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ABSTRACT 

 

The dinoflagellate Karenia brevis is a prominent bloom-forming harmful algae 

species in the Gulf of Mexico. K. brevis produces two ladder-frame polyketide 

brevetoxins, PbTx-1 and PbTx-2. PbTx-1, PbTx-2, and their derivatives bind to 

neurotoxin receptor site 5 of voltage-gated Na
+
 channels and prevent channel 

deactivation. Through the depolarizing activity of brevetoxins, K. brevis blooms kill fish 

and may sicken humans who eat shellfish from the bloom region. Despite these risks, the 

biological function of brevetoxins is poorly characterized, including the genes that 

participate in PbTx synthesis. Large and repetitive, the K. brevis genome has not been 

sequenced. However, with de novo transcriptomics, genomic analyses of K. brevis are 

possible. During this dissertation study, the transcriptomes of multiple Karenia species, 

including three strains of K. brevis (SP1, SP3, and Wilson), cytotoxin-producing 

Karenia mikimotoi, and PbTx-2-producing Karenia papilionacea, were assembled and 

analyzed. Analyses included comparative transcriptomics among Karenia species and K. 

brevis strains, putative protein annotation, ortholog prediction, gene tree construction, 

and single nucleotide polymorphism (SNP) prediction. 

 Through the comparison of multiple de novo transcriptome assembly methods, 

this study developed a pipeline to produce highly complete dinoflagellate reference 

transcriptomes. Thousands of Karenia transcripts were annotated with potential 

functions and gene ontology terms, including highly conserved putative voltage-gated 

cation channel genes. Because both Na
+ 

and Ca
2+

 channels were identified, our work 
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suggests that Karenia species are capable of selective transmembrane ion transport. It 

also highlights the need for biochemical research to investigate the interaction, if any, 

between brevetoxins and dinoflagellate voltage-gated Na
+ 

channels.

The Karenia ortholog detection step identified 4799 genes that were expressed 

by brevetoxin-producing K. brevis and K. papilionacea, but not K. mikimotoi. 

Transcripts involved with “heterocycle production” were overrepresented in the 4799 

“unique” orthologs, including five putative polyketide synthases. These genes represent 

interesting targets for further brevetoxin production research. Additionally, a novel 

transcript with high homology to multimodular type 1 PKSs was identified in the K. 

brevis transcriptome and RNA from field samples of K. brevis. The multimodular PKS, 

which has never been characterized before, indicates that K. brevis synthesizes  

 polyketides and/or other secondary metabolites using both type I (multimodular) and  

 type I-like (single domain) proteins. 
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NOMENCLATURE 

 

aa amino acid 

ACP acyl carrier protein 

AT acyltransferase 

bp base pairs 

BLAST Basic Local Alignment Search Tool 

CEGMA Core Eukaryotic Genes Mapping Approach 

DH dehydratase 

DNA deoxyribonucleic acid 

ER enoylreductase 

EST expressed sequence tag 

KR keto reductase 

KS keto synthase 

MIP  major intrinsic protein 

MMETSP Marine Microbial Eukaryote Transcriptome Sequencing Project 

NMR nuclear magnetic resonance  

ORF open reading frame 

PbTx brevetoxin  

RNA ribonucleic acid 

RNA-Seq RNA sequencing 

SLS spliced leader sequence  
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CHAPTER I                                                                                                 

INTRODUCTION 

 

Karenia brevis 

 In the spring and summer of 1947, a then-unnamed algae species discolored the 

Florida Gulf, causing fish kills and marine animal mortalities as the algal cell 

concentration reached 60 million cells per liter (Davis 1948; Gunter et al. 1948; 

Williams et al. 1947). Living samples from the bloom were collected and examined by 

light microscopy. Morphologically similar to known dinoflagellate species from the 

Gymnodinium genera, the bloom-forming harmful algae species was named 

Gymnodinium brevis (Davis 1948). After one century of documented harmful algal 

blooms in the Gulf of Mexico, each with a legacy of marine animal mortalities (Gunter 

et al. 1948), the culprit organism had been identified; however, our knowledge about its 

biology was – and still is – incomplete. In fact, subsequent phylogenetic (rDNA), 

pigment, and ultrastructure analyses of G. brevis prompted its reclassification as 

“Karenia brevis,” a member of a new dinoflagellate genus that was named after the 

researcher Karen Steidinger (Daugbjerg et al. 2000). 

 Most known harmful, bloom-forming, eukaryotic phytoplankton species belong 

to the Dinophyta (as dinoflagellates) or Heterokont (as diatoms) phyla (Granéli and 

Turner 2006). Based on morphology and behavior, the dinoflagellate group is diverse, 

with ~130 genera and ~1200 described single-celled species ranging from 1 µm to 2mm 

wide (Spector 1984). Typically, dinoflagellates have two flagella; they may be 
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autotrophs or heterotrophs, free-living or symbiotic (Dodge 1984). The first described 

dinoflagellate, Noctiluca (Baker 1753), emits stimulation-induced bioluminescence 

through the activity of dinoflagellate luciferase (Haddock et al. 2010). In fact, 

heterotrophic and autotrophic dinoflagellates from 18 known genera are bioluminescent 

(Baker et al. 2008). Some dinoflagellates are “armored,” possessing a cell surface 

covered by cellulose-filled thecal plates, while others, such as Karenia spp., are called 

“unarmored”  or “naked” and lack plates (Granéli and Turner 2006).  

 Karenia brevis is a free-living, unarmored dinoflagellate (Daugbjerg et al. 2000). 

The brevetoxins that K. brevis produces have caused fish kills and other marine animal 

mortalities (Landsberg 2002). Additionally, shellfish bioaccumulate brevetoxins when 

they filter feed on K. brevis cells. People who ingest shellfish from the Gulf during or 

immediately after a bloom may become sick with neurotoxic shellfish poisoning. 

Neurotoxic shellfish poisoning is characterized by gastrointestinal and neurological 

symptoms including nausea, dizziness, vomiting, and partial paralysis (Watkins et al. 

2008). Furthermore, brevetoxins aerosolized by the breaking surf may cause eye 

irritation and respiratory distress in people near the shore (Backer et al. 2003). With 

nearly annual blooms off the coast of Texas or Florida (Steidinger et al. 1998), K. brevis 

is a prominent – if not the prominent – harmful algae species in the Gulf of Mexico. One 

bloom during summer 2000 killed over 2 million fish (Magaña et al. 2003) and caused 

an estimated $16 to $18 million damages in the city of Galveston alone (Evans and Jones 

2001). Thus, there is an impetus to better understand the biological function and 

synthesis pathway of brevetoxins. 
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Brevetoxin 

 K. brevis synthesizes two forms of neurotoxic brevetoxin, PbTx-1 and PbTx-2. 

Extracellular breakdown products of PbTx-1 and PbTx-2 include PbTx-3 through PbTx-

8, metabolites that also act as neurotoxins in vertebrates (Baden 1989; Bourdelais et al. 

2005; Poli et al. 1986). In 1981, the structure of brevetoxin PbTx-2 (then known as 

brevetoxin B) was successfully visualized and refined through a combination of X-ray 

crystallography, the chiral dibenzoate method, and NMR spectroscopy (Lin et al. 1981). 

Although previous studies had characterized brevetoxin toxicity with mice bioassays 

(McFarren et al. 1965; Spikes et al. 1968), Lin et al. was the first group to report that 

PbTx-2, as a ladder-frame trans-fused ether compound, was chemically unique from 

other known dinoflagellate toxins (Lin et al. 1981). The structures of PbTx-1 and PbTx-3 

through -10 were subsequently described (Baden 1989; Chou and Shimizu 1982; Golik 

et al. 1982; Shimizu et al. 1986). All brevetoxins are ladder-frame polyketides that can 

be distinguished by their polyether backbones and R groups (Figure I-1).  PbTx-1, -7, 

and -10 have type-2 polyether backbones, while PbTx-2, -3, -5, -6, -8, and -9 have type-

1 polyether backbones (Baden 1989). The variation in PbTx chemical composition 

impacts toxicity. In fact, PbTx-1 consistently demonstrates the highest measured toxin 

potency, based on half maximal effective concentration (EC50) (Berman and Murray 

1999; Cao et al. 2008).  
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Figure I-1: Backbone structure of type-2 (A) and type-1 (B) brevetoxins. A was adapted 

from Nicolaou et al. 1998, and B was adapted from Matsuo et al. 2004. 

 

 

 

 Brevetoxins bind to neurotoxin receptor site 5 on the voltage-gated sodium 

channel (Baden 1989). The vertebrate voltage-gated sodium channel forms a 

transmembrane pore through which Na
+
 ions selectively pass. Each channel contains 

four α homologous domains (α1 through α4) with six transmembrance helices (S1 

through S6) each (Catterall 2000). Toxins that affect voltage-gated sodium channel 

activity may bind to one of six known α-domain neurotoxin receptor sites and block the 

channel pore, increase channel activation, and/or slow the rate of channel inactivation 

(Catterall et al. 2005). Brevetoxins bind to neurotoxin site 5, which is located on the α1m 

transmembrane helix 6 (IS6) and α4, transmembrane helix 5 (IVS5) regions (Catterall 
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and Gainer 1985; Poli et al. 1986; Trainer et al. 1994). Notably, a competitive inhibitor 

of brevetoxin – brevenal – is also synthesized by K. brevis cells (Bourdelais et al. 2004). 

 Although the channel-binding mechanism responsible for neurotoxic shellfish 

poisoning in humans is well-supported, the biological function of brevetoxins in K. 

brevis is subject to debate and widespread study. Recently, a 25% increase in PbTx 

production was measured in laboratory-cultured K. brevis cells after exposure to hypo-

osmotic stress (Errera and Campbell 2012). It was hypothesized that brevetoxin 

production is related to osmoacclimation in K. brevis, possibly through a novel 

interaction with K. brevis voltage-gated Na
+
 channels (Errera and Campbell 2012). 

Therefore, there is an impetus to characterize both ion transport and brevetoxin 

production in K. brevis. Similarly, the genetic pathway underlying brevetoxin synthesis 

is unknown.  

 

Polyketide synthesis 

 Brevetoxin is one of many polyketide toxins produced by dinoflagellates (Rein 

and Borrone 1999). Polyketides, structurally and functionally diverse secondary 

metabolites, are synthesized through a carbon chain elongation process (Hopwood and 

Sherman 1990). Enzymes called polyketide synthases (PKSs) catalyze polyketide 

biosynthesis through the Claisen condensation elongation method. In brief, the combined 

activity of ketosynthetase (KS), acyl transferase (AT), β-keto-reductase (KR), 

dehydratase (DH), and/or acyl carrier protein (ACP) domains are necessary for chain 
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elongation with optional β-keto reduction, while AT+ACP domains function as the 

loading module (Shen 2003). 

 According to the paradigm, there are two major groups of PKSs: type I and type 

II. Type I PKSs are multimodular, possessing multiple PK-assembly catalytic domains in 

one protein, whereas type II PKSs, which are primarily expressed by prokaryotes, 

function through the interaction of several distinct single-domain proteins (Fischbach 

and Walsh 2006). In sequenced unicellular algae genomes, potential type I and type II 

PKS genes have been identified (Shelest et al. 2015). 

 Dinoflagellates produce complex polyketides, including the neurotoxins 

maitotoxin, brevetoxin, and ciguatoxin (Rein and Borrone 1999). Notably, when K. 

brevis cDNA libraries were first searched for sequences with homology to annotated 

PKSs in the NCBI protein database, the results defied the two-type paradigm. Eight 

“type I-like” (also called “type I modular”) PKS transcripts, each containing a single 

predicted catalytic domain (KS, ACP, or KR) with high sequence similarity to type I 

proteins, were identified in K. brevis (Monroe and Van Dolah 2008). Type I-like PKS 

transcripts are also expressed by other dinoflagellate genera, including Gambierdiscus, 

Alexandrium, and Amphidinium (Murray et al. 2016). 

 

De novo transcriptome assembly 

 Early methods to characterize mRNA expression included the construction of 

expressed sequence tag (EST) libraries and microarrays (Martin and Wang 2011).  ESTs 

are short (200-800 bp), randomly sequenced fragments of cDNA (Parkinson and Blaxter 
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2009), while microarrays enable gene expression analysis through the hybridization of 

probe-labelled mRNA  to DNA-spotted chips (Schena et al. 1995). Initial K. brevis EST 

and microarray work by Lidie and Van Dolah showed that K. brevis gene expression is 

complex. Like other dinoflagellate species, K. brevis produces vast amounts of unique 

transcripts, including mRNAs that are modified by trans-splicing processes (Lidie et al. 

2005; Lidie and Van Dolah 2007; Van Dolah et al. 2007). First characterized in 

trypanosomes (Sutton and Boothroyd 1986), trans-splicing is the combination of two 

unlinked transcripts, a protein-coding pre-mRNA and a 5’ spliced leader RNA, to 

produce a single mature mRNA (Agabian 1990).  

 Early K. brevis EST libraries identified ~12,000 gene clusters (Lidie et al. 2005; 

Lidie and Van Dolah 2007), including 80 mature K. brevis mRNA capped by all or part 

of a 22-nucleotide dinoflagellate spliced leader sequence (SLS) (Lidie and Van Dolah 

2007). Although conserved within the dinoflagellate group, the dinoflagellate SLS (5′-

DCCGTAGCCATTTTGGCTCAAG-3′) is not homologous to SLSs used by other 

eukaryotic phyla (Lidie and Van Dolah 2007; Zhang et al. 2007). To date, the function 

of trans-splicing in dinoflagellates is not known, but use of SLSs in trypanosomes has 

been implicated in post-transcriptional regulation to control protein translation (Brunelle 

and Van Dolah 2011; Morey et al. 2011). Indeed, microarray studies have observed a 

high percent of expressed genes are related to RNA post-transcriptional processing and 

protein processing in K. brevis (Van Dolah et al. 2007). 

 Recent developments in next-generation DNA/RNA sequencing technology have 

enabled researchers to study transcriptomes and genomes through the analyses of 
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millions of short reads (50 to >1000 bp long) (Metzker 2010). Platforms like Illumina 

HiSeq or MiSeq, Pac Bio, Roche/454, and SOLiD ABI use massively parallel 

sequencing to produce relatively inexpensive, high-depth data. Transcriptomes – here 

defined as the complete set of mRNA in a given sample at a specific time – are 

commonly assembled by aligning next-generation RNA-Seq reads to a reference genome 

(Wang et al. 2009). However, this approach limits analyses to model organisms, 

neglecting species without complete genomes, including most dinoflagellates. As of 

2016, the only dinoflagellate with a fully assembled nuclear genome is Symbiodinium 

minutum, a symbiotic zooxanthellae species that lives within coral polyps (Shoguchi et 

al. 2013). To enable analyses of non-model organisms, de novo transcriptome assembly 

programs like Trinity and Velvet-Oases divide RNA-Seq reads into k-mers and assemble 

full transcripts using de Bruijn graph algorithms (Grabherr et al. 2011; Schulz et al. 

2012; Zerbino and Birney 2008). The resulting data provides a more complete view of 

nonmodel transcriptomics than EST libraries alone. For example, this dissertation 

identified between 80,000 and 90,000 unique K. brevis transcripts, whereas the number 

of gene clusters in early K. brevis EST libraries were seven times less numerous. 

  

Dissertation aims and published work 

 In order to characterize gene expression in toxin-producing Karenia species, this 

dissertation had four primary aims: 

 Identify an efficient, effective de novo transcriptome assembly method 

for dinoflagellates with large, highly repetitive genomes. 
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 Predict highly conserved genes in dinoflagellates. If dinoflagellates share 

a pool of highly conserved, consistently expressed genes, the sequences 

can be used to assess transcriptome completeness. 

 Identify the potential genes that underlie osmoacclimation or toxin 

production in harmful, bloom-forming dinoflagellate K. brevis, especially 

putative voltage-gated cation channels and polyketide synthases. 

 Predict genetic variance among two K. brevis laboratory clones and three 

Karenia species: K. brevis, K. mikimotoi, and K. papilionacea. 

 Three papers describe the research that supports each aim. Two, “De novo 

assembly and characterization of the transcriptome of the toxic dinoflagellate Karenia 

brevis” (Ryan et al. 2014) and “Comparative transcriptomic analysis of three toxin-

producing Karenia species” (Ryan and Campbell 2015) have been published, and a 

third, “Novel genes in toxin-producing Karenia species,” has been submitted. The 

papers have been included as dissertation chapters.  
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CHAPTER II                                                                                                                    

DE NOVO ASSEMBLY AND CHARACTERIZATION OF THE TRANSCRIPTOME 

OF THE TOXIC DINOFLAGELLATE KARENIA BREVIS*
1
 

 

Synopsis 

Background 

 Karenia brevis is a harmful algal species that blooms in the Gulf of Mexico and 

produces brevetoxins that cause neurotoxic shellfish poisoning. Elevated brevetoxin 

levels in K. brevis cells have been measured during laboratory hypo-osmotic stress 

treatments. To investigate mechanisms underlying K. brevis osmoacclimation and 

osmoregulation and establish a valuable resource for gene discovery, we assembled 

reference transcriptomes for three clones: Wilson-CCFWC268, SP3, and SP1 (a low-

toxin producing variant). K. brevis transcriptomes were annotated with gene ontology 

terms and searched for putative transmembrane proteins that may elucidate cellular 

responses to hypo-osmotic stress. An analysis of single nucleotide polymorphisms 

among clones was used to characterize genetic divergence. 

