
ON THE FUNDAMENTAL LIMITS AND SYMMETRIC DESIGNS FOR

DISTRIBUTED INFORMATION SYSTEMS

A Dissertation

by

AMIR SALIMI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Shuguang Cui
Co-Chair of Committee, Tie Liu
Committee Members, P. R. Kumar

Catherin Yan
Head of Department, Miroslav M. Begovic

December 2016

Major Subject: Electrical Engineering

Copyright 2016 Amir Salimi



ABSTRACT

Many multi-terminal communication networks, content delivery networks, cache net-

works, and distributed storage systems can be modeled as a broadcast network. An explicit

characterization of the capacity region of the general network coding problem is one of the

best known open problems in network information theory. A simple set of bounds that are

often used in the literature to show that certain rate tuples are infeasible are based on the

graph-theoretic notion of cut. The standard cut-set bounds, however, are known to be

loose in general when there are multiple messages to be communicated in the network.

This dissertation focuses on broadcast networks, for which the standard cut-set bounds are

closely related to union as a specific set operation to combine different simple cuts of the

network. A new set of explicit network coding bounds, which combine different simple

cuts of the network via a variety of set operations (not just the union), are established via

their connections to extremal inequalities for submodular functions. The tightness of these

bounds are demonstrated via applications to combination networks.

The tightness of generalized cut-set bounds has been further explored by studying the

problem of “latency capacity region” for a broadcast chanel. An implicit characterization

of this region has been proved by Tian, where a rate splitting based scheme was shown to

be optimal. However, the explicit characterization of this region was only available when

the number of receivers are less than three. In this dissertation, a precise polyhedral de-

scription of this region for a symmetric broadcast channel with complete message set and

arbitrary number of users has been established. It has been shown that a set of generalized

cut-set bounds, characterizes the entire symmetrical multicast region. The achievability

part is proved by showing that every maximum rate vector is feasible by using a successive

encoding scheme. The framework for achievability strongly relies on polyhedral combi-
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natorics and it can be useful in network information theory problems when a polyhedral

description of a region is needed.

Moreover, It is known that there is a direct relationship between network coding solu-

tion and characterization of entropy region. This dissertation, also studies the symmetric

structures in network coding problems and their relation with symmetrical projections of

entropy region and introduces new aspects of entropy inequalities. First, inequalities re-

lating average joint entropies rather than entropies over individual subsets are studied.

Second, the existence of non-Shannon type inequalities under partial symmetry is studied

using the concepts of Shannon and non-Shannon groups. Finally, due to the relationship

between linear entropic vectors and representability of integer polymatroids, construction

of such vector has been discussed. Specifically, It is shown that representability of the

particularly constructed matroid is a sufficient condition for integer polymatroids to be

linearly representable over real numbers. Furthermore, it has been shown that any real-

valued submodular function (such as Shannon entropy) can be approximated (arbitrarily

close) by an integer polymatroid.
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1. INTRODUCTION∗

Recent developments in the distributed storage systems and the importance of content

delivery in distributed cache networks reemphasize the necessity to design reliable dis-

tributed networks. As the size of data centers increases, theoretical analysis of the robust

and efficient encoding schemes over storage nodes becomes more challenging. In this

dissertation, a systematic framework has been proposed to efficiently compute the funda-

mental limits of such systems, using mathematical tools from combinatorial optimization

and polyhedral combinatorics.

In recent years, there has been a significant interest around developing computation-

ally efficient tools to design and analyze complex information systems. One perspective to

reduce the complexity is to exploit the underlying combinatorial structure in the given sys-

tem. When we are dealing with a structured networks, such as distributed cloud systems,

the combinatorial structure of the underlying graph and distribution of the messages, can

be extremely helpful in developing such efficient tools. This perspective has been explored

in this thesis, where this theory is developed using tools form information theory, network

coding and combinatorial optimization. The second part of the dissertation, focuses on

the projections of entropy region, which has been another well known open problem in

information theory.

1.1 Generalized Cut-Set Bounds: Applications in Distributed Cloud Storage

From a theoretical point of view, many multi-terminal communication networks, such

as distributed storage systems and content delivery/cache networks, can be modeled as

∗Part of this chapter is reprinted, with permission, from [A. Salimi, T. Liu, and S. Cui, “Generalized
cut-set bounds for broadcast networks,” IEEE Transactions on Information Theory, vol. 61, no. 6, pp. 1–14,
Jun. 20155]
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broadcast networks. Nevertheless, characterizing the fundamental limits of communica-

tion for such networks is a well-known open problem. The typical approach in the liter-

ature to show the infeasibility of certain rate of data has been the simple cut-set bound,

which is defined based on the graph theoretic notion of the cut. The standard cut-set

bounds, however, are known to be loose. In this dissertation, this gap has been system-

atically improved via introducing the “generalized cut-set bounds”. Specifically, a new

mathematical notion of “extremal submodular inequality” has been proposed; and new set

of explicit network coding bounds, which combine different simple cuts of the network

via a variety of set operations, were established via their connections to extremal inequal-

ities for submodular functions. Furthermore, the tightness of these proposed bounds were

demonstrated via applications to networks arising from distributed storage systems, known

as combination networks.

1.2 Latency Capacity Region

The capacity region of broadcast channel has been studied in various different settings

[1]. The general broadcast channel with complete message set represents a communication

scenario in which the source node transmits a different message to each distinct subset of

receivers. More specifically, for the general broadcast channel with the source node s and

K receivers {tk : k ∈ [K]}, a complete message set at the source node s consists of 2K−1

independent messages pertaining to each non-empty subset of receivers:

W = {wU : ∅ 6= U ⊆ [K]}
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where the message wU is intended for all sink nodes from {tk : k ∈ U}. Thus, the set of

the messages intended for the sink nodes tk is given by:

Wk = {wU : k ∈ U ⊆ [K]} , ∀k ∈ [K]. (1.1)

With a slight abuse of notation, we shall denote the rate of the message wU by RU (instead

of the more consistent notation RwU ).

In this set up, suppose that the achievability of a rate tuple C := (CU : U ⊆ [K]) in the

2K − 1 dimensional capacity region is given. The fundamental question of interest is that

what are the set of all points that their achievability can be inferred just by knowing the

achievability of the rate tuple C)? The closure of all such achievable rate tuples is referred

to as C-multicast region for a broadcast channel. It is trivial to see that all the rate tuples

that are element-wise marginalized by C, belong to the C-multicast region. For simplicity,

we may drop the term C and we will refer to this region as multicast region.

It has been shown that the multicast region of the broadcast channel with complete mes-

sage set, is independent of the quality of the broadcast channel [2]. Furthermore, it can be

essentially transformed into a network coding problem over a combination network [3]. In

this regard, the capacity region of the associated network coding problem is the multicast

region of a broadcast channel. An implicit characterization of the “symmetrical multi-

cast region” for a broadcast channel has been proved by Tian, where a rate splitting based

scheme was shown to be optimal. However, the explicit characterization of this region was

only available when the number of receivers are less than three. In this paper, we estab-

lish a precise polyhedral description of this region for a symmetric broadcast channel with

complete message set and arbitrary number of users. We show that a set of generalized cut-

set bounds, characterizes the entire symmetrical multicast region. The achievability part

is proved by showing that every maximum rate vector is feasible by using a successive
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encoding scheme. Our framework for achievability strongly relies on polyhedral combi-

natorics and it can be useful in network information theory problems when a polyhedral

description of a region is needed.

1.3 Group-Induced Symmetrical Structures in Distributed Storage Systems

The importance of the characterization of entropy region is due to its direct relation to

the capacity region of general network coding problem. From the theoretical viewpoint,

the problem of characterizing the entropy region, is very challenging due to the existence

of the so-called non-Shannon type inequalities; which essentially means that submodular-

ity of entropy function is not sufficient for understanding the fundamental limits of such

engineering problems. From the practical point of viewpoint, a main challenge for using

entropy region to characterize network coding capacity regions is the huge dimension of

this region. This research was motivated by the observation that for many network coding

coding problems arising from the communication engineering contexts, the structure of

the problem may strongly suggest that instead of considering the entire entropy region,

one may only need to consider the projection of the (Shannon) entropy region. In this

dissertation, it has been shown that that imposing certain symmetric structures to the de-

sign of such systems can alleviate both problems. From practical viewpoint, symmetry is

ubiquitous in real world engineering models, and in fact many current distributed storage

systems, such as Hadoop or Google File System, adopt symmetric architecture in their de-

sign. To make symmetric principles mathematically rigorous, we define symmetry as an

invariance with respect to a permutation group. Under some subgroups of the symmetric

group and cyclic group with certain orders, our results show a significant reduction in the

dimension of the problem. Our results show that under some subgroups of the symmetric

group and cyclic group with certain orders we can significantly reduce the dimension of

the problem. Additionally, the submodularity of entropy function is sufficient to charac-

4



terize the entire capacity region. This result will be helpful to identify alternative flexible

structures for distributed file systems such as Hadoop.
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2. GENERALIZED CUT-SET BOUNDS FOR BROADCAST NETWORKS

2.1 Introduction

A classical network is a capaciated directed acyclic graph ((V,A), (Ca : a ∈ A)),

where V and A are the node and the arc sets of the graph respectively, and Ca is the link

capacity for arc a ∈ A. A broadcast network is a classical work for which all source

messages are collocated at a single source node.

Consider a general broadcast network with one source node s and K sink nodes tk,

k = 1, . . . , K (see Figure 2.1). The source node s has access to a collection of independent

messages WI = (Wi : i ∈ I), where I is a finite index set. The messages intended

for the sink node tk are given by WIk , where Ik is a nonempty subset of I . When all

messages from WI are unicast messages, i.e., each of them is intended for only one of the

sink nodes, it follows from the celebrated max-flow min-cut theorem [4] that routing can

achieve the entire capacity region of the network. On the other hand, when some of the

messages from WI are multicast messages, i.e., they are intended for multiple sink nodes,

the capacity region of the network is generally unknown except when there is only one

multicast message at the source node [5–7] or there are only two sink nodes (K = 2) in

the network [8–10].

In this chapter, we are interested in establishing strong network coding bounds for

general broadcast networks with multiple (multicast) messages and more than two sink

nodes (K ≥ 3). In particular, we are interested in network coding bounds that rely only

on the cut structure of the network. The rational behind this particular interest is two-

folded. First, cut is a well-understood combinatorial structure for networks. Second, the

fact that standard cut-set bounds [1, Ch. 15.10] are tight for the aforementioned special

cases [4–10] suggests that cut as a combinatorial structure can be useful for more general
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broadcast-network coding problems as well.

The starting point of this work is the following simple observation. For each k =

1, . . . , K, let Ak be a “basic” cut that separates the source node s from the (single) sink

node tk. Then, for any nonempty subset U ⊆ [K] := {1, . . . , K} the union ∪k∈UAk is

also a cut that separates the source node s from the “super” sink node tU , whose intended

messages are given by W∪k∈U Ik . By the standard cut-set bound [1, Ch. 15.10], we have

R(∪k∈UIk) ≤ C(∪k∈UAk) (2.1)

for any achievable rate tuple RI := (Ri : i ∈ I). Here, R : 2I → R+ is the rate function

that corresponds to the rate tuple RI and is given by

R(I ′) :=
∑
i∈I′

Ri, ∀I ′ ⊆ I, (2.2)

and C : 2A → R+ is the capacity function of the network where

C(A′) :=
∑
a∈A′

Ca, ∀A′ ⊆ A. (2.3)

Note that the above observation depends critically on the fact that all messages WI are

collocated at the source node s. When the messages are distributed among several source

nodes, it is well known that the union of several basic cuts may no longer be a cut that

separates the super source node from the super sink node and hence may not lead to any

network coding bounds [11].

Based on the above discussion, it is clear that for broadcast networks the standard

cut-set bounds [1, Ch. 15.10] are closely related to union as a specific set operation to

combine different basic cuts of the network. Therefore, a natural question that one may

7
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Figure 2.1: Illustration of a general broadcast network.

ask is whether there are any other set operations (besides the union) that will also lead to

nontrivial network coding bounds.

In this chapter, we provide a positive answer to the above question by establishing a

new set of network coding bounds for general broadcast networks. We term these bounds

generalized cut-set bounds based on the facts that: 1) they rely only on the cut structure

of the network; and 2) the set operations within the rate and the capacity functions are

identical (but not just the union any more), both similar to the case of standard cut-set

bounds as in (2.1). From the proof viewpoint, as we shall see, these bounds are established

via only the Shannon-type inequalities. It is well known that all Shannon-type inequalities

can be derived from the simple fact that Shannon entropy as a set function is submodular

[12, Ch. 14.A]. So, at heart, the generalized cut-set bounds are reflections of several new

results that we establish on submodular function optimization.

The rest of the chapter is organized as follows. In Section 2.2 we establish several new

results on submodular function optimization, which we shall use to prove the generalized

cut-set bounds. A new set of network coding bounds that relate three basic cuts of the

8



network is provided in Section 2.3. The proof of these bounds is rather “hands-on” and

hence provides a good illustration on the essential idea on how to establish the generalized

cut-set bounds. In Section 2.4, a new set of network coding bounds that relate arbitrary

K basic cuts of the network is provided, generalizing the bounds provided in Section 2.3.

In Section 2.5, the tightness of the generalized cut-set bounds is demonstrated via appli-

cations to combination networks [3]. Finally, in Section 3.3 we conclude the chapter with

some remarks.

2.2 Modular and Submodular Functions

Let S be a finite ground set. A function f : 2S → R+ is said to be submodular if

f(S1) + f(S2) ≥ f(S1 ∪ S2) + f(S1 ∩ S2), ∀S1, S2 ⊆ S, (2.4)

and is said to be modular if

f(S1) + f(S2) = f(S1 ∪ S2) + f(S1 ∩ S2), ∀S1, S2 ⊆ S. (2.5)

More generally, let Sk, k = 1, . . . , K, be a subset of S. For any nonempty subset U of

[K] and any r ∈ [|U |], let

S(r)(U) := ∪{U ′⊆U :|U ′|=r} ∩k∈U ′ Sk. (2.6)

Clearly, we have

∪k∈USk = S(1)(U) ⊇ S(2)(U) ⊇ · · · ⊇ S(|U |)(U) = ∩k∈USk (2.7)
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for any nonempty U ⊆ [K] and

S(r)(U ′) ⊆ S(r)(U) (2.8)

for any ∅ ⊂ U ′ ⊆ U ⊆ [K] and any r ∈ [|U ′|]. Furthermore, it is known that [13, Th. 2]

∑
k∈U

f(Sk) ≥
|U |∑
r=1

f(S(r)(U)) (2.9)

if f is a submodular function, and

∑
k∈U

f(Sk) =

|U |∑
r=1

f(S(r)(U)) (2.10)

if f is a modular function.

Note that the standard submodularity (2.9) relates S(r)(U) for different r but a fixed U .

To establish the generalized cut-set bounds, however, we shall need the following technical

results on modular and submodular functions that relate S(r)(U) for not only different r

but also different U .

Lemma 1. Let r′ and J be two integers such that 0 ≤ r′ ≤ J ≤ K. We have

r′∑
r=1

f(Sr) +
J∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) ≥
r′∑
r=1

f(S(r)([J ])) +
J∑

r=r′+1

f(S(r′+1)([r]))

(2.11)

if f is a submodular function, and

r′∑
r=1

f(Sr) +
J∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) =
r′∑
r=1

f(S(r)([J ])) +
J∑

r=r′+1

f(S(r′+1)([r]))

(2.12)

10



if f is a modular function.

Note that when r′ = 0, we have S(r′+1)([r]) = S(1)([r]) = ∪rk=1Sk ⊇ Sr for any

r = 1, . . . , J . In this case, the inequality (2.11) reduces to the trivial equality

J∑
r=1

f(S(1)([r])) =
J∑
r=1

f(S(1)([r])). (2.13)

On the other hand, when r′ = J , the inequality (2.11) reduces to the standard submodu-

larity

J∑
r=1

f(Sr) ≥
J∑
r=1

f(S(r)([J ])). (2.14)

For the general case where 0 < r′ < J , a proof of the lemma is provided in Appendix A.1.

Let S ′k := Sk ∪ S0 for k = 1, . . . , K. For any nonempty U ⊆ [K] and any r =

1, . . . , |U | we have

S ′(r)(U) = ∪{U ′⊆U :|U ′|=r} ∩k∈U ′ S ′k (2.15)

= ∪{U ′⊆U :|U ′|=r} ∩k∈U ′ (Sk ∪ S0) (2.16)

=
(
∪{U ′⊆U :|U ′|=r} ∩k∈U ′ Sk

)
∪ S0 (2.17)

= S(r)(U) ∪ S0. (2.18)

Applying Lemma 1 for S ′k, k = 1, . . . , K, and (2.18), we have the following corollary.

Corollary 2. Let r′ and J be two integers such that 0 ≤ r′ ≤ J ≤ K, and let S0 be a

11



subset of S. We have

r′∑
r=1

f(Sr ∪ S0) +
J∑

r=r′+1

f(Sr ∪ S(r′+1)([r]) ∪ S0)

≥
r′∑
r=1

f(S(r)([J ]) ∪ S0) +
J∑

r=r′+1

f(S(r′+1)([r]) ∪ S0) (2.19)

if f is a submodular function, and

r′∑
r=1

f(Sr ∪ S0) +
J∑

r=r′+1

f(Sr ∪ S(r′+1)([r]) ∪ S0)

=
r′∑
r=1

f(S(r)([J ]) ∪ S0) +
J∑

r=r′+1

f(S(r′+1)([r]) ∪ S0) (2.20)

if f is a modular function.

We shall also need the following lemma, for which a proof is provided in Appendix A.2.

Lemma 3. Let U and T be two nonempty subsets of [K]. Write, without loss of generality,

that T = {t1, . . . , t|T |} where 1 ≤ t1 < t2 < · · · < t|T | ≤ K. Let q and rq be two integers

such that 1 ≤ q ≤ |U |, 1 ≤ rq ≤ |T |, and S(q)(U) ⊆ S(rq)(T ). We have

|T |∑
r=1

f(Str) + rqf(S(q)(U))

≥
rq∑
r=1

(
f(S(r)(T )) + f(Str ∩ S(q)(U))

)
+

|T |∑
r=rq+1

f(Str ∩ (S(q)(U) ∪ S(rq+1)({t1, . . . , tr})))

(2.21)
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if f is a submodular function, and

|T |∑
r=1

f(Str) + rqf(S(q)(U))

=

rq∑
r=1

(
f(S(r)(T )) + f(Str ∩ S(q)(U))

)
+

|T |∑
r=rq+1

f(Str ∩ (S(q)(U) ∪ S(rq+1)({t1, . . . , tr})))

(2.22)

if f is a modular function.

For specific functions, let ZS := (Zi : i ∈ S) be a collection of jointly distributed

random variables, and let H(ZS) be the joint (Shannon) entropy of ZS . Then, it is well

known [12, Ch. 14.A] that HZ : 2S → R+ where

HZ(S ′) := H(ZS′), ∀S ′ ⊆ S (2.23)

is a submodular function. Furthermore, it is straightforward to verify that the rate function

R(·) (for a given rate tuple RI) and the capacity function C(·), defined in (2.2) and (2.3)

respectively, are modular functions.

2.3 Generalized Cut-Set Bounds Relating Three Basic Cuts of the Network

2.3.1 Main Result

Theorem 1. Consider a broadcast network with a collection of independent messages

WI collocated at the source node s and K ≥ 3 sink nodes tk, k = 1, . . . , K. For any

k = 1, . . . , K, let WIk be the intended messages for the sink node tk, and let Ak be a basic

13



cut that separates the source node s from the sink node tk. We have

R(Ii ∪ Ij ∪ Ik) +R(Ii ∩ Ij) ≤ C(Ai ∪ Aj ∪ Ak) + C(Ai ∩ Aj), (2.24)

R(Ii ∪ Ij ∪ Ik) +R((Ii ∩ Ij) ∪ (Ii ∩ Ik) ∪ (Ij ∩ Ik))

≤ C(Ai ∪ Ai ∪ Ak) + C((Ai ∩ Aj) ∪ (Ai ∩ Ak) ∪ (Aj ∩ Ak)),

(2.25)

R(Ii ∪ Ij ∪ Ik) +R(Ii ∪ Ij) +R(Ii ∩ Ij ∩ Ik)

≤ C(Ai ∪ Aj ∪ Ak) + C(Ai ∪ Aj) + C(Ai ∩ Aj ∩ Ak),

(2.26)

and 2R(Ii ∪ Ij ∪ Ik) +R(Ii ∩ Ij ∩ Ik) ≤ 2C(Ai ∪ Aj ∪ Ak) + C(Ai ∩ Aj ∩ Ak)

(2.27)

for any achievable rate tuple RI and any three distinct integers i, j, and k from [K].

Note that the left-hand sides of the generalized cut-set bounds (2.24)–(2.27) are weighted

sum rates with integer weights on the rates of the messages from WIi∪Ij∪Ik . Figure 2.2 il-

lustrates the weight distributions for the generalized cut-set bounds (2.24)–(2.27).

2.3.2 Proof of Theorem 1

Let (n, {Xa : a ∈ A}) be an admissible code with block length n, where Xa is the

message transmitted over the arc a. By the independence bound [1, Th 2.6.6] and the

link-capacity constraints, we have

HX(A′) ≤
∑
a∈A′

H(Xa) ≤ n
∑
a∈A′

Ca = nC(A′), ∀A′ ⊆ A. (2.28)

For notational simplicity, in this proof we shall assume perfect recovery of the messages at

each of the sink nodes. It should be clear from the proof that by applying the well-known

14
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a) Generalized cut set bound (24) b) Generalized cut set bound (25)

c) Generalized cut set bound (26) d) Generalized cut set bound (27)

Figure 2.2: The weight distributions for the generalized cut-set bounds (2.24)–(2.27).
Here, each circle represents the set of the messages intended for a particular sink node.
The number within each separate area indicates the weight for the rates of the messages
represented by the area.

Fano’s inequality [1, Th 2.10.1], the results also hold for asymptotically perfect recovery.

