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ABSTRACT 
 
 

During the last 70 years, corrosion-induced deterioration of bridge concrete decks has 

resulted in replacement and repair of the deck and a serious need for finding alternative 

design strategies that would substantially reduce susceptibility of the concrete deck to 

corrosive environments and the subsequent maintenance cost as well. One alternative is 

to replace the reinforcing or prestressing steel in concrete with fiber-reinforced polymer 

(FRP) composite bars, which are corrosion-resistant, and have a very high strength-to-

weight ratio. FRP bars can be used as either non-prestressed or prestressed 

reinforcement. Despite ongoing research mostly focused on prestressed and non-

prestressed FRP reinforced concrete beams, less attention has been focused on the 

structural performance of bridge deck slabs with actual dimensions, boundary conditions, 

and structural details. Clear understanding of the structural performance and failure 

mechanism of the bridge deck slab as well as constructability issues are not achievable 

unless full-scale tests are conducted.  

The main objective of this research is to establish a design methodology that can be 

applied to designing a bridge deck system prestressed and reinforced with aramid fiber 

reinforced polymer (AFRP) bars under service and ultimate loads. The research approach 

of this investigation consists of conducting an experimental study on a full-scale bridge 

deck slab including two precast concrete panels prestressed and reinforced with AFRP 

bars perpendicular to, and parallel to the traffic direction, respectively. The precast 

panels are connected via a cast-in-place seam (wet joint). In order to gain clearer insight 

and valid interpretation of the structural performance, the components of the bridge deck 

are separately tested as well. This includes flexural and shear tests of the cast-in-place 

panel-to-panel seam, flexural tests of an 1830 mm long strip prestressed with AFRP bars 

representing the bridge deck section perpendicular to the traffic direction, and flexural 

tests of an 1830 mm long strip reinforced with AFRP bars representing the bridge deck 

section parallel to the traffic direction. Once the flexural capacity of the strips and panel-
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to-panel seam is known, the load capacity of the bridge deck and the corresponding 

failure mechanism can be better analyzed. Yield line theory, commonly used for analysis 

and design of steel reinforced concrete slabs, is employed and modified to perform the 

failure load analysis of the deck slab in spite of the linear and brittle behavior of AFRP 

bars.  

Tensile characteristics of AFRP bars are experimentally investigated in the first 

phase of the project to provide a reliable data set for analytical and experimental studies 

of the bridge deck system in subsequent steps. Other than the bridge deck slab, this 

research presents development of a comprehensive computational model for analysis and 

design of a bridge girder in composite action with the deck slab. To compute the 

maximum deflection, rational equations based on studying the curvature distribution are 

derived herein for both prestressed and non-prestressed FRP reinforced concrete beams. 

The existing deflection equations are typically empirically-derived formulae, which were 

originally calibrated for steel reinforced concrete beams and hence not suitable for FRP 

case as the FRP bars have lower modulus of elasticity compared to conventional steel.  

Consequently, from this research, the structural performance of an AFRP concrete 

bridge deck slab with full-depth precast prestressed panels is studied and an applicable 

method for design and failure load analysis is established. Moreover, for FRP reinforced 

and prestressed concrete beams, two rational deflection equations are developed for 

suitable design office implementation. 
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1. INTRODUCTION 
 
1.1  Research Motivation  

 
Critical infrastructure of the United States, particularly roadways and bridges, are 

deteriorating and facing a nationwide problem due to corrosion of the reinforcing steel as 

a result of aging and aggressive environments. This is a major concern as the economy 

of the U.S. is greatly tied to its transportation system, where bridges are an integral part 

of the transportation network that connects people and businesses. Steel corrosion leads 

to member degradation, endangers structural integrity, and may even cause catastrophic 

failures. The corrosion decay in concrete structures has continued to be a challenge in 

the scientific and engineering communities. In 1997, the Intermodal Surface 

Transportation Efficiency Act (ISTEA) spent $2.5 billion for the Highway Bridge 

Replacement Program, where a majority of the funds went towards replacement or 

rehabilitation of bridge decks that were damaged by corrosion deterioration. This 

problem has led to a serious need for finding alternative design strategies that can reduce 

the likelihood of corrosion decay in concrete structures and the subsequent maintenance 

cost.  

The main idea is to use high performance materials that have inherent properties to 

provide durable corrosion protection and prevent the premature spalling or corrosion-

induced cracking. Recent advancements in the field of material science have resulted in 

the development of new products that can be used in many areas of civil engineering, 

where conventional materials have failed to provide satisfactory service life. In 

particular, fiber reinforced polymer (FRP) materials, which present unique properties 

such as very high strength-to-weight ratio, and corrosion-resistivity, have received 

significant attention and have been considered as an ideal alternative for steel.  

AFRP bars can be manufactured as reinforcing bars for RC (reinforced concrete) and 

PRC (prestressed reinforced concrete) structures, sheets and laminates for external 

strengthening of beams, slabs and masonry walls, wraps and shells for confinement of 

columns, etc. A bridge deck system that consists of concrete beams and slabs prestressed 
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and reinforced with FRP bars seems to be a feasible alternative to prevent premature 

spalling or corrosion-induced cracking and enhances the durability of the concrete bridge 

deck slabs.  

Considerable research has been conducted on the behavior of prestressed and non-

prestressed FRP concrete beams; however, less attention has been paid to the 

performance of FRP RC or PRC bridge deck systems including concrete slabs and 

girders in a full scale. Hence, there are knowledge gaps in the performance of FRP 

concrete bridge deck systems due to lack of theoretical and experimental data and design 

specifications. This research is intended to establish a design methodology that can be 

applied to design a bridge deck system prestressed and reinforced with aramid fiber 

reinforced polymer (AFRP) bars under service and ultimate loads. Experimental 

investigation is conducted on a full-scale bridge deck including two precast concrete 

panels prestressed and reinforced with AFRP bars perpendicular to and parallel with the 

traffic direction, respectively. The structural performance and failure mechanism are 

carefully studied and compared to a similar full scale specimen reinforced with 

conventional steel (Mander et al. 2009). Failure load analysis is subsequently performed 

to find the load capacity of the bridge deck slab compared to the experimental results. 

The experimental and analytical results reveal whether a satisfactory structural 

performance has been achieved. 

1.2 Research Need 
 

As stated, most of the investigations on FRP reinforced concrete members have been 

focused on individual beams or one-way slabs, and the structural performance of a full-

scale bridge deck as a two-way slab where dimensions, boundary conditions, and 

structural details realistically represent a bridge deck system, seems to be less noticed. 

Furthermore, analysis and design process of FRP reinforced concrete bridge deck as a 

two-way slab is not as clear as steel RC slabs, since FRP bars, in contrast to 

conventional steel rebar, do not have a yielding point and behave linearly up to rupture. 

Therefore, the classical methods of plastic analysis such as yield line theory may not be 
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applicable. Hence, there is a crucial need to experimentally study the structural 

performance of a full-scale bridge deck system with a close view on the failure 

mechanisms and load capacity of the interior spans and overhangs. Establishing a 

theoretical as well as practical method of analysis capable of accurately predicting the 

failure load that can be employed by design engineers and suitable for the design office 

implementation is one of the major needs in this field of study. Load-deflection 

response, deformability of the deck, and sufficiency of the panel-to-panel seam are the 

other knowledge gaps that need to be addressed in order to establish a design 

methodology. 

1.3 Research Objectives 
 
The main objectives of the proposed research project are to: 

1- experimentally evaluate the structural performance of a full-scale concrete bridge 

deck slab with precast panels reinforced with prestressed and non-prestressed 

AFRP bars compared to its conventional steel counterpart. 

2- experimentally and analytically investigate the flexural behavior of AFRP RC 

and PRC strips representing the bridge deck section in x and y directions. This 

helps to better analyze the bridge deck as a two-way slab. 

3- measure the flexural and shear strength of the cast-in-place seam connecting the 

precast panels of the bridge deck. 

4- establish a theoretical as well as practical method capable of accurately 

predicting the failure load of the interior spans and overhangs of the bridge deck. 

Such a method can be appealing for design office implementation. 

5- derive rational based equations to evaluate the maximum deflection of AFRP RC 

and PRC beams, as the deflection and not strength commonly governs the design 

due to low modulus of elasticity of FRP bars compared to reinforcing steel. 

6- summarize the constructability issues faced when constructing the precast 

prestressed panels. Construction in the laboratory environment can resemble the 

off-site precast plant conditions. 
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1.4 Research Approach 
 

Experimental investigation is the main approach taken herein to study the structural 

performance of a full-scale bridge deck slab reinforced and prestressed with AFRP bars. 

In the first phase of the project, the uniaxial characteristics of the AFRP bras are studied. 

Then a full-scale bridge deck specimen, measuring 5490 × 4880 mm, including two 

precast panels resting on three supporting beams is tested for truck wheel load mimicked 

by a monotonically increased concentrated load to determine the load capacity and 

failure mechanism of the interior spans and overhangs. The full-depth precast panels are 

reinforced with AFRP bars parallel to the traffic direction (y-direction) and prestressed 

perpendicular to the traffic direction (x-direction). String pots are used to record the 

deflection of the deck in both directions beneath the truck wheel load. Therefore, the 

curvature distribution can be subsequently determined which helps to better interpret the 

flexural performance of the deck. In order to find out the governing failure mechanism, 

crack pattern on top and beneath the deck is carefully mapped and studied. 

 Since the bridge deck is a more complex system than a beam or a one-way slab, one 

AFRP reinforced strip representing the bridge deck section in x-direction and one AFRP 

prestressed strip for y-direction are separately tested under four-point loading to 

investigate their flexural behavior and to better analyze the experimental results of the 

bridge deck tests. Additionally, an extensive computational model is developed to 

perform numerical analyses for strip specimens, which will be verified by the 

experimental data. The experimental and numerical results help to characterize the 

flexural behavior of strip elements. 

To specify the structural capacity of the panel to panel seam, two AFRP RC strip 

specimens resembling the panel to panel seam will be separately tested to measure the 

flexural and shear capacity of the joint. Having all the experimental and numerical 

results known, the concept of plastic method of analysis, such as yield line theory, is 

employed and modified to perform the failure load analysis of the bridge deck slab. 
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Comparison between the analytical and experimental load capacity of the bridge deck 

slab verifies the fidelity of the method developed.  

To analyze the AFRP concrete bridge deck girder in composite action with deck 

slab, a comprehensive computational model is developed capable of performing refined 

non-linear analysis. The results, which will be verified by experimental data, can show 

whether the girder meets the serviceability and ultimate limit states. Since the deflection 

limit, as a serviceability criterion, commonly governs the design of FRP concrete beams, 

rational deflection equations, based on studying the curvature distribution, are developed 

for either FRP reinforced or prestressed concrete beams. The deflection equations are 

verified with experimental data, and presented in a convenient-to-use form suitable for 

design office implementation. Fig. 1 shows the bridge girder and deck specimens along 

with the bridge prototype. 

1.5 Organization of Thesis 
 

This thesis consists of eleven core chapters. The literature survey and research 

background is covered in Chapter 2. Chapter 3 presents the uniaxial characteristics of 

AFRP bars for prestressing application. The results of this chapter are essential for 

analysis, design, and implementation of the bridge deck slab specimen. The 

experimental investigation on the full-scale bridge deck slab with full-depth precast 

prestressed panels is presented in Chapter 4 to study the structural performance of the 

proposed bridge deck system. Chapter 5 illustrates the experimental behavior of the 

AFRP concrete strip elements representing the bridge deck section in x and y directions 

as well as the panel-to-panel seam. The results of this chapter aid to characterize the 

structural behavior of the strip elements which is critical for failure load analysis of the 

bridge deck slab. 
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Fig. 1. Bridge girder and deck specimens for this study (Dimensions: mm) 

 
 
 

Chapter 6 utilizes the results of Chapters four and five, and based on the yield line 

concept, a rational method for failure load analysis of the bridge deck slab is developed. 

Chapter 7 comprehensively presents the analysis and design procedure of an AFRP 

prestressed bridge deck girder in composite action with bridge deck slab. A full 

computational model developed for numerical analysis of the girder is illustrated in this 

chapter. Chapter 8 focuses on developing a rational model for effective moment of 

inertia to find the maximum deflection of FRP prestressed concrete beams. Likewise, 

Chapter 9 discusses about the deflection equations for FRP reinforced concrete beams 

where two applicable and convenient-to-use equations are derived and verified with 

experimental data. Chapter 10 fully discusses about the tension stiffening phenomenon 

in prestressed concrete beams through developing a closed-form equation for moment-

curvature relationship. Chapter 11 summarizes the major results and draws the 

conclusions of this research.  
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2. LITERATURE SURVEY AND RESEARCH BACKGROUND 
 
The application of FRP materials in bridge applications initiated from the first 

pedestrian FRP bridge built by Israelis in 1975 (Hastak et al. 2004) and continued to 

other pedestrian bridges with pultruded shapes consisting of hybrid glass and carbon 

FRP composites that have an increase in stiffness with relatively little additional cost. 

Bride deck systems were constructed and tested in the early 1990s, where the first U.S. 

all-composite vehicular public bridge was opened to serve on December 4, 1996 in 

Russell, Kansas. The construction process for this bridge consisted of FRP decks being 

shop-fabricated with composite honeycomb cells sandwiched between two face sheets 

(Tang and Podolny 1998). The bridge was installed in one day, which is definitely 

accelerated construction that helped in minimizing the impact of construction on 

commuters and commerce that bridges serve within the transportation network. The cost 

savings of the accelerated construction offset higher initial costs for the FRP materials. 

 Flexural testing of FRP prestressed concrete beams began in Japan in the mid 

1980’s under a nationally coordinated program to develop design guidelines for concrete 

reinforced or prestressed with FRP bars. Similar research began in Europe and United 

States in the late eighties (Dolan 1990, 1991; and Gerritse and Werner 1991). Since this 

work was completed, a large amount of research has been documented and published. 

Several attempts have been made to develop design guidelines for FRP reinforcement, 

but these are in various states of completion (ACI 440.4R 2004). The lack of uniformity 

in testing procedures, material definitions, and reporting the results have caused great 

difficulty in developing guidelines. Several of the guidelines in development have been 

evaluated and compared in a published article by Gilstrap et al. (1997). The literature 

survey in this chapter is divided into three major parts: transfer and development length, 

FRP concrete beams and FRP concrete slabs. 
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2.1 Transfer and Development Length 
 

Nanni et al. (1992) used concrete strain measurements and static flexural tests to 

determine transfer lengths of braided FIBRA AFRP bars of nominal 8, 12 and 16 mm 

diameters. The reported transfer length for the bars is approximately 400, 450, and 550 

mm. Some increase in transfer length for increased prestressing force and some decrease 

for multiple strand applications can be noted. Nanni and Tanigaki (1992) reported 

development lengths of < 850 mm, >1000 mm, and 1040 mm for the same material. 

 Taerwe et al. (1995) used 7.5 and 5.3 mm diameter ARAPREE aramid fiber rods in 

their transfer length study. They suggested a transfer length of 16 times the nominal 

diameter of the rods for all of these ARAPREE rods. 

 Ehsani et al. (1997) conducted tests on three kinds of aramid FRP bars: ARAPREE 

10 mm, FIBRA 10.4 mm and TECHNORA 7.4 mm. The transfer and development 

lengths were found to be 33 times bar diameters and 83 times bar diameters for FIBRA, 

43 times bar diameters and 117 bar diameters for TECHNORA, and 50 bar diameters 

and 102 bar diameters for ARAPREE. Since the AFRP bars for this project are of 

ARAPREE type with 10 mm diameter, the transfer and development length reported by 

Ehsani et al. (1997) is selected as the reference. 

2.2 FRP Concrete Beams 
 
Most of the research on the application of FRP bars in reinforced and prestressed 

concrete is focused on beams. McKay et al. (1993) investigated the flexural behavior of 

concrete beams prestressed with AFRP bars. One of the major findings of this research 

was that FRP prestressed beams should only be designed as fully prestressed members, 

otherwise fretting of the rod surface decreases the bond strength between the rods and 

the concrete leading to concrete horizontal splitting failures at the level of the rods.  

Naaman et al. (1993) tested two T-beams partially prestressed with CFRP strands. 

The beams had conventional steel reinforcing bars in addition to CFRP. An accidental 

CFRP strand failure during stressing and anchoring was experienced, which suggested 
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that extreme care should be taken for prestressing operation. A comparison with similar 

beams using steel strands showed that for the same global reinforcing index, the 

cracking load is lower and the crack width is larger, while the beam stiffness is smaller 

when CFRP strands are used. The load-deflection responses of the beams prestressed or 

partially prestressed with FRP bars can be predicted with reasonable accuracy using 

conventional methods of equilibrium, strain compatibility and material stress-strain 

relationships.  

Abdelrahman et al. (1995) tested four prestressed concrete T-beams pretensioned 

with FRP cables, as girders of the first smart highway bridge built in Canada. They 

concluded that behavior of the beams with CFCC and leadline cables were bi-linearly 

elastic up to failure. Unloading of the beams showed an elastic response and negligible 

residual deformations. Beams pretensioned by FRP normally exhibited considerable 

warning before failure due to the presence of large, extensively distributed cracks and 

large deflection before failure. They found out that in beams with a wide flange in the 

compression zone, such as T-sections, failure normally occurs by rupture of the FRP 

bars. They also proposed ductility method providing an adequate model to measure 

ductility of the beams prestressed by FRP bars.  

Shahawy et al. (1995) studied the static flexural response of members pretensioned 

with multiple layered AFRP. They concluded that ARAPREE bars can be successfully 

employed as prestressing strands; however, durability and long-term performance should 

be investigated. The double-tee beam that they tested exhibited excessively large 

deformations in the post-cracking stage and had excellent deformation recovery of about 

95% upon removal of the applied load, which corresponds to about 80% of theoretical 

ultimate load. Methods for evaluating the flexural strength of an FRP prestressed beam 

were published in 1996 (Dolan 1996). This paper covered the derivation of the flexural 

strength equations and provided a calibration against test beams taken from the available 

published literature.  
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Abdelrahman (1997) tested prestressed and partially prestressed concrete beams with 

CFRP bars to study their flexural behavior. Eight beams were prestressed with CFRP 

bars and two with conventional steel bars. The beams were tested using quasi-static 

monotonic concentrated loads. The research studied the serviceability limit states in 

terms of crack width, crack spacing and deflection prior to and after cracking. The 

modes of failure and the ultimate carrying capacity of the beams were also investigated. 

The tested beams were analyzed using a strain compatibility approach to predict the 

moment-curvature relationship. The deflection was calculated using two different 

techniques, integration of the curvature at many sections along the beam span, and a 

simplified method where the deflection was calculated using an equivalent moment of 

inertia for the entire beam. The proposed models had less than 20% margin of error 

compared to the experimental results. The tested beams pretensioned by CFRP exhibited 

considerable warning before failure due to the presence of extensively distributed cracks 

and large deflection prior to failure. Change of the reinforcement ratio resulted in a 

change in failure mode and deformability. Partial prestressing increased the 

deformability of the beams. New parameters were proposed based on experimental and 

analytical results to accurately predict the deflection, prior to and after cracking, and 

crack width. Recommendations for flexural design, and deflection and crack width 

computation of beams partially prestressed with CFRP bar were introduced.  

Lu (1998) performed flexural tests on beams prestressed with three types of FRP 

bars including two kinds of CFRP and one AFRP type bar. The primary variable in the 

study was the type of FRP materials. The flexural test was a four-point bending test to 

evaluate moment-curvature and load-deflection behavior of the specimens. Two methods 

were used to determine curvature. The first method was to attach LVDTs on one side of 

the beam to directly measure concrete strains. The second method was to measure beam 

deflection at five different locations along the beam within the constant moment zone by 

potentiometers. The deflection curve formed by the five points should be a part of the 

circle, and the radius of the circle equal to the inverse of the curvature in the constant 

moment zone. Both bond slip failure and flexural failure occurred. Beams with AFRP 
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bars exhibited larger deflection, curvature and more cracks at failure than the beams with 

CFRP bars, but the CFRP prestressed beams had larger moment capacity. The FRP 

prestressed beams had smaller incremental crack width openings than those reinforced 

with steel strand, indicating a stronger bond mechanism between concrete and the FRP 

bars.  

Performance of concrete beams prestressed with aramid fiber-reinforced polymer 

bars have been investigated by Toutanji and Saafi (2000). The results of their 

experiments show that ductility can be significantly enhanced by using a combination of 

bonded and unbonded bars or by the addition of non-tensioned rebar. Dolan et al. (2001) 

proposed detailed equations to determine the capacity of vertically aligned bars which is 

also valid for harped prestressing. They found the difference in estimating capacity using 

both the proposed formula and the simplified equation for bars in a single layer within 

1%. For the application of aramid bars in high strength concrete, Rashid et al. (2005) 

have conducted some experimental tests and investigated the behavior of ten aramid 

fiber-reinforced polymer reinforced high strength concrete beams under three-point 

loading. Their test results have shown that a concrete beam, when reinforced with AFRP 

bars, becomes more flexible in the post-cracking range than an equivalent steel-

reinforced beam and may fail in an unusual flexure-shear mode. 

The background of the research clearly confirms the applicability of FRP bars as 

reinforcement or prestressing tendons for concrete beams in place of conventional steel. 

The experimental results show that the ultimate strength can be estimated with an 

acceptable accuracy using the conventional method of stress block and writing 

equilibrium and compatibility equations. However, there is still lack of rational 

equations that can be conveniently utilized by engineers to evaluate the maximum 

deflection as a governing limit state for FRP concrete beams. The existing equations are 

typically empirically derived formulae that have been originally calibrated for 

conventional steel. Furthermore, the experimental beam specimens are commonly tested 

without the effect of composite action induced by the topping deck. 
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2.3 FRP Concrete Slabs 
 
Matthys et al. (1996) performed research on concrete slabs prestressed with AFRP 

and steel bars, respectively. Higher ultimate deflections and higher ratios of ultimate to 

cracking load are obtained for the slabs pretensioned with AFRP. This ensured a higher 

safety margin between design load and ultimate load. This favorable aspect partly 

compensates for the sudden fracture of the slabs pretensioned with FRP.  

Salakawy and Benmokrane (2004a) investigated the construction of a new highway 

bridge using FRP bars which was located on highway 55 North over the Magog River 

Quebec, Canada (Fig. 2). The bridge deck was 22 mm thick and 83.7 m long supported 

by five steel girders over three spans. One full end span was entirely reinforced with 

FRP bars and the other two spans were reinforced with galvanized steel. The concrete 

deck slab was designed based on Canadian Highway Bridge Design Code (CHBDC). 

The bridge was tested for service performance under standard truck loads. As they 

reported, no problems to construction with FRP bars were faced. Light weight of FRP 

bars helped to carry and place them with less effort. During the serviceability test, 

deflection of the steel girders and bridge deck slab did not exceed 6 and 2 mm, 

respectively. The results confirmed that the flexural design method of CHBDC is very 

conservative.  

Salakawy and Benmokrane (2004b) studied the flexural performance and 

serviceability of concrete bridge deck slabs reinforced with FRP bras. 10 full-size one-

way slabs measuring 3100 × 1000 × 200 mm were tested under four-point loading where 

the simply supported span was 2500 mm long with a shear span of 1000 mm. Five slabs 

were reinforced with GFRP, three slabs with CFRP, and two with conventional steel. 

The results showed that all slabs reinforced with FRP bars failed in shear while the steel-

reinforced slabs failed by steel yielding and crushing of concrete, subsequently. Only 

two of the FRP reinforced slabs failed in combined tension-shear in the vicinity of the 

support resulting in increase of the load capacity of 26 and 55%. These two slabs had 

reinforcement ratio equal to balanced reinforcement ratio. It was found that the load 
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carrying capacity of the slabs reinforced with FRP bars was much higher than steel 

reinforced slabs. However, FRP reinforced slabs showed larger deflection and crack 

width indicating that serviceability and not strength governs the design. 

 
 
 

 
Fig. 2. Magog bridge deck reinforced with FRP bars (Canada 2002) 

 
 
 
Gamal et al. (2005) investigated the structural performance of edge restrained 

concrete bridge deck reinforced with GFRP and CFRP bars under concentrated loads. 

They studied six full-scale deck slabs 3000 × 2500 mm wide and 200 mm thick. Three 

slabs were reinforced with GFRP, two with CFRP, and the remaining one with 

conventional steel as a control specimen. The deck slabs were supported on two steel 

girders spaced at 2000 mm center-to-center and were subjected to a monotonic single 

concentrated load acting on the center of each slab. Punching shear was reported as the 

governing failure mode for all of the specimens. Load capacity of the deck was found to 

be larger than three times the design factor load stipulated by CHBDC. The maximum 

measured deflection was reported less than 1.5 mm which is well below the allowable 
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code limit. A new empirical equation for punching shear capacity was proposed and 

proved to be in good agreement with experimental test data.  

Dulude et al. (2010) conducted experimental tests on five large-scale two-way slabs 

four of which were reinforced with GFRP bars and the remaining one with conventional 

steel as a control specimen. The slabs were 2500 × 2500 mm wide and 200 or 350 mm 

thick along with a column stub 300 × 300 or 450 × 450 mm which was extended 300 

mm above and below the slab. The edges of the slab were free to rotate and restrained 

against displacement. They generally concluded that there was no significant difference 

between the test specimens in terms of overall behavior and mode of failure. However, 

replacing the steel bars with GFRP bars reduced the punching strength with about 32%. 

It was also concluded that ACI 440.1R 2006 provides a very conservative prediction of 

punching shear resistance, about 54% of the experimental result, but JSCE (1997) 

resulted in good predictions about 93% of the actual value.  

Rahman et al (2000) tested a full-scale two-way bridge deck slab measuring 6000 × 

6000 × 185 mm, reinforced with carbon fiber reinforced polymer (CFRP) mesh. The slab 

specimen rested on three support steel beams and was connected through the shear studs, 

and formed two continuous spans, each 2000 mm long, and two overhangs on both sides, 

each 1000 mm long. The slab was tested under two wheel loads simultaneously applied 

on the adjacent interior spans which typically. The failure mode was found as punching 

shear at a load level of larger than five times the maximum design wheel load. The 

deflection under service load level was small and the overall behavior of the slab was 

reported satisfactory. The double-wheel load was the only load case under which the 

failure of the slab was investigated. Single concentrated load or axle load on the interior 

span as well as the overhang was not considered in this study. Hassan et al. (2000) 

similarly investigated the behavior of two full-scale two-way FRP RC slabs 

representative of a portion of a highway bridge deck slab. The specimens were tested 

under only single concentrated loads and punching shear was observed as the governing 

failure mode. The load capacity was reported much higher than the ultimate design code.  
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Mander et al. (2009, 2010, 2011) conducted experimental tests on full-depth precast 

concrete overhang panels, for bridge deck application, to investigate the load capacity, 

failure modes, cracking pattern, and load-deformation behavior. Two full-scale bridge 

decks were constructed of 100 mm SIP (stay-in-place) bottom panels and 100 mm CIP 

(cast-in-place) topping deck prestressed and reinforced with conventional steel, 

respectively. The bridge deck was tested under different concentrated load cases and it 

was observed that the full-depth precast overhang failed in a different mode compared to 

conventional CIP deck overhang.  The load capacity was also reduced by about 13%. 

This reduction was reported to be attributed to the partial depth panel-to-panel 

connection. Yield line theory was modified to account for the development length of the 

mild steel reinforcing at overhang. Failure of the full-depth panels was found to be 

influenced by the partial-depth transverse panel-to-panel seam. Hence, the modified 

yield line theory was coupled with panel-to-panel shear interaction. The analytical 

results were reported within 1-6% of experimental results for critical cases showing the 

high accuracy of the modified yield line theory. They concluded that flexure is the 

governing mode of failure in concrete bridge deck overhangs. For interior spans, a 

compound shear-flexural failure was recognized as the governing failure mode where the 

CIP panel failed in punching shear and the SIP panel failed in flexure. The results of 

failure load analysis were reported to be within 2% accuracy of the experimental results. 

It was also shown that AASHTO LRFD (2007) punching-shear formula underestimates 

the load capacity by 20-25% for critical load cases.  Although the full-scale experimental 

specimens were reinforced and prestressed with conventional steel, they are selected as 

the control specimens of the current research project.  

The research background shows the lack of experimental and analytical studies on 

full-scale FRP concrete bridge deck slabs where the dimensions, boundary conditions, 

structural details, and load configuration are all realistically taken into consideration. 

Under such circumstances, the experimental outcomes can be reliably used to establish a 

design methodology, which is one of the major objectives of this research project. 
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3. UNIAXIAL CHARACTERISTICS OF ARAPEE BARS FOR 

PRESTRESSING APPLICATION 
 
3.1 Introduction 
 

As already discussed, corrosion-induced deterioration of reinforced concrete is 

degrading the serviceability of the infrastructure in the United States, particularly 

bridges. This is a serious concern as the economy of the US is greatly tied to its 

transportation system. Of the total 587,964 bridges in the US, 14% are in serious need 

for rehabilitation due to corrosion issues (NCHRP 2006) which requires a huge budget 

spent yearly. Fiber reinforced polymer (FRP) composite bars which are inherently 

corrosion resistant have been employed in place of conventional steel since the past 

couple of decades to overcome corrosion problems and to obviate the need for costly 

repair and replacement programs. FRP bars have a large tensile strength-to-weight ratio 

and are typically manufactured in three types named AFRP, CFRP, and GFRP where the 

fibers used in matrix are aramid, carbon, and glass, respectively.  Compared to other two 

types of FRPs, AFRP bars have good fatigue and creep-rupture characteristics, 

considerable tensile strain capacity, and reasonable price which make them an appealing 

substitute for conventional prestressing steel (Trejo et al. 2000). However, further 

experimental research on uniaxial characteristics of AFRP bars needs to be conducted by 

virtue of which analysis and design can be more reliably carried out. Such experimental 

research should include the tensile test where the ultimate stress and strain as well as 

modulus of elasticity can be found, testing the load capacity of the anchorage system, 

tension stiffening test to find the post-cracking tensile strength of the reinforced 

concrete, creep test to reveal the reliable level of prestressing during the lifetime of the 

structure, and relaxation test to determine the relaxation loss during the time.  

Experimental research on creep-rupture characteristics of AFRP bars have shown a 

linear relationship between the creep-rupture strength and logarithm of time where the 

50-year creep-rupture strength can be readily extrapolated. The creep-rupture strength is 
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typically defined as the ratio of stress at failure to the ultimate stress, which has been 

reported for AFRP bars equal to 0.5 (Taerwe 1995), 0.47 (Yamaguchi et al. 1997), 0.66 

(Ando et al. 1997), and 0.6 (Dolan et al. 2001) for a 50-year duration. Based on these 

experimental results, a range of 0.45-0.65 for creep-rupture strength of AFRP bars seems 

to be a reasonable assumption. ACI 440.1R (2006) applies a safety factor of 1/0.6 to the 

existing experimental data and recommends an allowable sustained stress level equal to 

0.3. Similar creep-rupture studies on AFRP bars with 6 mm diameter was conducted by 

Mukae et al. (1993) at different stress levels where the creep-rupture strength for 100-

year lifetime was reported 61%, approximately. 