 

Results 

 K. brevis reference transcriptomes were assembled with 58.5 (Wilson), 78.0 

(SP1), and 51.4 million (SP3) paired reads. Transcriptomes contained 86,580 (Wilson), 

                                                 

*Reprinted from De novo assembly and characterization of the transcriptome of the toxic 

dinoflagellate Karenia brevis, by Darcie E. Ryan, Lisa Campbell, and Alan E. Pepper. 

2014.  BMC genomics 15(1):888. BMC Genomics is an open access journal. Chapter II 

is formatted in accordance with BMC guidelines. 
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93,668 (SP1), and 84,309 (SP3) predicted transcripts. Approximately 40% of the 

transcripts were homologous to proteins in the BLAST nr database with an E value ≤ 

1.00x10
-6

. Greater than 80% of the highly conserved CEGMA core eukaryotic genes 

were identified in each transcriptome, which supports assembly completeness. Seven 

putative voltage-gated Na
+
 or Ca

2+
 channels, two aquaporin-like proteins, and twelve 

putative VATPase subunits were discovered in all clones using multiple bioinformatics 

approaches. Furthermore, 45% (Wilson) and 43% (SP1 and SP3) of the K. brevis 

putative peptides >100 amino acids long produced significant hits to a sequence in the 

NCBI nr protein database. Of these, 77% (Wilson and SP1) and 73% (SP3) were 

successfully assigned gene ontology functional terms. The predicted single nucleotide 

polymorphism (SNP) frequencies between clones were 0.0028 (Wilson to SP1), 0.0030 

(Wilson to SP3), and 0.0028 (SP1 to SP3). 

 

Conclusions 

 The K. brevis transcriptomes assembled here provide a foundational resource for 

gene discovery and future RNA-seq experiments. The identification of ion channels, 

VATPases, and aquaporins in all three transcriptomes indicates that K. brevis regulates 

cellular ion and water concentrations via transmembrane proteins. Additionally, >40,000 

unannotated loci may include potentially novel K. brevis genes. Ultimately, the SNPs 

identified among the three ecologically diverse clones with different toxin profiles may 

help to elucidate variations in K. brevis brevetoxin production.  
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Background 

 The dinoflagellate Karenia brevis blooms almost annually in the Gulf of Mexico 

and is the region’s major harmful algal species (Steidinger et al. 1998). K. brevis 

produces two ladder-frame polyether brevetoxin compounds, PbTx-1 and PbTx-2, which 

bind to receptor site 5 of voltage-gated Na
+
 channels (Baden 1989; Dechraoui et al. 

1999). Both parent compounds and their derivatives inhibit channel deactivation (Huang 

et al. 1984). Because they affect voltage-gated Na
+
 channel activity, brevetoxins are 

responsible for neurotoxic shellfish poisoning (NSP), may cause marine animal 

mortalities during blooms, and have been implicated in fish kills (Landsberg 2002). 

Additionally, K. brevis cells that are damaged by the breaking surf have been shown to 

release enough aerosolized brevetoxins to cause eye irritation and respiratory distress in 

humans near the shore (Backer et al. 2003). 

 Despite the health risks associated with brevetoxins, their biological function 

within K. brevis is currently unknown. Notably, recent evidence suggests that PbTx-1 

and PbTx-2 production increases in response to hypo-osmotic stress. Within 24 hours 

after a rapid media salinity reduction (35 to 27), the K. brevis Wilson clone 

(CCFWC268) produced ~25% more total brevetoxin per cell. It was therefore 

hypothesized that toxin production facilitates the response of K. brevis to salinity 

variations in the natural environment (Errera and Campbell 2012). As populations move 

from offshore oceanic to coastal waters, cells experience a range of environmental 

salinities. For example, cells of this oceanic species have even been observed in the 

hyposaline Mississippi River Delta (Maier Brown et al. 2006). 
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 To better characterize brevetoxin production and osmoacclimation in K. brevis, 

the reference transcriptomes of three K. brevis clones, Wilson-CCFWC268, SP1, and 

SP3 were assembled. These clones represent diverse geographic origins, duration of 

years in culture, and toxin profiles. Wilson was initially collected off the coast of Florida 

Gulf in 1953. In contrast, the SP1 and SP3 clones originate from the Texas coast in 

1999. While SP1 produces low, often undetectable amounts of PbTx-1 and PbTx-2, the 

total brevetoxin in SP3 and Wilson consistently exceeds 10 pg cell
−1

 (Errera and 

Campbell 2012; Errera et al. 2010). Thus, differences among the three transcriptomes 

may improve our understanding of brevetoxin production. 

 Brevetoxins are ladder-frame polyethers that belong to the polyketide family. 

Polyketide synthase (PKS) genes have been isolated from Wilson cultures (Snyder et al. 

2003). In 2008, Monroe et al. identified four novel K. brevis PKS mRNA sequences in 

K. brevis clones Wilson, C2, NOAA-1, and SP2 that were not present in other 

dinoflagellates, including closely-related Karenia mikimotoi and Karlodinium veneficum. 

Because these four PKS sequences are unique to K. brevis and are structurally novel, it 

was hypothesized that they participate in the brevetoxin biosynthetic pathway (Monroe 

and Van Dolah 2008). As part of this project, we searched the SP1, SP3, and Wilson 

transcriptomes for novel K. brevis PKS genes to determine if the known PKS genes were 

transcribed in all three clones. 

 Because brevetoxins increase voltage-gated Na
+
 channel activity, determining 

whether K. brevis expresses these channel proteins may elucidate the physiological 

function of this toxin. Previously constructed K. brevis EST libraries contained ~12,000 
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unique genes (Lidie et al. 2005; Lidie and Van Dolah 2007), but no complete Na
+
 

channel protein-coding region was identified in this gene set. Further, channel-based 

Ca
2+

, K
+
, and Na

+
 transport across cell membranes is one known method that plants and 

algae use to maintain homeostasis (Glass 1983). The presence of ion channel sequences 

in K. brevis transcriptomes would suggest that this dinoflagellate is capable of 

osmoregulation through selective transmembrane ion transport. 

 Although aquaporins and VATPases have not been implicated in brevetoxin 

binding, they might affect osmoacclimation efficiency in K. brevis. Aquaporins were 

originally discovered in human red blood cells (Agre et al. 1993) but have since been 

found in taxa belonging to the bacterial, archaeal, and eukaryotic domains (Heymann 

and Engel 1999). These bidirectional transport proteins belong to the major intrinsic 

protein (MIP) family and move water and/or glycerol molecules across lipid membranes 

more quickly than diffusion (Agre et al. 2002; Borgnia et al. 1999). Similarly, VATPases 

generate pH gradients that trigger secondary ion transport (Nelson et al. 2000). They 

have been identified in diverse eukaryotes and may participate in osmoregulation. For 

example, in Arabidopsis thaliana, Ca
2+

, Na
+
, and K

+
 starvation induced transcript-level 

downregulation of VATPase family genes (Maathuis et al. 2003), and inhibition of 

plasma H
+‐ATPases in green alga Dunaliella salina prevented cell volume recovery after 

hyper-osmotic stress (Maathuis et al. 2003). 

 The haploid K. brevis genome is estimated to be 1 × 10
11

 base pairs (bp) 

(Kamykowski et al. 1998; Kim and Martin 1974; Rizzo et al. 1982; Sigee 1984; Van 

Dolah et al. 2009) and has not been sequenced. This exceedingly large genome size 
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highlights the crucial need for a reference transcriptome in order to initiate serious 

genomic analyses of this species. The Wilson, SP1, and SP3 K. brevis transcriptomes are 

among the first dinoflagellate transcriptomes to be assembled. Because no reference 

genome was available, a goal of this study was to evaluate different techniques to 

determine the de novo assembly method best suited for our data. Among eukaryotes, 

dinoflagellates are unique in a number of ways. A 22-nucleotide spliced leader sequence 

(SLS) has been identified in nuclear mRNA from all dinoflagellate species, including K. 

brevis (Lidie and Van Dolah 2007; Zhang et al. 2007). Though the dinoflagellate SLS is 

conserved within the dinoflagellate group, it is not homologous to SLSs used by other 

eukaryotic phyla (Zhang et al. 2007). Additionally, dinoflagellate chromosomes are 

permanently condensed and nuclear genomes often contain a high quantity of repetitive, 

non-coding DNA (Lin 2011; Rizzo et al. 1982; Rizzo 2003). These characteristics make 

dinoflagellates a biologically interesting target for transcriptome characterization, 

analysis of the gene complement, and gene expression studies. Here we report the results 

of a search for K. brevis PKSs, voltage-gated ion channels, aquaporins, and VATPases 

and describe transcriptome sequence differences in these genes among ecologically 

diverse clones. 

 

Results 

Transcriptome assembly 

 After trimming for quality and length, 58.5 million, 78.0 million, and 51.4 

million paired reads were used to assemble the K. brevis Wilson, SP1, and SP3 reference 
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transcriptomes, respectively (Table II-1) using both the Velvet-Oases (Schulz et al. 

2012; Zerbino and Birney 2008) and ABySS (Simpson et al. 2009) assembly methods. 

Based on the N50 length and mean transcript length (Figure II-1), the transcriptomes 

produced by the Oases merged assembly (MA) technique with K-values of 29 bp 

(Wilson and SP1) or 33 bp (SP3) were considered optimal and used during all 

subsequent analyses. Further, the transcript analysis software TRAPID (Van Bel et al. 

2013) identified 1549 more full-length open reading frames (ORFs) in the SP1 MA 

Oases transcriptome, compared to the SP1 MA ABySS transcriptome. These results 

support the choice of Velvet-Oases, since this assembler produced more transcripts with 

complete protein-coding regions. 

 The reference transcriptomes had ~ 90,000 loci each (Table II-1). Of these, 34% 

(Wilson), 35% (SP1), and 85% (SP3) contained two or more isoforms that were 

collapsed to a single representative transcript (Table II-1). Approximately 87% (Wilson 

and SP1) or 74% (SP3) of the transcripts were less than 2,500 bp long (Figure II-2). 

Based on BLASTn results, 4.3% (Wilson), 8.8% (SP1), and 3.1% (SP3) of the loci in 

each transcriptome were present in only one of the clones (Table II-1). However, when 

reads were aligned to the assembled transcriptomes, <1% of the transcripts only matched 

reads from one clone (Table II-2). This suggests that the BLASTn results overestimate 

the number of loci apparently unique to Wilson, SP1, or SP3. 
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Table II-1: A comparison of K. brevis transcriptome read number, locus number, 

apparently clone-unique locus number, N50 length, and mean locus length values. 

Clone # Reads # Loci % Isoforms # Unique Loci N50 (bp) Mean Locus  

Length (bp) 

Wilson 58,535,595 86580 34 3712 2038 1340 

SP1 77,994,379 93668 35 8202 2124 1376 

SP3 51,363,303 84309 85 2606 3424 1941 

The % isoforms column lists the percentage of loci that were assigned two or more 

isoforms by Velvet-Oases. 
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Figure II-1: N50 and mean transcript length values for merged (MA) and single k-mer 

(S) Velvet-Oases and ABySS SP1 transcriptome assemblies. 
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Figure II-2: K. brevis transcriptome reference transcript length histogram.  
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Table II-2: Short read alignment results. 

 

Transcriptome # Transcripts without 

Wilson alignments 

# Transcripts without 

SP1 alignments 

# Transcripts without 

SP3 alignments 

Wilson 0 472 (0.55%) 438 (0.51%) 

SP1 751 (0.80%) 0 718 (0.77%) 

SP3 610 (0.72%) 564 (0.67%) 0 

 

 

 

Whole-transcriptome annotation 

 The number of predicted ORFs and their length distribution was similar among 

the three transcriptomes (Figure II-3). Complete (start to stop codon) and partial (no start 

codon) ORFs longer than 300 bp were considered to be possible protein-encoding 

transcripts. During the BLASTp search against the nr database, 45% (Wilson), 43% 

(SP1), and 43% (SP3) of the K. brevis putative peptides >100 aa significantly hit a 

sequence (E value ≤ 1.00x10
-6

). Of those transcripts with positive BLAST alignments, 

77% (Wilson), 77% (SP1), and 73% (SP3) were annotated with GO terms (Figure II-4). 

 

CEGMA and TRAPID analyses 

 Core eukaryotic genes (CEGs) represent an unbiased set of proteins that are 

expressed and conserved within diverse eukaryotes (Parra et al. 2007), and therefore 

CEG identification helps gauge transcriptome assembly completeness. With CEGMA, 

we found 81% (Wilson), 84% (SP1), and 82% (SP3) (Additional file 1) of the complete 
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highly conserved core genes described by Parra et al. (Parra et al. 2007). In comparison, 

74% and 90% of the complete CEGs were identified in the dinoflagellate Karlodinium 

micrum CCMP2283 transcriptome and diatom Thalassiosira pseudonana genome, 

respectively. Thus, as a metric of transcriptome assembly success, the identification of 

complete CEGs in our transcriptomes indicates a high level of completeness in their 

coverage. The analysis also identified many conserved proteins that can be used to refine 

dinoflagellate phylogenetic relationships. 

 The “missing” CEGs that were not identified in any K. brevis reference 

transcriptome may represent genes that are not used by dinoflagellates. It is also possible 

that “missing” K. brevis CEG orthologs are not highly conserved by CEGMA criteria. 

To investigate these options, the SP1 transcriptome was used to search the CEG protein 

list using BLASTx. SP1 transcripts hit 235 of the 248 core CEGs with an E value 

<1.00x10
-6

. Therefore, homologs of 25 of the 38 “missing” genes were detected in the 

CEGMA dataset using BLASTx. 

 The ratio of full-length/quasi full-length to partial coding regions predicted by 

TRAPID (Van Bel et al. 2013) characterizes protein coding region completeness. The 

Wilson, SP1, and SP3 Oases reference transcriptomes were compared against three 

databases: the OrthoMCLDB 5.0 alveolate clade db, the PLAZA 2.5 green plants clade 

db, and the OrthoMCLDB 5.0 T. pseudonana CCMP1335 species db. The ratios of 

complete to partial coding regions identified in the reference transcriptomes were 7.3:1 

(Wilson), 13.5:1 (SP1), and 12.5:1 (SP3). Over 90% of the K. brevis transcripts that 
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significantly matched sequences in the TRAPID databases had ORFs that fell within two 

standard deviations of the mean ORF length in their gene families. 

 

PKS, Aquaporin, voltage-gated ion channel, and VATPase identification 

 The Wilson, SP1, and SP3 transcriptomes each included positive hits to the four 

novel K. brevis PKS sequences (gi # 148536478, 148536480,148536474, and 

148536472), with nucleotide similarity values >99% over the aligned regions. No unique 

non-synonymous SNPs were identified in the SP1 PKS ORFs. 

 The same seven putative voltage-gated Na
+
 or Ca

2+
 channel genes were identified 

in all three K. brevis transcriptomes (SP1 transcriptome locus # 394, 12559, 19932, 

26784, 30595, 36263, and 64946). Each sequence contained the voltage-sensing motif 

and four Pfam00520 domains with ~ six predicted transmembrane regions. During the 

BLASTx search against the nr database, the putative proteins very significantly (E value 

≤ 1.00x10
-50

) matched voltage-gated Na
+
 and Ca

+2
 channels from a range of organisms, 

including mammals. 

 

 



 

 

23 

 

Figure II-3: Predicted ORF length distribution in the Wilson, SP1, and SP3 

transcriptomes. Length values are represented in #aa, or #bp in ORF divided by three. 
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Figure II-4: Distribution of second-level cellular component and molecular function GO 

annotations in annotated K. brevis reference transcripts. The percent distribution is 

identical in all three clones. 
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 The transcriptomes contained twelve different putative VATPase subunits with 

V-ATPase conserved domains. Two MIP genes were also identified in all the 

transcriptomes. The 267 and 405 aa putative proteins (SP1 transcriptome locus # 102528 

and 12778, respectively) each contained six predicted transmembrane regions and 

conserved domains belonging to the MIP family. The aquaporin Asn-Pro-Ala (NPA) 

water selectivity filter motif was also identified, with conservation of the Asn in each 

occurrence. The K. brevis MIP sequences were compared to the nr protein database. 