By the perfect recovery requirement, for any nonempty subset U ⊆ [K] the collection of

the messages W∪k∈U Ik must be a function of the messages X∪k∈UAk
transmitted over the

s-tU cut ∪k∈UAk. We thus have

HW(∪k∈UIk) ≤ HX(∪k∈UAk), ∀U ⊆ [K]. (2.29)
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Proof of (2.24). Let U = {i, j, k} in (2.29). Denote by

IX(Ai;Aj) := I(XAi
;XAj

) (2.30)

the mutual information between XAi
and XAj

. We have

HW(Ii ∪ Ij ∪ Ik) ≤ HX(Ai ∪ Aj ∪ Ak) (2.31)

= HX(Ai) +HX(Aj|Ai) +HX(Ak|Ai ∪ Aj) (2.32)

= HX(Ai) + (HX(Aj)− IX(Ai;Aj)) + (HX(Ak)− IX(Ak;Ai ∪ Aj))

(2.33)

= HX(Ai) + (HX(Aj)− IX,W(Ai, Ii;Aj, Ij)) +

(HX(Ak)− IX,W(Ak, Ik;Ai ∪ Aj, Ii ∪ Ij)) (2.34)

≤ HX(Ai) + (HX(Aj)−HX,W(Ai ∩ Aj, Ii ∩ Ij)) +

(HX(Ak)−HX,W(Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij))) (2.35)

where (2.34) follows from the fact that: 1) WIi and WIj are functions of XAi
and XAj

respectively so we have IX(Ai;Aj) = IX,W(Ai, Ii;Aj, Ij); and 2) WIk and WIi∪Ij are

functions of XAk
and XAi∪Aj

respectively so we have IX(Ak;Ai∪Aj) = IX,W(Ak, Ik;Ai∪

Aj, Ii ∪ Ij), and (2.35) follows from the fact that

IX,W(Ai, Ii;Aj, Ij) ≥ IX,W(Ai ∩ Aj, Ii ∩ Ij;Ai ∩ Aj, Ii ∩ Ij) (2.36)

= HX,W(Ai ∩ Aj, Ii ∩ Ij) (2.37)
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and

IX,W(Ak, Ik;Ai ∪ Aj, Ii ∪ Ij)

≥ IX,W(Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij);Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij)) (2.38)

= HX,W(Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij)). (2.39)

Note that we trivially have

HX,W(Ai ∩ Aj, Ii ∩ Ij) ≥ HW(Ii ∩ Ij) (2.40)

and HX,W(Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij)) ≥ HX(Ak ∩ (Ai ∪ Aj)). (2.41)

Substituting (2.40) and (2.41) into (2.35) gives

HW(Ii ∪ Ij ∪ Ik) +HW(Ii ∩ Ij) ≤ HX(Ai) +HX(Aj) +HX(Ak)−HX(Ak ∩ (Ai ∪ Aj))

(2.42)

≤ HX(Ai) +HX(Aj) +HX(Ak \ (Ai ∪ Aj)) (2.43)

≤ n (C(Ai) + C(Aj) + C(Ak \ (Ai ∪ Aj))) (2.44)

= n (C(Ai ∪ Aj ∪ Ak) + C(Ai ∩ Aj)) (2.45)

where (2.43) follows from the independence bound

HX(Ak) ≤ HX(Ak ∩ (Ai ∪ Aj)) +HX(Ak \ (Ai ∪ Aj)); (2.46)

(2.44) follows from (2.28) for A′ = Ai, Aj , and Ak \ (Ai ∪ Aj); and (2.45) follows from
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the fact that the capacity function C(·) is a modular function. Substituting

HW(Ii ∪ Ij ∪ Ik) = nR(Ii ∪ Ij ∪ Ik) (2.47)

and HW(Ii ∩ Ij) = R(Ii ∩ Ij) (2.48)

into (2.45) and dividing both sides of the inequality by n complete the proof of (2.24). �

We note here that if we had directly bounded from above the right-hand side of (2.31)

by nC(Ai ∪ Aj ∪ Ak) using the independence bound, it would have led to the standard

cut-set bound

R(Ii ∪ Ij ∪ Ik) ≤ C(Ai ∪ Aj ∪ Ak). (2.49)

But the use of the independence bound would have implied that all messages transmitted

over Ai∪Aj ∪Ak are independent, which may not be the case in the presence of multicast

messages.

Proof of (2.25). Applying the two-way submodularity (2.4) of the Shannon entropy with

Z = (X,W), S1 = (Ai ∩ Aj, Ii ∩ Ij), and S2 = (Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij)), we have

HX,W(Ai ∩ Aj, Ii ∩ Ij) +HX,W(Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij))

≥ HX,W(Ai ∩ Aj ∩ Ak, Ii ∩ Ij ∩ Ik)+

HX,W((Ai ∩ Aj) ∪ (Ai ∩ Ak) ∪ (Aj ∩ Ak), (Ii ∩ Ij) ∩ (Ii ∪ Ik) ∩ (Ij ∪ Ik))

(2.50)

≥ HX(Ai ∩ Aj ∩ Ak) +HW((Ii ∩ Ij) ∪ (Ii ∩ Ik) ∪ (Ij ∩ Ik)). (2.51)
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Substituting (2.51) into (2.35) gives

HW(Ii ∪ Ij ∪ Ik) +HW((Ii ∩ Ij) ∪ (Ij ∩ Ik) ∪ (Ik ∩ Ii))

≤ HX(Ai) +HX(Aj) +HX(Ak)−HX(Ai ∩ Aj ∩ Ak) (2.52)

≤ HX(Ai) +HX(Aj) +HX(Ak \ (Ai ∩ Aj)) (2.53)

≤ n (C(Ai) + C(Aj) + C(Ak \ (Ai ∩ Aj))) (2.54)

= n (C(Ai ∪ Aj ∪ Ak) + C((Ai ∩ Aj) ∪ (Ai ∩ Ak) ∪ (Aj ∩ Ak))) (2.55)

where (2.53) follows from the independence bound

HX(Ak) ≤ HX(Ak ∩ (Ai ∩ Aj)) +HX(Ak \ (Ai ∩ Aj)); (2.56)

(2.54) follows from (2.28) for A′ = Ai, Aj , and Ak \ (Ai ∩ Aj); and (2.55) follows from

the fact that the capacity function C(·) is a modular function. Substituting (2.47) and

HW((Ii ∩ Ij) ∪ (Ii ∩ Ik) ∪ (Ij ∩ Ik)) = nR((Ii ∩ Ij) ∪ (Ii ∩ Ik) ∪ (Ij ∩ Ik)) (2.57)

into (2.55) and dividing both sides of the inequality by n complete the proof of (2.25). �

Proof of (2.26). By the symmetry among i, j, and k in (2.35), we have

HW(Ii ∪ Ij ∪ Ik) ≤ HX(Ai) + (HX(Ak)−HX,W(Ai ∩ Ak, Ii ∩ Ik)) +

(HX(Aj)−HX,W(Aj ∩ (Ai ∪ Ak), Ij ∩ (Ii ∪ Ik))) . (2.58)
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Also note that

HW(Ii ∪ Ij) ≤ HX(Ai ∪ Aj) (2.59)

= HX(Ai) +HX(Aj|Ai) (2.60)

= HX(Ai) + (HX(Aj)− IX(Ai;Aj)) (2.61)

= HX(Ai) + (HX(Aj)− IX,W(Ai, Ii;Aj, Ij)) (2.62)

≤ HX(Ai) + (HX(Aj)−HX,W(Ai ∩ Aj, Ii ∩ Ij)) . (2.63)

Adding (2.58) and (2.63) gives

HW(Ii ∪ Ij ∪ Ik) +HW(Ii ∪ Ij)

≤ 2HX(Ai) + 2HX(Aj) +HX(Ak)−HX,W(Ai ∩ Aj, Ii ∩ Ij)−

HX,W(Ai ∩ Ak, Ii ∩ Ik)−HX,W(Aj ∩ (Ai ∪ Ak), Ij ∩ (Ii ∪ Ik)). (2.64)

Applying the two-way submodularity (2.4) of the Shannon entropy with Z = (X,W),

S1 = (Ai ∩ Aj, Ii ∩ Ij), and S2 = (Ai ∩ Ak, Ii ∩ Ik), we have

HX,W(Ai ∩ Aj, Ii ∩ Ij) +HX,W(Ai ∩ Ak, Ii ∩ Ik)

≥ HX,W(Ai ∩ Aj ∩ Ak, Ii ∩ Ij ∩ Ik) +HX,W(Ai ∩ (Aj ∪ Ak), Ii ∩ (Ij ∪ Ik))

(2.65)

≥ HW(Ii ∩ Ij ∩ Ik) +HX(Ai ∩ (Aj ∪ Ak)). (2.66)

Note that we trivially have

HX,W(Aj ∩ (Ai ∪ Ak), Ij ∩ (Ii ∪ Ik)) ≥ HX(Aj ∩ (Ai ∪ Ak)). (2.67)

20



Substituting (2.66) and (2.67) into (2.64), we have

HW(Ii ∪ Ij ∪ Ik) +HW(Ii ∪ Ij) +HW(Ii ∩ Ij ∩ Ik)

≤ 2HX(Ai) + 2HX(Aj) +HX(Ak)−HX(Ai ∩ (Aj ∪ Ak))−HX(Aj ∩ (Ai ∪ Ak))

(2.68)

≤ HX(Ai) +HX(Aj) +HX(Ak) +HX(Ai \ (Aj ∪ Ak)) +HX(Aj \ (Ai ∪ Ak))

(2.69)

≤ n (C(Ai) + C(Aj) + C(Ak) + C(Ai \ (Aj ∪ Ak)) + C(Aj \ (Ai ∪ Ak))) (2.70)

= n (C(Ai ∪ Aj ∪ Ak) + C(Ai ∪ Aj) + C(Ai ∩ Aj ∩ Ak)) (2.71)

where (2.69) follows from the independence bounds

HX(Ai) ≤ HX(Ai ∩ (Aj ∪ Ak)) +HX(Ai \ (Aj ∪ Ak)) (2.72)

and HX(Aj) ≤ HX(Aj ∩ (Ai ∪ Ak)) +HX(Aj \ (Ai ∪ Ak)); (2.73)

(2.70) follows from (2.28) for A′ = Ai, Aj , Ak, Ai \ (Aj ∪ Ak), and Aj \ (Ai ∪ Ak);

and (2.71) follows from the fact that the capacity function C(·) is a modular function.

Substituting (2.47),

HW(Ii ∪ Ij) = nR(Ii ∪ Ij), (2.74)

and HW(Ii ∩ Ij ∩ Ik) = nR(Ii ∩ Ij ∩ Ik) (2.75)

into (2.71) and dividing both sides of the inequality by n complete the proof of (2.26). �
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Proof of (2.27). Adding (2.35) and (2.58), we have

2HW(Ii ∪ Ij ∪ Ik) ≤ 2HX(Ai) + 2HX(Aj) + 2HX(Ak)−HX,W(Ai ∩ Aj, Ii ∩ Ij)−

HX,W(Ai ∩ Ak, Ii ∩ Ik)−HX,W(Aj ∩ (Ai ∪ Ak), Ij ∩ (Ii ∪ Ik))−

HX,W(Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij)). (2.76)

Note that we trivially have

HX,W(Ak ∩ (Ai ∪ Aj), Ik ∩ (Ii ∪ Ij)) ≥ HX(Ak ∩ (Ai ∪ Aj)). (2.77)

Substituting (2.66), (2.67), and (2.77) into (2.76), we have

2HW(Ii ∪ Ij ∪ Ik) +HW(Ii ∩ Ij ∩ Ik)

≤ 2HX(Ai) + 2HX(Aj) + 2HX(Ak)−HX(Ai ∩ (Aj ∪ Ak))−

HX(Aj ∩ (Ai ∪ Ak))−HX(Ak ∩ (Ai ∪ Aj)) (2.78)

≤ HX(Ai) +HX(Aj) +HX(Ak) +HX(Ai \ (Aj ∪ Ak))+

HX(Aj \ (Ai ∪ Ak)) +HX(Ak \ (Ai ∪ Aj)) (2.79)

≤ n (C(Ai) + C(Aj) + C(Ak) + C(Ai \ (Aj ∪ Ak))+

C(Aj \ (Ai ∪ Ak)) + C(Ak \ (Ai ∪ Aj))) (2.80)

= n (2C(Ai ∪ Aj ∪ Ak) + C(Ai ∩ Aj ∩ Ak)) (2.81)

where (2.79) follows from the independence bounds (2.46), (2.72), and (2.73); (2.80) fol-

lows from (2.28) for A′ = Ai, Aj , Ak, Ai \ (Aj ∪Ak), Aj \ (Ai ∪Ak) and Ak \ (Ai ∪Aj);

and (2.81) follows from the fact that the capacity function C(·) is a modular function.

Substituting (2.47) and (2.75) into (2.81) and dividing both sides of the inequality by n

complete the proof of (2.27). �
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We have thus completed the proof of Theorem 1.

2.4 Generalized Cut-Set Bounds Relating K Basic Cuts of the Network

2.4.1 Main Results

Theorem 2. Consider a broadcast network with a collection of independent messages

WI collocated at the source node s and K ≥ 3 sink nodes tk, k = 1, . . . , K. For any

k = 1, . . . , K, let WIk be the intended messages for the sink node tk, and let Ak be a basic

cut that separates the source node s from the sink node tk. Let G, U and T be nonempty

subsets of [K] such that

A(1)(G) ⊇ A(1)(U). (2.82)

Let Q be a subset of {2, . . . , |U |}, and let (rq : q ∈ Q) be a sequence of integers from [|T |]

and such that

A(q)(U) ⊆ A(rq)(T ) and I(q)(U) ⊆ I(rq)(T ), ∀q ∈ Q. (2.83)

We have

R(I(1)(G))+
∑

r∈{2,...,|U |}\Q

R(I(r)(U)) +
∑
q∈Q

rq∑
r=1

αQ(q, r)R(I(r)(T ))

≤ C(A(1)(G)) +
∑

r∈{2,...,|U |}\Q

C(A(r)(U)) +
∑
q∈Q

rq∑
r=1

αQ(q, r)C(A(r)(T ))

(2.84)
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for any achievable rate tuple RI , where

αQ(q, r) =


0, if r ∈ Q∏

{p∈Q:p<r}(p−1)
∏
{p∈Q:r<p≤rq} p

rq
∏
{p∈Q:p≤rq}(p−1)

, if r /∈ Q
(2.85)

for any q ∈ Q and r ∈ [rq].

Note that the generalized cut-set bound (2.84) involves a number of parameters: G,

U , T , Q, and (rq : q ∈ Q). Specifying these parameters to certain choices will lead to

potentially weaker but more applicable generalized cut-set bounds. More specifically, let

G = U = T and rq = q−1 for any q ∈ Q. By the ordering in (2.7), the condition in (2.83)

is satisfied (the condition in (2.82) holds trivially with an equality). Thus, by Theorem 2

we have

∑
r∈[|U |]\Q

R(I(r)(U))+
∑
q∈Q

q−1∑
r=1

αQ(q, r)R(I(r)(U))

≤
∑

r∈[|U |]\Q

C(A(r)(U)) +
∑
q∈Q

q−1∑
r=1

αQ(q, r)C(A(r)(U)) (2.86)

for any achievable rate tuple RI , where

αQ(q, r) =

 0, if r ∈ Q∏
{p∈Q:p<r}(p−1)

∏
{p∈Q:r<p≤q−1} p∏

{p∈Q:p≤q}(p−1)
, if r /∈ Q

(2.87)

for any q ∈ Q and r ∈ [q − 1]. A proper simplification of (2.86) leads to the following

corollary. See Appendix A.3 for the details of the simplification procedure.

Corollary 4. Consider a broadcast network with a collection of independent messages

WI collocated at the source node s and K ≥ 3 sink nodes tk, k = 1, . . . , K. For any

k = 1, . . . , K, let WIk be the intended messages for the sink node tk, and let Ak be a basic
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cut that separates the source node s from the sink node tk. Let U be a nonempty subset of

[K], and let Q be a subset of {2, . . . , |U |}. We have

|U |∑
r=1

βQ(r)R(I(r)(U)) ≤
|U |∑
r=1

βQ(r)C(A(r)(U)) (2.88)

for any achievable rate tuple RI , where βQ(r) = 1 for any r ∈ [|U |] if Q = ∅, and

βQ(r) =

 0, if r ∈ Q∏
{q∈Q:q<r}(q − 1)

∏
{q∈Q:q>r} q, if r /∈ Q

(2.89)

for any r ∈ [|U |] if Q 6= ∅.

The generalized cut-set bound (2.88) can be further specified by lettingQ = {2, . . . ,m}

for m = 1, . . . , |U | (note that Q = ∅ when m = 1). For this particular choice of Q, we

have

βQ(r) =


m!, r = 1

0, r = 2, . . . ,m

(m− 1)!, r = m+ 1, . . . , |U |.

(2.90)

Substituting (2.90) into (2.88) immediately leads to the following corollary.

Corollary 5. Consider a broadcast network with a collection of independent messages

WI collocated at the source node s and K ≥ 3 sink nodes tk, k = 1, . . . , K. For any

k = 1, . . . , K, let WIk be the intended messages for the sink node tk, and let Ak be a basic

cut that separates the source node s from the sink node tk. Let U be a nonempty subset of
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[K]. We have

mR(I(1)(U)) +

|U |∑
r=m+1

R(I(r)(U)) ≤ mC(A(1)(U)) +

|U |∑
r=m+1

C(A(r)(U)) (2.91)

for any achievable rate tuple RI and any m = 1, . . . , |U |.

Now, the generalized cut-set bound (2.27) can be recovered from Corollary 5 by setting

U = {1, 2, 3} and m = 2 in (2.91); the generalized cut-set bound (2.25) can be recovered

from Corollary 4 by setting U = {1, 2, 3} and Q = {3} such that

βQ(r) =

 3, r = 1, 2

0, r = 3;
(2.92)

the generalized cut-set bound (2.24) can be recovered from Theorem 2 by setting G =

{i, j, k}, U = {i, j} (so A(1)(G) ⊇ A(1)(U)) and Q = ∅; and finally, the generalized

cut-set bound (2.26) can be recovered from Theorem 2 by setting G = U = {i, j, k} (so

A(1)(G) = A(1)(U)), T = {i, j}, Q = {2}, and r2 = 1 such that

A(2)(U) = (Ai ∩ Aj) ∪ (Ai ∩ Ak) ∪ (Aj ∩ Ak) ⊆ Ai ∪ Aj = A(r2)(T ),

I(2)(U) = (Ii ∩ Ij) ∪ (Ii ∩ Ik) ∪ (Ij ∩ Ik) ⊆ Ii ∪ Ij = I(r2)(U),
(2.93)

and αQ(2, 1) = 1.

2.4.2 Proof of Theorem 2

Let (n, {Xa : a ∈ A}) be an admissible code with block length n, where Xa is the

message transmitted over the arc a. Similar to the proof of Theorem 1, we shall assume

perfect recovery of the messages at each of the sink nodes. As such, for any nonempty sub-

set U ⊆ [K] the messages W∪k∈U Ik must be functions of the messages X∪k∈UAk
transmitted

over the s-tU cut ∪k∈UAk.
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Let us first consider the case where Q = ∅. Note that

HW(I(1)(G))

≤ HX(A(1)(G)) (2.94)

≤ HX(A(1)(U)) +HX(A(1)(G) \ A(1)(U)) (2.95)

= HX,W(A(1)(U), I(1)(U)) +HX(A(1)(G) \ A(1)(U)) (2.96)

≤
∑
k∈U

HX,W(Ak, Ik)−
|U |∑
r=2

HX,W(A(r)(U), I(r)(U)) +HX(A(1)(G) \ A(1)(U))

(2.97)

=
∑
k∈U

HX(Ak)−
|U |∑
r=2

HX,W(A(r)(U), I(r)(U)) +HX(A(1)(G) \ A(1)(U)) (2.98)

≤ n

(∑
k∈U

C(Ak) + C(A(1)(G) \ A(1)(U))

)
−
|U |∑
r=2

HX,W(A(r)(U), I(r)(U)) (2.99)

= n

 |U |∑
r=1

C(A(r)(U)) + C(A(1)(G) \ A(1)(U))

− |U |∑
r=2

HW(I(r)(U)) (2.100)

= n

C(A(1)(G)) +

|U |∑
r=2

C(A(r)(U))

− |U |∑
r=2

HX,W(A(r)(U), I(r)(U)) (2.101)

where (2.94) and (2.96) follow from the fact that the messages WI(1)(U) are functions of

XA(1)(U); (2.95) follows from the independence bound on entropy; (2.97) follows from

the standard multiway submodularity (2.9); (2.98) follows from the fact that the messages

WIk are functions of XAk
so we have HX,W(Ak, Ik) = HX(Ak) for any k ∈ U ; (2.99)

follows from the link capacity constraints; (2.100) follows from the fact that the capacity

function C(·) is a modular function so we have
∑

k∈U C(Ak) =
∑|U |

r=1C(A(r)(U)); and

(2.101) follows from the fact that the capacity function C(·) is a modular function and

the assumption (2.82) so we have C(A(1)(G)) = C(A(1)(U)) + C(A(1)(G) \ A(1)(U)).
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Rearranging the terms in (2.101) gives

HW(I(1)(G)) +

|U |∑
r=2

HX,W(A(r)(U), I(r)(U)) ≤ n

C(A(1)(G)) +

|U |∑
r=2

C(A(r)(U))

 .

(2.102)

Further note that

HW(I(1)(G)) = nR(I(1)(G)) (2.103)

and HX,W(A(r)(U), I(r)(U)) ≥ HW(I(r)(U)) = nR(I(r)(U)), ∀r = 2, . . . , |U |.

(2.104)

Substituting (2.103) and (2.104) into (2.101) and dividing both sides of the inequality by

n, we have

R(I(1)(G)) +

|U |∑
r=2

R(I(r)(U)) ≤ C(A(1)(G)) +

|U |∑
r=2

C(A(r)(U)) (2.105)

for any achievable rate tuple RI . This completes the proof of (2.84) for Q = ∅.