McKay and Erki (1993) studied the relaxation of AFRP tendons and reported 10-

12% prestressing loss due to relaxation for a 50-year duration. Ando et al. (1997) 

conducted similar tests and found the relaxation of AFRP bars between 5-8% after 1000 

hours, and between 11-25% for 50-year duration depending on the initial prestressing. 

Increasing the temperature was reported as an influential factor that increases the 

relaxation loss. Saadatmanesh and Tannous (1999) tested the relaxation of AFRP bars, 

ARAPREE type, and found that the relaxation loss in a 50-year duration, when the 

specimen is exposed to air, is between 8-11% and 9-14% for 40% and 60% initial 

prestressing, respectively. Similarly, the raise in temperature resulted in increase of 

relaxation loss.  

In spite of ongoing research on mechanical characteristics of AFRP bars, there is still 

limited experimental data available where the existing inconsistencies in test procedures 

and results raise the need for further research. Variations in the FRP manufacturer’s 

products add more difficulties given seemingly in consistency of results since the 

behavior of FRP bars can readily change depending upon the type of fiber or resin. In 

this research, the AFRP bar, named ARAPREE, with 10 mm diameter is selected and 

comprehensive experimental tests including uniaxial tensile test of bare bar, load 

capacity test of the anchorage system, tensile test of bar embedded in concrete so called 

tension stiffening test, creep test, and relaxation test are conducted. For creep and 



 
 

18 
 

relaxation tests, the ARAPREE bar is embedded in concrete to mimic the actual 

surrounding environment and the test runs during 1000 hours for 50 and 60% initial 

prestressing, which is basically considered as a long-term test. The experimental 

outcomes of this study are aimed to provide a reliable data for prestressing application of 

ARAPREE bars as an alternative for conventional prestressing steel.  

3.2 Tensile Tests of Bare Bars 
 

Six ARAPREE bar specimens with 10 mm diameter and 1420 mm length were tested 

under uniaxial tensile load. The anchorage system consisted of steel pipes with 457 mm 

length, 48 mm diameter, and 5 mm wall thickness, which were filled with an expansive 

and quick setting grout named Shep Rock. The anchorage steel pipes were gripped by 

the jaws of a 250 kN MTS machine where the load was monotonically applied with the 

rate of 22 kN per minute, according to ASTM D638 (2008). The applied load was 

recorded via a load cell connected to the MTS machine and the elongation of the 

specimen was measured through strain gages mounted at the middle of the bar. For all 

the specimens a quasi linear stress-strain relationship was achieved and the bar ruptured 

in a brittle and sudden fashion (Fig. 3). No local failure was observed at the anchorage 

system indicating a full grip of the bar inside the pipe. The experimental results are 

summarized in Table 1 in terms of ultimate stress, strain capacity, and elastic modulus 

where the mean and standard deviation are presented. The standard deviation is 

calculated using the unbiased estimator where the degree of freedom is deemed equal to 

the number of samples minus one. The mean of elastic modulus and strain capacity are 

equal to 69 GPa and 0.02 mm/mm, respectively, with small standard deviations. Given a 

linear stress-strain relationship, the dependable value for ultimate stress can be 

calculated as 69000 × 0.02=1380 MPa, which is very close to the lower bound of 95 

percent confidence interval equal to 1457-63.4=1393.6 MPa. According to ACI 440.4R 

(2004), the longitudinal tensile strength of ARAPREE, is expected to be between 1200 

and 1500 MPa, the modulus of elasticity between 62 and 64 GPa, and the maximum 

longitudinal strain about 0.024. It is seen that, the tensile strength and strain capacity are 
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in the expectable range, however the elastic modulus is larger than what has been 

suggested, 62-64 GPa. According to ASTM A416, the stress-relieved 7-wire strands 

(Grade 270) have the ultimate strength 1860 MPa, elastic modulus 186 GPa, and strain 

capacity 0.04. The strands are typically prestressed up to 70-75% of the ultimate strength 

where the yielding is at 85% of ultimate strength corresponding to the strain 0.01. 

Comparison shows that the ultimate strength, strain capacity, and elastic modulus of 

ARAPREE bar with 10 mm diameter are about 75%, 50%, and 37% of that of 

prestressing steel strands, respectively. 

 
 
 

Table 1- Tensile test results 

Specimen Ultimate stress 
(MPa) 

Strain capacity 
(mm/mm) 

Elastic modulus 
(GPa) 

1 1549.9 0.022 70.4 

2 1448.2 0.021 68.9 

3 1431.3 0.021 68.2 

4 1358.8 0.021 64.7 

5 1464.2 0.021 69.7 

6 1489.1 0.020 74.4 

Mean  1457 0.021 69.38 
Standard deviation  

(unbiased estimator) 63.4 0.0006 3.16 
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Fig. 3. Tensile test of ARAPREE bars (Medina 2011) 
 
 
 
3.3 Load Bearing Capacity of the Conventional Anchorage System 
 

The conventional anchorage system fabricated by the manufacturer was tested with 

the same procedure as employed for the tensile test to find the load capacity and failure 

mode. An applicable and reliable prestressing anchorage system should be capable of 

sustaining the prestressing load for a long period of time without causing a major loss or 

premature failure. The conventional anchorage system consisted of hard plastic wedges 

and steel casing. Five specimens were tested and it was observed that all the ARAPREE 

bars locally failed at the anchorage location in a very sudden and brittle fashion. As 
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presented in Table 2, the mean failure stress is equal to 1024 MPa which is about 70% of 

the mean tensile strength. The reason for such a premature and local failure was further 

investigated and it was found that the plastic wedge causes a stress concentration due to 

applying transverse stresses when gripping the bars. These transverse stresses tend to 

crush the bar and cause a premature failure since the AFRP bars are not strong in the 

transverse direction. This is the reason why the potted anchorage systems with materials 

like resin, non-shrink cement, expansive cement, or epoxy, where the tensile force can 

be transferred through a uniformly distributed longitudinal stresses, are commonly 

preferred over the conventional anchorages (ACI440.4R 2004). Fig. 4 shows the failure 

of the ARAPREE bar close to the anchorage. Although the load capacity of the 

conventional anchorage system seems to be above the typical prestressing range, say 

between 50-60% of the tensile strength, the margin of safety is not large enough to 

represent a reliable system. Furthermore, the anchorage system should be capable of 

sustaining the prestressing load for a long period required to conduct the creep and 

relaxation tests. To investigate the sustainability, the anchorage system was subsequently 

tested under a sustained load equal to 55% of the tensile strength. The experimental 

results showed that after about 20 hours a local failure occurred at the anchorage 

indicating the incapability in sustaining the prestressing load. Comprehensive 

experimental tests on conventional anchorage system can be found in Medina (2011). 

The results confirm the need for another anchorage system to prestress the AFRP bars 

for creep and relaxation tests. 
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Fig. 4. Load bearing capacity test of conventional anchorage (Medina 2011) 

 
 
 

Table 2- Results of the tensile tests using the conventional anchorage system 

Specimen Failure stress (MPa) 

1 1030 

2 1010 

3 1006 

4 1058 

5 1015 

Mean  1024 
Standard deviation  

(unbiased estimator ) 21 
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3.4 Prestressing Operation 
 

The challenging step in prestressing the AFRP bars is designing a reliable anchorage 

system that can reach to the desirable load level and sustain the load for a long period of 

time without causing a major loss or premature failure. As discussed, the conventional 

anchorage system failed to provide an applicable and reliable prestressing system. In this 

research, an anchorage system is designed for the relaxation and creep tests in place of 

the conventional anchorage system. As shown in Fig. 5, the anchorage is basically 

composed of a steel pipe with 457 mm length, 48 mm outer diameter, and 5 mm wall 

thickness filled with an expansive and quick setting grout called Shep Rock. This grout 

is mainly used for demolishing purposes by injecting to the cracks of massive rocks. The 

final set of Shep Rock grout takes 45 min at 75°F degree and it can reach to a 

compressive strength over 69 MPa in one day. The bar is passed through the center of 

the pipe and held by plastic stoppers, which have a central hole, at both ends of the pipe. 

There are two holes on the pipe’s surface which allow for injecting the grout. The grout 

is poured through the first hole until it comes out from the second one to ensure that 

there is no air bubble entrapped inside the pipe. The plastic stoppers close the both ends 

of the pipe and prevent leakage of the grout. The walls of a concrete block are used as 

the dead and live ends of the prestressing frame. The anchorage at the dead end is first 

casted and left to be set. The live end includes two pipes in front and back of the 

hydraulic jack that has a central hole allowing the bar to pass through it. The front pipe 

is first filled with grout and then after three hours, based on the preliminary tests, the 

hydraulic jack can be pumped to push the front pipe, while seating on the rear pipe. This 

action pulls the AFRP bar until reaching to the desirable level of prestressing where the 

rear pipe is injected with grout to lock the bar. After three hours, when the bar is fully 

gripped inside the pipe, the hydraulic jack is released and the rest of the bar in front of 

the jack is cut in order to be able to move the jack. The instrumentation includes a load 

cell placed between the pipe and concrete block to measure the load, an LVDT (linear 

variable differential transformer) attached to the end of the bar extended out from the 

grouted pipe to measure the slippage of the bar, and the strain gages mounted on 
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ARAPREE bar to record the change in strain. The preliminary tests showed a successful 

prestressing up to 60% of the bar capacity where the anchorage was capable of 

sustaining the load for a long time without a significant prestressing loss or a local 

failure. The prestressing loss was recorded with a high frequency and it was observed 

that the total loss during a 100 hours period is less than 5%. The rate of prestressing loss 

during the first 20 hours is more pronounced and then a slighter rate is seen, Fig. 6. 

Considering the large load capacity of the 450 mm long grouted pips, observed in the 

tensile test, and the sustainability of the prestressing load confirmed by this test, the 

prestressing system and test setup shown in Fig. 5 is selected to conduct the creep and 

relaxation tests. 

 
 
 

 

Fig. 5. Preliminary test of prestressing system   
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Fig. 6. Prestressing loss (initial prestressing 60%) 
 
 
 
3.5 Tension Stiffening Test 
 

Tension stiffening is the ability of the concrete to carry tension between the cracks, 

which increases the post-cracking stiffness of the cracked member. The modulus of 

elasticity of the reinforcement affects the tension stiffening characteristics of the 

reinforced concrete beams. Pirayeh Gar et al. (2012) have shown that the tension 

stiffening effect in fully prestressed concrete beams is negligible. However, in order to 

study the tension stiffening effect in non-prestressed concrete sections reinforced with 

ARAPREE bars, six concrete specimens measuring 1000×76×76 mm reinforced with 

one ARAPREE bar at the center were selected to test under uniaxial load. The same 

anchorage system as for the tensile test was used at both ends of the specimen and 

connected to the 500 kN MTS machine. The load was applied in a displacement control 

mode with a rate of 0.25 mm per minute, and measured with a load cell attached to the 

top jaw of the MTS machine. The total elongation of the concrete specimen was 

measured using two LVDTs with 800 mm gage length on both sides of the specimen 

which helped to remove the possible bending effects on data recorded. The experimental 

test setup and cracking pattern of the specimens are shown in Fig. 7. 
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Fig. 7. Test setup and cracking pattern in tension stiffening test  
 
 
 

The total uniaxial tensile force applied to the specimen is indeed resisted by the 

concrete section and the ARAPREE bar as well. Given the elastic modulus of the bar 

and the elongation of the specimen, the axial force developed in the bar is calculated, 

and if deducted from the total load, the axial load resisted by the concrete section can be 

subsequently determined. The tensile stress carried by the concrete section versus the 

elongation of the specimen, for specimen 1, has been shown in Fig. 9(a). In this figure, 

the vertical axis represents the tensile stress normalized to the cracking stress and the 

horizontal axis indicates the member strain. The following equation is proposed by 

Bischoff and Paixao (2004) to predict the tension bearing capacity of FRP reinforced 

concrete, ft, in terms of the tensile strain demand, εc, which is used to compare with the 

experimental results 

exp[ 1100( )( / )]t cr c cr f sf f E Eε ε= − −  (1) 
 

where εcr is the strain corresponding to the tensile strength of the concrete fcr, and Ef and 

Es are the modulus of elasticity of FRP bars and steel rebar, respectively. Based on the 



 
 

27 
 

tensile test results, the assumption of Ef / Es=1/3 is made. As shown, a good agreement is 

seen between Eq. (1) and experimental results. For some of the specimens, longitudinal 

cracks at both ends were observed which indicates the debonding of the reinforcing bar 

and concrete. For all the specimens, there is a distinct change in slope of the tension 

stiffening diagram representing a strain at which the cracks stabilizes. The results of 

tension stiffening test is summarized in Table 3. As presented, the average crack spacing 

s=114 mm, the strain when cracks are stabilized εst=0.003, and the strain when the 

tension bearing capacity of the concrete reaches to zero ε0=0.007. Therefore, the tension 

stiffening behavior can be characterized as shown in Fig. 8(a). According to Bischoff 

and Paixao (2004), εst and ε0 for steel reinforced sections are about 0.0008 and 0.002, 

respectively, which are considerably smaller than that of ARAPREE reinforced 

specimens, as illustrated in Fig. 8(b). The reason is ARAPREE bar with a lower modulus 

of elasticity over the conventional steel, acts as a softer spring between the cracks and 

hence requires a larger deformation to transfer the same amount of force to the concrete 

section as compared to the steel reinforced concrete section.  

 
 
 

 
 

 
a) ARAPREE bars b) conventional steel 

Fig. 8. Characterized tesnsion stiffening behavior 
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Table 3- Results of tension stiffening test 
 

 

 

 

 

 

 

 

 

Specimen stε  0ε  s (mm) 

 1 0.0025 0.008 124 

2 0.0040 0.006 107 

3 0.0035 0.007 90 

4 0.0027 0.007 102 

5 0.003 0.007 114 

6 0.0027 0.008 144 

Mean 0.003 0.007 114 
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a) tensile strength of the reinforced concrete 

 

b) tensile strength of the whole specimen 

Fig. 9. Tesnsion stiffening behavior (Specimen 1) 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.002 0.004 0.006 0.008 0.01

N
or

m
al

iz
ed

 te
ns

ile
 s

tre
ng

ht
  (

f t 
/ f

cr
)

Member Strain (εc)

Experiment

Bischoff and Paixao (2004)

0

10

20

30

40

50

0 1 2 3 4 5 6

Te
ns

ile
 lo

ad
 (

kN
)

Elongation (mm)

Total tension

Tension resisted by the bar



 
 

30 
 

3.6 Long-Term Relaxation Test 
 

Six ARAPREE bars each 2210 mm long were tested to study the relaxation during a 

1000 hours period where the loss in stress at constant strain was supposed to be 

measured. Three specimens were prestressed up to 50% of the tensile strength and the 

other three were prestressed up to 60%. As explained, the grouted steel pipes were used 

as the anchorage system for prestressing. After 70 hours, the concrete was poured and 

the prestressed bar was embedded in concrete to mimic the actual surrounding 

environment (Fig. 10). To measure the total prestressing loss, load cells were installed at 

the dead end between the concrete block and anchorage system. The total loss was 

indeed composed of relaxation of the bar, slippage of the bar inside the grouted pipe, and 

increase in strain due to creep. Therefore, the loss due to slippage and creep need to be 

deducted from the total loss to find the net relaxation loss. To measure the loss due to 

slippage, an LVDT was installed at the live end, where the bar was extended out from 

the anchorage pipe. The LVDT recorded the slippage of the bar inside the grouted pipe, 

thereby the strain released could be measured and converted to the stress lost. To find 

the creep strain, the prestressed bar was instrumented at the middle with a strain gage 

protected from the rough concrete environment by a special coating material consisting 

of a microcrystalline wax, Butyl rubber tape, and epoxy resin. In fact, the slippage of the 

tendon is also reflected in the value that the strain gage shows and should not be doubly 

accounted for. LVDTs, load cells, and the strain gage were all connected to a DAQ (data 

acquisition system) that recorded the data every 30 minutes. 
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Fig. 10. Relaxation test setup 
 
 
 

The relaxation loss diagrams have been shown in Figs. 11(a) and 11(b) in a log scale 

for initial prestressing level of 50% and 60%, respectively. The graphs imply an 

approximate bilinear trend between the relaxation loss and logarithm of time. For both 

groups of specimens, the relaxation rate increases after 20 hours. The average of 

relaxation loss for 50% initial prestressing is about 7.5%. For Specimen 5, at the zone 

between the concrete specimen and anchorage system, some surface cracks on the fibers 

of the ARAPREE bar was observed which caused a larger loss compared to Specimens 4 

and 6. This might be due to rubbing the bar against the concrete block when prestressing 

operation. The average of relaxation loss for Specimens 4 and 6, where the initial 

prestressing is 60%, is equal to 9.7%. The experimental results show that the increase in 

initial prestressing raises the relaxation loss. For example, comparison between 

Specimens 1 and 4 at 100 hours reveals the change in relaxation loss from 47.7% to 

56%. If the test was extended beyond 1000 hours, the relaxation would be expected to 
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converge to a constant value. Based on the experimental results, it can be concluded that 

for 1000 hours period, the relaxation loss varies between 6-10% depending upon the 

initial prestressing ratio. The summary of the long-term relaxation test is presented in 

Table 4. Pouring the concrete after 70 hours seems not to have any effect on the rate of 

relaxation loss. The data recorded confirmed that more than 90% of the whole 

prestressing loss is induced by the relaxation and the share of creep and slippage is very 

small. The typical relaxation of stress-relieved steel strands at 1000 hours is between 8-

12% depending on the initial stress ratio ranged from 70-80% (Naaman 2004), which 

shows that the ARAPREE bars and prestressing steel strands are very similar from 

relaxation view point.  

 
 
 

Table 4- Results of long-term relaxation test (1000 hours) 

Specimen Initial prestressing (%) Relaxation loss (%) Average relaxation 
loss (%) 

1 49.4 5.5 

7.5 2 47.5 9.2 

3 49.7 8 

4 57.5 10.2 

9.7 5 57.8 14.6 

6 55 9.3 
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a) 50%  initial prestresing 

 
b) 60% initial prestressing 

Fig. 11. Prestressing loss due to relaxation for different levels of initial prestressing 
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3.7 Long-Term Creep Test 
 

Similar to the relaxation test, six ARAPREE bars each 2388 mm long were selected 

for creep test to measure the increase in strain at constant stress. The major difference 

between the test setup of the relaxation and creep test was using disc springs (Belleville 

washer) for each bar at the dead end between the pipe anchorage and concrete block, as 

shown in Fig. 12, which helped to keep the load constant. A flat steel plate was used 

between the spring and load cell to allow for a better seat of the anchorage pipe. LVDTs 

were connected to the end of the bars extended out from the anchorage at the live end to 

measure the possible slippage of the bar inside the pipe. Each bar was instrumented at 

the middle with a strain gage to measure the change in strain after prestressing. All the 

instrumentations were connected to DAQ where the data were recorded every 30 

minutes. Three specimens were prestressed up to 50% of the tensile capacity and the 

other three were prestressed up to 60%. The concrete was poured about 70 hours after 

prestressing and the creep deformation was measured during a 1000 hours period. The 

initial prestressing ratio was limited and not expected to lead to rupture and the test was 

basically considered as a long-term creep test. Creep deformation was basically 

composed of three phases: primary, secondary, and tertiary, as shown in Fig. 13. The 

primary phase starts with high strain rate and quickly converges to a constant strain rate, 

so called secondary phase, which is typically the longest phase. If the prestressing is 

very high, the secondary phase is followed by the tertiary phase where the strain rate 

starts to considerably raise resulting in rupture of the bar. As shown in Fig. 14(a), for the 

first three specimens with 50% initial prestressing, the primary phase almost lasts 200 

hours with about 1.5% increase in strain. At the end of 1000 hours almost 4% increase in 

strain is observed, however the secondary phase is not fully developed during this time 

as no sign of considerable increase in strain rate implying the tertiary phase is seen. For 

Specimen 1, the data is only available for 700 hours due to sudden slippage of the bar 

inside the grouted pipe. For specimens prestressed to 60%, the primary phase is about 

150 hours. For Specimens 5 and 6, sudden slippage of the bar inside the grouted pipe 

happened after 150 and 350 hours, respectively, and hence the secondary phase could 
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not be well captured. Similarly, the Specimen 4 failed due to slippage of the bar after 

550 hours resulting in 6.5% increase in strain. The summary of the long-term creep test 

is presented in Table 5. As the spring holds the load almost constant and prevents the 

drop in load, the slippage of the prestressed bar inside the potted anchorage is more 

critical compared to the relaxation test where the drop in the load is allowed. Therefore, 

a longer pipe is recommended for creep test. Comparison between Specimen 1 and 4 

after 500 hours shows that changing the initial prestressing from 50% to 60% raises the 

change in strain from 3.5% to 6.5%. The experimental results confirm that within 50-

60% range of initial prestressing, the tertiary phase is very unlikely to be achieved 

during 1000 hours. However, ACI 440.1R (2006) considers a safety factor of 1.67 and 

limits the allowable sustained stress to 30% which is very low compared to existing 

experimental results. 

 
 
 

 
Fig. 12. Creep test setup (dead end) 
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Fig. 13. Three stages of creep deformation 

 
 
 
 

Table 5- Results of long-term creep test 

Specimen Initial prestressing 
(%) 

Duration 
(hours) 

Raise in strain 
(%) 

1 50 700 4 
2 50 1000 4 
3 50 1000 3.5 
4 60 550 6.5 
5 60 100 1.4 
6 60 200 4.5 
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a) 50%  initial prestresing 

 
60%  initial prestresing 

Fig. 14. Increase in strain due to creep 

 
 
 
It should be noted that between 300 and 450 hours the data was not recorded by DAQ 

which has been shown with a straight line in Fig. 14. 
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3.8 Short-Term Creep Test 
 

To study the short-term creep response, creep test was repeated with higher levels of 

initial prestressing load. The test setup and instrumentation was exactly the same as the 

tensile test. Five specimens were tested with 80 and 85% initial prestressing, however 

the slippage problem occurred for two of the specimens and terminated the test. As 

illustrated in Fig. 15, for the specimen with 80% initial prestressing, the primary phase 

of creep deformation lasted around 2.5 hours and the tendon ruptured after about 11 

hours. For the first specimen with 85% initial prestressing, the primary phase of creep 

deformation lasted about 1 hour and the specimen failed around 3 hours. For the second 

specimen prestressed up to 85%, step wise rupture of the fibers was observed and the 

tendon suddenly failed after 2 hours. The experimental results show that the initial 

prestressing significantly affects the creep-rupture strength of the ARAPREE bars. 
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a) 80% initial prestressing 

 
b) 85% initial prestressing 

 
c) 85% initial prestressing 

Fig. 15. Short-term creep test 
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3.9 Conclusions 
 

Uniaxial characteristics of ARAPREE bar, as a type of AFRP, with 10 mm diameter 

was experimentally evaluated. The experimental tests included uniaxial tensile test, 

performance test of anchorage system, tension stiffening test, long-term relaxation test, 

long-term creep test, and short-term creep test. The following conclusions are drawn 

from this study: 

 
1- The uniaxial tensile test on six ARAPREE bars showed the following dependable 

values which can be used for analysis and design purposes: modulus of elasticity 

E=69 GPa, strain capacity εu=0.02, and the tensile strength fu=1380 MPa. The 

modulus of elasticity found is somewhat larger than the range suggested by ACI 

440.4R (2004), 62-64 GPa. The ends of each bar were anchored through steel 

pipes filled with expansive grout. During the test no local failure was observed at 

the anchorage location and the bar eventually failed in a sudden and brittle 

fashion due to rupture of the tendons. 

 
2- The conventional anchorage system was used for another set of uniaxial tensile 

test. The mean failure stress was found 990 MPa, about 67% of the tensile 

strength of the bar, which is larger than the typical range of 50-60% for 

prestressing, but with a very low safety margin. Further tests on specimens with 

50% prestressing to study the sustainability of the anchorage showed that the 

anchorage system is not capable of sustaining the load for a short or long period 

of time and the specimen locally failed at anchorage after about 20 hours. 

 
3- An anchorage system was designed for prestressing operation which consisted of 

steel pipes filled with an expansive and quick setting grout. The anchorage 

included two pipes at the live end: in front and behind the hydraulic jack. The 

front pipe was basically used to pretension the bar and the rear pipe was used to 

lock the prestressing load upon reaching to the desirable level. The preliminary 
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tests showed a successful prestressing up to 60% where the total prestressing loss 

during 100 hours was less than 5%. 

 
4- Tension stiffening test was conducted on six specimens to study the post-

cracking tensile strength of the concrete reinforced with ARAPREE bars. 

Tension stiffening behavior is highly dependent on the elastic modulus of 

reinforcement. The experimental results showed a considerable tensile strength 

after cracking where the average member strain at crack stabilization point was 

found about 0.003. The average member strain corresponding to zero tensile 

strength was found equal to 0.007, and the average crack spacing was equal to 

114 mm. The equation proposed by Bischoff and Paixao (2004) showed a good 

agreement with experimental data.  

 
5- Long-term relaxation test was conducted on six specimens prestressed to 50% 

and 60% for a period of 1000 hours. The average relaxation loss was found equal 

to 7.5% and 9.7% for 50% and 60% initial prestressing, respectively. The 

increase in relaxation loss as a result of higher initial prestressing was evident. In 

a more general conclusion, the relaxation loss for 50-60% initial prestressing was 

ranged between 6-10% during 1000 hours. Taking a comparative look, the 

relaxation loss of prestressing steel strand for 70-80% initial prestressing is 

typically ranged between 8-12%.  

 
6- Long-term creep test was conducted on six specimens prestressed to 50% and 

60% of the tensile capacity. The primary phase of creep strain was found almost 

within the first 200 and 150 hours for 50% and 60% initial prestressing, 

respectively. The secondary phase could not fully develop as the test was 

terminated at 1000 hours and the initial prestressing was not very high. For 

specimens with 50% initial prestressing, the average increase in strain after 1000 

hours was found equal to 4%. For specimens with 60% initial prestressing, the 

slippage of the bar inside the anchorage pipes was found as a problem that 



 
 

42 
 

terminated the test before reaching to 1000 hours. Specimen 4 showed 6.5% 

increase in strain after 550 hours. Comparison showed that the increase in initial 

prestressing significantly raises the creep strain. Although ACI 440.1R (2006) 

uses a high safety factor and recommends the sustained stress level equal to 30%, 

the experimental results implies that within the initial prestressing range of 50-

60%, the tertiary phase of creep strain which leads to rupture is very unlikely to 

occur. 

 
7- Short-term creep test was also conducted on five specimens with 80% and 85% 

initial prestressing. Two specimens failed due to slippage and did not end up with 

desirable results. The results gained from the other three specimens revealed a 

sudden rupture after couple of hours.  

 
8- Based on the experimental results, initial prestressing higher than 60% is not 

recommended. 
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4. EXPERIMENTAL INVESTIGATION ON AFRP CONCRETE 

BRIDGE DECK SLAB WITH FULL-DEPTH PRECAST 

PRESTRESSED PANELS 
 
4.1 Introduction 
 

Critical infrastructure of the United States, particularly bridge decks, is deteriorating 

due to corrosion of reinforcing steel. Studies ascertained that 14% of the total of 587,964 

bridges is structurally deficient due to corrosion issues. The cost to maintain the nation’s 

bridges during the 20-year period from 1999 to 2019 is estimated to be $5.8 billion per 

year, and the cost to improve and eliminate deficiencies over the same period is 

evaluated to be $10.6 billion (NCHRP 2006). To put this budget into perspective, a 

comparison can be made with the US president’s budget request, $7.4 billion, to 

strengthen the nation's health & human service infrastructure & workforce for year 

2013 (NIH 2012).  

In order to overcome the corrosion-related issues, FRP bars which are inherently 

corrosion resistant have been growingly used as an alternative for either conventional 

reinforcing or prestressing steel over the past couple of decades. Noticeable number of 

experimental laboratory research on application of FRP bars for bridge deck slabs has 

been conducted to this end (Gamal et al. 2005 and 2007, Rahman et al. 2000, Hassan et 

al. 2000, Salakawy and Benmokrane 2004a), where obtained experimental results 

confirm that the satisfactory structural behavior can be achieved by employing FRP bars 

in place of conventional steel. However, the test specimens typically do not reflect an 

actual bridge deck in a full-scale with realistic boundary conditions and structural details 

capable of revealing the real failure mode, cracking pattern, and load capacity as well as 

addressing the constructability issues. As a result of such experimental studies, 

application of FRP bars has been recently transferred from laboratory to the field. 

Headingley Bridge in Manitoba (Rizkalla and Tadros 1994), Joffre Bridge in 

Sherbrooke, Quebec (Benmokrane et al. 2004), and Magog Bridge in Quebec (Salakawy 
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and Benmokrane 2004b) are the examples of the cast-in-place bridge deck slabs 

reinforced with FRP bars. Long-term monitoring of these bridge deck slabs in terms of 

deflection, strain in FRP reinforcement, and cracking are typically carried out using fiber 

optic sensors (Benmokrane et al. 2001).  

Although FRP bars seem to be successfully employed in cast-in-place bridge deck 

slabs, less attention has been paid to the application of FRP bars for bridge deck slabs 

with full-depth precast prestressed panels. In this system the precast prestressed panels 

are longitudinally connected through the shear keys which are typically female-to-

female connections (Issa et al. 1995). The shear transfer between the panels and support 

girders is achieved via composite shear pockets where a mechanical connector like high 

strength bolts or threaded rods is embedded in the pocket. The precast panels are 

reinforced longitudinally, in parallel with traffic direction, and prestressed transversely, 

perpendicular to the traffic direction. Construction of a bridge deck slab with full-depth 

FRP concrete precast prestressed panels can offer a structural system with the following 

advantages: (1) accelerated construction, reduced on-site labor, ease in construction, and 

increased safety (Issa et al. 2000); (2) obviating the need for formwork and falsework to 

cast the overhang which is a costly, time-consuming, and at some points dangerous 

process (Mander et al. 2010); (3) requiring low tolerance of error in construction and 

placement of the panels; (4) no risk of corrosion-induced deterioration as a result of 

replacing the conventional steel with FRP bars, and hence increased durability and 

serviceability of the panels; (5) minimum need to overlap the FRP bars, thereby less 

material used and no concern as to flexural strength of the overlap part; (6) no need to 

step on the FRP grid when placement of the bars or casting the concrete and hence very 

low risk of damaging the bars which is a potential concern since FRP bars are not as 

strong as steel in transverse direction; (7) high quality control in construction stages 

particularly the prestressing operation; (8) mitigating the potential for cracking at 

negative moment regions like around the shear pockets as a result of transverse 

prestressing, and hence minimizing the ingress of moisture and chloride; (9) very 
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efficient system for possible rehabilitation program in future as it shortens the induced 

down time and minimizes the traffic disturbances.  

