.7 [33] 
20, 31 [34] 
15 [35] 
3-15 [37] 
2-10 [38] 

 

 

Jaworek and Krupa determined the current-voltage characteristics of a grounded 

5 by 5 square multipoint-to-plane corona discharge. Although results were similar to a 

single point discharge, the space charge interaction between adjacent points affected the 

VI trend. Increasing the spacing between the points and decreasing the distance between 

the electrodes increased the total achievable current and decreased the power per unit 

volume in the discharge gap [8]. 

Thanh evaluated a circular and linear arrangement of points for a negative corona 

discharge in air as compared to that of a single point with an inter-electrode spacing of 0 

to 2 cm. It was found that the corona onset voltage had little dependence on the gap 

distance for gap lengths much larger than the radius of the point. The multipoint 
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electrode behaved similarly to a single point, but more charge was present in the 

electrode gap [32]. McKinney found that the maximum current achievable was 

unaffected by the length of a point for a fixed point tip-to-plane spacing. Longer points 

arranged closer together increased the area within the electrode gap that exhibited a 

current. Although sharper point tips drew slightly more current to a wider area, a corona 

could not be initiated for radii of curvature exceeding 0.567 mm. The presence of 

multiple points had no effect on the maximum current but did limit the distance over 

which it matched the Warburg distribution. Comparison between a square and hexagonal 

multipoint grid revealed that the hexagonal pattern had a more uniform current 

distribution [33]. Hoang et al. used a modified point-to-plane structure for a pulsed 

corona discharge reformation of ethane. A larger gap distance of 15 mm increased H2 

and CO selectivity, reduced the amount of byproduct hydrocarbons that formed, and had 

a better overall energy efficiency [37]. 

It is important to note that the use of any single electrode is limited due to the 

effects of erosion. Holzer and Locke investigated electrode erosion in a hybrid liquid-gas 

reactor. Regardless of material, all the point tips became rounded due to erosion from a 

corona discharge lasting for three hours [30]. As the electrode erodes, the discharge 

power is affected and the resulting debris most likely falls into the liquid. The least 

amount of erosion was observed for electrodes constructed from nickel chromium, 

thoriated tungsten, diamond-coated tungsten and stainless steel [30]. 
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2.3.2 Negative vs. Positive DC Corona 

Chen and Davidson compared the electron number density for the negative and 

positive corona discharge based on the linear current density, wire radius, and air 

temperature [24]. Although the negative corona produces more electrons than the 

positive corona, the electrons tend to be of lower energy and occupy a much smaller 

active volume [19, 24]. Increasing the gas temperature slightly lowers the number of 

electrons produced for a positive discharge and greatly increases the amount for a 

negative discharge. The voltage at which a corona discharge changes to a spark 

discharge is higher for the negative corona than the positive corona [24]. It is not 

possible to create a negative corona discharge in pure gases lacking any electron affinity 

[24]. This fact is further emphasized in that in pure H2 an unstable negative corona 

discharge appeared at 2.6 kV and transformed into a glow discharge almost immediately 

at 2.8 kV [39]. The power per unit volume within the discharge gap is 2 to 3 times 

higher for a positive polarity than a negative one [8]. 

2.3.3 Aqueous/Gaseous Medium 

Taghvaei et al. has shown that for a DBD oil cracker the carrier gas has a 

significant effect on the breakdown voltage. They found that although the breakdown 

voltage is increased with higher percentages of methane, the DBD could not be sustained 

in pure methane. The energy efficiency of the system also decreased with increases in 

methane [27]. This is explained by the different ionization potentials causing a mixed 

gas to have a greater degree of photoionization than a pure gas. The onset voltage for the 

corona is lower for pure argon, hydrogen and nitrogen than mixtures [39]. 
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The performance of a corona discharge is affected by the pressure and the flow 

of the medium within the system. Chang et al. varied the gas flow rate of air in the 

region of a corona discharge from 0 to 20 L/min with an inlet gas temperature range 

from 10 to 60°C (50 to 140°F). They found that a flow rate stabilizes the corona 

discharge due to its cooling effect on the electrodes. Increasing the flow rate increased 

the voltage required to initiate the corona discharge and simultaneously increased the 

breakdown voltage while lowering the exit gas temperature [40]. Higher flow rates also 

decrease the amount of erosion on the point tips [30]. However, conversion of methane 

with a corona discharge decreased rapidly when the flow rate was increased [38]. 

Conversely, comparison of pressure effects from 5 to 15 psig at two different electrode 

gap distances showed that a higher pressure increased H2 and CO production from 

ethane and reduced the amount of byproduct [37]. The onset voltage for the corona is 

lower for low pressures. As the pressure increased, the voltage required to sustain a 

constant current increased [39].  

Jaowrek and Krupa varied the flow rate of air for a multipoint corona discharge 

within the laminar range. Similarly to Chang et al., they found that the corona is 

stabilized and the breakdown voltage is increased by 25% for a flow of 4 m/s as 

compared to stationary air. Too high of a velocity made it difficult to generate the corona 

discharge and extinguished preexisting coronas [35]. Chang, Lawless, and Yamamoto 

used a gas velocity of 100 m/s between a multipoint cathode and a plane anode. A 

significant amount of the gas bypassed the corona discharge due to the spaces between 

the points. They also report that a high-speed gas flow has a cooling effect on the 
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electrodes and stabilizes the plasma discharge for a corona torch, which in turn improves 

the chemical reactions [9].  

2.4 Research in Reforming of Hydrocarbons 

2.4.1 Thermal Cracking of Hydrocarbons 

Although the experiment within this thesis does not seek to thermally crack crude 

oil, it does involve a heated distillation tower. To ensure that the light oils produced from 

the corona reactor are only from the plasma discharge and not due to the high 

temperature of the distillation tower, various thermal cracking experiments were 

researched with the main emphasis on the operation temperature. The thermal cracking 

of petroleum at temperatures below 1000°F (538°C) can be described by first-order 

kinetic equations. As the petroleum is heated, the thermal energy is applied toward 

cracking large hydrocarbon molecules into smaller fragments [3].  

Tests involving the direct heating of methane were performed by Abánades et al. 

to determine the amount of hydrogen that could be produced. Lower flow rates did not 

require as high a temperature as high flow rates to produce hydrogen. As the temperature 

was increased from 875 to 1065°C (1607 to 1949°F), the amount of hydrogen increased, 

reaching a maximum conversion rate of about 30%. At temperatures exceeding 1350°C 

(2462°F) the residence time was negligible due to the faster reaction kinetics, but the 

system was limited by the formation of a carbon plug. Even with long residence times, 

the formation of hydrogen and carbon are low at temperatures below 1100°C (2012°F) 

[41]. Henderson and Weber determined that temperatures below 500°F (260°C) are too 

slow to be practical for thermal cracking of heavy crude oils [3]. It is not until a 
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temperature of 660°F (350°C) has been reached that the thermal cracking of oil becomes 

significant [4]. Above 700°F (371°C) the rate of coke formation increased, especially at 

high pressures [3]. The thermal cracking of heavy Marlim vacuum residue (VR) was 

carried out in 1 MPa of nitrogen gas. The system was heated to a reaction temperature of 

400 to 440°C (752 to 824°F) at a rate of 10°C/min and held there for 0 to 90 minutes. As 

seen in other experiments, increases in both temperature and treatment time increased 

the amount of hydrogen produced [42]. 

Coking is another thermal treatment commonly used in the upgrading of 

petroleum. The vacuum residue of a Nigerian medium crude oil with an API gravity of 

11.9° was thermally cracked in a delayed coker with temperatures up to 600°C (1112°F) 

and residence times ranging from 0 to 120 minutes. The liquid products were composed 

of 49.1 wt.% aliphatic hydrocarbons, 23.5 wt.% aromatic hydrocarbons, and 12.4 wt.% 

naphthenic hydrocarbons [43]. 

2.4.2 Plasma Cracking of Hydrocarbons 

There has been some research involving the plasma cracking of hydrocarbons. A 

large portion of that research has been done with the goal of producing hydrogen from 

lighter hydrocarbons such as methane, propane, kerosene, and ethanol with a limited 

number producing hydrogen from heavy hydrocarbon cracking [27]. A limited number 

of papers have explored the possibility of applying plasma to crack medium and heavy 

oils. 

The most widely used plasma that has been applied in the breaking of 

hydrocarbon chains is the dielectric barrier discharge. DBD cracking of hydrocarbons 
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has been investigated by [27], [38] and [44-49]. Prieto et al. used a packed-bed plasma 

reactor consisting of two mesh electrodes separated by 0.50 to 3.00 cm with an argon 

flow rate of 50 to 400 mL/min and input power ranging from 5 to 25 W [46]. A DBD 

with an open gap between two dielectric walls had no noticeable difference in methane 

conversion than a packed pellet-bed DBD [38]. When the applied voltage was increased 

the production of light hydrocarbons increased [44, 47, 50]. Experimenting with the 

setup proved the best results were at 7 kV and 18 kHz for a feed injection rate of 1 

mL/min. With an input power requirement of 24.7 W, the maximum generation of gas 

from naphtha was 22.5 mL/min [44]. Khani et al. also studied the dependency of the 

reaction on the setup parameters, but for n-hexadecane. The conversion of oil increased 

from 2.63% to 3.85% and the cracking percentage increased from 40.72% to 64.15 % 

with a switch in the type of working gas from air to methane. Although it was believed a 

high flow rate would decrease the residence time of oil molecules within the plasma 

zone, increasing the flow rate from 10 to 50 mL/min produced a greater number of 

electrons, ions, and radicals leading to the higher conversion percentage of 9.41% [47]. 

