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ABSTRACT

Many engineering and scientific applications deal with models that have multiple s-

patial scales, and these scales can be non-separable. Many of these processes can exhibit

nonlinearities and have a tight coupling with the temporal scales. Because of the scale

disparity, modeling these processes in the fine-scale approaches often involves the use of

a large number of degrees of freedom, and thus can be prohibitively expensive. As such,

some efficient model reduction methods are required to handle the multiscale problems.

In the dissertation, we are solving multiscale nonlinear problems and time-dependent

problems. Existing methods to solve these problems include numerical homogenization,

multiscale finite element methods, heterogeneous multiscale methods, and the Generalized

Multiscale Finite Element Methods (GMsFEM). GMsFEM approaches propose a system-

atic enrichment, which calculates multiscale basis functions via local spectral decomposi-

tion in each coarse cell.

We first propose a multiscale model reduction framework within GMsFEM for non-

linear elliptic problems. We consider an exemplary problem, which consists of nonlinear

p-Laplacian with heterogeneous coefficients. The main challenging feature of this prob-

lem is that local subgrid models are nonlinear involving the gradient of the solution. Our

novel work includes re-casting the multiscale model reduction problem onto the bound-

aries of coarse cells, and introducing nonlinear eigenvalue problems in the snapshot space

for these nonlinear “harmonic” functions. We also present convergence analysis and nu-

merical results, which show that our approaches can recover the fine-scale solution with a

few degrees of freedom. The proposed methods can, in general, be used for more general

nonlinear problems, where one needs nonlinear local spectral decomposition.

We next consider solving problems with multiple scales in space and time. We de-
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velop our approaches within the frameworks of GMsFEM and Generalized Multiscale

Discontinuous Galerkin Methods (GMsDGM), separately, using space-time coarse cells.

Previous research in developing multiscale spaces within GMsFEM or GMsDGM main-

ly considered spatial multiscale spaces and relevant ingredients only, which will usually

lead to very high dimensional models. In the dissertation, we construct space-time offline

spaces, where local spectral decomposition methods are designed based on our analysis.

We also discuss adding the online stage, where we make use of the online residual infor-

mation to construct online basis functions. Numerical results are presented to verify the

theoretical findings and to show that using our proposed approaches, we can obtain an

accurate solution with low dimensional coarse spaces.
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NOMENCLATURE

Rd d-dimensional Euclidean space

Ω Simply-connected bounded open subset of Rd

T h Partition of Ω into fine grid elements

h Characteristic length of a fine grid element

T H Partition of Ω into coarse grid elements

H Characteristic length of a coarse grid element

xi Coarse grid vertex

ωi Coarse neighborhood with a common vertex at xi

ω+
i Oversampled coarse neighborhood for ωi

K Coarse-grid block

K+ Oversampled coarse-grid domain that contains K

u Primal variable

uh Fine-grid solution

uH Coarse-grid solution

u
(n)
H Coarse-grid space-time solution defined on (Tn−1, Tn)

Vh Fine-scale space spanned by polynomials

χ Partition of unity function
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I. INTRODUCTION

I.1 Motivations

I.1.1 Multiscale and nonlinearity

Many processes in nature have multiscale nature and nonlinearities. The interaction

between nonlinearities and multiple scales can be complex and non-separable. This occurs

in many applications. To discuss some main concepts, we consider an example

div(a(x, u,∇u)) = f. (I.1)

We assume a(x, ·, ·) is highly heterogeneous with respect to x. In some nonlinear prob-

lems, the nonlinearities within coarse regions (a computational grid), that induce the

change in the heterogeneities, can be parametrized with a low dimensional parameter, e.g.,

a(x, u,∇u) = a0(x, u)∇u (assuming smoothness and boundedness of a). Within each

coarse region, one can approximate the solution u by a constant and thus, can handle these

nonlinearities via a low dimensional parametrization (see, e.g., [34, 55] for homogeniza-

tion and numerical homogenization discussions). If the nonlinearities and heterogeneities

are separable in this case, i.e., a(x, u,∇u) = a(x)b(u)∇u, then, in fact, one can use a

linear theory of multiscale methods (cf. [34, 55]). The situation is very different when

a(x, u,∇u) = a1(x,∇u)∇u. Because ∇u is highly heterogeneous, one can not use any

low dimensional approximation and linear theories. This is true even for a separable case

a(x, u,∇u) = a0(x)b(|∇u|)∇u. These problems require nonlinear cell problems. In the

dissertation, we focus on the case a(x, u,∇u) = a(x,∇u).

Many previous research on multiscale methods have considered nonlinear problems.

The approaches including homogenization [56, 46], numerical homogenization [4, 63, 24],
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heterogeneous multiscale methods [25, 2, 40, 50], multiscale network approximations [9,

10, 8], multiscale finite element methods [24, 63, 5], variational multiscale methods [43,

42, 7, 44], polyharmonic homogenization [54, 11], generalized multiscale finite element

methods [26, 28] have been developed and applied. These approaches approximate the

solution of nonlinear PDEs on a coarse grid (see Figure II.1 for illustration of coarse and

fine grids) by using subgrid models. Some common ingredients in these methods for linear

problems are that local solutions are calculated and used to form equations on a coarse grid.

GMsFEM approaches propose a systematic enrichment, which calculates multiscale basis

functions via local spectral decomposition in each coarse cell. The extensions of these

methods to nonlinear problems (as (I.1)) use nonlinear local problems.

The main idea of GMsFEM for linear problems is to form snapshot spaces and perform

local spectral decomposition in the snapshot space. In this dissertation, we will follow the

same general concept and introduce nonlinear eigenvalue problems. Previous approach

[29] develops local nonlinear eigenvalue problems in each coarse cell. In Section III, we

propose a systematic model reduction using nonlinear harmonic functions. The latter is

important as it allows capturing the effects of separable scales. Without using nonlinear

harmonic functions, one can not, in general, capture the effects of small separable scales.

This is in contrast to linear problems, where one can construct one linear basis function

per every coarse node that contains the effects of small scales. Using local solutions al-

lows compressing the effects of small scales within a coarse block and we work with a

system reduced to the boundaries of coarse cells. In this case, we can also guarantee

that our approaches recover homogenization results when there is a scale separation (note

that previous approaches [29] can not guarantee it). The proposed method is related to

hybridization techniques [23, 32, 14, 33].

2



I.1.2 Multiscale in space and time

A wide variety of multiscale problems vary over multiple time and space scales. These

time and space scales are often tightly coupled. For example, flow processes involving

porous media can occur on multiple time scales over multiple spatial scales. Moreover,

these scales can be non-separable. Reduced-order models for these problems require si-

multaneously treating spatial and temporal scales. Many previous approaches only handle

spatial scales and spatial heterogeneities. These approaches have limitations when tempo-

ral heterogeneities arise. Some popular approaches for handling separable space and time

scales are homogenization techniques [46, 55, 57, 36]. In these methods, one solves local

problems These approaches work well in the scale separation cases, but do not provide

accurate approximations when there is no scale separation.

Previous researchers developed a number of multiscale methods for solving space-time

multiscale problems in the absence of scale separation. These approaches use Multiscale

Finite Element Methods [41, 31, 47, 35], where one computes multiscale space-time basis

functions, variational multiscale methods [45], and other approaches [60, 61, 52, 49] that

are developed for stabilization. In [53], Owhadi and Zhang proposed a novel approach

that uses global space-time information in computing multiscale basis functions. All these

approaches use only a limited number of basis functions (one basis function) in each coarse

block. We note that there has been a large body of works in space-time finite element

methods.

In this dissertation, we use the GMsFEM framework and and GMsDGM framework,

respectively, and develop a systematic approach for identifying multiscale basis function-

s. Previous approaches mainly considered multiscale spaces together with corresponding

ingredients in space only when developing multiscale spaces within GMsFEM or GMs-

DGM. In our approaches, we develop snapshot spaces by solving local problems in local

3



space-time domains. We use the techniques of oversampling and randomization by solv-

ing local parabolic equations subject to random boundary and initial conditions, which

can reduce the computational cost. We then solve local spectral problems to obtain of-

fline multiscale basis functions in space-time domain. We discuss several choices for local

spectral problems and present an analysis of the convergence rate of the proposed method.

The multiscale online basis functions are introduced in [15, 16]. The main idea of

online basis functions is using the online residual information and add new multiscale

basis functions to the existing offline space. One need to select a number of offline basis

functions such that with only 1-2 online iterations, the error can be substantially reduced.

In this dissertation, we will propose a possible online construction along with the space-

time GMsFEM approach in Section IV.

I.2 Outline of the dissertation

In Section II, we present some preliminary background concepts that would be used in

the march of this dissertation. We introduce the coarse-scale and fins-scale grids, which

is the mesh we are using to solve for the discrete solutions. Numerical homogenization is

then discussed to give some insights of the motivation of our proposed approaches. We

also briefly explain reduced-order modeling via GMsFEM, which lay the framework for

the methods developed in this dissertation.

Section III is focused on solving nonlinear PDEs. An exemplary problem, p-Laplacian

with heterogeneous coefficients, is fully discussed. We propose a multiscale model reduc-

tion framework within GMsFEM, where we construct snapshot spaces and design non-

linear spectral problems in the spectral spaces to select dominated modes. One of the

innovative parts is that we focus on re-casting the multiscale model reduction problem on-

to the boundaries of coarse cells via using the concept of p-harmonic extension. A detailed

convergence analysis is presented and numerical results are shown to verify the theoretical

4



findings.

Parabolic equations with multiple scales in space and time are studied in Section IV.

We develop a new approach within GMsFEM to solve this kind of problems by construct-

ing space-time coarse cells. The local snapshot basis and local spectral basis are also

defined in space-time coarse cells. We argue that this space-time GMsFEM approach can

reduce the dimensions of the offline space substantially compared with the previous multi-

scale methods where only spatial multiscale basis functions are used. The convergence rate

of the numerical solution is also analyzed. Besides, we consider adding a new enrichment

procedure of computing online multiscale basis functions to the offline basis functions.

The use of online basis functions gives a rapid convergence. Some numerical results are

presented to exhibit the performance.

We continue exploring the space-time multiscale techniques by using discontinuous

Galerkin methods in Section V. Compared with the conforming approaches in Section IV,

we construct the local problems in each space-time coarse block instead of coarse neigh-

borhood. The proposed method is within the framework of GMsDGM, and we construct

local snapshot space and offline space in each space-time coarse block. A convergence

analysis is presented and the numerical experiments verify the results in the analysis.

In Section VI, we conclude the dissertation by summarizing the contributions we have

made as well as showing an outlook for future work.
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II. PRELIMINARIES

In this section, we introduce some preliminary background concepts that would be

helpful for the understanding of the approaches presented in this dissertation. We will

explain the coarse-scale and fine-scale grids, numerical homogenization and reduced-order

modeling via GMsFEM.

II.1 Coarse-scale and fine-scale grids

Multiscale approaches such as numerical homogenization [4, 63, 24], multiscale finite

element methods [24, 63, 5], variational multiscale methods [43, 42, 7, 44] and generalized

multiscale finite element methods [26, 28] require the construction of coarse-scale and

fine-scale grids. For example, in GMsFEM, the local model reduction is performed in

the level of coarse-scale grids. In this section, we will show in details how to define the

two-scale level grids. We consider both spatial and time scales.

Let Ω be a bounded domain in R2 with a Lipschitz boundary ∂Ω, and [0, T ] (T > 0) be

a time interval. We introduce T h to be a partition of the domain Ω into fine finite elements

where h > 0 is the fine mesh size. Then we form a coarse partition T H of the domain

Ω such that every element in T H is a union of connected fine-mesh grid blocks, that is,

∀Kj ∈ T H , Kj = ∪F∈IjF for some Ij ⊂ T h. We call T H the coarse grid. H > 0 denote

the coarse mesh size. In Figure II.1, we illustrate a multiscale discretization.

Let {yi}Nc
i=1 be the set of nodes in the coarse grid T H , whereNc is the number of coarse

nodes. We denote the neighborhood of the node yi by

ωi =
∪

{Kj ∈ T H : yi ∈ Kj}.

Notice that ωi is the union of all coarse elements Kj ∈ T H sharing the coarse node yi. See

6



Coarse Grid

Fine Grid

Figure II.1: Illustration of a multiscale discretization.

yi

K1

K2K3

K4

T H (Coarse Grid)

ωi
Coarse

Neighborhood

K

Coarse
Element

yi

Figure II.2: Illustration of a coarse neighborhood and elements.

Figure II.2 for an illustration of a coarse neighborhood and elements. Inside each coarse

neighborhood ωi (i = 1, · · ·, Nv), we call the collection of the coarse edges with yi being

a common vertex the cross of yi.

Next, let T T = {(Tn−1, Tn)|1 ≤ n ≤ N} be a coarse partition of the time interval

(0, T ) where

0 = T0 < T1 < T2 < · · · < TN = T

and we define a fine partition of (0, T ), T t by refining the partition T T .
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II.2 Numerical homogenization for nonlinear equations

When solving for numerical solutions of partial differential equations (PDEs) with

rapidly oscillating coefficients (multiple scales), numerical homogenization methods are

very useful techniques.

For example, we consider

−div(a(x,∇u)) = f in Ω,

with u = 0 on ∂Ω. In numerical homogenization methods, one can use as a local problem

in each coarse cell K,

−div(a(x,∇Nξ)) = 0 in K,

with the boundary conditions Nξ = ξ · x on ∂K. The homogenized fluxes are computed

by averaging the flux

a∗(ξ) = ⟨a(x,∇ϕξ)⟩ =
1

|K|

∫
K

a(x,∇Nξ)dx.

The coarse-grid equation is given by

−div(a∗(x,∇u∗)) = f in Ω,

with u∗ = 0 on ∂Ω. These approaches follow homogenization theory ([39, 13, 3, 48],

see also [2, 50] and, the references therein, for numerical homogenization), which is well

developed.
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II.3 Numerical homogenization for space-time problems

Numerical homogenization methods for space-time problems with separable spatial

and temporal scales have been studied in the literature [46, 55, 57, 36]. In these meth-

ods, one solves local problems To give an example, we consider the following parabolic

equation

∂

∂t
u− div(κ(x, x/ϵα, t, t/ϵβ)∇u) = f, (II.1)

subject to smooth initial and boundary conditions. Here, ϵ is a small scale, and the spatial

scale is ϵα, and the temporal scale is ϵβ . One can show that (e.g., [46, 55]), the homog-

enized equation has the same form as (II.1), but with the smooth coefficients κ∗(x, t).

Due to the scale separation, the coefficients can be computed by using the solutions of

local parabolic equations in the periodic cells. The local problems may or may not in-

clude time-dependent derivatives depending on the interplay between α and β since the

cell problems are independent of ϵ. This homogenization procedure can be extended to

numerical homogenization type methods [51, 1, 35, 37, 59, 62], where the local parabolic

equations need to be solved in each coarse block and in each coarse time step. To compute

the effective property, one averages the solutions of the local problems. These approaches

work well in the scale separation cases, but do not provide accurate approximations when

there is no scale separation. One of our goals in the dissertation is to design numerical

methods for handling problems with non-separable space and time scales.

II.4 Reduced-order modeling via GMsFEM

In many multiscale finite element methods, they construct one basis function per coarse

node. However, for many complex scale disparities, such as the case where several high-

conductive regions are contained in the coarse region, one need multiple basis functions
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per coarse node to capture the local information of the solution space. In this section, we

will discuss how one can compute these multiscale basis functions and introduce Reduced-

order modeling via GMsFEM.

To see the framework of GMsFEM clearly, we take the elliptic equation

L(u) = −∇ · (κ(x)∇u) = f in Ω (II.2)

subject to Dirichlet boundary condition u = g on ∂Ω as an example, where κ(x) is a highly

heterogeneous permeability field in Ω.

To propose the GMsFEM framework in the conforming setting, we first need to con-

struct a set of partition of unity functions {χi}Nv
i=1. These functions are supported in coarse

neighborhoods, and summed to one. Specifically, the support of χi is ωi, and
∑Nv

i=1 χi = 1.

In addition, χi has value 1 at the vertex yi. There are two commonly used sets of partition

of unity functions, which are presented below.

• A bilinear partition of unity functions: χi is defined as bilinear functions χ0
i on ωi,

which equals 1 at node yi and 0 on ∂ωi.

• A multiscale partition of unity functions: χi is defined by

L(u) = 0 in K ∈ ωi, χi = χ0
i on ∂K, for all K ∈ ωi.

In the following, we elaborate the steps of GMsFEM framework. And we note that the

work in this dissertation basically follows this framework.

II.4.1 Step 1: Construct local snapshot space.

We consider one coarse neighborhood ωi. The construction of the multiscale basis

functions on ωi starts with a snapshot space V ωi
snap. There are two common choices of V ωi

snap
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in practice.

Using all possible fine-grid functions in ωi is the first choice. This can provide accurate

approximation for the solution space, while having large dimensions. The second choice

consists of the use of harmonic extensions. That is, for each ωi, we obtain snapshot basis

functions ψωi
j by solving

L(ψωi
j ) = 0 on ωi (ω

+
i ),

ψωi
j (xk) = δkj for all fine grid node, xi, on ∂ωi.

Next, one can perform an appropriate spectral decomposition (cf. Proper Orthogonal De-

composition (POD)) to obtain some linear independent basis in ωi. The local snapshot

space V ωi
snap is defined by

V ωi
snap = span{ψωi

j | 1 ≤ j ≤ pωi}.

II.4.2 Step 2: Construct offline space.

The snapshot space V ωi
snap constructed in Step 1 contains all or most necessary compo-

nents of the fine-scale solution restricted to ωi. For the purpose of mode reduction, one

propose a spectral problem in the local snapshot space and extract the dominant modes in

the snapshot space. We use these dominant modes to obtain the offline basis functions and

the offline space.

For each ωi, one solves the following spectral problem: find {ϕωi
j } ⊂ Vsnap(ωi) such

that

aωi
(ϕωi

j , v) = λωi
j sωi

(ϕωi
j , v), for all v ∈ V ωi

snap.

For example, aωi
(u, v) :=

∫
ωi
κ∇u · ∇v, and sωi

(u, v) :=
∫
ωi
κ̃uv.
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The multiscale offline space Voff is defined by

Voff = span{χiϕ
ωi
j | ∀ωi, 1 ≤ j ≤ pωi}

where {χi} are partition of unity functions of Ω.

II.4.3 Step 4: Solve the global problem.

One can now solve the discrete weak form of (II.2) in the offline space for the multi-

scale solution. That is, find uH ∈ Voff such that

∫
Ω

κ∇uH · ∇v =

∫
Ω

fv, for all v ∈ Voff.
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III. GMSFEM FOR NONLINEAR PROBLEMS

In this section, we present a multiscale model reduction framework within Generalized

Multiscale Finite Element Method (GMsFEM) for nonlinear elliptic problems [19]. We

consider an exemplary problem, which consists of nonlinear p-Laplacian with heteroge-

neous coefficients. Our main objective is to develop snapshots and local spectral problems,

which are the main ingredients of GMsFEM. In the process, we focus on re-casting the

multiscale model reduction problem onto the boundaries of coarse cells. The sections are

organized as follows. In Section III.1, we introduce the model problem and present a mo-

tivation. The description of our GMsFEM approach for nonlinear problem is presented

in Section III.2. The convergence analysis of the method is given in Section III.3. We

construct a numerical implementation in Section III.4, and present numerical results in

Section III.5.