On the other hand, there might be some concerns in design and construction of the 

bridge deck slab with full-depth FRP concrete precast prestressed panels that need to be 

considered: (1) shear transfer between the adjacent panels is critical to achieve a 

desirable level of serviceability, therefore improper design of shear key or incorrect 

placement of the grout resulting in voids can significantly affect the serviceability; (2) 

reliable and cost-effective anchorage system to prestress the FRP bars is required 

capable of sustaining the prestressing force for a short period of time, say 72 hours, 

without causing a significant prestressing loss; (3) FRP bars are brittle material so it may 

not be possible to bend them at precast plant, and in case of need, they should be 

fabricated in a bent shape; (4) long-term behavior of FRP bars such as fatigue and creep-

rupture characteristics needs to be fully studied as it affects the serviceability of the deck 

slab.  

This chapter presents the state-of-practice on AFRP concrete bridge deck slab with 

full-depth precast prestressed panels as an ideal structural system that can be used not 

only to provide an efficient construction but also to enhance the durability and long-term 

performance of the precast panels; thereby the serviceability of the bridge deck slab is 

raised. The precast panels are reinforced and prestressed with AFRP bas parallel with 

and perpendicular to the traffic direction, respectively. Compared to carbon or glass fiber 

reinforced polymer (CFRP or GFRP) bars, AFRP bars have an acceptable fatigue and 

creep-rupture characteristics as well as a reasonable price (Trejo et al. 2000), and hence 

were selected as reinforcement. All the construction stages are implemented in the 

laboratory environment to resemble the off-site precast plant conditions. Dimensions, 

boundary conditions, structural detail, and loading configurations are all realistically 

modeled to reflect an actual bridge deck slab where the constructability issues and 

structural performance can be truly evaluated. The structural performance of the bridge 

deck slab is investigated in terms of load capacity of the interior span and overhang, 
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induced deformability, deflection, cracking pattern, and failure modes. Sufficiency of the 

structural details such as panel-to-panel seam, and slab-to-beam connections are also 

evaluated. Subsequently, the results are checked according to AASHTO to see if the 

design code requirements are met. At the end, comparative study is subsequently 

conducted with the control specimen reinforced with conventional steel tested by 

Mander et al. (2010).  

4.2 Full-Depth Precast Prestressed Panels 
 
A full-scale bridge deck slab investigated in this research consisted of AFRP 

concrete precast prestressed panels (1) which were connected in the longitudinal 

direction through a female-to-female shear key (2). The precast panels achieve the shear 

transfer via composite pockets (3) where a mechanical connector, such as high strength 

bolts or threaded rods, is typically used inside the pocket as a shear connector (4). This 

connection provided a full composite action between the bridge deck slab and the 

support girders. As shown in Fig. 16, the AFRP bars were used to prestress (5) the 

precast panels in the transverse direction, and to reinforce (6) them in the longitudinal 

direction. The longitudinal non-prestressed bars were bent at the panel-to-panel seam, as 

will be discussed, in order to enhance the bond between the panels and provide adequate 

shear transfer which affects the overall serviceability of the bridge deck slab. To grade 

the bridge deck slab to the appropriate level, a haunch (7) or gap with a typical thickness 

ranged from 15 to 100 mm was considered between the topside of the support girder and 

underside of the precast panel. To implement this, compressible foam (8) was attached to 

the perimeter of the girder’s topside with adhesive and then the precast panel was placed 

on this foam. The precast panel was subsequently leveled taking the advantage of 

leveling bolts (9) already embedded in the panel. Once the panels were leveled, the 

haunch was filled using a high performance grout with enough flowability, appropriate 

consistency, and desirable compressive strength upon hardening. To prevent grout 

leakage when casting the haunch, adhesive was used to attach the foam. The composite 

pockets can be filled with either high performance grout or structural concrete with an 

appropriate mixture. At the last step, the panel-to-panel seam was casted with structural 
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concrete. Surface finishing may be required at the location of pockets and panel-to-panel 

seam in case of having unacceptable riding surface. Four lifting bolts were embedded in 

each panel to lift the precast prestressed panel with a minimum possible deflection. 

 
 
 

 
 

Fig. 16. AFRP concrete bridge deck slab with full-depth precast prestressed panels 
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4.3 Test Specimen Construction 
 
4.3.1 Dimensions and reinforcing detail 
 

Two full-depth precast prestressed panels, measuring 5490 × 2440 × 200 mm, were 

constructed. The precast panels were supported by three steel reinforced concrete beams 

spaced at 1830 mm on center, which rested on the strong-floor of the laboratory. As 

shown in Fig. 17, the bridge deck slab has two interior spans and two overhangs on both 

sides. Each precast panel was connected to the support beams via nine shear composite 

pockets each measuring 254 × 178 mm, where two high strength bolts with 25 mm 

diameter were coupled with their conjugate through a coupler already embedded in the 

support beams. The precast panels were concentrically prestressed with AFRP bars in 

the transverse direction, 125 mm on center, and reinforced with AFRP bars at top and 

bottom layers in the longitudinal direction, 150 mm on center. The longitudinal bar at 

the top and bottom layers of the section was actually one continuous bar fully bent in a U 

shape where the legs formed the top and bottom bars and the bent portion was placed at 

the panel-to-panel seam to provide a better bond between the panels and increase the 

shear transfer capacity. The AFRP bars were continuous through the pockets without 

crossing the shear bolts. Compressible foam, 63 mm thick, was attached to the topside 

edge of the beams with adhesive to provide a haunch between the soffit of the precast 

panels and support beams. Three leveling bolts composed of nuts and threaded rods with 

plastic housing were embedded in the precast panels, one on top of each support beam to 

level the precast panels upon placing on the foam. Since the panels were prestressed, 

four lifting points were conservatively implemented to reduce the deflection of the panel 

when lifted, and to be well safe from buckling. The panels were connected in the 

longitudinal direction through a female-to-female shear key with 150 mm width. When 

precast panels were placed on the support beams and leveled, the high performance 

SikaGrout 212 was used to fill the entire haunch and half of the shear pocket. The other 

half of the shear pocket along with the panel-to-panel seam was casted using the 

structural concrete.  Fig. 18 shows the placement of support beams and precast panels. 
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a) plan view of the bridge deck slab 

 
b) longitudinal and transverse sections 

Fig. 17. Test specimen layout (Dimension: mm) 
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a) support beams placed in their position 

 
a) precast prestressed panels placed on support beams 

Fig. 18. Construction of the bridge deck slab  
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4.3.2 Material properties 
 

AFRP bars, ARAPREE type, with 10 mm diameter were used to reinforce and 

prestress the precast panels. The uniaxial tensile test showed the ultimate stress 1380 

MPa, the strain capacity 0.02, and the modulus of elasticity 69 GPa (Medina 2011). The 

AFRP bars were prestressed up to 60% of their capacity, where the preliminary tests 

confirmed 5% loss due to relaxation of the bars and creep of the anchorage system 

during 72 hours gap between pretensioning and casting the panel. Therefore the effective 

prestressing force was assumed to be 55% of the capacity. The concrete mixture of the 

precast panels was designed for 41.5 MPa target compressive strength with 31.5 mm 

maximum aggregate size and 100 mm slump. The standard cylinder test showed the 

concrete compressive strength of the first panel 41 MPa, second panel 35 MPa, and 

panel-to-panel seam 38 MPa. The support beams were casted with a higher strength 

concrete, 48 MPa, to prevent any possible crushing or premature failure at the support 

when loading the bridge deck slab. Concrete compressive strength for different parts of 

the bridge deck is presented in Table 6, where a minimum of three specimens was used 

per component. 

 
 
 

Table 6- Concrete compressive strength, day of test 

Component Strength (MPa) 

First deck slab panel 41.4  

Second deck slab panel 35 

Support beams 48.3 

Panel-to-panel seam 38 

Haunch (grout) 35 
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4.3.3 Prestressing operation 
 

One of the challenging steps in construction of the precast prestressed panels was 

pretensioning the AFRP bars. As discussed in Chapter 3, the conventional anchorage 

system composed of hard plastic wedges and stainless steel casing fabricated by the 

manufacturer failed to provide a reliable anchorage capable of sustaining the prestressing 

load. The prestressing method used for creep and relaxation tests with the same steel 

pipes, grouting material, and hydraulic jack was employed herein to prestress the panels.  

As illustrated in Fig. 19, the designed system included: (1) steel pipes already filled with 

an expansive and quick setting grout at the dead end to anchor the bars, (2) two holes on 

the pipes’ surface to inject the grout, (3) plastic stoppers at both end of the pipes to 

prevent leakage of the grout and to hold the ARAPREE bar at the center of the pipe, (4) 

thick steel plates with a central hole as support of the dead anchorage, (5) steel double 

header beams as a part of prestressing frame and support of the thick steel plates, (6) 

steel longitudinal beams as a part of prestressing frame to connect the header beams, (7) 

wood formwork of the panel inside the prestressing system, (8) ARAPREE bars, (9) 

steel pipes at the live end and behind the hydraulic jack to lock the system upon reaching 

to desirable level of prestressing, (10) steel pipe in front of the hydraulic jack to 

pretension the bar, (11) hydraulic jack with central hole, (12) steel plate between the 

hydraulic jack and rear steel pipe for a better seat of hydraulic jack on the rear pipe. The 

concrete panels were successfully prestressed using this system. Only one failure was 

observed as a result of poor grouting and weak gripping in anchorage which was 

subsequently fixed. Fig. 20 shows the prestressing setup and operation implemented in 

laboratory. 
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Fig. 19. Prestressing system 
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Fig. 20. Prestressing operation 

 
 

Prestressing frame 
Dead end 

Live end 

Live end 

Front pipe for prestressing 

Dead end  

Rear pipe for locking the system 

Hydraulic jack with central 
hole 



 
 

55 
 

4.3.4 Panel-to-panel seam detail 
 

To increase the bond and shear transfer capacity of the panel-to-panel seam, the 

longitudinal reinforcing bars were at the joint. Since FRP bars are brittle material, they 

cannot be easily bent like conventional steel, and in fact, they should be fabricated in a 

bent shape. However, preliminary tests showed that the AFRP bars, ARAPREE type, 

can be bent taking the advantage of their thermoplastic characteristics. The bending 

method of the AFRP bars included heating the corresponding zone to somewhat melt the 

resin of the surface, hammering the heated zone to widen the surface, and then twisting 

the bar around a fixed pipe with an appropriate diameter to form the bent zone. When 

hammering, a sheet of hard plastic was used on AFRP bars to avoid the direct contact of 

hammer and bar and damaging the fibers. Implementing this method, AFRP bars were 

successfully bent in a U shape where the legs formed the top and bottom reinforcement 

in the longitudinal direction and the bent portion was placed right at the panel-to-panel 

seam. Fig. 21 shows the bent bars, and the detail of reinforcement at the panel-to-panel 

seam. 

4.3.5 Closure pour 
 

Closure pour was the last step in construction of the bridge deck slab. A non-shrink 

cementitious grout, SikaGrout 212 was used to fill the entire haunch and half of each 

composite pocket. Low bleed, low heat build-up, multiple fluidity, and ease in use are 

the advantages of this grout. To mix the grout, the optimum water-to-powder ratio of 

w/p=0.19 was selected based on the research done by Mander (2009). To control the 

performance of the grout, the flowability and consistency tests were conducted 

according to ASTM C939 and C230/C230M, respectively. In flowability test, the efflux 

time was found equal to 20, and in consistency test through the flow cone the diameter 

of the spread grout was measured equal to 216 mm. The specified cube test showed the 

compressive strength of the grout equal to 35 MPa. The results of the grout tests confirm 

a suitable structural grout. 
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a) top view b) front view 

 

c) reinforcement detail 

Fig. 21. Panel-to-panel seam detail 

 
 
 

Fig. 22 shows the consistency and flowability tests of the grout as well as the 

composite pocket filled to the half. The other half of the composite pocket and the panel-

to-panel seam are subsequently filled with structural concrete. 

4.4 Control Specimen 
 

Similar bridge deck slab specimen; however, reinforced with conventional steel, with 

the same structural geometry, dimensions, and loading configuration was tested by 

Mander et al. (2010), which is selected as the control specimen of the current research to 

compare the structural behavior under corresponding load cases. The control specimen’s 

slab consists of 100 mm thick stay-in-place (SIP) panels at bottom and 100 mm thick 

cast-in-place (CIP) panels at top. The bottom SIP panels were transversely prestressed 

using 9.5 mm diameter tendons and longitudinally reinforced with welded wire mesh at 

465 mm2/m.   
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d) consistency test 

 

a) flowability test b) composite pocket 

Fig. 22. Closure pour with SikaGrout 212 

 
 
 

The top CIP panels were transversely and longitudinally reinforced with D16 and 

D12 at 150 mm on center, respectively. The bottom SIP panels span between the support 

beams and act as a formwork for the top CIP panels. Two full-scale specimens were 

constructed in that research with different overhangs on both sides; precast, lab cast and 

conventional CIP overhang. To compare the amount of reinforcement used in AFRP and 

control specimens, the reinforcement ratio ρit is defined as the total area of reinforcement 

to the entire cross sectional area of the concrete slab in i direction. As shown in Table 7, 

the reinforcement ratios in y direction are close, however, in x direction the 

reinforcement ratio in control specimen is three times that of the AFRP specimen. The 

moment capacities for bridge deck slab section per unit width are also presented in Table 

7. Compared to the control specimen, the AFRP concrete slab is almost isotropically 

reinforced in the sense that the moment capacities in both x and y directions are very 

close.  
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Table 7- Moment capacities per unit width (kNm/m) and reinforcement ratios 

Section Mx Mx' My My' ρxt ρyt 

Control specimen- 
interior span 106.97 100.26 53.02 58.85 

0.009 0.006 
Control specimen- 
precast overhang 124.5 96.5 31.0 66.6 

AFRP specimen 70 70 76 76 0.003 0.005 

 
 
 
4.5 Loading Plan and Test Setup 
 

According to AASHTO LRFD Bridge Design Specification (2010), the wheel load of 

HS20 truck is equal to 71 kN. If the lane factor of 1.2, impact factor of 1.33, and live 

factor of 1.75 are applied, the maximum factored load will be estimated about 200 kN. 

The bridge deck slab was tested under monotonically increased concentrated loads until 

failure. Seven different load cases were considered through which the interior spans and 

overhangs could be tested for wheel and axle loads. The load was applied through a 250 

× 500 mm steel plate which represents the tire footprint per AASHTO LRFD (2010). 

The steel plate was 75 mm thick and seated on a 12.5 mm thick neoprene pad. A 2200 

kN actuator was used for loading where the magnitude of the applied load was measured 

through an in-series load cell connected to the tip of the actuator.  
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As shown in Fig. 23, load cases 1, and 4 represent the axle load, and load case 7 

indicates the wheel load on the interior span. Also, load cases 2 and 5 indicate the wheel 

load and axle load on the overhangs, respectively. Load cases 3 and 6 don’t represent an 

actual load case on a bridge deck slab and were tested just to check the capacity of the 

corners. All the load cases, except for load case 4, were applied close to the seam, to 

cause the critical case of loading and evaluate the structural sufficiency of the joint. 

AASHTO LRFD (2010) stipulates the center of the load on overhang to be 300 mm from 

the barrier face; however, in this test the load was applied on the edge of the overhang to 

induce a larger moment and to measure the flexural capacity of the overhang. String pots 

were used underneath the bridge deck spaced at 150 mm center-to-center to record the 

deflection profile in both x and y directions which will be used to find out the curvature 

distribution. In order to map the cracking pattern, the top and bottom surface of the slab 

were meshed with a 200 × 200 mm grid labeled from A to Z in x direction and 1 to 23 in 

y direction.  The location and arrangement of the string pots for each load case is shown 

in Fig. 24, and the test setup for load case 1, as an instance, is presented in Fig. 25. 
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a) Loading frame 

 
b) Loading plan 

Fig. 23. Testing Plan 
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a) load case 1 b) load case2  

  
c) load case 3 (same as 6) d) load case 4 

  
e) load case 5 f) load case 7 

Fig. 24. Location of string pots for each load case 
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Fig. 25. Test setup for load case 1 (axle load on interior span) 
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4.6 Experimental Results 
 
4.6.1 Overhang 
 

Flexural cracks were first observed close to the exterior support beam and propagated 

in parallel with it due to the large negative moments that developed at the support. As 

shown in Fig. 26(a), the wheel load and deflection at cracking was found about 180 kN 

and 5 mm for load case 2, and 120 kN and 2 mm for load case 5, respectively. With 

increasing the load, the flexural cracks propagated around the loading plate and reached 

to the edge of the slab in an approximate triangle shape. Under load case 5, complete 

flexural mechanism developed at both panels and very large deformability was achieved. 

However, under load case 2 compound shear-flexural failure was observed including 

flexural mechanism of the deck panel subjected to the wheel load and shear failure at the 

seam. The cracking patterns are presented in Fig. 27, where the black lines indicate the 

cracks on top and the gray lines represent the cracks beneath the bridge deck.  

The ultimate wheel load and deflection was observed equal to 320 kN and 25 mm for 

load case 2, and 225 kN and 35 mm for load case 5, respectively. The load capacity of 

the slab is seen to be well above the maximum factored load, 200 kN. For load case 5, 

the average deflection underneath the loading plates was used to depict the diagram as 

the deflection of the loading plates was very similar. Table 8 shows the summary of the 

test results. As seen, the ultimate to cracking load ratio is equal to 18 for either load 

cases 2 or 5. Also, the maximum to cracking deflection is about 4.9 and 17.5 for load 

cases 2 and 5, respectively, which demonstrates considerable deformability, particularly 

for load case 5. Unloading of the load case 5 showed a significant energy absorption 

which resulted in 16 mm residual plastic deflection, say almost half of the total 

deflection. Comparison between the two load cases confirms a larger deformability in 

load case 5 as the load is applied through the axle in a less concentrated manner 

compared to the single wheel load. Complete transfer of the flexural cracks between the 

panels is indeed a sign of sufficient structural connectivity at panel-to-panel seam and 

integrity of the bridge deck panels. This can also be inferred by studying the deflection 
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profile and curvature distribution along the traffic direction (y axis). The ratio of the 

flexural stiffness at failure (Ku) to that of the uncracked section (Kg) can be indicative of 

flexure contribution at failure. This can be inferred by measuring the slope of the load-

deflection diagram. As shown in Table 8, this ratio is almost zero for load cases 2 and 5 

which demonstrates that the failure mechanism of the overhang is mainly governed by 

flexure. Although load cases 3 and 6 do not represent an actual loading case, the 

deformability observed is considerable. 

4.6.2 Interior span 
 

 At interior spans, similar to the overhangs, flexural cracks were first observed on top 

of the slab and close to the support beams and beneath the slab right below the loading 

plate. For all load cases 1, 4, and 7 the load and deflection at cracking was found 

approximately 250 kN and 1.5 mm, respectively. Increase in load resulted in propagation 

of the top cracks around the loading plates and the bottom cracks toward the edge of the 

supports in a diagonal manner, and the slab eventually failed in a punching fashion; 

however, flexural cracks were evident and sufficient warning was achieved before the 

failure. The load deflection diagram and cracking patterns at failure are shown in Fig. 

26(b) and 27, respectively. The ultimate strength for load cases 1, 4, and 7 were 

observed equal to 700 kN, 770 kN, and 880 kN, respectively. The behavior of load cases 

4 and 7 are very similar as they both have one wheel load on the interior span. But, load 

case 1 with two wheel loads (axle load) on the same interior span results in a larger 

deformability due to transferring the load in a more distributed manner.  

The maximum deflection observed is equal to 19 mm, 12.5 mm, and 13.5 mm for 

load cases 1, 4, and 7, respectively. No evidence of local failure at the panel-to-panel 

seam was observed in load cases 1 and 7, which indicates a sufficient connectivity 

between the panels. The maximum-to-cracking load and deflection ratios are 

summarized in Table 8. The ratio of the flexural stiffness at failure to that of uncracked 

section implies that the failure was mostly governed by flexure; however, shear also 

contributed in the failure mechanism due to the restrained edges. The deflection limit of 
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span/800 has been stipulated in AASHTO LRFD (2010) for vehicular loads. This 

deflection limit is to control the vibration, which is a serviceability-related issue and not 

a safety-related issue. The deflection of the interior span at service load is about 1 mm 

for all load cases, which is less than the allowable amount span/800= 2.25 mm. 

 
 
 

 

 
a) load-deflection response (overhang) 

 
b) load deflection response  (interior span) 

Fig. 26. Experimental results: load-deflection diagrams 
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wheel load at 
corner wheel loads on adjacent interior spans wheel load at 

corner 

   
axle load on 

overhang bridge deck slab specimen wheel load on 
overhang 

  

wheel load on interior span axle load on interior span 

Fig. 27. Experimental results: cracking pattern at failure 
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Table 8- Summary of the test results 
 

Load case Pu (kN) Pcr (kN) ∆u (mm) ∆cr (mm) Pu / Pcr ∆u / ∆cr Ku / Kg 

1 700 250 19 1.5 2.8 12.7 0.028 

2 320 180 24.5 5 1.8 4.9 0 

3 117 75 - 1.5 1.6 - 0 

4 770 250 12.5 1.5 3.1 8.3 0.085 

5 225 125 35 2 1.8 17.5 0 

6 100 75 25 1.5 1.3 16.7 0 

7 880 250 13.5 1.5 3.5 9 0.112 
 

 
 
 
4.7 Evaluation of the Test Results 
 
4.7.1 Flexural behavior 
 

The cracking pattern and the deformability observed in the load-deflection diagram 

implied the governing flexural behavior of the bridge deck slab, particularly at overhang. 

At interior spans, after flexural cracks were developed, the bridge deck slab eventually 

failed in a punching manner as a result of the restrained edges. The extent of flexural 

mechanism can be further investigated by studying the deflection profile and curvature 

distribution close to failure. Curvature distribution is computed as the second derivative 

of the deflection profile gained from the data recorded by the string pots. Both x and y 

directions perpendicular to and parallel with the traffic direction are studied herein; 

however, x direction as the stiffer direction of the two-way slab undergoes most of the 

flexural demand and develop larger curvature. The normalized curvature is defined 

herein as the actual curvature multiplied by the height of the section (h=200 mm). The 

deflection profiles and curvature distributions are presented in Fig. 28-34 along with the 

string pots that were installed underneath the deck (referring to Fig. 24). 
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For load case 1, as an instance of loading on interior span, the maximum deflection 

underneath the load is equal to 19 mm. The observed deflection at the support is not zero 

firstly because the closest string pot to the support is at 2.5 mm away from the beam 

face, and secondly due to the extensive cracking and small rotation of the support beams. 

Since only the middle beam is tightened to the strong floor, the rotation of the exterior 

beam is larger which causes larger deflection at the location of the closest string pot to 

the support. However, once small rotations took place, the beams act as a fixed support. 

This is confirmed by the considerable negative moments developed at the support 

showing its rotational rigidity. The maximum curvature at both midspan and supports is 

seen to be equal to 0.0075, which is about 38% of the curvature capacity of the 

corresponding strip in x direction, 0.02, and 19 times the cracking curvature (see Chapter 

5). The large curvature developed at the support and beneath the load indicates the 

considerable moment redistribution and deformability upon cracking until failure of the 

slab. Contribution of the flexural behavior seems to be larger for load case 5 at the 

overhang compared to load case 1 due to less constraint at the edge. The maximum 

deflection at the free edge of the slab is 35 mm and the maximum curvature close to the 

support is about 0.01 which is 50% of the curvature capacity of the corresponding strip 

in x direction and 25 times the cracking curvature. The governing flexural mechanism is 

evident from the curvature distribution. 
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Fig. 28. Deflection profile and curvature distributions (load case 1) 
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Fig. 29. Deflection profile and curvature distributions (load case 2) 
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Fig. 30. Deflection profile and curvature distributions (load case 3) 
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Fig. 31. Deflection profile and curvature distributions (load case 4) 
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Fig. 32. Deflection profile and curvature distributions (load case 5) 
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Fig. 33. Deflection profile and curvature distributions (load case 6) 
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Fig. 34. Deflection profile and curvature distributions (load case 7) 
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4.7.2 Punching shear strength 
 

While flexural behavior seems to govern the overall behavior of the bridge deck slab 

in both interior spans and overhangs, the failure mechanism of the interior span takes 

place in a punching manner due to restrained edges. Load deflection diagram and Ku/Kg 

ratio for the interior span confirms that shear somewhat contributes to the failure 

mechanism. Therefore, it is interesting to evaluate the punching shear strength of the 

bridge deck slab at interior span based on different existing equations.  

Current equations in design codes were empirically derived for two-way slabs 

reinforced with conventional steel rebar. Researchers have recently modified the code 

equations to apply them to FRP reinforced slabs based on their experimental studies. 

These equations are presented in Table 9. The definition of the parameters can be found 

in the references. In non-prestressed direction (y direction), the shear strength predicted 

by existing equations is directly used in calculations; however, in x direction the shear 

strength is added up by 0.3fpcb0d to account for the effect of prestressing. This increase is 

inferred from AASHTO LRFD (2010), where fpc is the prestressing stress acting on the 

section. Some of the main punching shear equations and the ratio of the predictions to 

the experimental results are summarized in Table 10.  

It is seen that, all the proposed equations for FRP reinforced slab predict the punching 

shear strength approximately from 50% to 70% less than the actual load capacity 

observed in the experiment. Such a significant underestimation cannot be attributed to 

the conservative characteristic of these equations. It is, indeed, implying that the failure 

mechanism of the bridge deck slab is mostly governed by flexure rather than shear, as 

already discussed. In fact, flexural cracks first form around the loading plate in a larger 

area compared to critical perimeter of the punching failure because of the geometry of 

the slab, and boundary conditions. Then, due to low modulus of elasticity of AFRP bars 

the flexural stiffness of the slab section drops significantly which leads to larger 

deflection and less depth of the neutral axis. Increase in load, raises the flexural demand 

and reduces the neutral axis depth until the shear demand becomes higher than the shear 
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resistance of the concrete slab section. At this point, the load tends to punch through the 

slab as the slab edges are restrained.  However, this cannot be considered as punching 

shear failure since the slab exhibited a considerable flexural behavior. 

 
 
 

Table 9- Punching shear equations ( cf ′  in MPa) 
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Table 10- Predictions of punching shear equations 

Load 
case 

Vu,exp 
(kN) 

predicted-to-test ratios 

ACI 
440.1R-06 

JSCE 
(1997) 

Razaqpur 
(2009) 

Matthys 
and Taerwe 

(2000) 

El-
Ghandour 

et al. 
(2003) 

Ospina 
et al. 

(2003) 

1 700 0.36 0.38 0.41 0.48 0.53 0.59 

4 770 0.32 0.32 0.37 0.44 0.49 0.53 

7 880 0.28 0.28 0.32 0.39 0.42 0.47 

Ave. - 0.32 0.33 0.36 0.44 0.48 0.53 
 
 
 
4.7.3 Deformability 
 

In design of steel reinforced concrete, ductility concept is used to assure enough 

deformation will take place after yielding of steel until failure, and hence enough 

warning is going to be achieved. For FRP reinforced concrete; however, there is no 

yielding point, and so deformability is used as a more appropriate concept to evaluate the 

adequacy of the deformation after cracking and before failure. Different deformability 

indices have been proposed by researchers that can be found in Zou (2003). Three main 

indices are used in this paper to evaluate the deformability of the bridge deck slab at 

both interior span and overhang. The following equation is Naaman and Jeong model, 

which is an energy based equation 

0.5 1tot

ela

E
Eµ

 
  
 

= +  (2) 

where Etot and Eela represent the total energy and elastic energy under the load-deflection 

diagram, respectively. The elastic portion of the total energy can be found by unloading. 

Abdelrahman model is a deflection based equation defined as 

u
l

µ
∆

= ∆  (3) 
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where ∆u is the deflection at failure and ∆l is the equivalent deflection of an uncracked 

specimen under the same failure load. Zou model utilizes both deflection and load to 

define the deformability index 

u u
cr cr

P
Pµ ×

∆=
∆

 (4) 
 

where u and cr subscripts refer to ultimate and cracking stages, respectively. Load cases 

1 and 5 as representatives of loading at the interior span and overhang are considered 

herein to measure the deformability. Table 11 shows the computed deformability index 

based on the above equations. It is seen that, both Naaman and Jeong, and Abdelrahman 

models predicts a larger deformability for load cases 5 over the load case 1, as opposed 

to the model proposed by Zou (2003). As confirmed by experimental observations, the 

deformability of the interior span is smaller than the interior span. This was also clarified 

by looking at the curvature distribution in the main direction of the flexure. The result of 

such a study showed that in load case 5, the maximum curvature of the slab in x 

direction is 50% of the ultimate curvature of the corresponding strip with unit width, 

while for load case 1 this value is equal to 38% which implies that the deformability of 

the overhang is approximately 1.32 times that of the interior span. The deformability 

index ratio of overhang to interior span shows that Abdelrahman model provides a more 

reasonable result compared to the other two models.  

 
 
 

Table 11- Deformability indices 

load case Naaman and Jeong model Abdelrahman model Zou model 

1 2.91 7.04 35.47 

5 3.17 8.75 31.5 

5 1( / )µ µ * 1.09 1.24 0.88 
* The deformability index ratio of load case 5 (overhang) to load case1 (interior span) 
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4.8 Comparison with Control Specimen 
 

As discussed, at interior span, flexural cracks due to negative moment were first 

observed on top surface of the slab close to the support beams and then propagated 

around the loading plates. The flexural cracks due to positive moment initiated beneath 

the loading plate and propagated toward the support beams in a diagonal fashion. Since 

the deck slab at interior span is restrained by the support beams, the slab eventually 

failed in a punching manner. The failure mode of the interior span was realized as the 

compound shear-flexural failure. The contribution of the flexure was evident from the 

extension of the flexural cracks and also the deformability observed in the load-

deflection diagram. Similar cracking pattern was reported for the control specimen and 

the failure mode was recognized as the punching shear at the top CIP panel and flexural 

failure at the bottom SIP panel (Mander et al. 2010). Corresponding load cases between 

AFRP and control specimens are presented in Table 12. 

 
 
 

Table 12- Corresponding load cases 

Description AFRP 
specimen control specimen 

Axle load on interior span 1 2.4 

Wheel load on overhang 2 1.6 

Double-wheel load on adjacent interior spans 4 1.7 

Axle load on overhang 5 2.3 
 
 
 

Fig. 35 shows the load deflection diagram and cracking pattern at failure of the 

interior span for both AFRP and control specimen. For load case 1 representing the truck 

axle load on the interior span, the load capacity was found equal to 700 kN which is 

about 1.2 times that of the control specimen under load case 2.4. The maximum 

deflections are similar and equal to 19 and 21 mm for the AFRP and control specimen, 
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respectively. As already illustrated, the cracking pattern of the AFRP specimen was 

recorded on both top and bottom surfaces of the deck shown by black and gray lines, 

respectively. However, for the control specimen only the top cracks were reported. For 

load case 4 resembling the double-wheel load on the interior span, the load capacity and 

maximum deflection were found equal to 770 kN and 12.5 mm, respectively. It can be 

inferred that the axle load induces the critical case of loading, however with larger 

deformability as a result of applying the load in a amore distributed manner. The 

corresponding load case at control specimen, 1.7, was not continued until failure and 

hence the cracking pattern is not available in the reference for comparison. 