A Brazilian heavy crude (API gravity 10.1) containing emulsified water in combination 

with various gases was treated for up to 4 hours at 13 kV and 65°C (149°F) by Honorato 

et al. Although there was a significant reduction in the viscosity of the DBD-treated oil, 

it was accompanied by a substantial loss of water; there were no important alterations in 

the ratio of hydrogen to carbon [45]. Renneke et al. and Rosocha et al. were able to crack 

ethane into H2, CH4, C2H2, and C2H4. They found that higher temperatures led to larger 

concentrations of the aforementioned molecules [48, 49]. 
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A variety of corona discharges have also been tested. Marafi and Lobban (as well 

as Hoang et al.) tested the ability of a DC corona discharge to crack ethane, finding that 

the positive corona had a higher electron concentration and was more stable than a 

negative corona [19, 50]. Furthermore, a higher temperature increased the ionization rate 

and subsequent chemical reaction rate [50]. When Li et al. used a DC corona reactor 

with a feed flow rate of 60 mL/min and a discharge power of 45 W, they discovered that 

the H2/CO ratio in the products strongly depended on the CH4/CO2 ratio in the feed. 

Moreover, when the CH4/CO2 ratio was greater than 2/1, coke deposits appeared on the 

cathode [19]. In an AC point-to-plane corona reactor, methane conversion, 

predominantly to acetylene, was increased from 67% to 72% with reduction in flow rate 

from 20 mL/min to 10 mL/min [38]. The wire-cylinder pulsed corona of van Heesch et 

al. reformed the heavy tar components of thermally generated biogas in pure nitrogen at 

gas temperatures ranging from 103 to 170°C (217 to 338°F). At an energy density of 161 

J/L, 68% was converted and the light tar fraction increased by 50% [51]. 

Yang compared the ability of a packed DBD reactor and an AC point-to-plane 

corona discharge at processing methane. The main product from the DBD was ethane 

while the corona produced acetylene. With the same input energy, the corona discharge 

was able to convert more methane than the DBD, but both reactors had a larger yield for 

higher power inputs and longer residence times [38]. 

Other plasma cracking mechanisms involve the plate-to-plate, gliding arc 

discharge, microwave generated plasmas, and electron beams. Prieto et al. tested a steel 

mesh plate-to-plate reactor with an electrode gap distance ranging from 3 to 10 mm. The 
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highest production of light oil was at the largest gap distance (10 mm) and the lowest 

input power (3 W) [52]. There was a strong interaction between the flow rate and gap 

distance and the input power and gap distance. A maximum efficiency of 70 μL/J was 

achieved for the large gap distance of 0.9 cm and low input power of 5 W [53]. Matsui et 

al. experimented with two plates separated by 62 mm and filled with a mixture of 100 

mL of one of four different types of oil and metal chips. The chips decreased in size 

during treatment and their shape had little influence on the rate and concentration of the 

generated gases. Although, two times more hydrogen was produced for an aluminum 

chip than a copper one [54]. Gallagher et al. tested the n-tetradecane reformation ability 

of two gliding arc systems, one with a reverse vortex flow. The reactors had nearly 

identical yields of partial oxidation of the heavy hydrocarbons to syn-gas with 50% 

efficiency and a byproduct of other light hydrocarbons [10]. Miknis et al. used a 

microwave plasma to convert a crude oil with API gravity of 23.1° and scrap tires in 

combination with hydrogen or methane. The tire had a 53% conversion rate to gas and 

liquid products. For the oil and methane, around 10% of the methane was converted to 

liquids via recombination reactions [55]. Hueso et al. used a microwave plasma in 

conjunction with water to convert heavy, highly aromatic oil and coke. The composition 

of the product varied based on the treatment time, but in general it included syngas and 

hydrogen and the sulfur content was reduced. For the heavy oil, the input energy 

requirement was 120 kJ/g and for the solid coke it was 180 kJ/g [56]. Electron beam 

treatment of asphaltene has led to the decomposition of the heavy hydrocarbon 
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molecules and reduction of the aromatic components. However, the penetration depth of 

the electron beam into the oil is limited [57]. 
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3. EXPERIMENTAL DESIGN 

3.1 General Setup 

3.1.1 Electrical Circuit 

A corona discharge is created near sharp points when the electric field between a 

high voltage (HV) electrode and a ground electrode is sufficiently high. In these 

experiments a direct current (DC) was used to generate a positive corona discharge. The 

general circuit for the corona discharge is shown in Figure 2. 

 

 

 
Figure 2: Corona discharge electrical circuit 

 

 

A Spellman SL 10W-300W high voltage power supply provided the DC input power 

into the circuit. The power supply was connected to a ballast resistor bank. Unless stated 

otherwise, for the majority of the experiments the resistor bank consisted of ten 20 MΩ 
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resistors connected in parallel, yielding a total resistance R of 1.97 MΩ. The resistor 

bank was connected to the high voltage electrode. The high voltage electrode consists of 

n number of points of length l with a spacing of distance s between each point. Unless 

otherwise stated, the points are constructed of 18 AWG bare nickel chromium. Each 

point tip was cut to an angle of 45° with an angle length of approximately 0.65 mm 

(Figure 3). The points are attached to a steel mesh, which allows the flow of gases to and 

from the beaker. The ground electrode is located a distance D from the tips of the HV 

points. D is composed of the depth of the oil Do and the distance between the surface of 

the oil and the HV points Dp. The ground electrode and the power supply are connected 

to ground. 

 

 

 

Figure 3: 45° cut of tip of high voltage points 
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3.1.2 Preliminary Experimental Setup 

Preliminary experiments were executed in a fume hood in air at atmospheric 

pressure following the electrical setup as described in Section 3.1.1 with the general 

arrangement shown in Figure 4. The HV electrode is suspended over the oil by an 

optical stand. For these tests, oil c and oil d are used. Both are heavy oils however, oil d 

has a higher viscosity and lower API gravity than oil c. The beaker is 250 mL and the 

ground electrode has a height 59.66 mm and a diameter of 16.35 mm. The beaker is 

heated from below by a Thermolyne Cimarec 3 hot plate stirrer. 

 

 

 

Figure 4: General configuration for corona treatment of heavy oil 
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The power supply voltage and current are measured according to the values 

displayed by multimeters attached to the terminals on the back of the power supply. The 

multimeters provide a greater degree of accuracy than the power supply display. The 

actual voltage is determined from a combination of the ballast resistor Rballast described 

in Section 3.1.1, the oil resistance Roil, and the resistance of the plasma discharge Rplasma 

as follows. 

𝑉𝑉 = 𝑅𝑅𝑏𝑏𝑔𝑔𝑏𝑏𝑏𝑏𝑔𝑔𝑔𝑔𝑏𝑏𝐴𝐴 + 𝑅𝑅𝑜𝑜𝑖𝑖𝑏𝑏𝐴𝐴 + 𝑅𝑅𝑝𝑝𝑏𝑏𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝐴𝐴 

(3) 

I is the electrical current. The oil resistance can be approximated by  

𝑅𝑅𝑜𝑜𝑖𝑖𝑏𝑏 =
𝐷𝐷𝑜𝑜

𝐴𝐴𝐴𝐴(𝑇𝑇) 

(4) 

where A is the cross sectional area of the oil and σ(T) is the electrical conductivity of the 

oil as a function of the oil temperature. This assumes that the oil is a long cylinder with 

terminals at each end [58]. The plasma resistance is a function of the current and the 

length of the plasma Lplasma. Equation (3) then becomes 

𝑉𝑉 = 𝑅𝑅𝑏𝑏𝑔𝑔𝑏𝑏𝑏𝑏𝑔𝑔𝑔𝑔𝑏𝑏𝐴𝐴 +
𝐷𝐷𝑜𝑜

𝐴𝐴𝐴𝐴(𝑇𝑇) 𝐴𝐴 + 𝑅𝑅𝑝𝑝𝑏𝑏𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔(𝐴𝐴, 𝐿𝐿𝑝𝑝𝑏𝑏𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔)𝐴𝐴 

(5) 

Taking the partial differential of the voltage with respect to the oil depth yields 

𝜕𝜕𝑉𝑉
𝜕𝜕𝐷𝐷𝑜𝑜

=
𝐴𝐴

𝐴𝐴𝐴𝐴(𝑇𝑇) ≈
𝛥𝛥𝑉𝑉
𝛥𝛥𝐷𝐷𝑜𝑜

 

(6) 
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The change in the oil depth refers to the instantaneous fluctuations in the oil depth 

created by the corona discharge. ΔV is the change in voltage from the surface of the oil 

to its full depth (function of the thickness of the oil). The effective area Aσ(T) can then 

be determined. 

𝐴𝐴𝐴𝐴(𝑇𝑇) =
𝛥𝛥𝐷𝐷𝑜𝑜
𝛥𝛥𝑉𝑉

𝐴𝐴 

(7) 

The optimal electrode configuration is chosen when this effective area is maximized. 

Although the instantaneous depth of the oil was unable to be measured, the ramifications 

were observed in the preliminary experimental results by the change in current with 

fluctuating oil depths. The optimal electrode configuration was quantified by the highest 

current achievable before sparking occurred.  

3.1.3 Distillation Tower 

A distillation tower was built to separate the lighter oils from the heavy oils. See  

Figure 5 for details. The distillation tower originally consisted of a lower base 

chamber with an outer diameter of 30 cm and height of 20 cm, and a column with an 

outer diameter of approximately 40 mm and height of 85 cm. In later tests beginning on 

7.25.14, the column was replaced with one with a height of 16 cm and a diameter of 0.64 

cm. A graphite gasket seals the lid of the base chamber, to which the column is attached. 

Sixteen bolts secure the lid to the base chamber. The lid of the base chamber has four 

holes: two are for the HV wire and ground wire, one is for the base chamber temperature 

probe16.1 which measures T1, and the last one is the gas inlet. The HV wire is fed 

through the lid with an industrial spark plug. The volumetric flow rate of the inlet gas is 
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controlled by an Alicat Scientific M-series mass flow meter. The chamber and column 

are insulated with a layer of fiberglass and covered by sheet metal. 