III.1 Model problem

Suppose Ω is a bounded open set in R2 with Lipschitz boundary ∂Ω. We consider the

following heterogeneous p-Laplacian equation

−div(a(x,∇u)) = f(x) in Ω, u = g on ∂Ω, (III.1)

where a(x,∇u) = κ(x)|∇u|p−2∇u, p ≥ 2, κ(x) ≥ κ0 > 0 is a high-contrast coefficient

(i.e., κmax/κmin is large), f ∈ W−1,q(Ω) (1/p + 1/q = 1) is an external forcing term, and

g ∈ W 1/q,p(Ω) is the Dirichlet boundary data.

The corresponding weak formulation is: (P) Find u ∈ W 1,p
g (Ω) ≡ {v ∈ W 1,p(Ω) :
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v = g on ∂Ω} such that

∫
Ω

a(x,∇u) · ∇v =

∫
Ω

fv, ∀v ∈ W 1,p
0 (Ω).

The well-posedness of (P) is well established, and one can refer to, for example, Glowin-

ski and Marrocco [38] or the account in Ciarlet [22]. Throughout the section, we define

the energy norm of u ∈ W 1,p(Ω) as

∥u∥1,p(Ω) =

(∫
Ω

κ(x)|∇u|pdx
)1/p

.

Next, we introduce the finite element approach for the problem. Let T h be a fine

triangulation. We denote by V h = V h(Ω) the usual finite element space containing con-

tinuous piecewise linear functions with respect to T h. We also define V h
0 (Ω) as the subset

of V h(Ω) containing functions that vanish on ∂Ω. Similar notations, V h(K), V h
0 (K), are

used for K ⊂ Ω.

The discrete fine-scale problem is defined in the following: (Ph) Find uh ∈ V h(Ω)

such that ∫
Ω

a(x,∇uh) · ∇v =

∫
Ω

fv, ∀v ∈ V h
0 (Ω).

Additionally, we introduce the coarse-scale and fins-scale spatial grids and relevant

concepts and notations such as coarse neighborhood in the domain Ω, see Section II.1.

III.1.1 Motivation

First, we introduce the concept of p-harmonic extension.

Definition III.1.1. Let u ∈ W 1,p(K) (p ≥ 2) be a given function. Let ũ ∈ W 1,p(K) be

14



defined so that ũ− u ∈ W 1,p
0 (K), and that ũ satisfies:

−div(a(x,∇ũ)) = 0 in K,

where a(x,∇ũ) = κ(x)|∇ũ|p−2∇ũ. Then ũ is called the p-harmonic extension of u. We

denote ũ := Hp(u).

Remark III.1.2. The p-harmonic extension minimizes the energy norm, i.e.

∫
K

κ(x)|∇ũ|pdx = min
v∈W 1,p

u (K)

∫
K

κ(x)|∇v|pdx,

where W 1,p
u (K) = {v ∈ W 1,p(K) | v = u on ∂K}.

Remark III.1.3. In this context, all p-harmonic extensions are accomplished coarse-

element by coarse-element. Though, we might use the notation Hp directly on a larger

domain such as a coarse neighborhoods ωi or the whole domain Ω, it means that the

p-harmonic extension is performed on each coarse element contained in ωi or Ω.

Our main idea is solving for the GMsFEM solution of Equation (III.1) on the crosses

of the coarse mesh and then the solution in the whole domain can be approximated by p-

harmonically extending the obtained cross values into the domain. This idea is motivated

by the technique of numerical homogenization. Our goal is to show that our proposed

GMsFEM approach recovers numerical homogenization.

First, we describe a well known numerical homogenization technique. This method

can be regarded as using a limited number of degrees of freedom per coarse element. Our

objective is to show that the numerical homogenization is a finite element approximation

on a coarse grid using p-harmonic extension with only one degree of freedom per edge.

We consider

−div(a(x,∇u)) = f in Ω,
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with u = 0 on ∂Ω. We consider a coarse-grid block K and our goal for each coarse-grid

block is to compute the effective property. This is done by solving local problem

−div(a(x,∇Nξ)) = 0 in K,

with boundary condition Nξ = ξ · x on ∂K. According to the previous definition, we can

write Nξ = Hp(ξ · x). Then a∗(·) is defined as

a∗(ξ) =
1

|K|

∫
K

a(y,∇Nξ)dy.

The coarse-grid equation is given by

−div(a∗(x,∇u∗)) = f in Ω,

with u∗ = 0 on ∂Ω. Suppose u∗ =
∑
ckϕk, where {ϕk} is a linear basis, then

FNH(c⃗) =

∫
Ω

a∗(x,∇
∑

ckϕk) · ∇ϕjdx =
∑
K∈Ω

∫
K

a∗(
∑

ck∇ϕk) · ∇ϕjdx,

At this step, we denote
∑
ck∇ϕk = ξ = constant, then Nξ = Hp(

∑
ck∇ϕk · x) and

FNH(c⃗) =
∑
K∈Ω

∫
K

a∗(ξ) · ∇ϕjdx

=
∑
K∈Ω

∫
K

(
1

|K|

∫
K

a(x,∇Nξ)dx

)
· ∇ϕjdx

=

∫
Ω

1

|K|

(∫
K

a(x,∇Hp(
∑

ck∇ϕk · x))dx
)
· ∇ϕjdx

=

∫
Ω

1

|K|

(∫
K

a(x,∇Hp(
∑

ckϕk))dx

)
· ∇ϕjdx

=

∫
Ω

fϕjdx.
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Compared with the numerical homogenization, GMsFEM seeks the approximation of

the solution in the form
∑

i,k χic
ωi
k ϕ

ωi
k , which solves

F (c⃗) =

∫
Ω

a(x,∇Hp(
∑
i,k

χic
ωi
k ϕ

ωi
k ) · ∇ϕωi

j dx

=

∫
Ω

fϕωi
j dx,

where {ϕωi
k }Li

k=1 (Li is the number of basis chosen in ωi) are generalized multiscale basis

constructed in each ωi (i = 1, ···, Nv), {χi}Nv
i=1 is the set of partition of unity functions. Our

main approach is to construct multiscale basis functions in a systematic way and provide

a priori error. We see from the above discussion that GMsFEM can be thought as an

extension of numerical homogenization, where we need to identify appropriate procedures

for finding multiscale basis functions. In the following section, we will describe the details

of constructing multiscale basis as well as partition of unity functions.

III.2 Generalized multiscale finite element basis

The goal of our proposed GMsFEM is to find a numerical approximation of the solu-

tion as well as employing the degree of freedoms only on the crosses in order to exhibit

model reduction. Suppose the generalized multiscale finite element solution we are seek-

ing for is ums = Hp(
∑

i

∑Li

k=1 χic
ωi
k ϕ

ωi
k ), where {ϕωi

k }Li
k=1 are multiscale basis constructed

in each coarse neighborhood ωi, {χi}Nv
i=1 is the set of partition of unity functions, then

the generalized multiscale finite element formulation for Equation (III.1) is the following:

Find c⃗ = {cωi
k }i,k such that

∫
Ω

a(x,∇Hp(
∑
i

Li∑
k=1

χic
ωi
k ϕ

ωi
k ) · ∇ϕωi

j dx =

∫
Ω

fϕωi
j dx for any j, (III.2)

where a(x,∇u) = κ(x)|∇u|p−2∇u.
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Remark III.2.1. The GMsFEM numerical solution ums to (III.2) is uniquely defined. We

suppose that u1 = Hp(
∑

i

∑Li

k=1 χic
ωi
k,1ϕ

ωi
k ) and u2 = Hp(

∑
i

∑Li

k=1 χic
ωi
k,2ϕ

ωi
k ) are two

solutions to (III.2). Then, we have

∫
Ω

(a(x,∇u1)− a(x,∇u2)) · ∇vdx = 0,

for any test function. Since u1 and u2 are harmonic in each coarse block, we have

∫
Ω

κ(x)|∇u1 −∇u2|pdx ≤
∫
Ω

(a(x,∇u1)− a(x,∇u2)) · ∇(u1 − u2)dx = 0,

which guarantees u1 = u2. So the solution to (III.2) is uniquely defined.

III.2.1 Snapshot space

We consider one coarse neighborhood ωi. The construction of the multiscale basis

functions on ωi starts with a snapshot space V ωi
snap. There are two common choices of V ωi

snap

in practice.

Using all possible fine-grid functions in ωi is the first choice. This can provide accurate

approximation for the solution space, while having large dimensions. The second choice

consists of the use of harmonic extensions. In particular, we denote by Mh(ωi) the set of

all nodes of the fine mesh T h which lie on ∂ωi. For each fine-grid node xj ∈ Mh(ωi), we

construct a discrete delta function δhj (x) defined on Mh(ωi) by

δhj (xk) =


1 for k = j

0 for k ̸= j

, ∀xk ∈Mh(ωi).
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Then the j−th snapshot basis function ψωi
j is defined as the solution of

−div(κ(x)∇ψωi
j ) = 0 in ωi,

ψωi
j = δhj on ∂ωi.

(III.3)

The dimension of V ωi
snap is equal to the size of Mh(ωi). We remark that oversampling and

randomization can be used to reduce the computational cost associated with the snapshot

calculations. We refer to [12] for more details.

III.2.2 Offline space

The construction of generalized multiscale basis for solving p-Laplacian equation in

the fashion of p-harmonic extension is based on the design of a proper nonlinear spectral

problem which will be solved in the snapshot space. In each coarse neighborhood ωi, we

define the following nonlinear eigenvalue problem:


ϕωi
1 = cωi , λωi

1 = 0,

ϕωi
k = arg min

v∈V ωi
snap

Gωi(v)

Gωi
χ (v − Pk−1(v))

, λωi
k =

Gωi(ϕωi
k )

Gωi
χ (ϕωi

k − Pk−1(ϕ
ωi
k ))

, for k ≥ 2,

(III.4)

where cωi ∈ V ωi
snap is a constant function in ωi, the functionals are given by

Gωi(v) =

∫
ωi

κ(x)|∇Hp(v)|pdx,Gωi
χ (v) =

∫
ωi

κ(x)|∇Hp(χiv)|pdx,

the projector Pk(u) = arg min
v∈V ωi

k−1

Gωi(u− v), V ωi
k−1 = span{ϕωi

1 , · · ·, ϕ
ωi
k−1}. This nonlinear

eigenvalue problem is a standard orthogonal subspace minimization method and is well-

defined (see e.g., [64]).

The eigenfunctions {ϕωi
k }k in each coarse neighborhood ωi will contribute as offline

basis (or we call them generalized multiscale basis or eigenbasis) after being multiplied
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by the associated partition of unity function χi. We choose the first Li eigenfunctions on

each ωi and denote the offline space as

V c = span{χiϕ
ωi
k : k = 1, · · ·, Li; i = 1, · · ·, Nv} ⊆ W 1,p(Ω).

Recall that our solution assumes the form of ums = Hp(
∑

i

∑Li

k=1 c
ωi
k χiϕ

ωi
k ), which means

ums is obtained by p-harmonically extending
∑

i

∑Li

k=1 c
ωi
k χiϕ

ωi
k in each coarse block K,

thus only the values of
∑

i

∑Li

k=1 c
ωi
k χiϕ

ωi
k on each coarse edge matter in this sense. If we

consider one coarse neighborhood ωi, for example the coarse neighborhood of an interior

coarse vertex (see yi and ωi in Figure II.2), it is the restriction of
∑Li

k=1 c
ωi
k χiϕ

ωi
k on the

12 coarse edges that will matter in the process of p-harmonic extension. Notice that the

partition of unity function χi vanishes on and beyond the boundary of ωi, thus merely

the restriction of
∑Li

k=1 c
ωi
k χiϕ

ωi
k on the cross (that is, the inside 4 coarse edges) makes an

influence. Therefore, we can restrict χiϕ
ωi
k (k = 1, · · ·, Li) on the cross of ωi and denote

the restricted basis (which we call cross basis in this context) by ϕ̂ωi
k . Then we can write

ums = Hp(
∑

i

∑Li

k=1 c
ωi
k ϕ̂

ωi
k ). We denote

V̂ c = span{ϕ̂ωi
k : k = 1, · · ·, Li; i = 1, · · ·, Nv}.

In this way, we can focus on the degree of freedoms on the crosses and perform spectral

decomposition on these crosses.

Remark III.2.2. In the computation, we use a simpler eigenvalue problem


ϕωi
1 = cωi , λωi

1 = 0,

ϕωi
k = arg min

v∈Xωi
k

Gωi(v)

Gωi
χ (v)

, λωi
k =

Gωi(ϕωi
k )

Gωi
χ (ϕωi

k )
, for k ≥ 2,

(III.5)
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whereXωi
k is a subspace of V ωi

snap and defined as Xωi
k =

(
span{ϕωi

1 , · · ·, ϕ
ωi
k−1}

)⊥ where the

orthogonality ⊥ is defined with respect to the H1 norm in V ωi
snap.

III.3 Convergence analysis

To analyze the convergence of our proposed method, we first prove several lemmas.

The first two lemmas are the direct applications of Lemmas 5.1 and 5.3 in Glowinski

and Marrocco [38] and prove the monotonicity and continuity of p-Laplacian operator

a(x,∇u) = κ(x)|∇u|p−2∇u, respectively. In the following proof, we introduce the nota-

tion F ≼ G to represent F ≤ CG with a constant C independent of the mesh, contrast and

the functions involved.

Lemma III.3.1. ∀u, v ∈ W 1,p(K), p ≥ 2, the following inequality holds:

κ(x)|∇u−∇v|p ≼ (a(x,∇u)− a(x,∇v)) · ∇(u− v). (III.6)

Proof. We use Lemma 5.1 in Glowinski and Marrocco [38], which proves the following

inequality: ∀p ≥ 2, ∃α > 0 such that ∀y, z ∈ R2,

(|z|p−2z − |y|p−2y, z − y)R2 ≥ α|z − y|p.

If we take z = (κ(x))1/p∇u, y = (κ(x))1/p∇v, then (III.6) is proved.

Lemma III.3.2. ∀u, v ∈ W 1,p(K), p ≥ 2, the following inequality holds:

|a(x,∇u)− a(x,∇v))| ≼M(x, u, v)|∇u−∇v|, (III.7)

where M(x, u, v) = κ(x)(|∇u|+ |∇v|)p−2.

Proof. According to Lemma 5.3 in Glowinski and Marrocco [38], there holds the follow-
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ing inequality: ∀p ≥ 2, ∃β > 0 such that ∀y, z ∈ R2,

||z|p−2z − |y|p−2y| ≤ β|z − y|(|z|+ |y|)p−2.

If we take z = (κ(x))1/(p−1)∇u, y = (κ(x))1/(p−1)∇v, then (III.7) is proved.

Lemma III.3.3. Suppose ũ = Hp(u0), ṽ = Hp(v0), w̃ = Hp(u0 − v0), where u0, v0 ∈

W 1,p(K), p ≥ 2. Then we have

∫
K

κ(x)|∇(ũ− ṽ)|pdx

≼
(∫

K

κ(x)|∇w̃|pdx
) q

p
(∫

K

κ(x)|∇ũ|pdx+
∫
K

κ(x)|∇ṽ|pdx
) p−2

p−1

,

(III.8)

where 1/p+ 1/q = 1.

Proof. Using Lemma III.3.1 and integrating by parts, we immediately obtain the following

inequality:

∫
K

κ(x)|∇(ũ− ṽ)|pdx ≼
∫
K

(a(x,∇ũ)− a(x,∇ṽ)) · ∇(ũ− ṽ)

=

∫
∂K

(a(x,∇ũ)− a(x,∇ṽ)) · n⃗(ũ− ṽ)ds

−
∫
K

∇ · (a(x,∇ũ)− a(x,∇ṽ)) (ũ− ṽ)dx

=

∫
∂K

(a(x,∇ũ)− a(x,∇ṽ)) · n⃗ w̃ds

−
∫
K

∇ · (a(x,∇ũ)− a(x,∇ṽ)) w̃dx

=

∫
∂K

(a(x,∇ũ)− a(x,∇ṽ)) · ∇w̃dx

≼
∫
K

M(x, ũ, ṽ)|∇ũ−∇ṽ||∇w̃|dx, (III.9)

where we used the continuity property of a(x,∇u) proved in Lemma III.3.2 on the last
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line. Applying Hölder’s inequality to (III.9), we have

∫
K

κ(x)|∇(ũ− ṽ)|pdx ≼
(∫

K

κ(x)|∇ũ−∇ṽ|pdx
) 1

p
(∫

K

κ(x)|∇w̃|pdx
) 1

p

(∫
K

(
κ(x)−

2
p |M(x, ũ, ṽ)|

) p
p−2dx

) p−2
p

.

Dividing both sides by
(∫

K
κ(x)|∇ũ−∇ṽ|pdx

) 1
p gives

∫
K

κ(x)|∇(ũ− ṽ)|pdx ≼
(∫

K

κ|∇w̃|pdx
) q

p
(∫

K

(
κ−

2
p |M(x, ũ, ṽ)|

) p
p−2dx

) p−2
p−1

.

(III.10)

Recall from Lemma III.3.2 that M(x, ũ, ṽ) = κ(x)(|∇ũ|+ |∇ṽ|)p−2, thus

(∫
K

(
κ(x)−

2
p |M(x, ũ, ṽ)|

) p
p−2dx

) p−2
p−1

=

(∫
K

κ(x)(|∇ũ|+ |∇ṽ|)pdx
) p−2

p−1

≼
(∫

K

κ|∇ũ|pdx+
∫
K

κ|∇ṽ|pdx
) p−2

p−1

.

(III.11)

We substitute (III.11) into (III.10), and we then see that (III.8) is proved.

Lemma III.3.4. For any u0, v0 ∈ W 1,p(K), p ≥ 2, we have

∫
K

κ(x)|∇Hp(u0 + v0)|pdx ≤
∫
K

κ(x)|∇(Hp(u0) +Hp(v0))|pdx. (III.12)

Proof. Recall Remark III.1.2, we have

∫
K

κ(x)|∇Hp(u)|pdx = min
v∈W 1,p

u (K)

∫
K

κ(x)|∇v|pdx.
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Therefore,

∫
K

κ(x)|∇Hp(u0 + v0)|pdx = min
w∈W 1,p

u0+v0
(K)

∫
K

κ(x)|∇w|pdx

= min
w1+w2∈W 1,p

u0+v0
(K)

∫
K

κ(x)|∇(w1 + w2)|pdx

≤ min
w1∈W 1,p

u0
(K), w2∈W 1,p

v0
(K)

∫
K

κ(x)|∇(w1 + w2)|pdx.

Taking w1 = Hp(u0), w2 = Hp(v0), we obtain

∫
K

κ(x)|∇Hp(u0 + v0)|pdx ≤
∫
K

κ(x)|∇(Hp(u0) +Hp(v0))|pdx.

We will next prove Lemma III.3.5 which approximates the error of GMsFEM solution

by using functions from the offline space V c.

Lemma III.3.5. Suppose u is the exact solution of Equation (III.1), ums is the GMsFEM

solution from Equation (III.2), then for any p ≥ 2, we have

∥u− ums∥1,p(Ω) ≼ ∥u−Hp(vH)∥
q
p

1,p(Ω)∥u∥
p−2
p−1

1,p(Ω) for any vH ∈ V c,

where 1/p+ 1/q = 1, ∥u∥1,p(Ω) =
(∫

Ω
κ|∇u|pdx

)1/p is the energy norm.