At overhang, flexural cracks were first observed on top surface of the slab due to 

negative moment close to the exterior beam and then propagated around the loading 

plates and reached to the free edge of the slab in a triangle shape. The failure mechanism 

for load case 5 was mostly governed by flexure as the flexural cracks extensively 

propagated around the loading area and became widened conspicuously before failure. 

However for load case 2 the flexural failure of the loaded panel was accompanied by the 

shear failure of the panel-to-panel seam which indeed prevented the adjacent panel from 

flexural failure. Likewise, the failure mechanism of the control specimen under both 

load cases 1.6 and 2.3 was reported to be governed by flexure of the loaded panel and 

shear failure of the transverse seam (Mander et al. 2010).  
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Fig. 36 shows the load deflection diagram and cracking pattern at failure of the 

overhang for both AFRP and control specimen. For load case 5 representing the axle 

load on the overhang, the load capacity and maximum deflection were found equal to 

225 kN and 35 mm. A larger load capacity, 350 kN, and a less deflection, 20 mm, was 

reported for the control specimen under the corresponding load case 2.3. For load case 2 

representing the wheel load on the overhang, the load capacity and maximum deflection 

were found equal to 320 kN and 25 mm, respectively. The corresponding load case at 

control specimen, 1.6, resulted in maximum load and deflection equal to 370 kN and 12 

mm. The experimental results are summarized in Table 13. Cracking pattern is indeed a 

function of geometry of the specimen, boundary condition, reinforcement detail, and 

loading configuration. Experimental results show that the cracking pattern at interior 

span resembles an elliptical shape, but at overhang it appears like a trapezoid. Although 

AFRP bars, as opposed to conventional steel, behave linearly up to rupture, so called 

brittle failure, the shape of failure mechanism of the AFRP and control specimen seems 

to be similar.  
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a) axle load on interior span 

 

 

b) double-wheel load on interior span 

Fig. 35. Comparison at interior span 
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a) single wheel load on overhang 

 
 

 

b) axle load on overhang 

Fig. 36. Comparison at overhang 
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Table 13- Summary of the experimental results, AFRP specimen (control specimen) 

 Interior span Overhang 

Load case 1 (2.4) 4 (1.7) 2 (1.6) 5 (2.3) 

Deformability (ductility) 7.04 (5.4) 2.5 (NA) 3 (7.2) 8.75 (6) 

Load capacity, kN 700 (565)  770 (NA) 320 (374) 225 (360) 

Load capacity / maximum 
factored load 3.5 (2.8) 3.85 (NA) 1.6 (1.87) 1.12 (1.8) 

Maximum deflection, mm 19 (21) 12.5 (NA) 25 (12) 35 (20) 

 
 
 
4.9 Conclusions 
 

A full-scale bridge deck slab consisting of two full-depth precast panels was tested 

under concentrated load and the concept of using AFRP bars as reinforcement as well as 

prestressing tendon instead of conventional steel was verified. The panels were 

prestressed and reinforced with AFRP bars perpendicular to and parallel with the traffic 

direction, respectively. Load cases 2 and 5 represented the wheel load and axle load on 

the overhang and load cases 1, 4, and 7 indicated the axle load, double-wheel load, and 

single wheel load on the interior spans, respectively. The following conclusions are 

drawn from this experimental investigation 

 
1- Experimental results showed a satisfactory structural performance of the bridge 

deck slab where the strength and serviceability criteria were met. The average 

failure load of the interior spans and overhangs was found 3.8 and 1.3 times the 

maximum factored load specified by AASHTO LRFD (2010), respectively. The 

deflection of the interior span at service load level was found about 1 mm which 

is 40% of the allowable amount specified by AASHTO LRFD (2010).  

2- Flexural mechanism governed the failure mode of the bridge deck slab, 

particularly at the overhang. This was evident from the cracking pattern and the 

curvature distribution along the strong direction of the slab. The bridge deck 
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overhang failed due to a complete flexural mechanism under load case 5 (axle 

load) and a compound shear-flexural mechanism under load case 2 (wheel load). 

In fact, under the axle load the slab failed in a more deformable manner 

compared to wheel load since the load is applied in a more distributed fashion. 

Calculations for the overhang (load case 5) showed the maximum negative 

curvature close to the support is equal to 0.01 which is 25 times the cracking 

curvature. Similar flexural mechanism was observed for the interior span; 

however, shear also contributed to the failure mechanism and the slab eventually 

failed in a punching manner due to restrained edges. Studying the curvature 

distribution close to failure confirmed a considerable deformability induced by 

flexure of the slab as the maximum curvature was found equal to 0.0075 which is 

about 19 times the cracking curvature. More research is still required to study the 

compound shear-flexural mechanism.  

3- Studying the punching shear strength of the interior span based on the existing 

equations resulted in predictions from 30% to 50% of the actual failure load. This 

implies that the failure mechanism of the interior span is a compound shear-

flexural failure, but mostly governed by flexure. Furthermore, these equations do 

not take into account the effect of reduced boundary condition. 

4- In reality, truck tire pressure rarely exceeds 820 kPa and thus achieving a wheel 

load similar to the failure load observed in this experiment is unrealistic. Hence, 

it is very unlikely to have punching failure in the interior span as the failure mode. 

However, from theoretical point of view it is crucial to investigate the load 

capacity of the bridge deck slab. 

5- Deformability of the slab was measured by three different indices. Abdelrahman 

model which is a deflection based equation resulted in more reasonable 

predictions. The authors believe that studying the curvature distribution is a more 

rational way to measure the deformability as it is directly related to flexure. The 
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deformability ratio of the overhang to the interior span was found about 1.32 

which is close to what Abdelrahman model predicts 1.24µ = . 

6- Panel-to-panel seam showed a satisfactory performance and sufficient structural 

connectivity as the flexural cracks were completely transferred from the panel 

under the load to the adjacent panel. This could also be inferred from the 

deflection profile along the axis y. 

7- Using nine shear pockets per panel, each reinforced with two high strength bolts 

as shear connector, was found sufficient to provide a complete composite action 

between the deck and support beams since no failure was observed at the 

connection, and also flexural cracks on top of the deck and close to the shear 

pockets showed the developed negative moment at the slab support.  
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5. EXPERIMENTAL STUDY OF AFRP CONCRETE STRIP 

ELEMENTS OF THE BRIDGE DECK SLAB 
 
5.1 Introduction 
 

The linear behavior of FRP bars up to rupture, so called brittle failure, can be a 

design concern that substantially reduces the desirable ductility typically observed in 

steel reinforced concrete members. Therefore, the plastic methods such as yield line 

theory commonly used for failure load analysis of steel reinforced concrete slabs seems 

not to be applicable in this case. In fact, application of FRP bars in bridge deck slabs 

lacks a rational method of analysis that can evaluate the load capacity of the slab. 

Although FRP bars are non-ductile materials, their low modulus of elasticity enhances 

the deformability of the concrete section in the post-cracking region that offsets the lack 

of ductility to some extent. This was well observed in the experimental results of the 

bridge deck slab presented in Chapter 4. In fact, this is a promising point that holds the 

potential for application of failure load analysis methods analogous to plastic methods 

typically employed for steel reinforced concrete slabs. However, the first step to explore 

such a potential, is to experimentally study the structural performance of the strip 

elements of the bridge deck slab in terms of strength, deformation capacity, and the 

failure mode. This is the main objective of this chapter which helps to characterize the 

structural capacity of the bridge deck slab section. 

In this Chapter, the experimental plan for testing the strip specimens is put into 

perspective. Two strip specimens, one reinforced and one prestressed with AFRP bars 

representing the bridge deck slab section with unit width in parallel and perpendicular to 

the traffic direction, respectively, are tested under flexure. Subsequently, two strip 

specimens as samples of panel-to-panel seam are tested under both flexure and shear. 

The experimental results are reported in terms of ultimate strength, deformation 

capacity, and failure mode. In studying the experimental results, other than maximum 

curvature at midspan, a close view will be on curvature distribution along the strip 

specimen as it clarifies the extent of cracking and contribution of the flexure in failure. 
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5.2 Experimental Strip Specimens 
 

Experimental strip specimens studied in this research belong to the full-scale bridge 

deck slab specimen discussed in Chapter 4. In order to find out the structural behavior of 

the slab section in both x (prestressed) and y (non-prestressed) directions as well as at the 

panel-to-panel seam, four strip specimens were constructed and tested. Each strip was 

300 mm wide, 1800 mm long, and has the same thickness, reinforcement ratio, and 

concrete material as the bridge deck slab (Fig. 37). The experimental program included 

flexure tests of non-prestressed and prestressed strips as well as flexure and shear tests of 

seam strips. It should be noted that the non-prestressed bar in y direction that has been 

shown in two layers at Section C-C, is indeed a one continuous bar bent at the location 

of seam taking the advantage of thermoplastic characteristics of the AFRP bars (Section 

B-B). When casting the seam specimen, the joint was first left hollow and once the rest 

of the strip hardened the seam was casted. This is for the sake of consistency with 

construction procedure of the full-scale bridge deck slab. The compressive strength of 

concrete is shown in Table 14 for each strip specimen. 

 
 
 

Table 14- Compressive strength of concrete, day of test 

Specimen Strength (MPa) 

Non-prestressed strip 41.4 

Prestressed strip (rebuilt) 48.3 

Seam strip (non-joint) 48.3 

Seam strip (joint) 32.4 
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Fig. 37.  Experimental strip specimens layout  
 
 
 
5.3 Test Setup and Instrumentation 
 

Non-prestressed and prestressed strip specimens as well as one of the seam strip 

specimens were tested under flexure using four-point loading configuration, and the 

other seam strip specimen was tested under shear. A 450 kN actuator was used to 

monotonically apply the load until failure, where the load was measured through an in-

series load cell attached to the tip of the actuator. All strip specimens were simply 

supported beams where the deflection of the strip was measured at every 150 mm via 
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STP (String Pot). This helps to obtain the deflection profile and compute the curvature 

distribution along the beam, accordingly. Figs. 38 and 39 show the flexure and shear test 

setup, instrumentation, and the corresponding shear and moment diagrams. In flexure 

test, the effective length of the specimens between the simple supports was 1800 mm 

and the shear span length was equal to 675 mm. The maximum curvature at mid-span 

can be computed through two horizontal LVDTs (Linear Variable Differential 

Transformer) mounted on the side face of the beam at top and bottom fibers given the 

plain section remains plain after bending. The numbers shown under each STP represent 

the x coordinate assigned to compute the curvature distribution from deflection profile.  

 
 
 

 

 

Fig. 38. Flexure test setup 
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Fig. 39.  Shear test setup 

 
 
 
5.4 Prestressed and Non-Prestressed Strip Specimens 
 
5.4.1 Experimental results 
 

Non-prestressed strip failed due to concrete crushing as a result of compound shear-

flexural mechanism at the shear span. This type of failure was expected as the shear span 

to depth ratio is 3<Ls/d=4.9<7 and the strip is categorized as a slender beam according to 

Park and Paulay (1975). Flexural cracks were first observed within the constant moment 

span at P=23 kN which resulted in a considerable reduction in flexural stiffness. With 

increasing the load to P=36 kN, the inclined shear cracks initiated at a distance of 113 

mm from the constant moment span, and propagated toward the loading points. The 

shear diagonal cracks widened and became clearly observable at P=53 kN and the strip 

eventually failed due to crushing of the concrete at P=70 kN with no evidence of tendon 
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rupture (Fig. 40). The maximum deflection at mid-span was found about 38 mm and 

significant deformability as well as enough warning before failure was achieved. The 

flexural strength and curvature capacity were reported equal to 23.5 kNm and 0.024, 

respectively. The curvature, herein, is expressed in a normalized format equal to 

curvature multiplied by the height of the section.  

Prestressed strip failed due to rupture of the tendons while limited crushing of the 

concrete was observable. Flexural cracks were first observed within the constant 

moment span at P=40 kN and propagated vertically toward the top fibers of the section. 

The post-cracking flexural behavior of the prestressed strip was found nonlinear as a 

result of decompression of the prestressed section. No evidence of shear diagonal cracks 

was found in the shear span which seems to be reasonable as the shear span to depth 

ratio Ls/d=6.75 is close to 7 and the strip can be considered as a very slender beam. With 

increasing the load to P=60 kN concrete crushing commenced, however the strip 

suddenly failed at P=63 kN due to rupture of the tendons before concrete crushing can 

dominate the failure mechanism (Fig. 41). As will be discussed, based on the moment-

curvature analysis, tendon rupture was expected as the failure mode, since due to 

prestressing; only 45% of the ultimate strain of the AFRP bars was left for flexure. The 

maximum deflection was found equal to 30 mm and considerable deformability was 

gained. The flexural strength and curvature capacity was reported 21 kNm and 0.02, 

respectively. Experimental moment-curvature and load-deflection response of non-

prestressed and prestressed strips are shown in Fig. 42. 
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Fig. 40. Concrete crushing due to shear-flexural failure (non-prestressed strip) 

 
 
 
 

 

Fig. 41. Failure due to tendon rupture (prestressed strip) 
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Fig. 42. Experimental results for prestressed and non-prestressed strip specimens 

 
 
 
5.4.2 Moment-curvature analysis 
 

An extensive computational model was developed to study the moment-curvature 

behavior of the strip specimens through the fiber element analysis. Material properties 

and effective prestressing force were modeled according to the experiment, and a refined 

iterative solution was employed to capture the cracking and failure. Popovic’s equation 

(1973) was used to model the stress-strain behavior of the concrete in compression as 

follows 
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where ε'c is the strain corresponding to the compressive strength of the concrete f'c, n is a 

curve-fitting factor, and k is a factor that controls the slopes of the ascending and 

descending parts of the stress-strain curve. Formulas for the factors n and k can be found 

in the reference. To model the stress-strain behavior of the concrete in tension the 

following equation proposed by Bischoff and Paixao (2004) was used where the effect of 

tension stiffening, the ability of the concrete to bear tension between cracks, is taken into 

account 

exp[ 1100( )( / )]t cr c cr f sf f E Eε ε= − −  (6) 
 
where εcr is the strain corresponding to the tensile strength of the concrete fcr, and Ef and 

Es are the modulus of elasticity of FRP bars and steel rebar, respectively. As shown in 

Fig. 43, the result of moment-curvature analysis is in good agreement with the 

experimental data in terms of cracking and failure load as well as the post-cracking 

flexural stiffness. Bilinear model of moment-curvature response is computed for both 

non-prestressed and prestressed strips to compare with experimental and analytical 

results. As a result of prestressing, the moment-curvature response of the prestressed 

strip is very close to the bilinear model showing the negligible effect of tension 

stiffening (Pirayeh Gar et al. 2012). However, for non-prestressed strip the experimental 

curvatures are larger than bilinear model, and the effect of tension stiffening is evident 

from the difference between the experimental and cracked response. The summary of 

analytical and experimental results is presented in Table 15. 
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a) non-prestressed strip 

 
b) prestressed strip 

Fig. 43. Moment-curvature analysis 

 
 
 
5.4.3 Curvature distribution analysis 
 

In experimental research, the maximum curvature is typically studied at the constant 

moment span, while distribution of the curvature along the specimen, particularly at the 

shear span, is not noticed. This is significant as it shows the extent of cracking and 

contribution of the flexure in failure mechanism.  
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Table 15- Summary of experimental and analytical results (moment: kNm) 

Specimen Mcr Mu (Øh)cr (Øh)u Icr/Ig εf
u* εc

u* failure 
mode 

Non-prestressed 
(Experiment) 7 23.5 0.00025 0.024 — — — 1* 

Non-prestressed 
(Analysis) 7.5 23.15 0.00022 0.023 0.03 0.013 <  

-0.003 1 

Prestressed 
(Experiment) 13.15 21 0.0005 0.02 — — — 2* 

Prestressed 
(Analysis) 12.8 21.3 0.0004 0.023 0.015 > 

0.02 
-

0.0027 2 

 1= concrete crushing   2= tendon rupture    εf
u = maximum tensile strain at AFRP bar when specimen fails     

εc
u = maximum compressive stress at concrete when specimen fails  

 
 
 
Given the deflection profile recorded by STPs, curvature distribution is computed using 

the finite difference method. Experimental deflection and curvature along the strip are 

then compared with the analytical results based on the bilinear moment-curvature 

response of the section which is a simple model that can be used for engineering 

calculations. The first step of such analysis is to determine the moment diagram along 

the specimen. For non-prestressed strip, experimental results showed a tiny negative 

curvature at the simple supports. Further investigation revealed that due to bending of 

the specimen a frictional force was developed between the steel support and concrete 

strip and resulted in a small negative moment at the support. Therefore, the moment 

diagram is modified to account for the effect of such a frictional force given the friction 

coefficient μ=0.5. This problem, however, was fixed before testing the prestressed strip 

by releasing the displacement of the support in x direction. The inclined shear diagonal 

cracks induce a tensile force in AFRP reinforcing bars in addition to the tension caused 

by flexure. This additional tension increases the moment at the shear span, and hence the 

moment diagram needs to be modified, accordingly (Park and Paulay 1995). The detail 

of such calculations to modify the moment diagram is presented as follows. 
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5.4.3.1 The effect of friction at support 
 

As discussed about the non-prestressed strip, small amount of negative curvature 

was found close to the support indicating the presence of a negative moment. Further 

investigation revealed that the simple support is restrained against displacement in x 

direction; thereby a friction force was developed between the steel support and 

concrete strip as a result of bending. As shown in Fig. 44, assuming a friction 

coefficient factor of μ=0.5 gives the horizontal friction force equal to P/4 which 

induces a negative moment M'=Ph/8, where h is the height of the section. Although 

accounting for the effect of friction force does not cause a considerable negative 

moment, it results in a more accurate evaluation of the curvature distribution. 

 
 
 

 

Fig. 44. Modification of moment diagram due to friction at support 

 
 
 
5.4.3.2 The effect of shear diagonal cracks 

 
Shear diagonal cracks increase the tension in the bottom reinforcement 

depending upon the magnitude of the shear and the angle of the diagonal crack. As a 

result of such an additional tension induced in the bottom reinforcement, the moment 

at the shear span increases, thereby the constant moment span becomes somewhat 
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larger and the moment at support is no longer zero. As shown in Fig. 45, x indicates 

the extension of the constant moment span and ∆M represents the increase in 

moment. The additional tension induced by the shear diagonal crack in the bottom 

reinforcement, ∆T, can be found from (Park and Paulay 1990) 
 

2 4
V PT tg tgθ θ

∆ = =  (7) 

 
where V is the shear force equal to P/2, and θ represents the slope of the crack. This 

additional tension induces an increase in moment equal to 
 

( ) 2
VM T jd jdtgθ

 
  
 

∆ = ∆ =  (8) 

 
the extension of the constant moment span now can be found using the following 
equation 
 

/ 2
2

Vjd tg jdMtg V xx x tg
θα

θ
 
 
 

∆= = = → =  (9) 

 
where α is the slope of the moment diagram.  
 
 
 

 

Fig. 45. Modification of moment diagram due to shear diagonal cracks 
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Having the moment diagram known, the theoretical curvature distribution based on the 

bilinear model is computed, and the deflection profile is subsequently found using the 

conjugate beam theory. Figs. 46 and 47 illustrate the curvature distribution for non-

prestressed and prestressed strips close to failure. The results of analysis for non-

prestressed strip shows that the bilinear model underestimates the maximum curvature 

and deflection at constant moment span, but gives nearly accurate values at the shear 

span. The curvature distribution shows that about 85% of the strip length is cracked 

before the specimen fails. Excessive cracking and low modulus of elasticity of AFRP 

bars results in a considerable deformability and desirable warning before failure which 

can offset the non-ductile behavior of AFRP reinforcing bars to some extent. For 

prestressed strip, the bilinear model seems to give conservative results particularly at the 

shear span. However, the maximum curvature at mid-span is in good agreement with the 

experimental result. The curvature distribution demonstrates that about 50% of the strip 

length is cracked before failure which indicates a more localized failure compared to the 

non-prestressed strip. The prestressing force increases the cracking strength and stiffness 

of the strip, but rather less capacity is left for flexure as there is an initial tensile and 

compressive strain in AFRP bars and concrete, respectively. As shown in Figs. 40 and 

41, this was well inferred from the experiment as the prestressed specimen failed with a 

much localized cracking pattern at midspan. 

5.5 Seam Strip Specimen 
 
5.5.1 Flexural test 
 

Similar flexural test procedure used for non-prestressed and prestressed strip 

specimen is employed to find out the flexural resistance of the seam strip specimen. 

Experiment showed that at a very low level of load P=10 kN, the specimen completely 

cracked from the seam and failed while the cracking load was estimated about P=21 kN. 

This was found due to the fact that the reinforcing bars in the left and right part of the 

seam are 180o bent at the joint but not continuous to transfer the tension to the concrete 

and hence the joint acts as a hinge.  
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Fig. 46. Curvature distribution and deflection profile close to failure 

(non-prestressed strip P=63.4 kN) 
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Fig. 47. Curvature distribution and deflection profile close to failure 

(Prestressed strip P=60 kN) 
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The negligible flexural strength observed in the experiment is because of very limited 

transfer of tension by the bent portion of the AFRP bars at the joint. Failure mode and 

load-deflection diagram are shown in Fig. 48. Based on the test results, the flexural 

capacity of the seam with the detail shown in Fig. 37 is recognized as negligible. 

 
 
 

 
a) flexural failure of the seam specimen 

 
b) load-deflection response 

Fig. 48. Flexural test of seam strip specimen 
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5.5.2 Shear test 
 

Shear test of the seam strip specimen showed an acceptable resistance of the joint. 

Fig. 49 shows the load deflection graph where the applied load at the shear span is 80% 

of the actuator force, and the shear force at the shear span is 60% of the actuator force 

referring to the shear diagram. The deflection is recorded by the STP whose coordinate 

is x=825 mm recalling Fig. 39. When the applied load at the shear span reached to P=39 

kN, the top left and the bottom right corner of the seam was crushed and resulted in a 

significant reduction in shear stiffness of the joint. With increasing the load, shear 

diagonal crack at the seam started to widen and became more evident and the joint 

eventually failed at load P=54 kN due to crushing of the concrete in the diagonal 

direction (Fig. 49). The maximum deflection was equal to 22 mm which shows a 

significant deformability achieved through the shear deformation of the joint. The shear 

capacity of the joint can be evaluated as  

Vu = 0.6Pu = 0.6×68 ≈ 41 kN → νu = Vu/(bd ) = 41000/(300×137) = 1 MPa (10) 

f'c = 32.4 MPa → /u cfβ ν ′= = 0.175 > 0.17 
 

 

Calculations show the shear capacity of the seam equal to 41 kN (1 MPa) 

corresponding to β =0.175. According to ACI 318, β > 0.17 indicates an acceptable shear 

resistance of the joint. In order to theoretically find the failure load of the seam under 

shear, Compatibility Strut and Tie Analysis (CSTA) is employed. In this method, the 

shear induced compressive force is transferred through the combination of truss and arch 

struts while the tension force is carried by the longitudinal rebar. A 2D truss including 

concrete struts and AFRP ties is adopted to model the shear failure mechanism where the 

boundary condition is applied based on the existing shear and moment at both ends of 

the truss. Fig. 50 shows the strut and tie model and the distribution of a unit shear force 

between truss members. Since the arch is not very steep, it undergoes a significant 

compression force to keep the shear span in equilibrium. The width of the arch depends 

upon the ratio of the transverse bars to longitudinal bars as well as the shear span-to-

depth ration of the section. According to Mander et al. (2011), the width of each arch 
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between AFRP ties is found about 80% of their spacing, ηb= 0.8×75=60 mm. The depth 

of the arch can be calculated referring to Holden et al. (2003) 

0.375 / cosW jda β= = 0.375×137.5 (mm)/cos18o= 54 mm (11) 

The compressive strength of the arch is indeed less than cf ′  due to the effect of the tensile 

strain perpendicular to the arch direction, 1ε . 

 
 
 

 

 
 
 
 

a) shear failure of the seam specimen 

 
b) load-deflection response 

Fig. 49.  Shear test of seam strip specimen 
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The reduction factor,ξ , can be computed as (Mander et al. 2011) 

( )21

1
1 0.25 /

ξ
ε ε

=
+

 (12) 

where 2ε is the compressive strain of the arch which is typically assumed 0.002 at failure. 

To find the 1ε , the dummy points A and B are defined, as shown in Fig. 50, so that the 

line AB be perpendicular to the arch direction. If the truss is analyzed for the ultimate 

load, the change in length of line AB can approximately represent 1ε .  

Taking the advantage of computer modeling, the tensile strain 1ε was found about 

0.01 which results in the reduction factor equal to 0.44ξ = . Therefore, the compressive 

capacity of the arch can be computed as 

( ) ( )a c aP f b Wξ η′= × × = 0.44×32.4×60×54= 46.19 kN (13) 

given three arches between the AFRP bars, the shear capacity of the seam is equal to 
 

Vu= 3×46.19 (kN)×sin18o= 42.82 kN (14) 

which is close to the experimental result Vu= 41 kN. As the compatibility strut and tie 

model shows, there is a biaxial state of compressive forces at the center of the shear span 

which increases the strength of the arch and lead the failure out of this region where the 

tensile stresses can be developed perpendicular to the arch direction. This is well 

confirmed by the experiment, Fig. 49(a), where the failure is seen to be shifted to the left 

of the center.  
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a) plan view 

 

 

 
b) side view 

Fig. 50.  Compatibility strut and tie model 
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Failure load analysis of steel reinforced concrete slabs can be done using the plastic 

methods of analysis such as yield line theory. This is applicable because of the ductility 

of the steel reinforced concrete section, which is the ability of sustaining inelastic 

deformations once the reinforcing steel yields. In contrast, FRP reinforced concrete 
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sections do not exhibit ductility due to linear and brittle behavior of FRP bars, and hence 

plastic methods of analysis may not be viable for failure load analysis of the bridge deck 

slab. However, the experimental and analytical results of testing the strip elements of a 

full-scale AFRP concrete bridge deck slab showed a significant post-cracking 

deformation, so called deformability. This mainly originates from the low modulus of 

elasticity of AFRP bars resulting in low post-cracking flexural stiffness and larger 

deformations, consequently. For instance, the post-cracking curvature capacity was 

found 95 and 40 times the cracking curvature for non-prestressed and prestressed strips, 

respectively. When a two-way FRP slab cracks in the maximum moment direction, the 

moment is substantially redistributed to the other directions due to considerable drop in 

flexural stiffness of the slab section in the crack direction as a result of low modulus of 

elasticity of FRP reinforcement. This, in fact, has a similar impact on response of the 

slab as yielding of the reinforcing steel has. This considerable deformability offsets the 

lack of ductility to some extent and enhances the possibility for application of plastic 

analysis concept for failure load analysis of FRP reinforced concrete slabs. Although the 

interaction between strip elements in x and y directions should be considered when 

analyzing a two-way slab, the bilinear response of the strip elements with low post-

cracking flexural stiffness brings the thought that the plastic methods of analysis may be 

applicable if the response is approximated with an equivalent elasto-plastic graph.  

 
5.7 Conclusions 
 

Four AFRP concrete strip specimens were selected from a full-scale AFRP concrete 

bridge deck slab and tested in an intent to characterize the behavior of the slab section in 

terms of strength, curvature capacity, and failure mode. The experimental program 

included the flexural test of non-prestressed and prestressed AFRP concrete strips 

representing the bridge deck section in parallel and perpendicular to the traffic direction, 

respectively. Also, two strip specimens representing the slab section at panel-to-panel 

seam were considered for shear and flexure test. The following conclusions are drawn 

from this study: 
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1- Non-prestressed strip specimen failed due to concrete crushing in a shear-flexural 

manner with no evidence of tendon rupture. The ultimate strength Mu=23.5 kNm 

and the curvature capacity (Øh)u=0.024 were found at failure. Significant 

deformability was achieved as a result of excessive cracking and low modulus of 

elasticity of AFRP bars that can offset the non-ductile behavior induced by 

AFRP reinforcing bars.  

2- Prestressed strip specimen failed due to rupture of the AFRP bars while crushing 

the concrete was already commenced. The ultimate strength Mu=21 kNm and the 

curvature capacity (Øh)u=0.02 were found at failure. The deformability was 

considerable; however, the strip failed with a localized cracking pattern as 

opposed to non-prestressed strip.  

3- The result of moment-curvature analysis was in very good agreement with the 

experimental results in predicting the cracking and failure values. Modeling the 

tension stiffening via a rational equation is an influential factor affecting the 

accuracy of numerical analysis in post-cracking stages. 

4- Studying the curvature distribution for the non-prestressed strip showed that the 

bilinear model underestimates the maximum curvature and deflection at midspan; 

however, it gives acceptable results in the shear span. For prestressed strip, the 

bilinear model seems to be a proper assumption, somewhat conservative though. 

The results confirmed the larger extent of cracking at failure in non-prestressed 

strip compared to the prestressed one due to the effect of prestressing force. 

5- Flexure test of the seam strip specimen revealed a negligible flexural strength, 

and the joint basically behaved like a hinge. This makes sense as the bars are 

bent at the joint and not continuous to transfer the tension to the concrete and 

connect the left and right parts of the seam. 
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6- Shear test of the seam strip showed acceptable shear strength per ACI 318. The 

joint failed due to crushing of the diagonal concrete strut and the shear capacity 

was found equal to 41 kN (1 MPa). A compatibility strut and tie model was 

adopted to analyze the shear resistance of the joint which gave rise to shear 

capacity equal to 46 kN.  

7- The observed bilinear response of the strip elements with low post-cracking 

flexural stiffness and considerable deformability that can be approximated with 

an equivalent elasto-plastic model raises the likelihood of applicability of the 

plastic analysis concept for failure load analysis of FRP concrete bridge deck 

slabs. Further investigation is still required to clarify this matter, though. 
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6. MODIFIED YIELD LINE THEORY FOR FAILURE 

ANALYSIS OF AFRP CONCRETE BRIDGE DECK SLAB 
 
6.1 Introduction  
 

For steel reinforced bridge decks, yield line theory has demonstrated to be a suitable 

method of strength analysis. Yield line theory offers an upper bound solution whose 

accuracy depends upon the pattern of the yield lines; however, it may underestimate the 

failure load when analyzing the slabs with fully restrained edges due to the effect of 

membrane forces. Nielsen (1999) presented accurate solutions for cantilevers subjected 

to point loads at the tips which can be utilized in failure load analysis of the overhangs in 

bridge decks. Yield line theory has been recently adapted and modified by Mander et al. 