 

 

 

 

1. Hot plate 
2. Heat tape 
3. Heat controller 
4. Variac transformer 
5. Gas inlet 
6. Gas outlet 
7. Gas flow meter 
8. Coolant inlet 

9. Coolant outlet  
10. Recirculator 
11. Ground electrode 
12. High voltage electrode 
13. Power supply 
14. Crude oil 
15. Condensate collector (B2) 
16. Temperature probes 

 
Figure 5: Distillation tower and experimental apparatus 
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Within the base chamber is a 250 mL beaker (B1) layered with a ground 

electrode, heavy oil, gas, and a high voltage electrode. These components form the 

electrical setup as shown in Figure 2. For these tests only oil d is used. The ground 

electrode has a height of 59.66 mm and a diameter of 16.35 mm. The internal wires are 

insulated with a combination of Kapton® tape, fluorosilicone rubber tubing, ceramic 

tubing, and ceramic sleeving. The internal system can be viewed in Figure 6. 

 

 

 

Figure 6: Internal configuration of the distillation tower 
 

 

The high voltage electrode is suspended from a ceramic block resting on the rim of B1. 

This beaker is located inside of a 1000 mL beaker and covered with a petri dish in order 

Ground wire 

16.1 

Outlet to column 
High voltage wire 

Gas inlet 
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to contain the electrical discharge. Steel wool is in the bottom half of the base chamber 

surrounding the 1000 mL beaker to facilitate the process of heat transfer. For the 85 cm 

column, steel wool is also located along the inside of the column. Tubing extends from 

the top of the column and into a beaker (B2) and is cooled by a VWR Refrigerated 

Recirculating Chiller. The change in temperature results in the condensing of any of the 

lighter oils that vaporized in the base chamber. The downward angle of the tubing 

enables the flow of the condensates into B2. A tube is connected to B2 and exhausts 

gases into an overhead vent. 

The entire distillation tower is heated. The base chamber rests on a Cimarec ™ 

Digital Stirring Hotplate controlled by internal temperature THP. The sides of the base 

chamber are covered with 3 HTS/Amptek Duo-heating tapes (8 ft., 624 W, 78 W/ft., 5.2 

A). The temperature of the base chamber T1 is monitored by a PXR3 Micro-Controller 

and switched by a Watlow E-Safe II relay (see 3.1 in Figure 5) based on the input of 

temperature probe 16.1. The lower half of the column has one HTS/Amptek Duo-heating 

tape (8ft, 624 W, 78 W/ft., 5.2 A) manually controlled by a variable AC (variac) 

transformer (TDGC-2KM) based on the temperature T2 of probe 16.2. The upper half of 

the column has one heat cable (6 ft., 468 W, 78 W/ft., 3.9 A) regulated by heat controller 

3.2 (Extech 48VFL11) based on the temperature T3 of probe 16.3. The temperature T4 is 

only monitored and not controlled. All of the heat tapes have a maximum operating 

temperature of 1400°F. Temperature probe 16.1, 16.3, and 16.4 (T4) measure the internal 

temperature of the system while 16.2 measures the external temperature of the column 
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and 16.5 (T5) measures the external temperature of the bottom of the base chamber. All 

of the temperature probes are Type K thermocouples. 

3.2 Safety Precautions 

For each of the substances described below, refer to their respective material 

safety data sheets (MSDS). 

3.2.1 Petroleum 

These experiments were conducted with various types of crude oils. Crude oils 

are amber to black liquids with mild to pungent sulfurous odors. They are flammable 

both in liquid and vapor form, with a lower and upper flammability limit of 1.4% and 

7.6% by volume in air, respectively. Auto ignition occurs at 280°C (536°F). Complete 

combustion forms carbon dioxide, water vapor, and possibly oxides of sulfur and 

nitrogen; incomplete combustion may produce carbon monoxide. Crude oils may release 

hydrogen sulfide gas (H2S) which is a corrosive, flammable, and highly toxic colorless 

gas that is characterized by a rotten-egg odor. If high viscosity oil is swallowed, it can be 

harmful; the oil can enter the lungs causing severe injury and even death. Prolonged skin 

contact with or breathing petroleum may cause cancer. 

When dealing with petroleum it is vital that precautionary steps be taken. The 

work area must have adequate ventilation. Gloves must be worn while handling any oil. 

It is also recommended to wear lab coats and safety glasses when adequate protection is 

not provided by the general experimental setup. If any oil gets on the skin, the affected 

area should be immediately washed with soap and water. Used oil must be disposed of 

as a hazardous chemical waste. Where feasible, air inside the test chamber should be 
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purged with an inert gas (in this case nitrogen was used), especially when the oil is 

subjected to high temperatures. When this is not an option, some means of smothering 

the flames should be kept nearby in case of ignition; water must not be used as it will 

cause the oil to splatter and explode. 

3.2.2 Hydrogen Gas 

Several of these experiments were conducted using hydrogen gas. Hydrogen is 

an extremely flammable gas in the presence of oxidizing materials, including air. As 

such, it has the possibility of igniting with an invisible flame when its concentration is 

between 4% and 76% by volume in air. Auto-ignition occurs at temperatures ranging 

from 500°C to 571°C (932 to1060°F). In addition, hydrogen is an asphyxiant and may 

cause damage to the lungs. When under pressure, hydrogen gas is extremely cold and 

contact with this gas while it is rapidly expanding can result in burns or frostbite. 

Precautionary measures should be taken while handling hydrogen gas. A 

hydrogen gas detector should be placed within the work area to alert personnel of 

concentrations greater than 200 ppm. The room must have adequate ventilation. A back 

flow preventive device should be connected to any tubing. Valves should be opened only 

once tubing is fully connected and should be closed after each use. To prevent ignition, 

air should be purged with an inert gas prior to initiation of hydrogen flow and before the 

experimental chamber is opened. For these experiments, nitrogen was used as the inert 

gas.  
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4. PRELIMINARY EXPERIMENTAL RESULTS 

4.1 Electrode Geometry 

The focus of these tests was to determine the optimal parameters for the set up 

that would result in the highest possible current for the corona discharge. Various HV 

point geometries were evaluated. For each electrode configuration, the independent 

variables were the depth of the oil, the distance from the high voltage points to the 

surface of the oil, and the temperature of the oil. The temperature was measured by 

placing a K-type thermocouple within the oil. When the power supply was on, the 

thermocouple wire was removed to prevent a discharge to the wire. 

4.1.1 High Voltage Points 

Oil c was evaluated at approximately 100°C (212°F) in air at atmospheric 

pressure inside a fume. The tendency of oil c to expand at this temperature was taken 

into account while positioning the HV electrode. The aluminum ground electrode had a 

height of 59.66 mm and a diameter of 16.35 mm. Do was set at either 10 mm or 20 mm 

while Dp was set at either 10 mm or 15 mm. The voltage was incrementally increased, 

and the voltage and current (VI) were recorded from a set of multimeters connected to 

the power supply. Data was no longer recorded once a spark appeared. Three different 

HV point geometries, including a single center point, four linear points, and 19 points 

distributed in a hexagonal pattern were considered. 

4.1.1.1 Single HV Point 

The standard single high voltage point-to-plane ground electrode was evaluated 

first. The point was an 18 AWG bare nickel chromium wire with the tip cut to a 45° 
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angle. The VI trend can be seen in Figure 7. When Do and Dp were increased, a higher 

voltage was required to reach the same current values obtained at lower distances. The 

maximum current obtained before sparking was 0.068 mA for Do=10 mm and Dp=15 

mm. 

 

 

 

Figure 7: Current voltage characteristics for a single center HV point over oil c 
 

 

It is important to note that for these tests there existed an air pocket below the 

ground electrode causing the electrode to tilt slightly. This same issue is prevalent in the 

4-point and 19-point tests following in Sections 4.1.1.2 and 4.1.1.3. It is believed that if 

the ground electrode was perfectly level, a marginally higher current could have been 

reached before sparking occurred. The violet single point corona discharge is visible in 
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ambient lighting as shown in Figure 8. Based on the cut of the point tip, there was a 

tendency for the corona discharge to form two streamers from the point. 

 

 

  

Figure 8: Single HV point over oil c with Do=20 mm and Dp=10 mm 
 

 

When applied to the gas and liquid oil mediums, the point-to-plane electrode 

configuration for a corona discharge resulted in the formation of a single conical 

depression directly below the point. As the voltage was increased, this depression 

became deeper and wider, eventually sparking directly from the high voltage point to the 

uncovered grounded electrode. In other words, the liquid oil was displaced so the plasma 

discharge traveled only through the gas. To create a more uniform surface reducing the 

depth of the depressions, additional points were added to the high voltage electrode. 
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4.1.1.2 Four Linear HV Points 

Four points at intervals of s=2 mm were linearly arranged for the HV electrode as 

seen in Figure 9. Unlike the single point discharge, these points had a square cross 

sectional area and the tips were conical. 

 

 

 

Figure 9: 4-point HV electrode configuration over oil c 
 

 

When all four HV points exhibited a corona discharge, a rectangular depression formed 

below the points. However, sometimes a corona discharge was present only on the outer 

two points, in which case the depression formed was saddle shaped. This is similar to the 

appearance of the corona discharge on the periphery of the multipoint electrode tested by 

Jaworek and Krupa [8]. Figure 10 shows the violet corona discharge on the outer points, 

easily visible only without ambient lighting.  
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Figure 10: 4-point HV electrode with plasma discharge on outer two points, 
exposure time 1/15 sec. 