Proof. Using Lemma III.3.1, we immediately obtain that for any vH ∈ V c,

∫
Ω

κ|∇(u− ums)|pdx ≼
∫
Ω

(a(x,∇u)− a(x,∇ums)) · ∇(u− ums)

=

∫
Ω

(a(x,∇u)− a(x,∇ums)) · ∇(u−Hp(vH))

≼
∫
Ω

M(x, u, ums)|∇u−∇ums||∇u−∇Hp(vH)|dx.
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Applying Hölder’s inequality, we have

∫
Ω

κ|∇(u− ums)|pdx ≼
(∫

Ω

κ|∇(u− ums)|pdx
) 1

p
(∫

Ω

κ|∇(u−Hp(vH))|pdx
) 1

p

(∫
Ω

(
κ−

2
p |M(x, u, ums)|

) p
p−2

dx

) p−2
p

.

Dividing both sides by
(∫

Ω
κ(x)|∇(u− ums)|pdx

) 1
p gives

∫
Ω

κ|∇(u− ums)|pdx ≼
(∫

Ω

κ|∇(u−Hp(vH))|pdx
) q

p
(∫

Ω

(
κ−

2
p |M |

) p
p−2

dx

) p−2
p−1

=

(∫
Ω

κ|∇(u−Hp(vH))|pdx
) q

p
(∫

Ω

κ(|∇u|+ |∇ums|)pdx
) p−2

p−1

≼
(∫

Ω

κ|∇(u−Hp(vH))|pdx
) q

p
(∫

Ω

κ(x)|∇u|pdx
) p−2

p−1

.

It follows immediately

∥u− ums∥1,p(Ω) ≼ ∥u−Hp(vH)∥
q
p

1,p(Ω)∥u∥
p−2
p−1

1,p(Ω).

Lemma III.3.6. Suppose u is the exact solution of Equation (III.1), K is any coarse block

of size H , p ≥ 2, then we have

∫
K

κ(x)|∇(u−Hp(u))|pdx ≼ Hq

∫
K

|f |qdx, (III.13)

where 1/p+ 1/q = 1.
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Proof. It’s clear that

−div(a(x,∇u)− a(x,∇Hp(u))) = f.

Thus,

∫
K

(a(x,∇u)− a(x,∇Hp(u))) · ∇(u−Hp(u))dx =

∫
K

(u−Hp(u))fdx.

By Lemma III.3.1,

∫
K

κ(x)|∇(u−Hp(u))|pdx ≼
∫
K

|u−Hp(u)||f |dx

≼
(∫

K

|u−Hp(u)|pdx
) 1

p
(∫

K

|f |qdx
) 1

q

.

Using Poincaré’s inequality, we get

∫
K

κ(x)|∇(u−Hp(u))|pdx ≼ H

(∫
K

|∇(u−Hp(u))|pdx
) 1

p
(∫

K

|f |qdx
) 1

q

= κ
− 1

p

0 H

(∫
K

κ0|∇(u−Hp(u))|pdx
) 1

p
(∫

K

|f |qdx
) 1

q

≼ H

(∫
K

κ(x)|∇(u−Hp(u))|pdx
) 1

p
(∫

K

|f |qdx
) 1

q

.

Dividing both sides by
(∫

K
κ(x)|∇(u−Hp(u))|pdx

) 1
p , we get

∫
K

κ(x)|∇(u−Hp(u))|pdx ≼ Hq

∫
K

|f |qdx.

Remark III.3.7. This local error estimate proved in Lemma III.3.6 immediately deduces
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the global error estimate:

∥u−Hp(u)∥p1,p(Ω) ≼ Hq∥f∥qLq(Ω). (III.14)

Now, we come to the main convergence theorem.

Theorem III.3.8. Suppose u is the exact solution of Equation (III.1), ums is the GMsFEM

solution from Equation (III.2), then for any p ≥ 2, we have

∥u− ums∥1,p(Ω) ≼ ∥u∥
p−2
p−1

1,p(Ω)

{
H

1
(p−1)2 ∥f∥

1
(p−1)2

Lq(Ω) +

(
1

Λ∗

) 1
p(p−1)2

∥u∥
1

p−1

1,p(Ω)

}
, (III.15)

where Λ∗ = minωi
λωi
Li+1, {λωi

j } are the eigenvalues defined by (III.4) in Section III.2.2, Li

is the number of eigenbasis chosen in each coarse neighborhood ωi.

Proof. We first define the interpolation of u onto the offline space V c as

I0u = arg min
v∈V c

{∥u−Hp(v)∥1,p(Ω)}.

Since I0u ∈ V c, we denote I0u =
∑

i χiu
ωi
0 , where uωi

0 =
∑Li

k=1 c
ωi
k ϕ

ωi
k . By Lemma III.3.5

and (III.14), it follows that

∥u− ums∥1,p(Ω) ≼ ∥u∥
p−2
p−1

1,p(Ω) ∥u−Hp(I0u)∥
q
p

1,p(Ω)

≼ ∥u∥
p−2
p−1

1,p(Ω)

(
∥u−Hp(u)∥

q
p

1,p(Ω) + ∥Hp(u)−Hp(I0u)∥
q
p

1,p(Ω)

)
≼ ∥u∥

p−2
p−1

1,p(Ω)

(
H

1
(p−1)2 ∥f∥

1
(p−1)2

Lq(Ω) + ∥Hp(u)−Hp(I0u)∥
1

p−1

1,p(Ω)

)
. (III.16)

In the following, we will estimate ∥Hp(u) − Hp(I0u)∥
1

p−1

1,p(Ω). Using Lemma III.3.3, we

have
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∥Hp(u)−Hp(I0u)∥p1,p(Ω)

≼
(∫

Ω
κ(x)|∇Hp(u− I0u)|pdx

) q
p
(∫

Ω
κ(x)|∇Hp(u)|pdx+

∫
Ω
κ(x)|∇Hp(I0u)|pdx

) p−2
p−1

≼

(∫
Ω
κ(x)|∇Hp(

∑
ωi

χi(u− uωi
0 ))|pdx

) q
p (∫

Ω
κ(x)|∇u|pdx

) p−2
p−1

. (III.17)

Applying the property of Hp(·) proved in Lemma III.3.4 to (III.17), we achieve

∥Hp(u)−Hp(I0u)∥p1,p(Ω)

≼

(∫
Ω

∑
ωi

κ(x)|∇Hp(χi(u− uωi
0 ))|pdx

) q
p (∫

Ω

κ(x)|∇u|pdx
) p−2

p−1

≼

(∑
ωi

∫
ωi

κ(x)|∇Hp(χi(u− uωi
0 ))|pdx

) q
p (∫

Ω

κ(x)|∇u|pdx
) p−2

p−1

. (III.18)

Recall that uωi
0 =

∑Li

k=1 c
ωi
k ϕ

ωi
k with {ϕωi

k } being eigenfunctions defined by (III.4) in Sec-

tion III.2.2. We have the following inequality

∫
ωi

κ(x)|∇Hp(χi(u− uωi
0 ))|pdx ≼ 1

λLi+1

∫
ωi

κ(x)|∇Hp(u− uωi
0 )|pdx. (III.19)

Define Λ∗ = minωi
λωi
Li+1, then through (III.18) and (III.19) we get

∥Hp(u)−Hp(I0u)∥p1,p(Ω)

≼

(∑
ωi

1

λLi+1

∫
ωi

κ|∇Hp(u− uωi
0 )|pdx

) q
p (∫

Ω

κ|∇u|pdx
) p−2

p−1

≼
(

1

Λ∗

) q
p
(∫

Ω

κ|∇Hp(u)|pdx
) q

p
(∫

Ω

κ|∇u|pdx
) p−2

p−1

. (III.20)

Using the energy minimization property of Hp(·) claimed in Remark III.1.2, we obtain
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from (III.20) that

∥Hp(u)−Hp(I0u)∥p1,p(Ω)

≼
(

1

Λ∗

) q
p
(∫

Ω

κ(x)|∇u|pdx
) q

p
(∫

Ω

κ(x)|∇u|pdx
) p−2

p−1

=

(
1

Λ∗

) q
p
(∫

Ω

κ(x)|∇u|pdx
) q

p
+ p−2

p−1

=

(
1

Λ∗

) 1
p−1
∫
Ω

κ(x)|∇u|pdx.

This gives

∥Hp(u)−Hp(I0u)∥
1

p−1

1,p(Ω) ≼
(

1

Λ∗

) 1
p(p−1)2

∥u∥
1

p−1

1,p(Ω). (III.21)

Substituting (III.21) into (III.16), we obtain

∥u− ums∥1,p(Ω) ≼ ∥u∥
p−2
p−1

1,p(Ω)

{
H

1
(p−1)2 ∥f∥

1
(p−1)2

Lq(Ω) +

(
1

Λ∗

) 1
p(p−1)2

∥u∥
1

p−1

1,p(Ω)

}
.

Remark III.3.9. We notice that Λ∗ will increase to infinity. Considering a function u

with highly oscillating boundary conditions, the value of
Gωi(u)

Gωi
χ (u)

will be very large. More

specifically, for u having highly oscillating boundary conditions, the value of Gωi(u) is

large. But χiu will have less oscillation on the cross since u solves the harmonic problem.

Therefore, Gωi
χ (u) will be small and the ratio of Gωi(u) over Gωi

χ (u) will be large.

Besides, we can improve the offline convergence rate by using multiple oversampled

spectral problems. To be simple, we start with two eigenvalue problems. We denote

Iωi
0 (u) = uωi

0 , χ̃i = χi

χ+
i

, ũ = χ+
i (u − Iωi

0 (u)), where χ+
i is the partition of unity func-
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tion on the oversampled domain ω+
i . Following inequality (III.18),

∑
ωi

∫
ωi

κ(x)|∇Hp(χi(u− Iωi
0 (u)))|pdx =

∑
ωi

∫
ωi

κ(x)|∇Hp(χ̃i(ũ− Iωi
0 (ũ)))|pdx

≼
∑
ωi

1

λωi
Li+1

∫
ωi

κ(x)|∇Hp(ũ− Iωi
0 (ũ))|pdx

≼ 1

Λ∗

∑
ω+
i

1

λ
ω+
i

Li+1

∫
ω+
i

κ|∇Hp(u− Iωi
0 (u))|pdx

≼ 1

Λ∗

1

Λ+
∗

∑
ω+
i

∫
ω+
i

κ(x)|∇Hp(u− Iωi
0 (u))|pdx

≼ 1

Λ∗

1

Λ+
∗

∫
Ω

κ(x)|∇u|pdx,

where Λ∗ = minωi
λωi
Li+1 and Λ+

∗ = minω+
i
λ
ω+
i

Li+1. This result can be easily extended to

multiple oversampled eigenvalue problems (instead of two eigenvalue problems), and the

result would be

∑
ωi

∫
ωi

κ(x)|∇Hp(χi(u− Iωi
0 (u)))|pdx ≼ 1

Λ∗

1

Λ+
∗
· · · 1

Λ+N
∗

∫
Ω

κ(x)|∇u|pdx,

where Λ+N
∗ = minω+

i
λ
ω+N
i

Li+1, ω+N
i is a N layers oversampled domain (ω+

i is a 1 layer

oversampled domain). We note that if we choose all these 1
Λ∗

and 1

Λ+k
∗

’s to be less than

some δ (0 < δ < 1), then 1
Λ∗

1
Λ+
∗
· · · 1

Λ+N
∗

< δN+1 and the offline error would be exponential

decay as the number of oversampled layers increases.

III.4 Numerical implementation

In this part, we exhibit the process of numerically implementing the proposed method

for p-Laplacian equation. From Glowinski and Marrocco [38], or Ciarlet [22], (P) is

equivalent to the following minimization problem: (Q) Find u ∈ W 1,p
g (Ω) ≡ {v ∈
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W 1,p(Ω) : v = g on ∂Ω} such that

JΩ(u) = inf
v∈W 1,p

g (Ω)
JΩ(v), (III.22)

where JΩ(u) = 1
p

∫
Ω
κ(x)|∇u|pdx−

∫
Ω
fudx.

It is easily established that JΩ(u) is strictly convex and continuous on W 1,p
g (Ω). Be-

sides, JΩ(u) is Gateaux differentiable with

J
′

Ω(u)(w) =

∫
Ω

κ(x)|∇u|p−2∇u · ∇wdx−
∫
Ω

fwdx ∀w ∈ W 1,p
0 (Ω).

Hence, there exists a unique solution to (Q), and (Q) is equivalent to its Euler equation

(P). The corresponding discrete problem of (Q) is: (Qh) Find uh ∈ V h(Ω) such that

JΩ(u
h) = min

vh∈V h
0 (Ω)

JΩ(v
h). (III.23)

The well-posedness of (Qh) = (Ph) follows in an analogous way to that of (Q) and (P),

see Glowinski and Marrocco [38] or Ciarlet [22].

Recall the discussion in Section III.2.2, we can represent the GMsFEM solution by

uh = Hp(
∑

i

∑Li

k=1 c
ωi
k ϕ̂

ωi
k ). For simplicity, we use a single-index notation and denote

uh = Hp(
∑N

j=1 cjϕ̂j). Then we apply Broyden’s method (which is a Quasi-Newton’s

method) to solve the minimization problem (Qh), see Algorithm 1.

III.5 Numerical results

In this section, we present a number of representative numerical results to verify the

proposed methods in the previous sections. In particular, we solve Equation (III.1) using

the proposed method. We also solve (III.1) for the fine-grid solution on the unit square

Ω = [0, 1] × [0, 1] using a uniform fine grid of 100 × 100 square finite elements which
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Algorithm 1 A Quasi-Newton algorithm

1: Initialization: An initial guess c⃗(0) =
(
c
(0)
j

)N
j=1

and B(0) ∈ RN×N

2: (1) Compute the gradient vector g⃗(0)(c⃗(0)) = ∇JΩ(Hp(
∑N

j=1 c
(0)
j ϕ̂j)).

3: (2) Compute the stepsize τ (0).
4: (3) Set: c⃗(1) = c⃗(0) − τ (0)B(0)g⃗(0).
5: (4) If ∥c⃗(1) − c⃗(0)∥ < δ, where ∥ · ∥ is a suitable norm, return.

6: for k = 1 to N : do
7: (1) Compute the gradient vector g⃗(k)(c⃗(k)) = ∇JΩ(Hp(

∑N
j=1 c

(k)
j ϕ̂j)).

8: (2) Compute the approximation of the inverse of Hessian matrix:

B(k) = B(k−1) +
[(c⃗(k) − c⃗(k−1))−B(k−1)(g⃗(k) − g⃗(k−1))](c⃗(k) − c⃗(k−1))TB(k−1)

(c⃗(k) − c⃗(k−1))TB(k−1)(g⃗(k) − g⃗(k−1))
.

9: (3) Compute the stepsize τ (k).
10: (4) Set: c⃗(k+1) = c⃗(k) − τ (k)B(k)g⃗(k).
11: (5) If ∥c⃗(k+1) − c⃗(k)∥ < δ, return.
12: end for
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Figure III.1: Illustration of the high-contrast permeability field κ1(x).

is divided into 10 × 10 square coarse elements uniformly. The forcing term is chosen as

f = 1 and we impose a linear Dirichlet boundary condition u(x1, x2) = x1 + x2. The

high-contrast permeability field κ1(x) used in our experiments is shown in Figure III.1,

with high-contrast ratio κmax/κmin being 105.
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III.5.1 Accuracy of GMsFEM using different numbers of basis functions

We use both fine-grid (FEM) and coarse-grid (GMsFEM) methods to solve the model

problem (III.1). To compare the respective approaches, we introduce relative Lp errors and

relative energy errors, which are defined as

Lp error =
∥u− ums∥Lp(Ω)

∥u∥Lp(Ω)

× 100%,

Energy error =
∥u− ums∥1,p(Ω)

∥u∥1,p(Ω)

× 100%,

(III.24)

where we recall that u denotes the FEM solution and ums denotes the GMsFEM solution.

For the first set of experiments, we take p = 3, 4, 5, 6 separately and use different

numbers of cross basis (Li for each ωi) for each fixed value of p. Then we check the

relative errors of the GMsFEM solutions. Numerical results are shown in Table III.1 and

Figure III.2. Note that in the first column of each sub-table, we show the numbers of basis

functions used in each coarse neighborhood ωi, and the numbers in parentheses are the

degrees of freedom (DOF) of offline space. To visually observe the accuracy of GMsFEM,

we plot the solutions obtained by both FEM and GMsFEM in the case p = 3 using 4 cross

basis functions in each coarse neighborhood, see Figure III.3.

By observing the columns in Table III.1 (or the curves in Figure III.2), we can clearly

see that for each p, the relative error decays as we use more cross basis functions. We note

that as Li increases, the the value of (Li + 1)’s eigenvalue increases, and the error bound

1/Λ∗ will correspondingly decrease. Through a more careful examination, we notice that

for each p, when 4 or more than 4 cross basis are chosen in each coarse neighborhood (i.e.

Li ≥ 4 for each ωi), the errors are much smaller. This might suggest that if we use 4 or

more than 4 cross basis in each coarse neighborhood, we would get a better convergence.

We will explore this in more details in the following subsection.
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Li (DOF)
p = 3

Lp error Energy error
1(81) 9.52 % 41.03 %

2(162) 6.45 % 34.38 %
3(243) 5.76 % 27.76 %
4(324) 0.52 % 6.55 %
5(405) 0.45 % 5.15 %

Li (DOF)
p = 4

Lp error Energy error
1(81) 10.88 % 42.35 %

2(162) 6.47 % 32.93 %
3(243) 5.12 % 24.13 %
4(324) 0.92 % 8.57 %
5(405) 0.82 % 6.65 %

Li (DOF)
p = 5

Lp error Energy error
1(81) 10.12 % 40.46 %

2(162) 7.71 % 34.05 %
3(243) 5.17 % 27.88 %
4(324) 0.94 % 9.94 %
5(405) 0.81 % 7.92 %

Li (DOF)
p = 6

Lp error Energy error
1(81) 8.95 % 39.68 %
2(162) 6.94 % 30.92 %
3(243) 4.37 % 23.85 %
4(324) 1.07 % 8.70 %
5(405) 0.91 % 7.08 %

Table III.1: Relative errors for p = 3, 4, 5, 6 using different numbers of cross basis.
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Figure III.2: Relative error vs Li for p = 3, 4, 5, 6.
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Figure III.3: FEM v.s. GMsFEM node-wise solutions, p = 3, DOF = 324.

III.5.2 Correlation between errors and eigenvalues

Aside from the accuracy of our proposed method, we are interested in determining how

many cross basis (or DOFs) should be used. As we mentioned earlier, there is a ”jump”

in the relative energy errors when we take 4 cross basis in each coarse neighborhood (i.e.

Li = 4 for each ωi, see Table III.1). Thus, Li = 4 might be a good choice. According

to our analysis in Section III.3, that is probably due to a sudden decrease in the quantity

of 1/Λ∗, where Λ∗ = minωi
λωi
Li+1, {λωi

j } are the eigenvalues defined in (III.5) in Section

III.2.2. To verify this theory, we calculate the corresponding 1/Λ∗ for each Li in the case

of p = 3. The results are shown in Table III.2. In this table, we see the jump in Λ∗ and

1/Λ∗ at Li = 4, which explains our earlier inference. Hence, we conclude that the proper

number of cross basis is chosen at the spot where there is a sudden increase in the values of

Λ∗ (or a sudden decrease in the values of 1/Λ∗). We would like to remark that an adaptive

method can be employed to determine a best choice of Li for each coarse neighborhood ωi.