(2011a, b) for full-depth precast concrete bridge deck slabs consisting of bottom stay-in-

place (SIP) panels and top cast-in-place (CIP) panels prestressed and reinforced with 

steel, respectively. Experimental tests at a full-scale were conducted and load capacity of 

the overhangs as well as the interior spans was investigated. For overhangs, the yield 

line theory was modified to account for the development length of the steel rebar as well 

as the shear interaction of the partial-depth transverse panel-to-panel seam. The 

analytical results were acceptably accurate within 1-6% of experimental results for 

critical cases. For the interior spans, yield line theory was modified based on 

experimental observations to account for flexural failure in the lower SIP precast 

prestressed panels and punching shear failure in the upper CIP reinforced concrete 

panels.  The proposed compound shear-flexure failure mechanism resulted in predictions 

within 2% accuracy of the actual failure load.  

In contrast to steel reinforced concrete slabs where the plastic methods of analysis 

like yield line theory have been well established, for FRP reinforced bridge deck slabs it 

is difficult to find an analogous method of strength analysis because: 1) there is not 

enough experimental studies on FRP concrete bridge deck slabs with actual dimensions; 

boundary conditions; and structural details, 2) FRP bars behave linearly up to rupture 

and hence there is no distinct yield-point to induce a tension-based plastic behavior when 
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flexural strength of the section is reached. That is why the deformability concept, the 

ability of developing post-cracking deformations before failure, is used instead of 

ductility to evaluate the flexural performance of FRP concrete sections. Considerable 

deformability of the FRP RC and PRC slabs observed in existing experimental data as a 

result of low modulus of elasticity of FRP bars raised the question whether yield line 

concept can be modified and extended for FRP concrete slabs. 

 In this Chapter, the concept of effective plastic moment capacity for FRP systems is 

first proposed and the corresponding theoretical equations are developed for either FRP 

RC or PSC sections. Then, the experimental results of the full-scale AFRP concrete 

bridge deck slab are used to verify the proposed strength analysis method based on the 

modified yield line theory.  

6.2 Effective Plastic Moment Capacity for FRP Systems 
 

In spite of non-ductile characteristics of AFRP bars, considerable deformability 

observed in the experimental results of the AFRP concrete bridge deck slab, presents the 

possibility of adapting yield line concepts to enable prediction of failure loads. To 

achieve this aim, the moment-curvature response of FRP concrete sections is first 

characterized and then simplified with an energy-equivalent elasto-perfectly-plastic 

(EPP) idealized behavior, where the conventional yielding moment is replaced with an 

effective plastic moment (Mp) to reflect the deformable response of the section. 

6.2.1 FRP reinforced concrete sections (FRP-RC) 
 

As depicted in Fig. 51(a), the flexural behavior of FRP RC sections is linear up to 

cracking and then followed by a curve that coincides with the line whose slope 

represents the cracked stiffness of the section. This curve reflects the tension-stiffening 

effect of the reinforced concrete due to the well-known ability of the concrete section to 

carry tension between cracks. If the section is “over-reinforced”, the flexural failure will 

be governed by concrete crushing with some nonlinearity close to the failure as a result 

of inelastic compressive stresses in the concrete. The flexural behavior of FRP RC 
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sections can be theoretically expressed as trilinear, where EIg and EIcr denotes the 

flexural stiffness of the concrete section before and after cracking, Fig. 51(a). Herein, it 

is proposed to simplify this trilinear behavior with an energy-equivalent elasto-perfectly-

plastic (EPP) idealized behavior, where the area beneath the trilinear (URC) and the 

idealized (UEPP) responses are equalized 

2 2 2

2 2 2 2
p pu cr cr u

cr cr g cr g

M MM M M M
EI EI EI E I I

 
 
 
 

+ − = −  (15) 

which has an exact solution of 

2

1 1 1( / )
u cr cr cr

p
cr g g g u

M I I MM I I I I M

                     

= − − −  (16) 

Icr/Ig typically ranges from 0.05 to 0.15 for lightly to heavily reinforced FRP RC sections. 

Substituting the typical design values, Icr/Ig=0.1 and Mcr/Mu=0.33, and simplifying using 

a binomial expansion of 1 1
2
XX+ ≈ +  (for X<1) results in a satisfactory approximation 

of Mp in terms of Mcr and Mu 

0.5 0.15p u crM M M= +  (17) 
 
6.2.2 FRP prestressed concrete sections (FRP-PSC) 
 

As depicted in Fig. 51(b), the flexural behavior of FRP PSC sections is typically 

bilinear, where the first and second lines represent the pre-cracking and post-cracking 

behavior, respectively. Pirayeh Gar et al. (2012) have shown that in prestressed concrete 

sections, tension stiffening is negligible and barely affects the flexural behavior. Again it 

is proposed to model the behavior of FRP PSC as an equivalent-energy EPP system of 

the more realistic bilinear behavior, where the area beneath the bilinear response (UPSC) 

and the idealized behavior (UEPP) are equalized 

( )2 2 22

2 2 2
u cr p pcr cr u cr

g cr g cr g

M M M MM M M M
EI EI E I I EI

 
 
 
 

− −+ = + −  (18) 

which has an exact solution of 
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1 1 1 1/ /
u cr cr cr cr

p
cr g g cr g g g

M I M I IM I I I I I I I
   
   
   
   

= − − + − + −  (19) 

 

Similar simplification using the binomial expansion results in 

0.5 0.5p u crM M M= +  (20) 
 
 
 

 
a) FRP RC section 

 
b) FRP PRC section 

Fig. 51. Moment-curvature response of FRP concrete section 

Section analysis of the bridge deck slab confirmed by experimental testing of the strip 

specimens, as discussed in Chapter 5, showed the cracking and ultimate moment of the 

unit width of the slab equal to 42 kNm/m and 70 kNm/m for x (prestressed direction), 
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and 25 kNm/m and 76 kNm/m for y (non-prestressed) direction, respectively. Due to 

symmetry in the section, these values are identical for positive and negative moments. 

Substituting the cracking and ultimate moments in Eqs. (17) and (20) gives the 

equivalent plastic moment for both directions equal to Mpx = 56 kNm/m and Mpy = 41 

kNm/m. It should be noted that Mpx and Mpy denote the equivalent plastic moments 

inducing normal stresses in x and y directions, respectively. Table 16 shows the 

summary of section analysis of the bridge deck in x and y directions for unit width. 

 
 
 

Table 16- Results of section analysis of the bridge deck slab (moment: kNm/m) 

Bridge deck 
section crM  uM  pM  crhφ  uhφ  0hφ  phφ  

prestressed 

(x direction) 42 70 56 0.0004 0.023 0.00051 0.01 

non-prestressed 

(y direction) 25 76 41 0.00022 0.023 0.00036 0.012 

 
 
 
6.3 Yield Line Pattern 
 

The first step in failure analysis using modified yield line theory is identifying the 

yield line pattern based on the observed cracking pattern and the inferred curvature 

distribution. For interior spans, flexural cracks due to negative moments were first 

observed on top of the deck and in parallel with support beams and then propagated 

around the loading plate. The flexural cracks due to positive moments initiated beneath 

the bridge deck and propagated from the loading spot toward the support beams in a 

diagonal manner. The cracking pattern resembled an elliptical yield line pattern on the 

interior span. Compared to load cases 4 and 7, under load case 1, where both wheel loads 

were applied on the same interior span, larger deformability and failure surface is 

achieved due to transferring the load in a more distributed manner. 
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For overhangs, flexural cracks due to negative moments were first observed close to 

the exterior beam and propagated toward the slab edge. For load case 2, flexural failure 

of the panel subjected to the wheel load along with the shear failure of the panel-to-panel 

seam was recognized as the failure mechanism. In fact, shear failure of the joint 

prevented the adjacent panel from flexural failure. However, for load case 5 where the 

axle load was applied instead of single wheel load, flexural failure on both panels was 

evident without any sign of shear failure at the seam. The cracking pattern generally 

resembled an trapezoidal yield line pattern. Similar to the interior span, it is seen that 

using axle load causes a more extensive flexural mechanism and larger failure surface. 

For load cases 3 and 6, the cracking pattern implied a triangle yield line pattern. 

Based on the observed cracking pattern and the curvature distribution, several failure 

mechanisms were assumed for each load case and failure load analysis was performed, 

as will be discussed. The failure mechanism with minimum failure load was chosen as 

the governing one. Cracking pattern and the governing failure mechanism are presented 

in Fig. 52 for each load case which shows an in-scale drawing, where the length and 

angle of the crack line can be measured taking advantage of the 200 × 200 mm grid. For 

cracking pattern, the black and gray lines represent the cracks on top and beneath the 

deck due to negative and positive moments, respectively. For yield line pattern, the 

dashed line shows the negative curvature, the solid line represents the positive yield line, 

the dotted line indicates no flexural resistance and the very thick line for load case 2 

shows the shear failure. 
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wheel load at corner double-wheel load on interior spans wheel load at corner 

   

axle load on overhang bridge deck slab specimen wheel load on verhang 

  
wheel load on interior span axle load on interior span 

Fig. 52. Cracking pattern and adapted failure mechanism 
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6.4 Ultimate Load Capacity 
 

As discussed, the equivalent plastic moment for unit width of the slab in x 

(prestressed) and y (non-prestressed) directions were found Mpx = 56 kN.m/m and Mpy = 

41 kN.m/m, which represents an orthotropically reinforced slab from analysis point of 

view. Therefore, the equivalent plastic moment for any crack line with an angle θ in x-y 

plane can be found from (Park and Gamble 2000) 

 

2 2 2 256 40p px p yM M sin M cos sin cosθ θ θ θ θ= + = +  (21) 
 

The external work done (EWD) and internal work done (IWD) can be computed from Eq. 

(22) where P = failure load; δ = vertical displacement below the center of the load; wd = 

self-weight of the slab; Ad = area of the failure mechanism; δc = vertical displacement at 

area center of the failure mechanism; αθ = rotation of the crack line; and l = length of the 

crack line. 
 

cd dEWD P w Aδ δ= + ∑      
and    ( )( )( )pIWD M lθ θα= ∑  (22) 

 
 

Since the failure mechanism of load cases 1, 2, 5, and 7 might be influenced by the 

panel-to-panel seam, the shear and flexural capacity of the joint was taken into account 

in failure load analysis. As discussed in Chapter 5, the experimental results showed that 

the flexural strength of the joint is negligible; however, the plastic shear capacity is 

considerable and equal to 110 kN/m. Therefore, the internal work done by flexure of the 

panel-to-panel seam is deemed zero and will be shown by a dotted line. However, in 

case of shear failure at the joint, like what was observed at load case 2, the internal work 

done by shear is taken into account. Additionally, for failure load analysis of the 

overhang, the transfer length of the prestressed bars needs to be considered since the 

plastic moment capacity of the slab section in x direction can only be reached if the 

prestressing force is fully developed through the bond between the bar and concrete.  

Ehsani et al. (1997) reported the transfer length of the ARAPREE bar, with 10 mm 

diameter, about 50 times of the bar diameter which is equal to 500 mm. Supposing a 
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linear increase in prestressing force through the transfer length, 250 mm is deemed as the 

effective length from the free edge of the slab where the plastic capacity of the section 

can be reached. Therefore, the internal work done can be expressed in a general form 

accounting for the effect of panel-to-panel seam as well as the transfer length of the 

prestressed bars at the overhang 

     ( )( )( ) ( )( )( )*
p v vpIWD M l V lθ θα δ= +∑ ∑  (23) 

 
where, l* is the length of the flexural crack reduced to account for the transfer length of 

the prestressed bars at overhang, lv is the length of the shear crack along the panel-to-

panel seam, Vp is the plastic shear capacity for the unit width of the slab section at the 

seam, and δv is the differential shear deformation at the seam.  

Fig. 53 illustrates the application of the modified yield line theory for failure load 

analysis under load case 2, as an example. The results of the failure load analysis are 

also summarized in Table 17. It is seen that the proposed modified yield line theory 

predicted the ultimate load capacity precisely and within 2% accuracy of the 

experimentally observed results. The fidelity of the modified yield line theory is indeed 

dependent upon the value of the equivalent plastic capacity of the bridge deck section 

and shape of the failure mechanism as well. It should be noted that, the accuracy of the 

yield line theory can be affected when punching shear considerably contributes to the 

failure mechanism of the slab and results in a brittle failure like short spans with fully-

restrained edges or when there is a significant axial load due to membrane action. 

However, the considerable deformability and excessive flexural cracks observed in the 

test implied that the failure mechanism is mainly governed by flexure. The results of 

failure load analysis are conclusive in showing that the concept of yield line theory can 

be modified and employed for FRP RC of PRC bridge deck slabs where the flexure 

mostly governs the failure, although the FRP bars are inherently non-ductile materials. 
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a) modified yield line theory 

 

b) compound shear-flexural mechanism (top view) 

 

c) shear failure of the seam (front view) 

Fig. 53Failure load analysis of load case 2 
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Table 17- Results of failure load analysis (P = whell load: kN) 

Load case 1 2 3 4 5 6 7 

(Pu)theo. 700 329 110 845 226 110 896 

(Pu)exp. 694 323 120 765 223 102 890 

(Pu)theo./ (Pu)exp. 1.008 1.028 0.916 1.104 1.013 1.078 1.007 Ave. = 1.02 

 
 
 
6.5 Discussion 

 
The idea of using the yield line concept for failure load analysis was based on the 

considerable deformability that bridge deck slab exhibited in spite of linear and brittle 

behavior of AFRP bars. But, the main question herein is where this deformability 

originates from. The observed deformability mainly originates from the low modulus of 

elasticity of AFRP bars, say about one third of that of steel (Medina 2011). In other 

words, a large moment is first developed in the x direction of the slab, the stiffer 

direction, which results in initiation and propagation of flexural cracks. Consequently, 

the flexural stiffness of the bridge deck slab section in the x direction substantially 

decreases because of the low modulus of elasticity of AFRP bars. This causes the 

moment to be highly redistributed and hence the slab section in the y direction undergoes 

larger moment, subsequently. Propagation and widening of the cracks in both directions 

gives rise to considerable deformability until the complete failure mechanism of the slab 

is reached. This makes the failure mechanism of the slab to be more governed by flexure 

than shear.  

Interestingly, the results of previous experimental studies on punching shear 

behavior of two-way FRP RC slabs clearly showed the significant deformability prior to 

failure (Gamal et al. 2005, Ospina et al. 2003, Lee et al. 2009, dulude et al. 2010). 

Ahmad et al. 1993 and Matthys and Taerwe 2000b reported considerable flexural cracks 

and strong interaction between flexure and shear before punching failure. However, it 

was reported that the control specimen, which was reinforced with conventional steel, 
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failed in a more shear manner due to high modulus of elasticity of steel rebar. Research 

on steel RC two-way slabs has shown that the reinforcement ratio determines whether 

flexure or shear failure governs (ASCE-ACI Committee 426 1974). In fact, the higher 

the reinforcement ratio, the higher the post-cracking flexural stiffness and the less 

likelihood of flexural failure. In a more general statement, the flexural stiffness of the 

cracked section that is mainly a function of the reinforcement ratio and modular ratio 

determines whether the failure mechanism will be governed by flexure or shear. 

Therefore, replacing steel with FRP, with a similar reinforcement ratio, tends to increase 

the likelihood of flexural failure because of the lower modular ratio. This enhances the 

potential for application of the yield line concept for failure load analysis of FRP 

concrete bridge deck slabs. 

6.6 Conclusions 
 

The yield line theory was modified by substituting the yield moment with the 

equivalent plastic moment proposed based on an equivalent energy-based elasto-

perfectly-plastic (EPP) system, and the corresponding theoretical equations were 

developed for either FRP RC or PSC sections. A full-scale bridge deck slab with precast 

panels reinforced and prestressed with AFRP bars was subsequently tested to verify the 

proposed modified yield line theory. The following conclusions are drawn from this 

study 

1- The proposed modified yield line theory predicted the ultimate load capacity 

precisely and within 2% accuracy of the experimentally observed results. The 

results are conclusive in showing the applicability of the modified yield line 

analysis for both FRP RC and FRP PSC bridge deck slabs.  

2- The fidelity of the modified yield line theory depends on the reasonable 

assessment of the equivalent plastic moment. For instance, transfer length of the 

prestressed bars at the slab overhang was accounted when calculating the 

equivalent plastic moment as the flexural capacity of the slab section in the x 

direction cannot be achieved unless the full prestressing force is fully developed 
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through the bar-concrete bound. The panel-to-panel seam shear and flexural 

strength were also considered in the analysis.  

3- Physical modeling of the realistic boundary conditions was found critical as the 

slab overhang failure was fully governed by flexure; however, the flexural failure 

of the interior span happened in a punching manner as a result of the slab 

restrained edges. Moreover, loading configuration proved to govern the failure 

mode. For instance, the slab overhang under load case 5 (axle load close to the 

seam) failed due to flexural mechanism of the both precast panels, but under load 

case 2 (wheel load close to the seam) failed due to flexural mechanism of the 

panel subjected to the load and shear failure of the seam. 

4- The observed deformability in the bridge deck slab tested in this research as well 

as previous experimental studies on punching shear behavior of FRP RC two-

way slabs clearly show that replacing steel with FRP enhances the deformability 

due to low modulus of elasticity of FRP bars and hence increases the likelihood 

of flexural failure versus punching shear failure. This holds the potential for 

application of the modified yield line theory. However, further experimental and 

analytical research is still required to study the load capacity and failure 

mechanism of FRP concrete bridge deck slabs, particularly for the cases where 

the shear-flexure interaction governs the mechanism. 
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7. COMPUTATIONAL MODELING OF AN AFRP 

PRESTRESSED GIRDER IN COMPOSITE ACTION WITH 

BRIDGE DECK 
 
7.1 Introduction 
 

In the 1970s, corrosion-induced deterioration of concrete structures, particularly in 

bridge decks, led to a need to find alternative design strategies that would reduce the 

likelihood of corrosion decay in concrete structures. One alternative was to replace 

prestressed steel strands with prestressed fiber-reinforced polymer (FRP) bars. Since 

FRPs have high-strength and are corrosion resistant, non-magnetic, as well as light-

weight, their application in construction, retrofitting, and rehabilitation of structures has 

grown considerably (Trejo et al. 2000). FRP tendons are typically made from one of 

these three basic fibers: glass (GFRP), carbon (CFRP), and aramid (AFRP). The latter is 

the subject of the present study. In spite of superior durability, the modulus of elasticity 

of AFRP is approximately three times lower than that of steel, leading to a substantial 

reduction in flexural stiffness of AFRP prestressed girder after cracking, and resulting in 

larger deflection, accordingly (Bischoff 2005). Controlling the deflection under service 

loads becomes critical to meet serviceability requirements and enhance sustainability 

(Bischoff 2007a).  

Despite ongoing experimental research investigating the behavior of FRP 

prestressed girders, there is a lack of uniformity and consistency in testing procedures, 

definitions of material characteristics, and results that raises the need for a computational 

model to analyze the behavior of FRP prestressed girders (Dolan et al. 2001). Kim 

(2010) investigated the flexural behavior of AFRP prestressed rectangular beams via 

numerical analyses. Different sectional properties and level of prestressing were studied. 

It was concluded that the prestressing level typically governs the flexural performance at 

service state; however the Ig/Icr (gross to cracked moment of inertia) ratio controls the 

deflection characteristics of the AFRP prestressed members until failure. Although 
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valuable results have been gained from previous investigations, studies have been mostly 

limited to rectangular sections or reduced scale beams where the effect of bridge deck in 

providing a composite section is typically ignored (Pisani 1998, Toutanji and Saafi 1999, 

Rafi and Nadjai 2009).  

 New information has been learned based on a computational model recently 

developed by the authors to gain insight into the flexural performance for the design of 

full scale girders with a composite bridge deck per AASHTO LRFD. Studying the 

flexural response of the composite girder in different steps of loading including 

prestressing load, full dead load of the girder and cast-in-place deck, live load when the 

deck is hardened (beginning the composite action), and failure load, is required to judge 

if an AFRP prestressed girder meets the service and strength limit states. The developed 

computational model using MATLAB software is capable of performing the following: 

(1) nonlinear fiber elements analysis of a prestressed girder’s section with pretensioned 

tendons to find the stress and strain distributions, (2) moment-curvature analysis taking 

into account the effect of composite action between the girder and slab once the concrete 

of the slab is hardened, (3) refined analysis to capture cracking and failure, (4) long-term 

loss estimation analysis including creep and shrinkage of the concrete as well as 

relaxation of the tendons, and (5) beam nonlinear analysis to find the load-deflection 

relationship of every point along the beam until failure.  

In this chapter, an AASHTO I-girder (Type I) composite with a bridge deck is 

designed as a fully-prestressed section based on serviceability requirements and strength 

demand for two different cases: (1) pretensioned AFRP and (2) pretensioned steel. Then, 

numerical analysis is performed to determine the stress distribution over the cross 

section, moment-curvature and load-deflection relationships of the girder, which will be 

verified by existing experimental test data. In the final analysis, the deflection equation 

in ACI 440 will be evaluated by numerical results.  
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7.2 Bridge Girder Prototype  
 

A bridge prototype including prestressed precast AASHTO I-girders (Type I) and 

cast-in-place (CIP) deck is shown in Fig. 54. Simply-supported girders are spaced 1830 

mm on center and span 12.2 m. The girder is designed based on AASHTO LRFD Bridge 

Design Specifications (2010) for service and strength limit states. The modulus of 

elasticity of AFRP is considerably less than that of steel, so once the section is cracked, 

there is a substantial decline in the flexural stiffness of the beam leading to a larger 

deflection. Therefore, for the sake of controlling the deflection of the beam, the girder 

should remain uncracked under service load, and hence the girder is designed as a fully 

prestressed beam. Steel strands and AFRP tendons are assumed to be initially prestressed 

up to 70% and 60% of their ultimate strength. Material properties are summarized in 

Table 18. The design vehicle load cases are illustrated in Fig. 54 including the lane load, 

and truck load (HS20-44) or tandem axle load depending on which one governs the 

design.  

 
 
 

Table 18- Properties of material (MPa) 

Girder 
Compressive Strength, cf ′  41.4 

Fracture Modulus, crf  4 

Slab 
Compressive Strength, cf ′  27.6 

Fracture Modulus, crf  3.24 

AFRP 
Ultimate Strength, puf  1400 

Modulus of Elasticity, pE  60000 

Steel 
Strand 

Ultimate Strength, suf  1863 

Yield Strength, yf  1677 

Modulus of Elasticity, sE  193200 
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Fig. 54. Bridge prototype and design vehicle load cases 

 
 
 
7.2.1 Summary of flexural design of AFRP prestressed girder 
 

The maximum moment due to service load is 810 kNm including 291 kNm due to 

the total dead load and 560 kNm induced by live load. For the prototype bridge, 

calculations show that in the case of conventional prestressing steel, twelve 7 wire steel 

strands with 12.7 mm diameter are required: ten in the bottom flange and two in the top 

flange. In this case, the area of tensile reinforcement is As =1.96 14 mm2. For the AFRP 

case, twenty four tendons are required with 10 mm diameter: 22 in the bottom flange and 

two in the top flange. In this case, the area of tensile reinforcement is Ap =17.8 mm2. 
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Similar to the balance ratio, ρbs, commonly used for steel prestressed beams to ensure 

ductile behavior, a brittle ratio, ρbp, is defined for FRP prestressed beams. In this case, ρ 

≤  ρbp (under-reinforced) indicates failure by tendon rupture, while ρ ≥ ρbp (over-

reinforced) represents concrete compression failure. Although concrete compression 

failure provides more deformability over the tendon rupture, it is difficult to over-

reinforce most of the common prestressed shapes since fitting in too many tendons is 

impractical (Dolan et al. 2001). A more significant reason for this difficulty, is the effect 

of the topping deck that considerably raises the balance or brittle ratio. As will be 

discussed, for the AFRP prestressed girder without topping deck the area of 

reinforcement corresponding to the brittle ratio is Abp =7.8 mm2; however, taking into 

account the effect of composite action gives Abp = 56.5 mm2. It is clearly seen that if the 

composite section was to be over-reinforced, approximately 70 AFRP tendons 

(22×8.75/2.76) would have to be used which is not feasible. Thus, the failure mode is 

dominated by tendon rupture. The prestressing layout of both girders prestressed with 

AFRP tendons and steel strands are subsequently illustrated.  

7.2.2 Flexural design calculations 
 

Maximum dead load moments induced by each component of the bridge prototype 

are summarized in Table 19 including the dead load of the girder, slab, barrier, and 

future wearing. Maximum live load moments, per lane, due to the truck load and lane 

load are calculated as ML-Truck=623 kNm, and ML-Lane=177 kNm. It should be noted that, 

for the girder shown in Fig. 54, tandem axle load results in pretty much the same 

maximum moment as the truck load. The distribution factor for moment is computed as 

DFM=0.56 based on AASHTO 4.6.2.2.2b-1. Assuming the impact factor as IM=1.33, 

the maximum live load moment can be computed from the following equation 

( )L L LaneL TruckM DFM M IM M −−= × +  (24) 

which gives ML= 560 kNm. According to AASHTO 3.4, the service load for deflection 

control (D+L) is Ms=858 kNm and the ultimate load for strength design (1.25D+1.75L) 
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is Mu=1353 kNm. To compute the required number of AFRP tendons, the service load 

for controlling the tension in prestressed concrete (D+0.8L) is considered as follows 

( )0.8D Barrier D Wearing L LaneL TruckD Beam D Slab
b

b bc

M M M MM M
f

S S
− − −−− −

           

+ + ++
= +  (25) 

 
 
 

Table 19- Maximum deal load moments (kNm) 

MD-Beam MD-Slab MD-Barrier MD-Wearing 

76 152 33 36 

∑ =228 ∑ = 69 

MD=297 
 
 
 

Given the section modulus for the bottom fiber of the girder and composite section 

are Sb=29611 mm3 and Sbc=60517 mm3, respectively, the tensile normal stress at the 

bottom fiber of the section is computed as fb=16.56 MPa. Based on AASHTO 5.9.4.2.2-1, 

the allowable tensile stress is ft=3.2 MPa. Therefore, the compressive stress due to 

prestressing must be fbp=16.56-3.2≈13.4 MPa. This compressive stress can be written as 

e
bp

b

P Pf A S= +  (26) 

where, the cross sectional area of the girder is A=1781 mm2. As shown in Fig. 55, the 

prestressing eccentricity is e=19 mm, so the required prestressing force equals P=1180 

kN. AFRP tendons are prestressed up to 60% of their ultimate strength and it can be 

conservatively assumed that the total loss during the lifetime of the structure is 20%. 

Thus, the required number of AFRP tendons in the bottom flange is 

 

1180000 2278.5 1400 0.6 (1 0.2)N = ≈
× × × −
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In order to control the stress at transfer (before loss) close to the support, two more 

prestressed AFRP tendons are used at the top flange. The normal tensile stress at the top 

fiber can be calculated as 

22 2 22 2 78.5 1400 0.6T
T T

e ef A S S
 
 
 

′+ × ×= − + − × × ×  (27) 

where positive and negative signs indicate tension and compression, respectively. 

Substituting the section modulus for the top fiber of the girder, ST= 24187 mm3, gives 

fT= 0.69 MPa which is less than the allowable tension at transfer, fti=3.6 MPa based on 

AASHTO 5.9.4.1.2-1. The reinforcement layout of the prestressed girders is shown in 

Fig. 56. 

 
 
 

 
 

Fig. 55. Dimensions, neutral axis location, and C.M of the tendons for AFRP prestressed 
girder 
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a) conventional steel b) AFRP 

Fig. 56. Prestressing layout of the AASHTO I girder (Type I) 

 
 
 
7.2.3 Effect of topping deck on brittle ratio of the AFRP prestressed girder 
 

Brittle ratio of the AFRP prestressed girder can be calculated using the basic 

equations of equilibrium and strain compatibility for the girder section. As illustrated in 

Fig. 57, the depth of the neutral axis can be determined from the strain compatibility 

equation 

0.003
0.003 f

c
d ε

=
+

 (28) 

Assuming 60% prestressing and 5% as loss in prestressing force gives εp0=0.013 and 

εf=0.01. εp0 is the strain due to prestressing (after loss) and εf is what left for flexure. 

Referring to Fig. 55, d≈58.4 mm, and based on the above equation c= 13.5 mm. The area 

of reinforcement corresponding to the brittle ratio can be found from the following 

equilibrium equation 

( )0 pp f bpC E Aε ε= +  (29) 

which results in Abp = 7.8 mm2. Now if the effect of topping deck is taken into account 

(Fig. 58), d=78.7 mm and c=181.6 mm which means that the neutral axis is within the 

slab. Given b=beff, the equilibrium equation gives Abp =56.5 mm2 which is approximately 

seven times that of the case without the topping slab. If the area of reinforcement in 

12.7 mm dia.

12.7 mm dia.

7 wire steel strand
Grade 270

2 
@

 5
1 

m
m

)

 76 mm

7 wire steel strand
Grade 270

22×10 mm dia.
AFRP

2×10 mm dia.
AFRP

5 
@

 5
1 

m
m

 376 mm



 
 

133 
 

AFRP prestressed girder, Ap =17.8 mm2, is compared to Abp =7.8 mm2, it might be 

concluded that the flexural failure is due to the crushing of the concrete. However, 

accounting for the effect of composite action between the girder and topping deck shows 

that the reinforcement ratio is about one-third of the actual brittle ratio (2.76/8.75) 

confirming the tendon rupture as the failure mode. In other words, to change the failure 

mode from tendon rupture to concrete crushing the area of reinforcement should be 

tripled meaning that approximately 70 AFRP tendons have to be accommodated in the 

bottom flange of the girder which is impractical.  