Next, assume that Q 6= ∅. Write, without loss of generality, that Q = {q1, . . . , q|Q|}

where

2 ≤ q1 < q2 < · · · < q|Q| ≤ |U |. (2.106)

By Lemma 3, for any two integers q′ and rq′ such that 1 ≤ q′ ≤ |U |, 1 ≤ rq′ ≤ |T |,
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A(q′)(U) ⊆ A(rq′ )(T ), and I(q′)(U) ⊆ I(rq′ )(T ) we have

rq′∑
r=1

HX,W(A(r)(T ), I(r)(T ))− rq′HX,W(A(q′)(U), I(q′)(U))

≤
|T |∑
r=1

HX,W(Atr , Itr)−
rq′∑
r=1

HX,W(Atr ∩ A(q′)(U), Itr ∩ I(q′)(U))−

|T |∑
r=rq′+1

HX,W(Atr ∩ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr})),

Itr ∩ (I(q′)(U) ∪ I(rq′+1)({t1, . . . , tr}))) (2.107)

≤
|T |∑
r=1

HX(Atr)−
rq′∑
r=1

HX(Atr ∩ A(q′)(U))−

|T |∑
r=rq′+1

HX(Atr ∩ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr}))) (2.108)

≤
rq′∑
r=1

HX(Atr \ A(q′)(U)) +

|T |∑
r=rq′+1

HX(Atr \ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr}))

(2.109)

≤ n

 rq′∑
r=1

C(Atr \ A(q′)(U)) +

|T |∑
r=rq′+1

C(Atr \ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr}))


(2.110)

= n

 |T |∑
r=1

C(Atr)−
rq′∑
r=1

C(Atr ∩ A(q′)(U))−

|T |∑
r=rq′+1

C(Atr ∩ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr})))

 (2.111)

= n

( rq′∑
r=1

C(A(r)(T ))− rq′C(A(q′)(U))

)
(2.112)

where (2.108) follows from the fact that the messages WItr are functions of XAtr
so we

have
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HX,W(Atr , Itr) = HX(Atr) for any r ∈ [|U |] and the trivial inequalities

HX,W(Atr ∩ A(q′)(U), Itr ∩ I(q′)(U)) ≥ HX(Atr ∩ A(q′)(U)), ∀r ∈ [rq′ ] (2.113)

and

HX,W(Atr ∩ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr})), Itr ∩ (I(q′)(U) ∪ I(rq′+1)({t1, . . . , tr})))

≥ HX(Atr ∩ (A(q′)(U) ∪ A(rq′+1)({t1, . . . , tr}))); (2.114)

(2.109) follows from the independence bound on entropy; (2.110) follows from the link-

capacity constraints; and (2.111) and (2.112) follow from the fact that the capacity function

C(·) is a modular function. Letting rq′ = q′ = qj and U = T in (2.112), we have

qj∑
r=1

HX,W(A(r)(T ), I(r)(T ))−qjHX,W(A(qj)(T ), I(qj)(T ))

≤ n

(
qj∑
r=1

C(A(r)(T ))− qjC(A(qj)(T ))

)
. (2.115)

Let

nQ(q, r) :=
∏

{p∈Q:p<r}

(p− 1)
∏

{p∈Q:r<p≤rq}

p (2.116)

and dQ(q) :=
∏

{p∈Q:p≤rq}

(p− 1) (2.117)

for any q ∈ Q and r ∈ [rq], and let Qi := {q ∈ Q : q ≤ rqi}. Note that nQ(q, r) and dQ(q)

are always positive. Multiplying both sides of (2.115) by nQ(qi, qj) and then summing
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over all qj ∈ Qi, we have

|Qi|∑
j=1

nQ(qi, qj)

(
qj∑
r=1

HX,W(A(r)(T ), I(r)(T ))− qjHX,W(A(qj)(T ), I(qj)(T ))

)

≤ n

 |Qi|∑
j=1

nQ(qi, qj)

(
qj∑
r=1

C(A(r)(T ))− qjC(A(qj)(T ))

) . (2.118)

Note that

|Qi|∑
j=1

n(qi, qj)

qj∑
r=1

HX,W(A(r)(T ), I(r)(T )) =

q|Qi|∑
r=1

 |Qi|∑
j=j(r)

n(qi, qj)

HX,W(A(r)(T ), I(r)(T ))

(2.119)

where

j(r) :=



1, for 0 < r ≤ q1

2, for q1 < r ≤ q2

...

|Qi|, for q|Qi|−1 < r ≤ q|Qi|.

(2.120)

We can thus rewrite (2.118) as

q|Qi|∑
r=1

 |Qi|∑
j=j(r)

n(qi, qj)− rnQ(qi, r)1{r∈Qi}

HX,W(A(r)(T ), I(r)(T ))

≤ n

q|Qi|∑
r=1

 |Qi|∑
j=j(r)

n(qi, qj)− rnQ(qi, r)1{r∈Qi}

C(A(r)(T )

 . (2.121)

Furthermore, letting q′ = qi and rq′ = rqi in (2.112) and multiplying both sides of the
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inequality by dQ(qi), we have

rqi∑
r=1

dQ(qi)HX,W(A(r)(T ), I(r)(T ))− rqidQ(qi)HX,W(A(qi)(U), I(qi)(U))

≤ n

( rqi∑
r=1

dQ(qi)C(A(r)(T ))− rqidQ(qi)C(A(qi)(U))

)
. (2.122)

Adding (2.121) and (2.122) gives

rqi∑
r=1

n′Q(qi, r)HX,W(A(r)(T ), I(r)(T ))− rqidQ(qi)HX,W(A(qi)(U), I(qi)(U))

≤ n

( rqi∑
r=1

n′Q(qi, r)C(A(r)(T ))− rqidQ(qi)C(A(qi)(U))

)
(2.123)

where

n′Q(qi, r) =


∑|Qi|

j=j(r) nQ(qi, qj)− rnQ(qi, r)1{r∈Qi} + dQ(qi), if 1 ≤ r ≤ q|Qi|

dQ(qi), if q|Qi| < r ≤ rqi .

(2.124)

By (2.120), when qm−1 < r ≤ qm for some m = 1, . . . , |Qi| (q0 := 0 for convenience),
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we have j(r) = m and hence

|Qi|∑
j=j(r)

nQ(qi, qj) =

|Qi|∑
j=m

nQ(qi, qj) (2.125)

=

|Qi|∑
j=m

j−1∏
l=1

(ql − 1)

|Qi|∏
l=j+1

ql

 (2.126)

=

|Qi|∑
j=m

j−1∏
l=1

(ql − 1)

|Qi|∏
l=j

ql −
j∏
l=1

(ql − 1)

|Qi|∏
l=j+1

ql

 (2.127)

=

|Qi|∑
j=m

j−1∏
l=1

(ql − 1)

|Qi|∏
l=j

ql

− |Qi|+1∑
j=m+1

j−1∏
l=1

(ql − 1)

|Qi|∏
l=j

ql

 (2.128)

=
m−1∏
l=1

(ql − 1)

|Qi|∏
l=m

ql −
|Qi|∏
l=1

(ql − 1) (2.129)

=
m−1∏
l=1

(ql − 1)

|Qi|∏
l=m

ql − dQ(qi). (2.130)

Therefore, when r = qm for some m ∈ [|Qi|] we have

|Qi|∑
j=m

nQ(qi, qj)− qmnQ(qi, qm) + dQ(qi) =
m−1∏
l=1

(ql − 1)

|Qi|∏
l=m

ql − qm
m−1∏
l=1

(ql − 1)

|Qi|∏
l=m+1

ql

(2.131)

= 0; (2.132)

when qm−1 < r < qm for some m ∈ [|Qi|] we have

|Qi|∑
j=m

nQ(qi, qj) + dQ(qi) =
m−1∏
l=1

(ql − 1)

|Qi|∏
l=m

ql (2.133)

= rqidQ(qi)αQ(qi, r); (2.134)
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and when q|Qi| < r ≤ rqi we have αQ(qi, r) = 1/rqi and hence

dQ(qi) = rqidQ(qi)αQ(qi, r). (2.135)

Combining (2.132), (2.134), and (2.135), we conclude that

n′Q(qi, r) = rqidQ(qi)αQ(qi, r), ∀r ∈ [rqi ]. (2.136)

Dividing both sides of (2.123) by rqid(qi) and then summing over all qi ∈ Q, we have

∑
q∈Q

rq∑
r=1

αQ(q, r)HX,W(A(r)(T ), I(r)(T ))−
∑
q∈Q

HX,W(A(q)(U), I(q)(U))

≤ n

(∑
q∈Q

rq∑
r=1

αQ(q, r)C(A(r)(T ))−
∑
q∈Q

C(A(q)(U))

)
. (2.137)

Adding (2.102) and (2.137), we have

HW(I(1)(G)) +
∑

r∈{2,...,|U |}\Q

HX,W(A(r)(U), I(r)(U)) +
∑
q∈Q

rq∑
r=1

αQ(q, r)HX,W(A(r)(T ), I(r)(T ))

≤ n

C(A(1)(G)) +
∑

r∈{2,...,|U |}\Q

C(A(r)(U)) +
∑
q∈Q

rq∑
r=1

αQ(q, r)C(A(r)(T ))

 .

(2.138)

Note that we trivially have

HX,W(A(r)(T ), I(r)(T )) ≥ HW(I(r)(T )) = nR(I(r)(T )), ∀q ∈ Q and r ∈ [rq].

(2.139)

Substituting (2.103), (2.104), and (2.139) into (2.138) and dividing both sides of the in-

equality by n complete the proof of (2.84) for Q 6= ∅.
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a{1}
a{2}

a{3} a{1,2}
a{1,3} a{2,3}

a{1,2,3}

s

t1 t2 t3

v{1} v{2} v{3} v{1,2} v{1,3} v{2,3} v{1,2,3}

(w{1}, w{2}, w{3}, w{1,2}, w{1,3}, w{2,3}, w{1,2,3})

(ŵ{1}, ŵ{1,2}, ŵ{1,3}, ŵ{1,2,3})

(ŵ{2}, ŵ{1,2}, ŵ{2,3}, ŵ{1,2,3})

(ŵ{3}, ŵ{1,3}, ŵ{2,3}, ŵ{1,2,3})

Figure 2.3: Illustration of the general combination network with K = 3 sink nodes and a
complete message set.

We have thus completed the proof of Theorem 2.

2.5 Applications to Combination Networks

To demonstrate the tightness of the generalized cut-set bounds, let us consider a special

class of broadcast networks known as combination networks [3]. A combination network

is a broadcast network that consists of three layers of nodes (see Figure 2.3 for an illus-

tration). The top layer consists of a single source node s, and the bottom layer consists of

K sink nodes tk, k = 1, . . . , K. The middle layer consists of 2K − 1 intermediate nodes,

each connecting to the source node s and a nonempty subset of sink nodes. While the links

from the source node s to the intermediate nodes may have finite capacity, the links from

the intermediate nodes to the sink nodes are all assumed to have infinite capacity. More
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specifically, denote by vU the intermediate node that connects to the nonempty subset U

of sink nodes and aU the link that connects the source node s to the intermediate node

vU . The link capacity for aU is denoted by CU . Note that when CU = 0, the intermediate

node vU can be effectively removed from the network. By construction, the only inter-

esting combinatorial structure for combination networks is cut. Therefore, combination

networks provide an ideal set of problems to understand the strength and the limitations of

the generalized cut-set bounds.

In Figure 2.3 we illustrate a general combination network with K = 3 sink nodes and

a general message set that consists of a total of seven independent messages

(W{1},W{2},W{3},W{1,2},W{1,3},W{2,3},W{1,2,3}),

where the message WU , U ⊆ {1, 2, 3}, is intended for all sink nodes tk, k ∈ U . This

network coding problem was first introduced and solved by Grokop and Tse [2] in the

context of characterizing the latency capacity region [14] of the general broadcast channel

with three receivers. More specifically, it was shown in [2] that the capacity region of the

network is given by the set of nonnegative rate tuples

(R{1}, R{2}, R{3}, R{1,2}, R{2,3}, R{1,3}, R{1,2,3})
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satisfying

R{1}+R{1,2} +R{1,3} +R{1,2,3} ≤ C{1} + C{1,2} + C{1,3} + C{1,2,3},

(2.140)

R{2}+R{1,2} +R{2,3} +R{1,2,3} ≤ C{2} + C{1,2} + C{2,3} + C{1,2,3},

(2.141)

R{3}+R{1,3} +R{2,3} +R{1,2,3} ≤ C{3} + C{1,3} + C{2,3} + C{1,2,3},

(2.142)

R{1} +R{2}+R{1,2} +R{2,3} +R{1,3} +R{1,2,3}

≤ C{1} + C{2} + C{1,2} + C{2,3} + C{1,3} + C{1,2,3}, (2.143)

R{2} +R{3}+R{1,2} +R{2,3} +R{1,3} +R{1,2,3}

≤ C{2} + C{3} + C{1,2} + C{2,3} + C{1,3} + C{1,2,3}, (2.144)

R{1} +R{3}+R{1,2} +R{2,3} +R{1,3} +R{1,2,3}

≤ C{1} + C{3} + C{1,2} + C{2,3} + C{1,3} + C{1,2,3}, (2.145)

R{1} +R{2} +R{3}+R{1,2} +R{2,3} +R{1,3} +R{1,2,3}

≤ C{1} + C{2} + C{3} + C{1,2} + C{2,3} + C{1,3} + C{1,2,3},

(2.146)

R{1} +R{2} +R{3}+2R{1,2} +R{2,3} +R{1,3} + 2R{1,2,3}

≤ C{1} + C{2} + C{3} + 2C{1,2} + C{2,3} + C{1,3} + 2C{1,2,3},

(2.147)

R{1} +R{2} +R{3}+R{1,2} + 2R{2,3} +R{1,3} + 2R{1,2,3}

≤ C{1} + C{2} + C{3} + C{1,2} + 2C{2,3} + C{1,3} + 2C{1,2,3},

(2.148)
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R{1} +R{2} +R{3}+R{1,2} +R{2,3} + 2R{1,3} + 2R{1,2,3}

≤ C{1} + C{2} + C{3} + C{1,2} + C{2,3} + 2C{1,3} + 2C{1,2,3},

(2.149)

R{1} +R{2} +R{3}+2R{1,2} + 2R{2,3} + 2R{1,3} + 2R{1,2,3}

≤ C{1} + C{2} + C{3} + 2C{1,2} + 2C{2,3} + 2C{1,3} + 2C{1,2,3},

(2.150)

R{1} + 2R{2} + 2R{3}+2R{1,2} + 2R{2,3} + 2R{1,3} + 3R{1,2,3}

≤ C{1} + 2C{2} + 2C{3} + 2C{1,2} + 2C{2,3} + 2C{1,3} + 3C{1,2,3},

(2.151)

2R{1} +R{2} + 2R{3}+2R{1,2} + 2R{2,3} + 2R{1,3} + 3R{1,2,3}

≤ 2C{1} + 2C{2} + C{3} + 2C{1,2} + 2C{2,3} + 2C{1,3} + 3C{1,2,3},

(2.152)

2R{1} + 2R{2} +R{3}+2R{1,2} + 2R{2,3} + 2R{1,3} + 3R{1,2,3}

≤ 2C{1} + 2C{2} + C{3} + 2C{1,2} + 2C{2,3} + 2C{1,3} + 3C{1,2,3},

(2.153)

2R{1} + 2R{2} + 2R{3}+2R{1,2} + 2R{2,3} + 2R{1,3} + 3R{1,2,3}

≤ 2C{1} + 2C{2} + 2C{3} + 2C{1,2} + 2C{2,3} + 2C{1,3} + 3C{1,2,3}.

(2.154)

From the converse viewpoint, the inequalities (2.140)–(2.146) follow directly from the

standard cut-set bounds (2.1) by considering the following three basic cuts:

A1 = {a{1}, a{1,2}, a{1,3}, a{1,2,3}}, A2 = {a{2}, a{1,2}, a{2,3}, a{1,2,3}}, and

A3 = {a{3}, a{2,3}, a{1,3}, a{1,2,3}}. For the inequalities (2.147)–(2.154), the proof pro-

vided in [2] was problem-specific and appears to be rather hand-crafted. With the general-
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ized cut-set bounds now in place, however, it is clear that the inequalities (2.147)–(2.149)

follow directly from (2.24); the inequality (2.150) follows directly from (2.25); the in-

equalities (2.151)–(2.153) follow directly from (2.26); and the inequality (2.154) follows

directly from (2.27). Thus, the standard and the generalized cut-set bounds together pro-

vide an exact characterization of the capacity region of the general combination network

with three sink nodes and a complete message set.

Next, let us consider the general combination network with K sink nodes and symmet-

rical link capacity constraints [14]:

CU = C|U |, ∀U ⊆ [K] (2.155)

i.e., the link-capacity constraint for arc aU depends on the subset U only via its cardi-

nality. Assume that the source s has access to a set of K + 1 independent messages

(W1, . . . ,WK ,W0), where Wk, k = 1, . . . , K, is a private message intended only for the

sink node tk, and W0 is a common message intended for all K sink nodes in the network.

For this communication scenario, note thatAk = {aU : U 3 k} is a basic cut that separates

the source node s from the sink node tk for each k = 1, . . . , K. Applying Corollary 5 with

U = [K], we have

KR0 +mRsp ≤ m

K∑
r=1

 K

r

Cr +
K∑

r=m+1

K∑
j=r

 K

j

Cj (2.156)

= m
K∑
r=1

 K

r

Cr +
K∑

r=m+1

(r −m)

 K

r

Cr (2.157)

for any achievable rate tuple (R0, R1, . . . , RK) and any m = 1, . . . , K, where Rsp =∑K
k=1Rk is the sum of the private rates. It is clear that the outer bound given by the
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Rsp

R0

0
C1 + 2C2 + C3C3 C2 + C3 2C2 + C3

Figure 2.4: Capacity v.s. cut-set outer regions for K = 3 sinks. The boundary of the
capacity region is illustrated by solid lines, while the boundary of the cut-set outer region
is illustrated by dashed lines.

inequality (2.157) for m = 1, . . . , K has exactly K + 1 corner points:

 K∑
i=r

 K − 1

i− 1

Ci,
r−1∑
i=1

 K

i

Ci

 , r = 1, . . . , K + 1.

The achievability of these corner points was proved in [14]. Therefore, the generalized cut-

set bounds also provide a tight characterization of the common-v.s.-sum-private capacity

region of the general symmetrical combination network.

Finally, let us make an explicit comparison between the common-v.s.-sum-private ca-

pacity region of the general symmetrical combination network and the outer region given

by just the standard cut-set bounds for the case of K = 3 sink nodes. For K = 3,

the common-v.s.-sum-private capacity region of the network is given by all nonnegative
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(R0, Rsp) pairs satisfying

3R0 +Rsp ≤ 3C1 + 6C2 + 3C3,

3R0 + 2Rsp ≤ 6C1 + 6C2 + 3C3,

and R0 +Rsp ≤ 3C1 + 3C2 + C3.

(2.158)

The standard cut-set bounds, in this case, are given by

R0 +R1 ≤ C1 + 2C2 + C3,

R0 +R2 ≤ C1 + 2C2 + C3,

R0 +R3 ≤ C1 + 2C2 + C3,

R0 +R1 +R2 ≤ 2C1 + 3C2 + C3,

R0 +R1 +R3 ≤ 2C1 + 3C2 + C3,

R0 +R3 +R2 ≤ 2C1 + 3C2 + C3,

R0 +R1 +R2 +R3 ≤ 2C1 + 3C2 + C3.

(2.159)

Substituting R1 = Rsp − R2 − R3 into (2.159) and using Fourier-Motzkin elimination to

eliminate R2 and R3 from the inequalities in (2.159), we may explicitly write the outer

region given by just the standard cut-set bounds as the nonnegative (R0, Rsp) pairs satis-

fying

3R0 +Rsp ≤ 3C1 + 6C2 + 3C3,

2R0 +Rsp ≤ 3C1 + 5C2 + 2C3,

and R0 +Rsp ≤ 3C1 + 3C2 + C3.

(2.160)

In Figure 2.4 we illustrate the rate regions constrained by (2.158) and (2.160), respectively.

Clearly, even for the case with only K = 3 sink nodes, the standard cut-set bounds alone

are not tight, while the generalized cut-set bounds provide a precise characterization of the

common-v.s.-sum-private capacity region.

41



Figure 2.5: Symmetrical 3-level Diversity coding.