Moreover, to see a more quantitative relationship between the relative errors and the values

of Λ∗ as well as being inspired by the result in Theorem III.3.8, we calculate the cross-

correlation coefficient between the relative energy errors and the corresponding values of
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( 1
Λ∗
)

1
p(p−1)2 for the case p = 3. We recall that the quantity ( 1

Λ∗
)

1
p(p−1)2 comes from (III.15)

in Theorem III.3.8. The evaluated cross-correlation coefficient is 0.99. This indicates a

linear relationship between the relative energy error and the corresponding ( 1
Λ∗
)

1
p(p−1)2 ,

which verifies our result in (III.15).

Li Λ∗ 1/Λ∗

1 8.86e-4 1.13e3
2 2.59e-3 3.86e2
3 4.46e-3 2.24e2
4 1.55e2 6.44e-3
5 4.01e2 2.50e-3

Table III.2: Values of Λ∗ and 1/Λ∗ when p = 3.

Remark III.5.1. We note that the choice of Li is not empirical. We refer to the discussion

in Section 3 in [30], which states that the choice of the proper Li is highly related to the

number of ”channels” and ”inclusions” in each coarse neighborhood. In more details, if

there are m inclusions and channels in a coarse neighborhood ωi , then one can observe

m small, asymptotically vanishing, eigenvalues. In the example presented in this section,

we can see that there are at most 4 inclusions and channels in each coarse neighborhood.

This suggests the choice of Li = 4, and we verify this choice by observing the values of

Λ∗
i .

Since Li is the number of eigen-pairs solved from the nonlinear eigenvalue problem,

it’s a finite number and can not grow to infinity. We can only guarantee that as Li grows

(not necessary to be a large number), the error will decay to a significant small level,

which is verified by our numerical results and more importantly exhibits the effect of model

reduction. This result is similar to solving problems in the linear setting.
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Li Energy error 1/Λ∗

1 44.15 % 1.42e3
2 36.44 % 4.04e2
3 27.99 % 2.35e2
4 6.77 % 6.49e-3
5 5.30 % 2.50e-3

Table III.3: Relative energy errors and values of 1/Λ∗ using κ2(x), p = 3.

III.5.3 Numerical tests with more permeability fields

To verify that our proposed method is applicable to more situations, we examine other

choices of permeability field κ(x). First, we would like to check that the GMsFEM solu-

tion errors do not depend on the high-contrast ratio κmax/κmin. To see this, we increase

the high-contrast ratio of κ1(x), which is used in the previous subsections, from 105 to

107. We denote the new permeability field by κ2(x). Then we solve Equation (III.1) using

both FEM and proposed GMsFEM, and calculate the relative errors and the error bound

quantity 1/Λ∗. Numerical results for p = 3 are shown in Table III.3. Comparing these re-

sults with the top left sub-table in Table III.1 and Table III.2, we can observe similar trend

inside the columns as well as a slight increase in the values of both relative energy errors

and 1/Λ∗’s. The jump at Li = 4 still occurs. The cross-correlation coefficient between the

relative energy errors and ( 1
Λ∗
)

1
p(p−1)2 is calculated to be 0.98.

We also consider a different high-contrast permeability field κ3(x), see Figure III.4.

We solve Equation (III.1) for p = 3 and the results are presented in Table III.4. The cross-

correlation coefficient between the relative energy errors and ( 1
Λ∗
)

1
p(p−1)2 is calculated to

be 0.94. Similar conclusions as made in Section III.5.1 and III.5.2 can be drawn for this

new choice of permeability field. We can see that our proposed method works well for this

permeability field.
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Figure III.4: Illustration of the high-contrast permeability field κ3(x).

Li Energy error 1/Λ∗

1 47.08 % 1.85e1
2 27.68 % 4.64e0
3 20.81 % 2.68e0
4 4.33 % 2.26e-3
5 2.69 % 1.01e-3

Table III.4: Relative energy errors and values of 1/Λ∗ using κ3(x), p = 3.

III.5.4 Comments on the computational cost

The online cost is independent of fine mesh parameters, while it will grow as the spec-

tral basis parameters increase. We note that the online cost is proportional to that of solving

homogeneous p-Laplacian equation with polynomial basis. In practise, we usually only

use a few spectral basis, so the online cost is close to that of solving homogeneous p-

Laplacian equation with low order polynomial basis. We note that solving the nonlinear

eigenvalue problem in each coarse neighborhood is one source of the computational cost.

However, this is an offline step, which means when dealing with different forcing terms

and boundary conditions we only need to solve this nonlinear eigenvalue problem for a

single time. Thus, the computation of this eigenvalue problem will not affect the online

38



cost of our method. We also note that in Algorithm 1, we need to iteratively update the

values of the nonlinear function N(∇u) = κ(x)|∇u|p−2 at the fine-grid update level. This

can be time-consuming due to the large size of the fine grid. To decrease this computation-

al cost, one can use the discrete empirical interpolation method (DEIM). Within DEIM,

the nonlinear function on the fine grid can be approximated by only evaluating at a few

carefully selected points. We refer to [6] [58] for more detailed discussions on the use of

DEIM. Moreover, by comparing the degrees of freedoms listed in Table III.1 with the size

of the fine-scale finite element system Nf = 10201, we see that we obtain a reduced sized

system by applying GMsFEM, which will reduce the computational cost.

Remark III.5.2. Compared with the online cost, the offline cost depends on the fine mesh

parameter, considering that each local snapshot problem is solved on the local coarse

neighborhood consisting of fine grids. We note that the cost of numerical homogenization

is high because the local problem −div(a(x,∇Nξi)) = 0 in K with boundary condition

Nξi = ξi · x on ∂K (K is a coarse block) is solved for all ξ1, ξ2, · · ·, ξN . Similarly, the

local problem in offline stage is solved for all possible boundary conditions, which is con-

sistent to numerical homogenization. So the offline cost is high. However, as mentioned in

Section 3.2.1, the techniques of oversampling and randomization can be adopted to help

reduce the offline computational cost associated with the calculation of snapshots. Also,

one can select and compute eigenbasis adaptively in each coarse neighborhood which

can eliminate the use of non-dominated modes and reduce offline cost. Besides, as men-

tioned above, DEIM is introduced to reduce offline computational cost when it comes to

the evaluation of nonlinear functions.

Remark III.5.3. To illustrate how the error of DEIM affects the global error estimate

of Theorem 4.8, we adopt the notation aDEIM(x,∇u) = N1(∇u)∇u, where N1(∇u)(≈

κ(x)|∇u|p−2) is evaluated using DEIM. We denote ũms the DEIM solution which is ob-
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tained by solving

∫
Ω

aDEIM(x,∇ũms) · ∇v =

∫
Ω

fv, ∀v ∈ V h
0 (Ω).

Then we have

∥ums − ũms∥p1,p(Ω) =

∫
Ω

a(x,∇(ums − ũms)) · ∇(ums − ũms)

≤
∫
Ω

a(x,∇ums) · ∇(ums − ũms)−
∫
Ω

a(x,∇ũms) · ∇(ums − ũms)

=

∫
Ω

(ums − ũms)f −
∫
Ω

a(x,∇ũms) · ∇(ums − ũms)

=

∫
Ω

(aDEIM(x,∇ũms)− a(x,∇ũms)) · ∇(ums − ũms).

We note that ∥aDEIM(x,∇ũms)− a(x,∇ũms)∥ is the DEIM error, which can be assumed

to be a small quantity (ref. [5]). Then from the above inequality, it follows

∥ums − ũms∥p1,p(Ω) ≤ δp−1∥ums − ũms∥1,p(Ω), (III.25)

for some small δ(0 < δ < 1).

Combining (III.25) with Theorem 4.8, we obtain

∥u− ũms∥1,p(Ω) ≤ ∥u− ums∥1,p(Ω) + ∥ums − ũms∥1,p(Ω)

≼ δ + ∥u∥
p−2
p−1

1,p(Ω)

{
H

1
(p−1)2 ∥f∥

1
(p−1)2

Lq(Ω) +

(
1

Λ∗

) 1
p(p−1)2

∥u∥
1

p−1

1,p(Ω)

}
.
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IV. SPACE-TIME GMSFEM

In this section, we consider a local multiscale model reduction for problems with mul-

tiple scales in space and time [18]. Our main objective is to develop a multiscale model

reduction framework within GMsFEM that uses space-time coarse cells. We organize the

sections as following. In Section IV.1, we present the underlying problem, the motivation

of space-time approach, and the space-time GMsFEM formulations. In Section IV.2, we

construct the multiscale basis by introducing the snapshot and spectral problems. In Sec-

tion IV.3, we present the convergence analysis for our proposed method. In Section IV.5,

we present the new enrichment procedure of computing online multiscale basis functions.

We present numerical results for offline GMsFEM and online GMsFEM in Section IV.4

and Section IV.6, separately.

IV.1 Model problem

Suppose Ω is a bounded domain in R2 with a Lipschitz boundary ∂Ω, and [0, T ] (T >

0) be a time interval. In this section, we consider the following parabolic differential

equation

∂

∂t
u− div(κ(x, t)∇u) = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = β(x) in Ω,

(IV.1)

where κ(x, t) is a time dependent heterogeneous media (for example, a time dependent

high-contrast permeability field), f is a source term, β(x) is the initial condition. Our

main objective is to develop space-time multiscale model reduction within GMsFEM and

we use the time-dependent parabolic equation as an example. The proposed methods can
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be used for other models that require space-time multiscale model reduction.

We will introduce the space-time GMsFEM in this section, where time dependen-

t multiscale basis functions are constructed on the coarse space-time cell. We recall that

the mesh used in this section is as introduced in Section II.1.

We first compute the fine-scale solution by using the standard conforming piecewise

linear finite element method. One can use discontinuous Galerkin coupling also [27, 20,

21]. Specifically, we define the finite element space Vh with respect to T h × (0, T ) as

Vh = {v ∈ L2((0, T );C0(Ω)) | v = ϕ(x)ψ(t), where

ϕ|K ∈ Q1(K) ∀K ∈ T h, ψ|τ ∈ C0(τ) ∀τ ∈ T T

and ψ|τ ∈ P1(τ) ∀τ ∈ T t},

then the fine-scale solution uh ∈ Vh is obtained by solving the following variational prob-

lem

∫ T

0

∫
Ω

∂uh

∂t
v +

∫ T

0

∫
Ω

κ∇uh · ∇v +
N−1∑
n=0

∫
Ω

[uh(x, Tn)]v(x, T
+
n )

=

∫ T

0

∫
Ω

fv +

∫
Ω

β(x)v(x, T+
0 ),

(IV.2)

∀v ∈ Vh, where [·] is the jump operator such that


[uh(x, Tn)] = uh(x, T

+
n )− uh(x, T

−
n ) for n ≥ 1,

[uh(x, Tn)] = uh(x, T
+
0 ) for n = 0.

Now we use the space-time finite element method to solve problem (IV.1) on the coarse
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grid. That is, we find uH ∈ VH such that

∫ T

0

∫
Ω

∂uH

∂t
v +

∫ T

0

∫
Ω

κ∇uH · ∇v +
N−1∑
n=0

∫
Ω

[uH(x, Tn)]v(x, T
+
n )

=

∫ T

0

∫
Ω

fv +

∫
Ω

β(x)v(x, T+
0 ),

(IV.3)

∀v ∈ VH , where VH is the multiscale finite element space which will be introduced in the

following subsections.

The computational cost for solving the equation (IV.3) is huge since we need to com-

pute the solution uH in the whole time interval (0, T ) at one time. To fix this issue, we

assume the solution space VH can be decomposed into a direct sum of subspaces and each

subspace only contains functions defined on one single coarse time interval (Tn−1, Tn),

that is,

VH = ⊕N
n=1V

(n)
H ,

where V (n)
H is defined as

V
(n)
H = {v(x, t)|v(·, t) = 0 for t ∈ (0, T )\(Tn−1, Tn)}.

Then the coarse problem (IV.3) can be decomposed into a sequence of sub-problems: find

u
(n)
H ∈ V

(n)
H such that

∫ Tn

Tn−1

∫
Ω

∂u
(n)
H

∂t
v +

∫ Tn

Tn−1

∫
Ω

κ∇u(n)H · ∇v +
∫
Ω

u
(n)
H (x, T+

n−1)v(x, T
+
n−1)

=

∫ Tn

Tn−1

∫
Ω

fv +

∫
Ω

g
(n)
H (x)v(x, T+

n−1), ∀v ∈ V
(n)
H , (IV.4)
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where

g
(n)
H (·) =


u
(n−1)
H (·, T−

n−1) for n ≥ 1,

β(·) for n = 0.

Then, the solution uH of the problem (IV.3) is the direct sum of all these u(n)H ’s, that is

uH = ⊕N
n=1u

(n)
H .

In the next, we will discuss space-time multiscale basis functions. First, we will con-

struct multiscale basis functions in the offline mode without using the residual. Next, in

Section IV.5, we will discuss online space-time multiscale basis construction.

IV.2 Construction of offline basis functions

IV.2.1 Snapshot space

Let ω be a given coarse neighborhood in space. To simplify the notations, we omit

the coarse node index for now. Within GMSFEM framework, we need first to construct

a snapshot space V ω
snap (or V ω(n)

snap ) on coarse time interval (Tn−1, Tn) in order to get offline

basis functions. There are two common choices of V ω
snap in practice.

Using all possible fine-grid functions in ω×(Tn−1, Tn) is the first choice. This can pro-

vide accurate approximation for the solution space, while having very large dimensions.

The second choice involves solving local problems using all possible boundary conditions.

In particular, we define ψj as the solution of the following local problem

∂

∂t
ψj − div(κ(x, t)∇ψj) = 0 in ω × (Tn−1, Tn),

ψj(x, t) = δj(x, t) on ∂ (ω × (Tn−1, Tn)) .

(IV.5)

Here δj(x, t) is a fine-grid delta function and ∂ (ω × (Tn−1, Tn)) denotes the boundaries

t = Tn−1 and on ∂ω × (Tn−1, Tn). In general, the computations of these snapshots are

expensive because in each ω, one need to solve the number of O(M∂ω
n ) local problems,
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whereM∂ω
n is the number of fine grids on the boundaries t = Tn−1 and on ∂ω×(Tn−1, Tn).

Thus, in order to build a more efficient multiscale method, one needs a smaller yet accurate

snapshot space. We can take an advantage of randomized oversampling concepts [12] and

compute only a few snapshot vectors, which will reduce the computational cost remarkably

while keeping required accuracy. Next, we introduce randomized snapshots.

Firstly, we describe the notations for oversampled regions. We denote by ω+ the over-

sampled space region of ω ⊂ ω+, defined by adding several fine- or coarse-grid layers

around ω. Time interval (T ∗
n−1, Tn) is defined as the left-side oversampled time region for

(Tn−1, Tn). We will construct inexpensive snapshots by imposing random boundary con-

ditions on the local region ω+ × (T ∗
n−1, Tn). In particular, one solves the following local

problems:

∂

∂t
ψ+
j − div(κ(x, t)∇ψ+

j ) = 0 in ω+ × (T ∗
n−1, Tn),

ψ+
j (x, t) = rl on ∂

(
ω+ × (T ∗

n−1, Tn)
)
,

where rl is a random vector. Then the local snapshot space on ω+ × (T ∗
n−1, Tn) is

V ω+

snap = span{ψ+
j (x, t)|j = 1, · · ·, Lω + pωbf},

where Lω and pωbf are the number of local offline basis in ω and the buffer number, respec-

tively.

IV.2.2 Offline space

Now, we are going to construct the offline basis functions. This is done by per-

forming a space reduction in each local space-time snapshot space through some well-

defined spectral problems. In particular, we propose the following eigenvalue problem on

ω+ × (Tn−1, Tn):
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Find (ϕ, λ) ∈ V ω+

snap × R such that

An(ϕ, v) = λSn(ϕ, v), ∀v ∈ V ω+

snap, (IV.6)

where the bilinear operators An(ϕ, v) and Sn(ϕ, v) are defined by

An(ϕ, v) =
1

2

(∫
ω+

ϕ(x, Tn)v(x, Tn) +

∫
ω+

ϕ(x, Tn−1)v(x, Tn−1)

)
+

∫ Tn

Tn−1

∫
ω+

κ(x, t)∇ϕ · ∇v,

Sn(ϕ, v) =

∫
ω+

ϕ(x, Tn−1)v(x, Tn−1) +

∫ Tn

Tn−1

∫
ω+

κ̃+(x, t)ϕv,

(IV.7)

where the weighted function κ̃+(x, t) is defined by

κ̃+(x, t) = κ(x, t)
Nc∑
i=1

|∇χ+
i |2.

We note that {χ+
i }

Nc
i=1 are partition of unity functions associated with {ω+

i }
Nc
i=1 and satisfies

|∇χ+
i | ≥ |∇χi| on ωi, while {χi}Nc

i=1 are partition of unity functions on {ωi}Nc
i=1 and defined

by the following local problems:

−div(κ(x, Tn−1)∇χi) = 0, in K ∈ ωi,

χi = gi, on ∂K,
(IV.8)

for all K ∈ ωi, where gi is a continuous function on ∂K and is linear on each edge of ∂K.

The eigenvalues {λω+

j |j = 1, 2, · · ·Lω + pωbf} from (IV.6) are then arranged in the

ascending order, and we select the first Lω eigenfunctions, which are associated with the

first Lω ordered eigenvalues, and denote them by {Ψω+,off
1 , · · ·,Ψω+,off

Lω }. Using these eigen-
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functions, we can define

ψω+

j (x, t) =

Lω+pωbf∑
k=1

(Ψω+,off
j )kψ

+
k (x, t), j = 1, 2, · · ·, Lω,

where (Ψω+,off
j )k denotes the k-th component of Ψω+,off

j , and ψ+
k (x, t) is the snapshot basis

function computed on ω+ × (T ∗
n−1, Tn) as in the previous subsection. Then we can obtain

the snapshots ψω
j (x, t) on the target region ω × (Tn−1, Tn) by restricting ψω+

j (x, t) onto

ω × (Tn−1, Tn). Finally, the offline basis functions on ω × (Tn−1, Tn) are defined by

ϕω
j (x, t) = χψω

j (x, t), where χ is the standard multiscale basis function from (IV.8) for a

generic coarse neighborhood ω.

The local offline space on ω × (Tn−1, Tn) can be defined as

V ω
off = span{ϕω

j (x, t)|j = 1, · · ·, Lω}.

Note that one can take V (n)
H in (IV.4) as V (n)

H = V
(n)

off = span{ϕωi
j (x, t)|1 ≤ i ≤ Nc, 1 ≤

j ≤ Li}. As a result, VH = Voff = ⊕N
n=1V

(n)
H .

Remark IV.2.1. For the convenience of convergence analysis in Section IV.3, we also

denote by {Ψω+,off
1 , · · ·,Ψω+,off

Lω+pωbf
} all the eigenfunctions from (IV.6) corresponding to the

ordered eigenvalues, and define

ψω+

j (x, t) =

Lω+pωbf∑
k=1

(Ψω+,off
j )kψ

+
k (x, t),

for j = 1, 2, · · ·, Lω + pωbf.