 
 
 

 

Fig. 57. Balance failure for the AFRP prestressed girder 

 
 
 

 
 

Fig. 58. Balance failure for the composite section of AFRP prestressed girder 
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7.3 General Moment-Curvature Relationship 
 

Figs. 59(a) and 59(b) show the general moment-curvature relationships for 

conventional steel and AFRP prestressed AASHTO I-girder composite with bridge deck, 

respectively. After prestressing, the dead loads of girder and slab tend to reduce and 

counterbalance the initial camber induced by prestressing, thereby minimizing the 

effects of creep on long-term deflection. Once the concrete of the slab is hardened, the 

girder exhibits larger flexural stiffness to bear the live load, as a result of the composite 

action between girder and slab. This can be seen by an increase in slope of the moment-

curvature diagram before cracking. With increasing the load, the section cracks and 

decompression occurs in the bottom fibers of the section. From a serviceability point of 

view, before prestressed steel exhibits any inelastic stresses, the girder is in the 

serviceability region as indicated by (Ø0, M0) in Fig. 59(a). Further increase in load 

causes the prestressed steel to reach the limit state of yielding. This stage of loading is 

referred to as the post-serviceability stage. Finally, the girder fails due to concrete 

crushing at the top fibers of the section (ρ ≤ ρbs). However, in the case of prestressed 

AFRP, since tendons behave linearly up to rupture and the reinforcement ratio is 

typically less than the brittle ratio (ρ ≤ ρbp), tendon rupture occurs before the concrete 

can induce any considerable inelastic stresses; hence, the AFRP prestressed girder 

exhibits low deformability, Fig. 59(b). This issue will be further discussed in the 

subsequent sections. 
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a) steel prestressed girder 

 
b) AFRP prestressed girder 

Fig. 59. General moment-curvature diagram 
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7.4 Full Computational Model for Numerical Analysis 
 
7.4.1 Computational model development 
 

An extensive computational model to perform refined nonlinear analyses is 

developed using fiber element method via MATLAB software to study the following: 

(1) stress distribution over the height of the composite section, (2) moment-curvature 

relationship, and (3) load-deflection response of the girder up to failure. This model 

starts the analysis by finding the moment corresponding to the given curvature of the 

composite section. In general, the load-deformation relationship for a structural member 

can be written as  

0P EA EZ
M EZ EI

ε
φ

    
    
        

=  (30) 

where P is the applied axial load, M is the applied bending moment, EA is the axial 

stiffness of the member, EI is the flexural stiffness, EZ is the nonlinear coupling between 

axial load and bending moment, ε0 is the strain at a reference point, and φ  is the 

curvature of the section. The strain at any fiber element of the section can be found using 

the following equation given the plain section remains plain after bending 

0( )y yε ε φ= +  (31) 

where y is the distance of the element from the reference point. ε0 and φ  are the first 

guesses and the strain profile is determined using Eq. (31). Stress-strain behavior of the 

concrete is defined using the Popovic’s equation (1973): 

( )
( )

/

1 /

c c
c cnk

c c

n
f f

n

ε ε

ε ε

′
′=

′− +
 (32) 

where ε'c is the strain corresponding to fc', n is a curve-fitting factor, and k is a factor that 

controls the slopes of the ascending and descending parts of the stress-strain curve. For 

concrete with fc'=41.4 MPa, n and k are equal to 2.77 and 1.33, respectively. Formulas 

for the factors n and k can be found in the reference. Fig. 60(a) shows the assumed 

behavior for the concrete of the girder based on the Popovic’s equation. It is seen that the 
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stress-strain relationship is almost linear up to 0.7 fc' which is equal to 29 MPa. Stress-

strain behavior for prestressing steel strand is defined using the Menegotto Pinto’s 

formula (1973): 

1/
1

1 /
s s s RR

s s y

Qf E Q
E f

ε
ε

 
 
 
 

  
    

−= +

+
 (33) 

Parameters Es, fy, Q, and R are determined experimentally. For prestressing steel (Grade 

270), these parameters are equal to Es=193200 MPa, fy=1656 MPa, Q=0.03, and R=6. 

Further discussion can be found in the reference. The assumed behavior for prestressing 

steel strands and AFRP tendons are depicted in Fig. 60(b). 

 
 
 

  
a) b) 

Fig. 60. Stress-strain relationships: (a) concrete (girder); and (b) prestressing steel and 
AFRP 

 
 
 

A linear stress-strain relationship is assumed for AFRP material. Given the stress at 

each element is found out, P and M can be computed, subsequently. The equilibrium 

equations ( 0P∑ = , 0M∑ = ) are used as a key to find the actual strain profile and 

curvature. This can be done by an iterative analysis using a differential form of Eq. (30) 
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Eq. (34) should be solved incrementally which is beneficial in a highly non-linear state 

of stress. dP and dM are indeed the errors found when the equilibrium equation is 

checked. In each increment, given the constant curvature, a tiny change in strain is 

applied and the partial derivatives ∂p/∂ε0 
and ∂M/∂ε0 are computed. The same procedure, 

however this time for the constant strain, is followed to find /P φ∂ ∂ and /M φ∂ ∂ . Once the 

matrix D is established, the strain and curvature adjustments, dε0 and dφ , can be 

computed and added to the strain and curvature of the previous step to decline the error 

and enhance the accuracy of the response. This iteration should be done as many times 

as the error in equilibrium equation is found to be acceptably small. When the moment 

curvature relationship of the composite section is numerically established, the deflection 

of the beam under any load configuration can be evaluated using the conjugate beam 

theory.  The fibers over the cross section of the girder are refined to the extent that 

cracking and failure can be captured with the least error. The accuracy of the program is 

validated by comparing the numerical results for the steel prestressed girder and its 

corresponding experimental test data reported by Trejo et al. 2008, Fig. 61(a). This 

verification shows that the maximum error induced by the computational model at 

cracking and failure loads are 7% and 5%, respectively, which indicates the high 

accuracy and acceptability of the numerical analysis.  

7.4.2 Moment-curvature analysis of the section 
 

As shown in Fig. 61(b), the cracking moment, 969 kNm, is higher than the moment 

due to the service load, 858 kNm, confirming that the section is fully prestressed. It is 

also observed that both prestressed AFRP and steel girders have an ultimate strength of 

about 1661 kNm which is almost 1.2 times the required strength per AASHTO LRFD 

Bridge Design Specifications (2010). For prestressed steel, flexural failure is due to 

concrete crushing at top fibers of the section, where the compressive strain reaches to 
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0.003. As pointed out earlier, after cracking, decompression occurs in bottom fibers of 

the section, and subsequently prestressed steel yields due to increase in load. In the post-

serviceability region, since ultimate strain of prestressed steel is considerable, 0.05, 

concrete can exhibit inelastic stresses at top fibers of the section and finally reach its 

ultimate compressive strain before rupture of the steel strands; hence, significant flexural 

ductility is provided up to failure. The numerical analysis shows the failure curvature 

equal to 2.36×10-5 1/mm which is 40 times the cracking curvature. In contrast, the AFRP 

prestressed girder fails in a more brittle fashion caused by rupture of the tendons farthest 

from the neutral axis. Since the ultimate strain of the AFRP, 0.023, is much lower than 

that of steel, rupture of the tendons occurs before the concrete can provide any 

considerable inelastic stress, and results in less deformability compared to prestressing 

steel case. 

Numerical analysis confirms this, and shows that the failure curvature of the AFRP 

prestressed girder, 1.1×10-5 1/mm, is almost half of that of steel; however, it can provide 

sufficient warning before failure as it is 18 times the cracking curvature. Based on 

experimental test data, the prestress loss at the time of testing the steel prestressed girder 

was reported as 5%, most of which was due to elastic shortening (Trejo et al. 2008). 

While additional experimental tests to verify the prestress loss are underway, loss 

calculations in the computational model were adjusted to result in the same loss in the 

prestressing force as reported from the experiment for consistency. According to what 

was shown in Fig. 61, results of moment-curvature analysis are summarized in Table 20. 
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a) verification 

 
b) comparison of analytical results for steel and AFRP prestressed girder 

Fig. 61. Moment-curvature diagram 

 
 
 

Table 20- Results of moment-curvature analysis 
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7.4.3 Stress analysis over the cross-section 
 

The computational model produces stress distributions over the entire cross-section 

from the first stage of prestressing up to failure of the girder to gain a clear insight about 

flexural behavior of prestressed girders in composite action with the topping slab. As 

illustrated in Figs. 62 and 63, four steps of analysis were selected to study the stress 

distribution as follows: prestressing the precast girder, applying the dead load of the 

girder and slab, applying live load up to cracking, and increasing live load up to failure. 

It is seen that from the third step where the concrete of the slab is hardened and live load 

is applied, composite action begins and the slab starts to bear compressive stresses. For 

the AFRP prestressed girder, induced stresses at prestressing and at service load meet the 

service limit states according to AASHTO LRFD Bridge Design Specifications (2010), 

and are similar to that of steel. For both cases, the neutral axis lies within the slab when 

close to failure; however, for the case of the AFRP prestressed girder the concrete 

compressive stresses are almost linearly distributed indicating non-ductile flexural 

behavior of the section as opposed to the steel case, where the concrete slab exhibits 

inelastic stresses until crushing of the top fiber. 

 
 
 

 

Fig. 62. Stress distribution in different steps of loading, steel prestressed girder (MPa) 
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Fig. 63. Stress distribution in different steps of loading, AFRP prestressed girder (MPa) 
 
 
 
7.4.4 Load-deflection analysis along the girder 
 

To find the deflection along the girder at different steps of loading, refined nonlinear 

analysis is performed based on conjugate beam theory. The results for the service load, 

post-cracking load and failure load are depicted in Figs. 64(a)-64(c). The girder was 

designed as a fully prestressed section such that under service load it can remain 

uncracked. Therefore, the deflection of the girder under the service load is the same for 

either the steel or AFRP prestressed girder. The maximum deflection in this case is 7.1 

mm, which is less than the allowable amount defined as the length of the girder divided 

by 800, equal to 15.2 mm, according to AASHTO LRFD Bridge Design Specifications 

(2010). Once the load exceeds the cracking load, the deflection of the AFRP prestressed 

girder is still close to that of steel. However, at failure, the maximum deflection of the 

steel prestressed girder is larger than that of AFRP because of the considerable ductility 

provided by yielding of steel strands and compressive inelastic stresses at top fibers of 

the concrete section. The maximum deflections at failure are about 76.2 mm and 152.4 

mm for the AFRP and steel prestressed girder, respectively.  

Analytical results for maximum deflection of the girder for both AFRP and steel 

cases are compared and illustrated in Fig. 61(d). It is clearly seen that the girder 

prestressed with AFRP has sufficient cracking strength and ultimate strength. Fig. 61(e) 
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shows the experimental data from Trejo et al. (2008) for midspan deflection of the steel 

prestressed girder compared to numerical results. The error of the analysis in predicting 

the maximum deflection at failure is 4%, representing high fidelity of the developed 

computational model. It should be noted that the Mmax shown in Figs. 61(a)-61(c) 

includes the applied live load plus the dead load of the composite section. 

7.5 Evaluation of the Deflection Equation of ACI 440 
 

ACI 440.4R recommends the use of the effective moment of inertia, Ie, to calculate 

the deflection of FRP prestressed concrete beams. In this procedure, Ie is assigned to the 

entire beam and the maximum deflection is calculated using linear elastic analysis. 

3 3
  1      cr cr

e g cr gd
a a

M MI I I IM Mβ
             

= + − ≤  (35) 

where Mcr= cracking moment; Ma = maximum moment in the girder at which the 

deflection is being computed; Ig= gross moment of inertia; Icr= cracked moment of 

inertia; and  βd=0.5(Ep/Es+1) is a factor to soften the effective moment of inertia. Ep and 

Es are the modulus of elasticity of FRP tendon and steel, respectively. Fig. 65 shows that 

the equation underestimates the flexural stiffness of the girder, and hence, overestimates 

the deflection. The authors believe that the difference is due to the fact that this equation 

and also other similar formulas which are based on the original equation proposed by 

Branson (1965) for steel reinforced concrete beams, assume that the flexural behavior 

after cracking is linear elastic up to yielding of the steel reinforcement (for steel 

reinforced concrete) or rupture of the tendons (for FRP reinforced concrete). However, 

for a prestressed girder that is composite with a slab, the flexural behavior after cracking 

is not quite linear as a result of a gradual decompression at bottom fibers. This gradual 

decompression provides an additional post-cracking flexural stiffness that reduces the 

deflection. Furthermore, investigations have shown that the ACI 440.4R equation for 

predicting the effective moment of inertia is considerably influenced by the Ig/Icr ratio 

(Kim 2010).   
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a) service load b) post-cracking load 

  

c) failure load 
d) comparison between AFRP and 

steel (numerical analysis) 

 
e) analytical and experimental result for the steel prestressed girder 

Fig. 64. Deflection of the prestressed girders 
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One of the main reasons is because the Branson equation was calibrated for steel 

reinforced concrete beams with the reinforcement ratio around 1.65% which is 

corresponding to the ratio Ig/Icr of about 2.2  (Bischoff 2005). In spite of many formulas 

available to predict the deflection of steel and FRP reinforced concrete (Mota et al. 

2006), there is still a need for an equation with a high degree of accuracy to predict the 

deflection of FRP prestressed beams.  

 
 
 

 

Fig. 65. Evaluation of ACI 440 (2004) equation for AFRP prestressed girder 
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respectively, which indicates the reasonably high accuracy of the developed 

computational model.  

Stress and moment-curvature analyses confirmed that the AFRP prestressed girder 

not only meets service limit states, but also provides sufficient flexural strength. 

However, in contrast to steel prestressed girder whose failure mode was crushing of the 

concrete at the top fibers of the section, the failure mode of the AFRP prestressed girder 

was rupture of the tendons causing less deformability. This is mainly due to the fact that 

over-reinforcing the composite girder to reach to concrete crushing as the predominant 

failure mode rather than rupture of the tendons is almost impractical since the brittle 

ratio of the composite section is considerably large. Although tendon rupture as a failure 

mode is less desirable, the failure curvature was found 18 times the cracking curvature 

that can still provide sufficient warning before failure.  

Load-deflection analysis of the girders showed that the deflection under service load 

is almost half of the allowable amount. At failure, deflection of the steel prestressed 

girder was about twice that of AFRP prestressed girder due to the large ductility 

provided by yielding of the steel strands and inelastic compressive stresses in concrete. It 

was also shown that the deflection equation in ACI 440.4R underestimates the post-

cracking stiffness of the AFRP prestressed girder, and consequently overestimate the 

deflection. This matter becomes more crucial when the girder is partially prestressed and 

deflection under service loads commonly governs the design, and hence there is a need 

for an equation with a high degree of accuracy to predict the deflection of FRP 

prestressed beams. This issue will be discussed in Chapters 8 and 9. 

Although the area of reinforcement in the AFRP prestressed girder was about 1.5 

times that of prestressing steel, the numerical analyses clearly indicated that the AFRP 

prestressed girder can be successfully designed to meet AASHTO criteria. Although 

replacing the prestressing steel with AFRP strand helps to overcome corrosion-induced 

deterioration and enhance the durability of the structure, time-dependent characteristics 

of AFRP bars such as creep-rupture and fatigue strength should also be incorporated in 
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design as they affect the serviceability of the structure. Experimental research on creep-

rupture behavior of AFRP bars has shown a linear relationship between logarithm of 

time and creep-rupture strength where the 50-year creep-rupture strength can be 

approximately extrapolated. The ratio of stress at failure to the ultimate strength of 

AFRP bars has been found about 0.5 (Taerwe 1995), 0.47 (Yamaguchi et al. 1997), 0.66 

(Ando et al. 1997), and 0.6 (Dolan et al. 2001) which almost indicates the range 0.45-

0.65. ACI 440.1R (2006) imposes a safety factor of 1/0.6 to the existing experimental 

data and recommends an allowable sustained stress level equal to 0.3. In this study, the 

AFRP bars were assumed to be initially prestressed up to 0.6 of their ultimate strength, 

which results in a sustained stress level equal to 0.48, given a 20% long-term loss in 

prestressing force. Also, fatigue characteristics of AFRP bars needs to be considered in 

design as the bridge deck is subjected to dynamic load of vehicles. Research conducted 

by Odagiri et al. (1997) shows that the maximum stress level needs to be set between 54 

to 73% of the ultimate tensile strength. However, ACI 440.1R (2006) uses the same 

stress limits for fatigue as for creep-rupture. Further experimental research seems to be 

required regarding the time-dependent characteristics of AFRP bars as well as long-term 

performance of AFRP prestressed members in order to provide a more reliable and 

consistent design procedure. 
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8. RATIONAL MODEL FOR DEFLECTION OF FRP 

PRESTRESSED CONCRETE BEAMS 
 
8.1 Introduction 
 

Prestressed concrete structures are typically designed to meet stress and deflection 

serviceability requirements and to satisfy capacity checks to ensure that the structure is 

safe from collapse under ultimate load (Nawy 2005). Deflections are commonly not of 

primary concern as designs are typically based on uncracked behavior. Partially 

prestressed concrete systems are permitted to have limited cracks. However, in 

prestressed FRP concrete structures, deflection may be of major concern since FRPs 

have a lower modulus of elasticity than steel, which gives rise to a substantial reduction 

in the post-cracking flexural stiffness and larger deflection, accordingly. Hence, a 

dependable and rational evaluation of deflection is necessary to improve the design 

criteria for FRP structural concrete. For FRP systems, larger crack widths are permitted 

due to the non-corrosive nature of that material.  

One common and easy-to-apply method to compute the deflection is to use the 

effective moment of inertia, Ie. When the cracking load is exceeded, the flexural stiffness 

varies along the beam due to the presence of discrete cracks. The effective moment of 

inertia basically reflects this variation and indicates a gradual transition from uncracked, 

Ig, to cracked moment of inertia, Icr, as the load increases. In fact, the effective moment 

of inertia, which is assigned to the entire beam, obviates the need for rigorous analysis to 

account for the effect of cracking. Branson (1965) presented the equation using the 

weighted average of Ig and Icr to estimate Ie for steel reinforced concrete: 

          

3 3
1      cr cr

e g cr g
M MI I I IM M

             
= + − ≤                                                (36) 

 

where M is the maximum moment in a member at which the deflection is being 

calculated and Mcr is the cracking moment. This formula, which is an implicit stiffness 
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formulation, was calibrated for steel reinforced concrete beams over the range 

0.3<Icr/Ig<0.5 (Washa and Fluck 1952; Branson 1965).  

Recent investigations have revealed that the Branson’s equation provides a stiff and 

unconservative response for slabs and beams with lightly reinforced steel or FRP, where 

the Icr/Ig ratios are not in the range for which Branson’s equation was calibrated 

(Bischoff 2007b, c). Extensive research has been conducted to propose an applicable 

equation of effective moment of inertia suitable for FRP reinforced concrete beams 

(Mota et al. 2006). Some researchers may believe that the basic form of the effective 

moment of inertia should be kept similar to the Branson’s equation since it is convenient 

to use for designers; several researchers have modified Eq. (36) by applying a power 

larger than 3 (Brown and Bartholomew 1996; Toutanji and Saafi 2000) while others 

multiplied Ig or Icr or both by a coefficient less than 1 (Benmokrane et al. 1996; ACI 

440.1R-03). Another method for deflection analysis involves the calculation of 

curvatures at specific points along the beam and integrating to compute the deflection 

(Faza and Gangaro 1992; CSA 2002). In this method the deflection is explicitly 

expressed in terms of the moment of inertia, which may be more accurate but, not so 

easy for design office implementation.  

Bischoff (2005) has recently proposed an equation incorporating the tension 

stiffening concept, which provides reasonable predictions for either steel or FRP 

reinforced concrete. This equation has an implicit flexibility form as it expresses 1/Ie as a 

weighted average of 1/Ig and 1/Icr  

          

2 21 11
 

1cr cr
e g cr

M M
I M I M I

             
= + −                                                (37) 

 

This equation has a similar basis to Eurocode 2 (1994). It models the tension stiffening 

fairly accurately and estimates the instantaneous deflection more reliably than Eq. (36) 

(Bischoff 2005; Gilbert 2007). The majority of the research done on effective moment of 

inertia is relevant to reinforced concrete, and less attention has been given to the 
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prestressed concrete beams particularly where the low modulus materials such as FRP is 

used for prestressing. ACI Committee 440.4R (2004) recommends the use of an 

effective moment of inertia for prestressed FRP reinforced concrete beams, which is 

very similar to Branson’s equation 

          

3 3
1      d

cr cr
e g cr g

M MI I I IM Mβ
             

= + − ≤                                                (38) 

where βd = a factor to soften the effective moment of inertia for a better fit with 

experimental data and equals 

   0.5 1   p
d

s

E
Eβ

 
 
  

= +  (39) 

In which Ep and Es are elastic modulus of FRP and steel, respectively. In spite of 

using the reduction factor, βd, the empirical nature of this equation makes its general 

applicability uncertain (Gilbert 1999).  

This chapter of thesis incorporates a rational model to develop an applicable 

equation for estimating the effective moment of inertia to predict the deflection of FRP 

prestressed concrete beams. Instantaneous deflection is only considered and FRP bars 

are assumed to be pretensioned. The derived equation presented herein is subsequently 

verified by experimental data and compared with the ACI 440.4R (2004) formula.  

8.2 Flexural Behavior 
 

In the case of steel prestressed concrete beams, the moment-curvature relationship 

of the section becomes nonlinear as the steel yields. Moreover, since the beam 

commonly fails due to crushing of the concrete, the inelastic compressive stresses in 

concrete add some ductility to the flexural behavior of the beam. In contrast, 

experimental and analytical research have revealed that the moment-curvature behavior 

of FRP prestressed concrete sections is typically a bilinear diagram (Pirayeh Gar et al. 

2012 and Dolan et al. 2001), where the slope of the first line represents the uncracked 

flexural stiffness, EIg, and the slope of the second line indicates the cracked flexural 
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stiffness, EIcr. In this case, the failure mode can be governed by rupture of the tendons 

rather than crushing of the concrete, which prevents the concrete from inducing 

considerable inelastic stresses. Contrary to the prestressed case, the post-cracking 

behavior of non-prestressed FRP reinforced concrete sections is a curve whose slope 

converges to the cracked flexural stiffness. This is due to the significant effect of tension 

stiffening as a result of the concrete’s ability to bear tension between the cracks 

(Bischoff 2005). Tension stiffening in prestressed concrete beams has been studied in 

Chapter 10.  

Figs. 66(a) and 66(b) show the moment-curvature behavior for prestressed and non-

prestressed reinforced concrete beams, respectively. In this figure, specifically,  

φ0  represents the negative curvature, camber, induced by the eccentric prestressing force. 

In practice, such a camber will be cancelled out by the dead load. Since only the 

deflection under live load is sought, the origin of the coordinate system in Fig. 66(a) can 

be shifted to φ0 , without loss of generality.  

Under any load level, the curvature can be determined along the beam using the 

moment-curvature relationship. Now consider a simply-supported FRP concrete beam 

under four-point loading, where the maximum moment, M,  exceeds the cracking 

moment, Mcr, in a length equal to a+2a', where a is the distance between the two loads, 

and a' is the extension of the cracked zone beyond the constant moment region (Fig. 67). 
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a) prestressed section 

 
b) non-prestressed section 

Fig. 66. Moment-curvature diagram for concrete section 

 
 
 
The curvature along the beam can be determined given the moment-curvature 

relationship of the section under consideration. At the cracked zone, the curvature 

consists of the elastic, φg, and inelastic parts, φ∗. As a result of prestressing force, the 

inelastic curvature induced by cracking in the prestressed beam is considerably less than 

that of its non-prestressed counterpart given the same level of loading. For the 

prestressed FRP beam, the cracking and post-cracking curvature can be computed using 

Eq. (40).  
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a) non-prestressed  

 
b) prestressed 

Fig. 67. Moment and curvature diagrams for FRP concrete beam under four-point 

loading 
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cr
cr

g

M
EIφ =  (40) 

cr cr
g cr

M M M
EI EIφ −= +  (41) 

Fig. 68 shows the curvature diagram for half of the FRP prestressed beam taking the 

advantage of symmetry. As seen, the curvature diagram can be divided into two parts: 1) 

elastic curvatures (plain area), and 2) inelastic curvatures (hatched area) induced by 

cracking. In fact, the maximum deflection at midspan is a contribution of the elastic and 

inelastic parts of the curvature. It should be noted that the same moment-curvature 

relationship was assumed for the entire beam meaning that the pretensioned bars have a 

straight profile. 

 
 
 

 
Fig. 68. Curvature diagram for half of the FRP prestressed concrete beam 

 
 
 
8.3 Rational Model 
 

The bilinear flexural behavior of FRP prestressed concrete beam can be well 

resembled with a rheological model of springs which is commonly used to express the 

plastic deformation in metals (Dowling 1993). As shown in Fig. 69, this model consists 

of two springs and one frictional slider. The first spring’s stiffness represents the 

uncracked flexural stiffness of the beam, Kg, and the second spring’s stiffness represents 

the flexural stiffness of the inelastic zone of the beam, K*, due to cracking. The second 

spring and the slider are in parallel and their resultant is in series with the first spring. As 
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long as the applied load, M, is less than the cracking load, Mcr, the stiffness of the slider 

is infinity and it acts as a rigid body. Therefore, all the deformation is induced by the 

first spring, ∆g, which means that the whole beam is in the elastic field and the flexural 

stiffness of the beam is equal to Kg. Once the load exceeds the cracking load, the 

stiffness of the slider becomes zero and it slides while holding a constant amount of load 

equal to Mcr. Consequently, the second spring starts to bear a load equal to the difference 

of the total and the cracking load, M-Mcr. The additional deformation induced by the 

second spring, ∆*, corresponds to the inelastic deformation caused by cracking. 

Therefore, the total deformation of the spring system is equal to the elastic part, ∆g, 

caused by the first spring and the inelastic part, ∆*, induced by the second spring. In this 

case, the post-cracking stiffness of the beam, Kcr, is equal to the resultant stiffness of the 

two springs in series. The main objective is to find the effective stiffness, Ke, which 

linearly correlates the load to the total deflection and obviates the need for a rigorous 

analysis to account for inelastic deflections caused by cracking. This is equivalent to 

having only one spring with variable stiffness depending on the load level. Kg and K*, 

corresponding to the elastic and inelastic parts of the deflection, can be computed using 

the conjugate beam theory. The post-cracking flexural stiffness of the beam, Kcr, can be 

determined using the following equation 

*
( ) ( )cr cr cr

g g cr

M M M M MM
K K KK

− −∆ = + = +  (42) 

which, after simplification, yields to  

*
1 1 1
cr gK KK

= +  (43) 

As seen, the post-cracking flexural stiffness of the beam is equal to the resultant stiffness 

of the two springs in series. Reasonably supposing, Kg is considerably larger than K*, 

and it can be well inferred that the post-cracking stiffness of the beam, Kcr, is much 

closer to the stiffness of the second spring, K*. This implies that the maximum deflection 

is mostly governed by the inelastic curvatures developed in cracked part of the beam. 
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Fig. 69. Rheological model of springs to resemble the moment deflection behavior 

 
 
 
The elastic deflection, ∆g, or the deformation induced by the first spring is written as 

g
g

M
K

∆ =  (44) 

where, Kg can be found via conjugate beam theory as stated  

2

12 g
g

g

EI
K

L
=  (45) 

and Lg is computed using the following equation 

2 2 2(1 ) ( )gL L Fβ β= −
 

(46) 

in which  β=a/L and F(β ) is defined as below 

(M , ∆)  
Kg

K*

Mcr
(M , ∆g)  

(M-Mcr , ∆*)  

Mcr

Moment

M

Deflection∆cr

Kg

Kcr

∆

Inelastic deflection induced 
by cracking
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23 3( ) 1
1 2 1

F β ββ
β β

 = + +  − −   
(47) 

Likewise, the inelastic deflection, ∆ *, or the deformation induced by the second spring 

can be expressed as  

*
*

crM M
K
−

∆ =  (48) 

and K* is similarly calculated as 
*

*
*2

12EIK
L

=  (49) 

where L* equals to  
2

*2 2 23 (1 ) 2 ( ) 0.5
2

cr crM ML L F
M M

β β
           

= + − + −  (50) 

and I* is 

*
1 1 1

cr gI II
= −

 
(51) 

The equivalent flexural stiffness of the beam, Ke, can be found if the total deflection, ∆, 

is equalized to the summation of the elastic, ∆g, and inelastic, ∆*, deflections 

*
( )cr

g e

M MM M
K KK

−+ =  (52) 

where Ke equals to 

2
12 e

e
g

EIK
L

=
 

(53) 

and Ie, so called the effective moment of inertia, can be assigned to the entire beam’s 

section. Substituting Eqs. (45)-(47), (49)-(51), and (53) into Eq. (52) gives 1/Ie in terms 

of 1/Ig and 1/Icr 

3 31 1 1 1 1 1 11 1 1
2 ( ) 2 ( ) 2 ( ) 2 ( )

cr cr cr cr
e g cr

M M M M
I F M F M I F M F M Iβ β β β

                                          
= + − + − + +

 

(54) 
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For further simplification, the following assumption is made 

1( )
2 ( )

G
F

β
β

=  (55) 

where β varies from 0 to 1 theoretically; however in practice, the variation range can be 

deemed between 0 and 0.3. As illustrated in Fig. 70, the function G(β) can be well 

estimated with 0.5-β in the aforementioned range for β. The effective moment of inertia 

can now be rewritten as 

( )1 1 11
e g crI I Iλ λ= + −  (56) 

[ ]
3

1 ( ) ( )cr crM M
G G

M M
λ β β   = + −   

   
 

(57) 

                                                   ( ) 0.5G β β≅ −                               0 0.3β≤ ≤
 

(58) 

This equation can also be used for FRP prestressed one-way slabs; however, to account 

for the initial tension that unavoidably occurs due to drying shrinkage and thermal 

deformation, Mcr should be appropriately decreased (Gilbert 2007). Eurocode 2 (1992) 

and BS 8110 (1985) account for such a reduction in the cracking moment.  

 
 
 

 
Fig. 70. Variation of G(β) versus the practical range for β 
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8.4 Verification with Experimental Data 
 

Eight specimens tested by other researchers were selected with different specimen 

geometries, FRP types, and Icr/Ig ratios to verify the proposed equation, Eq. (56). 

Specifications of these specimens are presented in Table 21, where ρt represents the total 

reinforcement ratio, βd is indicative of FRP elastic modulus compared to that of steel, Eq. 

(4), G(β) is defined per Eq. (58), and Icr/Ig denotes the post-cracking to uncracked 

flexural stiffness of the section. All selected specimens were prestressed using 

pretensioned FRP tendons with a straight profile. Fig. 71 presents the comparison 

between experimental data, proposed equation, and ACI 440.4R formula, Eq. (3). 

Experimental values for cracking moment, Mcr, and code values for modulus of elasticity 

of concrete, Ec, are used in this comparison.  

It is seen that for all specimens, the proposed equation matches well with the 

experimental data, thereby confirming its high fidelity. ACI 440.4R equation estimates 

the deflection reasonably only for some of the specimens. For instance, predictions of 

ACI 440.4R equation for specimens B9-4F and B12-4F tested by Dolan et al. (2001) and 

the specimen tested by Sen et al. (1998) are very similar to the experimental results and 

the proposed equation as well. However, for other specimens the deflection at midspan is 

significantly different with ACI 440.4R predictions.  

For example, the ACI 440.4R equation overestimates the deflection of the specimen 

tested by Abdelrahmaan et al. (1995), and underestimates the deflections of the 

specimen B9-2F tested by Dolan et al. (2001) and the specimens tested by Lees et.al 

(1999). It is also seen that for the specimen tested by Stoll et al. (2000), ACI 440.4R 

estimates the deflection well after cracking; however when the load exceeds 

approximately 1.5 times the cracking load, it begins to overestimate the deflection but 

still acceptable. The experimental results of the prestressed strip specimen tested by the 

authors and discussed in Chapter 5, is compared with the proposed equation and ACI 

440.4R as shown in Fig. 71(i). Since the Icr/Ig ratio is very low, 0.014, the ACI 440.4R 

equation underestimates the deflection significantly. 
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Table 21- Selected experimental specimens for verification 

Researcher Specimen Geometry FRP Type ρt βd G(β) Icr / Ig 

Author 
 

AFRP 

(Arapree) 0.0026 0.67 0.25 0.014 

Lees et al. 