 

 

The VI trend shown in Figure 11 is similar to that of the single point discharge, 

with the oil depth having a greater overall effect on the VI characteristics than the 

distance from the HV points to the surface of the oil. However, for this set up the 

maximum current of 0.060 mA was obtained at Do=20 mm and Dp=10 mm. The lower 

current for the 4-point electrode than the single point electrode was due to the close 

spacing of the points. This small spacing had an additive effect on the depth of the 

depression resulting in a deeper depression at lower currents. 
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Figure 11: Current voltage characteristics for 4 linear HV points over oil c 
 

 

4.1.1.3 Nineteen HV Points 

It was believed that a hexagonal configuration of points would preserve the 

uniformity of the surface of the oil for a higher current and voltage (Figure 12) while 

providing a more uniform treatment of the oil. To this effect 19 points each with a length 

l =15.6 mm were arranged on a circular steel mesh in a hexagonal pattern at intervals of 

s=22.23 mm. A larger spacing was used between the points to prevent the additive depth 

effect observed with the 4-point linear arrangement in Section 4.1.1.2. Each of the points 

was fabricated as stated in Section 3.1.1 (Figure 3). Note the lower left picture in Figure 

12 displays the general electrode set up with a solid piece of metal instead of the mesh 

for easier visualization. 
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Figure 12: 19-Point high voltage electrode 
 

 

The violet discharge was easier viewed without ambient lighting as shown in 

Figure 13. Not all of the HV points exhibited a discharge and those that did, did not all 

have equal magnitudes due to the angle of the ground electrode created from the air 

pocket mentioned previously in Section 4.1.1.1. The ground electrode is higher on the 

right side than the left. Each point resulted in local conical depressions in the oil. 
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Figure 13: 19-point HV electrode over oil c with Do=20 mm and Dp=15 mm at V=15 
kV and I=0.188 mA, exposure time 1/15 sec. 

 
 

 

The VI trend in Figure 14 does not show the results for Do=10 mm and Dp=10 

mm because breakdown of the corona discharge was immediate. Instead it includes an 

additional measurement at Do=20 mm and Dp=12 mm. The VI trend is similar to that 

found with the single and 4-linear HV points. However, the same current can be reached 

with a much lower voltage input than for either of the two previous HV electrode 

configurations. The maximum current of 0.364 mA occurred at Do=10 mm and Dp=15 

mm. The VI trend for Dp=12 mm mirrored that of Dp=15 mm until a voltage of 21 kV 

was reached. At Do=20 mm and Dp=10 mm the point tips were slightly wetted by the oil. 
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Figure 14: Current voltage characteristics for 19 hexagonal HV points over oil c 
 

 

4.1.2 Electro-hydrodynamics  

For all HV electrodes, observation revealed that there exists an optimum distance 

between the high voltage points and the surface of the oil. When the distance is too 

small, the points become wetted with the oil due to the fluctuations (peaks and troughs) 

of the oil. This phenomenon can be seen in Figure 15. The lowest point of the troughs is 

directly underneath an HV point and the highest point of the peaks is centered around an 

HV point. The horizontal line represents the original depth of the oil, i.e. after the oil 

was heated and before the power supply was turned on, which was kept constant while 

Dp was varied. The troughs and peaks are conical in shape. 
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Figure 15: Tendency of surface of oil to form a) troughs and b) peaks directly below 
a HV point 

 

 

If the distance between the oil surface and high voltage points is too great, the corona 

discharge will not form. Between these two extremes, breakdown of the corona 

discharge to a spark discharge occurs when the troughs in the oil become deep enough 

for the corona discharge to travel directly from the high voltage points to the ground 

electrode, bypassing the oil. The point at which this occurs is dependent upon the 

applied current and voltage; as the current and voltage are increased, the trough becomes 

wider and deeper. This results in an increase in the height of the oil at a distance x from 

the HV point. The peaks lower the height of the oil at a distance x from the HV point. 

For the multipoint electrode, the gaps between the points are filled with peaks, created as 

a result of the flow of oil from the troughs. 

To explain the peak-trough phenomenon (PTP), it is assumed that the oil has a 

constant, relatively low conductivity. Once corona onset has been reached, an ionic wind 

forms in the gas region. The ionic or corona wind is created by the repulsion of the 
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similarly charged ions and point tip and propagates towards the oil surface. This leads to 

a localized charge build-up on the surface of the oil. The charged oil then moves towards 

the ground electrode, resulting in a vortex convection field that is symmetrical around 

the axis of the HV points and a wavy oil surface [59]. This leads to the formation of the 

troughs seen within the tests in Section 4.1.1.1-4.1.1.3. The troughs in the oil can also be 

said to be formed by the ionic wind pressure, ranging from a few to several tens of 

Pascal, at the surface of the oil. This pressure is greatest directly underneath the HV 

point and lessens with distance from the center. At voltages lower than the corona onset 

voltage, there exists a small Coulomb attractive force creating peaks on the surface of 

the oil centered under the HV points. Furthermore, when D>Dp for the case of multiple 

HV points, there is no interference between the ionic winds and troughs formed from 

each individual point [60]. While the PTP phenomenon produces undesirable 

depressions allowing the breakdown of the corona discharge, it has the added benefit of 

mixing the oil so all of the oil is treated by the corona discharge and not just the surface. 

The creation of the peaks surrounding the HV point at smaller Dp may also be 

due to the high temperature of the oil. Anything that increases the temperature and 

motion of liquid molecules interferes with the bonds between them. If the temperature of 

a liquid is high enough or at a certain critical viscosity, it overcomes the force of 

cohesion between molecules. When the force of adhesion between a liquid and solid is 

more than 1.5 times as large as the force of cohesion between the liquid molecules, the 

liquid is said to wet the solid [61]. Another possibility is that the HV points formed 

unobserved troughs created from a plasma discharge at the two sides of the 45° tip of the 
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point. However, this formation would only occur if the sharp edges on the point were 

still exposed, which did not seem to be the case. In Figure 16 the two arrows indicate the 

supposed troughs; the point is magnified. 

 

 

 

Figure 16: Formation of peak with two small troughs 
 

 

In terms of the effect of the plasma on the oil, experiments with water have 

shown that its dielectric characteristics result in localized electric fields and can lead to 

the formation of a conductive channel and current leaks to the surrounding liquid [11]. 

The continued application of the electric current induces the local overheating of the 

corona discharge, which forms weak shockwaves within the liquid [11]. It has also been 

shown that a pulsed corona operating at 102 to 103 Hz in water creates relatively weak 
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shock waves, bubbles, weak to moderate ultraviolet radiation, and radicals and other 

reactive species in the region near the discharge electrode [18].  

4.2 Crude Oil Temperature 

4.2.1 Temperature Characteristics of Oil C 

The viscosity of the oil is a function of its temperature and is therefore 

experimentally controlled by varying the temperature of a given crude oil. Oil c was 

evaluated at a temperature of 100°C (212°F) and 120°C (248°F) for Do =20 mm and Dp 

values of 10 mm, 15 mm, and 20 mm. One temperature was evaluated per day. The VI 

trend is displayed in Figure 17. 

 

 

 

Figure 17: Current voltage characteristics for 19 hexagonal HV points over oil c as 
a function of temperature 

 

 

0

5

10

15

20

25

30

35

0 0.05 0.1 0.15 0.2

Vo
lta

ge
 [k

V]
 

Current [mA] 

100C, Dp 10mm

100C, Dp 15mm

100C, Dp 20mm

120C, Dp 10mm

120C, Dp 15mm

120C, Dp 20mm

 50 



 

It is believed that the variance of the VI trend for a Dp of 15 mm and 20 mm at 120°C 

may be attributed to fluctuations in the temperature. When Dp was increased and the 

temperature of the oil and the oil depth were constant, a higher voltage was necessary to 

reach the same current at the lower Dp. For a constant Dp and Do, an increase in 

temperature lowered the voltage required to reach a certain current. The plasma 

discharge into the oil created many small bubbles on the surface of oil c (Figure 18). 

These were still prevalent upon the cooling of oil c to the room temperature of 72°F 

(22°C) but were no longer apparent when oil c was mixed. 

 

 

 

Figure 18: Effects of corona discharge treatment on oil c 
 

 

4.2.2 Temperature Characteristics of Oil D 

Following the same general procedure as the previous experiments, the effect of 

temperature on oil d was also studied. Dp was set at 15 mm and the oil depth was also set 

at 15 mm to ensure no wetting of the HV points occurred as seen previously in Section 
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4.1.1.3 at distances of Do=10 mm. No air pocket existed below the ground electrode for 

this test. Four different temperatures were evaluated ranging from 140°C (284°F) to 

250°C (482°F). The system was given approximately 30 minutes to reach thermal 

equilibrium between each run. Due to the nature of the setup, the thermocouple wire was 

removed during the experiment, so only the initial and the final temperature of the oil 

were recorded. The first two temperatures had consistent readings. The temperature 

listed as 210°C, had an initial temperature of 205°C and a final temperature of 216°C. 

The temperature listed as 246°C had an initial temperature of 250°C and a final 

temperature of 242°C. These fluctuations in temperature during the test runs account for 

the variations in the VI trend in Figure 19 that were not seen in previous tests. The two 

outlying points for 246°C were recorded after the maximum current was reached. 
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Figure 19: Current voltage characteristics for 19 hexagonal HV points over oil d as 
a function of temperature 

 

 

As seen with oil c, a lower voltage was required to reach the same current when 

the temperature of the oil was higher. The breakdown of the corona discharge to a spark 

was at significantly higher currents as the temperature increased. It is probable that even 

higher temperatures than tested would continue to increase the trend. The only limiting 

factors would be the ignition point of the oil and the temperature limitations of the 

materials used.  

As the voltage and current increased, the strength of the corona streamer or the 

photons emitted increased. At 24 kV the corona discharge could be seen in ambient 

lighting, but the full magnitude of the streamers was still better visualized without 

ambient lighting as shown in Figure 20. 
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a)  b)  

Figure 20: 19-point HV electrode over oil d for Do=15 mm, Dp=15 mm, T=210°C, 
V=24 kV, and I=0.372-0.536 mA a) with ambient lighting and b) without ambient 

lighting, exposure time 1.6 sec. 
 

 

When the voltage was first increased to 24 kV, the current was 0.372 mA. After around 

12 minutes, the current had increased to 0.536 mA with no change in the voltage. 