Each returned over 100 hits with E values ≤ 1.00x10
-20

. Of these, ~70% were aquaporins 

or predicted MIPs. The complete ORF of MIP #12778 was located in Wilson, SP1, and 

SP3, with almost 100% aa sequence conservation among clones, with just one aa 

variation in SP3, a Val to Met substitution at aa position 270. The ORF of MIP # 102529 

was incomplete in the Wilson and SP3 transcriptomes. 

 

SNP identification 

 When the Wilson and SP3 short reads were aligned to the SP1 transcriptome with 

a conservative 20-fold minimum coverage cutoff, 186,075 SNP locations were identified 

in 30,227 loci. Of these, 75,176 (40%) were exclusively in Wilson, 65,867 (35%) were 

exclusively in SP3, and 45,032 (25%) were in both Wilson and SP3. The SNP 

frequencies between Wilson and SP1, Wilson and SP3, and SP1 and SP3 were 0.0023, 

0.0024, and 0.0022, respectively (Table II-3). The 10-fold threshold analysis identified 

312,723 potential SNP locations in 58,051 loci. Among these, 117,714 (38%) were 

exclusively in Wilson, 111,660 (36%) were exclusively in in SP3, and 83,349 (26%) 
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were present in both Wilson and SP3. At this coverage threshold, the estimated Wilson 

and SP1, Wilson and SP3, and SP1 and SP3 SNP frequencies had increased to 0.0028, 

0.0030, and 0.0028 (Table II-3). 

 SNPs were analyzed in the seven putative voltage-gated Na
+
 or Ca

2+
 channels to 

examine variations among similar genes. The channel ORF length ranged from 4401 to 

7908 bp, with a mean length of 6110 bp. Because the mean coverage of each sequence 

exceeded 10-fold, SNP rates were determined by the 10-fold threshold analysis. The 

mean SNP rate of all seven channels was 0.0032 (SP1 to Wilson), 0.0037 (SP3 to 

Wilson), or 0.0027 (SP1 to SP3) (Table II-4). Notably, clone-to-clone SNP rate varied 

among voltage-gated cation channel sequences. Channel 19932 was ~100% identical in 

Wilson, SP1, and SP3, containing only one predicted SNP. In contrast, pairwise 

comparisons of channel 394 predicted a SNP ~ 1 out of every 160 nucleotides (Table II-

4). Non-synonymous SNPs that altered the amino acid sequence in the putative Na
+
 or 

Ca
2+

 channels were less common than synonymous SNPs, occurring at frequencies 

ranging from 0.0018 to 0.00033, with mean frequencies of 0.00095 (Wilson to SP1), 

0.000867 (Wilson to SP3), and 0.000667 (SP1 to SP3) (Table II-4). Variations in the 

non-synonymous SNP prevalence among putative cation channels suggest that the 

channels may be subject to different selective constraints. Furthermore, because Wilson, 

not SP1, is the most divergent clone overall, toxin production does not appear to affect 

cation channel gene selection. 
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Table II-3: SNP detection results. 

 

 Clones # SNPs Mean SNP Rate # Transcripts with SNPs 

 Wilson vs SP1 120208 0.0023 (1 / 442) 25123 

20X Wilson vs SP3 141044 0.0024 (1 / 421) 28427 

 SP1 vs SP3 110899 0.0022 (1 / 465) 22794 

 Wilson vs SP1 201063 0.0028 (1 / 358) 37486 

10X Wilson vs SP3 229374 0.0030 (1 / 339) 41937 

 SP1 vs SP3 195009 0.0028 (1 / 364) 36144 

The mean SNP rate was calculated in transcripts with at least one SNP. 
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Table II-4: SNPs in putative voltage-gated Na
+
 or Ca

2+
 channel sequences. 

 

 Channel 

ID 

# SNPs in 

Transcript 

Mean SNP 

Rate 

Length 

transcript 

Length 

ORF 

Non-synonymous / Synonymous 

SNPs in ORF 

Wilson vs 

SP1 

394 45 0.0065 6893 6686 0.23 

12559 30 0.0046 6475 6213 0.39 

19932 1 0.0002 6464 6165 1.00 

26784 25 0.0041 6034 5862 0.27 

30595 23 0.0032 7274 5532 — 

36263 20 0.0025 8014 7908 0.26 

64946 6 0.0013 4532 4401 0.80 

Wilson vs 

SP3 

394 44 0.0064 6893 6686 0.29 

12559 35 0.0054 6475 6213 0.25 

19932 0 0 6464 6165 — 

26784 27 0.0045 6034 5862 0.23 

30595 24 0.0033 7274 5532 0.00 
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Table II-4 continued. 

 Channel 

ID 

# SNPs in 

Transcript 

Mean SNP 

Rate 

Length 

transcript 

Length 

ORF 

Non-synonymous / Synonymous  

SNPs in ORF 

 36263 19 0.0024 8014 7908 0.20 

 64946 19 0.0042 4532 4401 0.19 

SP1 vs SP3 394 39 0.0057 6893 6686 0.13 

12559 17 0.0026 6475 6213 0.29 

19932 1 0.0002 6464 6165 1.00 

26784 22 0.0036 6034 5862 0.19 

30595 5 0.0007 7274 5532 — 

36263 13 0.0016 8014 7908 0.18 

64946 21 0.0046 4532 4401 0.44 
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Discussion 

 Our K. brevis transcriptomes are among the first dinoflagellate transcriptomes to 

be assembled, so it is not possible to make comparisons with closely related species. 

Lacking a reference genome sequence, several metrics, including transcript length, 

TRAPID-predicted full-length genes, and the identification of CEGs, were employed to 

gauge the completeness of the transcriptome assembly. Each of these criteria suggests 

that the transcriptomes are highly complete. First, the estimated mean protein-coding 

gene length of 19 model eukaryotes with sequenced genomes, including Arabidopsis 

thaliana, Caenorhabditis elegans, and red alga Cyanidioschyzon merolae, is 1,346 bp 

(Xu et al. 2006). This value is similar to the Wilson, SP1, and SP3 mean reference 

transcript lengths of 1340, 1376, and 1941 bp, respectively; therefore, our de novo 

assemblies of the K. brevis transcriptome appear to yield transcripts of a reasonable 

length. 

 Next, a 66% CEG identification rate was reported when Parra et al. analyzed the 

Toxoplasma gondii genome with CEGMA (Parra et al. 2007). Apicomplexan T. gondii 

and dinoflagellate K. brevis both belong to the alveolate group and are close 

phylogenetic relatives, based on rRNA analyses (Van de Peer and De Wachter 1997). 

Identification of >80% of the highly conserved CEGs from each K. brevis reference 

transcriptome provides additional support for the completeness of the assembly, since 

this value exceeds the expected percent based on T. gondii results. TRAPID results also 

indicated that more transcripts contained complete or mostly complete ORFs than partial 
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ORFs. Of the transcriptomes similar to TRAPID alveolate, gene families, over 92% were 

within two standard deviations of the expected length. 

 Only ~40% of the genes in the K. brevis transcriptomes are homologous to 

sequences in the nr protein database with a hit significance ≤ 1.00x10
-6

. Because little is 

known about dinoflagellate genomes, the high percentage of unknown loci was 

expected. The Blast2GO annotation step did not annotate enough hits to allow 

conclusions about the total gene ontology distribution of the transcriptomes. The low 

annotation rate is a result of low (<50%) similarity scores between K. brevis sequences 

and annotated proteins. This may be the result of the phylogenetic uniqueness of 

dinoflagellates combined with limited phylogenetic representation in the Blast2GO 

databases. 

 The four novel K. brevis PKS sequences (Monroe and Van Dolah 2008) were 

found and expressed in all three clones. No unique non-synonymous SNPs were 

identified in the SP1 PKS ORFs. It is therefore possible that SP1 expresses the genes 

involved in brevetoxin production, though cellular PbTx-1 and PbTx-2 are often 

undetectable in this clone. This result is consistent with prior work investigating 

transcriptional and post-transcriptional regulation in K. brevis. Microarray studies have 

observed a high percent of expressed genes related to RNA post-transcriptional 

processing and protein processing in K. brevis, thus suggesting that this dinoflagellate 

species is highly reliant on post-transcriptional regulation (Van Dolah et al. 2009). 

 Some phenotypic variance between clones may result from SNPs that alter gene 

function. SNPs affecting 25123 (Wilson to SP1), 28427 (Wilson to SP3), or 22794 (SP1 
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to SP3) expressed genes were identified in laboratory-cultured K. brevis clones. Based 

on overall nucleotide divergence rates between Wilson and SP1, Wilson and SP3, and 

SP1 and SP3 (Table II-3), SP1 and SP3 were the most similar clones. This may be the 

result of time in culture. SP1 and SP3 were isolated in 1999, while Wilson-CCFWC268 

has been in culture since 1953 (Errera et al. 2010). 

 Typically, eukaryotic algae respond to osmotic stress by differential metabolite 

production rates and/or the transmembrane flux of ions and water (Wegmann 1986). The 

identification of putative MIPs, VATPases and voltage-gated Na
+
 or Ca

2+
 channels in K. 

brevis supports the hypothesis that cells osmoregulate with transmembrane channels. In 

K. brevis, aquaporins may facilitate quick responses to changes in the osmotic pressure 

gradient. Further, putative voltage-gated Na
+
 or Ca

2+
 channels with voltage-sensing 

motifs may facilitate cation transport across the cell membrane in response to ion 

gradients. The high interspecies similarity of these protein sequences indicates functional 

conservation among K. brevis clones that show varying brevetoxin profiles. Future 

experimental work will need to confirm that aquaporins, VATPases, or ion channels are 

involved with osmoacclimation in K. brevis. Potential experiments may measure cell 

volume post hypo-osmotic stress with and without specific protein blockers. 

 

Conclusions 

 Our discovery of putative ion channel, aquaporin, and VATPase sequences 

supports the hypothesis that K. brevis cells use transmembrane proteins during 

osmoregulation and osmoacclimation. In the future, clone-to-clone and treatment-to-
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treatment comparisons of the expression of these and other novel genes using RNA-seq 

(Mortazavi et al. 2008) will elucidate K. brevis responses to osmotic stress. The 

transcriptomes assembled during this study also provide a foundational reference for 

future differential expression and protein discovery work. Thousands of K. brevis 

transcripts have been assigned GO functions (Additional file 2, Additional file 3, 

Additional file 4, Additional file 5, Additional file 6 and Additional file 7), and over 

40,000 K. brevis loci containing unknown hypothetical protein-coding regions >100 aa 

long (~11 kDa) were assembled. Even if just a fraction of these transcribed loci encode 

functional proteins, our datasets identify a vast number of novel genes and gene-

products. Future analyses of these genes will yield insights into the unique biology of K. 

brevis. 

 

Methods 

Cell culturing and RNA sequencing 

 K. brevis clones Wilson, SP1, and SP3 were maintained in L1 medium (Guillard 

and Hargraves 1993) at salinity 35. The medium was prepared with filtered (0.2 μm 

pore) and autoclave-sterilized sea water from the Flower Garden Banks region, Gulf of 

Mexico. For each clone, triplicate 1-L sterile glass bottles were inoculated with cells 

from laboratory cultures and maintained on a 12:12 hour light:dark cycle at 25°C. Cell 

counts were performed by light microscopy every other day to monitor growth rates. 

 During the late exponential growth phase, 500 ml were concentrated by 

centrifugation (800 × g, 10 min) and RNA was immediately extracted from the pellets in 
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40 μL of nuclease-free water with the Qiagen RNEasy Mini Kit (Qiagen Inc., Valencia, 

CA), in accordance with the manufacturer’s protocol. After final elution of RNA in 40 

μL of nuclease-free water, samples were stored at −80°C until library preparation. The 

RNA concentration and purity of each extraction was estimated by measuring the 

absorption spectra of 2 μL sample aliquots with a NanoDrop Spectrophotometer. 

 The remaining culture in each bottle was diluted from a salinity of 35 to a salinity 

of 27 with nutrient-enriched Milli-Q water to simulate hypo-osmotic stress. Stressed 

cultures were incubated for one hour before RNA was extracted, as described above. 

RNA was shipped on dry ice to the National Center for Genome Resources Sequencing 

Lab (Santa Fe NM, USA) for paired-end Illumina sequencing (Illumina, San Diego CA, 

USA). Libraries were prepared with the TruSeq RNA Sample Preparation Kit (Illumina) 

using 2 μg RNA. Paired-end 50 bp reads were sequenced with the Illumina Hi-Seq 2000 

platform. 

 

Reference transcriptome assembly 

 Paired-end reads are available at the NCBI SRA repository. Reads were trimmed 

for quality and filtered for length with CLC Genomics Workbench 5.5.1 (CLC Bio, 

Aarhus, Denmark); the minimum read length permitted was 45 bp. Reads were trimmed 

based on Phred quality scores at the probability threshold of p = 0.05. 

 Reference transcriptomes for each clone were assembled with reads pooled from 

both control and salinity stress treatments. Pooling the reads allowed the assembly of 

genes that may only be expressed in one of the two treatments. Assembly was completed 
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with Velvet-Oases, which uses a de Bruijn graph algorithm to build transcripts de novo 

(Schulz et al. 2012; Zerbino and Birney 2008). Coverage cutoff values were chosen 

automatically, and the edge fraction cutoff was increased from the default 10% to 50%. 

For each clone, single k-mer assemblies (k-mer lengths 21, 25, 29, 33, 37, and 41 bp) 

were merged into a non-redundant consensus transcriptome assembly. A 250 bp 

minimum transcript length threshold was enforced. For comparison purposes, an SP1 

reference transcriptome was also assembled with the ABySS de novo paired-end 

assembler (Simpson et al. 2009). Single k-mer assemblies (odd lengths, 25 to 45 bp) 

were merged into a final transcriptome with “bubble popping” enabled. 

 Oases may output several transcript isoforms belonging to the same predicted 

locus. When multiple isoforms were present, we removed all but one representative 

sequence based on the following criteria. Isoforms were searched using BLAST 

(Altschul et al. 1997) against the other K. brevis transcriptomes, with the E value 

significance threshold 1.00x10
-6

. The isoform that hit another sequence with the longest 

alignment length and highest significant bit score was retained. In the event that a locus 

containing multiple isoforms did not return a significant hit, the longest transcript was 

chosen to represent its locus. This technique retains the isoform that is most abundant 

across all clones, when multiple isoforms were present. 

 The mean locus (unigene) length and N50 value were calculated using a 

transcript length list. To identify putative complete genes, the transcriptomes were 

analyzed with TRAPID. Transcripts were assigned gene families by a comparison with 

the TRAPID alveolate clade database. ORFs within two standard deviations of the mean 
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gene family length were considered “full-length.” For each K. brevis clone, the 

transcriptome assembly method that produced the greatest N50 length and the most full-

length genes was considered optimal and used during subsequent analyses. 

 

Identification of core eukaryotic proteins 

 To assess transcriptome completeness, loci were analyzed with the Core 

Eukaryotic Genes Mapping Approach (CEGMA) pipeline. CEGMA was developed to 

identify a subset of 248 highly conserved core eukaryotic genes (CEGs) in eukaryotic 

genomes. The CEGs were derived from six diverse model organisms: Homo sapiens, 

Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, 

Saccharomyces cerevisiae and Schizosaccharomyces pombe (Parra et al. 2007). For 

comparison purposes, the T. pseudonana genome was downloaded from the Joint 

Genome Institute and analyzed with CEGMA. T. pseudonana is a eukaryotic oceanic 

alga, for which a complete genome is available. Additionally, the K. micrum CCMP2283 

transcriptome was downloaded from the CAMERA Data Distribution Center and 

analyzed with CEGMA. Karlodinium dinoflagellates are close phylogenetic relatives of 

K. brevis, based on rRNA analyses (Fensome et al. 1999). 

 

Assessing gene completeness with TRAPID 

 Full-length, quasi full-length, and partial protein coding regions were predicted 

in the Wilson, SP1, and SP3 Oases reference transcriptomes and the SP1 ABySS merged 

assembly. All the transcriptomes were compared against sequences in the OrthoMCLDB 
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5.0 alveolate clade database, while the Oases reference transcriptomes were also 

compared against sequences in the PLAZA 2.5 green plants clade database and the 

OrthoMCLDB 5.0 T. pseudonana CCMP1335 species database. The similarity search 

considered hits that yielded an E value <1.00x10
-5

 to be significant, and transcripts were 

annotated according to best hit values. Transcripts that hit one or more sequences in the 

TRAPID databases were qualified as “full-length,” “quasi full-length,” or “partial” based 

on the ORF length. ORFs that were more than two deviations shorter than the average 

ORF length of their assigned gene family (excluding the 10% longest and shortest 

sequences within the family) are “partial.” ORFs that are longer than the mean minus 

two standard deviations are “full length” if they also contain a start and stop codon and 

“quasi full-length” if they lack a stop and/or start codon (Van Bel et al. 2013). 