(1999) 
 

AFRP 

(Spiral) 0.0012 0.635 0.167 0.02 

Lees et al. 

(1999) 
 

AFRP 

(Braided) 0.0016 0.67 0.167 0.03 

Dolan et al. 

(2000) 
 

CFRP 

(Strawman) 0.0028 0.87 0.33 0.06 

Dolan et al. 

(2000) 
 

CFRP 

(Strawman) 
0.0042 0.87 0.33 0.08 

Dolan et al. 

(2000) 
 

CFRP 

(Strawman) 
0.0056 0.87 0.33 0.085 

Sen et al.  

(1998) 
 

AFRP 

(Arapree) 0.0036 0.812 0.35 0.085 

Stoll et al. 

(2000) 
 

CFRP 

(Leadline) 0.0027 0.867 0.287 0.09 

Abdelrahman  

et al. (1995) 
 

CFRP 

(Leadline) 0.0031 0.87 0.327 0.12 

 

200 × 305

200×100 

200×100 

229 × 152 
Designation: B9-2F

305 × 152
Designation: B12-4F

229×152 
Designation: B9-4F

150×114  

AASHTO I-Beam Type II

450 
51

100

330 
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a) Icr/Ig=0.02 b) Icr/Ig=0.03 

  

c) Icr/Ig=0.06 d) Icr/Ig=0.08 

  

e) Icr/Ig=0.085  f) Icr/Ig=0.085  

Fig. 71. Verification of load deflection response 
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g) Icr/Ig=0.09 h) Icr/Ig=0.12 

 
i) Icr/Ig=0.014 

Fig. 72. Verification of load deflection response (cont’d) 
 
 
 
8.5 Discussion 
 

The observations obtained from comparison between experimental data, the 

proposed equation, and ACI 440.4R equation raises the question “why the proposed 

equation provides fairly accurate predictions, but ACI 440.4R estimates the deflection 

reasonably only for some of the specimens?” In other words, what parameter is affecting 

the accuracy of ACI 440.4R deflection equation? Research done by Bischoff (2005, 

2007a, b, c) regarding deflection evaluation of non-prestressed FRP reinforced concrete 
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suffers from. In these studies, it has been shown that the Branson’s equation which was 

calibrated for steel reinforced concrete beams results in responses which are too stiff for 

FRP case, and hence the deflection is often under-predicted. The dependence of the 

Branson’s equation to the Ig/Icr ratio was realized as the main reason, and it was clarified 

that for non-prestressed FRP reinforced concrete beams whose the Icr/Ig ratio is typically 

greater than 0.2, this equation underestimates the deflection. The acceptable predictions 

can be achieved when the Icr/Ig ratio is between 0.33 and 0.5, which is suitable for steel 

reinforced concrete beams. Since ACI 440.4R equation is based on the Branson’s 

original equation, the ratio of Icr/Ig is thought to be a parameter which is affecting the 

accuracy of this deflection equation. 

 To study the effect of Icr/Ig ratio on effective moment of inertia, Ie is calculated 

using the proposed equation as well as ACI 440.4R equation for different values of Icr/Ig 

ratio. For the sake of consistency between all the responses and without loss of 

generality, G(β) and βd are assumed to be equal to 0.33 and 0.87, respectively. Fig. 72 

illustrates the responses, where the vertical axis represents Ie normalized to Icr, and the 

horizontal axis indicates the moment normalized to the cracking moment. Since the 

proposed equation proved to be well matched with the experimental data, it is used as a 

criterion to evaluate the effective moment of inertia predicted by ACI 440.4R. It is 

observed from Fig. 72 that for low Icr/Ig ratios, less than 0.08, ACI 440.4R overestimates 

Ie particularly in the serviceability domain. That is why for the specimens tested by Lees 

et al. (1999), where the Icr/Ig is low, ACI 440 under-predicts the deflection, Figs. 71(a) 

and 72(a). On the other hand, for Icr/Ig ratios between 0.08 and 0.1, it is seen that both 

the proposed equation and ACI 440.4R equation give rise to very close responses. This 

well justifies why these two equations predict fairly similar deflections for specimens 

B9-4F and B12-4F tested by Dolan et al. (2001), and Sen et al. (1998). However, for 

Icr/Ig ratios larger than 0.1, ACI 440.4R begins to underestimate the Ie which leads to 

over-predicting the deflection, accordingly. The experimental result from the test 

conducted by Abdelrahmaan et al. (1995) confirms this, Fig. 71(h), and shows that as the 

load goes beyond the cracking load, the deflection estimated by ACI 440.4R becomes 
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larger than the experimental results. Referring to the test conducted by Stoll et al. (2000), 

where the Icr/Ig ratio is 0.09, Fig. 71(g), ACI 440.4R equation estimates the deflection 

well after the cracking; however, when the load exceeds approximately 1.5 times the 

cracking load, it begins to overestimate the deflection. This indicates that as the Icr/Ig 

ratio becomes close to 0.1, the ACI 440.4R formula tends to overestimate the deflection. 

This can be better understood by Figs. 72(e) and 72(f), where the effective moment 

of inertia has been calculated for Icr/Ig = 0.09 and 0.1, respectively. It is seen that for the 

Icr/Ig ratio close to 0.1, when the load exceeds approximately 1.5 times the cracking load, 

ACI 440.4R begins to under-predict the effective moment of inertia, which subsequently 

leads to overestimating the deflection. The same concept, however conversely, is true 

when Icr/Ig < 0.08, in the sense that Ie is overestimated by ACI 440.4R and the deflection 

is under-predicted. Figs. 72(a) and 72(b) clearly confirm this conclusion.  

The susceptibility of the ACI 440.4R equation particularly to the low Icr/Ig ratios lies 

in the fact that this equation uses a directly weighted average of the gross and cracked 

moment of inertia for a certain load level. This is analogous to two parallel springs 

whose stiffness is proportional to Ig and Icr depending on the load level. In this case the 

resultant stiffness is governed by the stiffer spring (Ig). However, Eq. (56) takes a 

weighted average of the inverse gross and cracked moment of inertia for a certain load 

level, which is analogous to two series springs and implies that the resultant stiffness is 

governed by the flexible spring (Icr). As shown in Eq. (52), the maximum deflection of 

the beam is a summation of the deflection induced by the elastic and inelastic curvatures. 

Therefore, in reality the maximum deflection, and not the effective moment of inertia, is 

a weighted average of the elastic and inelastic deflections. Since the deflection is 

inversely proportional to the moment of inertia, the inverse of the effective moment of 

inertia is the weighted average of the inverse of Ig and Icr indeed, Eq. (56).  

To elaborate this substantial difference, the effective moment of inertia predicted by 

ACI440.4R and Eq. (56) has been illustrated in Figs. 73(a) and 73(b).  Without loss of 

the generality, the function G(β) is deemed as equal to 0.33 and the coefficient βd is 
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taken equal to 1 (Branson’s equation), and Icr/Ig=0.08. It is observed that Ig has the most 

weight in Ie predicted by ACI440.4R when 1< M/Mcr< 2.25 and beyond this load range 

the weight of Icr becomes more pronounced. This generally shows that Ie is mostly 

governed by Ig particularly in serviceability region. In contrast, in Eq. (56), Icr has the 

most weight in Ie and Ig is only influential in very early stages of cracking (1< M/Mcr< 

1.2). This makes a physical sense as the proposed rheological model showed that the 

post-cracking stiffness of the beam (Kcr) is largely dominated by the stiffness of the 

cracked zone (K*) rather than the uncracked stiffness of the beam (Kg). 

 
 
 

  

a) Icr/Ig=0.02 b) Icr/Ig=0.04 

  

c) Icr/Ig=0.06 d) Icr/Ig=0.08 

Fig. 73. Effective moment of inertia for different Icr/Ig ratios 
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e) Icr/Ig=0.09 f) Icr/Ig=0.1 

  

g)  Icr/Ig=0.12 h) Icr/Ig=0.14 

Fig. 74. Effective moment of inertia for different Icr/Ig ratios (cont’d) 
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significantly stiffer than what Eq. (56) shows.  Moreover, in practical range of Icr/Ig for 

prestressed FRP reinforced concrete beams (between 0.02 and 0.1) the proposed 

equation shows that as the load level raises and the beam section becomes fully cracked, 

Ie/Icr does not perceptibly change as the Icr/Ig ratio varies, however, the Ie/Icr predicted by 
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a) ACI 440.4R b) proposed equation 

Fig. 75.  Effective moment of inertia for different M/Mcr ratios 

 
 
 

Fig. 10 well confirms this result and shows that the ACI 400.4R equation is 

vulnerable to low Icr/Ig ratios and the predictions change drastically with decreasing the 

Icr/Ig ratio. To make a direct comparison of the predicted effective moment of inertia, the 

ratio of the ACI 440.4R prediction to that of Eq. (56) is depicted versus the load level.   
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Icr/Ig ratios is not as much pronounced as seen for the low Icr/Ig ratios, but nonetheless, 

still affecting the design. 
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a) ACI 440.4R b) proposed equation 

Fig. 76. Variation of effective moment of inertia versus Icr/Ig ratio 

 
 
 

  
a) ACI 440.4R b) proposed equation 

Fig. 77. Effect of Icr/Ig ratio on effective moment of inertia 
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Fig. 78. Sensitivity of the effective moment of inertia predicted by ACI 440.4R to Icr/Ig 

ratio 
 
 
 
8.7 Conclusions 
 

The moment-curvature characteristic of FRP reinforced concrete beams was studied 

and a rational model resembled by a rheological system of springs was introduced to 

better understand the flexural behavior of FRP prestressed concrete beam. Based on this, 

an applicable equation for effective moment of inertia, Ie, was derived. This equation, Eq. 

(56), estimates 1/Ie using a gradual transition from 1/Ig to 1/Icr depending on the load 

configuration and load level. Load configuration is reflected by the function G(β) which 

is equal to 0.5 for three-point loading, 0.5-β for four-point loading, and approximately 

0.2 for uniformly distributed load. Also, Mcr/M ratio reflects the effect of load level. For 

verification, eight experimental specimens tested by other researchers were selected with 

different geometries, FRP types, and Icr/Ig ratios. It was observed that the developed 

equation is in good agreement with experimental data; however, the ACI 440.4R 

equation provided reasonable predictions only for some of the specimens. Further 

studies revealed that the ACI 440.4R equation overestimates Ie when Icr/Ig < 0.08 which 

results in under-predicted deflections and underestimates Ie when Icr/Ig>0.1 which gives 

rise to over-predicted deflections.  
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Vulnerability of ACI 440.4R equation to high Icr/Ig ratios is not as much pronounced 

as seen for the low Icr/Ig ratios, nonetheless affects the design and leads to conservative 

deflections. The rational model developed and the comparison with the experimental 

data are quite conclusive in showing that the substantial problem of ACI 440.4R 

equation is using the weighted average of stiffness to find the effective moment of 

inertia, Ie, which physically implies two parallel springs. In this case Ie is mostly 

governed by the stiffer spring, Ig, in the sense that the deflections are often under-

predicted. However, as deflection is inversely proportional to stiffness, the weighted 

average of flexibility, 1/I, should be used to find the effective moment of inertia, Ie, 

which physically represents two springs in series. In this case Ie is mostly governed by 

softer spring, Icr. The authors believe that modification of Branson’s equation by 

multiplying a reduction factor or using a power larger than three is not an appropriate 

way, as the basis of this equation is empirical and not rational. 
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9. RATIONAL MODEL FOR DEFLECTION OF FRP 

REINFORCED CONCRETE BEAMS 
 
9.1 Introduction 
 

Steel reinforced concrete beams are commonly designed for strength and then 

checked for serviceability. In contrast, in FRP reinforced concrete beams, serviceability 

related to deflection and not strength typically governs the design because of the low 

modulus of elasticity of FRPs compared to steel. Therefore, accurate prediction of the 

maximum deflection becomes more crucial in design process. However, due to inherent 

corrosion resistivity of FRPs, controlling the crack width is not as critical as the 

deflection, and hence larger crack widths are typically allowed.  

Deflection equations are commonly categorized in two different groups: 1) cross-

sectional model and 2) block model. In the block model, the deflection of the flexural 

member is evaluated using the member block between two consecutive cracks. This is 

done by writing the equilibrium and compatibility equations in all blocks given the 

constitutive laws of the material and a rational bond-slip behavior, which results in a set 

of differential equations for deflection. The cross-sectional model, however, is more 

common and assumes that plane section remains plane after pure bending and there is a 

perfect bond between the concrete and reinforcement. In contrast to the cross-sectional 

model that generally tends to overestimate the deflection, the block model computes the 

deflection more accurately, but it is not convenient to use for engineers, and hence not 

suitable for design office implementation (Aiello and Ombres 2000).  

As discussed in Chapter 8, one common and easy-to-apply method within the cross-

sectional model to find the maximum deflection is to use the effective moment of inertia, 

Ie, of the beam proposed by Branson (1965). When a reinforced concrete beam cracks, 

the moment of inertia of the beam’s section at the cracked zone changes from the gross 

moment of inertia, Ig, to the cracked moment of inertia, Icr, and hence the flexural 

stiffness varies along the beam. This stiffness variation is basically reflected by 
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assigning Ie to the entire beam, which obviates the need for rigorous analysis to find the 

maximum deflection. Branson (1965) proposed an equation, where Ie is formulated as a 

gradual transition from Ig to Icr 

          

3 3
1      cr cr

e g cr g
M MI I I I
M M

             
= + − ≤                                                (59) 

in which M is the maximum moment in a member at which the deflection is being 

calculated and Mcr is the cracking moment. This semi-empirical equation was calibrated 

for steel reinforced concrete beams most of which had a reinforcement ratio about 1.65% 

which approximately corresponds to 2< Ig/Icr <3 (Washa and Fluck 1952; Branson 1965). 

However, this equation is not suitable for FRP RC beams where typically 5< Ig/Icr <25 

and it leads to very stiff responses that substantially underestimates the deflection (Nawy 

and Neuwerth 1977; Yost et al. 2003; Bischoff 2005; Bischoff and Scanlon 2007). Poor 

bond strength and excessive cracking in FRP RC members which lead to loss in tension 

stiffening were first thought to be the main reasons of this problem (ACI Committee 

440.1R 2006).  

Three different methodologies are seen among all the proposed deflection equations 

for FRP RC beams (Mota et al. 2006). One method is a direct modification to Branson’s 

equation for the sake of keeping the basic form of this equation unchanged as it is 

convenient to use for engineers. For instance, some researchers have used a power larger 

than three in Eq. (59) to let Ie converge to Icr quicker than the cubic form and result in 

softer responses (Brown and Bartholomew 1996; Toutanji and Saafi 2000). Some other 

researchers multiplied Ig or Icr or both by a coefficient less than 1 in an attempt to add 

some flexibility to the responses (Benmokrane et al. 1996; Yost 2003; ACI committee 

440 2006). Recent studies (Bischoff 2003, 2005) have revealed that the problem with 

Branson’s equation is not attributed to loss in tension stiffening or poor bond strength. In 

fact, Branson’s equation doesn’t model tension stiffening correctly since it is based on 

the weighted average of stiffness, EI, rather than flexibility, 1/EI, and hence it is very 

susceptible to Icr/Ig ratio. Consequently, any modified version of Branson’s equation still 
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caries this rational problem. The second method is using a simplified moment curvature 

diagram and applying the virtual work method to find the deflection in an explicit form 

(Faza and GangaRao 1992; Razaqpur et al. 2000; Rasheed et al. 2004; CSA 2002). 

Although this method has a rational basis, tension stiffening effect will not be correctly 

reflected given the simplified moment-curvature response. Also the final equation is not 

as easy to use as the Branson’s equation is. In the third method, the actual moment 

curvature response where the tension stiffening is taken into account is employed to 

determine the Ie (Fig. 77). 

 
 
 

 
Fig. 79. Typical moment-curvature diagram for FRP RC beams 

 
 
 

In this figure 0cβ = , 1cβ = , and /c crM Mβ = indicate no tension stiffening, full 

tension stiffening, and actual response, respectively. Also, crφ and φ  are the curvatures 

corresponding to cracking and post-cracking moments, Mcr and M, respectively. If zero 

tension stiffening is assumed, then the actual curvature at cracking and post-cracking 

loads will be raised by maxφ∆ and φ∆ , respectively. The tension stiffening factor for 

curvature, cβ , is defined as max/φ φ∆ ∆ ratio. maxφ∆ can be written as 

          max 1cr cr cr cr
c cr c g c cr g

M M M I
E I E I E I I

φ
 
 
 
 

∆ = − = −                                                (60) 
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therefore, φ can be determined given maxcφ β φ∆ = ∆  

          max 1 1cr cr
c c

c cr c cr c cr g

M IM M M
E I E I E I M I

φ φ β φ β
  
  

    
= − ∆ = − ∆ = − −                                                (61) 

given /c eE I M φ= , the effective moment of inertia can be expressed as 

          1 ( / )(1 / )
cr

e
c cr cr g

II
M M I Iβ

=
− −                                                (62) 

Tension stiffening factor is typically assumed to be /c crM Mβ =
 
(Murashev et al. 1971; 

CEB-FIP 1990), and hence Eq. (62) can be simplified and rearrange in the following 

form (Bischoff 2007) 

          

2 21 1 11cr cr
e g cr

M M
I M I M I

             
= + −                                                (63) 

The curvature at the critical section is found from / c eM E Iφ = , and the maximum 

deflection is computed from 2 /m c ekL M E Iδ =  where coefficient k depends on loading 

and support conditions. Although using Eq. (63) to find the maximum deflection results 

in reasonable predictions (Gilbert 2007); assuming the same moment of inertia for the 

critical section as for the entire beam is not physically true. In other words, the effective 

moment of inertia at the critical section has been assigned to the entire beam to find the 

deflection which will clearly result in over-prediction due to ignoring the uncracked 

parts of the beam. Evidently, this error will be more pronounced for beams with low 

Icr/Ig ratio. In fact, to find the actual effective moment of inertia it is required to integrate 

the curvature along the beam. This point has recently been noticed by Bischoff and 

Gross (2011), and an integration-based expression for effective moment of inertia, I'e, 
has been represented in the following form 

          

2 21 1 11cr cr
e g cr

M M
I M I M I

γ γ
             

= + −
′                                                (64) 

Depending upon the loading type and the boundary conditions,γ  can be found from 

separate formulae that have been presented in Bischoff and Gross (2011) in a tabular 

form. They have found that eI ′  in Eq. (64) gives a stiffer response that improves 

prediction of deflection compared to Ie in Eq. (63), particularly for beams with low Icr/Ig 
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ratios. Although Eq. (64) is considered as an improvement, there is no doubt on the fact 

that the accuracy of any integration-based expression for effective moment of inertia is 

greatly influenced by the assumed distribution of the curvature along the beam. For 

instance, assuming a larger tension stiffening factor, cβ , results in less curvature and less 

deflection, accordingly. Studying the distribution of the curvature along the beam and its 

effect on Ie seems to be an issue that has not been well investigated yet. In addition to a 

rational assumption for curvature distribution, the final form of the equation should also 

be kept as simple as possible for engineering design purposes. In this chapter, two 

rational and easy-to-use equations are derived for Ie based on different assumptions for 

curvature distribution in very slender and slender FRP reinforced concrete beams and the 

verification with experimental data is presented as well. The experimental results of the 

non-prestressed FRP strip, presented in Chapter 5, are again discussed herein to compare 

with the deflection equations derived. 

 
9.2 Cracking Pattern 
 

In order to rationally predict the maximum deflection, the curvature distribution 

along the beam should be first determined. Therefore an appropriate moment-curvature 

relationship where the tension stiffening is correctly taken into account should be 

employed. Tension stiffening is the ability of the concrete to bear tension between cracks 

in the sense that the larger crack spacing is a sign of higher contribution of the concrete 

in tension and larger tension stiffening, accordingly. This can be well seen in slabs 

where the reinforcement ratio is considerably less than beams or in FRP RC members 

where the modulus of elasticity is substantially less than that of conventional steel. Fig. 

78 shows the general cracking pattern for very slender (Ls/d>7) and slender (3<Ls/d<7) 

beams under four-point loading (Park and Paulay 1975), where Ls/d is the shear span-to-

depth ratio. As seen, the cracking pattern in shear span of slender beam is clearly 

different with very slender beam due to presence of shear diagonal cracks.  
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a) very slender beam 

 

b) slender beam 

Fig. 80. Cracking Pattern with different shear span-to-depth ratio 

 
 
 
Experimental and analytical studies have confirmed that at shear span of slender beams 

the crack spacing is typically larger than that of constant moment span (Leonhardt 1965; 

Yang et al. 2003) implying that the tension stiffening factor is expected to be larger in 

this region. This point should be considered when assuming the moment-curvature 

relationship of the cross section along the beam as it affects the accuracy of the 

deflection prediction. 

 
9.3 Effective Moment of Inertia 

 
9.3.1 Very slender beam (Ls/d >7) 

 
As shown in Fig. 79, consider a very slender FRP RC beam under four-point 

loading. The maximum moment, M, exceeds the cracking moment, Mcr, in a length equal 

to a+2a', where a is the distance between the two loads, and a' is the extension of the 

cracked zone beyond the constant moment span which is typically named transition zone.   

P P
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Fig. 81. Curvature distribution for very slender simply supported beam  
(under four point loading) 

 
 
 

In this case, the curvature distribution along the beam can be reasonably assumed based 

on the moment-curvature behavior shown in Fig. 77 with tension stiffening factor

/c crM Mβ = as the flexure governs the overall behavior of the beam. For the sake of 

simplicity and taking the advantage of symmetry, only half of the beam is considered in 

deflection computations. Curvature distribution has been quantitatively illustrated in Fig. 

80 where lines 1 and 3 represent the lower bound or full tension stiffening, and the upper 

bound or zero tension stiffening, respectively. Line 2 indicates the assumed actual 

distribution based on which the effective moment of inertia is going to be specified. To 

find the maximum deflection at midspan, conjugate beam theory is applied where the 

curvature is treated as load, and the induced moment with respect to the left support in 

the conjugate beam, indicates the maximum deflection in the actual beam. The 

maximum deflection can be written as 

 

2 2

2

( )1 ( )3 2 2 2 4

L a
cr c cr c cr

L ag g cr a

M M M ML a a L aa x x dxEI EI EI
β β φ

−

− ′−

             

−− ′∆ = − + − + + ∫                                                (65) 

P P

L

aa' a'

M= P(L-a)/2

Mcr Mcr=P(L-a-2a')/2
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βc=Mcr /M
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Fig. 82. Curvature distribution for different tension stiffening responses 

 
 
 
where the curvature equation in transition zone, a', is 

          
( )( ) c cr c cr

g cr

M m x Mx EI EI
β βφ −= +    and    ( )m x Px=   0 2

L ax −≤ ≤                       (66) 

from the bending moment diagram, a' can be related to a using  

        12
crML aa M

 
 
 

−′ = −                        (67) 

substituting Eqs. (66) and (67) in Eq. (65) and assuming /c crM Mβ = , gives the 

maximum deflection in the following form 

          

( )
2 22 2( ) ( )2 ( ) 2 ( ) ( ) 2

12 12
cr cr cr cr cr cr
g cr

M M M M M M ML a L af f f
EI M M EI M M

β β β
                     

−− −∆ = + − + + −

                                               
(68) 

Mcr / EIg 

Mcr / EIg+ (M-Mcr) / EIcr   

a/2a'(L-a)/2 - a'

Mcr / EIcr 

M / EIcr 

M / EIg 

βcMcr / EIg+ (M-βcMcr) / EIcr   

1
2

3

1: Full Tension Stiffening (βc=1)
2: βc=Mcr /M
3: Zero Tension Stiffening (βc=0)

P

a/2a'(L-a)/2 - a'

φ dxMcr / EIg 

βcMcr / EIg+ (M-βcMcr) / EIcr   
φ(x)=βcMcr / EIg+ (m(x)-βcMcr) / EIcr   
m(x)=Px        0≤ x≤ (L-a)/2

M= P(L-a)/2

2

x
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where /a Lβ = and ( )f β is defined as 

          

23( ) 3 1
2 1 1

f β ββ
β β

   = + +   − −                                                   (69) 

now if Ie is assigned to the entire beam given the linear behavior, the maximum 

deflection then can be readily computed as 

       

2( ) ( )
12e

e

L aM f
EI

β−∆ =                                                   (70) 

equalizing Eqs. (68) and (70) results in an expression for Ie in terms of Ig and Icr 

  
2 3 2 31 1 2 2 1 2 21 1 1

( ) ( ) ( ) ( )
cr cr cr cr

e g cr

M M M M
I I f M f M I f M f Mβ β β β

                                          
= + − + − + +                                                   

(71) 
Similar to what was presented in Chapter 8, the following assumption is made for the 

sake of further simplification 

1( )
2 ( )

G
f

β
β

=  (72) 

where β varies from 0 to 1 from theoretical standpoint; however in practice, the variation 

range can be deemed between 0 indicating three-point loading, and 0.3 which 

approximately represents the uniformly distributed load. As illustrated in Fig. 81, G(β) 

can be well estimated with 0.5-β in the aforementioned range for β. With substituting Eq. 

(72) in (71), Ie can be rewritten as 

( )1 1 11
e g crI I Iλ λ= + −  (73) 

[ ]
2 3

1 4 ( ) 4 ( )cr crM MG G
M M

λ β β   
   
   

= + −
 

(74) 

                                                   ( ) 0.5G β β≅ −                               0 / 0.3a Lβ≤ = ≤
 

(75) 
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Fig. 83. Variation of G(β) versus the practical range for β 

 
 
 

It should be noted that Eq. (73) results in the same prediction as Eq. (64) adopted by 

Bischoff and Gross (2011); however, the derived equation has a simpler form that can be 

used for either four-point loading, /a Lβ = , or three-point loading, 0β = . It can also be 

conservatively used for uniformly distributed load, 1/ 3β = . If this analysis is repeated 

for full and zero tension stiffening shown by line 1 and 3, respectively, in Fig. 62, the 

coefficient λ  corresponding to the lower and upper bound for deflection is obtained as 

shown in Table 22.  

9.3.2 Slender beam (3<Ls/d<7) — Experimental study of curvature distribution 
 

As discussed, for slender beams where the shear span-to-depth ratio is between 3 

and 7, the compound shear-flexural cracks with larger spacing form in the transition 

zone (the zone with length a' in Fig. 79) that raises the effect of tension stiffening in this 

region. Therefore, it seems to be more rational to assume a larger tension stiffening 

factor for transition zone in shear span compared to constant moment span. For further 

investigation, the experimental results of the AFRP RC strip, discussed in Chapter 5, is 

studied herein to better understand the distribution of the curvature along the beam. The 

experimental specimen, test set up, and failure mode are illustrated in Fig. 82. String 
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pots (STP) were hooked up to the beam to record the deflection at every 150 mm. Strain 

gages (STG) were mounted on AFRP bars to record the strain at the middle of the AFRP 

bars. The load was monotonically increased until failure of the beam. Figs. 83 and 84 

show the moment diagram, curvature distribution, and deflection profile of the beam at 

post-cracking regions. It can be observed that the curvature at constant moment region is 

close to Eq. (63) adopted by Bischoff (2005) where the tension stiffening factor is 

deemed to be /c crM Mβ = . However, at the transition zone of the shear span, as already 

discussed, the curvature tends to follow the bilinear distribution (lower bound) implying 

the tension stiffening factor close to 1cβ = . It is seen from the experiment that the 

deflection profile of the beam is generally between the Bischoff’s original equation and 

the bilinear model. 
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a) test setup 

 
b) shear diagonal cracks in shear span 

Fig. 84. AFRP reinforced concrete strip test 
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Fig. 85. Moment, curvature, and deflection along the beam at P=45 kN 
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Fig. 86. Moment, curvature, and deflection along the beam at P=63 kN 
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Therefore, a better estimate of effective moment of inertia might be achieved by 

supposing 1cβ = for the transition zone in shear span, and /c crM Mβ = for the constant 

moment span. Repeating the analysis done for very slender beam, however with this 

updated curvature distribution, results in the following equation for slender beams 

[ ]
2 3

3 ( ) 1 2 ( ) ( )cr cr crM M M
G G G

M M M
λ β β β     = + − −     

     
 (76) 

Table 22 provides the summary of the equations for effective moment of inertia with 

different curvature distribution assumptions. ( )G β is a function that reflects the effect of 

loading configuration. It should be noted that the maximum deflection of a cantilever 

beam can be computed from a simply supported beam taking the advantage of symmetry. 

The derived equations can also be used for one-way slabs; however the reduction in 

cracking moment due to drying shrinkage and thermal deformations should be accounted, 

accordingly (Eurocode 2 1992 and BS 8110 1985). 

 
 
 

Table 22- Coefficient λ  for different curvature distribution 
 λ  

 Upper bound 

 (Zero tension stiffening) 

3
2 ( ) crMG

M
λ β  

 
 

=  

Lower bound  

(Full tension  stiffening)  [ ]
3

1 ( ) ( )cr crM MG G
M M

λ β β   
   
   

= + −  

Very slender beams  
(Ls/d > 7) [ ]

2 3
1 4 ( ) 4 ( )cr crM MG G

M M
λ β β   

   
   

= + −  

Slender beams (3< Ls/d< 7) [ ]
2 3

3 ( ) 1 2 ( ) ( )cr cr crM M MG G G
M M M

λ β β β     
     
     

= + − −
 

( )1 1 11
e g crI I Iλ λ= + −

      
( ) 0.5G β β≅ −

 

Four-point loading: 
/a Lβ =

 

Three-point loading:         
/a Lβ =

 

Uniform loading: 
1/ 3β ≅
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Moment-curvature analysis using the computational model, developed in Chapter 7, 

shows that the tension stiffening assumption of /c crM Mβ = gives rise to reasonable 

predictions of curvature at midspan, as shown in Fig. 85. However, Bischoff’s original 

deflection equation which uses the above tension stiffening factor overestimates the 

maximum deflection since it assumes the same Ie for the critical section as for the entire 

beam.  

 
 
 

   

 
Fig. 87. Moment-curvature and load-deflection diagrams at midspan 
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Fig. 85 shows that Eq. (76) provides a reasonable prediction of maximum deflection 

particularly at post-cracking stages, Eq. (74) seems to have an acceptable accuracy 

though. This is first attributed to the fact that Eq. (76) is based on integration of the 

curvature along the beam and hence providing a more rational estimate of flexural 

stiffness. Secondly, the larger tension stiffening factor has been assumed for transition 

zone in the shear span which slightly provides stiffer responses than Eq. (74). Although 

Bischoff’s original equation provides conservative predictions of deflection, assuming a 

realistic distribution of the curvature along the beam can considerably improve the 

accuracy of the predictions. 