Breakdown of the HV points from the corona discharge was not simultaneous. At first 

only a single point would spark at low frequencies around one spark per minute. As the 

voltage and current were increased past the point of initial breakdown, the frequency and 

the number of points sparking increased, but all of the points did not spark; some 

maintained a corona discharge. Similar breakdown characteristics were observed by 

Kozlov and Solovyov [31]. At the highest temperatures tested, the surface of the oil was 

nearly flat and did not exhibit high amplitude troughs and peaks underneath the HV 

points. 
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4.3 Summary of Preliminary Results 

From these preliminary experiments the optimum electrode geometry for the 

liquid-gas system can be designed. The goal was to have the current at a maximum value 

and the voltage at a minimum value. The high current enables the greatest amount of 

dissociation of the hydrogen and the cracking of the heavy hydrocarbon chain of the 

crude oil. The low voltage ensures that the cumulative energy for the corona discharge 

treatment time is low enough to create an economically viable process. To achieve this, 

Dp should be at a minimum, but above the wetting distance, which was 15 mm for all 

three HV electrodes. It was shown that Do should also be at a minimum. The highest 

current was obtained for the 19-point HV electrode. Projection hypothesizes that if more 

points are added to the hexagonal configuration for the same size mesh, a level oil 

surface could be maintained longer to reach higher currents. The number of points over 

the surface area of the oil would however be limited due to the space charge interactions 

between the points as s approaches zero [8]. These results correspond to those achieved 

in other experiments as described previously in Section 2.3. 
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5. FINAL EXPERIMENTAL RESULTS 

5.1 Distillation Tower 

From the preliminary experiments, an electrode and oil configuration was chosen 

and applied to the corona treatment inside the distillation tower. The HV electrode with 

19 points (l =15.6 mm) equally spaced in a hexagonal pattern at intervals of 22.23 mm 

was used for the distillation tower tests. The aluminum ground electrode had a height of 

59.66 mm and a diameter of 16.35 mm. The same HV and ground electrodes were used 

for all the tests. An extra heavy oil, oil d, covered the ground electrode with a depth Do = 

15 mm above the ground electrode. The distance between the HV points and the surface 

of the oil was Dp = 15 mm. The following experiments determine the ability of the 

corona discharge to crack the hydrocarbon chain of an extra heavy crude oil, oil d.  

5.1.1 Pure H2 Gas 

Further evaluation of industrial distillation towers revealed that the purpose of 

the high altitude of the column is to separate the light condensates by their boiling points 

by way of trays or packing material located periodically along the height of the column 

[4]. However, the purpose of the distillation tower for this experiment is to separate all 

the light condensates in a single batch; it is superfluous to separate the different light 

fractions in the tower. Considering this, the original 85 cm height of the tower (Figure 

21) was significantly decreased to 16 cm (Figure 22) and the steel wool packing inside 

the column was removed. This eliminated the need of the lower heat tape from the 

original column as well as the variac transformer and temperature probe 16.2 (T2), 

thereby increasing the efficiency and precision between tests. All results conducted after 
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7.18.14 utilized the distillation tower with the shortened column. In Figure 21there is 

additional insulation that is not shown around the very top of the tower and on the lid of 

the base chamber. 

 

 

a)   b)  

Figure 21: 85 cm tall distillation tower a) without and b) with insulation 
 

 

a)       b)  

Figure 22: 16 cm tall distillation tower a) without and b) with insulation 
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The distillation tower temperature was incrementally increased to the 

temperatures described in Table 5 in the span of 1.5 to 2 hours. Note the temperatures 

listed are the averages of the temperature recorded at approximately 30 minute intervals 

throughout the treatment. The final temperature listed, THP, is the temperature at which 

the hot plate was set and is not necessarily the temperature of the bottom of the base 

chamber (T5). Tests conducted before 7.3.14 did not monitor the temperature of the 

bottom of the base chamber. During preheating, hydrogen gas was circulated through the 

tower at a volumetric flow rate of 2.5 L/min for 45 minutes, whereupon the flow rate 

was decreased to 0.1 L/min for tests 2.11.14 through 6.25.14 and 0.4 L/min for the 

remainder of the tests. The higher initial flow rate served to purge the tower of air in 

order to prevent ignition of the oil and gas. 
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Table 5: Average temperature for duration of treatment for a gas of pure H2 

Test VoltCurMon T1 
[°F] 

T2 
[°F] 

T3 
[°F] 

T4 
[°F] 

T5   
[°F] 

THP 
[°F] 

2.11.14a - 450 544.3 373.6 72.0 - ~842 
2.14.14a - 450 567.3 387.5 76.0 - ~842 
6.4.14a 178, 179 450 616.9 449.9 79 - - 

6.25.14a,b 207 450 497.5 449.2 83 - - 
7.3.14 208, 209 450 473.4 450.1 81 464.6 374 
7.9.14 210, 211 450 540.3 450.0 77.1 468.1 392 
7.14.14 - 450 511.4 451.1 81.4 463.2 392 
7.15.14 - 601 622.3 601.4 77.1 619.7 527 
7.18.14 - 451 531.5 450.6 78.3 462.7 392 
7.25.14 - 451 - 450.6 80.2 461.3 392 
7.29.14 233, 234 450 - 450.5 87.5 462.1 412 
8.1.14 235, 236 475 - 473.4 84.2 483.3 419 
8.4.14 237, 238 475 - 469.8 89.9 512.9 473 
8.7.14 244, 245 475 - 472.8 88.3 530.4 473 
8.12.14 252, 254 480 - 479.7 92.0 511.2 473 

a V̇H2=0.10 L/min 
b R=4.994 MΩ 

 

 

The numbers listed under VoltCurMon refer to the LabVIEW recorded voltage and 

current files. The last VoltCurMon number listed in Table 5 is for the VI trend 

throughout the 4 hour treatment; preceding numbers are for determination of the 

maximum current and voltage to use for the treatment. The pivotal temperatures 

affecting the outcome of the experiments are T1≈T3 and T5. T3 is the temperature at 

which the evaporated oils condensed, or their boiling points. It should be noted that the 

first two tests did not have equal T1 and T3, differing by approximately 70°F. 

Breakdown of the corona discharge could not be viewed while the corona reactor 

was located within the distillation tower. Therefore, following the 2 hours of preheating, 

a preliminary test lasting between 5 to 30 minutes was conducted to determine the 
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maximum possible current before sparking occurred because. This was accomplished by 

gradually increasing the voltage and current on the DC power supply to discover the 

voltage and current trend of the system. The trend was monitored and recorded by 

LabVIEW. The first test was an exception in that its VI trends were recorded by hand 

from a set of multimeters connected to the power supply. The voltage and current 

characteristics for these pretests can be seen in Figure 23 and Figure 52 in Appendix C. 

 

 

 

Figure 23: Pretests for determination of voltage and current characteristics for oil 
d with H2 in the distillation tower 

 

 

0

2

4

6

8

10

12

14

16

18

-0.5 0 0.5 1 1.5 2 2.5

Vo
lta

ge
 [k

V]
 

Current [mA] 

VoltCurMon_178

VoltCurMon_208

VoltCurMon_233

VoltCurMon_235

VoltCurMon_237

VoltCurMon_244

VoltCurMon_252

 60 



 

VoltCurMon_208 and VoltCurMon_233, both at T1≈T3=450°F and with similar T5, have 

comparable trends up until sparking occurs around 10 kV. VoltCurMon_175 to 

VoltCurMon_178, also at T1=450°F, have a similar trend to the aforementioned two 

curves and show the precision of the voltage and current measurements for a single test. 

Although T1≈T3=475°F for VoltCurMon 235, 237, and 244, the temperature of the hot 

plate was increased for each subsequent run (483.3°F, 512.9°F, and 530.4°F 

respectively) which lowered the viscosity of oil d and increased its conductivity. This is 

reflected in the graph by the lower voltage requirements necessary to achieve the same 

current. VoltCurMon_252 is at T1=480° and T5=511.2° and displays a trend parallel to 

VoltCurMon_237. It should be noted that VoltCurMon_178 had the smoothest trend 

with no obvious point of breakdown. 

On 8.12.14 multiple pretests were taken evaluating the effect of only T1 on the 

conductivity of the oil. The temperatures for the system are listed in Table 6. THP was 

kept constant at 473°F, however T5 fluctuated slightly from 512.1°F, 510.0°F, 507.1°F, 

and 505.6°F for VoltCurMon 250, 251, 252, and 253 respectively. The VI trends for 

these preliminary tests are shown in Figure 24. 

 

 

Table 6: Average temperature for preliminary tests on 8.12.14 with pure H2 

Test VoltCurMon T1 
[°F] 

T2 
[°F] 

T3 
[°F] 

T4 
[°F] 

T5   
[°F] 

THP 
[°F] 

8.12.14a 

250 491 - 494.5 93.7 512.1 473 
251 484 - 476.8 93.9 510.0 473 
252 479 - 480.7 93.0 507.1 473 
253 474 - 477.8 92.8 505.6 473 

 61 



 

 

Figure 24: Evaluation of T1 effect on VI trend for oil d with H2 in the distillation 
tower 
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oil. This is partially due to the flow rate decreasing the amount of time the incoming gas 

preheats in the tubing before entering the base chamber. 