 

Predicting unique assemblies and SNP locations in the transcriptomes 

 To identify similarities and possible differences among clones, the 

transcriptomes were searched for transcripts that are present in just one or two out of the 

three clones. Unique assemblies may be caused by differences in transcript coverage or 

transcriptome assembly artifacts. First, each Velvet-Oases assembled K. brevis 

transcriptome was converted to a searchable BLAST nucleotide database. All 

transcriptomes were searched against each other with BLASTn. Only hits with E values 

≤ 1.00x10
-50

 were considered as significant matches. Next, Wilson, SP1, and SP3 paired-

end reads were aligned to each transcriptome with CLC Genomics Workbench 6.5. 
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During mapping, 85% similarity fraction and 90% length fraction cutoffs were enforced, 

as well as conservative mismatch (3), insertion (3), and deletion (3) costs. 

 Reads from Wilson and SP3 were mapped to the SP1 transcriptome and analyzed 

for SNPs with the CLC quality-based variant detection function. The following quality 

filtering criteria were enforced: neighborhood radius = 5, maximum gap and mismatch 

count = 2, minimum neighborhood quality = 15, and minimum central quality = 20. 

Variants also had to be present in both forward and reverse reads. Additionally, non-

specific matches and broken pairs were ignored, and the program enforced a 20-fold 

minimum coverage threshold and 90% minimum variant frequency. The analysis was 

also run with less conservative but more inclusive 10-fold coverage threshold. 

 

Whole-transcriptome annotation and targeted gene discovery 

 The longest putative ORF was identified in each transcript and translated to 

amino acids (aa) via the longorf.pl Bioperl script (Kortschak 2002). Using BLASTp, 

peptides were compared to the NCBI non-redundant protein database, which was 

downloaded from the NCBI FTP site on September 20, 2013. Significant (E value ≤ 

1.00x10
-6

) hits were uploaded to Blast2GO and annotated with possible gene ontology 

(GO) terms using a 35% minimum similarity cutoff (Conesa et al. 2005). 

 In order to identify novel K. brevis PKS mRNA sequences, BLASTn was used to 

search the Wilson, SP1, and SP3 transcriptomes for the four novel K. brevis mRNA 

sequences identified by Monroe and Van Dolah (Monroe and Van Dolah 2008). Hits 

were aligned against each other with the Clustal Omega alignment program (Sievers et 
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al. 2011) to investigate sequence similarity among the clones and original PKS 

sequences. 

 To identify possible voltage-gated cation channels, VATPase subunits, and 

aquaporin transcripts, the transcriptomes were compared to annotated voltage-gated Na
+
 

channel alpha subunit and aquaporin sequences using BLASTx. 

 During the targeted search for these particular genes, loci with significant (E 

value ≤ 1.00x10
-6

) matches to one or more proteins from the databases were translated 

into ORFs. Any locus containing an ORF <300 bp long was discarded. 

 Probable transmembrane domains within the complete ion channel and aquaporin 

ORFs were identified with the Center for Biological Sequence Analysis TMHMM 

Server, version 2.0, which uses a hidden Markov model approach to predict 

transmembrane, intracellular, and extracellular regions in proteins (Krogh et al. 2001). 

Since cation channels and aquaporins each contain domains with six transmembrane 

regions, sequences containing at least six predicted transmembrane helices were 

analyzed with two additional tools. First, they were compared to the NCBI nr database 

with BLASTx to identify homologous sequences from a range of eukaryotes. Next, 

conserved protein domains from the NCBI Conserved Domain Database (Marchler-

Bauer et al. 2011) were identified with CD-search (Marchler-Bauer and Bryant 2004). In 

particular, ion channel transcripts were expected to contain domains belonging to the 

Pfam ion transport protein family (Pfam00520), which includes Na
+
, K

+
, and Ca

2+
 

channels. Aquaporin transcripts were expected to contain MIP family conserved 
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domains. VATPases were searched for V-ATPase domains, including Walker motifs, 

which are conserved among VATPase A subunits (Forgac 1989). 

 Potential ion channel transcripts were also searched for the voltage-gated Na
+
 

channel S4 voltage-sensing motif. This motif, a repeated triad containing one positively 

charged and two hydrophobic aa, is highly conserved and helps regulate conformational 

changes that occur during channel activation and inactivation (Catterall 2000). 

 

Availability of supporting data 

 The short read data supporting the results of this article are available in the NCBI 

SRA repository as of March 2014 under BioProject PRJNA214017, accession IDs 

SRX363776, SRX363775, and SRX361898. Short read data is also available at the 

publically accessible camera repository (project IDs MMETSP0573, MMETSP0574, 

MMETSP0648, MMETSP0649, MMETSP0527 and MMETSP0528). The reference 

transcriptomes can be accessed through LabArchive (DOI 10.6070/H44F1NPC, 

10.6070/H40P0X0H, 10.6070/H4VX0DH6).  

 Additional supporting data files are downloadable from BMC Genomics as 

“electronic supplementary material” associated with the original article. These additional 

files include the following text documents: 

 

Additional file 1: CEGMA CEG prediction results. This document contains the CEGMA 

output describing the CEG analysis in the Wilson, SP1, and SP3 transcriptomes.  
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Additional file 2: SP1 transcriptome cellular component GO annotation. This document 

contains a full list of the Blast2GO GO cellular component terms assigned to SP1 

transcripts. Data are arranged into six tab-separated columns: LevelGO, Term (Acc), 

Term (Name), #Seq, Score, Parents (Acc), Parents (Name). The Term (Name) and Term 

(Acc) columns contain the cellular component name and gene ontology ID number, 

respectively. #Seq lists the number of transcripts that were assigned the cellular 

component term. LevelGO, Parents (Acc), and Parents (Name) are all related to the 

hierarchal arrangement of gene ontology terms, where parents on lower levels branch 

into more specific, higher-level child terms. LevelGO therefore describes the specificity 

of the cellular component, where higher values are more specific, and the name and ID 

numbers of all its parents are listed in the Parents (Name) and Parents (Acc) columns.  

 

Additional file 3: SP1 transcriptome molecular function GO annotation. This document 

contains a full list of the Blast2GO GO molecular function terms assigned to SP1 

transcripts. Data are arranged into six tab-separated columns: LevelGO, Term (Acc), 

Term (Name), #Seq, Score, Parents (Acc), Parents (Name). The Term (Name) and Term 

(Acc) columns contain the molecular function name and gene ontology ID number, 

respectively. #Seq lists the number of transcripts that were assigned the cellular 

component term. LevelGO, Parents (Acc), and Parents (Name) are all related to the 

hierarchal arrangement of gene ontology terms, where parents on lower levels branch 

into more specific, higher-level child terms. LevelGO therefore describes the specificity 
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of the molecular function, where higher values are more specific, and the name and ID 

numbers of all its parents are listed in the Parents (Name) and Parents (Acc) columns.  

 

Additional file 4: Wilson transcriptome cellular component GO annotation. This 

document contains a full list of the Blast2GO GO cellular component terms assigned to 

Wilson transcripts. Data is arranged as described in Additional file 1.  

 

Additional file 5: Wilson transcriptome molecular function GO annotation. This 

document contains a full list of the Blast2GO GO cellular component terms assigned to 

Wilson transcripts. Data is arranged as described in Additional file 2.  

 

Additional file 6: SP3 transcriptome cellular component GO annotation. This document 

contains a full list of the Blast2GO GO cellular component terms assigned to SP3 

transcripts. Data is arranged as described in Additional file 1.  

 

Additional file 7: SP3 transcriptome molecular function GO annotation. This document 

contains a full list of the Blast2GO GO molecular function terms assigned to SP3 

transcripts. Data is arranged as described in Additional file 1.  
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CHAPTER III                                                                                                   

COMPARATIVE TRANSCRIPTOMIC ANALYSIS OF THREE TOXIN-

PRODUCING KARENIA SPECIES*
2
 

 

Synopsis 

 Transcriptomic data for three Karenia species (K. brevis, K. papilionacea, K. 

mikimotoi) were compared to identify potential Karenia orthologs and investigate 

putative peptides involved in brevetoxin biosynthesis. Recent results have shown that K. 

papilionacea, like K. brevis, produces brevetoxin (PbTx-2). In contrast, K. mikimotoi 

does not make brevetoxin but instead produces gymnocin, another type of ladder-frame 

polyether. Reference transcriptomes for each species were assembled using high-

throughput sequencing technology and the de novo assemblers Velvet-Oases and Trinity. 

Orthologous putative proteins were identified among Karenia transcriptomes using the 

reciprocal BLAST method and annotated with the NCBI non-redundant protein database 

and InterProScan.  

 We identified twenty-one type I-like putative polyketide synthases and one 

putative epoxide hydrolase-like peptide that were expressed in K. brevis and K. 

papilionacea, but not K. mikimotoi. These enzymes represent potential steps in the 

brevetoxin synthesis pathway. Additionally, a database of 3,495 “apparently unique” K. 

brevis and K. papilionacea orthologous genes was created by querying the 

                                                 

*Reprinted with permission from Comparative transcriptomic analysis of three toxin-

producing Karenia species, by Darcie E. Ryan and Lisa Campbell. 2015. Marine and 

Fresh-Water Harmful Algae:229. 
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transcriptomes of twenty phytoplankton species. The unique orthologs provide valuable 

insight into the biology of brevetoxin-producing dinoflagellates. 

Introduction 

Karenia brevis, a bloom-forming dinoflagellate, is among the most prominent 

harmful algae species in the Gulf of Mexico. K. brevis cells produce ladder-frame 

polyether polyketide compounds called brevetoxin (PbTx) (Lin et al. 1981; Shimizu et 

al. 1986). PbTx-1, PbTx-2, and their derivatives bind to neurotoxin receptor site 5 in 

mammalian voltage-gated sodium channels, thereby inhibiting channel deactivation 

(Baden 1989; Dechraoui et al. 1999; Huang et al. 1984). K. brevis blooms have caused 

neurotoxic shellfish poisoning incidents, fish kills, and marine animal deaths along the 

Gulf coast (Landsberg 2002).  Despite the human health, environmental, and economic 

risks associated with brevetoxin, their biological function in K. brevis is poorly 

characterized, and the genes associated with brevetoxin production are currently 

unknown. It is hypothesized that standard polyketide synthase (PKS) acyl transferase 

(AT), ketosynthetase (KS), β-keto-reductase (KR), dehydratase (DH), enoylreductase 

(ER) and acyl carrier protein (ACP) catalytic domains participate in brevetoxin synthesis 

(Monroe and Van Dolah 2008; Shimizu et al. 1986). An limonene epoxide hydrolase-

like enzyme may participate in polyether ring formation, much like the monesin model 

(Gallimore 2009; Gallimore and Spencer 2006). However, the brevetoxin biosynthetic 

mechanism is still under debate, particularly since recent radiolabelling work suggests 
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that an oxidative reaction produces PbTx-1 and PbTx-2 from alcohol intermediates 

(Calabro et al. 2014).   

 PbTx-2 has been measured in Karenia papilionacea (Fowler et al. 2015). To 

investigate potential genes underlying brevetoxin production, we assembled, compared, 

and functionally annotated the reference transcriptomes of K. brevis, K. papilionacea, 

and Karenia mikimotoi clones using high-throughput sequencing technology. A close 

phylogenetic relative to K. brevis and K. papilionacea (Haywood et al. 2004), K. 

mikimotoi does not produce brevetoxin, and was therefore an ideal control species during 

this experiment. By identifying apparently unique orthologs expressed by K. brevis and 

K. papilionacea, we aimed to elucidate the unique biology of brevetoxin-producing 

dinoflagellates. In particular, we searched for unique PKS and epoxide hydrolase 

sequences, because of their potential role in PbTx-2 biosynthesis. 

 

Material and methods 

 K. brevis Wilson, K. papilionacea CAWD91, and K. mikimotoi C22 cultures 

were maintained in L1 medium (Guillard and Hargraves 1993) at salinity 35 (K. brevis 

and K. papilionacea) or salinity 30 (K. mikimotoi). Triplicate 150-mL cultures of each 

species were cultured on a 12:12 hour light:dark cycle  at 25 °C (K. brevis) or 20 °C (K. 

papilionacea and K. mikimotoi).  
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Table III-1: MMETSP CAMERA data used during this project. The MMETSP sample 

IDs of each transcriptome are listed in parentheses. 

 

Species Species 

Alexandrium fundyense CCMP1719 (0196, 

0347) 

Isochrysis galbana CCMP1323 (0944, 

0943, 0595) 

Amphidinium carterae CCMP1314 (0258, 

0398, 0259) 

Karlodinium micrum CCMP2283 (1016, 

1015, 1017) 

Aureococcus anophagefferens CCMP1850 

(0916, 0914, 0917, 0915) 

Lingulodinium polyedra CCMP1738 

(1034, 1032, 1035, 1033) 

Ceratium fusus PA161109 (1075, 1074) 
Oxyrrhis marina LB1974 (1426, 1424, 

1425) 

Chaetoceros neogracile CCMP1317 (0754, 

0752, 0751, 0753) 
Perkinsus marinus ATCC50439 (0922) 

Crypthecodinium cohnii Seligo (0325, 

0326, 0324, 0323) 

Prorocentrum minimum CCMP1329 

(0053, 0055, 0057, 0056) 

Ditylum brightwellii GSO104 (1010, 1013, 

1012) 

Pseudo-nitzschia australis 

10249_10_AB (0139, 0140, 0141, 0142) 

Dunaliella tertiolecta CCMP1320 (1126, 

1128, 1127) 

Scrippsiella hangoei SHTV5 (0361, 

0359, 0360) 

Emiliania huxleyi CCMP370 (1155, 1154, 

1156, 1157) 

Symbiodinium kawagutii CCMP2468 

(0132) 

Fragilariopsis kerguelensis L2_C3 (0906, 

0909, 0907, 0908) 

Thalassiosira oceanica CCMP1005 

(0971, 0972, 0970, 0973) 

 

 

 

 During the late exponential growth phase, cells in each bottle were pelleted via 

centrifugation. RNA was extracted from the pellets with the Qiagen RNEasy Mini Kit 

(Qiagen Inc., Valencia, CA) in accordance with kit protocol and stored at -80 °C until 

sequencing. The sample with the highest RNA concentration, as determined by 

NanoDrop Spectrophotometer, was sent on dry ice overnight to the Michigan State 

University Research Technology Support Facility (RTSF). RTSF prepared sequencing 

libraries with the Illumina Stranded mRNA Library Prep Kit LT, and 150 bp short reads 

were sequenced with the llumina HiSeq 2500 Rapid Run flow cell (v1). Base calling was 
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performed using Illumina Real Time Analysis software v 1.17.21.3. Short reads were 

trimmed for quality and length with CLC Genomics Workbench v 6.5 (CLC Bio, 

Aarhus, Denmark). A Phred quality threshold of 0.05 and minimum length threshold of 

100 bp were enforced. Trimmed short reads were processed by the Trinity (default 

parameters) (Simpson et al. 2009) and Velvet-Oases (k-mer length 45) (Schulz et al. 

2012; Zerbino and Birney 2008) de novo transcriptome assemblers. Trinity and Velvet-

Oases assemblies, including all predicted isoforms, were combined into complete 

reference transcriptomes for K. brevis, K. mikimotoi, and K. papilionacea. The longest 

potential open reading frame (ORF) in each transcript was extracted and converted to 

amino acids with longorf.pl (Kortschak 2002), thus producing peptide databases. 

Redundant peptides (≥ 99% similar) were trimmed with CD-HIT v 4.5.4 (Fu et al. 2002). 

 To identify orthologs among Karenia species, the peptide databases were 

compared with reciprocal BLASTp (Altschul et al. 1997), using a maximum E value of 

1.00x10
-20

, according to protocol provided by the Harvard FAS Center for Systems 

Biology. Orthologs unique to K. brevis and K. papilionacea were annotated with a 

BLASTp search against the NCBI non-redundant database (maximum E value of 

1.00x10
-20

) and the complete application suite included in InterProScan 5 (Mitchell et al. 

2014). Orthologs in K. brevis and K. papilionacea were further compared to 20 

phytoplankton reference transcriptomes from the Marine Microbial Eukaryote 

Transcriptome Sequencing Project (MMETSP) (Table III-1) using reciprocal BLAST, as 

above.  
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Results and discussion 

 After removing redundancies with CD-HIT, the K. brevis, K. mikimotoi, and K. 

papilionacea peptide databases contained 147,200, 179,645, and 180,963 sequences, 

respectively. Approximately 80% of the putative peptides were >100 aa long (Figure III-

1A), from continuous ORFs >300 bases. Short ORFs are more likely to occur randomly, 

to be incorrectly annotated during a protein BLAST search, or yield no statistically 

significant annotation results (Linial 2003). But predicted ORFs were not removed from 

the datasets based on length, to best support the goal of novel protein identification. 

After CD-HIT concatenation, more than 70% of the nonredundant peptide sequences 

were from the Oases assembler, thus suggesting that Velvet-Oases created more 

complete ORFs than Trinity. 