2.6 An Alternative Proof for Symmetrical Multilevel Diversity Coding

Here we show an alternative proof for the Lemma.1 in [15]. The underlying broadcast

network shown in Figure 2.5. We assume that H(Wi) = Ki

Lemma 6. For any constants K1, K2, K3 ≥ 0 and (R1, R2, R3) we have

R ≥ Ki (2.161)

Ri +Rj ≥ 2K1 +K + 2 (2.162)

2Ri +Ri⊕ 1 +Ri⊕2 ≥ 4K1 + 2K2 +K3 (2.163)

R1 +R2 +R3 ≥ 3K1 +
3

2
+K3 (2.164)

Proof. We assume the code on the link with capacity Ri is Xi. Considering 3 cuts, cut

C1 : {R1}, C2 : {R2} and C3 : {R1, R2}, we can write generalized cut-set bound as
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follows:

H(WC1∪C2∪C3) +H(WC1 ∩WC2) ≤ H(C1 ∪ C2 ∪ C3) +H(C1 ∩ C2) (2.165)

H(W1,W2) +H(W1 ∩W1) ≤ H(X1, X2) +H(∅)

2K1 +K2 ≤ R1 +R2

The second inequality can be prove by layering idea as we talked. Considering 3 cuts, cut

C1 : {X1, X2}, C2 : {X2, X − 3} and C3 : {X1, X2, X3}, and 3 cuts in the second layer

C ′1 : {X1}, C ′2 : {X2} and C ′3 : {X3} we have:

H(WC1∪C2∪C3) ≤ H(C1) +H(C2)−H(WC1 ∩WC2) (2.166)

H(WC1∪C2∪C3) +H(WC1 ∩WC2)

≤ H(C ′1) +H(C ′2)−H(WC′1
∩WC′2

) +H(C ′2) +H(C ′3)−H(WC′2
∩WC′3

)

H(W1,W2,W3) +H(W1,W2)

≤ H(X1) +H(X2)−H(W1) +H(X2) +H(X3)−H(W1)

⇒ (4K1 + 2K2 +K3) ≤ 2R2 +R1 +R3

In the similar fashion we can prove the last inequality. Now we consider the cuts as C1 :

{X1, X2}, C2 : {X2, X3} and C3 : {X1, X3}, and 3 cuts in the second layer C ′1 : {X1},
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C ′2 : {X2} and C ′3 : {X3} we have:

H(WC1∪C2∪C3) ≤ H(C1) +H(C2) +H(C3)−H(W (2)(C1, C2, C3))−H(WC1∩C2∩C3)

(2.167)

H(W1,W2,W3) +H(W1,W2) +H(W1,W2) ≤ H(C1) +H(C2) +H(C3)

H(W1,W2,W3) +H(W1,W2) +H(W1,W2) ≤ H(C ′1) +H(C ′2)−H(W1) +H(C ′2)

+H(C ′3)−H(W1) +H(C ′1) +H(C ′3)−H(W1)

6K1 + 3K2 + 2K3 ≤ 2(R1 +R2 +R3)

where W (2)(C1, C2, C3) = (WC1 ∩WC2) ∪ (WC1 ∩WC3) ∪ (WC3 ∩WC2)

2.7 Case K = 4

The new inequalities are as follows which are the coefficient in the form of

A:

(K1, K2, K3, K4, R1, R2, R3, R4):

8.0000 4.0000 2.0000 1.0000 -4.0000 -2.0000 -1.0000 -1.0000

8.0000 4.0000 2.0000 1.0000 -4.0000 -1.0000 -2.0000 -1.0000

8.0000 4.0000 2.0000 1.0000 -4.0000 -1.0000 -1.0000 -2.0000

8.0000 4.0000 2.0000 1.0000 -2.0000 -4.0000 -1.0000 -1.0000

8.0000 4.0000 2.0000 1.0000 -2.0000 -1.0000 -4.0000 -1.0000

8.0000 4.0000 2.0000 1.0000 -2.0000 -1.0000 -1.0000 -4.0000

8.0000 4.0000 2.0000 1.0000 -1.0000 -4.0000 -2.0000 -1.0000

8.0000 4.0000 2.0000 1.0000 -1.0000 -4.0000 -1.0000 -2.0000

8.0000 4.0000 2.0000 1.0000 -1.0000 -2.0000 -4.0000 -1.0000

8.0000 4.0000 2.0000 1.0000 -1.0000 -2.0000 -1.0000 -4.0000

8.0000 4.0000 2.0000 1.0000 -1.0000 -1.0000 -4.0000 -2.0000
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8.0000 4.0000 2.0000 1.0000 -1.0000 -1.0000 -2.0000 -4.0000

B:

6.0000 3.0000 2.0000 1.0000 -2.0000 -2.0000 -1.0000 -1.0000

6.0000 3.0000 2.0000 1.0000 -2.0000 -1.0000 -2.0000 -1.0000

6.0000 3.0000 2.0000 1.0000 -2.0000 -1.0000 -1.0000 -2.0000

6.0000 3.0000 2.0000 1.0000 -1.0000 -2.0000 -2.0000 -1.0000

6.0000 3.0000 2.0000 1.0000 -1.0000 -2.0000 -1.0000 -2.0000

6.0000 3.0000 2.0000 1.0000 -1.0000 -1.0000 -2.0000 -2.0000

C:

6.0000 3.0000 2.0000 1.0000 -2.0000 -2.0000 -1.0000 -1.0000

6.0000 3.0000 2.0000 1.0000 -2.0000 -1.0000 -2.0000 -1.0000

6.0000 3.0000 2.0000 1.0000 -2.0000 -1.0000 -1.0000 -2.0000

6.0000 3.0000 2.0000 1.0000 -1.0000 -2.0000 -2.0000 -1.0000

6.0000 3.0000 2.0000 1.0000 -1.0000 -2.0000 -1.0000 -2.0000

6.0000 3.0000 2.0000 1.0000 -1.0000 -1.0000 -2.0000 -2.0000

D:

4.5000 2.2500 1.5000 1.0000 -1.0000 -1.5000 -1.0000 -1.0000

4.5000 2.2500 1.5000 1.0000 -1.0000 -1.0000 -1.5000 -1.0000

4.5000 2.2500 1.5000 1.0000 -1.0000 -1.0000 -1.0000 -1.5000

4.5000 2.2500 1.5000 1.0000 -1.5000 -1.0000 -1.0000 -1.0000

45



E:

4.0000 2.0000 1.3333 1.0000 -1.0000 -1.0000 -1.0000 -1.0000

Plus the inequalities from case 3:

1.0000 0 0 0 -1.0000 0 0 0

1.0000 0 0 0 0 -1.0000 0 0

1.0000 0 0 0 0 0 -1.0000 0

1.0000 0 0 0 0 0 0 -1.0000

1.0000 0.5000 0 0 -0.5000 -0.5000 0 0

1.0000 0.5000 0 0 -0.5000 0 -0.5000 0

1.0000 0.5000 0 0 -0.5000 0 0 -0.5000

1.0000 0.5000 0 0 0 -0.5000 -0.5000 0

1.0000 0.5000 0 0 0 -0.5000 0 -0.5000

1.0000 0.5000 0 0 0 0 -0.5000 -0.5000

1.0000 0.5000 0.2500 0 -0.5000 -0.2500 -0.2500 0

1.0000 0.5000 0.2500 0 -0.5000 -0.2500 0 -0.2500

1.0000 0.5000 0.2500 0 -0.5000 0 -0.2500 -0.2500

1.0000 0.5000 0.2500 0 -0.2500 -0.5000 -0.2500 0

1.0000 0.5000 0.2500 0 -0.2500 -0.5000 0 -0.2500

1.0000 0.5000 0.2500 0 -0.2500 -0.2500 -0.5000 0

1.0000 0.5000 0.2500 0 -0.2500 -0.2500 0 -0.5000

1.0000 0.5000 0.2500 0 -0.2500 0 -0.5000 -0.2500

1.0000 0.5000 0.2500 0 -0.2500 0 -0.2500 -0.5000

1.0000 0.5000 0.2500 0 0 -0.5000 -0.2500 -0.2500
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1.0000 0.5000 0.2500 0 0 -0.2500 -0.5000 -0.2500

1.0000 0.5000 0.2500 0 0 -0.2500 -0.2500 -0.5000

1.0000 0.5000 0.3333 0 -0.3333 -0.3333 -0.3333 0

1.0000 0.5000 0.3333 0 -0.3333 -0.3333 0 -0.3333

1.0000 0.5000 0.3333 0 -0.3333 0 -0.3333 -0.3333

1.0000 0.5000 0.3333 0 0 -0.3333 -0.3333 -0.3333

each group are essentially the same inequality up to a permutation.

Proof. Lets first see the following inequality:

H(X1, X2) ≤ H(X1) + (X2)−H(W1) (2.168)

which translate to the following

H(Xi, Xj) ≤ Ri +Rj −K1 (2.169)

H(Xi, Xj, Xj) ≤H(Xi, Xj)

+H(Xi, Xk) +H(Xj, Xk)−H(Xi, Xj, Xk)−H(W1,W2) (2.170)

2H(Xi, Xj, Xj) ≤ 2Ri + 2Rj + 2Rk − 4K1 −K2 (2.171)

where the last inequality is just replacement of (2.169), and
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H(Xi, Xj, Xj) ≤ H(Xi, Xj) +H(Xi, Xk)−H(W1,W2) (2.172)

≤ 2Ri +Rj +Rk − 3K1 −K2 (2.173)

again the last inequality is just replacement of (2.169), and

A:

It is with 2 cover:

H(W1,W2,W3,W4) ≤ H(X1, X2, X3) +H(X1, X2, X4)−H(W1,W2,W3) (2.174)

≤ 2R1 +R2 +R3 − 3K1 −K2 + 2R1

+R2 +R3 − 3K1 −K2 −K1 −K2 −K3

B:

It is with 2 cover:

H(W1,W2,W3,W4) ≤ H(X1, X2, X3) +H(X1, X2, X4)−H(W1,W2,W3) (2.175)

≤ R1 +R2 +R3 − 2K1 − 0.5K2 +R1 +R2

+R3 − 2K1 − 0.5K2 −K1 −K2 −K3

C:
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This is 3 cover

H(W1,W2,W3,W4) ≤ H(X1, X2, X3) +H(X1, X2, X4) +H(X1, X3, X4) (2.176)

−H(W1,W2,W3)−H(W1,W2,W3,W4)

≤ 2R1 +R2 +R3 − 3K1 −K2 + 2R1 +R2 +R4

− 3K1 −K2 + 2R1 +R3 +R4 − 3K1

−K2 −K1 −K2 −K3 − (K1 +K2 +K3 +K4)

D:

This is 3 cover

H(W1,W2,W3,W4) ≤ H(X1, X2, X3) +H(X1, X2, X4) +H(X1, X3, X4) (2.177)

−H(W1,W2,W3)−H(W1,W2,W3,W4)

≤ R1 +R2 +R3 − 2K1 − .5K2 +R1 +R2 +R3 − 2K1 − 0.5K2

+R1 +R3 +R4 − 2K1 − 0.5K2

−K2 −K1 −K2 −K3 − (K1 +K2 +K3 +K4)

E:

This is 4 cover

H(W1,W2,W3,W4) ≤ H(X1, X2, X3) +H(X1, X2, X4) +H(X1, X3, X4) (2.178)

+H(X2, X3, X4)−H(W1,W2,W3)− 2H(W1,W2,W3,W4)

≤ R1 +R2 +R3 − 2K1 − .5K2 +R1 +R2 +R3 − 2K1 − .5K2)

+R1 +R3 +R4 − 2K1 − .5K2 +R2 +R3 +R4 − 2K1 − .5K2

−K2 −K1 −K2 −K3 − 2(K1 +K2 +K3 +K4)
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2.8 Concluding Remarks

This chapter considered the problem of coding over broadcast networks with multiple

(multicast) messages and more than two sink nodes. The standard cut-set bounds, which

are known to be loose in general, are closely related to union as a specific set operation

to combine different basic cuts of the network. A new set of network coding bounds

(termed as generalized cut-set bounds), which relate the basic cuts of the network via a

variety of set operations (not just the union), were established via the submodularity of

the Shannon entropy. It was shown that the generalized cut-set bounds (together with

the standard cut-set bounds) provide a precise characterization of the capacity region of

the general combination network with three sink nodes and the common-v.s.-sum-private

capacity region of the general symmetrical combination network (with arbitrary number

of sink nodes).

Our ongoing work focuses primarily on further understanding the strength and the

limitations of the generalized cut-set bounds established in this chapter. In particular,

it would be interesting to see whether the generalized cut-set bounds are tight for the

symmetrical capacity region of the general symmetrical combination network, which was

recently characterized by Tian [14].
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3. LATENCY CAPACITY REGION FOR GENERAL BROADCAST CHANNEL∗

3.1 Introduction

The capacity region of broadcast channel has been studied in various different set-

tings [1, 16]. The general broadcast channel with complete message set represents a com-

munication scenario in which the source node transmits a different message to each distinct

subset of receivers. More specifically, for the general broadcast channel with the source

node s and K receivers {tk : k ∈ [K]}, a complete message set at the source node s con-

sists of 2K − 1 independent messages pertaining to each non-empty subset of receivers:

W = {wU : ∅ 6= U ⊆ [K]}

where the message wU is intended for all sink nodes from {tk : k ∈ U}. Thus, the set of

the messages intended for the sink nodes tk is given by:

Wk = {wU : k ∈ U ⊆ [K]} , ∀k ∈ [K]. (3.1)

With a slight abuse of notation, we shall denote the rate of the message wU by RU (instead

of the more consistent notation RwU ).

Instead of asking the most fundamental question regarding the characterization of the

capacity region for this channel, we are interested in a slightly different, but still funda-

mental concept known as multicast capacity region for a broadcast channel.

In this set up, suppose that the achievability of a rate tuple C := (CU : U ⊆ [K]) in the

∗ c©[2016] IEEE. Reprinted, with permission, from [ A. Salimi, T. Liu, and S. Cui, “Polyhedral de-
scription of symmetrical latency capacity region of broadcast channels,” in Proceedings of the 2014 IEEE
International Symposium on Information Theory, Honolulu, HI, June–July 2014.]
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2K − 1 dimensional capacity region is given. The fundamental question of interest is that

what are the set of all points that their achievability can be inferred just by knowing the

achievability of the rate tuple C)? The closure of all such achievable rate tuples is referred

to as C-multicast region for a broadcast channel. It is trivial to see that all the rate tuples

that are element-wise marginalized by C, belong to the C-multicast region. For simplicity,

through the rest of the chapter, we may drop the term C and we will refer to this region as

multicast region.

It has been shown that the multicast region of the broadcast channel with complete mes-

sage set, is independent of the quality of the broadcast channel [2]. Furthermore, it can be

essentially transformed into a network coding problem over a combination network [3]. In

this regard, the capacity region of the associated network coding problem is the multicast

region of a broadcast channel. The topology of the corresponding combination network

consists of three layers of nodes. The top layer consists of the source node s and the bot-

tom layer consists of all the K users of the original broadcast channel {tk : k ∈ [K]}.

The middle layer consists of 2K − 1 intermediate nodes, each connecting to the source

node s and a nonempty subset of sink nodes. While the links from the source node s to

the intermediate nodes have finite capacities, the links from the intermediate nodes to the

sink nodes are all assumed to have infinite capacities. More specifically, denote by vU the

intermediate node that connects to the nonempty subset U of sink nodes and aU the arc

that connects the source node s to the intermediate node vU . The link capacity for aU is

assigned as CU ∈ R+ which is a component in the achievable rate tuple C, pertaining the

subset of receivers U . Note that when CU = 0, the intermediate node vU can be effectively

removed from the network. The associate combination network for a 3-user broadcast

channel is illustrated in Figure 3.1.

For the case where the number of users is K ≤ 3, the entire C-multicast region for an

achievable rate tuple C has been established [2]. However, for the cases where number of
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ŵ

{2
,3
},
ŵ
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Figure 3.1: Associated combination network for a 3-user broadcast channel with complete
message set

users, K > 3 the C-multicast region is still unkown. For the case where K ≥ 3, Tian [14]

considered a symmetrical setting, where

RU = R|U|, ∀∅ 6= U ⊆ [K] (3.2)
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for some nonnegative rate tuple (Rk : k ∈ [K]). That is, for any nonempty subset U

of [K], the rate RU of the message wU depend on the subset U only via its cardinality. We

refer to this symmetrical setting as C-symmetrical multicast region for a broadcast chan-

nel, for any achievable rate tuple C := (C1, C2, . . . , CK). This assumption reduces the

dimension of the region to K. For this setting, Tian [14] characterized the symmetrical

multicast region. Tian’s approach is based on rate splitting and pairwise rate transfer ar-

gument where a parametric description of symmetrical multicast region is given by using

the rate splitting parameters.

In this chapter, we are interested in finding a polyhedral description of this region. One

naive approach would be eliminating the rate splitting parameters from Tian’s formula-

tion, using Fourier-Motzkin elimination. However, the large number of the parameters

that should be eliminated, makes this approach significantly inefficient and almost im-

possible. Our approach is to show that a set of generalized cut-set bounds proposed in

Corollary 4, explicitly describes the capacity region. The main difficulty here is to estab-

lish an equivalency between two different description of a polytope. Unlike the traditional

network information theory problems, where the dimension of the rate region is relatively

small, establishing such an equivalency in higher dimensions is not an easy task and in

general, there is not a unique framework for that. We use polyhedral combinatorics tech-

niques to show that every maximal vector in the polytope given by Generalized Cut-Set

bounds is achievable using a successive encoding scheme.

3.2 Main Results

Tian [14] showed that the symmetrical multicasting region is given by the set of non-

negative rate tuples (Rk : k ∈ [K]) satisfying:

Rj ≤
K∑
i=1

φi,jri,j, ∀j ∈ [K] (3.3)

54



for some nonnegative reals (ri,j : i, j ∈ [K]) satisfying

K∑
j=1

ri,j ≤ Ci, ∀i ∈ [K] (3.4)

where

φi,j :=



 K − i

j − i


−1 j − 1

j − i

 , if i < j

 i

i− j


−1 K − j

i− j

 , if i > j

1, if i = j.

(3.5)

Our main result here is a precise polyhedral description of the symmetrical multicast

region for a K-user broadcast channel , as summarized in the following theorem.

Theorem 3. The (Ck : k ∈ [K])-symmetrical multicast region of a K-user broadcast

channel is given by the set of rate tuples (Rk : k ∈ [K]) satisfying

{
K∑
j=1

dQ(j)Rj ≤
K∑
j=1

dQ(j)Cj, ∀Q ⊆ [K]− {1}
}

(3.6)

where

dQ(j) :=

 K

j

 j∑
r=1

βQ(r). (3.7)

The converse part of the theorem follows directly from Corollary 4 where it has been

shown that the generalized cut-set bounds are in fact an upper bound on the associated

combination network. Consequently, they are an upper bound on the multicast region of
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the broadcast network. More specifically

R(W(r)) =
∑

{U⊆[K]:|U|≥r}

RU =
K∑
j=r

 K

j

Rj (3.8)

and

C(A(r)) =
∑

{U⊆[K]:|U|≥r}

RU =
K∑
j=r

 K

j

Cj, ∀r ∈ [K] (3.9)

for the above symmetrical setting and the choice of following simple cuts:

Ak = {aU : k ∈ U ⊆ [K]} , ∀k ∈ [K]. (3.10)

The forward part of the theorem follows from a characterization of the maximum vectors

in the rate region (3.6) and a successive encoding scheme. The details of the proof are

provided in Section 3.2.1.

We conclude our discussions on combination networks with the following comparison

between our result and that of Tian’s [14]:

• Tian’s approach in [14] is converse-centric in that the forward part of the theorem is

directly built on a rate splitting scheme, and the main challenge there was to prove

the converse result without relying on a polyhedral description of the rate region.

• By comparison, our approach is forward-centric in that the converse part of the

theorem follows directly from the generalized cut-set bounds (established systemat-

ically). The onus of the proof is on the forward part, where a successive encoding

scheme (rather than rate splitting) is used.

• The problem of establishing the equivalence between Tian’s characterization of
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the symmetrical capacity region and ours is prototypical in polyhedral combina-

torics [17]. However, we have not been able to establish such an equivalence using

conventional polyhedral combinatorics techniques.

3.2.1 Achievability Proof of Theorem 3

We only need to show that every symmetrical rate tuple (Rk : k ∈ [K]) in the rate

region (3.6) is achievable. The scheme that we shall consider is successive encoding,

which we describe as follows.

For any j ∈ [K] let ej be a vector in RK such that ej,i = 0 for any i 6= j and ej,j = 1.

For any j ∈ [K − 1] define

v+
j := φj+1,jej − ej+1 and v−j := φj,j+1ej+1 − ej. (3.11)

By using a maximum-distance separable (MDS) code, it can be shown [14] that symmet-

rical rate vector

R = C + λjv
∗
j

is achievable for any j ∈ [K − 1], λj ∈ R+, and ∗ ∈ {+,−} such that R ≥ 0, where

R := (R1, R2, . . . , RK) and C := (C1, C2, . . . , CK). Further note that the achievability of

the rate vector R induces a virtual symmetrical combination network1 with symmetrical

link-capacity constraints R, for which the aforementioned MDS code can be applied again.

By successively applying MDS codes over (virtual) symmetrical combination networks,

1The difference between a virtual combination network and an actual combination network is that while
the links in an actual network are always reliable, there is a nonzero probability that the links in a virtual
network are in outage. The outage probability, however, diminishes as the block length of the utilized MDS
code increases.
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any symmetrical rate vector

R = C +
K−1∑
j=1

λjv
∗(j)
j (3.12)

for any (λj : j ∈ [K−1]) ∈ RK−1
+ , ∗ : [K−1]→ {+,−}, and permutation π : [K−1]→

[K − 1] such that

Ri := Ri−1 + λπ(i)v
∗(π(i))
π(i)

= C +
i∑

j=1

λπ(j)v
∗(π(j))
π(j) ≥ 0, ∀i ∈ [K − 1] (3.13)

is achievable, where R0 := C. Our goal next is to show that any maximum rate vector2 in

the rate region (3.6) can be represented in the form of (3.12) and satisfying all constraints

in (3.13).

Towards the above goal, let us first note that for anyQ ⊆ [K]−{1}, the corresponding

constraint in (3.6) can be equivalently written as:

K∑
j=1

dQ(j)(Rj − Cj) ≤ 0.

Therefore, any rate tuple R in the rate region (3.6) can be written as C+x for some vector

−C ≤ x ∈ C, where

C :=

{
x ∈ RK :

K∑
j=1

dQ(j)xj ≤ 0

}
. (3.14)

Furthermore, a maximum rate tuple R in the rate region (3.6) can be written as C + x for

some vector −C ≤ x ∈ C, where x is maximal in C.
2For any given P ⊆ RK , a vector x ∈ P is said to be maximal in P if any y ∈ P such that y ≥ x must

satisfy y = x.

58



The following proposition provides a characterization of the maximum vectors in C.

Proposition 1. For any maximum vector x ∈ C, there exists a function ∗ : [K − 1] →

{+,−} such that x can be written as a conic combination of the vectors from {v∗(j)j : j ∈

[K − 1]}.

By Proposition 1, any maximum rate vector in the rate region (3.6) can be represented

in the form of (3.12). Our next proposition shows that a permutation π : [K−1]→ [K−1]

can be found such that all constraints in (3.13) are satisfied.

Proposition 2. Let x be a vector inRK such that

−C ≤ x =
K−1∑
j=1

λjv
∗(j)
j (3.15)

for some C ≥ 0, ∗ : [K − 1] → {+,−}, and (λj : j ∈ [K − 1]) ∈ RK−1
+ . Then, there

exists a permutation π : [K − 1]→ [K − 1] such that

xi :=
i∑

j=1

λπ(j)v
∗(π(j))
π(j) ≥ −C, ∀i ∈ [K − 1]. (3.16)

Combining the results of Propositions 1 and 2 proves that any maximum rate vector in

the rate region (3.6) can be achieved by a successive encoding scheme. By definition, the

symmetrical capacity region is a compact set. It thus follows that any rate vector in the

rate region (3.6) is achievable. For the remaining part of this section, we shall complete

the proof of Theorem 3 by proving Propositions 1 and 2.

3.2.1.1 Proof of Proposition 1

Let us begin with the following two lemmas.
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Lemma 7. For any Q ⊆ [K]− {1} and any j ∈ [K − 1], we have

dQ(j)

dQ(j + 1)
=

 φ−1
j+1,j, if j + 1 ∈ Q

φj,j+1, if j + 1 6∈ Q.
(3.17)

Proof. Fix j ∈ [K − 1]. When j + 1 ∈ Q, by the definition of βQ(r) in (2.89) we have

βQ(j + 1) = 0. In this case, we have

j+1∑
r=1

βQ(r) =

j∑
r=1

βQ(r)

and hence

dQ(j)

dQ(j + 1)
=

 K

j

∑j
r=1 βQ(r)

 K

j + 1

∑j+1
r=1 βQ(r)

=

 K

j


 K

j + 1


=

j + 1

K − j =
1

φj+1,j

.