In general, breakdown of a corona discharge to a spark discharge is signified by a 

drop in the voltage and the power supply becomes current limited. However, for a 

multipoint discharge not all the HV points breakdown simultaneously and a major drop 

in voltage may not be seen. A corona discharge is also characterized by a steady stream 

of light from the HV points to the surface of the oil and is accompanied by a constant 

hissing noise due to the change in gas pressure at the point tip. When a spark occurs, 

there is a cracking sound as a bolt of light travels between the HV points and ground 

electrode. Although the plasma discharge was not audible or visible within the 

distillation tower, it was determined that sparking occurred when the power supply 

continuously switched between being current and voltage limited. This was seen real-

time in LabVIEW as a sudden spike in current and a sudden drop in voltage. The current 

and voltage immediately prior to this point were determined to be the maximum for the 

corona discharge. Generally, this occurred when 𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑖𝑖+1 ≥ 0.2 𝑘𝑘𝑉𝑉. These maximum 

values, tabulated in Table 7, were then used for the treatment of the oil. The voltage 

recorded is the discharge voltage and takes into account the ballast resistor. 
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Table 7: Distillation tower treatment current and voltage 

Test VoltCurMon Maximum 
Current 

[mA] 

Maximum 
Voltage 

[kV] 

Cumulative 
Energy [kJ] 

Total Time 
[min] 

2.11.14 - 0.76 10.06 97 210 

6.4.14 

175 0.48 9.76 7.5617 8.7 
176 0.77 10.83 3.9714 7.2 
177 0.86 10.87 4.7193 7.5 
178 0.69 10.35 4.2697 6.6 
179 0.68 10.36 19.2738 113.2 

6.25.14 207 0.57 9.81 85.0325 244.6 

7.3.14 208 0.37 10.68 8.1757 27.6 
209 0.54 11.94 92.0987 240.9 

7.9.14a 210 0.86 11.12 7.8968 20.6 
211 0.66 10.30 8.7382 36.9 

7.29.14 233 0.45 9.89 1.7940 6.6 
234 0.40 9.06 37.2318 227.2 

8.1.14 235 0.46 8.09 0.5944 5.8 
236 0.42 8.45 40.6624 237.1 

8.4.14 237 0.79 8.19 2.6050 8.5 
238 0.79 8.11 69.7594 246.8 

8.7.14 
242 0.29 6.31 0.9371 4.3 
244 0.35 6.82 1.8264 7.2 
245 0.31 6.54 19.3989 239.5 

8.12.14 

250 0.52 6.93 2.5107 10.2 
251 0.63 7.43 2.4218 9.0 
252 0.69 7.80 2.4144 10.5 
253 0.64 7.73 2.1035 8.8 
254 0.76 7.95 80.1669 247.2 

a Control run 
 

 

The heavy oil was then treated for 4 hours (3.5 hours for the first two tests) with 

the corona discharge. The current and voltage fluctuations during this time were 

recorded in LabVIEW (see Appendix B for details). The VI characteristics are shown in 

Figure 25. At the end of the 4 hours, the power supply, heaters, and recirculator were 

turned off and the distillation tower cooled overnight. Although not monitored, it is 
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possible that the HV points eroded to some degree over time as the experiment 

progressed (same HV electrode used throughout). 

 

 

 

Figure 25: Current and voltage characteristics during 4 hour corona treatment of 
oil d with H2 in the distillation tower 
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current by several tens of microamps before it leveled out. As time progressed and the 

oil evaporated reducing the liquid oil level in B1, the current decreased while the voltage 

remained constant (see Appendix B graphs).  

For the 85 cm column an additional step was taken to ensure that any condensate 

entrained within the base chamber and column condensed into B2. The day following the 

corona treatment, B1 was extracted from the base chamber and the tower was again 

heated to the desired temperature of T1≈T3=450°F in the span of 2 hours. This 

temperature was kept constant for 3 hours before the heaters were turned off.  

In addition to the plasma treated tests, control tests were executed to determine 

whether the formation of condensates from the extra heavy crude oil was due to the 

corona discharge, the heating of the distillation tower, or some combination thereof. The 

only difference between the control experimental procedure and the corona treated oil 

procedure was the presence of the corona discharge itself; both were heated to the same 

temperature for the same amount of time and had the same hydrogen volumetric flow 

rate. 

The mass, measured with an Ohaus Scout Pro SP2001 mass scale, and the 

volume of the residuals in B1 and the condensates in B2 were recorded and the density 

was calculated. The mass scale had an accuracy of 0.1 g and the volume uncertainty was 

0.2 mL. The condensate masses were weighed while still in B2 and the weight of B2 was 

subtracted. This resulted in a calculated uncertainty of 0.2 g for all condensate masses 

listed in Table 9. The uncertainty for the residual mass is ±0.2 g. At a temperature of 

T3=450°F, all of the control tests yielded a condensate mass within the uncertainty. Any 
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condensate that formed was not present in B2 until the following morning after the 7 

hour treatment the preceding day. With the increase of temperature to T1≈T3=600°F, a 

significant amount of condensate, 1.1 g, was formed (Figure 26). 

 

 

 

Figure 26: Condensate (left) and corona residue (right) produced from control test 
7.15.14 at 600°F V̇H2=0.40 L/min 

 

 

The density of the condensate was originally calculated as 875.0±32.5 kg/m3. With the 

removal of B1 and reheating of the distillation tower, more condensate exited into B2 

yielding a new density of 1125.0±376.3 kg/m3. For test 7.3.14, there is a discrepancy 

between the initial mass, recorded on a different day, and the residual mass. It is 

believed this is due to inconsistencies in the calibration of the mass scale. The 70°F 

temperature difference between T1 and T5 of tests 2.11.14 and 2.14.14 meant that a 

significant portion of the condensate remained within the distillation tower and did not 
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collect in B2. For test 2.11.14 the initial mass of oil d was not measured; instead the 

initial volume was calculated from the height of the oil and inner diameter of the beaker 

(68 mm). These values are displayed below in Table 8. 

 

 

Table 8: Volume of oil d for corona discharge in distillation test 2.11.14 

 Do [mm] Volume [mL] 
Initial  15 55 
After treatment 13 46 

 

 

The percent mass reduction in B1 from the initial mass to the final mass was calculated 

by Equation (8). 

% 𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟 𝑔𝑔𝑟𝑟 𝐵𝐵1 =
𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑔𝑔𝑏𝑏 − 𝑚𝑚𝑟𝑟𝑒𝑒𝑔𝑔𝑖𝑖𝑟𝑟𝑟𝑟𝑔𝑔𝑏𝑏

𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑔𝑔𝑏𝑏
× 100% 

(8) 

Similarly, the percentage of oil that was converted to condensate was determined by 

Equation (9). 

% 𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑟𝑟𝑔𝑔𝑐𝑐𝑔𝑔𝑟𝑟𝑟𝑟 𝑔𝑔𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑔𝑔𝑔𝑔𝑟𝑟 =
𝑚𝑚𝑐𝑐𝑜𝑜𝑖𝑖𝑟𝑟𝑒𝑒𝑖𝑖𝑔𝑔𝑔𝑔𝑏𝑏𝑒𝑒

𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑔𝑔𝑏𝑏
× 100% 

(9) 
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Table 9: Mass and density of condensates formed during treatment in the distillation tower 

 Test T1≈T3 
[°F] 

T5 
[°F] 

Cumulative 
Energy [kJ] 

Initial 
Mass [g] 

Residual 
Mass [g] 

% Mass 
Reduction 

in B1 

Condensate 
Mass [g] 

% 
Conversion to 
Condensate 

Condensate 
Density 
[kg/m3] 

Corona 
Treated 

2.11.14a,b 450/375 - 97 - 51.0 - 2.1 - 640.0±64.2 
6.4.14a,b,c 450 - 19.2738 52.1 ± 0.1 44.2 15.2 1.9 3.6 653.8±63.3 
7.3.14a 450 464.6 92.0987 51.0 ± 0.1 51.9 - 0.4  0.8 - 
7.29.14 450 462.1 37.2318 52.4 ± 0.2 52.3 0.2 < 0.1 0.1 - 
8.1.14 475 483.3 40.6624 52.3 ± 0.2 52.1 0.4 < 0.1 0.1 - 
8.4.14 475 512.9 69.7594 51.1 ± 0.1 50.9 0.4 0.1  0.2 - 
8.7.14 475 530.4 19.3989 51.7 ± 0.1 51.5 0.4 0.2  0.4 - 

8.12.14 480 511.2 80.1669 52.0 ± 0.1 51.8 0.4 < 0.1 0.1 - 
Corona 
+Heat 

Treated 
6.25.14a,b 450 - 85.0325 51.9 ± 0.1 20.9 59.7 16.7 32.2 878.0±32.5 

Control 

2.14.14a,b 450 - - 34.5 ± 0.1 33.9 1.7 0.4 1.2 - 
7.9.14a 450 468.1 - 51.0 ± 0.2 51.0 0 < 0.1 0.1 - 

7.14.14a 450 463.2 - 51.9 ± 0.1 51.9 0 < 0.1 0.1 - 
7.15.14a 600 619.7 - 51.9 ± 0.2 51.3d 1.2 1.1  2.1 875.0±251.9 
7.18.14a 450 462.7 - 51.4 ± 0.3 51.3d 0.2 0.2  0.4 - 
7.25.14 450 461.3 - 51.3 ± 0.3 51.3d 0 0 0 - 

a 85 cm distillation tower. The remaining experiments were conducted in the 16 cm tower. 
b V̇H2=0.10 L/min. The other experiments were conducted at 0.40 L/min.  
c R=4.994 MΩ 
d Residual mass uncertainty ± 0.3 g 
 

 69 



 

As can be seen in Table 9, the corona treated oil overall yielded more condensate 

than the thermal treatments, but the condensate was still within the mass uncertainty. 

Test 7.3.14 had the highest cumulative energy input of 92.0987 kJ as a result of the 

relatively lower temperature (T1≈T3=450°F and T5=464.6°F) of the system limiting the 

conductivity of the oil. The extremely large condensate production for test 6.25.14 may 

be attributed to an additional thermal treatment. Following the standard 4 hour corona 

treatment, everything (heaters, recirculator, gas flow, power supply) except the hot plate 

was turned off. The hot plate was left at maximum (~THP=842°F) for 18 hours, then a 4 

hour thermal treatment of oil d at was conducted. The combination of corona and 

thermal treatment resulted in a powdery coke residue as shown in Figure 27 and a 

residue with a density of 878.0±32.5 kg/m3. This was a stark contrast to the moist 

residue normally remaining in B1 from the corona treatment (Figure 28) and signifies 

that more condensate could have been produced from all of the corona residues. 
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Figure 27: Corona and thermally treated test 6.25.14 carbon residue (left) and 
condensate (right) 

 

 

 

Figure 28: Corona treated test 6.4.14 corona residue (left) and condensate (right) 
 

 

Tests prior to 6.25.14 yielded a greater amount of condensate than those after 

6.25.14. However, the temperature of the hot plate was not monitored with T5 and 

instead solely relied upon the temperature display of the hot plate. In addition, at that 
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time, the hot plate was at a temperature of around 752-842°F during the corona treatment 

of test 2.11.14 and 2.14.14. Other research has shown that a temperature exceeding 

660°F (349°C) [4] or 410°C (770°F) [42] results in the thermal cracking of crude oil. 