 

 

Figure III-1: Length distribution of (A) the complete K. brevis, K. mikimotoi, and K. 

papilionacea putative peptide databases and (B) the 3,495 apparently unique K. brevis 

and K. papilionacea peptides. Lengths in (B) are graphed based on the K. brevis ortholog 

data. 
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 The reciprocal BLASTp search identified 70,032 sequences in the K. brevis 

transcriptome with potential orthologs expressed by K. mikimotoi and/or K. papilionacea 

(Figure III-2). Of these, 6,561 orthologs were expressed by K. brevis and K. 

papilionacea, but not K. mikimotoi. After querying the twenty MMETSP transcriptomes, 

the pool of “apparently unique” K. brevis and K. papilionacea orthologs decreased to 

3,495. Over 90% of the “apparently unique” peptide sequences were >100 aa long 

(Figure III-1B). Only 8.24% of the “apparently unique” peptides significantly matched 

one or more nr sequences with an E value ≤ 1.0x10
-20

. This low annotation rate is 

expected from a database of K. brevis proteins with no orthologs in close phylogenetic 

relative K. mikimotoi or any of the MMETSP representative species. In contrast, 

InterProScan successfully assigned a protein family, repeat, domain, and/or site to 

64.12% of the apparently unique putative proteins, suggesting that 1,953 unique 

sequences with no nr annotation may nevertheless contain short conserved protein 

motifs.  

 K. brevis expressed 21 putative PKSs in common with K. papilionacea, but not 

K. mikimotoi, orthologs. Of these, four had a predicted AT domain, one had a predicted 

KS domain, three had a predicted KR domain, one had a predicted DH domain, 10 had a 

predicted ER domain, and five had a predicted ACP domain.  

 Only the KS-containing ortholog was an “apparently unique” sequence, since the 

other PKSs had at least one orthologous match in the group of MMETSP phytoplankton 

transcriptomes. The KS domain catalyzes carbon bond formation (Claisen condensation) 

in polyketide skeletons and is highly conserved among eukaryotes (Keatinge-Clay 
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2012). We identified the KS cysteine (TACSSS) and histidine (EAHGTG and 

KSNIGHT) motifs (Keatinge-Clay 2012) in the apparently unique K. brevis and K. 

papilionacea PKS (Figure III-3). 

 

 

 

Figure III-2: Number of peptides from the K. brevis reference transcriptome with 

probable orthologs in one, both, or neither of the K. mikimotoi and K. papilionacea 

transcriptomes. Orthology was predicted with a reciprocal BLASTp search. 

 

 

 

 One “apparently unique” epoxide hydrolase-like sequence was expressed by K. 

brevis and K. papilionacea. With significant BLAST similarity to bacterial limonene 

epoxide hydrolases in the nr database, it was 394 aa long and 76.9% identical between 

the two Karenia species. InterProScan identified a conserved N-terminus epoxide 

hydrolase protein motif (pfam ID 06441) from amino acid 19 to 131.  

 Based on comparative transcriptomics, the K. brevis total transcriptome contains 

more sequences that are orthologous to genes in the K. mikimotoi transcriptome than the 

K. papilionacea transcriptome (Figure III-2). This result is not unexpected, since K. 

mikimotoi is the closer phylogenetic relative to K. brevis, based on rDNA sequences 
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(Haywood et al. 2004). Nevertheless, this study identified >3000 predicted orthologs 

coding putative peptides >100 aa long that were “apparently unique” to K. brevis and K. 

papilionacea, based on reciprocal BLAST searches against 21 phytoplankton species, 

including K. mikimotoi. Of particular interest are the 21 PKS sequences that were 

expressed by K. brevis and K. papilionacea, but not K. mikimotoi, including the KS 

domain-containing peptide without an identified ortholog among the MMETSP 

transcriptomes. Most of the PKS transcripts had a single catalytic domain, similar to 

eight type I-like PKS sequences that have been identified previously in K. brevis 

(Monroe and Van Dolah 2008). The apparently unique putative limonene epoxide 

hydrolase-like peptide is another intriguing target for future research as a step in 

brevetoxin synthesis. The novel genes identified in this comparative transcriptomic study 

of brevetoxin-producing dinoflagellates has produced a wealth of genes for further 

study.  

 

 

Figure III-3: Cysteine and histidine catalytic regions in the K. brevis and K. papilionacea 

“apparently unique” KS domain-containing PKS. Karenia sequences are aligned to each 

other and the highly conserved concensus motif. 
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CHAPTER IV

IDENTIFYING ORTHOLOGOUS GENES IN TOXIN-PRODUCING KARENIA 

SPECIES 

Synopsis 

The reference transcriptomes of the dinoflagellates Karenia brevis, Karenia 

papilionacea, and Karenia mikimotoi were assembled and analyzed to identify 

orthologous genes, including potential steps in the brevetoxin synthesis pathway. 

Predicted orthologs were annotated for putative function and assigned gene ontology 

(GO) terms. The transcriptomes were also compared to a field bloom metatranscriptome 

from a K. brevis bloom in the Gulf of Mexico. K. papilionacea and K. brevis each 

synthesize brevetoxin, while K. mikimotoi produces gymnocin, another ladder-frame 

polyether polyketide compound. Genes that are unique to K. papilionacea and K. brevis, 

but not the closely related K. mikimotoi, represent intriguing targets for toxin 

biosynthesis inquiries, particularly if they are expressed during Karenia blooms. Based 

on the annotation results, each transcriptome contained about 100 putative type I-like 

polyketide synthase (PKS) transcripts with single catalytic domains. In fact, the 4799 

orthologs that were “unique” to K. brevis and K. papilionacea included five PKSs with 

predicted acyltransferase or ketoacyl synthase functional regions. In addition, a novel 

transcript with homology to multimodular type I PKSs and hybrid nonribosomal peptide 

synthetase PKSs was identified in the K. brevis transcriptome and field bloom 

metatranscriptome. The diversity of PKS transcripts expressed by K. brevis, K. 
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papilionacea, and K. mikimotoi suggest that toxin-producing dinoflagellates use a 

combination of type I and type I-like activity to synthesize polyketides and/or other 

secondary metabolites. 

 

Introduction 

Karenia brevis is a red tide dinoflagellate species that blooms almost annually in 

the Gulf of Mexico (Steidinger et al. 1998). K. brevis cells produce the brevetoxins 

PbTx-1 and PbTx-2. Brevetoxins are ladder-frame polyketides with trans-fused 

polycyclic ether rings (Rein and Borrone 1999) that bind to neurotoxin receptor site 5 in 

voltage-gated sodium channels and impede channel inactivation (Baden 1989; Dechraoui 

et al. 1999; Huang et al. 1984). Brevetoxin may cause neurotoxic shellfish poisoning and 

fish kills during K. brevis blooms (Landsberg 2002). However, the function of 

brevetoxin in K. brevis is unknown, and the brevetoxin synthesis pathway has not been 

characterized. 

Previously, the transcriptomes of three K. brevis strains (Wilson, SP3, and SP1) 

with different PbTx-1 and PbTx-2 profiles were assembled and compared (Ryan et al. 

2014). Although ~100 different putative K. brevis polyketide synthase (PKS) genes were 

identified in the transcriptomes, no differences in gene expression was measured among 

Wilson, SP3, and SP1.  This result suggests that brevetoxin production is subject to post-

transcriptional regulation (Ryan et al. 2014) and complements microarray studies that 

identified abundant genes related to RNA post-transcriptional regulation (Van Dolah et 

al. 2009). 
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To investigate the genes involved with brevetoxin synthesis, we assembled, 

compared, and functionally annotated the reference transcriptomes of K. brevis, Karenia 

papilionacea, and Karenia mikimotoi clones using high-throughput sequencing 

technology. PbTx-2 has been measured in K. papilionacea, so K. brevis and K. 

papilionacea might share brevetoxin synthesis orthologs (Fowler et al. 2015). A close 

phylogenetic relative to K. brevis (Haywood et al. 2004), K. mikimotoi does not produce 

brevetoxin, and is therefore an ideal control species for this experiment. Orthologous 

genes were identified among the Karenia species using the reciprocal BLAST best-hit 

method. Orthologs expressed by K. brevis and K. papilionacea, but not K. mikimotoi, 

were considered “unique” and analyzed for potential PbTx synthesis function. Of 

particular interest were “unique” PKS sequences with acyl transferase (AT), 

ketosynthetase (KS), β-keto-reductase (KR), dehydratase (DH), and/or acyl carrier 

protein (ACP) catalytic domains, because of their potential role in polyketide formation. 

“Unique” sequences were compared to a field bloom metatranscriptome to confirm that 

K. brevis in the natural environment also express the transcripts. 

The “unique” transcripts were further annotated for gene ontology and potential 

function using a variety of protein databases, and novel transcripts with open reading 

frames (ORFs) >300 bp were identified as intriguing targets for future brevetoxin 

production research. 
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Methods 

Culturing and RNA sequencing 

Triplicate 150-mL K. brevis Wilson, K. papilionacea C91, and K. mikimotoi C22 

cultures were grown in L1 medium at salinity 35 (K. brevis and K. papilionacea) or 30 

(K. mikimotoi) and temperature 25 °C (K. brevis) or 20 °C (K. papilionacea and K. 

mikimotoi). Cultures were incubated under a 12:12 hour light:dark cycle with ~60 

μmol photons m
−2

 during each light period. Cell counts were taken every other day to 

monitor growth rate. Once cultures had reached the late exponential growth period, 50 

mL from each replicate was pelleted through centrifugation (800 × g, 10 min) and 

stabilized with RNALater (Qiagen). Using the Qiagen RNEasy Mini Kit (Qiagen Inc., 

Valencia, CA), RNA was extracted from each pellet in 40µL of nuclease-free water, in 

accordance with manufacturer protocol. The RNA samples were stored at −80°C, while 

small (2 µL) aliquots from each sample were analyzed with a NanoDrop 

Spectrophotometer and Agilent 2100 Bioanalyzer to estimate RNA concentration and 

purity. For each Karenia species, the sample with the greatest purity was shipped 

overnight on dry ice to the Michigan State University Research Technology Support 

Facility (RTSF) for high-throughput RNA sequencing. 

The RTSF prepared sequencing libraries with the Illumina Stranded mRNA 

Library Prep Kit LT. For each clone, 150-bp, paired-end short reads were sequenced 

with the llumina HiSeq 2500 Rapid Run flow cell (v1). Base calling was performed 

using Illumina Real Time Analysis software v 1.17.21.3. 
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Transcriptome assembly  

 The short reads were trimmed for quality and length with CLC Genomics 

Workbench v 6.5 (CLC Bio, Aarhus, Denmark), using a 100-bp minimum length 

threshold and a 0.005 Phred quality threshold. Trimmed reads were exported from CLC 

in fasta format and processed with Velvet-Oases, an assembly program that uses a de 

Bruijn graph algorithm to assemble transcriptomes without a reference genome (de 

novo) (Schulz et al. 2012; Zerbino and Birney 2008). During assembly, automatic 

expected coverage and minimum coverage cutoff values, a 50% edge fraction cutoff, and 

a 300-bp minimum transcript length were enforced. For each species, single k-mer 

assemblies (k-mer lengths 61, 65, 69, and 73 bp) were merged into a non-redundant 

consensus transcriptome assembly with the K-value 45. 

 To remove redundancies, each reference transcriptome was analyzed with CD-

HIT EST (Fu et al. 2012). Redundant (>98% similarity) clusters were collapsed into the 

longest representative transcript sequence. After CD-Hit trimming, the longest putative 

open reading frame (ORF) was identified in each transcript with longorf.pl, a script 

written by Dan Kortschak (Kortschak 2002). ORFs >300 bp were extracted and 

converted to amino acids. The CLC Pfam domain search function (Pfam database v 27) 

(Finn et al. 2013), identified conserved domains in the putative protein sequences. 

 

Transcriptome analysis 

The entire K. brevis, K. mikimotoi, and K. papilionacea transcriptomes were 

analyzed with TRAPID, an online package with multiple de novo transcriptome analysis 



57 

tools, including ORF completeness and ontology prediction (Van Bel et al. 2013). Based 

on homology, TRAPID can assign transcripts to representative gene families and predict 

whether the transcript protein-coding region is “complete,” “quasi-complete,” or 

“partial,” where partial transcripts are >2 standard deviations shorter than the mean gene 

family ORF length. This function makes TRAPID a powerful estimator of transcriptome 

assembly completeness. Each Karenia transcriptome was compared to genes in the 

PLAZA 2.5 database. PLAZA 2.5 contains 25 plant genomes, including 5 that belong to 

chlorophyte algae, with ~780,000 total protein-coding genes in 32,294 gene families 

(Van Bel et al. 2013). Gene family, function, and ORF completeness were inferred for 

all Karenia transcripts that significantly (E value <1.0x10
-5

) matched a PLAZA gene

sequence. TRAPID also measured fundamental transcriptome characteristics, including 

mean transcript length, mean ORF length, and potential frameshift occurrences. 

Karenia ortholog identification 

Orthologs were identified among the Karenia transcriptomes using the reciprocal 

BLAST (Altschul et al. 1997) best-hit method. The search enforced a 1.0x10
-6

 E value

significance threshold. K. brevis transcripts with orthologs in K. papilionacea but not K. 

mikimotoi were considered “unique” and extracted. The K. brevis transcriptome, 

including “unique” sequences, was further compared to 34 phytoplankton reference 

transcriptomes from the Marine Microbial Eukaryote Transcriptome Sequencing Project 

(MMETSP) (Table IV-1) using reciprocal BLAST, as described above (Keeling et al. 

2014). The MMETSP transcriptomes were assembled by the National Center for 
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Genome Resources with ABySS (Simpson et al. 2009). “Unique” proteins from K. 

brevis were aligned to their K. papilionacea orthologs with Clustal Omega (Sievers et al. 

2011) to visualize homologous regions. 

“Unique” ortholog analysis 

To determine GO enrichment in the “unique” group, InterProScan was run on the 

complete K. brevis transcriptome, including the “unique” K. brevis transcripts. InterPro 

assigns potential protein domains and gene ontology terms to nucleotide sequences by 

drawing from the Pfam (Finn et al. 2013), PRINTS (Attwood et al. 2012), PROSITE 

(Sigrist et al. 2012), ProDom (Corpet et al. 1998), CATH-Gene3D (Lees et al. 2014), 

HAMAP (Pedruzzi et al. 2013), PANTHER (Mi et al. 2013), PIRSF (Nikolskaya et al. 

2006), SMART (Letunic et al. 2012), SUPERFAMILY (de Lima Morais et al. 2010), 

and TIGRFAMs databases (Mitchell et al. 2014). Over- or under-represented GO terms 

in the “unique” transcript group were predicted using Fisher’s Exact Test in Blast2GO, 

with the default false discovery rate (FDR) term filter mode (Conesa et al. 2005). 

Significant results were collapsed to the most specific GO term. 

The “unique” K. brevis transcripts were also annotated with a BLASTx search 

against the NCBI nr protein database (accessed December 15, 2015). Hits with an E 

value ≤ 1.0x10
-6

 were assigned gene ontology terms using the Blast2GO 3.0 mapping

and annotation functions with a 30% minimum similarity cutoff (Conesa et al. 2005). 

Annotation validation removed redundant GO terms for each transcript, where multiple 

terms belonging to the same GO branch were collapsed into the most specific, highest-
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level child term. KEGG pathways for annotated “unique” transcripts were generated 

using Blast2GO 2.8 (Conesa et al. 2005). 

Putative Karenia PKS identification 

Transcripts that were assigned any PKS-related term during the CLC Pfam 

search, including AT, KS, KR, DH, and/or ACP domains, were extracted and compared 

to the nr protein database with BLASTx. Transcripts that were significantly (E value 

1.0x10
-20

) similar to nr PKSs were considered putative Karenia PKS genes.

Field bloom metatranscriptome comparison 

The K. brevis, K. papilionacea, and K. mikimotoi transcriptomes were compared 

to a field bloom metatranscriptome with BLAST, using the E value cutoff 1.0x10
-100

.

The metatranscriptome samples were collected during a K. brevis bloom (2015) in the 

Gulf of Mexico. The metatranscriptome was assembled by Dr. Darren W. Henrichs.  

Results 

Transcriptome assembly and analysis 

After length and quality trimming, 86,626,190 (K. brevis), 100,920,977 (K. 

papilionacea), and 93,255,006 (K. mikimotoi) paired-end reads were processed by 

Velvet-Oases. The three final reference transcriptomes had similar locus and transcript 

numbers (Table IV-2). Likewise, for K. brevis, K. papilionacea, and K. mikimotoi, the 
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mean transcript length was 1353, 1406, and 1299 bp, respectively, and the mean 

predicted ORF length for each transcriptome was ~1000 bp (Table IV-2).  

 During the TRAPID analysis, 21.4% (K. brevis), 21.6% (K. papilionacea), or 

19.2% (K. mikimotoi) of the transcriptomes were assigned a predicted gene family and 

analyzed for ORF completeness. There were 6.4 to 7.8 times more complete or quasi-

complete ORFs than partial ORFs in the Karenia transcriptomes (Table IV-2). 