We note that the snapshot space on ω+ × (T ∗
n−1, Tn) can be rewritten as

V ω+

snap = span{ψω+

j (x, t)|j = 1, · · ·, Lω + pωbf},

47



and the snapshot space on ω × (Tn−1, Tn) can be written as

V ω
snap = span{ψω

j (x, t)|j = 1, · · ·, Lω + pωbf},

where each ψω
j (x, t) is the restriction of ψω+

j (x, t) onto ω × (Tn−1, Tn). By collecting all

local snapshot spaces on each ω × (Tn−1, Tn), we can obtain the snapshot space V (n)
snap on

Ω× (Tn−1, Tn).

The offline space can be rewritten as

V ω
off = span{χψω

j (x, t)|j ≤ Lω}.

Remark IV.2.2. One can use a more general spectral problem in (IV.6) with

A(ϕ, v) =
1

2

(∫
ω

ϕ(x, Tn)v(x, Tn) +

∫
ω

ϕ(x, Tn−1)v(x, Tn−1)

)
+

∫ Tn

Tn−1

∫
ω

κ(x, t)∇ϕ · ∇v +
∫ Tn

Tn−1

∫
ω

κ(x, t)(zϕzv +∇zϕ · ∇zv),

S(ϕ, v) =

∫
ω

ϕ(x, Tn−1)v(x, Tn−1) +

∫ Tn

Tn−1

∫
ω

κ̃(x, t)ϕv +

∫ Tn

Tn−1

∫
ω

κ|∇χ|2zϕzv,

(IV.9)

where for any w ∈ V ω
snap, zw satisfies

−zw(x, t) +∇ · (κ(x, t)∇zw(x, t)) = χ
∂w

∂t
, ∀t ∈ (Tn−1, Tn).

With this spectral problem, one can simplify the proof presented in Section IV.3. However,

the numerical implementation of this local spectral problem is more complicated.
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IV.3 Convergence analysis

In this section, we will analyze the convergence of our proposed method. To start, we

firstly define two norms that are used in the analysis. We define ∥ · ∥2
V (n) and ∥ · ∥2

W (n) by

∥u∥2V (n) =

∫ Tn

Tn−1

∫
Ω

κ|∇u|2 +
1

2

∫
Ω

u2(x, T−
n ) +

1

2

∫
Ω

u2(x, T+
n−1),

∥u∥2W (n) = ∥u∥2V (n) +

∫ Tn

Tn−1

∥ut(·, t)∥2H−1(κ,Ω),

where

∥u∥H−1
(κ,Ω)

= sup
v∈H1

0 (Ω)

∫
Ω
uv

(
∫
Ω
κ|∇v|2) 1

2

.

In the following, we will show the V (n)-norm of the error uh − uH can be bounded

by the W (n)-norm of the difference uh − w for any w ∈ V
(n)
H , where uh is the fine scale

solution from Eqn.(IV.2), uH is the multiscale solution from Eqn.(IV.4), and V (n)
H is the

multiscale space defined in the previous section.

Lemma IV.3.1. Both the fine scale problem (IV.2) and the coarse scale problem (IV.4)

have a unique solution for each H , ∆t, and κ. Moreover, if uh is the fine scale solution

from Equation (IV.2) and uH is the multiscale solution from Equation (IV.4), then we have

the following estimate

∥uh − uH∥2V (n) ≤


C∥uh − w∥2

W (n) for n = 1,

C
(
∥uh − w∥2

W (n) + ∥uh − uH∥2V (n−1)

)
for n > 1,

for any w ∈ V
(n)
H . If we define the V (0)-norm to be 0, then we can write the above as

∥uh − uH∥2V (n) ≤ C
(
∥uh − w∥2W (n) + ∥uh − uH∥2V (n−1)

)
for n ≥ 1,

49



for any w ∈ V
(n)
H .

Proof. We will prove the existence of a unique solution for the coarse scale system (IV.4).

The proof for the fine scale system is similar. To simplify notations, we define

a(uH , v) =

∫ Tn

Tn−1

∫
Ω

∂uH

∂t
v +

∫ Tn

Tn−1

∫
Ω

κ∇uH · ∇v +
∫
Ω

uH(x, T
+
n−1)v(x, T

+
n−1)

and

FH(v) =

∫ Tn

Tn−1

∫
Ω

fv +

∫
Ω

g
(n)
H (x)v(x, T+

n−1).

Using integration by parts for the time variable, it is easy to see that a(uH , uH) = ∥uH∥2V (n) .

Moreover, we have

a(uH , v) ≤ ∥uH∥W (n) ∥v∥V (n) . (IV.10)

For uH ∈ V
(n)
H , we denote uH =

∑
ωi
χiui, then

∫
Ω

∂uH
∂t

v =
∑
ωi

∫
ωi

∂ui
∂t
χiv.

Notice that ∫
ωi

∂ui
∂t
ϕ+

∫
ωi

κ∇ui · ∇ϕ = 0,∀ϕ ∈ H1
0 (ωi),

we have ∫
ωi

∂ui
∂t
χiv = −

∫
ωi

κ(∇ui · ∇χi)v −
∫
ωi

κχi(∇ui · ∇v)

≤
(∫

ωi

κ(∇ui · ∇χi)
2

) 1
2
(∫

ωi

κv2
) 1

2

+

(∫
ωi

κχ2
i |∇ui|2

) 1
2
(∫

ωi

κ|∇v|2
) 1

2

≤
(∫

ωi

κ(∇ui · ∇χi)
2 +

∫
ωi

κχ2
i |∇ui|2

) 1
2
(∫

ωi

κv2 +

∫
ωi

κ|∇v|2
) 1

2

.
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Therefore,

∫
Ω

∂uH
∂t

v ≤ C

(∑
ωi

∫
ωi

κ(∇ui · ∇χi)
2 +

∑
ωi

∫
ωi

κχ2
i |∇ui|2

) 1
2 (∫

Ω

κv2 +

∫
Ω

κ|∇v|2
) 1

2

(IV.11)

for some constant C.

Recall the definition of ∥ · ∥H−1(κ,Ω), using (IV.11) we obtain

∥∂uH
∂t

∥2H−1(κ,Ω) ≤ CC1C2

∫
Ω

κ|∇uH |2, (IV.12)

where

C1(t) = max∑
i χiui∈V

(n)
H

∑
i

∫
ωi
κ(∇ui · ∇χi)

2 +
∑

i

∫
ωi
κχ2

i |∇ui|2∫
Ω
κ|∇

∑
i χiui|2

,

C2(t) = max
v∈V (n)

H

∫
Ω
κ|∇v|2 +

∫
Ω
κv2∫

Ω
κ|∇v|2

are two continuous functions of t. Note that it is difficult to get an upper bound for C1(t)

that is independent of discretization and physical parameters. Thus, our results are appli-

cable for a fixed discretization and physical parameters. We plan to investigate a different

approach that can provide results are robust w.r.t. discretization and physical parameters.

Then we get

∫ Tn

Tn−1

∥∂uH
∂t

∥2H−1(κ,Ω) ≤ CC̃1C̃2

∫ Tn

Tn−1

∫
Ω

κ|∇uH |2

≤ CC̃1C̃2∥uH∥2V (n) ,

where C̃1 and C̃2 are two constants. This inequality immediately implies that

∥uH∥2W (n) ≤ C0∥uH∥2V (n)
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for a constant C0.

Recall (IV.10), we get the continuity of the bilinear form a(·, ·), which is

a(uH , v) ≤ C0∥uH∥V (n) ∥v∥V (n) .

In addition,

FH(v) ≤ C
(
∥f∥L2((Tn−1,Tn);Ω) + ∥g(n)H ∥V (n)

)
∥v∥V (n) .

Hence, by the standard Lax-Milgram theory, the problem (IV.4) has a unique solution.

Next, we prove the error bound. Notice that the coarse scale system (IV.4) is written

as

a(u
(n)
H , v) = FH(v).

On the other hand, the fine scale system (IV.2) is written as

a(u
(n)
h , v) = Fh(v),

where

Fh(v) =

∫ Tn

Tn−1

∫
Ω

fv +

∫
Ω

g
(n)
h (x)v(x, T+

n−1)

and

g
(n)
h (·) =


u
(n−1)
h (·, T−

n−1) for n ≥ 1,

β(·) for n = 0.

Since the multiscale space is conforming, we obtain

a(u
(n)
h − u

(n)
H , v) = Fh(v)− FH(v).
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For any w ∈ V
(n)
H , we take v = w − u

(n)
H and the above implies

∥w − u
(n)
H ∥2V (n) =a(w − u

(n)
H , w − u

(n)
H )

=a(w − u
(n)
h , w − u

(n)
H ) + Fh(w − u

(n)
H )− FH(w − u

(n)
H ).

Since

Fh(w − u
(n)
H )− FH(w − u

(n)
H ) =

∫
Ω

(
g
(n)
h (x)− g

(n)
H (x)

)(
w − u

(n)
H

)
=

∫
Ω

(
u
(n−1)
h (x, T−

n−1)− u
(n−1)
H (x, T−

n−1)
)(
w − u

(n)
H

)
≤ C∥uh − uH∥V (n−1) ∥w − u

(n)
H ∥V (n) .

Thus, we obtain

∥w − u
(n)
H ∥V (n) ≤ C

(
∥w − u

(n)
h ∥W (n) + ∥uh − uH∥V (n−1)

)
.

The proof is complete by noting that ∥u(n)h −u(n)H ∥V (n) ≤ ∥u(n)h −w∥V (n) +∥w−u(n)H ∥V (n) .

By the above lemma, we can estimate the error of our multiscale solution. In par-

ticular, it suffices to find a function w in V (n)
H such that ∥uh − w∥W (n)is small. Besides

Lemma IV.3.1, we need the following lemma, which can be proved easily by multiplying

the equation by χi and using integration by parts.

Lemma IV.3.2. For any v satisfying

∂

∂t
v − div(κ(x, t)∇v) = 0 in ωi × (Tn−1, Tn),
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we have

∫
ωi

χ2
i v

2(x, Tn) +

∫ Tn

Tn−1

∫
ωi

κ|χ2
i ||∇v|2 ≼

∫
ωi

χ2
i v

2(x, Tn−1) +

∫ Tn

Tn−1

∫
ωi

κ|∇χi|2v2,

(IV.13)

where the notation F ≼ G means F ≤ CG with a constant C independent of the mesh,

contrast and the functions involved.

Next, we will state and prove our main result in this section. We will define a few

constants that will appear in our error estimate. Given a coarse block K, we define MK

as the number of coarse neighborhoods having non-empty intersection with K and define

M = maxK∈T H MK . For each coarse neighborhood ωi, we define

Di = sup
v∈H1

0 (Ω)

∫
ωi
κ|∇χi|2v2 +

∫
ωi
κχ2

i |∇v|2∫
ωi
κ|∇v|2 +

∫
ωi
κv2

, Fi =
1

minx∈ωi
{|χ+

i (x)|2}

and D = max1≤i≤Nc Di and F = max1≤i≤Nc Fi. Note that the constants D and F are

independent of the multiscale space and the basis functions. In addition, we define the

constant E by

E = sup
w∈H1

0 (Ω)

∫
Ω
κ|∇w|2 +

∫
Ω
κw2∫

Ω
κ|∇w|2

.

The constant E is related to the best constant CΩ in a weighted Poincare inequality by

E = 1 + CΩ where
∫
Ω
κw2 ≤ CΩ

∫
Ω
κ|∇w|2 for all w ∈ H1

0 (Ω). Recall that uh is the fine

scale solution. We define ũh as the best approximation of uh within the snapshot space,

namely,

ũh = argmin
v∈V (n)

snap
∥uh − v∥W (n) .

We remark that the norm ∥uh − ũh∥W (n) represents an irreducible error, and it is small

by the construction of the snapshot space. Notice that we can write ũh =
∑

i χiũh,i with
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ũh,i =
∑

j ci,jψ
ωi
j . Finally, we define ũ+h,i =

∑
j ci,jψ

ω+
i

j and the ∥ · ∥V (n)(ω+
i ) norm in the

oversampled region ω+
i by

∥v∥2
V (n)(ω+

i )
=

∫ Tn

Tn−1

∫
ω+
i

κ|∇v|2 + 1

2

∫
ω+
i

v2(x, T−
n ) +

1

2

∫
ω+
i

v2(x, T+
n−1).

The main convergence result is presented in the following theorem.

Theorem IV.3.3. Let uh be the fine scale solution from Equation (IV.2), uH be the multi-

scale solution from Equation (IV.4). Then we have the following error bound

∥uh − uH∥2V (n) ≼M(DEF + 1)
Nc∑
i=1

 1

λ
ω+
i

Li+1

∥ũ+h,i∥
2
V (n)(ω+

i )

+ ∥uh − ũh∥2W (n)

+ ∥uh − uH∥2V (n−1) .

(IV.14)

Proof. By Lemma IV.3.1,

∥uh − uH∥2V (n) ≼ inf
w∈V (n)

H

∥uh − w∥2W (n) + ∥uh − uH∥2V (n−1) . (IV.15)

Therefore, we need to estimate inf
w∈V (n)

H
∥uh − w∥2

W (n) .

Note that ũh =
∑

i χiũh,i =
∑

i

∑
j ci,jχiψ

ωi
j . Using this expression, we can define a

projection of ũh into V (n)
H by P (ũh) =

∑
i

∑
j≤Li

ci,jχiψ
ωi
j . Then

inf
w∈V (n)

H

∥uh − w∥2W (n) ≤ ∥uh − P (ũh)∥2W (n)

≤ ∥uh − ũh∥2W (n) + ∥ũh − P (ũh)∥2W (n) . (IV.16)

We will estimate ∥ũh − P (ũh)∥2W (n) .
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By the definition of ∥ · ∥W (n) , we have

∥ũh − P (ũh)∥2W (n) =∥
∑
i

χi(ũh,i − P (ũh,i))∥2V (n)

+

∫ Tn

Tn−1

∥
∂(
∑

i χi(ũh,i − P (ũh,i)))

∂t
∥2H−1(κ,Ω) ,

where ũh,i =
∑

j ci,jψ
ωi
j and P (ũh,i) =

∑
j≤Li

ci,jψ
ωi
j . Let ei = ũh,i − P (ũh,i), then

ũh − P (ũh) =
∑

i χiei. Therefore,

∥ũh − P (ũh)∥2W (n) = ∥
∑
i

χiei∥2V (n) +

∫ Tn

Tn−1

∥
∂(
∑

i χiei)

∂t
∥2H−1(κ,Ω). (IV.17)

In the following, we will estimate the two terms on the right hand side of (IV.17), sepa-

rately. Then the proof is done.

First, we estimate the term ∥
∑

i χiei∥2V (n) . We define the local norm ∥ · ∥V (n)(K) by

∥v∥2V (n)(K) =

∫ Tn

Tn−1

∫
K

κ|∇v|2 + 1

2

∫
K

v2(x, T−
n ) +

1

2

∫
K

v2(x, T+
n−1).

Then we have

∥
∑
i

χiei∥2V (n) ≤
∑
K

∥
∑
i

χiei∥2V (n)(K).

Moreover,

∥
∑
i

χiei∥2V (n)(K) ≤MK

∑
i

∥χiei∥2V (n)(K),

where MK is the number of coarse neighborhoods ωi’s which have nonempty intersection

with K.
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Therefore,

∥
∑
i

χiei∥2V (n) ≤
∑
K

MK

∑
i

∥χiei∥2V (n)(K) ≤M
∑
i

∥χiei∥2V (n)(ωi)
, (IV.18)

where we recall that M = maxK{MK}. Now, we need to estimate the term ∥χiei∥2V (n)(ωi)
.

Since ∇(χiei) = ei∇χi + χi∇ei, we obtain

∥χiei∥2V (n)(ωi)
≤ 2

∫ Tn

Tn−1

∫
ωi

κ|∇χi|2e2i + 2

∫ Tn

Tn−1

∫
ωi

κχ2
i |∇ei|2

+
1

2

∫
ωi

χ2
i e

2
i (x, T

−
n ) +

1

2

∫
ωi

χ2
i e

2
i (x, T

+
n−1).

Using Lemma IV.3.2, we have

∥χiei∥2V (n)(ωi)
≼
∫ Tn

Tn−1

∫
ωi

κ|∇χi|2e2i +
∫
ωi

χ2
i e

2
i (x, T

+
n−1)

≼
∫ Tn

Tn−1

∫
ωi

κ|∇χi|2e2i +
∫
ωi

e2i (x, T
+
n−1).

Now we introduce notations in ω+
i and denote e+i = ũ+h,i−P (ũ

+
h,i), where ũ+h,i =

∑
j ci,jψ

ω+
i

j

and P (ũ+h,i) =
∑

j≤Li
ci,jψ

ω+
i

j . It is obvious that ũ+h,i|ωi
= ũh,i, P (ũ+h,i)|ωi

= P (ũh,i) and

e+i |ωi
= ei. And there holds the following two inequalities,

∫ Tn

Tn−1

∫
ωi

κ|∇χi|2e2i ≤
∫ Tn

Tn−1

∫
ω+
i

κ|∇χ+
i |2|e+i |2, (IV.19)

and ∫
ωi

e2i (x, T
+
n−1) ≤

∫
ω+
i

|e+i (x, T+
n−1)|2. (IV.20)
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Thus,

∥χiei∥2V (n)(ωi)
≼
∫ Tn

Tn−1

∫
ω+
i

κ|∇χ+
i |2|e+i |2 +

∫
ω+
i

|e+i (x, T+
n−1)|2. (IV.21)

Substituting (IV.21) into (IV.18), we immediately obtain

∥
∑
i

χiei∥2V (n) ≼M
∑
i

(∫ Tn

Tn−1

∫
ω+
i

κ|∇χ+
i |2|e+i |2 +

∫
ω+
i

|e+i (x, T+
n−1)|2

)
. (IV.22)

Next, we will estimate the term

∫ Tn

Tn−1

∥∂(
∑

i χiei)

∂t
∥2H−1(κ,Ω).

By definition, we have

∫ Tn

Tn−1

∥∂(
∑

i χiei)

∂t
∥2H−1(κ,Ω) =

∫ Tn

Tn−1

sup
w∈H1

0 (Ω)

(∫
Ω

∑
i χi

∂ei
∂t
w
)2∫

Ω
κ|∇w|2

≤
∫ Tn

Tn−1

sup
w∈H1

0 (Ω)

(∑
i |
∫
ωi
χi

∂ei
∂t
w|
)2∫

Ω
κ|∇w|2

. (IV.23)

Since ei satisfies the equation

∂

∂t
ei − div(κ(x, t)∇ei) = 0 in ωi × (Tn−1, Tn),

we have

∫
ωi

χi
∂ei
∂t
w = −

∫
ωi

κ(x, t)∇ei · ∇(χiw)

= −
∫
ωi

κ(x, t)w∇ei · ∇χi −
∫
ωi

κ(x, t)χi∇ei · ∇w.
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Moreover,

∣∣∣∣∫
ωi

χi
∂ei
∂t

w

∣∣∣∣ = ∣∣∣∣−∫
ωi

κw∇ei · ∇χi −
∫
ωi

κχi∇ei · ∇w

∣∣∣∣
≤
(∫

ωi

κw2|∇χi|2
) 1

2
(∫

ωi

κ|∇ei|2
) 1

2

+

(∫
ωi

κχ2
i |∇w|2

) 1
2
(∫

ωi

κ|∇ei|2
) 1

2

≤2

(∫
ωi

κw2|∇χi|2 +
∫
ωi

κχ2
i |∇w|2

) 1
2
(∫

ωi

κ|∇ei|2
) 1

2

. (IV.24)

Using the definition

Di = sup
v∈H1

0 (Ω)

∫
ωi
κ|∇χi|2v2 +

∫
ωi
κχ2

i |∇v|2∫
ωi
κ|∇v|2 +

∫
ωi
κv2

,

from (IV.24) we obtain

∣∣∣∣∫
ωi

χi
∂ei
∂t

w

∣∣∣∣ ≤ 2D
1
2
i

(∫
ωi

κ|∇w|2 +
∫
ωi

κw2

) 1
2
(∫

ωi

κ|∇ei|2
) 1

2

.