When j + 1 6∈ Q, let us show that we always have

∑j
r=1 βQ(r)∑j+1
r=1 βQ(r)

=
j

j + 1
(3.18)
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and hence

dQ(j)

dQ(j + 1)
=

 K

j

∑j
r=1 βQ(r)

 K

j + 1

∑j+1
r=1 βQ(r)

=

 K

j

 j

 K

j + 1

 (j + 1)

=
j

K − j = φj,j+1.

To prove (3.18), let us consider the following two cases separately.

Case 1: Q = ∅. In this case, by our convention βQ(r) = 1 for any r ∈ [K]. We thus

have

j∑
r=1

βQ(r) = j, ∀j ∈ [K − 1]

and hence (3.18).

Case 2: Q 6= ∅. In this case, let us write βQ(r) more explicitly as:

βQ(r) =



∏K
l=1 qt, if 1 ≤ r < q1∏K

l=1(qt − 1), if q|Q| < r ≤ K∏t−1
l=1(qt − 1)

∏K
l=t qt, if qt−1 < r < qt

for some t ∈ [|Q|]− {1}.
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When j + 1 < q1, we have

∑j
r=1 βQ(r)∑j+1
r=1 βQ(r)

=
j
∏K

l=1 qt

(j + 1)
∏K

l=1 qt
=

j

j + 1
.

When j + 1 > q1, let t∗ be the largest t ∈ [|Q|] such that qt < j + 1. Then, for any

qt∗ ≤ m ≤ j + 1, we have

m∑
r=1

βQ(r) = (q1 − 1)
K∏
l=1

ql

+
t∗∑
t=2

(
(qt − qt−1 − 1)

t−1∏
l=1

(ql − 1)
K∏
l=t

ql

)

+ (m− qt∗)
t∗∏
l=1

(ql − 1)
K∏

l=t∗+1

ql. (3.19)

The second term on the right-hand side of (3.19) can be simplified as follows:

t∗∑
t=2

(
(qt − qt−1 − 1)

t−1∏
l=1

(ql − 1)
K∏
l=t

ql

)

=
t∗∑
t=2

(
t∏
l=1

(ql − 1)
K∏
l=t

ql

)
−

t∗∑
t=2

(
t−1∏
l=1

(ql − 1)
K∏

l=t−1

ql

)

=
t∗∑
t=2

(
t∏
l=1

(ql − 1)
K∏
l=t

ql

)
−

t∗−1∑
t=1

(
t∏
l=1

(ql − 1)
K∏
l=t

ql

)

=
t∗∏
l=1

(ql − 1)
K∏
l=t∗

ql − (q1 − 1)
K∏
l=1

ql. (3.20)

62



Substituting (3.20) into (3.19), we have

m∑
r=1

βQ(r)

=
t∗∏
l=1

(ql − 1)
K∏
l=t∗

ql + (m− qt∗)
t∗∏
l=1

(ql − 1)
K∏

l=t∗+1

ql

= m

(
t∗∏
l=1

(ql − 1)
K∏

l=t∗+1

ql

)

for any qt∗ ≤ m ≤ j + 1. Note that qt∗ < j + 1 implies that j ≥ qt∗ . We thus have

∑j
r=1 βQ(r)∑j+1
r=1 βQ(r)

=
j
(∏t∗

l=1(ql − 1)
∏K

l=t∗+1 ql

)
(j + 1)

(∏t∗

l=1(ql − 1)
∏K

l=t∗+1 ql

) =
j

j + 1
.

Combining the above two cases completes the proof of (3.18) and hence the entire

lemma.

Lemma 8. For anyQ ⊆ [K]−{1}, define dQ := (dQ(1), dQ(2), . . . , dQ(K)) and ∗Q, ∗Q :

[K − 1]→ {+,−} by:

∗Q(j) :=

 +, j + 1 ∈ Q

−, j + 1 6∈ Q
(3.21)

and

∗Q(j) :=

 −, j + 1 ∈ Q

+, j + 1 6∈ Q.
(3.22)

Then, we have

〈dQ,v∗Q(j)
j 〉 = 0 and 〈dQ,v∗Q(j)

j 〉 < 0, ∀j ∈ [K − 1] (3.23)
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where 〈dQ,v〉 denotes the inner product between the vectors dQ and v.

Proof. Fix Q ⊆ [K]− {1}. Note that for any j ∈ [K − 1], we have

〈dQ,v+
j 〉 = φj+1,jdQ(j)− dQ(j + 1)

= dQ(j + 1)

(
φj+1,jdQ(j)

dQ(j + 1)
− 1

)
.

By Lemma 7, when j + 1 ∈ Q, we have

dQ(j)

dQ(j + 1)
= φ−1

j+1,j

and hence

〈dQ,v+
j 〉 = 0.

When j + 1 6∈ Q, we have

dQ(j)

dQ(j + 1)
= φj,j+1

and hence

〈dQ,v+
j 〉 = dQ(j + 1) (φj+1,jφj,j+1 − 1)

= dQ(j + 1)

(
K − j
j + 1

j

K − j − 1

)
= −dQ(j + 1)

j + 1

< 0.
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Similarly, for any j ∈ [K − 1], we have

〈dQ,v−j 〉 = −dQ(j) + φj,j+1dQ(j + 1)

= dQ(j)

(
φj,j+1dQ(j + 1)

dQ(j)
− 1

)

By Lemma 7, when j + 1 ∈ Q, we have

dQ(j)

dQ(j + 1)
= φ−1

j+1,j

and hence

〈dQ,v−j 〉 = dQ(j) (φj,j+1φj+1,j − 1)

= dQ(j)

(
j

K − j
K − j
j + 1

− 1

)
= −dQ(j)

j + 1

< 0.

When j + 1 6∈ Q, we have

dQ(j)

dQ(j + 1)
= φj,j+1

and hence

〈dQ,v−j 〉 = 0.

We have thus completed the proof of the lemma.

65



Lemma 9. For any Q ⊆ [K]− {1}, the set of vectors

{
v
∗Q(1)
1 ,v

∗Q(2)
2 , . . . ,v

∗Q(K−1)
K−1 ,v

∗Q(1)
1

}

are linearly independent.

Proof. Let Q be a subset of [K]− {1} and consider it fixed. Assume that

K−1∑
j=1

λjv
∗Q(j)
j + λ1v

∗Q(1)
1 = 0 (3.24)

for some collection of K reals (λ1, λ2, . . . , λK−1, λ1). Our goal is to show that (3.24)

implies that

λ1 = λ2 = · · · = λK−1 = λ1 = 0.

Let us first show that λk = 0 for any k ∈ [K − 1]−{1}. By the assumption (3.24), we

have

0 =

〈
eK ,

K−1∑
j=1

λjv
∗Q(j)
j + λ1v

∗Q(1)
1

〉

= λK−1

〈
eK ,v

∗Q(K−1)
K−1

〉
=

 −λK−1, if ∗Q (K − 1) = +

φK−1,KλK−1, if ∗Q (K − 1) = −

which implies that λK−1 = 0 in both cases. Next, assume that λj+1 = 0 for some j ≥ 2.
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By the assumption (3.24), we have

0 =

〈
ej+1,

K−1∑
j=1

λjv
∗Q(j)
j + λ1v

∗Q(1)
1

〉

= λj

〈
ej+1,v

∗Q(j)
j

〉
+ λj+1

〈
ej+1,v

∗Q(j+1)
j+1

〉
= λj

〈
ej+1,v

∗Q(j)
j

〉
=

 −λj, if ∗Q (j − 1) = +

φj,j+1λj, if ∗Q (j − 1) = −

which implies that that λj = 0 in both cases. Through the above induction, we conclude

that λk = 0 for any k ∈ [K − 1]− {1}.

Next, let us show that we have λ1 = λ1 = 0 as well. By the assumption (3.24) and

using the fact that λk = 0 for any k ∈ [K − 1]− {1}, we have

0 =
K−1∑
j=1

λjv
∗Q(j)
j + λ1v

∗Q(1)
1

= λ1v
∗Q(1)
1 + λ1v

∗Q(1)
1 =

(
λ1φ2,1 − λ1

)
e1 +

(
λ1φ1,2 − λ1

)
e2, if ∗Q (1) = +(

λ1φ2,1 − λ1

)
e1 +

(
λ1φ1,2 − λ1

)
e2, if ∗Q (1) = −.

(3.25)

Note that

φ2,1φ1,2 =
2

(K − 1)2
6= 1

so (3.25) implies that λ1 = λ1 = 0 in both cases. We have thus completed the proof of the

lemma.

We are now ready to prove the proposition. Let x be a maximum vector in C. By the
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definition of C, we have

〈dQ,x〉 ≤ 0, ∀Q ⊆ [K]− {1}. (3.26)

Since x is maximal in C, there must exist a subset Q ⊆ [K]− {1} such that 〈dQ,x〉 = 0.

Otherwise, let

δ := min
Q⊆[K]−{1}

[
−〈dQ,x〉
dQ(1)

]
> 0

and we have

〈dQ,x + δe1〉 = 〈dQ,x〉+ δdQ(1) ≤ 0, ∀Q ⊆ [K]− {1}

and x + δe1 > x

violating the maximality of x in C.

Assume that

〈dQ′ ,x〉 = 0 (3.27)

for some Q′ ⊆ [K]− {1}. By Lemma 9, the set of vectors

{
v
∗Q′ (1)
1 ,v

∗Q′ (2)
2 , . . . ,v

∗Q′ (K−1)

K−1 ,v
∗Q′ (1)
1

}

are linearly independent and hence span the entireRK . Let

x =
K∑
j=1

λjv
∗Q′ (j)
j + λ1v

∗Q′ (1)
1 .
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By Lemma 8, we have

〈dQ′ ,v∗Q′ (j)j 〉 = 0, ∀j ∈ [K − 1]

and 〈dQ′ ,v∗Q′ (1)
1 〉 < 0.

Combined with (3.27), we have

0 = 〈dQ′ ,x〉 =
K−1∑
j=1

λj〈dQ′ ,v∗Q′ (j)j 〉+ λ1〈dQ′ ,v∗Q′ (1)
1 〉

= λ1〈dQ′ , v∗Q′ (1)
1 〉

implying that λ1 = 0 and hence

x =
K∑
j=1

λjv
∗Q′ (j)
j .

To show that λ1 ≥ 0, consider the subset Q′′ ⊆ [K] − {1} for which j + 1 ∈ Q′′ for

any j > 1 if and only if j + 1 ∈ Q′ and 2 ∈ Q′′ if and only if 2 6∈ Q′. We thus have

∗Q′′(j) :=

 ∗Q′(1), if j = 1

∗Q′(j), if j 6= 1

∗Q′′(j) :=

 ∗Q′(1), if j = 1

∗Q′(j), if j 6= 1
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for any j ∈ [K − 1]. Again by Lemma 8, we have

〈dQ′′ ,v∗Q′′ (j)j 〉 = 0, ∀j ∈ [K − 1]

and 〈dQ′′ ,v∗Q′′ (1)
1 〉 < 0.

Combined with (3.26), we have

0 ≥ 〈dQ′′ ,x〉 =
K∑
j=1

λj〈dQ′′ ,v∗Q′ (j)j 〉

= λ1〈dQ′′ ,v∗Q′′ (1)
1 〉+

K∑
j=2

λj〈dQ′′ ,v∗Q′′ (j)j 〉

= λ1〈dQ′′ ,v∗Q′′ (1)
1 〉

and hence

λ1 ≥ 0.

Similarly, we can show that λj ≥ 0 for any j ∈ [K − 1]. We have thus completed the

proof of the proposition.

3.2.1.2 Proof of Proposition 2

Let us first note that, to find a permutation π : [K−1]→ [K−1] that satisfies (3.16), it

suffices to find a permutation π : [K−1]→ [K−1] such that for any k ∈ [K], v∗(π(j))
π(j),k < 0

implies that v∗(π(i))
π(i),k ≤ 0 for all i > j. This can be seen as follows. Fix k ∈ [K]. Let j(k)

be the smallest j ∈ [K − 1] such that v∗(π(j))
π(j),k < 0 (if it exists). Then, we have v∗(π(j))

π(j),k ≥ 0
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for any j < j(k) and hence

xi,k =
i∑

j=1

λπ(j)v
∗(π(j))
π(j),k ≥ 0 ≥ −Ck, ∀i < j(k).

Furthermore, since v∗(π(j))
π(j),k ≤ 0 for any j > j(k), we have

xi,k = xi+1,k − λπ(i+1)v
∗(π(i+1))
π(i+1),k ≥ xi+1,k, ∀i ≥ j(k).

We thus have

xj(k),k ≥ xj(k)+1,k ≥ · · · ≥ xK−1,k ≥ −Ck.

To find a permutation π : [K − 1] → [K − 1] such that for any k ∈ [K], v∗(π(j))
π(j),k < 0

implies that v∗(π(i))
π(i),k ≤ 0 for all i > j, let us construct a directed graph with the vertex set

given by {vj : j ∈ [K − 1]}. For each j ∈ [K − 1], we shall draw an arc from vertex

vj+1 to vertex vj if ∗(j) = + or an arc from vertex vj to vertex vj+1 if ∗(j) = −. We say

that two vertices vi and vj are adjacent if |i − j| ≤ 1. Note that all arcs in the graph are

between adjacent vertices and between each pair of adjacent vertices there is one and only

one arc. Therefore, the constructed graph is acyclic and there exists a topological order

for the vertices of the graph.

For each j ∈ [K − 1], denote by aj the arc between the vertices vj and vj+1. For

each j ∈ [K − 1], denote the starting and ending vertices of aj by v+(aj) and v−(aj),

respectively. By the construction of the graph, for each j ∈ [K − 1], we have v+(aj) = vj

if ∗(j) = − and v+(aj) = vj+1 if ∗(j) = +. For any given order of the vertex set [K − 1],

an oder of the arc set {aj : j ∈ [K − 1]} is said to be compatible with the order of the

vertex set if for any two arcs ai and aj , we have ai ≺ aj if v+(ai) ≺ v+(aj).
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vk−1

vk

vk+1

vk−1

vk

vk+1

ak−1 ak−1

ak ak

Case 1 Case 2

Figure 3.2: Two cases for v∗(k−1)
k−1,k v

∗(k)
k,k < 0.

Now consider an order of the arc set {aj : j ∈ [K − 1]} that is compatible with

a topological order of the vertex set {vj : j ∈ [K − 1]}. Denote such an order by a

permutation π : [K − 1] → [K − 1], i.e., π(i) ≤ π(j) if and only if ai � aj . It remains

to show that such a permutation π satisfies the desired property that for any k ∈ [K],

v
∗(π(j))
π(j),k < 0 implies that v∗(π(i))

π(i),k ≤ 0 for all i > j.

Fix k ∈ [K]. Note that among all j ∈ [K − 1], v∗(j)j,k 6= 0 only when j = k− 1 > 0 and

j = k < K. Therefore, we only need to consider the cases where v∗(k−1)
k−1,k v

∗(k)
k,k < 0 (see

Figure 3.2 for an illustration) and show that π(k) < π(k − 1) if v∗(k−1)
k−1,k < 0 < v

∗(k)
k,k and

π(k − 1) < π(k) if v∗(k)
k,k < 0 < v

∗(k−1)
k−1,k .

Case 1: v∗(k−1)
k−1,k < 0 and v∗(k)

k,k > 0. By the definition of v+
j and v−j , we have ∗(k −

1) = ∗(k) = +. We thus have v+(ak−1) = vk and v+(ak) = vk+1. By the topological

order of the vertex set, we have vk+1 ≺ vk, which implies that ak ≺ ak−1 and hence

π(k) < π(k − 1).

Case 2: v∗(k−1)
k−1,k > 0 and v∗(k)

k,k < 0. By the definition of v+
j and v−j , we have ∗(k −

1) = ∗(k) = −. We thus have v+(ak−1) = vk−1 and v+(ak) = vk. By the topological
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order of the vertex set, we have vk−1 ≺ vk, which implies that ak−1 ≺ ak and hence

π(k − 1) < π(k).

Combining the above two cases completes the proof of the proposition.

3.3 Conclusion

This chapter gives the polyhedral description of the multicast capacity region of a

broadcast channel. It is shown that a comprehensive notion of the cut-set bound, so called

generalized cut-set bound, characterizes entire capacity region. Furthermore, we show

that every maximum rate vector can be achieved by a simple successive encoding scheme.

Although this chapter, shed a light on the structure of the symmetric multicast capacity

polytope for a broadcast channel, the multicast capacity region of the non-symmetric ver-

sion remains an open problem.
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4. ON THE AVERAGE ENTROPY REGIONS∗

4.1 Introduction

Let In = {1, · · · , n} and assume a fixed order among all 2n−1 subsets of In. A length-

(2n−1) vector (hA : ∅ 6= A ⊆ In) is called entropic if a set of n jointly distributed discrete

random variables (X1, · · · , Xn) can be found such that hA = H(XA) , H(Xi : i ∈ A)

for any ∅ 6= A ⊆ In. The collection of all length-(2n − 1) entropic vectors is called the

entropy region for n random variables and is usually denoted by Γ∗n. It has been shown

that even for n = 3, the entropy region Γ∗n does not have nice topological properties. For

the purposes of characterizing unconstrained information inequalities and network coding

capacity regions, however, it is sufficient to study Γ
∗
n, the closure of Γ∗n. Unlike Γ∗n, it is

known that Γ
∗
n is a convex cone for any n ∈ N [12, Th. 15.5].

A natural outer bound on Γ
∗
n is the set of length-(2n − 1) vectors that are constrained

only by the Shannon type inequalities. We shall call this outer bound the Shannon entropy

region for n random variables and denote it by Γn. In its most compact form, Γn can be

described using a total of

n+

(
n

2

)
2n−2

linear inequalities [12, Eq. 14.12]. The existence of the Zhang-Yeung non-Shannon type

inequality implies that Γ
∗
n $ Γn for n ≥ 4 [18, Th. 4] (although they coincide for

n = 1, 2, 3). In fact, unlike the Shannon entropy region Γn which is polyhedral for any

∗Part of this chapter is reprinted, with permission, from [J. Chen, A. Salimi, T. Liu, and C. Tian, “Orbit-
Entropy Cones and Extremal Pairwise Orbit-Entropy Inequalities,” in the Proceedings of the 2016 IEEE
International Symposium on Information Theory, pp.2614-2618.]
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n ∈ N, the boundary of Γ
∗
n is known to be curved for n ≥ 4 [19, Th. 1]. An explicit

characterization of Γ
∗
n for n ≥ 4 is widely considered out of reach.

Fortunately, to solve any specific case of network coding, it often suffices to under-

stand a (low-dimensional) projection of Γ
∗
n (instead of acquiring the full knowledge of

Γ
∗
n). Indeed, the Shannon type inequalities have been shown to yield exact characteri-

zations of fundamental information-theoretic limits for many highly non-trivial problems

(particularly those with certain symmetric structures [14, 20–25]), which suggests that the

projections of Γ
∗
n that are relevant to the problems under the consideration in fact coincide

with those of Γn.

A natural questions arises: Under what kind of projections does the gap between Γ
∗
n

and Γn vanish? In this work we shall focus on the projections induced by permutation

groups over In since such groups capture many important symmetry constraints encoun-

tered in engineering problems; the projected versions of Γ
∗
n and Γn will be referred to as

the orbit-entropy cones and the Shannon orbit-entropy cones, respectively. Note that both

Γ
∗
n and Γn, in their original forms, suffer from the curse of dimensionality. The essence

of the new formulation is dimensionality reduction via symmetry considerations, which

alleviates analytical difficulties and computational complexities.

4.1.1 Group Action and Orbits

Let G be a permutation group over In. The group action of G on the subsets of In
(induced by that on the elements of In) is given by

g(A) = {g(a) : a ∈ A}, g ∈ G,A ⊆ In.

In this work, we focus on the following permutation groups.

1. Partitioned symmetry group SN1 × · · · × SNq : This group is the product of the
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symmetric groups SNi
on Ni, i ∈ Ik, where N1,N2, . . . ,Nq form a partition of In.

The action of g , (sN1 , sN2 , . . . , sNq) ∈ SN1 × · · · × SNq on a subset A of In is

given by

g(A) =

q⋃
i=1

sNi
(A ∩Ni).

2. Cyclic group Cn: This group consists of n elements gi, i ∈ In, and the action of gi

on a subset A of In is given by

gi(A) = {(a+ i)n : a ∈ A},

where (·)n means modulo n.

For each subset A of In, we refer to the collection of distinct sets g(A), g ∈ G, as an

orbit. For an orbitO, its cardinality is denoted by |O|; the elements ofO all have the same

cardinality, which is denoted by `O. The orbits of G form a partition of 2In . Counting the

number of orbits of a permutation group G, denoted by ω(G), is a classical problem in

combinatorics. It is easy to see that

ω(SN1 × · · · × SNq) =

q∏
i=1

(|Ni|+ 1);

moreover, the number of orbits O of SN1 × · · · × SNq with `O = k is given by Nq(k),

k ∈ {0} ∪ In, which can be computed using the following recursive formula

N0(k) = I(k = 0),

Ni(k) =

|Ni|∑
j=0

Ni−1(k − j), k ∈ {0} ∪ In, i ∈ Iq,

76



where I(·) is the indicator function. It is also well known that the number of orbits of Cn

is given by

ω(Cn) =
1

n

∑
d|n

φ(d)2
n
d ,

where φ(·) is Euler’s totient function, and the sum is over divisors of n; moreover, the

number of orbits O with `O = k is given by

1

n

∑
d|gcd(k,n−k)

φ(d)

(n
d
k
d

)
, k ∈ {0} ∪ In,

where the sum is over common divisors of k and n− k.

Let O1, · · · ,Oω(G)−1 be the collection of all distinct non-empty1 orbits of G. For n

jointly distributed discrete random variables (X1, · · · , Xn), the orbit-entropies are defined

as

HOk
=

1

|Ok|
∑
A∈Ok

H(XA), k ∈ Iω(G)−1.

It is instructive to consider the following examples.

1. The non-empty orbits of C3 are given by

O1 = {{1}, {2}, {3}},

O2 = {{1, 2}, {2, 3}, {1, 3}},

O3 = {{1, 2, 3}},
1An orbit is said to be empty if its only element is the empty set.
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and we have

HO1 =
1

3
[H(X1) +H(X2) +H(X3)],

HO2 =
1

3
[H(X1, X2) +H(X2, X3) +H(X1, X3)],

HO3 = H(X1, X2, X3).