 The PLAZA species most similar to all three Karenia species were the five 

unicellular green algae species, Micromonas sp., Chlamydomonas reinhardtii, Volvox 

carteri, Ostreococcus lucimarinus, and Ostreococcus tauri. HOM000003, a 

pentatricopeptide repeat sequence, was the most common gene family assigned to the 

reference transcriptomes (Table IV-3). Previous microarray analyses have shown that 

pentatricopeptide repeats, involved in RNA processing, are abundant in K. brevis 

(Morey et al. 2011). When possible, transcript function was predicted based on gene 

family matches and associated gene ontology terms. Between 14.5 and 16 percent of the 

reference transcriptomes were given GO terms (Table IV-3).  

 

Ortholog prediction and analysis 

 The reciprocal BLAST search identified 28,073 total K. brevis transcripts, 30% 

of the transcriptome, with at least one ortholog in the K. mikimotoi and K. papilionacea 

transcriptomes. Of these, 4799 orthologs (5% of the whole transcriptome) were “unique” 

to K. brevis and K. papilionacea (Table IV-4). Most (4,448) “unique” transcripts had no 

predicted orthologs in the 34 MMETSP phytoplankton transcriptomes, either. The 
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“unique” K. brevis and K. papilionacea orthologs encompassed 858 predicted gene 

families, 1,509 discrete gene ontology terms, and 1,141 different conserved protein 

domains in the TRAPID PLAZA database. The mean length of “unique” K. brevis 

transcripts was 1,894, with a mean ORF length of 1489 bp and 10:1 complete to partial 

ORF ratio. About 59% (2,811 transcripts) of the “unique” proteins matched one or more 

sequences in the nr protein database with an E value <1.0x10
-6

, while 52% (2,489 

transcripts) contained one or more significant (E value <1.0x10
-5

) protein domain hits to 

the Pfam database.  

 

InterPro analysis 

 Most (65%) of the K. brevis transcriptome was assigned at least one protein 

family, domain, repeat, and/or site by InterProScan. Of the InterPro annotated 

transcripts, 24,884 (27% of the whole transcriptome) had GO information. Similarly, 

3492 “unique” transcripts were annotated by InterPro, and 1821 had one or more 

assigned GO terms. The Fisher’s exact test identified fifteen GO categories that were 

significantly overrepresented in the “unique” compared to total transcripts (Table IV-5).  

 

PKS discovery  

 The Pfam and nr BLAST searches identified 118 (K. brevis), 106 (K. 

papilionacea), and 110 (K. mikimotoi) transcripts with significant (E value <1.0x10
-20

) 

homology to annotated nr PKS proteins and at least one Pfam-predicted KS, AT, ACP, 

or KR domain. The mean PKS ORF length was 2,554 bp (K. brevis), 2,805 bp (K. 
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papilionacea), and 2,502 bp (K. mikimotoi), with a range from ~300 to ~13,000 bp. Most 

putative Karenia PKS transcripts possessed a single catalytic domain. However, in K. 

mikimotoi and K. papilionacea, several two-domain and three-domain transcripts were 

identified (Table IV-6, IV-7). Specifically, K. mikimotoi expressed two different 

transcripts with KR, AT, and polyketide dehydrogenase (PS-DH) domains, one 

transcript with AT and KS domains, three transcripts with KR and KS domains, and two 

transcripts with KR, KS, and PS-DH domains (Table IV-6). K. papilionacea expressed 

one transcript with KR, KS, and PS-DH domains, two transcripts with AT and KS 

domains, and three transcripts with KR and KS domains (Table IV-7).  

 One multimodular PKS sequence was identified in the K. brevis transcriptome. 

Its ORF was 8094 bp-long and complete, based on the presence of start and stop codons. 

The ORF region included KR, KS (both C and N terminal regions), and AT domains 

(Table IV-8). The translated protein sequence was further analyzed with the NCBI CD 

search program with a maximum expect value threshold of 1.0x10
-6

. CD search 

identifies, characterizes, and visualizes conserved domains through a RPS-BLAST 

search against the NCBI conserved domain database (CDD) (Marchler-Bauer and Bryant 

2004; Marchler-Bauer et al. 2011). CD search can also match the query sequence with 

protein groups that have similar domain architecture with the Conserved Domain 

Architecture Retrieval Tool (Marchler-Bauer et al. 2012). The multimodular PKS was 

most similar to type I polyketide synthases, multifunctional polyketide-peptide 

synthases, and non-ribosomal peptide synthetases, based on its domain architecture 

(Figure IV-1).
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Figure IV-1: K. brevis multidomain PKS sequence with significant (expect value <1.0x10
-6

) CD search-predicted conserved 

domain regions. PKS = cd00833 (polyketide synthases), PKS_AT = smart00827 (acyl transferase domain in polyketide 

synthase enzymes), GrsT = COG3208 (surfactin synthase thioesterase subunit), PKS_KR = smart00822 (enzymatic polyketide 

synthase domain that catalyses the first step in the reductive modification of the beta-carbonyl centres in the growing 

polyketide chain), PksD = COG3321 (acyl transferase domain in polyketide synthase enzymes), AMP-binding = pfam00501 

(AMP-binding enzyme), PP- = pfam00550 (phosphopantetheine attachment site), adh_short = pfam00106 (short chain 

dehydrogenase), Abhydrolase_ = pfam12697 (alpha/beta hydrolase family). Figure was generated by CD search (Marchler-

Bauer and Bryant 2004) . 
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 The five putative PKS sequences in the “unique” transcript group each contained 

one predicted catalytic domain. Three had KS domains, and two had AT domains. In 

conserved protein regions, the K. brevis and K. papilionacea PKS orthologs were 

between 60 and 80 percent similar, based on amino acid sequence (Figure IV-2). The 

“unique” PKS sequences significantly (E value <1.00x10
-20

) matched other PKSs in the 

nr database, including type I-like PKSs previously identified in other dinoflagellates, 

although they were not identical to any nr protein. In fact, the closest nr match, a KS-

containing transcript, yielded a 43.84% identity score (Table IV-9). The complete 

“unique” PKSs in K. brevis and K. papilionacea also contained a novel terminal motif 

that has only been identified in other dinoflagellate PKS proteins (Eichholz et al. 2012). 

 

Field bloom metatranscriptome comparison 

 From the BLAST search between the K. brevis transcriptome and field bloom 

metatranscriptome, there were 72,900 highly significant (E value ≤ 1.00x10
-100

) hits with 

≥ 99% sequence similarity, including all the type I-like and type I PKS transcripts that 

were identified during this study. In addition, the complete K. brevis multimodular PKS 

ORF was also found in the field bloom metatranscriptome.  

 K. mikimotoi and K. papilionacea transcripts were also found in the field bloom 

metatranscriptome. The K. mikimotoi comparison yielded 1,388 (≥ 99% similarity) 

highly significant hits. Of those, 501 had 100% nucleotide identity. The K. papilionacea 

comparison yielded 15 (≥ 99% similarity) highly significant hits. One of the hits was 

100% identical over the aligned region. 
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Figure IV-2: Sequence conservation between K. brevis and K. papilionacea “unique” 

PKS proteins. Blue boxes demarcate regions that are significantly (Evalue <1.0x10
-20

) 

homologous to the NCBI PKS conserved domain cd00083. Pink boxes surround the 

TIGR04556 terminal domain that has been characterized in dinoflagellate PKS-like 

proteins. Sequence similarity was graphed using the LALN View program. PKSs with a 

predicted AT region are labelled AT1-3, and PKSs with a predicted KS region are 

labelled KS1-2. 
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Discussion 

 PKSs produce polyketides through the Claisen condensation elongation method, 

using the combined activity of KS, AT, KR, and ACP domains, with an AT+ACP 

loading module (Shen 2003). In sequenced unicellular algae genomes, potential type I 

and type II PKS genes have been identified (Shelest et al. 2015). Type I PKSs are 

multimodular, possessing multiple PK-assembly catalytic domains in one protein, 

whereas type II PKSs function through the interaction of single-domain proteins 

(Fischbach and Walsh 2006). Through the analysis of K. brevis expressed sequence tag 

libraries, “type I-like” PKS transcripts, each containing a single predicted catalytic 

domain (KS, ACP, or KR) with high homology to type I proteins, have been identified 

(Monroe and Van Dolah 2008). Subsequently assembled K. brevis Wilson, SP1, and SP3 

transcriptomes contained dozens of full-length type I-like PKS transcripts (Ryan et al. 

2014). During this study, >100 putative PKS transcripts were identified in each of the 

Karenia transcriptomes. Notably, based on gene annotation results, not all of the 

Karenia PKS transcripts encoded single-domain, type I-like PKSs. Putative 

multimodular PKSs were expressed by all three Karenia species (Tables IV-6, IV-7, IV-

8). In fact, one K. brevis transcript with predicted beta-ketoacyl (N- and C-terminal 

domains), acyl transferase, and ketoreductase domains (Table IV-8) had a protein 

architecture similar to previously characterized type I polyketide synthases, 

multifunctional polyketide-peptide synthases, and non-ribosomal peptide synthetases. 

This multimodular PKS was also expressed with 100% ORF conservation by K. brevis 
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cells in the field bloom metatranscriptome sample, which suggests that the protein is not 

exclusive to the Wilson cultures. 

 Non-ribosomal peptide synthetases (NRPS) produce structurally diverse, 

specialized peptides through the multienzyme thiotemplate mechanism (Marahiel et al. 

1997). The modular organization of NRPSs is similar to type I PKSs, although NRPSs 

perform C-N elongation with specific adenylation and condensation domains (Cane and 

Walsh 1999). Previously, a fosmid library constructed with K. brevis Wilson DNA 

contained a hybrid NRPS-PKS gene cluster with three NRPS condensation and 

adenylation modules proceeded by a type I PKS with KS, AT, and KR domains (López-

Legentil et al. 2010). Because of the architecture similarity between the hybrid NRPS-

PKS (Genbank ID FJ172507) and the multimodular K. brevis PKS identified during this 

study, the hybrid NRPS-PKS protein-coding region was downloaded from Genbank and 

aligned to the translated multimodular PKS with Clustal Omega (Sievers et al. 2011). 

NRPS-PKS #FJ172507 is 1,539 aa long, half the length of the multimodular PKS, and 

the aligned region has a 30.63% amino acid identity score. Thus, the hybrid NRPS-PKS 

is a different gene than the type I PKS described during this study. 

 Hyrbid NRPS-PKS #FJ172507 was converted to a searchable BLAST protein 

database and compared to the K. brevis, K. papilionacea, and K. mikimotoi 

transcriptomes using BLASTx. The field bloom metatranscriptome was also searched for 

#FJ172507. Although the KS, AT, and KR regions in #FJ172507 were significantly (E 

value >1.0x10
-20

) similar to 70 putative PKSs in each transcriptome/field bloom 

metatranscriptome, the K. brevis transcriptome and field bloom metatranscriptome did 
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not contain the NRPS-PKS. Furthermore, no orthologs were present in the K. 

papilionacea and K. mikimotoi transcriptomes. In fact, the most significant match 

(2.00x10
-138

) was the K. brevis multimodular type I PKS. It is possible that the cultures 

were not expressing the hybrid NRPS-PKS gene when RNA was collected, or that its 

expression level was too low for de novo assembly. The novel type I PKS that was 

assembled hints at complex, varied polyketide and/or nonribosomal peptide assembly in 

toxin-producing dinoflagellates.  

 Velvet-Oases gives each discrete transcript a locus ID. Loci may contain one 

transcript or multiple transcripts representing predicted isoforms. A previously 

assembled K. brevis Wilson transcriptome contained 86,580 loci, with a mean length of 

1340 bp (Ryan et al. 2014). These values are similar to the loci number and mean 

transcript length of each Karenia reference transcriptome produced during this study 

(Table IV-2). Because the TRAPID analysis detected few partial ORFs, we are confident 

in the Karenia assembly completeness. 

 Based on reciprocal BLAST results, the K. brevis total transcriptome contains 

more sequences that are orthologous to genes in the K. mikimotoi transcriptome than the 

K. papilionacea transcriptome (Table IV-2). This result is not unexpected, since K. 

mikimotoi is the closer phylogenetic relative to K. brevis, based on rDNA. Nevertheless, 

this study identified 4,799 predicted orthologs that were expressed by K. brevis and K. 

papilionacea but not K. mikimotoi. TRAPID results show that the “unique” orthologs 

were, on average, longer and more complete than the overall K. brevis or K. 

papilionacea reference transcriptomes. It is therefore unlikely that the subset is only 
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“unique” due to atypically short transcripts or incomplete ORFs. Of particular interest 

are the 5 “unique” PKS transcripts.  

 All five “unique” PKS transcripts were type I-like, with either a single KS or AT 

domain. Based on our reciprocal BLAST search, the “unique” PKSs had no orthologs in 

the other phytoplankton, based on the MMETSP transcriptome database (Table IV-1). 

Because BLAST parameters such as sequence complexity-based filtering and alignment 

methods affect the number of orthologs predicted (Moreno-Hagelsieb and Latimer 

2008), the conservative reciprocal BLAST best-hit approach we used might 

underestimate the number of orthologous transcripts, particularly as the phylogenetic 

distance between species increases. Similarly, it is possible that components of the 

PbTx-2 synthesis pathway were not included in the “unique” subset. For this experiment, 

high confidence in orthologs was valued over maximizing ortholog discovery. 

 To maximize the number of unique Karenia transcripts annotated with a putative 

function, protein domain, and/or GO term, we used several annotation methods with 

different protein databases. InterProScan yielded the most annotations, with 3492 of the 

4799 transcripts assigned at least one result. In contrast, the nr database annotated 2,811 

“unique” transcripts, Pfam annotated 2,489 “unique” transcripts, and the TRAPID 

PLAZA search annotated 1,552 “unique” transcripts. InterProScan compares transcripts 

to data from eleven databases, including Pfam, so its high annotation rate was not 

unexpected (Mitchell et al. 2014). InterProScan results were therefore used during the 

GO enrichment analysis step. 



  

 

70 

 Fifteen GO terms were overrepresented in the “unique” transcript group. 

However, several related terms overlapped. For example the GO:0018130 (heterocycle 

biosynthetic process) and GO:1901362 (organic cyclic compound biosynthetic process) 

transcripts were identical, with one exception. Similarly, there was significant overlap 

among the microtubule motor activity, microtubule-based movement, microtubule 

binding, and kinesin complex transcripts. Although PKSs are cyclic compounds, none of 

the transcripts assigned a GO: 1901362 term were specifically related to polyketide 

synthesis.  

 “Unique” transcripts identified during this comparative transcriptomic study, 

including the unannotated, potentially novel sequences, provide the foundation for 

further research as indicators for brevetoxin production. Furthermore, the diversity of 

PKS and/or NRPS-PKS transcripts expressed by K. brevis, K. papilionacea, and K. 

mikimotoi suggest that toxin-producing dinoflagellates use a combination of type I and 

type I-like activity to synthesize polyketides and other secondary metabolites. These 

results are supported by an analysis of a field bloom metatranscriptome assembled from 

RNA collected during a Gulf bloom. Not only were all the type I-like and type I K. 

brevis PKS genes expressed in the environmental sample, our BLAST search results 

showed that K. mikimotoi and K. papilionacea cells contributed RNA to the field bloom 

metatranscriptome. The red tide event, although dominated by K. brevis, supported other 

toxin-producing Karenia species. 
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Table IV-1: Phylum, genus, and species of each MMETSP phytoplankton transcriptome 

analyzed. 

 

Phylum Genus Species 

Bacillariophyta Chaetoceros debilis 

Bacillariophyta Ditylum brightwellii 

Bacillariophyta Extubocellulus spinifer 

Bacillariophyta Fragilariopsis kerguelensis 

Bacillariophyta Nitzschia punctata 

Bacillariophyta Proboscia alata 

Bacillariophyta Pseudo-nitzschia australis 

Bacillariophyta Skeletonema dohrnii 

Bacillariophyta Thalassiosira oceanic 

Cercozoa Lotharella globosa 

Chlorophyta Dunaliella tertiolecta 

Chlorophyta Picocystis salinarum 

Chlorophyta Tetraselmis striata 

Cryptophyta Rhodomonas sp. 

Dinophyta Alexandrium monilatum 

Dinophyta Azadinium spinosum 

Dinophyta Tripos (formerly Ceratium) fusus 

Dinophyta Durinskia baltica 

Dinophyta Karlodinium micrum 

Dinophyta Prorocentrum minimum 

Haptophyta Chrysochromulina polylepsis 

Haptophyta Emiliania huxleyi 

Haptophyta Gephyrocapsa oceanic 

Haptophyta Isochrysis galbana 

Haptophyta Pleurochrysis carterae 

Haptophyta Prymnesium parvum 

Labyrinthista Aurantiochytrium limacinum 

Ochrophyta Aureococcus anophagefferens 

Ochrophyta Pelagococcus subviridis 

Rhodophyta Rhodella maculate 

Dinophyta Symbiodinium kawagutii 

Dinophyta Oxyrrhis marina 

Dinophyta Dinophysis acuminate 

Ochrophyta Pteridomonas danica 
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Table IV-2: K. brevis, K. papilionacea, and K. mikimotoi transcriptome locus number, 

transcript number, mean transcript length, mean ORF length, and predicted full to partial 

ORF ratio. 