Therefore,

∑
i

∣∣∣∣∫
ωi

χi
∂ei
∂t

w

∣∣∣∣ ≤ 2
∑
i

D
1
2
i

(∫
ωi

κ|∇w|2 +
∫
ωi

κw2

) 1
2
(∫

ωi

κ|∇ei|2
) 1

2

≤ 2

(∑
i

Di(

∫
ωi

κ|∇w|2 +
∫
ωi

κw2)

) 1
2
(∑

i

∫
ωi

κ|∇ei|2
) 1

2

≤ 2D
1
2M

1
2

(∫
Ω
κ|∇w|2 +

∫
Ω
κw2

) 1
2

(∑
i

∫
ωi

κ|∇ei|2
) 1

2

, (IV.25)

where D = max{Di}. Combining (IV.23) with (IV.25), we have

∫ Tn

Tn−1

∥
∂(
∑

i χiei)

∂t
∥2H−1(κ,Ω) ≤ 4DME

(∑
i

∫ Tn

Tn−1

∫
ωi

κ|∇ei|2
)
. (IV.26)
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where we use the definition

E = sup
w∈H1

0 (Ω)

∫
Ω
κ|∇w|2 +

∫
Ω
κw2∫

Ω
κ|∇w|2

.

Now, we substitute (IV.26) and (IV.22) into (IV.17), then we have

∥ũh − P (ũh)∥2W (n)

≼M
∑
i

(
DE

∫ Tn

Tn−1

∫
ωi

κ|∇ei|2 +
∫ Tn

Tn−1

∫
ω+
i

κ|∇χ+
i |

2|e+i |
2 +

∫
ω+
i

|e+i (x, T
+
n−1)|

2

)
.

(IV.27)

Note that

∫ Tn

Tn−1

∫
ωi

κ|∇ei|2 ≤
∫ Tn

Tn−1

1

minx∈ωi{|χ+
i (x)|2}

∫
ωi

κ|χ+
i |

2|∇ei|2

≤ 1

minx∈ωi{|χ+
i (x)|2}

∫ Tn

Tn−1

∫
ω+
i

κ|χ+
i |

2|∇e+i |
2.

Applying Lemma IV.3.2 for ω+
i then implies

∫ Tn

Tn−1

∫
ωi

κ|∇ei|2

≤ 1

minx∈ωi{|χ+
i (x)|2}

(∫ Tn

Tn−1

∫
ω+
i

κ|∇χ+
i |

2|e+i |
2 +

∫
ω+
i

|χ+
i |

2|e+i (x, T
+
n−1)|

2

)

≤Fi

(∫ Tn

Tn−1

∫
ω+
i

κ|∇χ+
i |

2|e+i |
2 +

∫
ω+
i

|e+i (x, T
+
n−1)|

2

)
, (IV.28)

where

Fi =
1

minx∈ωi
{|χ+

i (x)|2}
.
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Substituting (IV.28) into (IV.27) gives

∥ũh − P (ũh)∥2W (n) (IV.29)

≼M
∑
i

(DEFi + 1)

(∫ Tn

Tn−1

∫
ω+
i

κ|∇χ+
i |

2|e+i |
2 +

∫
ω+
i

|e+i (x, T
+
n−1)|

2

)

≼M(DEF + 1)
∑
i

(∫ Tn

Tn−1

∫
ω+
i

κ̃+(x, t)|e+i |
2 +

∫
ω+
i

|e+i (x, T
+
n−1)|

2

)
, (IV.30)

where F = max{Fi}. Using the spectral problem, we have

∥ũh − P (ũh)∥2W (n) ≼ M(DEF + 1)
∑
i

 1

λ
ω+
i

Li+1

∥ũ+h,i∥
2
V (n)(ω+

i )

 . (IV.31)

Combine (IV.15), (IV.16) and (IV.31), and we finally obtain

∥uh − uH∥2
V (n) ≼M(DEF + 1)

∑
i

 1

λ
ω+
i

Li+1

∥ũ+h,i∥
2
V (n)(ω+

i )

+ ∥uh − ũh∥2W (n)

+ ∥uh − uH∥2
V (n−1) .

IV.4 Numerical results. Offline step.

We present representative numerical results in this section to show the performance of

the proposed method. In particular, we solve Equation (IV.1) using the space-time GMs-

FEM. We take the space domain Ω to be the unit square [0, 1] × [0, 1] and divide it into

10× 10 uniform coarse square blocks. Each coarse block is then divided into 10× 10 uni-

form fine square blocks. That is, Ω is partitioned by 100×100 square fine-grid blocks. The

whole time interval is [0, 1.6] (i.e., T = 1.6) and is divided into two uniform coarse time

intervals and each coarse time interval is then divided into 8 fine time intervals. The source
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term is chosen as f = 1 and a continuous initial condition β(x1, x2) = sin(πx1) sin(πx2)

is imposed. We employ three different high-contrast permeability fields κ(x, t)’s to exam-

ine our method, which will be shown in the following three cases separately. In each case,

we first solve for uh from Equation (IV.2) to obtain the fine-grid solution. Then we solve

for the multiscale solution uH using the space-time GMsFEM. To compare the accuracy,

we will use the following error quantities:

e1 =

(∫ T

0
∥uH(t)− uh(t)∥2L2(Ω)∫ T

0
∥uh(t)∥2L2(Ω)

)1/2

, e2 =

(∫ T

0

∫
Ω
κ|∇(uH(t)− uh(t))|2∫ T

0

∫
Ω
κ|∇uh(t)|2

)1/2

.

(IV.32)

Since we are using the technique of randomized oversampling in the computation of

the snapshot space, we would like to introduce the concept of snapshot ratio, which is

defined as the ratio of the number of chosen randomized snapshots over the number of the

full snapshots on one coarse neighborhood ωi. In the following experiment with 100×100

fine-grid mesh, this number of the full snapshots on each coarse neighborhood is calculated

by nsnap
total = 21× 21 + 40× 8 = 761.

IV.4.1 High-contrast medium translated in time

We construct a time dependent high-contrast permeability field κ(x, t) by uniformly

translating the permeability field after every other fine time step. High-contrast permeabil-

ity fields at the initial and final time steps are shown in Figure IV.1. Next, we consider

applying the space-time GMsFEM to Equation (IV.1) and solve for the multiscale solu-

tion uH . Recall the procedures that are described in the Section IV.2, where we need to

construct the snapshot spaces in the first place.

First, we fix Li = 11 for all ωi’s and examine the influences of various buffer numbers

on the solution errors e1 and e2. The results are displayed in the left table of Table IV.1. It

is observed that when increasing the buffer numbers, one can get more accurate solutions,
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Figure IV.1: High-contrast permeability field 1. Left: initial. Right: final.

which is as expected. But the error decays very slowly, which indicates that using different

buffer numbers doesn’t affect the convergence rate too much. Based on this observation,

it is not necessary to choose a large buffer number in order to improve convergence rate.

Then we consider the choice of Li, the number of eigenbasis in a neighborhood. With

the fixed buffer number pbf = 8, we examine the convergence behaviors of using different

Li’s. Relative errors of multiscale solutions are shown in the right table of Table IV.1.

We observe that as adding more offline basis, the relative errors decay. We note that the

error decay is becoming slow after using more than 40 offline basis per space-time course

neighborhood. This is because space-time problems have very large degrees of freedom,

while we are using a small part of them at this stage. We will further explore a fast decay

technique by adding online basis functions in Section IV.5.

To see a more quantitative relationship between the relative offline errors and the val-

ues of Li as well as being inspired by the result in Theorem IV.3.3, we inspect the values

of 1/Λ∗ and the corresponding squared errors (see Table IV.2 and Figure IV.2), where

Λ∗ = minωi
λωi
Li+1 and {λωi

j } are the eigenvalues associated with the eigenbasis computed

by spectral problem (IV.6) in each ωi. We note that when plotting Figure IV.2, we don’t

use the values of case Li = 2, because in this case as in the case with one basis function

per node, the method does not converge as we do not have sufficient number of basis func-
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pbf Snapshot ratio e1 e2
1 0.0158 6.18% 53.90%
4 0.0197 5.66% 48.04%
8 0.0250 5.17% 45.86%

12 0.0302 5.16% 43.83%
20 0.0407 4.71% 41.14%
30 0.0539 4.35% 38.68%
40 0.0670 4.23% 37.60%

Li Snapshot ratio e1 e2
2 0.0131 17.03% 129.14%
6 0.0184 8.11% 62.59%

10 0.0237 6.97% 54.85%
20 0.0368 4.81% 41.18%
30 0.0499 3.29% 31.64%
40 0.0631 2.28% 24.43%
50 0.0762 1.54% 18.45%

Table IV.1: First permeability field. Left: errors with the fixed number of offline basis
Li = 11. Right: errors with the fixed buffer number pbf = 8.

tions. We note that the two curves in Figure IV.2 track each other somewhat closely. This

indicates that 1/Λ∗’s and e22’s are correlated and we calculate for the correlation coefficient

to be corrcoef(1/Λ∗, e
2
2) = 0.9778.

Observing the dimensions of the offline spaces Voff, one can see that compared with

the traditional fine-scale finite element method, the proposed space-time GMsFEM uses

much fewer degrees of freedom while achieving an accurate solution. Also, by inspecting

the snapshot ratios, one can see that the use of randomization can reduce the dimension of

snapshot spaces substantially. We would like to comment that oversampling technique is

necessary for the randomization. For example, in the case Li = 6 and pbf = 8, if without

oversampling the errors e1 and e2 are 11.19% and 88.42%, respectively, which are worse

than the errors obtained with oversampling.

IV.4.2 Four channels translated in time

In this subsection, we consider a more structured high-contrast permeability field κ(x, t),

which has four channels inside and these four channels are translated uniformly in time.

High-contrast permeability fields at the initial and final time steps are shown in Figure

IV.3. We repeat our steps from the previous example by fixing Li and pbf, separately. The

results are shown in Table IV.3. One can still observe that increasing the buffer numbers
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Li 1/Λ∗ e21 e22
2 0.2734 2.90% 166.78%
6 0.0120 0.66% 39.17%
10 0.0085 0.49% 30.08%
20 0.0061 0.23% 16.96%
30 0.0053 0.11% 10.01%
40 0.0048 0.05% 5.97%
50 0.0042 0.02% 3.40%

Table IV.2: 1/Λ∗ values and errors.

Figure IV.2: Left: 1/Λ∗ vs Li; Right: e22 vs Li.

will slowly reduce the relative errors and when fixing the buffer number, the errors de-

cay as more offline basis are being used. Using a similar approach, we can also get the

cross-correlation coefficient between e22 and 1/Λ∗, which is 0.9863. This suggests a linear

relationship between e22 and 1/Λ∗ and verifies Theorem IV.3.3.

IV.4.3 Four channels rotated in time

In the third example, we consider another structured high-contrast permeability field

κ(x, t) which has four channels inside and these four channels are rotated anticlockwise

around the center by 11.25 degrees after each fine time step. High contrast permeability

fields at the initial time step is shown in Figure IV.4. We repeat the same procedures as in
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Figure IV.3: High-contrast permeability field 2. Left: initial. Right: final.

pbf Snapshot ratio e1 e2
1 0.0158 7.42% 61.87%
4 0.0197 7.30% 58.95%
8 0.0250 7.14% 57.30%

12 0.0302 7.00% 54.01%
20 0.0407 6.81% 50.85%
30 0.0539 6.61% 49.30%
40 0.0670 6.43% 48.26%

Li Snapshot ratio e1 e2
2 0.0131 11.91% 104.95%
6 0.0184 8.33% 70.82%

10 0.0237 7.25% 58.25%
20 0.0368 5.67% 43.10%
30 0.0499 3.90% 32.75%
40 0.0631 2.73% 27.08%
50 0.0762 1.86% 20.70%

Table IV.3: Second permeability field. Left: errors with the fixed number of offline basis
Li = 11. Right: errors with the fixed buffer number pbf = 8.

the previous two examples. The results are shown in Table IV.4 and one can draw similar

conclusions as before. The cross-correlation coefficient between e22 and 1/Λ∗ is calculated

as 0.9959. This shows a linear relationship between e22 and 1/Λ∗ (see Theorem IV.3.3).

IV.5 Residual based online adaptive procedure

As we observe in the previous examples, the offline errors do not decrease rapidly after

several multiscale functions are selected. In these cases, online basis functions can help to

reduce the error and get an accurate approximation of the fine-scale solution [17]. Next,

we will derive a framework for the online multiscale method.

We use the index m ≥ 1 to represent the online enrichment level. At m’s enrichment
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Figure IV.4: High-contrast permeability field 3 at the initial time.

pbf Snapshot ratio e1 e2
1 0.0158 8.68% 72.86%
4 0.0197 8.67% 71.67%
8 0.0250 8.56% 71.42%

12 0.0302 8.44% 68.87%
20 0.0407 8.18% 65.88%
30 0.0539 7.96% 61.56%
40 0.0670 7.58% 57.58%

Li Snapshot ratio e1 e2
2 0.0131 10.41% 109.40%
6 0.0184 9.40% 83.60%

10 0.0237 8.63% 70.84%
20 0.0368 7.42% 57.66%
30 0.0499 6.14% 47.78%
40 0.0631 4.75% 39.89%
50 0.0762 3.29% 30.11%

Table IV.4: Third permeability field. Left: errors with the fixed number of offline basis
Li = 11. Right: errors with the fixed buffer number pbf = 8.

level, we define V m
ms as the corresponding space-time GMsFEM space and umms the cor-

responding solution to (IV.4) in space V m
ms. We remark that both offline and online basis

functions can be contained in V m
ms, and define V 0

ms = Voff. We will show how to update

V m+1
ms from V m

ms iteratively.

Now we consider constructing online basis functions. We first note that the compu-

tation of online basis occurs in the iterative process and involves the use of the residual.

This is the different from offline basis functions, of which the computation happens before

the iterative process. In particular, we use local residuals for the multiscale solution umms

to construct the online basis functions for enrichment level m+ 1. For brevity, we denote
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the left hand side of (IV.4) by a(u(n)ms, v) and the right hand side G(v). That is, the solution

ums = ⊕N
n=1u

(n)
ms where u(n)ms satisfies

a(u(n)ms, v) = G(v), ∀v ∈ V
(n)
H .

We consider a given coarse neighborhood ωi. Suppose that at m’s enrichment level, we

need to add an online basis function ϕ ∈ Vh in ωi. Then the required ϕ = ⊕N
n=1ϕ

(n)

satisfies that ϕ(n) solves the equation

a(ϕ(n), v) = R(n)(v), ∀v ∈ Vh,

where R(n)(v) = G(v) − a(u
m(n)
ms , v) is the online residual at the coarse time interval

[Tn−1, Tn].

In the following, we would like to form a residual based online algorithm in each coarse

time interval [Tn−1, Tn], see Algorithm 2. We will omit the time index (n) on the spaces

and solutions in this description. We note that online enrichment are performed on non-

overlapping coarse neighborhoods. Thus, we divide the {ωi}Nc
i=1 into P non-overlapping

groups and denote each group by {ωi}i∈Ip , p = 1, ..., P . We denote by M the number of

online iterations.

To further improve the efficiency of the online method, we can adopt an online adaptive

procedure. In this adaptive approach, we only perform the online enrichment in coarse

neighborhoods that have a cumulative residual that is θ fraction of the total residual. More

precisely, assume that the V (n) norm of local residuals on {ωi|i ∈ Ip}, denoted by {ri|i ∈

Ip}, are arranged so that

rp1 ≥ rp2 ≥ rp3 ≥ · · · ≥ rpJ ,

where we suppose Ip = {p1, p2, p3, · · ·, pJ}. Instead of adding {ϕi|i ∈ Ip} into V m
ms at
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Algorithm 2 Residual based online algorithm

1: Initialization: Offline space V 0
ms = Voff, offline solution u0ms = uH.

2: for m = 0 to M : do
3: for p = 1 to P do
4: (1) On each ωi(i ∈ Ip), compute residual Rm(v) = a(umms, v) − G(v), v ∈
Vh.

5: (2) For each i, solve a(ϕi, v) = Rm(v), ∀v ∈ Vh.
6: (3) Set V m

ms = V m
ms ∪ {ϕi|i ∈ Ip}.

7: (4) Solve for a new umms ∈ V m
ms satisfying a(umms, v) = G(v), ∀v ∈ V m

ms.
8: end for
9: Set V m+1

ms = V m
ms, and um+1

ms = umms.
10: end for

step 6 in Algorithm 2, we only add the basis {ϕ1, · · ·, ϕk} for the corresponding coarse

neighborhoods such that k is the smallest integer satisfying

Σk
i=1r

2
pi
≥ θΣJ

i=1r
2
pi
.

In the examples below, we will see that the proposed adaptive procedure gives a better

convergence and is more efficient.

IV.6 Numerical results. Online step.

We conduct numerical experiments to demonstrate the proposed online method in solv-

ing Equation (IV.1). To implement the space-time online GMsFEM, a fixed number of

offline basis functions need to be constructed in each coarse neighborhood. Then we con-

duct the online process by following Algorithm 2. In this experiment, we use the same

space-time domain and mesh (coarse and fine), the same source term f and initial condi-

tion β(x1, x2), the same definitions of relative errors e1 and e2, as in Section IV.4. The

permeability field κ(x, t) is chosen as the high-contrast permeability field 1 from Section

IV.4.1. The buffer number in the computation of snapshot space is chosen to be 8.
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First, we implement the space-time online GMsFEM by choosing different numbers

of offline basis functions (Li = 1, 2, 3, 4, 5) on every coarse neighborhood. The relative

errors of online solutions are presented in Table IV.5 and Table IV.6. Note that in the first

column, we show the number of basis functions used for each coarse neighborhood ωi

along with the degrees of freedom (DOF) of multiscale space on each coarse time interval

which are the numbers in parentheses, after online enrichment. For example, 2(162) in

the first column means that after online enrichment, 2 multiscale basis are used on each ωi

and the DOF of multiscale space on each coarse time interval is 162. And if we initially

choose Li = 1, then it means 1 online iteration is performed, which add 1 online basis to

each ωi. If Li = 2 initially, then it means we do not perform any online iteration and 2

multiscale basis are offline basis functions. By observing each column, one can see that

the errors decay fast with more online iterations being performed. This is observed for

both e1 and e2 when Li ≥ 4. This suggests that in this specific setting, we can get a fast

online convergence with 4 offline basis chosen on each ωi. After a small number of online

iterations, the relative errors decrease to a significantly small level. We consider reducing

the high contrast of the permeability field κ(x, t) from 106 to 100. Then we look at the

relative errors of online multiscale solutions (see Table IV.7 and Table IV.8). The same

phenomena can be observed except that the fast online convergence rate can be achieved

for any choice of Li. This implies that the number of offline basis functions used to

guarantee a fast online convergence rate is related to the high contrast of the permeability

field.