Therefore, while the corona discharge did produce lighter hydrocarbons (2.1 g for test 

2.11.14), a portion of that must be attributed to thermal cracking (control test 2.14.14 

produced 0.4 g of condensate). See Figure 29 and Figure 30 for pictures of the residue 

and condensate for these two tests. 

 

 

a)   b)  

Figure 29: Corona treated test 2.11.14 at V̇H2=0.10 L/min and T1≠T3 a) corona 
residue and b) condensate 
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Figure 30: Residue (left) and condensate (right) for control test 2.14.14 at V̇H2=0.10 
L/min and T1≠T3  

 

 

For the corona treated oil, the condensate that was collected in B2 did not fully 

account for the change in mass of the original oil in B1. It is possible that some of this oil 

remained inside the distillation tower. For the tests on 8.4.12 and 8.12.14, when B1 was 

extracted from the base chamber, it was coated with dried condensate as shown in Figure 

31. Several of the tests also exhibited moist condensate on the inside of the 1000 mL 

beaker and the petri dish. 
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a)   b)  

Figure 31: Dried oil d condensate coating on inside of B1 for test on a) 8.4.14 and b) 
8.12.14 

 

 

Analysis of the condensate produced the following mass spectrometry in Figure 

32, courtesy of the Texas A&M University Laboratory for Biological Mass 

Spectrometry (TAMU/LBMS). A Matrix-Assisted Laser Desorption Ionization Mass 

Spectroscopy (MALDI-MS) analyzed the condensates. The base peak (bp) of the 

condensate was 244.0 m/z with an atomic mass of 2255 AMU. More detailed results of 

the analysis are displayed in Appendix D. 
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Figure 32: Mass spectrometry of condensate collected on 4.29.141 
 

 

The majority of the molecules have a mass-to-charge ratio within the range of 177 to 372 

m/z. 

In industry, extra heavy oils are often processed through delayed coking. The 

range of condensate products varies depending on the original feedstock but can include 

alkanes, alkenes, naphtha, and gas oil [4]. Various alkanes and alkenes with boiling 

points below T3 are listed in Table 10. It is possible that one or more of these molecules 

was present in the condensate collected in B2. In terms of marketable products, the 

condensate is most likely petroleum diesel, which has a boiling point ranging from 

350°F to 700°F [4] and can contain 8 to 21 carbon atoms per molecule with a density of 

832 kg/m3. 

1 Use of the TAMU/LBMS is acknowledged. 
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Table 10: Possible molecules for condensate formed from oil d [22] 

Molecule AMU Boiling Point 
[°F] 

Density 
[kg/m3] 

Alkane 

C5H12 72.146 97 626 

C6H14 86.172 154 659 
C8H18 114.22 211 692 
C10H22 142.28 345 730 
C11H24 156.3 385 740 
C12H26 170.33 421 750 

Alkene 

C5H10 70.13 86 641 

C6H12 84.156 146 673 

C8H16 112.21 250 710 a 
C10H20 140.26 339 740 a 

C12H24 168.31 416 758 
a Value obtained from MSDS for respective molecule 

 

 

Assuming an energy charge of $0.11/kW-hr based on the utility rates in the area, 

the energy requirements to produce the condensate are as follows in Table 11. For 

condensate masses less than 0.1 g, it is estimated that their mass is 0.05 g. The energy 

cost per barrel of oil is calculated from the densities listed in Table 9. For those without 

listed densities, the average density of 809.4 kg/m3 is assumed. This is equivalent to an 

API gravity of 43.3°. The energy costs calculated take into account the cumulative 

energy recorded for the corona discharge but not the energy required to heat the 

distillation tower, the energy required to operate all the equipment, nor the cost of 
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hydrogen. The first four columns in Table 11 are in terms of the condensate produced 

and the last two columns are based on the initial untreated mass of oil d. 

 

 

Table 11: Energy requirements for condensate mass produced from corona 
treatment of oil d 

Test % 
Conversion 

to 
Condensate 

Condensate 
Specific 
Energy 
[MJ/kg] 

Energy 
Cost 

[$/kg] 

Energy 
Cost 

[$/bbl.] 

Initial 
Mass 

Specific 
Energy 
[MJ/kg] 

Energy 
Cost for 
Initial 
Mass 

[$/bbl.] 
2.11.14 - 46.2 1.41 143.61 - - 
6.4.14 3.6 10.1 0.31 32.22 0.37 1.18 
6.25.14 32.2 5.1 0.16 21.72 1.64 6.99 
7.3.14 0.8 230.2 7.04 1118.53 1.81 8.77 
7.29.14 0.1 744.6 22.75 3118.14a 0.71 2.79 
8.1.14 0.1 813.2 24.85 3405.45a 0.78 3.06 
8.4.14 0.2 697.6 21.32 2921.15a 1.37 5.37 
8.7.14 0.4 97.0 2.96 406.16a 0.38 1.48 
8.12.14 0.1 1603.3 48.99 6713.92a 1.54 6.06 

a Based on average density of 809.4 kg/m3 

 

 

Considering all of the tests, including those with a questionable additional 

thermal treatment (the first three tests), the lowest costs were for test 6.25.14 at 

$21.72/bbl. of condensate and test 6.4.14 at $1.18/bbl. of untreated oil d. The average 

cost of the corona treatment was $4.46/bbl. of untreated oil d. For 2014 (Jan. – Aug.) the 

average refiner acquisition cost of crude oil was $99.04/bbl. [62]. The cost for refining is 

the difference between the monthly average of the price of diesel and the crude oil 

purchase price and typically accounts for 13% of the retail price [63]. Refining costs 
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$20.97/bbl. based on the current average retail price of $3.84/gallon of diesel [63]. Other 

data suggests current industrial refining processes typically cost from $2.20/bbl. to 

$5.59/bbl., which is on par to the lowest cost attained with this corona reactor [64]. 

However, this is not specific to the cost to upgrade heavy crude oils, which would have 

larger expenditures due to the additional equipment and refining processes involved. In 

2009, the operating cost for atmospheric residue was $1.1/bbl. for delayed coking, $3.7 

to $5.0/bbl. for integrated combined cycle power generation plants, and $2.4 to $2.7/bbl. 

for a residue fluid catalytic cracking unit [65]. For the processing of Arabian heavy oil, 

the operating cost ranges from $6.6/bbl. to $8.85/bbl. depending on the cracking 

technique [65]. Therefore, currently the corona reactor is still on the expensive side, but 

it has economic potential. 

5.1.2 Gas Combination of H2 and CH4 

Due to the large availability of methane or natural gas in the oil industry, the 

effects of a combination of methane and hydrogen gas inside the distillation tower were 

evaluated. For this test, the ballast resistor was 4.994 MΩ. The 85 cm tower was 

preheated for 1.5 hours and the average temperatures throughout the duration of the test 

are listed in Table 12. The volumetric flow rate to purge the air from the tower was 

V̇H2=1.88 L/min and V̇CH4=0.62 L/min. After 45 minutes, the flow rates were lowered to 

V̇H2=0.1 L/min and V̇CH4=0.03 L/min. There was no pretest and the total corona 

treatment time was 5 hours after which all heaters and the recirculating system were 

turned off and the tower cooled overnight 
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Table 12: Average temperature for duration of treatment of oil d with a gas 
combination of H2 and CH4 

Test VoltCurMon T1 
[°F] 

T2 
[°F] 

T3 
[°F] 

T4 
[°F] 

T5 
[°F] 

THP [°F] 

5.21.14 155 450 557.4 450.2 79 - 455 
 

 

Halfway through the corona treatment the power supply was turned off for 15 minutes 

and a 1 kΩ resister was added to the circuit between the ground electrode and grounding 

strap to check for possible current leaks. This resulted in a sudden drop in the VI (see 

Appendix B, Figure 50 and Figure 51). The new resister revealed that there was a current 

leak present in the system; therefore the current and voltage on the power supply were 

adjusted to account for this for the remaining 2.5 hours. The overall VI characteristics 

are displayed in Figure 49. 

The cumulative energy for this test was 316.1377 kJ over a time period of 292.3 

minutes. No oil condensed into B2, but there was condensate present on the inside of B1, 

the petri dish, and the 1000 mL beaker shown in Figure 33. The location of the 

condensate was partially attributed to the lack of insulation on the lid of the base 

chamber. In subsequent tests (after 5.25.14), additional insulation covered the lid. The 

crystalline formation of condensate on the 1000 mL beaker is located where the HV and 

ground wires entered into B1. The corona cracking of oil d reduced the mass of the 

residual oil in B1 from 50.0 ± 0.1 g to 49.3 ± 0.2 g (includes the mass of the condensate 

on the walls of B1). 
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Figure 33: Test with H2 and CH4 oil d condensate located on a) petri dish, b) B1, 
and c) 1000 mL beaker 

 

 

The most significant result from this test was the formation of carbon fibers on 

the tips of several of the HV electrode points due to the presence of carbon in the 

methane (Figure 34). It is probable that these fibers altered the VI trend by changing the 

gap distance and contributed to the dissipation of the current in the circuit and premature 

breakdown of the corona discharge.  

a) 

c) 

b) 
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Figure 34: Formation of carbon fibers on HV point tips due to presence of methane 
gas (varying camera focus) 

 

 

The largest amount of carbon fibers appeared on points 1 and 2, which are magnified in 

Figure 35.The dimensions of the fibers were approximated by comparing the number of 

pixels to the known wire point diameter of 1.024 mm. The two longest fibers on points 1 

and 2 had lengths of 2.1 mm and 7.4 mm and diameters of 70 μm and 230 μm 

respectively. 