 

Species # Loci # Transcripts Mean 

transcript 

length 

Mean ORF 

length 

Full:partial 

ORF 

K. brevis 85,697 93,226 1353.6 1075.7 7.1:1 

K. papilionacea 88290 96,758 1406.5 1094.3 7.8:1 

K.mikimotoi 86,408 100980 1299.4 974.2 6.4:1 

 

 

 

Table IV-3: TRAPID results (total number of gene families assigned to one or more 

transcripts in the transcriptome, % transcriptome assigned at least one gene family, % 

transcriptome assigned at least one frameshift, total number of GO terms, and % 

transcriptome assigned at least one GO term) for the K. brevis, K. papilionacea, and K. 

mikimotoi reference transcriptomes. Gene families and gene ontology (GO) terms were 

determined with data from PLAZA 2.5. 

 

Species # Gene 

Families 

% Assigned 

Gene Family 

% with 

frameshift 

# GO 

Terms 

% Assigned 

GO Term 

K. brevis 4127 21.4 3.4 3023 16 

K. papilionacea 4144 21.6 3.7 3087 15.9 

K.mikimotoi 3962 19.2 4.1 2941 14.5 

 

 

 

Table IV-4: Number of transcripts from the K. brevis reference transcriptome with 

predicted orthologs in one, both, or neither of the K. mikimotoi and K. papilionacea 

transcriptomes.  

 

 # orthologous transcripts in K. brevis 

transcriptome 

% K. brevis 

transcriptome  

K. papilionacea and  

K. mikimotoi  

4637 5.4 

K. papilionacea  4799 5.6 

K. mikimotoi  18,637 21.7 

Total 28,073 33 
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Table IV-5: Overrepresented GO terms in the “unique” group, as determined by a Fisher's exact test on the InterProScan-

annotated K. brevis transcriptome. The % Unique Group and % Total Transcriptome columns were calculated by the equation 

(# transcripts with GO ID)/(# total GO-annotated transcripts). 

GO ID Term FDR P-Value 

% Unique 

Group 

% Total 

Transcriptome 

GO:0005524 ATP binding 1.04x10
-8

 7.23x10
-11

 14.4 8.8 

GO:0004672 protein kinase activity 3.27 x10
-5

 3.69x10
-7

 6.8 3.8 

GO:0006468 protein phosphorylation 3.74x10
-5

 4.47x10
-7

 6.6 3.7 

GO:0003777 microtubule motor activity 2.20x10
-4

 3.65x10
-6

 2.5 1.1 

GO:0007018 microtubule-based movement 4.10x10
-4

 7.61x10
-6

 2.5 1.1 

GO:0005871 kinesin complex 8.53x10
-4

 1.70x10
-5

 1.7 0.6 

GO:0008017 microtubule binding 3.72x10
-3

 7.90x10
-5

 1.6 0.7 

GO:0090407 organophosphate biosynthetic process 6.56x10
-3

 1.52x10
-4

 1.4 0.6 

GO:0018130 heterocycle biosynthetic process 1.37x10
-2

 3.45x10
-4

 3.2 1.8 

GO:0044271 

cellular nitrogen compound biosynthetic 

process 1.48x10
-2

 3.83Ex10
-4

 3.3 1.9 

GO:1901362 

organic cyclic compound biosynthetic 

process 1.87x10
-2

 4.89x10
-4

 3.3 1.9 

GO:0006886 intracellular protein transport 2.99x10
-2

 8.03x10
-4

 0.9 0.3 

GO:0003743 translation initiation factor activity 3.32x10
-2

 9.58x10
-4

 0.4 0.1 

GO:0048285 organelle fission 3.32x10
-2

 9.58 x10
-4

 0.4 0.1 

GO:0019438 aromatic compound biosynthetic process 3.58x10
-2

 1.05x10
-3

 3.0 1.7 
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Table IV-6: Pfam results for the K. mikimotoi multidomain PKS sequences. 

 

Transcript ID Pfam domain Domain description E value 

Locus_7602_Transcript_1/1 PF08659.5 KR domain 2.70x10
-51

 

 PF00698.16 Acyl transferase domain 3.20x10
-50

 

 PF14765.1 Polyketide synthase dehydratase 7.70x10
-42

 

Locus_238_Transcript_1/1 PF08659.5 KR domain 9.40x10
-31

 

 PF00698.16 Acyl transferase domain 6.80x10
-22

 

 PF14765.1 Polyketide synthase dehydratase 5.10x10
-10

 

 PF00550.20 Phosphopantetheine attachment site 1.90x10
-04

 

Locus_11177_Transcript_1/1 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 1.50x10
-48

 

 PF00698.16 Acyl transferase domain 5.10x10
-37

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 2.50x10
-35

 

Locus_24202_Transcript_1/1 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 2.90x10
-55

 

 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 1.30x10
-50

 

 PF08659.5 KR domain 9.80x10
-47

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 1.40x10
-31

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 2.60x10
-29

 

 PF00550.20 Phosphopantetheine attachment site 7.00x10
-10

 

 PF00550.20 Phosphopantetheine attachment site 1.40x10
-8

 

Locus_26402_Transcript_1/1 PF08659.5 KR domain 4.30x10
-38

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 1.30x10
-25

 

 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 1.70x10
-6

 

Locus_27638_Transcript_1/1 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 1.20x10
-64

 

 PF08659.5 KR domain 1.70x10
-61

 

 PF14765.1 Polyketide synthase dehydratase 5.20x10
-37

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 1.50x10
-30

 

Locus_35576_Transcript_1/1 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 8.90x10
-61

 

 PF08659.5 KR domain 1.40x10
-42

 

 PF14765.1 Polyketide synthase dehydratase 5.20x10
-36

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 7.00x10
-32
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Table IV-6 continued. 

 

Transcript ID Pfam domain Domain description E value 

 PF00107.21 Zinc-binding dehydrogenase 3.10x10
-19

 

 PF00550.20 Phosphopantetheine attachment site 2.00x10
-9

 

 PF08659.5 KR domain 1.50x10
-5

 

Locus_42174_Transcript_1/1 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 1.40x10
-55

 

 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 3.70x10
-54

 

 PF08659.5 KR domain 2.80x10
-40

 

 PF08659.5 KR domain 2.60x10
-35

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 4.00x10
-35

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 5.60x10
-27

 

 PF00550.20 Phosphopantetheine attachment site 5.50x10
-08

 

 

 

 

Table IV-7: Pfam results for the K. papilionacea multidomain PKS sequences. 

 

Transcript ID Pfam domain Domain description E value 

Locus_6012_Transcript_1/2 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 1.6x10
53

 

 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 4.6x10
53

 

 PF08659.5 KR domain 2.8x10
41

 

 PF08659.5 KR domain 6x10
30

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 1.2x10
26

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 9x10
26

 

 PF14765.1 Polyketide synthase dehydratase 7.6x10
23

 

 PF03959.8 Serine hydrolase (FSH1) 1.3x10
17

 

 PF00975.15 Thioesterase domain 1.1x10
16

 

 PF13738.1 Pyridine nucleotide-disulphide oxidoreductase 2.7x10
12
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Table IV-7 continued. 

    

Transcript ID Pfam domain Domain description E value 

 PF00550.20 Phosphopantetheine attachment site 1.8x10
9
 

 PF00550.20 Phosphopantetheine attachment site 2.6x10
6
 

 PF00550.20 Phosphopantetheine attachment site 4.8x10
6
 

Locus_258_Transcript_1/1 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 1x10
-37

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 1.2x10
-30

 

 PF00698.16 Acyl transferase domain 5.5x10
-24

 

Locus_2405_Transcript_1/1 PF00698.16 Acyl transferase domain 1.7x10
-41

 

 PF01575.14 MaoC like domain 3.9x10
-23

 

 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 9.4x10
-19

 

 PF08354.5 Domain of unknown function (DUF1729) 1.2x10
-16

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 1.1x10
-13

 

 PF13561.1 x10noyl-(Acyl carrier protein) reductase 1.5x10
-10

 

 PF01648.15 4'-phosphopantetheinyl transferase superfamily 2.1x10
-8

 

 PF13452.1 N-terminal half of MaoC dehydratase 1.9x10
-5

 

Locus_9117_Transcript_1/1 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 1.2x10
-51

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 2.9x10
-31

 

 PF08659.5 KR domain 2.2x10
-10

 

 PF00550.20 Phosphopantetheine attachment site 1.9x10
-8

 

Locus_22382_Transcript_1/4 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 2.1x10
-62

 

 PF08659.5 KR domain 1.8x10
-49

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 1.3x10
-32

 

 PF00550.20 Phosphopantetheine attachment site 4.4x10
-10

 

Locus_22382_Transcript_4/4 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 2x10
-62

 

 PF08659.5 KR domain 1.7x10
-49

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 1.2x10
-32

 

 PF00550.20 Phosphopantetheine attachment site 4.1x10
-10
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Table IV-8: Pfam results for the K. brevis multidomain PKS sequence. 

 

Transcript ID Pfam domain Domain description E value 

Locus_4043_Transcript_1/2 PF00501.23 AMP-binding enzyme 6.10x10
-56

 

 PF00109.21 Beta-ketoacyl synthase, N-terminal domain 4.40x10
-49

 

 PF00698.16 Acyl transferase domain 1.50x10
-48

 

 PF00975.15 Thioesterase domain 2.70x10
-35

 

 PF08659.5 KR domain 1.40x10
-29

 

 PF02801.17 Beta-ketoacyl synthase, C-terminal domain 9.20x10
-29

 

 PF00975.15 Thioesterase domain 1.80x10
-24

 

 PF00550.20 Phosphopantetheine attachment site 6.90x10
-11

 

 PF13193.1 AMP-binding enzyme C-terminal domain 8.70x10
-05
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Table IV-9: Predicted PKS catalytic domain and nr BLAST results for each “unique” 

PKS ortholog in the K. brevis and K.papilionacea transcriptomes. Data is based on the 

results for the K. brevis ortholog. The “top nr hit species” was determined by E value 

and lists the species with the most significant nr protein hit to each “unique” PKS. 

 

Locus ID PKS 

Domain 

Top nr hit species Lowest E 

value 

Highest % 

identity 

Locus 

14861 

KS Bacillus 

hemicellulosilyticus 

1.33x10
-43

 33.06 

Locus 

5089 

KS Azadinium spinosum 0.00 43.84 

Locus 

15745 

AT Azadinium spinosum 3.67x10
-84

 38.16 

Locus 

27667 

AT Alexandrium ostenfeldii 2.28x10
-153

 49.11 

Locus 

38639 

AT Alexandrium ostenfeldii 2.42x10
-146

 47.47 
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CHAPTER V

CONCLUSION 

After developing a reliable pipeline for dinoflagellate de novo transcriptome 

assembly, this dissertation produced highly complete Karenia reference transcriptomes. 

Subsequent analyses annotated thousands of putative proteins, including voltage-gated 

cation channels, MIPs, VATPases, and PKSs. Of particular interest are genes expressed 

by the brevetoxin-producing K. brevis and K. papilionacea, but not by K. mikimotoi, 

which does not produce brevetoxin. The results that support each primary dissertation 

goal are described: 

Identify efficient, effective de novo transcriptome assembly method for 

dinoflagellates with large, highly repetitive genomes 

Because K. brevis is a non-model organism, this dissertation used several 

traditional and nontraditional metrics to gauge the completeness of each transcriptome. 

Commonly, values like mean transcript length, maximum transcript length, N50 length
1
,

3and transcript number are used as proxies for transcriptome quality. High length metrics 

and a relatively low transcript number are considered optimal, since they ideally contain 

longer, more complete mRNA sequences. However, based on test transcriptomes 

1
The N50 length is calculated by arranging transcripts from longest to shortest and then identifying the 

“N50 transcript.” The sum of transcript lengths above or below the N50 transcript should contain 

50% of all bases in the transcriptome. The length of the N50 transcript is the N50 length. 
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assembled de novo from model organism data, length-based metrics, including N50, do 

not consistently identify perfect assemblies (O’Neil and Emrich 2013).  

 Additionally, without reference genomes, the expected N50, transcript number, 

and mean transcript length outputs for Karenia species can only be estimated based on 

genomic data from other eukaryotes, a potentially unreliable system. Even within the 

dinoflagellate group, genome size is highly variable (3.0x10^6 to 245.0x10^6 kbp), and 

the estimated protein-coding gene number ranges from 40,000 to 90,000, depending on 

species (Hou and Lin 2009). To date, the only dinoflagellate species with a sequenced 

genome are symbiotic members of the Symbiodinium genus (Lin et al. 2015; Shoguchi et 

al. 2013). Symbiodinium spp. genomes are, on average, over 30 times smaller than the K. 

brevis genome (Hackett et al. 2004; Shoguchi et al. 2013). Based on the positive 

relationship between protein-coding genes and genome size (Hou and Lin 2009), we 

expect K. brevis to express more discrete transcripts than Symbiodinium. Free-living 

Karenia and symbiotic Symbiodinium zooxanthellae also have disparate life cycles that 

may necessitate different types of genes. 

 The Karenia transcriptomes were also assessed with annotation-, CEG- and 

ORF-based methods that are well-suited for nonmodel organisms. As described in earlier 

chapters, TRAPID predicts ORF completeness with an annotation process. Transcripts 

are first processed with a RAPSearch2 similarity comparison to proteins in the PLAZA 

2.5 (Van Bel et al. 2011) or OrthoMCLDB 5.0 (Chen et al. 2006) databases (Van Bel et 

al. 2013). During the processing step, users choose whether the transcriptome will be 

compared to a single species or clade in one of the databases (Table V-1). Alternatively, 
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the transcriptome can be compared to “gene family representatives,” in which one gene 

per family is chosen, regardless of species or clade, based on the family connectivity 

protocol outlined in Van Bel et al 2011 (Van Bel et al. 2013; Van Bel et al. 2011). 

Transcripts receive gene family assignments based on the RAPSearch results.  

 

Table V-1: Clades, species, and proteins in the databases used by TRAPID. Table is 

adapted from the article “TRAPID: an efficient online tool for the functional and 

comparative analysis of de novo RNA-Seq transcriptomes” (Van Bel et al. 2013). 

Reference database Clade #Species #Proteins 

OrthoMCL-DB 5.0  All 150 1,398,546 

  Alveolata 15 98,796 

  Amoebozoa 4 41,930 

  Archaea 16 30,233 

  Bacteria 36 112,059 

  Euglenozoa 9 107,034 

  Eukaryota 98 1,256,264 

  Fungi 24 680,778 

  Metazoa 29 529,788 

PLAZA 2.5 
Viridiplantae 

(green plants) 
25 780,667 

  Angiosperms 18 671,950 

  Eudicots 13 480,106 

  Monocots 5 191,844 

 

 

 

 Additionally, the longest potential ORF in each transcript is identified. 

Transcripts with both a gene family and ORF are assessed for completeness, as 

described in Chapter II, based on its length and the mean gene family ORF length (Van 

Bel et al. 2013). 
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 There are several potential complications associated with assessing a 

dinoflagellate transcriptome with TRAPID. First, dinoflagellates are not represented by 

the OrthoMCLDB 5.0 or PLAZA 2.5 databases, although the former does include the 

marine diatom Thalassiosira (Alveolata clade), and the latter includes green marine 

algae (Viridiplantae clade). With less than 200 species in the TRAPID databases (Table 

V-1), none dinoflagellates, the RAPSearch may fail to annotate less-conserved genes. 

Indeed, just ~20% of the K. brevis transcriptome was assigned a gene family by 

TRAPID. In contrast, a BLASTx search against the nr database, which contains proteins 

from >2.3x10^5 formally named species and >4.05x10^5 informally named species 

(Federhen 2012), annotated ~40% of the K. brevis transcriptome. Because TRAPID uses 

a relatively small species databases, “completeness” estimates may only represent a 

minority of nonmodel transcriptomes: specifically, more highly conserved genes. 

 Furthermore, the TRAPID ORF completeness analysis cannot distinguish 

between partial ORFs and naturally shorter ORFs in nonmodel species like K. brevis. 

When K. brevis transcripts were processed against the OrthoMCL database instead of the 

PLAZA database, the estimated complete to partial ratio was over two times higher 

(Table V-2). This suggests that “completeness” for nonmodel organisms, particularly 

species without close phylogenetic relatives in the TRAPID databases, is highly 

qualitative. 