Next, we perform online adaptive basis construction procedure with θ = 0.7. The

numerical results for using 3, 4, and 5 offline basis per coarse neighborhood are shown in

Table IV.9. Notice that ”M1 +M2” in the DOF columns means M1 degrees of freedom

are used on the first coarse time interval and M2 degrees of freedom on the second coarse

time interval. To compare the behaviors of online processes with and without adaptivity,
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DOF e1(Li = 1) e1(Li = 2) e1(Li = 3) e1(Li = 4) e1(Li = 5)
1(81) 97.57% - - - -

2(162) 93.20% 96.71% - - -
3(243) 44.24% 23.22% 21.27% - -
4(324) 15.37% 6.53% 7.17e-1% 10.20% -
5(405) 8.65% 3.69% 2.06e-1% 2.58e-1% 5.20%
6(486) 5.15% 1.71% 5.41e-2% 1.75e-2% 1.06e-1%
7(567) 2.58% 3.11e-1% 5.54e-3% 6.12e-4% 2.99e-3%

Table IV.5: Relative online errors e1, with the different numbers of offline basis functions.
High contrast = 106.

DOF e2(Li = 1) e2(Li = 2) e2(Li = 3) e2(Li = 4) e2(Li = 5)
1(81) 138% - - - -

2(162) 113% 114% - - -
3(243) 84.93% 139% 104% - -
4(324) 82.48% 82.08% 11.43% 73.50% -
5(405) 69.15% 51.13% 3.29% 4.78% 48.26%
6(486) 51.17% 34.00% 1.01% 3.53e-1% 1.86%
7(567) 37.93% 7.81% 1.05e-1% 9.89e-3% 4.75e-2%

Table IV.6: Relative online errors e2, with the different numbers of offline basis functions.
High contrast = 106.

we plot out the log values of e2 against DOFs. See Figure IV.5. We observe that to achieve

a certain error, fewer online basis functions are needed with adaptivity. This indicates that

the proposed adaptive procedure gives us better convergence and is more efficient.
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DOF e1(1 basis) e1(2 basis) e1(3 basis) e1(4 basis) e1(5 basis)
1(81) 19.28% - - - -

2(162) 1.97% 13.03% - - -
3(243) 2.81e-1% 9.81e-1% 9.27% - -
4(324) 3.48e-2% 1.24e-1% 2.23e-1% 8.34% -
5(405) 1.89e-3% 1.11e-2% 9.70e-2% 2.09e-1% 7.38%
6(486) 2.67e-5% 1.33e-4% 2.07e-4% 8.71e-3% 1.56e-1%
7(567) 2.51e-7% 9.32e-7% 1.45e-6% 1.16e-4% 8.62e-3%

Table IV.7: Relative online errors e1, with the different numbers of offline basis functions.
High contrast = 100.

DOF e2(1 basis) e2(2 basis) e2(3 basis) e2(4 basis) e2(5 basis)
1(81) 219% - - - -

2(162) 14.75% 123% - - -
3(243) 3.35% 8.37% 81.80% - -
4(324) 4.03e-1% 1.11% 2.63% 67.86% -
5(405) 2.11e-2% 1.01e-1% 1.68e-1% 2.29% 59.93%
6(486) 5.61e-4% 1.64e-3% 3.71e-3% 1.35e-1% 1.77%
7(567) 4.57e-6% 1.72e-5% 2.29e-5% 2.08e-3% 1.41e-1%

Table IV.8: Relative online errors e2 with the different numbers of offline basis functions.
High contrast = 100.

3 offline basis 4 offline basis 5 offline basis
DOF e2 DOF e2 DOF e2

243+243 104% 324+324 73.50% 405+405 48.26%
323+322 10.57% 399+401 3.56% 471+473 1.95%
403+392 1.49% 468+466 2.13e-1% 533+536 1.21e-1%
480+465 9.81e-2% 541+529 1.03e-2% 599+603 6.81e-3%
552+533 4.24e-3% 611+601 5.00e-4% 670+669 3.41e-4%

Table IV.9: Relative online adaptive errors e2 with different numbers of offline basis func-
tions.
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Figure IV.5: Adaptivity v.s. no adaptivity.
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V. SPACE-TIME GMSDGM

This section is a continuing exploration in space-time multiscale method for solving

parabolic equations. The main objective is to develop a multiscale model reduction frame-

work within Generalized Multiscale Discontinuous Galerkin Method (GMsDGM) that us-

es space-time coarse cells. There are several benefits in exploring the space-time multi-

scale methods in the fashion of discontinuous Galerkin, such as small local problems, and

feasible for parallel computing. We organize the sections as following. In Section V.1,

we present the underlying model problem and the space-time GMsDGM formulations. In

Section V.2, we construct the multiscale basis by introducing the snapshot and spectral

problems. In Section V.3, we present representative numerical examples. In Section V.4,

we demonstrate the convergence analysis for our proposed method.

V.1 Model problem

Suppose Ω is a bounded domain in R2 with a Lipschitz boundary ∂Ω, and [0, T ] (T >

0) ia a time interval. We consider the same model problem as presented in Section IV.1,

which is the following parabolic equation

∂

∂t
u− div(κ(x, t)∇u) = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = β(x) in Ω,

(V.1)

where κ(x, t) is a time dependent heterogeneous media, β(x) is the initial condition.

Now we present the general idea of space-time GMsDGM. We will use the space-time

finite element method to solve problem (V.1) on the coarse grid. That is, we find uH ∈ VH
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such that

∫ T

0

∑
K∈Ω

∫
K

∂uH
∂t

v +

∫ T

0

∑
K∈Ω

∫
K

κ∇uH · ∇v

−
∫ T

0

∑
E∈εH

∫
E

({κ∇uH · nE}[[v]] + {κ∇v · nE}[[uH ]]) +
∫ T

0

∑
E∈εH

γ

h

∫
E

κ̄[[uH ]][[v]]

+
N−1∑
n=0

∑
K∈Ω

∫
K

[uH(x, Tn)]v(x, T
+
n ) =

∫ T

0

∑
K∈Ω

∫
K

fv +
∑
K∈Ω

∫
K

β(x)v(x, T+
0 ),

(V.2)

∀v ∈ VH where VH is the multiscale finite element space which will be introduced in

the following subsections, nE is a fixed unit normal vector defined on the coarse edge

E ∈ εH , γ > 0 is a penalty parameter. Note that, in (V.2), the spatial average operator {·}

and spatial jump operator [[·]] are defined in the classical way. The time jump operator [·]

is defined such that
[uH(x, Tn)] = uH(x, T

+
n )− uH(x, T

−
n ) for n ≥ 1,

[uH(x, Tn)] = uH(x, T
+
0 ) for n = 0.

The computational cost for solving the equation (V.2) is huge since we need to compute

the solution uH in the whole time interval (0, T ) at one time. To fix this issue, we assume

the solution space VH can be decomposed into a direct sum of subspaces and each subspace

only contains functions defined on one single coarse time interval (Tn−1, Tn), that is,

VH = ⊕N
n=1V

(n)
H ,

where V (n)
H is defined as

V
(n)
H = {v(x, t)|v(·, t) = 0 for t ∈ (0, T )\(Tn−1, Tn)}.
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Then the coarse problem (V.2) can be decomposed into a sequence of sub-problems: find

u
(n)
H ∈ V

(n)
H such that

∫ Tn

Tn−1

∑
K∈Ω

∫
K

∂u
(n)
H

∂t
v +

∫ Tn

Tn−1

∑
K∈Ω

∫
K

κ∇u(n)H · ∇v

−
∫ Tn

Tn−1

∑
E∈εH

∫
E

(
{κ∇u(n)H · nE}[[v]] + {κ∇v · nE}[[u(n)H ]]

)
+

∫ Tn

Tn−1

∑
E∈εH

γ

h

∫
E

κ̄[[u
(n)
H ]][[v]]

+
∑
K∈Ω

∫
K

u
(n)
H (x, T+

n−1)v(x, T
+
n−1) =

∫ Tn

Tn−1

∑
K∈Ω

∫
K

fv +
∑
K∈Ω

∫
K

g
(n)
H (x)v(x, T+

n−1),

(V.3)

∀v ∈ V
(n)
H , where

g
(n)
H (·) =


u
(n−1)
H (·, T−

n−1) for n ≥ 1,

β(·) for n = 0.

Then, the solution uH of the problem (V.2) is the direct sum of all these u(n)H ’s, that is

uH = ⊕N
n=1u

(n)
H .

V.2 Construction of multiscale basis functions

V.2.1 Snapshot space

We will use the techniques of oversampling and randomization in the construction of

snapshot spaces. Firstly, we describe the notations for oversampled regions. We denote by

K+ the oversampled space region of K ⊂ K+, defined by adding several fine-grid layers

around K. Time interval (T ∗
n−1, Tn) is defined as the left-side oversampled time region

for (Tn−1, Tn). We will construct inexpensive snapshots by imposing random boundary

conditions on the local region K+ × (T ∗
n−1, Tn). In particular, one solves the following
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local problems:

∂

∂t
ψ+
j − div(κ(x, t)∇ψ+

j ) = 0 in K+ × (T ∗
n−1, Tn),

ψ+
j (x, t) = rl on ∂

(
K+ × (T ∗

n−1, Tn)
)
,

where rl is a random vector.

Then the local snapshot space on K+ × (T ∗
n−1, Tn) is

V K+

snap = span{ψ+
j (x, t)|j = 1, · · ·, LK + pKbf},

where LK and pKbf are the number of local offline basis in K and the buffer number, re-

spectively.

V.2.2 Offline space

Now, we are going to construct the offline basis functions. This is done by per-

forming a space reduction in each local space-time snapshot space through some well-

defined spectral problems. In particular, we propose the following eigenvalue problem on

K+ × (Tn−1, Tn):

Find (ϕ, λ) ∈ V K+

snap × R such that

An(ϕ, v) = λSn(ϕ, v), ∀v ∈ V K+

snap , (V.4)

where the bilinear operators An(ϕ, v) and Sn(ϕ, v) are defined by

An(ϕ, v) =

∫ Tn

Tn−1

∫
K+

κ(x, t)∇ϕ · ∇v +H

∫ Tn

Tn−1

∫
∂K+

κ(x, t)(∇ϕ · n⃗)(∇v · n⃗),

Sn(ϕ, v) =

∫ Tn

Tn−1

∫
∂K+

κ(x, t)ϕv +

∫
K+

ϕ(x, Tn−1)v(x, Tn−1),

(V.5)
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where H is the size of coarse elements.

The eigenvalues {λK+

j |j = 1, 2, · · ·LK +pKbf} from (V.4) are arranged in the ascending

order, and we select the first LK eigenfunctions, which are associated with the first LK or-

dered eigenvalues, and denote them by {ΨK+,off
1 , · · ·,ΨK+,off

LK }. Using these eigenfunctions,

we can define

ϕK+

j (x, t) =

LK+pKbf∑
k=1

(ΨK+,off
j )kψ

+
k (x, t), j = 1, 2, · · ·, LK ,

where (ΨK+,off
j )k denotes the k-th component of ΨK+,off

j , and ψ+
k (x, t) is the snapshot basis

function computed on K+× (T ∗
n−1, Tn) as in the previous section. Then we can obtain the

offline basis functions ϕK
j (x, t) on the target regionK×(Tn−1, Tn) by restricting ϕK+

j (x, t)

onto K × (Tn−1, Tn).

The local offline space on K × (Tn−1, Tn) can be defined as

V K
off = span{ϕK

j (x, t)|j = 1, · · ·, LK}.

Note that one can take V (n)
H in (V.3) as V (n)

H = V
(n)

off = span{ϕKi
j (x, t)|1 ≤ i ≤ Nc, 1 ≤

j ≤ Li}. As a result, VH = Voff = ⊕N
n=1V

(n)
H .

V.3 Numerical result

We take the space domain Ω to be the unit square [0, 1]× [0, 1] and divide it into 8× 8

uniform coarse square blocks. Each coarse block is then divided into 10× 10 uniform fine

square blocks. That is, Ω is partitioned by 80 × 80 square fine-grid blocks. The whole

time interval is [0, 2] (i.e., T = 2) and is divided into two uniform coarse time intervals

and each coarse time interval is then divided into 10 fine time intervals. The source term

is chosen as f = 1 and a continuous initial condition β(x1, x2) = sin(πx1) sin(πx2) is

imposed.
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We first solve for the FEM solution uh, then solve for the multiscale solution uH us-

ing the space-time GMsDGM. To compare the accuracy, we will use the following error

quantities:

e1 =

(∫ T

0
∥uH(t)− uh(t)∥2L2(Ω)∫ T

0
∥uh(t)∥2L2(Ω)

)1/2

, e2 =

(∫ T

0

∫
Ω
κ|∇(uH(t)− uh(t))|2∫ T

0

∫
Ω
κ|∇uh(t)|2

)1/2

.

(V.6)

Since we are using the technique of randomized oversampling in the computation of

the snapshot space, we would like to introduce the concept of snapshot ratio, which is

defined as the ratio of the number of chosen randomized snapshots over the number of

the full snapshots on one coarse block K. In the following experiment with 80× 80 fine-

grid mesh, this number of the full snapshots on each coarse neighborhood is calculated by

nsnap
total = 11× 11 + 40× 10 = 521.

V.3.1 High-contrast medium translated in time

We construct a time dependent high-contrast permeability field κ(x, t) by uniformly

translating the permeability field after every other fine time step. High-contrast permeabil-

ity fields at the initial is shown in Figure V.1. The number of local offline basis that will be

used in each Ki, denoted by Li, and the buffer number pbf is fixed to be 30. Relative errors

of multiscale solutions are shown in Table V.1. We observe that as adding more offline

basis, the relative errors decay. However, we note that the error decay is becoming slow

eventually, which is quite similar to what we have observed in Section IV.4. We emphasize

that we are dealing with space-time problems, which have large degrees of freedom. Tak-

ing this experiment as an example, at each fixed time, there are 81× 81 = 6561 fine-scale

degrees of freedom, which results in 65610 degrees of freedom in each coarse time inter-

val. But due to our space-time GMsDGM approach, we only use 3200 degrees of freedom

in each coarse time interval to obtain a relative energy error of 19.44%, which is a great
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Figure V.1: Initial high-contrast permeability field 1.

Li dim(Voff) Snapshot ratio e1 e2
2 128 0.0997 47.84% 97.42%
6 384 0.1121 18.85% 84.20%

10 640 0.1246 9.57% 63.55%
20 1280 0.1558 4.56% 40.30%
30 1920 0.1869 3.02% 28.98%
40 2560 0.2181 2.03% 22.89%
50 3200 0.2492 1.64% 19.44%

Table V.1: Permeability field 1: relative errors using different Li’s.

saving and exhibit the effect of model reduction.

To see a more quantitative relationship between the relative errors and the values of Li

as well as being inspired by the result in Theorem V.4.2, we inspect the values of 1/Λ∗

and the corresponding squared errors (see Table V.2, where Λ∗ = minKi
λKi
Li+1 and {λKi

j }

are the eigenvalues associated with the eigenbasis computed by spectral problem (V.4) in

each Ki. We calculate for the correlation coefficient to be

corrcoef(1/Λ∗, e
2
2) = 0.9617.

This indicates that 1/Λ∗’s are correlated to e22’s.
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Li 1/Λ∗ e22
2 0.2653e-4 0.9491
6 0.1483e-4 0.7089

10 0.1172e-4 0.4038
20 0.0881e-4 0.1624
30 0.0674e-4 0.0840
40 0.0527e-4 0.0524
50 0.0456e-4 0.0378

Table V.2: Permeability field 1: 1/Λ∗ values and errors.

V.3.2 Four channels translated in time

In this subsection, we consider a more structured high-contrast permeability field κ(x, t),

which has four channels inside and these four channels are translated uniformly in time.

High-contrast permeability fields at the initial time steps is shown in Figure V.2. We re-

peat our steps from the previous example by fixing Li and pbf, separately. The results are

shown in Table V.3. One can still observe that when fixing the buffer number, the errors

decay as more offline basis are being used. Using a similar approach, we can also get the

cross-correlation coefficient between e22 and 1/Λ∗, which is

corrcoef(1/Λ∗, e
2
2) = 0.9672.

This suggests a linear relationship between e22 and 1/Λ∗.

V.3.3 Four channels rotated in time

In the third example, we consider another structured high-contrast permeability field

κ(x, t) which has four channels inside and these four channels are rotated anticlockwise

around the center by 18 degrees after each fine time step. High contrast permeability fields

at the initial time step is shown in Figure V.3. We repeat the same procedures as in the
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Figure V.2: Initial high-contrast permeability field 2.

Li dim(Voff) Snapshot ratio e1 e2
2 128 0.0997 23.52% 96.83%
6 384 0.1121 16.89% 80.17%

10 640 0.1246 11.25% 71.53%
20 1280 0.1558 5.57% 46.96%
30 1920 0.1869 2.43% 31.62%
40 2560 0.2181 1.70% 22.03%
50 3200 0.2492 1.31% 18.07%

Table V.3: Permeability field 2: relative errors using different Li’s.

previous two examples. The results are shown in Table V.4 and one can draw similar

conclusions as before. The cross-correlation coefficient between e22 and 1/Λ∗ is calculated

as 0.9937.
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Figure V.3: Initial high-contrast permeability field 3.

Li dim(Voff) Snapshot ratio e1 e2
2 128 0.0997 26.86% 99.32%
6 384 0.1121 17.64% 79.92%

10 640 0.1246 12.71% 68.59%
20 1280 0.1558 6.53% 48.32%
30 1920 0.1869 4.63% 36.64%
40 2560 0.2181 3.74% 30.77%
50 3200 0.2492 2.74% 24.87%

Table V.4: Permeability field 3: relative errors using different Li’s.

V.4 Convergence analysis

In this section, we will analyze the convergence of our proposed method. To start, we

firstly define two norms ∥ · ∥2
V (n) and ∥ · ∥2

W (n) on each V (n)
H by

∥u∥2V (n) =

∫ Tn

Tn−1

adg(u, u) +
1

2

∑
K∈Ω

∫
K

u2(x, T−
n ) +

1

2

∑
K∈Ω

∫
K

u2(x, T+
n−1),

∥u∥2W (n) = ∥u∥2V (n) +

∫ Tn

Tn−1

∥ut(x, t)∥2H−1
dg (κ,Ω)

,
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where the bilinear form adg(·, ·) is defined as

adg(u, v) =
∑
K∈Ω

∫
K

κ∇u · ∇v −
∑
E∈εH

∫
E

({κ∇u · nE}[[v]] + {κ∇v · nE}[[u]])

+
∑
E∈εH

γ

h

∫
E

κ̄[[u]][[v]],

∥ut(·, t)∥H−1
dg (κ,Ω) is defined as

∥u∥H−1
dg (κ,Ω) = sup

v|K∈H1
0 (K)∀K∈Ω

∑
K∈Ω

∫
K
uv

(adg(v, v))
1
2

.

In the following, we will show the V (n)-norm of the error uh − uH can be bounded

by the W (n)-norm of the difference uh − w for any w ∈ V
(n)
H , where uh is the solution

by solving Eqn.(V.3) using all fine-scale basis (uh is a proxy of the exact solution), uH is

the solution by solving Eqn.(V.3) using space-time multiscale basis constructed in Section

V.2, and V (n)
H is the multiscale space defined in in Section V.2.