 

 

  
  

 
 

1 

2 
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Figure 35: Magnified photos of the carbon fibers on the HV point tips of a) point 1 
and b) point 2 

 

 

Methane was not used in any subsequent tests as one of the sources of hydrogen for the 

corona cracking of oil d because of the formation of these carbon fibers and their 

subsequent effect on the electrical circuit of the corona reactor. 

Length 2.1 mm 
Diameter 70 μm 

1.024 mm 1.024 mm 

Length 7.4 mm 
Diameter 230 μm 

a) b) 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Summary 

The goal of this thesis was to assess the ability of a corona discharge to treat 

heavy crude oil. To this effect, a corona discharge reactor was created by analyzing the 

effects of different high voltage electrode geometries based on the conventional point-to-

plane configuration in terms of the maximum current achievable. The variables focused 

upon were the number of high voltage points, the distance between the electrodes, and 

the depth of the oil. The effect of the temperature of the oil was also analyzed. These 

first experiments were performed in air at room temperature and pressure. The results of 

these tests were compared to experiments with similar corona geometries. 

For the actual treatment of the oil, a distillation tower was designed to house the corona 

reactor. The tower was heated to the desired temperatures in a span of 1.5 to 2 hours. 

The voltage and current characteristics were recorded to verify the maximum current 

allowed before sparking occurred. This maximum current was then used to treat the 

heavy oil for 4 hours. The volumetric flow rate of the hydrogen flowing into the tower 

was 0.4 L/min. The light oil evaporated from the heavy oil and condensed into a beaker 

located outside of the distillation tower. The masses of the condensate and the oil residue 

were measured and compared to determine the ability of the corona to crack the long 

hydrocarbon chains. 
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6.2 Major Findings 

The distance of the HV points from the surface of the oil yielded either a wetting 

of the points for too close a distance or the formation of a trough directly underneath the 

points for any distance exceeding the critical distance. Multiple points arranged in a 

hexagonal pattern leveled the surface of the oil so a larger current could be achieved 

before the trough deepened, which inadvertently allowed the plasma to spark directly 

from the HV electrode to the ground electrode. In addition, the multipoint arrangement 

distributed the charge across the oil and stirred the oil, thereby treating it more evenly. 

For all HV electrode geometries Do had a greater overall effect on the VI characteristics 

than Dp. For the corona reactor, the best results occurred when both of these values were 

at a minimum. An elevated temperature lowered the viscosity of the heavy oil while 

increasing its conductivity and the maximum current that could be achieved before 

sparking occurred. 

When positioned inside the distillation tower, the light condensates produced 

from the corona discharge were separated from the heavy residue. The maximum 

temperature for this process was 480°F. The corona treatment current and voltage were 

determined by the maximum values achieved before breakdown, which generally 

occurred when 𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑖𝑖+1 ≥ 0.2 𝑘𝑘𝑉𝑉. The change in mass of oil d in B1 was greater than 

when the oil was only thermally treated. However, the condensates collected in B2 were 

often within the mass uncertainty and did not fully account for the change in mass of B1. 

When a 70/30 ratio of hydrogen to methane gas flowed through the distillation tower, 

carbon fibers formed on the tips of the high voltage points. 
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6.3 Conclusion 

The hydrogen enriched corona reactor is able to crack long hydrocarbon chains. 

Its efficiency is dependent on the number and geometry of HV points, which affect the 

formation of troughs within the oil and therefore the maximum current that can be 

reached before breakdown occurs. A thin layer of oil is desirable. Elevated oil 

temperatures lower the viscosity and increase the conductivity of the oil, in turn 

increasing the maximum current. The average energy cost to produce the condensate 

with the corona reactor is $4.46/bbl. of untreated oil and as such is not yet economical. 

Several recommendations with the goal of further increasing the efficiency of the 

hydrocarbon cracking process are described in the following section. 

6.4 Recommended Future Work 

It is recommended that the corona reactor be up-scaled to treat a larger amount of 

oil at once. This would increase the amount of condensate produced yielding a mass 

larger than the uncertainty and more verifiable results. Additionally, it has been shown 

that a continuous corona discharge is limited by low currents and low power [66]. By 

pulsing the corona discharge, it is possible to achieve a higher current and power without 

the formation of a spark due to the generation of electrons without significant motion of 

the ions [9, 66]. This also has the potential of lowering the treatment time of the oil, but 

it could negatively impact the temperature during the experiment. After the corona 

reactor configuration is altered to treat a larger amount of oil, different types of heavy 

and even medium crude oils should be tested. This would ensure that the corona reactor 

has an effect on the oils despite compositional differences.  
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The function of the distillation tower was to separate the light oil fractions from 

the heavy residue. Often times, the condensates were entrained within the system and did 

not collect inside the condensate receptacle. It is therefore recommended that the 

distillation tower configuration and temperature be further optimized. Specifically, one 

variable that was not entirely addressed was the volumetric flow rate of the incoming 

gas. It was believed that a lower flow rate was preferable to ensure that the temperature 

inside the distillation tower remained fairly consistent and that the gas had a long enough 

residence time to become ionized. It is possible that either the chosen flow rate was still 

too high or it was too low and did not provide enough hydrogen atoms to crack the long 

hydrocarbon chains of the oil. One method of analyzing this would be to quantify the 

ratio of carbon to hydrogen within the residue, condensates, and gas. If relatively high 

concentrations of hydrogen are present at the gas exit of the distillation tower, a cyclical 

system should be developed to reuse the gas. This would aid in lowering the overall 

amount of hydrogen used in conjunction with the corona reactor and therefore the 

hydrogen gas cost. The ability of the corona discharge to directly lower the overall 

viscosity of the heavy oil in the presence of a hydrogen gas donor should also be 

quantified. Comparisons of the untreated oil viscosity with the residue oil viscosity 

would determine whether the corona reactor cracks a greater amount of oil than what 

actually condenses at T3 into the beaker outside of the distillation tower. 

Some work has already been accomplished towards treatment of a larger amount 

of oil by the creation of a 31-point HV electrode to be used in a 1000 mL beaker. This 

setup provides a larger surface area for the oil but still allows a low oil depth to be 
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maintained. Preliminary testing of the 31-point HV electrode in the fume hood in air at 

atmospheric pressure was carried out for oils a, b, and c. The next step is to test the 

corona reactor in a pressure vessel filled with a hydrogen rich gas to discover the overall 

viscosity change created by the corona discharge. 
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APPENDIX A: PRELIMINARY EXPERIMENTAL RESULTS ADDENDUM 

 

 

Figure 36: Current and voltage trend for various HV electrodes with Do=10 mm 
and Dp=10 mm 

 

 

 

Figure 37: Current and voltage trend for various HV electrodes with Do=10 mm 
and Dp = 15 mm 
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Figure 38: Current and voltage trend for various HV electrodes with Do=20 mm 
and Dp=10 mm 

 

 

 

Figure 39: Current and voltage trend for various HV electrodes with Do=20 mm 
and Dp=15 mm 
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APPENDIX B: CURRENT AND VOLTAGE CHARACTERISTICS DURING 4 

HOUR CORONA TREATMENT OF OIL D 

 

 

Figure 40: Test 2.11.14 current and voltage trend over time 
 

 

 

Figure 41: VoltCurMon_179 current and voltage trend over time 
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Figure 42: VoltCurMon_207 current and voltage trend over time 
 

 

 

Figure 43: VoltCurMon_209 current and voltage trend over time 
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Figure 44: VoltCurMon_234 current and voltage trend over time 
 

 

 

Figure 45: VoltCurMon_236 current and voltage trend over time 
 

 

0
1
2
3
4
5
6
7
8
9
10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000 12000 14000 16000

Vo
lta

ge
 [k

V]
 

Cu
rr

en
t [

m
A]

 

Time [s] 

Current [mA]
Voltage [kV]

0
1
2
3
4
5
6
7
8
9

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 2000 4000 6000 8000 10000 12000 14000 16000

Vo
lta

ge
 [k

V]
 

Cu
rr

en
t [

m
A]

 

Time [s] 

Current [mA]

Voltage [kV]

 99 



 

 

Figure 46: VoltCurMon_238 current and voltage trend over time 
 

 

 

Figure 47: VoltCurMon_245 current and voltage trend over time 
 

 

0
1
2
3
4
5
6
7
8
9

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 2000 4000 6000 8000 10000 12000 14000 16000

Vo
lta

ge
 [k

V]
 

Cu
rr

en
t [

m
A]

 

Time [s] 

Current [mA]

Voltage [kV]

0

1

2

3

4

5

6

7

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2000 4000 6000 8000 10000 12000 14000 16000

Vo
lta

ge
 [k

V]
 

Cu
rr

en
t [

m
A]

 

Time [s] 

Current [mA]

Voltage [kV]

 100 



 

 

Figure 48: VoltCurMon_254 current and voltage trend over time 
 

 

 

Figure 49: Current and voltage characteristics during 4 hour corona treatment of 
oil d with H2 and CH4 in the distillation tower (VoltCurMon_155) 
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Figure 50: VoltCurMon_155 current trend over time 
 

 

 

Figure 51: VoltCurMon_155 voltage trend over time 
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APPENDIX C: ADDITIONAL PRETESTS FOR DISTILLATION TOWER 

 

Table 13: Average temperature of additional pretests for distillation tower 

Test VoltCurMon T1 
[°F] 

T2 
[°F] 

T3 
[°F] 

T4 
[°F] 

T5   
[°F] 

THP 
[°F] 

6.4.14a 175-177 450 580 450 80 422 842 
8.7.14 242 500 - 502.2 83.1 540.5 473 

 

 

 

Figure 52: Additional pretests for determination of voltage and current 
characteristics of oil d with H2 in the distillation tower 
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APPENDIX D: MALDI MS RESULTS2 

 

 

 

 

2 Use of the TAMU/LBMS is acknowledged. 
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