2. The non-empty orbits of S{1,2} × S{3} are given by

O1 = {{1}, {2}},

O2 = {{1, 2}},

O3 = {{3}},

O4 = {{1, 3}, {2, 3}},

O5 = {{1, 2, 3}},

and we have

HO1 =
1

2
[H(X1) +H(X2)],

HO2 = H(X1, X2),

HO3 = H(X3),

HO4 =
1

2
[H(X1, X3) +H(X2, X3)],

HO5 = H(X1, X2, X3).

78



For any length-(2n − 1) vector (hA : ∅ 6= A ⊆ In), the orbit-averages are defined as

hOk
=

1

|Ok|
∑
A∈Ok

hA, k ∈ Iω(G)−1.

We shall call the above mapping from (hA : ∅ 6= A ⊆ In) to (hO1 , · · · , hOω(G)−1
) the

projection induced by G and denote it by PG. It is clear that the orbit-entropy region (i.e.,

the set of all orbit-entropy vectors (HO1 , · · · , HOω(G)−1
)) is given by PGΓ∗n. The focus of

this work, however, is not PGΓ∗n, but rather PGΓ
∗
n and PGΓn, which will be referred to as

the orbit-entropy cone and the Shannon orbit-entropy cone, respectively.

Let Sn be the symmetric group over In. A set Θ of length-(2n − 1) vectors is said to

be permutation symmetric if hg ∈ Θ for any h ∈ Θ and any g ∈ Sn, where h = (hA : ∅ 6=

A ⊆ In) and hg = (hg(A) : ∅ 6= A ⊆ In) Note that both Γ∗n (and hence Γ
∗
n) and Γn are

permutation symmetric for any n ∈ N. The following result implies that characterizing

PGΓ
∗
n (PGΓn) is equivalent to characterizing the set of vectors in Γ

∗
n (Γn) satisfying the

symmetry constraints induced by G.

Proposition 3. For any convex, permutation symmetric set Θ of length-(2n − 1) vectors

and any permutation group G over In, we have PGΘ = PGΘ′, where

Θ′ = {h ∈ Θ : hA = hA′ for all A,A′ in the same orbit of G}.

Proof. Clearly we have PGΘ ⊇ PGΘ′. To show the opposite inclusion, consider PGh for

some arbitrary h ∈ Θ. Since Θ is permutation symmetric, it follows that hg ∈ Θ for any

g ∈ G. By the convexity of Θ, the group average 1
|G|
∑

g∈G hg ∈ Θ. Furthermore, by the

Lagrange theorem,

1

|G|
∑
g∈G

hg(A) =
1

|O|
∑
A∈O

hA = hO
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for any non-empty orbit O of G and any A ∈ O. Therefore, we have

1

|G|
∑
g∈G

hg ∈ Θ′,

PG

( 1

|G|
∑
g∈G

hg

)
= PGh.

This completes the proof of the opposite inclusion PGΘ ⊆ PGΘ′.

4.2 Partitioned Symmetry Groups

4.2.1 q = 1

As a warm-up exercise, we first consider the case q = 1, i.e., the symmetric group

Sn. In a certain sense, PSn is the simplest projection among those induced by permutation

groups. Indeed, every permutation groupG over In is a subgroup of Sn; as a consequence,

one can obtain PSn from PG via a further projection.

It is easy to see that the non-empty orbits of Sn are given byOi = {A ⊆ In : |A| = i},

i ∈ In. The following result (which was also obtained independently in [26]) provides a

complete characterization of PSnΓ
∗
n and PSnΓn.

Proposition 4. PSnΓ
∗
n = PSnΓn = Πn, where Πn is the set of length-n vectors (hO1 , · · · , hOn)

satisfying

2hO1 − hO2 ≥ 0,

2hOi
− hOi−1

− hOi+1
≥ 0, i = 2, · · · , n− 1,

hOn − hOn−1 ≥ 0,

or equivalently, Πn is the convex polyhedral cone generated by the vectors ri , (ri,1, · · · , ri,n),

i ∈ In, with ri,k = min{i, k}, i ∈ In, k ∈ In.
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Proof. Let us define XS = {Xi, i ∈ S}. Because of symmetry, each set of elemental

inequalities in the form of I(Xi;Xj|XS) where S ⊆ [K] \ {i, j} and |S| = k.

I(Xi;Xj|XS) = hXS ,Xi
+ hXS ,Xj

− 2hXS
(4.1)

and therefore, the projection to symmetric-sum region will be

−hOi−2
+ 2hOi−1

− hOi
≥ 0. (4.2)

and the projection of the elemental inequalityH(Xi|XS\{i}) ≥ 0 will be hOK
−hOK−1

≥ 0.

Next it is easy to verify that all the extreme rays satisfy the supporting hyperplanes

of the cone described by inequalities in the Proposition4. In order to complete the proof,

we need to show that these extreme rays are The proof is by induction. It is easy to

check that it holds for K=2. Consider that the result holds for any K random variables.

From elemental inequalities, we can see that by adding the K + 1th random variable, the

conditional entropy constraint will be changed to

hOK+1
≥ hOK

(4.3)

and we will have one more extra constraint

−hOK−1
+ 2hOK

− hOK+1
≥ 0 (4.4)
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Therefore, the K + 1 hyperplanes are as follows

hOK+1
− hOK

= 0 (4.5)

−hOK−1
+ 2hOK

− hOK+1
= 0 (4.6)

−hOi−2
+ 2hOi−1

− hOi
= 0, for i ∈ {2, 3, . . . , K} (4.7)

Moreover, any extremal ray of this cone should be at the intersection of at least K

hyperplanes. Therefore, any K selection of these hyperplanes will identify a ray (which

may not be extremal). We will have 3 different cases:

Case 1: Both (4.5),(4.6) are in our selection

In this case, intersection of these hyperplanes is

hOk
− hOk−1

= 0 (4.8)

which together with any K − 2 will identify a ray in K dimension (reduces the problem

to the case with K random variables). Moreover, form induction hypothesis we know

that intersection of these vectors is given by vectors in (4.5), (4.6),(4.7). Furthermore, we

know from (4.5) tha the K + 1th coordinate of the ray, will be exactly the same as the Kth

coordinate. This will give us K − 1 rays of the induction hypothesis. The last ray in the

induction hypothesis is the ray with selecting all hyperplanes in (4.7) which will be taken

care of in the next case.

Case 2: (4.5) is in selection but not (4.6)

As we mentioned before, in this case we have the last ray of induction hypothesis, i.e.
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selecting (4.7). Furthermore, we know from (4.5) tha the K + 1th coordinate of the ray,

will be exactly the same as the Kth coordinate.

Case 2: (4.5) is not in selection but (4.6) is:

It is easy to verify that in this case the extreme ray will be (1, 2, . . . , K+1). This completes

the proof.

Note that the extreme rays {ri = (ri,1, . . . , ri,n) : i ∈ Nn} of PTΓn can all be realized

by a total-average projection of uniform matroids [27]. Since all matroids are known to be

entropic, we conclude that

PTΓn ⊆ PT cl(Γ
∗
n) (4.9)

and hence

cl(PTΓ∗n) = PTΓn. (4.10)

4.3 Cyclic Groups

4.3.1 Orbit-Entropy Cones

Since Cn = Sn for n ≤ 3, it suffices to consider n ≥ 4. One can readily verify that the

non-empty orbits of C4 are given by

O1 = {{1}, {2}, {3}, {4}},

O2 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}},

O3 = {{1, 3}, {2, 4}},

O4 = {{1, 2, 3}, {2, 3, 4}, {1, 3, 4}, {1, 2, 3}},

O5 = {{1, 2, 3, 4}},
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and the non-empty obits of C5 are given by

O1 = {{1}, {2}, {3}, {4}, {5}},

O2 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}},

O3 = {{1, 3}, {2, 4}, {3, 5}, {1, 4}, {2, 5}},

O4 = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}},

O5 = {{1, 2, 4}, {2, 3, 5}, {1, 3, 4}, {2, 4, 5}, {1, 3, 5}},

O6 = {{1, 2, 3, 4}, {2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5},

{1, 2, 3, 5}},

O7 = {{1, 2, 3, 4, 5}}.

The following results provide a complete characterization of PCnΓ
∗
n and PCnΓn for n =

4, 5. The proofs follow the same general strategy as that of Proposition 4 and are omitted.

Proposition 5. PC4Γ
∗
4 = PC4Γ4 = Ω4, where Ω4 is the set of length-five vectors (hO1 , hO2 , hO3 , hO4 , hO5)

satisfying

2hO1 − hO2 ≥ 0,

2hO1 − hO3 ≥ 0,

2hO2 − hO4 − hO1 ≥ 0,

hO2 + hO3 − hO4 − hO1 ≥ 0,

2hO4 − hO5 − hO2 ≥ 0,

2hO4 − hO5 − hO3 ≥ 0,

hO5 − hO4 ≥ 0,
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or equivalently, Ω4 is the convex polyhedral cone generated by the following six vectors:

(1, 1, 1, 1, 1), (1, 2, 2, 2, 2), (1, 2, 2, 3, 3),

(1, 2, 2, 3, 4), (1, 2, 1, 2, 2), (1, 3
2
, 2, 2, 2).

Proof. As before, it is sufficient to show that for any r from the above set of six vectors, a

positive scalar β can be found such that βr ∈ PCΓ4. Note that for the first four vectors in

the set we have r2 = r3, which is the projection of the orbits O∈ and O3. Thus, to prove

for these four vectors, it thus suffices to use the MDS codes as we did for G = Sn. Next,

to prove for r = (1, 2, 1, 2, 2), let U1 and U2 be two independent uniform variables over a

finite field F. Let X1 = X3 = U1 and X2 = X4 = U2. We have

H(XS) =



log |F|, for S ∈ O1

2 log |F|, for S ∈ O2

log |F|, for S ∈ O3

2 log |F|, for S ∈ O4

2 log |F|, for S ∈ O5

(4.11)

We thus conclude that the length-15 vector

boldsymbolh = (hS : ∅ 6= S ⊆ N4) where

hS =



log |F|, for S ∈ O1

2 log |F|, for S ∈ O2

log |F|, for S ∈ O3

2 log |F|, for S ∈ O4

2 log |F|, for S ∈ O5

(4.12)
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is entropic and hence

(log |F|)r = PCh ∈ PCΓ4 (4.13)

Finally, to prove for r = (1, 3/2, 2, 2, 2), letU1, U2, U3 andU4 be four independent uniform

variables over a finite field F. Let X1 = (U1, U2), X2 = (U2, U3), X3 = (U3, U4) and

X4 = (U4, U1). We have

H(XS) =



2 log |F|, for S ∈ O1

3 log |F|, for S ∈ O2

4 log |F|, for S ∈ O3

4 log |F|, for S ∈ O4

4 log |F|, for S ∈ O5

(4.14)

We thus conclude that the length-15 vector

boldsymbolh = (hS : ∅ 6= S ⊆ N4) where

hS =



2 log |F|, for S ∈ O1

3 log |F|, for S ∈ O2

4 log |F|, for S ∈ O3

4 log |F|, for S ∈ O4

4 log |F|, for S ∈ O5

(4.15)

is entropic and hence

(2 log |F|)r = PCh ∈ PCΓ4 (4.16)

This completes the proof.
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Remark 1. Note that the coding scheme that we considered for proving for r = (1, 3/2, 2, 2, 2)

is vector linear rather than scalar linear as we used before.

Proposition 6. PC5Γ
∗
5 = PC5Γ5 = Ω5, where Ω5 is the set of length-seven vectors

(hO1 , hO2 , hO3 , hO4 , hO5 , hO6 , hO7) satisfying

2hO1 − hO2 ≥ 0,

2hO1 − hO3 ≥ 0,

2hO2 − hO1 − hO4 ≥ 0,

hO2 + hO3 − hO1 − hO4 ≥ 0,

2hO3 − hO1 − hO5 ≥ 0,

hO2 + hO3 − hO1 − hO5 ≥ 0,

2hO4 − hO2 − hO6 ≥ 0,

hO4 + hO5 − hO2 − hO6 ≥ 0,

2hO5 − hO3 − hO6 ≥ 0,

hO4 + hO5 − hO3 − hO6 ≥ 0,

2hO6 − hO4 − hO7 ≥ 0,

2hO6 − hO5 − hO7 ≥ 0,

hO7 − hO6 ≥ 0,

or equivalently, Ω5 is the convex polyhedral cone generated by the following eleven vec-
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tors:

r1 = (1, 1, 1, 1, 1, 1, 1), r2 = (1, 2, 2, 2, 2, 2, 2), r3 = (1, 2, 2, 3, 3, 3, 3),

r4 = (1, 2, 2, 3, 3, 4, 4), r5 = (1, 2, 2, 3, 3, 4, 5), r6 = (1, 3
2
, 2, 2, 2, 2, 2),

r7 = (1, 2, 3
2
, 2, 2, 2, 2), r8 = (1, 2, 2, 5

2
, 3, 3, 3), r9 = (1, 2, 2, 3, 5

2
, 3, 3)

r10 = (1, 2, 3
2
, 5

2
, 2, 5

2
, 5

2
), r11 = (1, 3

2
, 2, 2, 5

2
, 5

2
, 5

2
).

Proof. To show that the cyclic group C5 is Shannon, it suffices to show that all eleven

extreme rays of PC5Γ5 are in PC5cl(Γ
∗
5). It is clear that the extreme rays ri, i ∈ N5, can

be realized by a cyclic projection of uniform matroids [27] and are hence in PC5cl(Γ
∗
5). So

we only need to show that ri, i = 6, 7, 8, 9, are in PC5cl(Γ
∗
5).

To show that r7 ∈ PC5cl(Γ
∗
5), let Ui, i ∈ N4, be four independent uniform variables

over a finite field F and

X1 := (U1,U2 + U3) (4.17)

X2 := (U2,U3 + U4) (4.18)

X3 := (U3,U1) (4.19)

X4 := (U4,U2 + U3) (4.20)

X5 := (U4 + U1,U3 + U4). (4.21)
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It is straightforward to verify that

H(XS) =



2 log |F|, for S ∈ O1

4 log |F|, for S ∈ O2

3 log |F|, for S ∈ O3

4 log |F|, for S ∈ O4

4 log |F|, for S ∈ O5

4 log |F|, for S ∈ O6

4 log |F|, for S ∈ O7

(4.22)

completing the proof that r7 ∈ PC5cl(Γ
∗
5).

To show that r9 ∈ PC5cl(Γ
∗
5), let Ui, i ∈ N6, be six independent uniform variables

over a finite field F and

X1 = (U1,U6) (4.23)

X2 = (U2,U4 + U5) (4.24)

X3 = (U3,U5 + U6) (4.25)

X4 = (U4,U1 + U5) (4.26)

X5 = (U2 + U3,U3 + U5). (4.27)

89



It is straightforward to verify that

H(XS) =



2 log |F|, for S ∈ O1

4 log |F|, for S ∈ O2

4 log |F|, for S ∈ O3

6 log |F|, for S ∈ O4

5 log |F|, for S ∈ O5

6 log |F|, for S ∈ O6

6 log |F|, for S ∈ O7

(4.28)

completing the proof that r9 ∈ PC5cl(Γ
∗
5).

By symmetry, the cases for r6 and r8 follows from that for r7 and r9, respectively. To

prove the Proposition, we need to prove the achievability for this ray (1, 2, 3/2, 5/2, 2, 5/2, 5/2).

It seems that this is easy to see:

X1 = U1, U3

X2 = U2, U4

X3 = U3, U5

X4 = U1, U4

X5 = U5, U2

We have thus completed the proof of the theorem.

For cyclic groups Cn for n > 5, we can generate the hyperplanes using the code

provided in the B.1.
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4.4 Conclusion

We have proposed a general framework for studying Γ
∗
n under symmetry constraints,

and have obtained some initial results. In particular, it is shown that the gap between Γ
∗
n

and Γn may vanish under suitable projections. It is of considerable interest to develop a

conceptual and systematic method for identifying such projections.
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5. ON THE REPRESENTABILITY OF INTEGER POLYMATROIDS:

APPLICATIONS IN LINEAR CODE CONSTRUCTION∗

t has been shown that there is a duality between the linear network coding solution

and the entropic vectors induced by collection of subspaces in a vector space over a finite

field (dubbed linearly constructed entropic vectors). The region of all linearly constructed

vectors, coincides with the set of all representable polymatroids. For any integer poly-

matroid, there is an associated matroid, which uniquely identifies the polymatroid. We

conjecture that the representability of the underlying matroid is a sufficient condition for

integer polymatroids to be linearly representable. We prove that the conjecture holds for

representation over real numbers. Furthermore, we show that any real-valued submodular

function (such as Shannon entropy) can be approximated (arbitrarily close) by an integer

polymatroid.

5.1 Introduction

Let f : 2[n] → R be a real valued set function, where [n] = {1, 2, . . . , n}. The function

f is submodular if for every S, T ⊆ [n]

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ), (5.1)

Submodularity has a rich combinatorial structure. Submodular functions play a key role

in many combinatorial optimization problems, and have many applications in economics

and engineering. In information theory, many problems are directly related to submodu-

lar function analysis, since Shannon entropy of collection of random variables is known

∗ c©[2016] IEEE. Reprinted, with permission, from [A. Salimi, M. Médard, S. Cui, “On the repre-
sentability of integer polymatroids: applications in linear code construction”, in Proceedings of the 53st
Annual Allerton Conference on Communications, Control and Computing, Monticello, IL, September 2015.]
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to be a submodular function. Specifically, for a collection of jointly distributed discrete

random variables {X1, X2, . . . , Xn}, the joint entropy of a collection of random variables

XS := (Xi, i ∈ [n]), denoted by H(XS, S ⊆ [n]), is submodular. For a particular joint

distribution of (X1, . . . , Xn), the entropy of all subsets of these random variables can be

expressed by a 2n − 1 dimensional vector (H(XS), S ⊆ [n]). The region of all such vec-

tors known as the entropy region and denoted by Γ∗n. It has been shown that the closure of

this region Γ̄∗ is convex; however, characterization of this region for n > 3 is one of the

well-known open problems in network information theory [12], which is closely related to

the capacity region of the general network coding problem.

Many network coding capacity regions and entropy region can be upper-bounded by

exploiting just the submodularity of entropy function. These upper bounds are often

termed as polymatroidal upper bounds [12]. It has been shown that these outer bounds

are not tight when n > 3. Many techniques exist for constructing the corresponding lower

bounds. One of the most important classes, which we term as linear construction of en-

tropy vector or simply linear network coding solution, relies on building a subspace of a

vector space over a finite field, and we denote this region by ΓLn . However, it has been

shown that linear solutions are not sufficient to characterize the entire entropy region or

achieve the network coding capacity. When n = 4, the region ΓLn can be characterized

by the Ingleton inequality and Shannon inequalities [27, 28]. The exact characterization

of this region for five random variables, is given by a set of inequalities known as DFZ,

together with Shannon and Ingleton inequalities [29]. In general, exact characterization of

ΓLn is equivalent to the space of all linearly representable integer polymatroids [30].

From a combinatorial point of view, integer polymatroids are closely related to ma-

troids. In this chapter, we ask the following question: Given an integer polymatroid, is it

possible to infer its representability from that of a particular matroid? We conjecture that

this is possible and in fact, we prove the statement for representation over R. If the con-
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jecture is true, the results concerning the representation of matroids, would be sufficient to

analyze the representability of integer polymatroids. A necessary and sufficient condition

for representability of integer polymatroids is given in Section 5.3. Furthermore, we show

that for any ε > 0, any submodular function f , can be approximated by a rational-valued

submodular function f̂Q such that for every set S, we have |f(S)− f̂Q(S)| < ε; we refer to

this as ε-approximation. Since any rational-valued submodular function can be considered

as a properly scaled integer polymatroid, this approximation suggests that any submodu-

lar function can be approximated by an integer polymatroid. In Sections 5.4 and 5.5, we

discuss the implication of these results in some network information theory problems.

5.2 Preliminaries

For a given submodular function f , we define the following distance between two

arbitrary subsets of the ground set, S, T ⊆ E

Df (S, T ) = f(S) + f(T )− f(T ∪ S)− f(T ∩ S). (5.2)

By definition of submodularity,Df (S, T ) ≥ 0 for any submodular function andDf (S, T ) ≤

0 for any supermodular function. This distance is not an interesting object by itself, since

Df (S, T ) = 0 for every S ⊆ T (or T ⊆ S). However, if we take out these special subsets,

the minimum value that Df (S, T ) can take, becomes informative and is defined as

∆f = min
S⊆E

min
i,j∈E\S

|Df (S + i, S + j)| (5.3)

Remark 2. It is easy to verify some of the properties of ∆f . For example, if f and g are

both submodular functions, we have

∆f+g ≥ ∆f + ∆g, (5.4)
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and when f and g are both supermodular functions, we have

∆f+g ≤ ∆f + ∆g. (5.5)

This particular property defines a special class of submodualr functions as follows.

Definition 1. A submodular (supermodular) function f , defined on the ground set E, is

called strictly submodular (supermodular) if ∆f > 0.

In the following we show an example of a strictly submodular function.

Example 1. The set function log(1 + |S|) is strictly submodular. One way to prove this

is by contradiction. Assume that it is not strictly submodular and, therefore, there exist

T, S 6= ∅ and T * S, S * T such that

0 =f(S) + f(T )− f(S ∪ T )− f(S ∩ T )

= log(1 + |S|) + log(1 + |T |)− log(1 + |S ∪ T |)

− log(1 + |S ∩ T |)

= log(1 + |S||T |+ |S|+ |T |)

− log(1 + |S ∪ T ||S ∩ T |+ |S ∪ T |+ |S ∩ T |).

Since |S|+ |T | = |S ∪ T |+ |S ∩ T |, this implies that

|S ∪ T ||S ∩ T | = |S||T | (5.6)
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Assume |S| = |S ∪ T | − x and |T | = |S ∩ T |+ x. Therefore, we have

|S||T | = (|S ∪ T | − x)(|S ∩ T |+ x)

= |S ∩ T ||S ∪ T |+ x|S ∪ T | − x|S ∩ T | − x2

which implies either x = 0 or x = |S ∪ T | − |S ∩ T |. The former condition on x implies

that T ⊆ S and the latter implies that S ⊆ T , which contradicts our assumption.

5.2.1 Integer Polymatroids

A Polymatroid P is a pair (E, f), where E is a non-empty ground set and f is a set

function satisfying the following conditions:

• f is submodular: f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ), for S, T ⊆ E

• Nondecreasing: f(S) ≥ f(T ), S ⊇ T

• Normalized: f(∅) = 0

When f is an integer-valued set function, P = (E, f) is called integer polymatroid.