 That said, TRAPID is a powerful tool for assessing different de novo assembly 

methods, as long as RAPSearch processing variables, such as database choice, are kept 

consistent. This dissertation consistently used the PLAZA database to assess Karenia 
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transcriptomes because PLAZA-processed transcripts also receive predicted gene 

ontology terms. To ensure that PLAZA 2.5 would not annotate fewer transcripts than the 

larger OrthoMCL 5 database, 1,749 randomly chosen K. brevis Wilson transcripts were 

analyzed with both databases. Based on results from the sample test, the number of 

transcripts that received a TRAPID-assigned gene family is similar, regardless of 

database choice (Table V-2). 

 

Table V-2: TRAPID results after 1,749 sample K. brevis Wilson transcripts were 

processed with the PLAZA 2.5 or OrthoMCL-DB 5.0 databases. For each database, 

transcripts were either annotated against a specific clade or gene family representatives. 

The Viridiplantae and Alveolata clades were chosen because they contain marine 

phytoplankton species. 

 

ID % Transcripts with 

Gene Family 

% Transcripts 

with Protein 

Domain 

Complete:Partial 

Ratio 

KB PLAZA 2.5 

Representative gene  

(42.9%) (39.9%) 6.3:1 

KB Wilson PLAZA 2.5 

Viridiplantae clade 

(48.4%) (43.7%) 8.8:1 

KB Wilson ORTHO 

Representative gene  

(45.6%) (36.6%) 17.5:1 

KHB Wilson ORTHO 

Alveolata clade 

(38.4%) (28.5%) 22.48:1 

 

 

 

 The TRAPID “completeness” estimates were complemented by CEGMA. As 

described in chapter II, CEGMA searches transcriptomes for a set of 248 highly 

conserved eukaryotic genes originally identified in Homo sapiens, Drosophila 

melanogaster, Arabidopsis thaliana, Caenorhabditis elegans, Saccharomyces cerevisiae 

and Schizosaccharomyces pombe (Parra et al. 2007). CEGMA identified 99% (246) of 
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the CEGs in the “most complete” (according to CEGMA) K. brevis transcriptome (Table 

V-3). 

  

Table V-3: Transcript number, % CEGs, N50 length, TRAPID complete:partial ratio, % 

transcriptome assigned a gene family by TRAPID, mean transcript length, and mean 

ORF length for Karenia reference transcriptomes. KbWil Trinity = Trinity assembly, 

KbWil VO = Velvet Oases single k-mer assembly (k-mer 41), KbWil VO MA = Velvet 

Oases merged assembly (k-mers 21, 25, 29, 33, 37, 41), KbWil VO MA + Trinity = 

Velvet Oases single k-mer assembly combined with Trinity assembly.  

 

ID # Transc. %CEGs TRAPID 

complete:partial 

Mean 

transc. 

 lgth (bp) 

Mean ORF 

lgth (bp) 

KbWil 

Trinity 

166,134 79.91 8.0:1 1096.6 1218.3 

KbWil 

VO 

85,697 71.70 7.1:1 1353 1075.7 

KbWil 

VO MA 

86,580 81 7.3:1 1340 961.6 

KbWil 

VO MA + 

Trinity 

309,289 99.12 7.0:1 1257.5 1096.5 

 

 While attempting to identify an optimal de novo assembly method for K. brevis 

RNA-seq data, this dissertation highlighted the difficulty inherent to using any one 

method to gauge assembly success. For comparison purposes, K. brevis transcriptomes 

were produced with Trinity, Velvet-Oases (single k-mer method), Velvet-Oases (merged 

k-mer method), and Trinity + Velvet-Oases (single k-mer method). Length-based 

metrics, % CEGs, and TRAPID completeness were calculated for each transcriptome 

(Table V-3). Velvet-Oases (single k-mer method) yielded the highest mean transcript 

length and lowest transcript number. Trinity yielded the highest mean ORF length and 
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TRAPID completeness ratio. Trinity + Velvet-Oases yielded the highest % CEG value 

by a considerable margin. No one assembly is “optimal” according to all—or even 

most—of the criteria. When all the metrics are considered together, the Velvet-Oases 

(merged k-mer method) has overall high length and completeness scores with a low total 

transcript number (Table V-3). However, for research that is dependent on assembling 

the most transcripts possible, it seems prudent to create transcriptomes with both Trinity 

and Velvet-Oases, combine the results, and remove redundancies. Although the Trinity + 

Velvet-Oases transcriptome was up to three times larger than the Velvet-Oases merged 

transcriptome, it also contained 18% more CEGs (Table V-3).  

 Based on the methods explored during this dissertation, a basic de novo 

transcriptome assembly (Figure V-1), assessment (Figure V-2), and annotation (Figure 

V-3) procedure has been proposed. The pipeline is a guide and should be modified to 

best fit each experiment’s goals and data. Of the four de novo transcriptome assemblers 

tested during this dissertation (ABySS, CLC, Velvet-Oases, and Trinity), Velvet-Oases 

and Trinity produced optimal transcriptomes (see Chapter II and III) and are therefore 

recommended for further dinoflagellate transcriptomic research. The Velvet-Oases 

merged function is also recommended over the single k-mer approach.  
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Figure V-1: De novo transcriptome assembly pipeline.  

Output predicted  protein sequences/longest ORFs 
  

Longorf.pl 

• Bioperl script written by Dan Kortschak 

• Recommended flags: 

• --notstrict (do not require both start and stop codon on longest ORF) --verbose 

Collapse redundant transcripts 
 

CD Hit EST 

• Recommended 90 to 95% similarity, >50% overlap 

• To retain more potential isoforms, increase similarity value up to 99%. 

De novo Assembly 
 

Velvet-Oases 

• Combine single k-mer assemblies into a non-
redundant consensus transcriptome through 
Oases merge function. Recommended k-mer 
range  is 21 to 45. During merge, run multiple 
K-values between 21 and 45 to identify optimal 
choice for data. 

• Edge fraction cutoff  = 0.5 (default is 0.1) 

• No minimum  contig/transcript length 

• Automatic coverage cutoff 

 

Trinity 

• The --normalize_reads flag 
allows in-silico read 
normalization 

• Set maximum memory usage 
to a value that complements 
your computational 
resources.  

• Useful memory flags:        -
-max_memory, --CPU 

Paired-end read quality filtering 
 

CLC Genomics 

• Phred quality score: p = 0.05 to 0.005 

• Minimum read length ≥ 45 bp (recommended no less than 2/3 
target read length) 

• Optional: remove full spliced leader sequence from dinoflagellate 
transcripts 
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Figure V-2: De novo transcriptome assembly assessment pipeline. 

 

Estimated ORF completeness 
 

TRAPID 

• Initial processing against the PLAZA  or OrthoMCLDB database  

• Similarity search database type: Gene family representatives 

• Similarity search E value: 1.0E-5 

• Functional annotation: transfer from both GF and best hit 

• Optional: process  as described against both PLAZA and OrthoMCLDB 
(alveolates) and combine results 

 

# CEGs 
 

CEGMA 

• Minimum target CEG # > 70% of the 248 CEGs identified in transcriptome 

• Highly complete target CEG # > 90% of the 248 CEGs 

• Maximize complete:partial CEG ratio 

• Optional for dinoflagellates: direct BLAST search against the CEGMA-identified 
K. brevis core eukaryotic transcripts  

Length-based metrics 
 

N50 

Mean transcript length 

Mean ORF length 

Transcript length/ORF length distribution 

• Histogram  



  

 

88 

 

Figure V-3: De novo transcriptome annotation pipeline.  

  

Gene ontology prediction 
 

TRAPID 

• Transcripts processed with PLAZA 
database receive predicted GO terms 

 

Blast2GO 

• Transcripts annotated with nr or 
Swissprot protein databases 

• Use low (< 40%) similarity threshold 
during mapping and annotation 
processes for nonmodel organisms 

• KEGG pathway mapping optional 

Protein domain annotation 

CD-Search 

 

InterProScan Package 

• Optional: use CLC 
Genomics to run 
InterProScan 

 

 

TRAPID 

• Transcripts 
automatically assigned 
InterPro domain 
(PLAZA) or Pfam 
(Ortho-MCL-DB) 
annotations during 
processing 

Annotation against NCBI database 
 

Non-redundant (nr) protein database 

• Recommended: full transcriptome compared to nr database 
with blastx 

• Faster method: predicted protein sequences compared to nr 
database with blastp 
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Predict highly conserved genes in dinoflagellates and marine eukaryotes 

 CEG recovery is highly sensitive to transcriptome assembly method. When only 

one assembler (either Velvet-Oases or Trinity) processed the RNA-seq data, between 

70% and 80% of the 248 highly conserved CEGs were identified through a CEGMA 

search. However, by combining output from both Velvet-Oases and Trinity, 99% of the 

CEGs were identified among the K. brevis transcripts. Therefore, CEGMA output from 

the Velvet-Oases + Trinity combined K. brevis Wilson transcriptome was used to further 

investigate CEGs in dinoflagellates.  

 These K. brevis CEG protein sequences were converted to a  searchable BLAST 

database and compared to Alexandrium fundyense CCMP1719, Karlodinium micrum 

CCMP2283, Lingulodinium polyedra CCMP1738, Prorocentrum minimum CCMP1329, 

and Symbiodinium kawagutii CCMP2468 transcriptomes from the MMETSP repository 

(Keeling et al. 2014). The search enforced a minimum E value (<1.0x10
-20

). For 

comparison purposes, all ORFs >300 bp in the Velvet-Oases+Trinity transcriptome were 

converted to protein sequences and compared to the five dinoflagellate transcriptomes 

using the BLAST guidelines above. There were 147,200 total K. brevis ORFs >300 bp. 

 For every queried dinoflagellate species except Symbiodinium, over 95% of the 

K. brevis CEGs were identified during the BLAST search (Table V-4). The average 

protein similarity score for each CEG hit was ~70% (Table V-4). Each of these values is 

markedly higher than their counterparts yielded by the full-transcriptome BLAST search 

(Table V-4).  
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 This result suggests two important conclusions. First, the CEGMA-derived core 

eukaryotic transcripts in K. brevis represent highly conserved genes among free-living 

dinoflagellate species. Not only were almost all of the CEG orthologs identified in 

Alexandrium, Karlodinium, Lingulodinium, and Prorocentrum, the sequence similarity 

between species was higher, on average, than the similarity between non-CEG orthologs 

(Table V-4).  

 Second, Symbiodinium, the only dinoflagellate genus with a sequenced genome, 

was also the only dinoflagellate species assessed during this dissertation that expressed 

few (35%) of the K. brevis CEGs. This highlights the need for more genomic data from 

non-zooxanthellae dinoflagellate species in order to better understand toxin-producing, 

bloom-forming dinoflagellates. 
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Table V-4: Results of K. brevis CEG BLAST against five dinoflagellate transcriptomes. 

The MMETSP IDs column lists the sample(s) that contributed to each transcriptome. 

The “% KB CEGs” and “% total KB transcripts” columns show the percent of K. brevis 

CEG or non-CEG transcripts with a predicted ortholog in the species transcriptome. The 

“mean CEG % sim” and “mean total sim” columns show the average % protein 

similarity between CEG and non-CEG orthologs. 

 

Species MMETSP IDs % KB 

CEGs 

Mean CEG 

% sim 

% total KB 

transcripts 

Mean 

total sim 

Alexandrium 

fundyense 

CCMP1719 

0196, 0347 98 73 4.2 56 

Karlodinium 

micrum 

CCMP2283  

1016, 1015, 1017 95 73 34 47 

Lingulodinium 

polyedra 

CCMP1738  

1034, 1032, 1035, 

1033 

98 73 34 

 

47 

Prorocentrum 

minimum 

CCMP1329  

0053, 0055, 0057, 

0056 

96 70 29 45 

Symbiodinium 

kawagutii 

CCMP2468  

1032 35 76 3.1 58 
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Identify the potential genes that underlie osmoacclimation or toxin production in 

harmful, bloom-forming dinoflagellate K. brevis 

 In order to better understand osmoacclimation in K. brevis, putative 

transmembrane ion channels, major intrinsic proteins, and VATPases were identified in 

K. brevis Wilson, SP1, and SP3 transcriptomes. Notably, seven K. brevis transcripts 

were significantly homologous to mammalian and fish voltage-gated cation channels 

(Chapter II) (Ryan et al. 2014). The interaction between brevetoxins and human voltage-

gated sodium channels results in neurotoxic shellfish poisoning. Simply put, brevetoxins 

bind to neurotoxin receptor site 5 and increase sodium transport, thus causing harmful 

neurological symptoms (Baden 1989; Dechraoui et al. 1999). Although fragments of ion 

channel-like sequences were identified in early K. brevis EST libraries (Thompson 

2011), the transcriptomes assembled as part of this dissertation research contained the 

first full-length putative cation channel genes to be assembled from brevetoxin-

producing K. brevis clones (Ryan et al. 2014).  

 The identification of voltage-gated sodium channels in Karenia species is a 

motivation to further investigate the interaction between brevetoxins and dinoflagellates, 

particularly in brevetoxin-producing K. brevis and K. papilionacea. To date, it is not 

known whether PbTx-1, PbTx-2, their derivatives, and/or brevenal bind to Karenia 

cation channels. If brevetoxins do alter K. brevis ion transport activity, the interaction 

may point to a biological impetus for PbTx synthesis. Alternatively, if K. brevis ion 

channels do not bind with brevetoxins, variations in ion channel orthologs between K. 



  

 

93 

brevis and humans may help us understand the site-5 configuration that is necessary for 

interactions with PbTx compounds.  

 In addition to transmembrane channels, this dissertation searched for putative 

PKSs in Karenia transcriptomes. K. brevis, K. mikimotoi, and K. papilionacea all 

expressed >100 distinct PKS transcripts with KS, AT, ACP, and/or KR domains 

(Chapter III and IV). The relatively high number of PKS genes was not uncommon. A 

recent study that analyzed the transcriptomes of 210 phytoplankton genera showed 

highly expanded PKS gene families in the dinoflagellate group (Kohli et al. 2016). On 

average, the 46 dinoflagellate strains expressed 56 KS domain-containing transcripts. 

The specific number varied from 140 (Azadinium spinosum) to 90 (K. brevis) to only 7 

(Togula jolla) distinct KS-containing PKS transcripts (Kohli et al. 2016).  

 Regarding PKS characterization, this dissertation made one unexpected 

discovery. Although most Karenia PKSs were type I-like, with a single catalytic domain, 

a multimodular PKS sequence (Table IV-8) was expressed by K. brevis in both 

laboratory and environmental samples (Chapter IV). Based on the reciprocal BLAST 

method, the multimodular PKS was novel to K. brevis, with no orthologs in the K. 

mikimotoi or K. papilionacea transcriptomes. However, both K. mikimotoi and K. 

papilionacea expressed other two-domain or three-domain putative PKS genes (Table 

IV-6 and IV-7). This suggests that polyketide and/or nonribosomal peptide assembly in 

Karenia species is more complex than the type I-like paradigm. 
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Predict genetic variance among two K. brevis laboratory clones and three Karenia 

species: K. brevis, K. mikimotoi, and K. papilionacea 

 Thousands of orthologs were identified among three harmful Karenia species: K. 

brevis, K. mikimotoi, and K. papilionacea (Chapter III and Chapter IV). Of special 

interest are the >4,700 transcripts unique to the brevetoxin-producing K. brevis and K. 

mikimotoi, including 5 type I-like PKSs. These “unique” orthologs represent prime 

targets for future brevetoxin biosynthesis research, such as targeted silencing with 

antisense oligonucloetides. 

 To understand genetic variance among laboratory-cultured K. brevis clones, we 

compared the transcriptomes of Wilson, SP1, and SP3 (Chapter II). Each clone 

expressed the same genes, but we did identify 186,075 SNP locations were in 30,227 

highly expressed (20-fold minimum average read coverage) transcripts, corresponding 

with 0.0023 (Wilson and SP1), 0.0024 Wilson and SP3, and 0.0022 (SP1 and SP3) SNP 

rates (Table II-3). Based on these results, SP1 and SP3 are more similar to each other 

overall than SP1 to Wilson or SP3 to Wilson. It is not known whether Wilson is 

relatively divergent because of its long (over 60 years) time in culture. However, the 

strain-to-strain variance among tens of thousands of highly expressed genes suggests that 

experiments on laboratory-cultured K. brevis should use more than one strain to confirm 

that biological responses are representative of more than one clone with a potentially 

phenotype-altering mutation. 
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 The Karenia transcriptomes that are described in this dissertation each contain a 

vast pool of expressed genes. To date, no toxin-producing dinoflagellate has a reference 

genome. Therefore, highly complete, de novo transcriptomes are critical tools to 

understand the biology of toxin-producing dinoflagellate species. For example, we now 

know that K. brevis, K. papilionacea, and K. mikimotoi express putative transmembrane 

channels and a hundreds of novel PKSs. This said, there is still much to learn from the 

>300,000 Karenia transcripts. The transcriptomes will be valuable resources for future 

work. 
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