Lemma V.4.1. Both the coarse scale problem (V.3) and the fine scale problem associated

with (V.3) have a unique solution. Moreover, if uh is the fine-scale solution by solving

Eqn.(V.3) using all fine-scale basis (a proxy of the exact solution), uH be the coarse scale

solution by solving Eqn.(V.3) using space-time multiscale basis constructed in Section V.2.

We have the following estimate

∥uh − uH∥2V (n) ≤


C∥uh − w∥2

W (n) for n = 1,

C(∥uh − w∥2
W (n) + ∥uh − uH∥2V (n−1)) for n > 1,
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for any w ∈ V
(n)
H . If we define the V (0)-norm to be 0, then we can write

∥uh − uH∥2V (n) ≤ C(∥uh − w∥2W (n) + ∥uh − uH∥2V (n−1)) for n ≥ 1,

for any w ∈ V
(n)
H .

Proof. We will prove the existence of a unique solution for the coarse scale system (V.3).

The proof for the fine scale system is similar. To simplify notations, we define

a(uH , v) =

∫ Tn

Tn−1

∑
K∈Ω

∫
K

∂uH
∂t

v +

∫ Tn

Tn−1

adg(uH , v) +
∑
K∈Ω

∫
K
uH(x, T+

n−1)v(x, T
+
n−1)

and

FH(v) =

∫ Tn

Tn−1

∑
K∈Ω

∫
K

fv +
∑
K∈Ω

∫
K

g
(n)
H (x)v(x, T+

n−1).

Using integration by parts for the time variable, it is easy to see that a(uH , uH) =

∥uH∥2V (n) .

Moreover, we have

a(uH , v) ≤ ∥uH∥W (n) ∥v∥V (n) . (V.7)

For uH ∈ V
(n)
H , we denote uH =

∑
Ki
ui, then ui solves the following local problem

∫
Ki

∂ui
∂t

v −
∫
Ki

div(κ∇ui)v = 0, ∀v ∈ H1
0 (Ki).

Using integration by parts, we have

∫
Ki

∂ui
∂t

v =

∫
∂Ki

κ(∇ui · n⃗)v −
∫
Ki

κ∇ui · ∇v

≤
(
H

∫
∂Ki

κ|∇ui · n⃗|2
) 1

2
(

1

H

∫
∂Ki

κv2
) 1

2

+

(∫
Ki

κ|∇ui|2
) 1

2
(∫

Ki

κ|∇v|2
) 1

2

≤
(
H

∫
∂Ki

κ|∇ui · n⃗|2
) 1

2
(∫

Ki

κ|∇v|2
) 1

2

+

(∫
Ki

κ|∇ui|2
) 1

2
(∫

Ki

κ|∇v|2
) 1

2

,

(V.8)

85



where on the last step we use trace theorem.

Combining the temporal integration and using integration by parts for the temporal

variable, we get

∫ Tn

Tn−1

∫
Ki

∂ui
∂t

v

≤
∫ Tn

Tn−1

(
H

∫
∂Ki

κ|∇ui · n⃗|2
) 1

2
(∫

Ki

κ|∇v|2
) 1

2

+

∫ Tn

Tn−1

(∫
Ki

κ|∇ui|2
) 1

2
(∫

Ki

κ|∇v|2
) 1

2

≤

(H ∫ Tn

Tn−1

∫
∂Ki

κ|∇ui · n⃗|2
) 1

2

+

(∫ Tn

Tn−1

∫
Ki

κ|∇ui|2
) 1

2

(∫ Tn

Tn−1

∫
Ki

κ|∇v|2
) 1

2

≤
√
2

(
H

∫ Tn

Tn−1

∫
∂Ki

κ|∇ui · n⃗|2 +
∫ Tn

Tn−1

∫
Ki

κ|∇ui|2
) 1

2
(∫ Tn

Tn−1

∫
Ki

κ|∇v|2
) 1

2

.

Using the eigenvalue problem (V.4), we have

∫ Tn

Tn−1

∫
Ki

∂ui
∂t

v ≤
√

2λi

(∫ Tn

Tn−1

∫
∂Ki

κu2i +

∫
Ki

ui(T
+
n−1)

2

) 1
2
(∫ Tn

Tn−1

∫
Ki

κ|∇v|2
) 1

2

≤
√

2λi

(
H

∫ Tn

Tn−1

∫
Ki

κ|∇ui|2 +
∫
Ki

ui(T
+
n−1)

2

) 1
2
(∫ Tn

Tn−1

∫
Ki

κ|∇v|2
) 1

2

≤
√

2λi

√H

(∫ Tn

Tn−1

∫
Ki

κ|∇ui|2
) 1

2

+
√
2

(
1

2

∫
Ki

ui(T
+
n−1)

2

) 1
2

(∫ Tn

Tn−1

∫
Ki

κ|∇v|2
) 1

2

.

(V.9)

This immediately leads to

∫ Tn

Tn−1

∑
i

∫
Ki

∂ui
∂t

v

≤C0

√
Λ

√H

(∫ Tn

Tn−1

∑
i

∫
Ki

κ|∇ui|2
) 1

2

+
√
2

(
1

2

∑
i

∫
Ki

ui(T
+
n−1)

2

) 1
2


(∫ Tn

Tn−1

∑
i

∫
Ki

κ|∇v|2
) 1

2

≤C0

√
Λ(

√
H +

√
2)∥uH∥V (n)∥v∥V (n)

(V.10)
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for some constant C0, where Λ = maxi λi.

Recall the definition of ∥ut(·, t)∥H−1
dg (κ,Ω), by using (V.10) we obtain

∫ Tn

Tn−1

∥∂uH
∂t

(·, t)∥2
H−1

dg (κ,Ω)
= sup

v|K∈H1
0 (K)∀K∈Ω

∫ Tn

Tn−1

(
∑

i

∫
Ki

∂ui
∂t v)

2

adg(v, v)

≤C1Λ(H + 2)∥uH∥2
V (n) ,

(V.11)

for some constant C1. Thus we have ∥uH∥W (n) ≤
√

1 + C1Λ(H + 2)∥uH∥V (n) .

Recall (V.7), we get

a(uH , v) ≤
√

1 + C1Λ(H + 2)∥uH∥V (n) ∥v∥V (n) .

In addition,

FH(v) ≤ C
(
∥f∥L2((Tn−1,Tn);Ω) + ∥g(n)H ∥V (n)

)
∥v∥V (n) .

Hence, by Lax-Milgram theory, the problem (V.3) has a unique solution.

Next, we prove the error bound. By the definition of ∥ · ∥V (n) ,

∥uh − uH∥2
V (n)

=
1

2

∫
Ω
(uh − uH)2|t=T−

n
+

1

2

∫
Ω
(uh − uH)2|t=T+

n−1
+

∫ Tn

Tn−1

adg(uh − uH , uh − uH)

=

∫ Tn

Tn−1

∫
Ω

∂(uh − uH)

∂t
(uh − uH) +

∫
Ω
(uh − uH)2|t=T+

n−1

+

∫ Tn

Tn−1

adg(uh − uH , uh − uH)

=

∫ Tn

Tn−1

∫
Ω

∂(uh − uH)

∂t
(uh − w) +

∫
Ω
(uh − uH)(uh − w)|t=T+

n−1

+

∫ Tn

Tn−1

adg(uh − uH , uh − w) +

∫ Tn

Tn−1

∫
Ω

∂(uh − uH)

∂t
(w − uH)

+

∫
Ω
(uh − uH)(w − uH)|t=T+

n−1
+

∫ Tn

Tn−1

adg(uh − uH , w − uH).

(V.12)
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From (V.3) and the similar formulation for fine scale solution uh, we have

∫ Tn

Tn−1

∫
Ω

∂(uh − uH)

∂t
v +

∫ Tn

Tn−1

adg(uh − uH , v) +

∫
Ω
(uh − uH)v|t=T+

n−1

=

∫
Ω

(
g
(n)
h − g

(n)
H

)
v(x, T+

n−1), ∀v ∈ V
(n)
H . (V.13)

Therefore, taking v = w − uH and combining the equation (V.12) and (V.13), we obtain

∥uh − uH∥2
V (n) =

∫ Tn

Tn−1

∫
Ω

∂(uh − uH)

∂t
(uh − w) +

∫
Ω
(uh − uH)(uh − w)|t=T+

n−1

+

∫ Tn

Tn−1

adg(uh − uH , uh − w) +

∫
Ω

(
g
(n)
h − g

(n)
H

)
(w − uH)|t=T+

n−1
.

Using integration by parts, we have

∫ Tn

Tn−1

∫
Ω

∂(uh − uH)

∂t
(uh − w) +

∫
Ω
(uh − uH)(uh − w)|t=T+

n−1

=−
∫ Tn

Tn−1

∫
Ω

∂(uh − w)

∂t
(uh − uH) +

∫
Ω
(uh − uH)(uh − w)|t=T−

n
.

Thus,

∥uh − uH∥2
V (n) =−

∫ Tn

Tn−1

∫
Ω

∂(uh − w)

∂t
(uh − uH) +

∫
Ω
(uh − uH)(uh − w)|t=T−

n

+

∫ Tn

Tn−1

adg(uh − uH , uh − w) +

∫
Ω

(
g
(n)
h − g

(n)
H

)
(uh − uH)|t=T+

n−1

+

∫
Ω

(
g
(n)
h − g

(n)
H

)
(w − uh)|t=T+

n−1

≤

(∫ Tn

Tn−1

|
∫
Ω

∂(uh−w)
∂t (uh − uH)|2

adg(uh − uH , uh − uH)

) 1
2
(∫ Tn

Tn−1

adg(uh − uH , uh − uH)

) 1
2

+ ∥(uh − uH)(·, T−
n )∥L2(Ω)∥(uh − w)(·, T−

n )∥L2(Ω)

+ ∥uh − w∥L2((Tn−1,Tn);κ)∥uh − uH∥L2((Tn−1,Tn);κ)

+ ∥g(n)h − g
(n)
H ∥L2(Ω)(∥(uh − uH)(·, T+

n−1)∥L2(Ω)

+ ∥(uh − w)(·, T+
n−1)∥L2(Ω)).
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Using Young’s inequality, we have

∥uh − uH∥2
V (n) ≤

1

2
∥uh − uH∥2

V (n) + 2
(
C∥uh − w∥2

W (n) + ∥g(n)h − g
(n)
H ∥2L2(Ω)

)
.

and

∥g(n)h − g
(n)
H ∥2L2(Ω) =


0 for n = 1

∥u(n−1)
h (·, T−

n−1)− u
(n−1)
H (·, T−

n−1)∥2L2(Ω) for n > 1

≤


0 for n = 1

∥uh − uH∥2
V (n−1) for n > 1

.

The main convergence result is presented in the following theorem.

Theorem V.4.2. Let uh be the solution by solving Eqn.(V.3) using all fine-scale basis (a

proxy of the exact solution), uH be the solution by solving Eqn.(V.3) using space-time

multiscale basis constructed in Section V.2. Let ũh = argmin
v∈V (n)

snap
{∥uh−v∥W (n)} and we

denote ũh =
∑

i ũh,i with ũh,i =
∑

j ci,jψ
Ki
j . There holds

∥uh − uH∥2V (n) ≼C
∑
i

((
(

1

hλKi
Li+1

+ 1)
4

3λKi
Li+1 − 1

+H
)
∥κ∇ũh · n∥2L2(∂Ki)

)

+ ∥uh − ũh∥2W (n) + ∥uh − uH∥2V (n−1) .

Proof. By Lemma V.4.1,

∥uh − uH∥2V (n) ≼ inf
w∈V (n)

H

∥uh − w∥2W (n) + ∥uh − uH∥2V (n−1) . (V.14)
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Therefore, we need to estimate inf
w∈V (n)

H
∥uh−w∥2W (n) .Note ũh =

∑
i ũh,i =

∑
i

∑
j ci,jψ

Ki
j .

Using this expression, we can define a projection of ũh into V (n)
H by

P (ũh) =
∑
i

∑
j≤Li

ci,jψ
Ki
j .

Then

inf
w∈V (n)

H

∥uh − w∥2W (n) ≤ ∥uh − P (ũh)∥2W (n)

≤ ∥uh − ũh∥2W (n) + ∥ũh − P (ũh)∥2W (n) . (V.15)

We will estimate ∥ũh − P (ũh)∥2W (n) .

By the definition of ∥ · ∥W (n) , we can obtain

∥ũh − P (ũh)∥2W (n)

≤∥
∑
i

(ũh,i − P (ũh,i))∥2V (n) +

(∫ Tn

Tn−1

∑
i |
∫
Ki

∂(ũh−P (ũh))
∂t

(uh − uH)|2

adg(uh − uH , uh − uH)

)
,

where ũh,i =
∑

j ci,jψ
Ki
j and P (ũh,i) =

∑
j≤Li

ci,jψ
Ki
j . Let ei = ũh,i − P (ũh,i), then

ũh − P (ũh) =
∑

i ei. Thus,

∥ũh − P (ũh)∥2W (n) ≤ ∥
∑
i

ei∥2V (n) +

(∫ Tn

Tn−1

∑
i |
∫
Ki

∂ei
∂t
(uh − uH)|2

adg(uh − uH , uh − uH)

)
. (V.16)

In the following, we will estimate the two terms on the right hand side of (V.16), separately.

Then the proof is done.

Since ∂
∂t
ei −∇ · κ∇ei = 0 in Ki × (Tn−1, Tn), it deduces

∫ Tn

Tn−1

∫
Ki

(
∂

∂t
ei)ei +

∫ Tn

Tn−1

∫
Ki

κ|∇ei|2 =
∫ Tn

Tn−1

∫
∂Ki

κ∇ei · nei,

90



which implies

∫ Tn

Tn−1

∫
Ki

κ|∇ei|2 =
∫ Tn

Tn−1

∫
∂Ki

κ∇ei · nei +
1

2

∫
Ki

e2i (x, T
+
n−1)−

1

2

∫
Ki

e2i (x, T
−
n ).

Therefore,

∫ Tn

Tn−1

∫
Ki

κ|∇ei|2 +
1

2

∫
Ki

e2i (x, T
+
n−1) +

1

2

∫
Ki

e2i (x, T
−
n )

=

∫ Tn

Tn−1

∫
∂Ki

κ∇ũh · nei +
∫
Ki

e2i (x, T
+
n−1)

≤ 1

λKi
Li+1

∥κ
1
2∇ũh · n∥2L2(∂Ki)

+
λKi
Li+1

4
∥κ

1
2 ei∥2L2(∂Ki)

+

∫
Ki

e2i (x, T
+
n−1)

≤(
3

4
− 1

λKi
Li+1

)−1 1

λKi
Li+1

∥κ
1
2∇ũh · n∥2L2(∂K)

=
4

3λKi
Li+1 − 1

∥κ∇ũh · n∥2L2(∂K).

Now, we estimate the term
1

h

∑
E

∫ Tn

Tn−1

∫
E

κ[[ei]]
2,

which is the following,

1

h

∑
E

∫ Tn

Tn−1

∫
E

κ[[ei]]
2 ≤ C

h

∑
i

∫ Tn

Tn−1

∫
∂Ki

κe2i ≤
∑
i

C

hλKi
Li+1

∫ Tn

Tn−1

∫
Ki

κ|∇ei|2

≤
∑
i

C

hλKi
Li+1

4

3λKi
Li+1 − 1

∥κ∇ũh · n∥2L2(∂K).

We will also need to estimate the term

∫ Tn

Tn−1

∑
i |
∫
Ki

∂ei
∂t
( ̂uh − uH)|2

adg(uh − uH , uh − uH)
,
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where

( ̂uh − uH)|Ki
= (uh − uH)|Ki

− 1

|Ki|

∫
Ki

(uh − uH).

Since ei satisfies the equation

∂

∂t
ei −∇ · (κ∇ei) = 0 in Ki × (Tn−1, Tn),

we have

∫
Ki

∂ei
∂t
w = −

∫
Ki

κ∇ei∇w +

∫
∂Ki

(κ∇ũh · n)w

≤(

∫
Ki

κ|∇ei|2)
1
2 (

∫
Ki

κ|∇w|2)
1
2 + (H

∫
∂Ki

κ(∇ũh · n)2)
1
2 (

1

H

∫
∂Ki

κw2)
1
2 .

Moreover, we have
1

H

∫
∂Ki

w2 ≤ C

∫
Ki

κ|∇w|2

for all w ∈ H1(Ki) with
∫
Ki
w = 0.

Therefore,

∫
Ki

∂ei
∂t

̂(uh − uH) ≤ C
( ∫

Ki

κ|∇ei|2 +H

∫
∂Ki

(κ∇ũh · n)2
) 1

2
( ∫

Ki

κ|∇ ̂(uh − uH)|2
) 1

2 ,

and

∫ Tn

Tn−1

∑
i |
∫
Ki

∂ei
∂t
( ̂uh − uH)|2

adg(uh − uH , uh − uH)
≤ C

( ∫ Tn

Tn−1

∫
Ω

κ|∇ei|2 +
∑
e

H

∫ Tn

Tn−1

∫
E

(κ∇ũh · n)2
)

≤ C
∑
i

(
4

3λKi
Li+1 − 1

+H)∥κ∇ũh · n∥2L2(∂Ki)
.
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VI. CONCLUSION

In this dissertation, the model reduction methods for two types of partial differential

equations, nonlinear equations and parabolic equations, in high-contrast heterogeneous

media are investigated. The work is partially motivated by numerical homogenization,

and proceeds within the framework of GMsFEM which is introduced in Section II.

In Section III, we develop a multiscale model reduction method for nonlinear problems

within GMsFEM. Making use of the nonlinear harmonic extension (p-harmonic extension,

for example), we recast the problem on the boundaries of coarse elements and only use

the degrees of freedom defined on the boundaries. This will reduce the dimensions of the

model compared to other approaches that use basis in the whole domain. In our approach,

we construct the local snapshot space and propose a local nonlinear spectral decompo-

sition, which select dominant modes in these nonlinear snapshot spaces. Via these local

solutions, we can capture the effects of small separable scales. The convergence of the

multiscale solution is studied and we are able to relate the convergence rate to the coarse

cell size and the eigenvalues. We also design a numerical implementation of our proposed

method by applying Broyden’s method to solve the derived optimization problem.

In Section IV and Section V, we study space-time heterogeneous parabolic equations.

We focus on the construction of the space-time methods to solve these equations. We

propose two different approaches within GMsFEM framework and GMsDGM framework,

respectively. The main ingredients of our approaches are (1) the construction of space-time

snapshot vectors, (2) the local spectral decomposition in the snapshot space. To perform

local spectral decomposition, we discuss a couple of choices for local eigenvalue problems

motivated by the analysis. We present convergence analysis of the proposed methods.

In particular, we consider examples where the space-time permeability fields have high
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contrast and these high-conductivity regions move in the space. If only spatial multiscale

basis functions are used, it will require a large dimensional space. Thanks to the space-

time multiscale space, we can approximate the problem with a fewer degrees of freedom.

Our numerical results show that one can obtain accurate solutions. The proposed concepts

can be used for other applications, where one needs space-time multiscale basis functions.

We also discuss online procedures in space-time GMsFEM approach in Section IV,

where new multiscale basis functions are constructed using the residual. These basis func-

tions are computed in each local space-time domain. Using online basis functions adap-

tively, one can reduce the error substantially at a cost of online computations. We will

investigate the convergence rate of the online procedures in our future work.
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