9.4 Verification 
 

Different experimental tests including different shear span-to-depth ratio were 

selected to verify the predictions of the derived equations. In this comparison Bischoff’s 

original equation, Eq. (63), the proposed equation for very slender beams, Eq. (74), and 

the proposed equation for slender beams, Eq. (76) are considered. It should be noted that 

Eq. (74) has the same basis as Bischoff and Gross’ equation, Eq. (64). Experimental 

values for cracking moment, Mcr, and code values for the modulus of elasticity of 

concrete, Ec, are used in this comparison. All beams were simply-supported under four-

point loading. More information about specimens can be found in the references. As 

illustrated in Fig. 66, comparison shows that Bischoff’s original equation overestimates 

the deflection as already expected; however, Eqs. (74) and (76) provide more accurate 

predictions. For slender beams the results are more close to Eq. (76) which accounts for 

larger tension stiffening in transition zone of the shear span. For the sake of clarity in 

diagrams, the lower bound of deflection, 1β = , has not been shown in these graphs. It 

should be noted that the derived equations are viable in serviceability domain where the 

compressive stresses in concrete are mostly in the elastic range. With increasing the load 

and getting close to failure, inelastic stresses develop and result in less flexural stiffness 

and more deflection, accordingly. 
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Fig. 88. Experimental verification of deflection equations (slender beam) 
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Fig. 89. Experimental verification of deflection equations (very slender beam) 

 
 
 
9.5 Conclusions 
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curvature relationship with tension stiffening factor equals to /c crM Mβ = was used to 

find the curvature distribution. Based on integration of the curvature along the beam, Eq. 

(74) was derived for Ie which is convenient-to-apply and can be used for either three-

point, four-point, or uniformly distributed loadings adjusted by function G(β). This 

equation basically yields to the same result as Eq. (64) adopted by Bischoff and Gross 

(2011). An alternative equation was derived for slender beams (3<Ls<7) based on 

assuming larger tension stiffening at transition zone of the shear span, Eq. (76). In 

slender beams, compound shear-flexural cracks commonly governs the behavior of the 

beam and shear diagonal cracks typically form in shear span with larger crack spacing 

compared to flexural cracks at constant moment region, thereby the tension stiffening 

factor is expected to be larger than the conventional value, /c crM Mβ = . To further 

investigate this presumption, the AFRP reinforced concrete strip presented in Chapter 5 

as a slender beam was selected and the curvature distribution was studied. The results 

showed that the curvature of the beam at transition zone in shear span is more close to 

the bilinear model, 1cβ = , however converging to the conventional value, /c crM Mβ = , 

at the constant moment region. This is in good agreement with the assumption made in 

deriving Eq. (76).  

For better verification of the derived equations, four experimental tests including 

beams with different Ls/d ratios were selected from other researchers’ experimental 

studies. The results showed that Bischoff’s original equation generally overestimates the 

deflection. The overestimation seems to be more pronounced for slender beams. This is 

first attributed to assigning the effective moment of inertia at critical section to the entire 

beam instead of integration-based calculation. Secondly, curvature distribution in slender 

beams is not necessary the same as for very slender beams due to the effect of shear 

diagonal cracks. Both Eq. (74) and (76) proved to provide deflection predictions with an 

acceptable accuracy; however Eq. (76) seems to be a better choice for slender beams 

with slightly stiffer responses. Further research is still required to study the distribution 

of the curvature in cracked regions where shear diagonal cracks tend to disturb the 

region and affect the tension stiffening characteristics of the concrete. 
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10.  TENSION STIFFENING IN PRESTRESSED CONCERETE 

BEAMS USING MOMENT-CURVATURE RELATIONSHIP*
 

 

10.1 Introduction 
 

Tension stiffening phenomenon plays a vital role in serviceability of non-prestressed 

reinforced concrete (RC) beams as it enhances the post-cracking flexural stiffness 

leading to a smaller deflection, accordingly. However, the authors’ findings indicate that 

in contrast to RC sections, the effect of tension stiffening is negligible for fully 

prestressed concrete sections. Herein, a closed form equation of moment-curvature for 

prestressed concrete sections under service load is presented, where the tensile strength 

of the concrete is taken into account. This equation is verified by experimental test data 

and numerical analysis, thereby proving the negligible effect of tension stiffening on 

fully prestressed concrete sections. 

Tension stiffening is the ability of concrete to carry tension between cracks in 

reinforced concrete members, and it controls the deformation particularly in the 

serviceability stage (Bischoff 2003). The general moment-curvature diagram for non-

prestressed concrete sections is shown in Fig. 88, where crφ  is the curvature at which 

first cracking occurs corresponding to the moment, crM . Likewise, nφ  is the curvature in 

the post-cracking stage induced by the moment, nM . If theoretically no tension 

stiffening occurs, there will be an increase in the curvature at cracking and post-cracking 

loads denoted by crφ∆  and nφ∆ , respectively. In other words, beyond the cracking 

moment, tension stiffening gives rise to a reduction in curvature, nφ∆ , and an increase in 

flexural stiffness, accordingly. The larger the crφ∆ , the more pronounced the 

contribution of the concrete, nφ∆ , to carry tension in the post-cracking stage since nφ∆  

 * Reprinted with permission from “Tension Stiffening in Prestressed Concrete Beams Using Moment-Curvature 
Relationship” by Shobeir Pirayeh Gar, Monique Head, Stefan Hurlebaus, 2012, ASCE Journal of Structural 
Engineerin,Volume 138, Number 8, Page 1075-1078, Copyright 2012 by ASCE Jouranl of Structural Engineering. 
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is directly proportional to crφ∆  with a factor, cβ , to account for tension stiffening 

(Bischoff 2005). Therefore, finding crφ∆  in the theoretical moment-curvature 

relationship can indicate to what extent tension stiffening is going to be effective in the 

post-cracking stage. Although tension stiffening in RC members has been investigated 

by many researchers (Fields and Bischoff 2004, Scott and Beeby 2005, Gilbert 2007), 

less attention has been paid to studying this phenomenon in prestressed beams. Some 

researchers studied prestressed concrete prisms under direct tension, not flexure, and 

concluded that the prestressing force enhances the tension stiffening effect (Collins and 

Mitchel 2001, Davoudi et al. 2008). Gilbert and Mickleborough (1990) noted that for 

most practical prestressed members, tension stiffening is not very significant and 

deflection can be reasonably estimated by ignoring it. However, no more explanation 

was provided to support this. This chapter of thesis is intended to clarify this matter by 

deriving a closed form equation for the moment-curvature relationship. 

 
 
 

 

Fig. 90. Effect of tension stiffening on flexural behavior of non-prestressed concrete 
sections 
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10.2 Closed-Form Equation of Moment-Curvature for Prestressed Concrete 

Sections 

 
To find the theoretical moment-curvature equation of prestressed concrete sections, 

a cracked prestressed concrete section is considered under service load given the linear 

elastic behavior of the concrete and reinforcement (Fig. 89). Compatibility equations of 

strain over the height of the section can be expressed as 

c cε φ=  (77) 

( )p d cε φ= −  (78) 

cr zε φ=  (79) 

where cε , pε , and crε  are the flexural induced strains corresponding to the top of the 

section, at prestressed tendons, and at crack tip, respectively. The following variables are 

defined in Eqs. (77) through (79): φ  is the curvature, c  indicates the neutral axis depth, 

d represents the location of the tendons, and z is the depth of the tensile portion of the 

concrete as shown in Fig. 89. crε  can be related to the curvature at which first cracking 

occurs, crφ , using the following equations 

( )cr cr crh cε φ= −  (80) 

crc hβ=  (81) 

where crc is the neutral axis depth right before cracking, h is the height of the section, 

and β  is a constant coefficient that can be computed using Eq. (87). The coefficient α, 

which represents the level of prestressing, is defined based on Eq. (82), where ε0 denotes 

the effective prestressing strain in tendons and εcr indicates the cracking strain of 

concrete 

0

cr
α

ε
ε

=  (82) 
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             a)          b)                          c) 

Fig. 91. Cracked section under service load; a) prestressed section, b) strain profile, and 
c) stress profile 

 
 
 
The equilibrium equations can be stated as  

T C=  (83) 

. . 0N AM =∑  (84) 

where T and C are the tensile and compressive resultant forces, respectively, and M N.A.  

is the moment with respect to the neutral axis. Substituting Eqs. (77) through (82) in Eq. 

(83) gives the location of the neutral axis as follows 
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0=            (85) 

where pn  is the ratio of the modulus of elasticity of the prestressed tendons to that of 

concrete and tρ  is the ratio of the tendons’ cross sectional area, pA , to the total area of 

the section. Likewise, substituting Eqs. (77) through (82) in Eq. (84) gives the moment-

curvature equation 
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(86) 

 

where cE  is the modulus of elasticity of concrete and gI  is the gross moment of inertia 

of the section. Solving Eq. (85) for cracking stage where, crc c hβ= =  and crφ φ= , gives 

the coefficient β as a function of section geometry, reinforcement ratio, modular ratio, 

and prestressing level 

( )
( )

0.5 /
1 1

p t

p t

n d h
n

ρ α
ρ α

β
+ +

=
+ +

 (87) 

 

In order to verify Eq. (86), the result of an experiment conducted by Dolan et al. 

(2001), and the result of a computational model developed by the authors are compared. 

The chosen prestressed concrete beams are designated as B9-2F, B9-4F, and B12-4F. 

Further details can be found in Dolan et al. (2001). Fig. 90 shows that Eq. (86) matches 

well with the results of the experimental test and numerical analysis. It should be noted 

that the origin of the coordinate was shifted to the negative curvature induced by the 

prestressing force for the sake of consistency with the reported experimental results. The 

parameters used in Eq. (86) corresponding to each specimen are summarized in Table 

23. 
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Fig. 92. Moment-curvature diagram of specimens B9-2F, B9-4F, and B12-4F  
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Table 23- The parameters used in Eq. (86) for each specimen 

Specimen Prestressing level (%) np ρt d/h α β 

B9-2F 60 4.2 0.0028 0.833 60.8 0.712 

B9-4F 58 4.63 0.0056 0.66 59.26 0.802 

B12-4F 57 4.63 0.0042 0.75 58.23 0.767 
 
 
 
10.3 Tension Stiffening in Prestressed Concrete Sections 
 

The effective prestressing force applied in B9-2F specimen is 60% of the tensile 

capacity of the tendons, which provides a fully prestressed section. If this prestressing 

force decreases, the coefficient α  in Eq. (82) decreases and the moment-curvature 

behavior changes based on Eq. (86). As shown in Fig. 91, the prestressing ratio is 

decreased to 40% (α = 40.5), 20% (α = 20.25), and 0% (α = 0) and the moment-

curvature relationship is extracted from Eq. (86).  It can be observed that decreasing 

prestressing force causes crφ∆  to be more pronounced which can be quantified in terms 

of a Cracking Index, CI, defined as /cr crφ φ∆  and measured for different amounts of 

prestressing. This ratio is equal to 11.5, 6, 2.5, and 0.8 for 0%, 20%, 40 %, and 60% 

prestressing ratio, respectively. As discussed earlier, the larger the crφ∆  or CI, the more 

pronounced the contribution of the concrete, nφ∆  in Fig. 88, to carry tension in the post-

cracking stage and hence the enhanced the effect of tension stiffening. Therefore, for the 

non-prestressed concrete section the effect of tension stiffening is large and 

considerable; however, as the prestressing force is increased, this effect becomes 

insignificant and hence negligible for the fully prestressed concrete section. 
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Fig. 93. Normalized theoretical moment-curvature diagram for different prestressing 
ratios  

 
 
 
There are two reasons why the prestressing force causes a decline in raise of the 

curvature and drop of the moment at cracking. The first reason is related to the depth of 

the neutral axis. Fig. 92 illustrates the variation of the neutral axis depth for specimen 

B9-2F right after cracking using Eq. (85).  It can be inferred that the neutral axis depth is 

larger when the concrete section is prestressed, thereby the smaller portion of the section 

is cracked, and this prevents large raise of the curvature at cracking. The second reason 

lies in the fact that the eccentricity of the prestressing force grows as the neutral axis 

shifts up gradually, which induces an additional moment compensating for the loss of 

the flexural resistance caused by cracking. The moment induced by prestressing force 

with respect to the neutral axis, Mp, can be found if the expressions having coefficient α, 

are extracted from Eq. (86) 
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Fig. 94. Variation of the neutral axis location versus curvature for different prestressing 
ratios  

 
 
 
Mp at cracking, Mp

cr, can be readily calculated from Eq. (88) given c/h=β. Subtracting 

Mp
cr from Mp gives the additional prestressing moment, ∆Mp due to growth in 

eccentricity of the prestressing force 

( )12 1
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 (89) 

 

For a specific level of prestressing, all the parameters in Eq. (89) are constant during the 

loading except c/h and it can be clearly deduced that with further cracking and 

decreasing the depth of the neutral axis, ∆Mp increases and to some extent compensates 

for the loss of the flexural resistance caused by cracking, depending on the level of 

prestressing (Fig. 93). 
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Fig. 95. Additional moment due to growth in the prestressing force eccentricity 
(specimen B9-2F) 

 
 
 
10.4 Conclusions 
 

A closed form equation for moment-curvature relationship of prestressed concrete 

sections under service load was presented and verified by experimental test data and 

numerical analysis. Neutral axis depth and growth of the prestressing force eccentricity 

were found to be the reasons causing a different post-cracking flexural behavior of 

prestressed concrete sections such that the results of this study clearly showed that in 

fully prestressed concrete sections, the effect of tension stiffening is negligible and it 

barely affects the flexural performance of the beam in serviceability stage. However, as 

the prestressing force declines, the effect of tension stiffening becomes more 

pronounced. 
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11.  CONCLUSIONS 
 
11.1 Summary of the Major Results 
 

1) A comprehensive experimental and analytical study was conducted to validate 

the structural applicability of an AFRP concrete bridge deck system. The 

experimental tests on uniaxial characteristics of ARAPREE bars showed the 

following dependable values: modulus of elasticity E=69 GPa, strain capacity 

εu=0.02, and the tensile strength fu=1380 MPa. The load capacity of the 

conventional anchorage system was evaluated about 67% of the bar strength; 

however, with no capability to sustain the prestressing load for a short-period of 

time. A new prestressing system was developed which is capable of prestressing 

the ARAPREE bars up to 85% and sustaining the load without any significant 

loss or local failure at the anchorage.  

2) Long-term relaxation tests showed that the relaxation loss for 50-60% initial 

prestressing is ranged between 6-10% during 1000 hours. In case of prestressing 

steel strand, the relaxation loss for 70-80% initial prestressing is typically ranged 

between 8-12%. There seems to be a similarity between the relaxation 

characteristics of ARAPREE bars and prestressing steel. Long-term creep tests 

showed 4% increase in strain during 1000 hours for 50% initial prestressing. For 

60% initial prestressing, 6.5% increase in strain was measured during 550 hours 

for one of the specimens. Short-term creep tests showed that any initial 

prestressing above 85% results in rupture between 2 or 3 hours. 

3) Experimental test of the full-scale bridge deck slab confirmed a satisfactory 

structural performance of the bridge deck slab where the strength and 

serviceability criteria were met. The average failure load of the interior spans and 

overhangs were found 3.8 and 1.3 times the maximum factored load specified by 

AASHTO LRFD (2010), respectively. The deflection of the interior span at 
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service load level was found about 1 mm which is 40% of the allowable amount 

specified by AASHTO LRFD (2010).  

4) The failure mechanism of the bridge deck slab was mostly governed by flexure, 

particularly at the overhang. However, at interior spans the failure mechanism 

was somewhat influenced by the punching shear due to the restrained edges. The 

failure mechanism could be recognized by the cracking pattern on top and 

bottom surface of the slab and the curvature distribution in both x and y 

directions. The failure mechanism of the interior spans was recognized as a 

compound shear-flexural failure. However, at overhang flexure mostly governed 

the mechanism. It was found that the load configuration affects the failure 

mechanism. For example, since the truck axle transfers the load in a more 

distributed fashion over the single wheel load, the failure mechanism is more 

influenced by flexure than shear. This was clearly seen when comparing the load 

cases 2 and 5 at the overhang, or load cases 1 and 7 at the interior span.  

5) The shear capacity of the panel-to-panel seam, 1 MPa, seemed to be sufficient as 

no local or premature failure was observed and the flexural cracks were mostly 

transferred from the panel under the load to the adjacent panel. Furthermore, no 

major cracking or local failure was observed at the composite shear pockets and 

full composite action between the slab and the support beams was achieved.  

6) The strip specimens representing the non-prestressed and prestressed directions 

of the bridge deck slab as well as the panel-to-panel seam were tested to 

investigate their structural capacity. The non-prestressed strip specimen failed 

due to concrete crushing in a shear-flexural manner with no evidence of tendon 

rupture. The ultimate strength Mu=77 kNm/m and the curvature capacity 

(Øh)u=0.024 were found at failure. Prestressed strip specimen failed due to 

rupture of the AFRP bars while crushing the concrete was already commenced. 

The ultimate strength Mu=69 kNm/m and the curvature capacity (Øh)u=0.02 were 

found at failure. Shear test of the seam strip showed an acceptable shear strength 



 
 

203 
 

per ACI 318. The joint failed due to crushing of the diagonal concrete strut and 

the shear capacity was found equal to 41 kN (1 MPa). However, flexural test 

confirmed the negligible flexural strength of the panel-to-panel seam. The results 

of the strip specimens were directly used for failure load analysis of the bridge 

deck slab. 

7) The considerable deformability observed in testing the slab as well as the strip 

specimens, similar to the ductility in steel reinforced members, raised the 

question if a plastic method of analysis can be employed for failure load analysis. 

Hence, yield line concept, commonly used for steel reinforced concrete slabs, 

was modified where the yield moment was substituted with an equivalent plastic 

moment to account for the deformability of the AFRP concrete section despite 

the non-ductile behavior of the AFRP bars. The average error of analysis for all 

load cases was found about 2% showing the excellent accuracy of the modified 

yield line theory. The general cracking pattern at interior span and overhang 

resembled an elliptical and trapezoidal shape, respectively.  

8) An extensive computational model was developed to numerically analyze an 

AFRP prestressed concrete girder in composite action with bridge deck. 

Comparison between analytical and experimental data for steel prestressed 

girder, for the sake of verification, showed maximum error of 5% and 7% in 

prediction of failure and cracking moments, respectively, which indicates the 

high accuracy of the developed computational model. Stress and moment-

curvature analyses confirmed that the AFRP prestressed girder not only meets 

service limit states, but also provides sufficient flexural strength. However, in 

contrast to steel prestressed girder whose failure mode was crushing of the 

concrete at the top fibers of the section, the failure mode of the AFRP prestressed 

girder was rupture of the tendons causing less deformability. This is mainly due 

to the fact that over-reinforcing the composite girder for the sake of having 

concrete crushing as a failure mode, rather than ruptures of the tendons, is almost 
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impractical since the brittle ratio of the composite section is considerably large. 

Although tendon rupture as a failure mode is less desirable, the failure curvature 

was found 18 times the cracking curvature that can still provide sufficient 

warning before failure. Load-deflection analysis of the girders showed that the 

deflection under service load is almost half of the allowable amount. At failure, 

deflection of the steel prestressed girder was about twice that of AFRP 

prestressed girder due to the large ductility provided by yielding of the steel 

strands and inelastic compressive stresses in concrete.  

9) Rational equations for effective moment of inertia were developed to estimate the 

maximum deflection of either FRP reinforced or prestressed concrete beams. The 

equations have an implicit flexibility form as opposed to empirical deflection 

equation of ACI 440 with an implicit stiffness form. Verification with 

experimental data confirmed an acceptable accuracy of the developed equations 

while the ACI equation showed a considerable susceptibility to Icr/Ig ratio. 

Substituting the typical design values (Icr/Ig≈0.1 and Mcr/M≈0.5) in the rational 

deflection equations developed in this thesis, Ie=0.15Ig and Ie=0.1Ig can be used 

in design for AFRP prestressed and reinforced concrete beams, respectively. 

10) Tension stiffening phenomenon, which plays a governing role in design of FRP 

reinforced concrete beams, was studied to analyze the prestressing effect. A 

closed-form equation for moment-curvature response was derived under service 

load for FRP prestressed concrete beams which revealed that as the prestressing 

ratio increases the effect of tension stiffening becomes less dominating.  
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11.2 Design and Construction Recommendations 
 

1) For design of concrete beams and slabs, the following dependable values for 

ARAPREE bars with 10 mm diameter are recommended: modulus of elasticity 

E=69 GPa, strain capacity εu=0.02, and the tensile strength fu=1380 MPa.  

2) Based on the creep test, the initial prestressing ratio is recommended to be 

between 50 to 60%, and the long-term relaxation loss for this ratio ranges 

between 6-10%. 

3) The prestressing setup developed in this research can be used as a reliable and 

applicable system for off-site precast plant. The anchorage system at the dead 

and live ends includes steel pipes with 457 mm length, 48 mm diameter, and 5 

mm wall thickness filled with the expansive and quick setting Shep Rock grout. 

At the live end, the hydraulic central hole jack is placed between two pipes where 

the front pipe is utilized for pulling the bar and the rear pipe is used to lock the 

prestressing system. The pipes should be fully filled with grout to avoid 

excessive slippage of the bar and loss in prestressing force or premature failure at 

the anchorage once the grout has hardened. The grout should be consistent and 

flowable; very thick or thin grout should be avoided. Also, it is better to have two 

holes at opposite ends on the pipe’s upper surface and inject the grout through 

the first hole until the grout level is flush with the second hole. This ensures that 

there is no air bubble entrapped inside the pipe. Gently tapping the pipe when 

pouring the grout can help for a better settlement of the grout. The full grip of the 

bar inside the pipe can be reached after 3 hours. Using a plastic stopper with a 

central hole at each end of the pipe helps to hold the bar at the center of the pipe 

and avoid rubbing against the pipe’s edges and also prevents leakage of the 

grout.  

4) For design of full-depth precast prestressed panels, nine shear pockets, each 

measuring 254 × 178 mm, were found sufficient to reach full composite action 

between the slab and support beams. The gross area of each precast panel was 
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13.4 m2. The number of shear pockets required should be adjusted based on the 

size of the precast panels and induced shear demand. Using two high strength 

bolts, with 25 mm diameter, inside each composite pocket is sufficient as a shear 

connector.  

5) To avoid any possible damage to prestressed bars, the prestressing is suggested to 

be the last action before pouring the concrete. In this case, walking on the 

reinforcement grid before or during concreting should be avoided. To prevent 

possible long-term prestressing losses at anchorage, the time gap between 

prestressing and concreting is suggested no to exceed 72 hours. Vibration of the 

concrete was found non-dangerous to the prestressed bars. To ease the 

construction, the prestressed and non-prestressed bars are better not to pass 

through the shear pockets. To fill the haunch, the high performance Sika grout 

with water to powder ratio ranged between 0.18 to 0.2 is recommended. The 

optimal ratio should be found with both consistency and flowability tests. 

6) Prestressing the precast panels in transverse direction helps to increase the 

cracking strength and stiffness of the bridge deck slab perpendicular to the traffic 

direction where the flexural demand is considerably high. It also helps to 

minimize cracking close to the shear pockets and lessen the intrusion of 

chemicals. Although the prestressed bars were placed at the center of the section, 

they can be used in two layers at top and bottom of the section to better distribute 

the prestressing force and increase the deformability of the slab. The net 

compressive stress applied to the slab section in transverse direction, due to 

prestressing, was about 2 MPa. Based on the span length and flexural demand, 

the required compressive force should be adjusted, accordingly. The 

reinforcement ration in prestressed direction was 0.0032.  

7) The non-prestressed bars in longitudinal direction were bent in a U shape where 

the legs formed the top and bottom layers of the reinforcement. The bent part of 

the bar is placed right at the seam to provide a better connectivity between the 
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panels and increase the capacity of the shear key. As the joint is under 

considerable shear demand, it is better to fill it with structural concrete rather 

than grout. In this case, the maximum aggregate size should be carefully chosen 

as the distance between the bars at panel-to-panel seam is half of the distance 

between longitudinal bars of each panel. The total reinforcement ratio, top and 

bottom layers, in non-prestressed direction was 0.0056. 

8) Modified yield line theory is a valid and convenient-to-apply method to perform 

the failure load analysis of the slab, suitable for design office implementation. 

However, reasonable evaluation of the equivalent plastic moment along the yield 

line is critical. For instance, at overhang the transfer length of the prestressed 

bars or development length of the non-prestressed bars should be accounted in 

calculations. Furthermore, the flexural or shear contribution of the panel-to-panel 

seam must be realistically evaluated. The theoretical failure shape that resembles 

an elliptical cracking pattern at interior span and trapezoidal cracking pattern at 

overhang seems to be a reasonable assumption for failure load analysis of the 

bridge deck slab. At overhang, compound flexural failure of the panel under the 

load and shear failure at the seam should be checked as a possible governing 

failure mode. 

9) The existing punching shear equations significantly underestimate the load 

capacity of the interior span since the failure mode is more governed by flexure. 

In fact, the actual failure mode of the interior span is a compound shear-flexural 

failure. Since the contribution of flexure is very considerable, the modified yield 

line theory gives rise to much more accurate results compared to punching shear 

equations. 

10) To find the actual failure mode of the AFRP prestressed girder, the effect of 

topping deck should be taken into account. In this case the failure mode is often 

governed by tendon rupture since the brittle ratio of the composite section is very 

high. Therefore, the safety factor for strength reduction needs to be accordingly 
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selected. It should be noted in design that, the top reinforcement of the girder is 

under tension at the ultimate limit state since the neutral axis lies within the deck 

slab.  

11) To control the deflection under service load, it is better to design the AFRP 

concrete girder as a fully prestressed beam in that the girder remains uncracked 

under service load. In this case, the effect of tension stiffening is negligible. If 

using ARAPRRE bars to prestress the girder, the reinforcement ratio is 

recommended not to be less than 1.5 times that of the steel case. 

12) The rational equations for effective moment of inertia, developed in this research, 

are recommended for computing the maximum deflection of FRP RC or PRC 

beams. The current deflection equations in design codes, like ACI 440.4R 2004, 

are typically based on the empirically derived Branson’s equation which was 

originally calibrated for steel reinforced concrete beams. These equations, which 

have an implicit stiffness format, are very susceptible to low Icr/Ig ratios, the 

typical case of FRP concrete beams, and underestimate the maximum deflection. 

11.3 Future Work 
 

1) The major concern with the use of AFRP bars is the effect of aging on their 

mechanical properties, so called the durability of AFRP bars. Although AFRP 

bars have high strength and non-corrosive nature, moisture softens the structure 

of the aramid fibers over the time and results in increased creep (Trejo et al. 

2000). Research by Chen (2007) showed that aramid fibers are susceptible to 

moisture absorption. Also, sodium hydroxide and hydrochloric acid cause a 

significant accelerated hydrolysis of aramid fibers. However, Soroushian et al 

(2002) conducted extensive accelerated aging tests on aramid fibers, Technora 

type, and reported that the AFRP bars exhibited desirable durability 

characteristics. It seems that further investigation is required to explore the 

durability of the AFRP bars (Ceroni 2006). Furthermore, large deterioration of 

flexural strength of aramid/epoxy laminates occurs in a saturated state at 
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elevated temperature (Chen 2007). Experimental studies by Wang et al. (2003) 

on CFRP and GFRP bars showed that the strength of the bars reduces at elevated 

temperature. However, they did not study AFRP bars. Therefore, fire resistance 

of AFRP reinforced concrete structures is still a concern that needs to be more 

studied. 

2) Cost justification of using AFRP bars is based on the fact that the higher initial 

cost of material is going to be offset by ease in installation and construction as 

well as obviating the need for future rehabilitation due to corrosion-induced 

deterioration. However, life-cycle cost analysis for short span bridges done by 

Nystrom et al. (2003) showed that replacing steel with AFRP increases the 

overall construction cost. Therefore, a comprehensive life-cycle cost analysis is 

required to clarify this matter. 

3) As the rate of loading affects the behavior of the composite material, hence, the 

response of the structure under impact may not be as predictable as under the 

monotonically increased load. Testing the mechanical characteristics of the 

AFRP bars under high loading rate can be interesting and useful to study the 

impact resistance of the reinforced member. 

4) Long-term performance of AFRP concrete bridge deck system needs to be 

experimentally evaluated in aggressive weather conditions. Change in the crack 

width and deflection of the deck slab, which depend on the modulus of elasticity 

of AFRP bars should be continuously monitored to provide a realistic evaluation 

of serviceability of the structure. 

5) A practical prestressing operation for post-tensioning the AFRP bars seems to be 

required if the precast panels are to be longitudinally or transversely post-

tensioned. In this case, long steel pipes filled with expansive grout used for 

pretensioning may not be a good option for anchorage as they occupy a 

considerable space. The sustainability of the anchorage system should be 

carefully evaluated for a long period of time according to the codes of practice. 
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6) To complete the experimental evaluation of the AFRP concrete bridge deck 

system, a full-scale 12 m AASHTO I-girder prestressed with AFRP bars in 

composite action with bridge deck, which was numerically analyzed in Chapter 

7, needs to be experimentally evaluated. The results of the girder test along with 

the results of the current research can form a solid instructive guideline for 

analysis and design of the superstructure of AFRP concrete bridge. 

7) An experimental study of a bridge deck system consisting of SIP bottom panels 

prestressed with AFRP bars and CIP top panels reinforced with AFRP bars can 

be studied as an alternative to full-depth precast panels. Comparison can clarify 

the advantages and disadvantages of each system. 

8) Using prestressed AFRP bars in concrete beams increases the strength and 

stiffness; however, the deformability of the section typically reduces since less 

strain in AFRP bars is left for flexure. Therefore, using a combination of 

prestressed and non-prestressed AFRP bars to reinforce the section can exhibit 

an optimal structural behavior where the required strength and stiffness is 

provided by prestressed bars and deformability of the section mainly originates 

from non-prestressed bars. It seems that such combined systems have not been 

well noticed yet and further research is required. 

9) The results of this study are valid only for ARAPREE bars. In case of using 

CFRP bars which typically have a higher modulus of elasticity over AFRP bars, 

an experimental investigation is required to study the structural performance of 

the bridge deck system. The considerable deformability observed in this study, 

may not be achievable by using the CFRP bars due to their high modulus of 

elasticity that raises the likelihood of punching shear at interior span of the deck 

and lessen the contribution of flexure. Further research is required to clarify this 

point. 
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10) The structural connections reinforced with AFRP bars must be experimentally 

investigated to specify their load capacity. The satisfactory reinforcement detail 

in panel-to-panel seam, girder-to-deck and pier-to-foundation connections are 

the examples that can be studied further in detail. 
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