In a way akin to representable matroids, we can define the representability of integer

polymatroids as follows:

Definition 2. An integer polymatroid (E, f) on the ground set E is representable, if

there exists a collection of subspaces Ve, e ∈ E, such that for every S ⊆ E, we have

rank(∪e∈SVe) = f(S).

5.3 Main Results

5.3.1 Representability of Integer Polymatroids

Although integer polymatroids are interesting combinatorial objects by nature, they

have a matroid structure. Moreover, it has been shown by Helgason [31], that every in-
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teger polymatroid can be constructed by a matroid. Therefore, all problems in integer

polymatroids are matroid problems. More specifically, let f be an integer-valued, nonde-

creasing submodular set function on E, with f(∅) = 0. For each element of ground set

e ∈ E, we assign a setXe with the size of f({e}). Now the ground set for the new matroid

that we construct will be X =
⋃· e∈S Xe, where

⋃· denotes the disjoint union operation.

Theorem 4. Helgason [31]: M = (X, r) is a matroid, where the rank function of a

matroid is given by

r(U) = min
T∈S

(|U \
⋃
·

s∈T

Xe|+ f(T )). ∀U ⊆ X (5.7)

It is easy to check that the rank function of the original integer polymatroid has not

been changed. Namely,

f(T ) = r(
⋃
·

e∈T

Xe). (5.8)

The interesting observation here is that the integer polymatroid is defined on the ground

set E, where the rank function of the matroid r(.) is defined on a larger ground set than E,

namely X =
⋃· e∈E Xe with cardinality |X| = ∑

e∈E f(e). The construction of an integer

polymatroid from matroids is not unique. In the next section, we explain the notion of

extending the ground set of a polymatroid and how using this extension, it is possible to

construct a matroid.

5.3.2 Extending Integer Polymatroids

Lovász [32], showed that it is possible to extend the ground set of an integer polyma-

troid by “adding new element e′ to the element e in the ground set”1. Specifically, “adding

1Lovász [32], gave this a geometric interpretation and called “adding a point x on an element of integer
polymatroid y in general position”. Here we adopt his notation and for simplicity we refer to this as “adding
x on an element y in the ground set of integer polymatroid”.
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e′ to e ∈ E” means constructing a new integer polymatroid (E ∪ {e′}, f), where the value

of f remains the same on the subsets of E and

f(T + e′) =

 f(T ), if f(T + e) = f(T )

f(T ) + 1, if f(T + e) > f(T ).
(5.9)

Similarly, we can continue adding elements and eventually construct an integer polyma-

troid (E ∪ X, f), where X =
⋃· e∈S Xe and elements of Xe have been added to element

e ∈ E. The following theorem, gives the explicit construction of a matroid.

Theorem 5. Lovász [32]: Let (E∪X, f) be the extended polymatroid defined above. Then

M = (X, r) is a matroid where r(U) = f(U), for all U ⊆ E. Moreover,

r(U) = min
T∈E

(|U \
⋃
·

e∈T

Xe|+ f(T )), ∀U ⊆ X (5.10)

which is identical to (5.7).

Through the chapter, we will refer to this special construction of matroids as expanding-

construction.

5.3.3 Representation of Integer Polymatroid

The following theorem gives the necessary and sufficient condition for the repre-

sentability of an integer polymatroid over real numbers R.

Theorem 6. An integer polymatroid is representable over R, if and only if the underlying

matroid using the expanding-construction, is representable over R.

Proof. Assume that (E, f) is an integer polymatroid and its associated matroid using the

described expanding construction is (∪· e∈EXe, r). One direction trivially holds: if the

underlying matroid (∪· e∈EXe, r) is representable, one can take the subspace generated by
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the span of the vectors associated with each Xe and therefore, by definition, the integer

matroid is, indeed, representable.

To verify the other direction, we assume that there exist a collection of vector spaces

Ve for every e ∈ E and the goal is to show that the matroid derived using expanding-

construction is representable. Assume that the subspaces for the integer polymatroid are

given as S = {S1, S2, . . . , S|E|} and define ri := rank(Si).

The outline of the proof is as follows: Similarly to the expanding-construction, we

start with the ground set S, and at each step, we “add a vector to subspace Si ∈ S”,

where the definition will be made precise later. We continue adding elements and, for

each Si ∈ S, we add ri vectors, which are denoted by Vi = {V (i)
1 , . . . , V

(i)
ri }. Eventually

the ground set will be S ∪⋃i∈[|E|] Vi and we show that the rank function of any collection

of these vectors satisfies (5.7). Therefore, we conclude that the vectors
⋃
i∈[|E|] Vi are a

linear representation of the expanding-construction matroid.

In order to complete the proof, we need to explain how we add vector V (i)
j to subspace

Si. Assume that we want to add a vector V (i)
j for j ≤ ri to Si. First, we define the

following set

T ∗i,j := S ∪ V1 ∪ · · · ∪ Vi−1 ∪ {V (i)
1 . . . V

(i)
j−1}. (5.11)

It is easy to verify that |T ∗i,j| = |E|+
∑i−1

k=1 rk + (j − 1). We define

Ti,j = {T |T ⊆ T ∗i,j, rank(T ∪ Si) > rank(T )}. (5.12)

To accomplish the construction of the linear matroid, we pick a vector V (i)
j for j ≤ ri such
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that:

V
(i)
j ∈ Si \

⋃
T∈Ti,j

span(T ). (5.13)

In order to choose the vector V (i)
j , we need to make sure that Si \

⋃
T∈Ti,j span(T ) 6= ∅.

Claim 1. For all i ∈ [|E|], we have Si \
⋃
T∈Ti,j span(T ) 6= ∅.

Proof. First, note that Si 6⊂ span(T ) for all T ∈ Ti,j; otherwise rank(T ∪Si) = rank(T ).

This implies that T /∈ Ti,j; however, this contradicts our assumption that we started with

T ∈ Ti,j . The only possibility is Si ⊃
⋃
T∈Ti,j span(T ). However, since we assumed that

all subspaces are in R, we know that it is not possible to write a subspace in R as countable

union of subspaces that do not include it.

With this choice of vectors, once we add a new vector V (i)
j to the ground set of the

integer polymatroid, since the chosen vector is not in the
⋃
T∈Ti,j span(T ), we have

rank(T + V
(i)
j ) =

 rank(T ), if T /∈ Ti,j
rank(T ) + 1, if T ∈ Ti,j.

(5.14)

Without loss of generality, we continue this construction in |E| steps, starting from S1 up

to S|E|, and at each step i, we add ri new vectors to the ground set. On the other hand,

the rank function given in (5.14) is identical to (5.9) , and therefore, this proves that the

collection of vectors V = ∪|E|i=1Vi is a vector matroid, isomorphic to the matroid that we

obtain from an expanding-construction; and this completes the proof.

This proof cannot be directly generalized to finite fields since we used a unique prop-

erty of the vector spaces in R. Namely, a vector space over R cannot be decomposed
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into a countable union of proper subspaces. However, we posit the following conjecture,

suggested by our results,

Conjecture 1. The integer polymatroid is representable, if and only if the underlying ma-

troid using the expanding-construction, is representable.

5.3.4 Approximation of Submodular Function With Rank Function of a Matroid

Recall that the rank function of an integer polymatroid is submodular; Therefore, it

might seem redundant to approximate a submodular function with another submodular

function. However, as we discussed in the previous sections, any scaled integer polyma-

troids can be constructed by matroids. Observe that when a submodular function takes

rational values, it can be considered as an integer-valued submodular function with proper

scaling, which is the lowest common denominator of all the function values. On the other

hand, when the submodular function takes real values, this construction is impossible.

However, in this case, we can approximate any submodular function (with proper scaling)

by a matroid. This approximation is not only just of mathematical interest, but also useful

in certain information theoretic problems.

Theorem 7. Suppose that f : 2E → R is a real-valued submodular function over the

ground set E. For every ε > 0, there exist a polymatroid (E, fQ) where fQ : 2E → Q,

satisfying

0 < f(T )− fQ(T ) < ε (5.15)

for all T ⊆ E.

Proof. We consider two cases; For the first case, we assume that the function is strictly

submodular (∆f > 0). For the second case, we argue that, when ∆f = 0, we can construct
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a strictly submodular function f̃ , which is properly close to the original function f , namely

f(T )− f̃(T ) ≤ ε, for any T ⊆ E.

Case 1: We consider that f(.) is strictly submodular, namely ∆f > 0, and define

ε∗ := min(ε,
∆f

2
). Then we are guaranteed to find a rational number fQ(T ) such that

fQ(T ) ∈ [f(T )− ε∗, f(T )]. Assume

f(T )− ε∗ ≤ fQ(T ) = f(T )− εT ≤ f(T ). (5.16)

Lemma 10. The set function fQ defined on the ground set E is submodular.

Proof. First, observe that, by our assumption ∆f > 0 and εT ≤ ε∗ for every T ⊆ E, we

have

∆fQ = min
S⊆E

min
i,j∈E\S

fQ(S + i) + fQ(S + j)

− fQ(S)− fQ(S + i+ j)

≥min
S⊆E

min
i,j∈E\S

f(S + i) + f(S + j)

− f(S)− f(S + i+ j)

+ min
S⊆E

min
i,j∈E\S

εS+i + εS+j − εS − εS+i+j

a
=∆f + εS∗+i∗ + εS∗+j∗ − εS∗ − εS∗+i∗+j∗

≥∆f − εS∗ − εS∗+i∗+j∗

≥∆f − 2
∆f

2

≥0

where S∗, i∗ and j∗ in (a) are the optimal solutions for the second minimization.

Case 2: Consider that ∆f = 0; then we can construct a strictly submodular function
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as follows

f̃(T ) = f(T )− γg(T ), (5.17)

where γ is small enough and g(T ) is a strictly supermodular function. We have the fol-

lowing two facts.

Fact 1. The set function f̃(T ) defined over ground set E is strictly submodular.

Fact 2. We have ∆f̃ ≥ ∆f + γ∆g = γ∆g.

Both are the immediate consequence of (5.4). We can choose γ to be arbitrary small,

such that ε∗ = γ∆g

2
< ε. Now with this choice of f̃ , we have a strictly submodular function

and similarly to the the previous case and (5.16), with f̃(.) and ε∗, we are guaranteed to find

rational-valued submodular function, which is an ε-approximation of f . This completes

the proof.

Similarly we can approximate any submodular function from above.

Corollary 11. Suppose that f : 2E → R is a real-valued submodular function over the

ground set E. For every ε > 0, there exists a polymatroid (E, fQ) where fQ : 2E → Q,

satisfying

0 < fQ(T )− f(T ) < ε (5.18)

for all T ⊆ E.

Proof. The proof is similar to Theorem 7, except that we need g(T ) to be a non-negative

strictly submodular function.
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5.4 Implication in Information Theory: Fractional Network Coding Solution

We consider a network with the underlying topology as a capacitated directed acyclic

graph (DAG) ((V ,A), (Ca : a ∈ A)). Here, V and A are the node and the arc sets of the

graph with unit edge capacities. A set of distinct nodes S ⊂ V called source nodes, which

have the access to a subset of message set W = {w1, . . . , wm}. There is also, a distinct

subset of nodes T ⊂ V called sink nodes. Associated with each sink node there is a subset

of message setW as demand.

We assume that a vector of ki symbols of message wi for every i ∈ [m] at a source

node are encoded and a code (n, {xa : a ∈ A}) with block length n is transmitted over the

arc a.

Definition 3. A network has (k1, . . . , km, n) fractional linear solution if there exists a set

of linear encoding and decoding operations at each node of the network and decoders at

sink nodes, such that each sink node can perfectly decode its demanded messages.

When k = n = 1, the linear network coding solution is called a scalar-linear solution.

It has been shown that every scalar linear solvable network is a matroidal network. For

the special case where k = n, the solution is called a vector linear solution. From the

definition above, the following lemma is immediate [33].

Lemma 12. If a network has a (k1, . . . , km, n) fractional network coding solution over Σ,

with independent messages uniformly distributed over Σ, the following hold:

1. For any collection of source messages H(∪i∈Iwi) =
∑

i∈I ki, where I ⊆ [m].

2. H(Xa) ≤ n for every a ∈ A

3. H(∪a∈In(v)Xa) = H(∪a∈In(v)Xa,∪a∈Out(v)Xa)
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In the work by Dougherty et. al. [33], it has been shown that, if the network has a scalar

linear solution over finite field Σ, with messages w1, . . . , wm and the links that carry the

symbols {xa : a ∈ A}), finding a scalar linear solution is equivalent to finding a mapping

T :W ∪a∈A Xa → E where E is the ground set of a representable matroidM = (E, r),

such that the three conditions in Lemma 12 are satisfied with H(·) = r(·). The converse

was established by Médard and Kim [34]. Similarly, we can have the following result for

fractional linear solutions.

Lemma 13. Assume that the network has a (k1, . . . , km, n) fractional linear solution over

finite field Σ, with messagesw1, . . . , wm and the links that carry the symbols {xa : a ∈ A}).

Then finding a fractional linear solution is equivalent to finding a mapping T : W ∪a∈A
Xa → E, where E is the ground set of a representable integer polymatroid (E, f), such

that the three conditions in Lemma 12 are satisfied with H(·) = f(·).

The proof is similar to the proof of Lemma 12. A similar statement has been proved in

(Theorem. 3, [35]), where they introduced the notion of discrete polymatroidal network,

and showed that the network has a fractional linear solution if and only if it is discrete

polymatroidal with respect to a representable discrete polymatroid.

5.5 Implication in Information Theory: Constructing Entropic Vectors

Assume that we are given an integer vector (or rational 2) in Γn. Naturally, this vec-

tor defines an integer polymatroid since entropy is a submodular function. Therefore, if

it is representable over some finite field F, we can conclude that the vector is indeed en-

tropic and it can be constructed using linear mappings. The main problem here is that

checking whether an integer polymatroid is representable, is not an easy task. However,

if our conjecture is true, we can construct the associated expanded-matroid and check its

representability. Therefore, one can use the extensive literature on representability of ma-
2A rational vector can be transformed to an integer vector with a proper scaling.
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troids. Moreover, if we conclude that the underlying matroid is not representable, we can

claim that nonlinear transformation (or nonlinear code in the case of network coding) is

inevitable.

Furthermore, if the given vector is not integral (or rational), then using Theorem 7,

we are guaranteed to find an integer polymatroid, which is arbitrarily close to the desired

vector. We should then be able to study the approximated integer polymatroid to see

whether it is representable or not.

5.6 Conclusion

In this chapter, we studied the representability of polymatroids. We showed that the

representability of an integer polymatroid is a necessary and sufficient condition for the

representability of the underlying expanding-construction matroid over reals. Moreover,

we showed that it is always possible to approximate a polymatroid with an integer poly-

matroid.
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6. CONCLUSION AND FUTURE DIRECTION

An explicit characterization of the capacity region of the general network coding prob-

lem is one of the best known open problems in information theory. A simple set of bounds

that are often used in the literature to show that certain rate tuples are infeasible are based

on the graph-theoretic notion of cut. The standard cut-set bounds, however, are known to

be loose in general when there are multiple messages to be communicated in the network.

This dissertation focused on broadcast networks, for which the standard cut-set bounds

are closely related to union as a specific set operation to combine different simple cuts of

the network. A new set of explicit network coding bounds, which combine different simple

cuts of the network via a variety of set operations (not just the union), were established

via their connections to extremal inequalities for submodular functions. The tightness of

these bounds were demonstrated via applications to combination networks.

The generalized cut-set bounds proposed in this thesis are specifically targeted at

broadcast networks and are complementary to the PdE bounds in the family of cut-based

network coding bounds. It is also worth mentioning that the generalized cut-set bounds

proposed in this paper are a special case of the LP bounds by Yeung [12, Ch. 21] and hence

are not tight for general broadcast network coding problems [36]. One future direction is

to focus on further understanding the strength and limitations of the generalized cut-set

bounds via concrete broadcast network coding problems.

This dissertation gives the polyhedral description of the latency capacity of a broad-

cast channel. It is shown that a comprehensive notion of the cut-set bound, so called

generalized cut-set bound, characterizes entire capacity region. Furthermore, it is shown

that every maximum rate vector can be achieved by a simple successive encoding scheme.

Although this dissertation, shed a light on the structure of the symmetric latency capacity
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polytope for a broadcast channel, the latency capacity region of the non-symmetric version

remains an open problem. Tian’s approach in [14] is converse-centric in that the forward

part of the theorem is directly built on a rate splitting scheme, and the main challenge

there was to prove the converse result without relying on a polyhedral description of the

rate region. By comparison, our approach is forward-centric in that the converse part of

the theorem follows directly from the generalized cut-set bounds (established systemati-

cally). The onus of the proof is on the forward part, where a successive encoding scheme

(rather than rate splitting) is used.

It is known that there is a direct relation between network coding solutions and char-

acterization of entropy region. Specifically, entropy inequalities play a central role in

proving converse coding theorems for network information theoretic problems. This the-

sis also studied new aspects of entropy inequalities. First, inequalities relating average

joint entropies rather than entropies over individual subsets were studied. It was shown

that the closures of the average entropy regions where the averages are over all subsets

of the same size and all sliding windows of the same size respectively are identical. This

implies that that averaging over sliding windows always suffices as far as unconstrained

entropy inequalities are concerned. Therefore, the aforementioned fact on the monotonic-

ity of average joint entropy per element is a universal truth rather than an isolated curious

observation.

Second, the existence of non-Shannon type inequalities [18] was one of the most sig-

nificant discoveries in information theory during the last twenty years. Under total sym-

metry, however, it was known that all non-Shannon type inequalities are implied by Shan-

non type inequalities [12]. Mathematically, the total symmetry can be represented using

the symmetry groups Sn. In the second part of this thesis, the existence of non-Shannon

type inequalities under partial symmetry was studied, where the partial symmetry was

represented using the subgroups of Sn. This naturally led to the notion of Shannon and
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non-Shannon groups, based on which a complete classification of all permutation groups

over four elements was established. With five random variables, it was shown that there

are no non-Shannon type inequalities under cyclic symmetry.

There are several directions that one may consider exploring in the future. Perhaps the

most straightforward extension is to consider the cyclic groups Cn for n ≥ 6. Note that

even though the cases where n = 4 and 5 have been resolved in this thesis, the techniques

that we used rely on a “brute-force” calculation of the extreme rays of PCnΓn and have

a complexity that grows exponentially with n. A new representation which can further

expose the structure of PCnΓn may be needed in order to make progress.

Another direction of interest is to understand which partial symmetry is particularly

relevant to engineering and whether non-Shannon type inequalities exist under those par-

tial symmetry. The modern development of distributed storage systems provides several

examples [22, 37] where there is symmetry built into the design principles and require-

ments.

Note that with symmetry not only non-Shannon type inequalities may completely dis-

appear (dominated by the Shannon type inequalities), the number of independent Shannon

type inequalities may also be substantially reduced. For example, without any symmetry

the total number of independent Shannon type inequalities over n variables is

n+

 n

2

 2n−2.

By comparison, under total symmetry the total number of independent Shannon type in-

equalities over n variables is only n. Therefore, partial symmetry can potentially provide

huge advantages when a computational approach is utilized for characterizing the funda-

mental limits of complex information systems [23].
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Finally, it is shown shown that the representability of an integer polymatroid is a

necessary and sufficient condition for the representability of the underlying expanding-

construction matroid over reals. Moreover, it is always possible to approximate a polyma-

troid with an integer polymatroid. One interesting future direction would be investigating

the conjecture we proposed, that this necessary and sufficient condition can be valid over

any finite field.
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APPENDIX A

SOME PROOFS FOR SECTION 2

A.1 Proof of Lemma 1

Fix two integers r′ and J such that 0 < r′ < J ≤ K. Let

Tr :=

 ∅, for r = 1, . . . , r′

S(r′+1)([r]), for r = r′ + 1, . . . , J,
(A.1)

and let Gr := Sr∪Tr for r = 1, . . . , J . By the standard multiway submodularity (2.9) and

modularity (2.10) we have

r′∑
r=1

f(Sr) +
J∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) =
J∑
r=1

f(Gr) ≥
J∑
r=1

f(G(r)([J ])) (A.2)

if f is a submodular function, and

r′∑
r=1

f(Sr) +
J∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) =
J∑
r=1

f(Gr) =
J∑
r=1

f(G(r)([J ])) (A.3)

if f is a modular function. Next, we shall show that

G(r)([J ]) =

 S(r)([J ]), for r = 1, . . . , r′

S(r′+1)([J − r + r′ + 1]), for r = r′ + 1, . . . , J.
(A.4)

We shall consider the following two cases separately.

Case 1: r ∈ [r′]. Note that Sr ⊆ Gr for any r ∈ [J ], so we have S(r)([J ]) ⊆ G(r)([J ])

for any r ∈ [J ]. On the other hand, since Tr ⊆ S(r′+1)([J ]) for all r ∈ [J ], we have
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Gr ⊆ Sr ∪ S(r′+1)([J ]) and hence G(r)([J ]) ⊆ S(r)([J ]) ∪ S(r′+1)([J ]) for all r ∈ [J ].

Since S(r)([J ]) ⊇ S(r′+1)([J ]) for all r ∈ [r′], we have G(r)([J ]) ⊆ S(r)([J ]) for all

r ∈ [r′]. We thus conclude that G(r)([J ]) = S(r)([J ]) for all r ∈ [r′].

Case 2: r ∈ {r′ + 1, . . . , J}. For this case, we have the following fact.

Fact 3. For any r ∈ {r′ + 1, . . . , J}, we have

G(r)([J ]) = ∪min{r,r′+2}
m=1

(
S(m−1)([J − r +m− 1]) ∩ TJ−r+m

)
. (A.5)

Proof. Fix r ∈ {r′ + 1, . . . , J}. By definition,

G(r)([J ]) = ∪{U⊆[J ]:|U |=r} ∩k∈U Gk. (A.6)

Fix U ⊆ [J ] such that |U | = r. We have

∩k∈UGk = ∩k∈U (Sk ∪ Tk) (A.7)

= ∪U ′⊆U
(
(∩k∈U ′Sk) ∩ (∩k∈U\U ′Tk)

)
(A.8)

=
(
∪U ′⊂U

(
(∩k∈U ′Sk) ∩ Tk̄(U ′)

))
∪ (∩k∈USk) (A.9)

where k̄(U ′) is the smallest integer in U \ U ′, and (A.9) follows from the fact that

T1 ⊆ T2 ⊆ · · · ⊆ TJ . (A.10)

Write, without loss of generality, that U = {u1, . . . , ur} where 1 ≤ u1 < u2 < · · · <

ur ≤ J . Fix k̄(U ′) = um for some m ∈ [r]. Then we must have U ′ ⊇ {u1, . . . , um−1} for
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any such U ′. We thus have from (A.9) that

∩k∈UGk =
(
∪rm=1

(
(∩m−1

l=1 Sul) ∩ Tum
))
∪ (∩rl=1Sul) . (A.11)

The right-hand side of (A.11) can be further simplified based on the following two

observations. First, for any r ∈ {r′ + 1, . . . , J} we have ur ≥ r ≥ r′ + 1 and hence

Tur = S(r′+1)([ur]) ⊇ ∩r
′+1
l=1 Sul ⊇ ∩rl=1Sul . (A.12)

We thus have

∩rl=1Sul ⊆ (∩r−1
l=1Sul) ∩ Tur (A.13)

and hence

∩k∈UGk = ∪rm=1

(
(∩m−1

l=1 Sul) ∩ Tum
)
. (A.14)

Second, since ur′+2 ≥ r′ + 2, we have

∩r′+1
l=1 Sul ⊆ S(r′+1)([ur′+2]) = Tur′+2

(A.15)

and hence

(∩r′+1
l=1 Sul) ∩ Tur′+2

= ∩r′+1
l=1 Sul . (A.16)

It follows that for any m ≥ r′ + 2, we have

(∩m−1
l=1 Sul) ∩ Tum ⊆ ∩r

′+1
l=1 Sul = (∩r′+1

l=1 Sul) ∩ Tur′+2
. (A.17)
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Substituting (A.17) into (A.14), we have

∩k∈UGk = ∪min{r,r′+2}
m=1

(
(∩m−1

l=1 Sul) ∩ Tum
)
. (A.18)

Finally, substituting (A.18) into (A.6), we have

G(r)([J ]) = ∪{U⊆[J ]:|U |=r}

(
∪min{r,r′+2}
m=1

(
(∩m−1

l=1 Sul) ∩ Tum
))

(A.19)

= ∪min{r,r′+2}
m=1

(
∪{U⊆[J ]:|U |=r}

(
(∩m−1

l=1 Sul) ∩ Tum
))

(A.20)

for any r ∈ {r′ + 1, . . . , J}. Note that for any U ⊆ [J ] such that |U | = r, the largest

numerical value that um can assume is J − r + m for any m ∈ [r]. By the ordering in

(A.10), for any m = 1, . . . , r we have

∪{U⊆[J ]:|U |=r}
(
(∩m−1

l=1 Sul) ∩ TJ−r+m
)

=
(
∪{1≤u1<u2<···<um−1≤J−r+m−1} ∩m−1

l=1 Sul
)
∩ TJ−r+m
(A.21)

= S(m−1)([J − r +m− 1]) ∩ TJ−r+m. (A.22)

Substituting (A.22) into (A.20) completes the proof of the fact.

Further note that for any r ∈ {r′ + 1, . . . , J} we have

TJ−r+m ⊆ S(r′+1)([J − r +m]) ⊆ S(r′)([J − r +m− 1]) ⊆ S(m−1)([J − r +m− 1])

(A.23)

for any 2 ≤ m ≤ r′ + 1. When r = r′ + 1, substituting (A.10) and (A.23) into Fact 3 we
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have

G(r)([J ]) = ∪rm=1TJ−r+m = TJ = S(r′+1)([J ]). (A.24)

When r ∈ {r′ + 2, . . . , J}, by Fact 3 we have

G(r)([J ]) = ∪r′+2
m=1

(
S(m−1)([J − r +m− 1]) ∩ TJ−r+m

)
(A.25)

=
(
∪r′+1
m=1

(
S(m−1)([J − r +m− 1]) ∩ TJ−r+m

))
∪(

S(r′+1)([J − r + r′ + 1]) ∩ TJ−r+r′+2

)
(A.26)

=
(
∪r′+1
m=1TJ−r+m

)
∪
(
S(r′+1)([J − r + r′ + 1]) ∩ TJ−r+r′+2

)
(A.27)

= TJ−r+r′+1 ∪
(
S(r′+1)([J − r + r′ + 1]) ∩ TJ−r+r′+2

)
(A.28)

= S(r′+1)([J − r + r′ + 1]) ∪
(
S(r′+1)([J − r + r′ + 1]) ∩ S(r′+1)([J − r + r′ + 2])

)
(A.29)

= S(r′+1)([J − r + r′ + 1]) (A.30)

where (A.27) follows from (A.23), and (A.28) follows from the ordering in (A.10). Com-

bining (A.24) and (A.30) completes the proof of (A.4) for r ∈ {r′ + 1, . . . , J}.

Finally, substituting (A.4) into (A.2) and (A.3) we have

r′∑
r=1

f(Sr) +
J∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) ≥
r′∑
r=1

f(S(r)([J ])) +
J∑

r=r′+1

f(S(r′+1)([J − r + r′ + 1]))

(A.31)

=
r′∑
r=1

f(S(r)([J ])) +
J∑

r=r′+1

f(S(r′+1)([r]))

(A.32)
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if f is a submodular function, and

r′∑
r=1

f(Sr) +
J∑

r=r′+1

f(Sr ∪ S(r′+1)([r])) =
r′∑
r=1

f(S(r)([J ])) +
J∑

r=r′+1

f(S(r′+1)([r]))

(A.33)

if f is a modular function. This completes the proof of Lemma 1.

A.2 Proof of Lemma 3

Without loss of generality, we may assume that T = [|T |] such that tr = r for all

r = 1, . . . , |T |. Under this assumption, the inequality (2.21) can be written as

|T |∑
r=1

f(Sr) + rqf(S(q)(U))

≥
rq∑
r=1

(
f(S(r)(T )) + f(Sr ∩ S(q)(U))

)
+

|T |∑
r=rq+1

f(Sr ∩ (S(q)(U) ∪ S(rq+1)([r]))).

(A.34)
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Assume that f is a modular function. By the two-way submodularity (2.4) we have

|T |∑
r=1

f(Sr) + rqf(S(q)(U))

=

rq∑
r=1

(
f(Sr) + f(S(q)(U))

)
+

|T |∑
r=rq+1

(
f(Sr) + f(S(q)(U) ∪ S(rq+1)([r]))

)
−

|T |∑
r=rq+1

f(S(q)(U) ∪ S(rq+1)([r])) (A.35)

≥
rq∑
r=1

(
f(Sr ∩ S(q)(U)) + f(Sr ∪ S(q)(U))

)
+

|T |∑
r=rq+1

(
f(Sr ∩ (S(q)(U) ∪ S(rq+1)([r]))) + f(Sr ∪ (S(q)(U) ∪ S(rq+1)([r])))

)
−

|T |∑
r=rq+1

f(S(q)(U) ∪ S(rq+1)([r])). (A.36)

Applying Corollary 2 with r′ = rq, J = |T |, and S0 = S(q)(U), we have

rq∑
r=1

f(Sr ∪ S(q)(U)) +

|T |∑
r=rq+1

f(Sr ∪ S(rq+1)([r]) ∪ S(q)(U))

≥
rq∑
r=1

f(S(r)(T ) ∪ S(q)(U)) +

|T |∑
r=rq+1

f(S(rq+1)([r]) ∪ S(q)(U)) (A.37)

=

rq∑
r=1

f(S(r)(T )) +

|T |∑
r=rq+1

f(S(rq+1)([r]) ∪ S(q)(U)) (A.38)

where (A.38) follows from the assumption S(rq)(T ) ⊇ S(q)(U) such that S(r)(T ) ⊇

S(q)(U) for any r = 1, . . . , rq. Substituting (A.38) into (A.36) completes the proof of

(A.34) and hence that of (2.21).

When f is a modular function, both inequalities (A.36) and (A.37) hold with an equal-

ity. This completes the proof of (2.22) and hence that of the entire corollary.
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A.3 Proof of Corollary 4

Note that when Q = ∅, βQ(r) = 1 for all r ∈ [|U |]. In this case, the corollary follows

directly from (2.86). Now, assume that Q is nonempty. Write, without loss of generality,

that Q = {q1, . . . , q|Q|} where

1 =: q0 < q1 < q2 < · · · < q|Q| ≤ |U |. (A.39)

Note that

∑
q∈Q

q−1∑
r=1

αQ(q, r)R(I(r)(U)) =

q|Q|−1∑
r=1

β′Q(r)R(I(r)(U)) (A.40)

where

β′Q(r) =

|Q|∑
l=m

αQ(ql, r) (A.41)

for any qm−1 ≤ r < qm for some m ∈ [|Q|]. When r = qm for some m ∈ [|Q| − 1], by

(2.87) and (A.41) we have αQ(ql, r) = 0 for any l = m, . . . , |Q| and hence

β′Q(r) = 0. (A.42)

When qm−1 < r < qm for some m ∈ [|Q|], by (2.87) and (A.41) we have

αQ(ql, r) =

∏m−1
t=1 (qt − 1)

∏l−1
t=m qt∏l

t=1(qt − 1)
(A.43)
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for any l = m, . . . , |Q| and hence

β′Q(r) =

|Q|∑
l=m

∏m−1
t=1 (qt − 1)

∏l−1
t=m qt∏l

t=1(qt − 1)
(A.44)

=

∏m−1
t=1 (qt − 1)∏|Q|
t=1(qt − 1)

|Q|∑
l=m

 l−1∏
t=m

qt

|Q|∏
t=l+1

(qt − 1)

 (A.45)

=

∏m−1
t=1 (qt − 1)∏|Q|
t=1(qt − 1)

|Q|∑
l=m

(ql − (ql − 1))
l−1∏
t=m

qt

|Q|∏
t=l+1

(qt − 1)

 (A.46)

=

∏m−1
t=1 (qt − 1)∏|Q|
t=1(qt − 1)

|Q|∑
l=m

 l∏
t=m

qt

|Q|∏
t=l+1

(qt − 1)−
l−1∏
t=m

qt

|Q|∏
t=l

(qt − 1)

 (A.47)

=

∏m−1
t=1 (qt − 1)∏|Q|
t=1(qt − 1)

 |Q|∏
t=m

qt −
|Q|∏
t=m

(qt − 1)

 (A.48)

=

∏m−1
t=1 (qt − 1)

∏|Q|
t=m qt∏|Q|

t=1(qt − 1)
− 1 (A.49)

=
βQ(r)∏|Q|

t=1(qt − 1)
− 1, (A.50)

where (A.50) follows from the fact that

βQ(r) =
m−1∏
t=1

(qt − 1)

|Q|∏
t=m

qt, ∀qm−1 < r < qm (A.51)

by the definition (2.89) of βQ(r).
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By (A.40), (A.42), and (A.50), the left-hand side of (2.86) can be simplified as

∑
r∈[|U |]\Q

R(I(r)(U)) +
∑
q∈Q

q−1∑
r=1

αQ(q, r)R(I(r)(U))

=
∑

r∈[|U |]\Q

R(I(r)(U)) +

q|Q|−1∑
r=1

β′Q(r)R(I(r)(U)) (A.52)

=
∑

r∈[|U |]\Q

R(I(r)(U)) +
∑

r∈[q|Q|]\Q

(
βQ(r)∏|Q|

t=1(qt − 1)
− 1

)
R(I(r)(U)) (A.53)

=
1∏|Q|

t=1(qt − 1)

 ∑
r∈[q|Q|]\Q

βQ(r)R(I(r)(U)) +

 |Q|∏
t=1

(qt − 1)

 |U |∑
r=q|Q|+1

R(I(r)(U))


(A.54)

=
1∏|Q|

t=1(qt − 1)

 q|Q|∑
r=1

βQ(r)R(I(r)(U)) +

|U |∑
r=q|Q|+1

βQ(r)R(I(r)(U))

 (A.55)

=
1∏|Q|

t=1(qt − 1)

|U |∑
r=1

βQ(r)R(I(r)(U)), (A.56)

where (A.55) follows from the facts that βQ(r) = 0 for all r ∈ Q and that

βQ(r) =

|Q|∏
t=1

(qt − 1), ∀r ≥ q|Q| + 1 (A.57)

by the definition (2.89) of βQ(r).

Similarly, the right-hand side of (2.86) can be simplified as

∑
r∈[|U |]\Q

C(A(r)(U)) +
∑
q∈Q

q−1∑
r=1

αQ(q, r)C(A(r)(U)) =
1∏|Q|

t=1(qt − 1)

|U |∑
r=1

βQ(r)C(A(r)(U)).

(A.58)

Substituting (A.56) and (A.58) into (2.86) and multiplying both sides of the inequality by
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∏|Q|
t=1(qt − 1) complete the proof of Corollary 4.
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APPENDIX B

PYTHON CODE FOR CYCLIC GROUP

B.1 Python Code For Generating Inequalities For Projection Under Cyclic Group

i m p o r t numpy as np

i m p o r t csv

i m p o r t i t e r t o o l s

## SET VARIABLES

#n i s number o f random v a r i a b l e s

n=5

f i e l d s i z e =n

## f o r i i n r a n g e ( 1 , n + 1 ) :

## f o r j i n r a n g e ( i +1 , n + 1 ) :

## p r i n t s t r ( i )+ s t r ( j )

d e f c y c s h i f t ( s t r e l e m e n t , f i e l d s i z e ) :

l = s t r ( )

e l e m e n t = l i s t ( s t r e l e m e n t )

f o r i i n r a n g e ( l e n ( e l e m e n t ) ) :

i f i n t ( e l e m e n t [ i ] )== f i e l d s i z e :

e l e m e n t [ i ]=1

e l s e :

e l e m e n t [ i ]= i n t ( e l e m e n t [ i ] ) + 1

e l e m e n t . s o r t ( )

f o r i i n e l e m e n t :
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l += s t r ( i )

r e t u r n l

””” The n e x t f u n c t i o n , s t r c h e c k ( s , l i s t s t r ) i s t o check

i f t h e e l e m e n t s o f s i s i n t h e l i s t o f l i s t s t r ; i f so i

t w i l l p u t 1 i n t h a t e l e m e n t o f t h e l i s t o t h e r wise 0””””

d e f s t r c h e c k ( s , l i s t s t r ) :

l i s t s = l i s t ( s )

o u t p u t = [ ]

f o r i i n r a n g e ( l e n ( l i s t s t r ) ) :

””” p r e s e t t h a t e l e m e n t s o f ’ s ’ a r e n o t i n t h e l i s t e l e m e n t i

temp=1

f o r j i n r a n g e ( l e n ( s ) ) :

i f l i s t s [ j ] i n l i s t s t r [ i ] :

temp∗=1

e l s e :

temp∗=0

o u t p u t . append ( temp )

r e t u r n o u t p u t

p r i n t s t r c h e c k ( ’ er ’ , [ ’ qer ’ , ’ e ty ’ , ’ eq ’ , ’ re ’ ] )
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d e f un ion ( a , b ) :

””” r e t u r n t h e un ion o f two l i s t s ”””

l s a = l i s t ( a )

l s b = l i s t ( b )

l s = l i s t ( s e t ( l s a ) | s e t ( l s b ) )

i n t l s =[ i n t ( l ) f o r l i n l s ]

i n t l s . s o r t ( )

g= s t r ( )

f o r l i n i n t l s :

g+= s t r ( l )

r e t u r n g

””” t h e o u t p u t shows t h a t i f s t r i n g e l e m e n t

i s i n t h e l i s t s o f t h e l i s t l i s t ( which i s a l i s t o f l i s t ) ” ” ” ”

’ ’ ’ f indmx ( ’ 1 ’ , [ [ ’ 3 1 ’ ] , [ ’ 1 ’ , ’ 1 3 ’ ] ] )

r e t u r n s [ 1 , 1 ] ’ ’ ’

d e f f indmx ( e lement , l i s t l i s t ) :

o u t l s = [ ]

f o r i i n r a n g e ( l e n ( l i s t l i s t ) ) :

i f sum ( s t r c h e c k ( e lement , l i s t l i s t [ i ] ) ) >=1:

o u t l s . append ( 1 )

e l s e :

o u t l s . append ( 0 )
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r e t u r n o u t l s

d e f f i n d x ( e lement , l i s t l i s t ) :

o u t l s = [ ]

f o r i i n r a n g e ( l e n ( l i s t l i s t ) ) :

i f sum ( s t r c h e c k ( e lement , l i s t l i s t [ i ] ) ) = = 1 :

o u t = i

b r e a k ;

e l s e :

o u t=−1

r e t u r n o u t

##

## e l s e :

## r e t u r n −1

##

## Code t o p r i n t c o m b i n a t i o n s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# p r i n t c y c s h i f t ( ’ 1 2 5 ’ , 5 )

l = s t r ( )

i n i t l i s t = [ ]

f o r i i n r a n g e ( 1 , n + 1 ) :

i n i t l i s t . append ( s t r ( i ) )

# l += s t r ( i )

p r i n t l

H l i s t = [ ]
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wind=1

temp = [ ]

C o mb l i s t = [ [ ] , i n i t l i s t ]

” ””” f i r s t make t h e f i r s t e l e m e n t o f t h e c o m b i n a t i o n as a s t r i n g ””””

f o r e i n r a n g e ( 1 , wind + 1 ) :

l += s t r ( e )

i t r =1

w h i l e True :

temp = [ ]

f o r i i n C o m bl i s t [ i t r ] :

# p r i n t i

f o r j i n r a n g e ( i n t ( l i s t ( i ) . pop ( ) ) + 1 , n + 1 ) :

temp . append ( i + s t r ( j ) )

i f temp = = [ ] :

b r e a k ;
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C o mb l i s t . append ( temp )

# p r i n t C om b l i s t

i t r +=1

p r i n t Co m b l i s t

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# n e x t i s t o a l t e r n a t e i n e l e m e n t s t o g e t a l l c o m b i n a t i o n s

##−−−−−Improv ing t h e c o m b i n a t i o n t o P r i n t O r b i t s−−−−−−

HOrb i t s = [ [ ] , [ [ ] , i n i t l i s t ] ]

c t =0

f o r i i n r a n g e ( 2 , l e n ( C o m b l i s t ) ) :

C o m b l i s t i = C om b l i s t [ i ] [ : ]

C o m b l i s t i . r e v e r s e ( )

HOrb i t s . append ( [ [ ] ] )

w h i l e C o m b l i s t i ! = [ ] :

temp = [ ]

newelement= C o m b l i s t i . pop ( )

temp . append ( newelement )

# newelement= c y c s h i f t ( newelement , n )

f l g =True

w h i l e True :

s h i f e l = c y c s h i f t ( newelement , n )
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i f ( s h i f e l i n C o m b l i s t i ) :

newelement= s h i f e l

temp . append ( s h i f e l )

C o m b l i s t i . remove ( s h i f e l )

e l s e :

b r e a k ;

HOrb i t s [ i ] . append ( temp )

p r i n t HOrb i t s

p r i n t f indmx ( ’ 1 2 ’ , HOrb i t s [ 3 ] )

### P r i n t I n e q u a l i t i e s −−−−−−−−−−−−−−

l =0

o r b i t l e a d e r s = [ ]

f o r i i n HOrb i t s :

” ””” Here I j u s t g e t one e l e m e n t from each o r b i t a s ””””

i f i ! = [ ] :

o r b i t l e a d e r s . append ( [ i t em [ 0 ] f o r i t em i n i i f i t em ! = [ ] ] )

# O r b i t l e a s e r o r c o s e t .

# Remember t h a t i [ 0 ] = [ ]

l += l e n ( i )−1

p r i n t o r b i t l e a d e r s

t e m p i n e q = [ 0 ]∗ l
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n e w i n e q u a l i t y = t e m p i n e q [ : ]

i n e q u l a i t i e s = [ ]

## H ( X i |X { r e s t})>=0−−−−−−−−−

n e w i n e q u a l i t y [ l e n ( t e m p i n e q )−1]=1

n e w i n e q u a l i t y [ l e n ( t e m p i n e q )−2]=−1

i n e q u l a i t i e s . append ( n e w i n e q u a l i t y )

p r i n t i n e q u l a i t i e s

n e w i n e q u a l i t y = t e m p i n e q [ : ]

##−−−I ( X i , X j)=>0−−−−−−−−−−−−−

f o r i i n r a n g e ( 1 , l e n ( HOrb i t s [ 2 ] ) ) :

n e w i n e q u a l i t y [ 0 ] = 1

n e w i n e q u a l i t y [ i ]=−1

i n e q u l a i t i e s . append ( n e w i n e q u a l i t y )

n e w i n e q u a l i t y = t e m p i n e q [ : ]

p r i n t i n e q u l a i t i e s

##−−−I ( X i , X j |X k , . . . )

p= o r b i t l e a d e r s [ : ]

C o mb l i s t . remove ( [ ] )

HOrb i t s . remove ( [ ] )

i n d =0

f o r i i n r a n g e ( l e n ( p )−2) :

’ ’ ’ h e r e we choose each e l e m e n t o f o r b i t l e a d e r s ’ ’ ’
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i n d += l e n ( p [ i ] )

f o r j i n r a n g e ( l e n ( p [ i ] ) ) :

UP= [ ]

f o r k i n r a n g e ( l e n ( s t r c h e c k ( p [ i ] [ j ] , C o m b l i s t [ i + 1 ] ) ) ) :

i f s t r c h e c k ( p [ i ] [ j ] , Co m b l i s t [ i + 1 ] ) [ k ] ! = 0 :

UP . append ( C om b l i s t [ i + 1 ] [ k ] )

#UP c o n t a i n s e l e m e n t s wi th one more l e t t e r

f o r i t em1 i n UP :

f o r i t em2 i n UP :

i f ( i t em1 != i t em2 ) :

n e w i n e q u a l i t y = t e m p i n e q [ : ]

n e w i n e q u a l i t y [ i n d + f i n d x ( i tem1 , HOrb i t s [ i +1])−1]+=1

n e w i n e q u a l i t y [ i n d + f i n d x ( i tem2 , HOrb i t s [ i +1])−1]+=1

n e w i n e q u a l i t y [ i n d + l e n ( p [ i + 1 ] )

+ f i n d x ( un ion ( i tem1 , i t em2 ) , HOrb i t s [ i +2])−1]=−1

n e w i n e q u a l i t y [ ind−l e n ( p [ i ] ) + j ]=−1

i f n e w i n e q u a l i t y n o t i n i n e q u l a i t i e s :

i n e q u l a i t i e s . append ( n e w i n e q u a l i t y )

p r i n t i n e q u l a i t i e s
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