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ABSTRACT 

 

 

Pain impairs self-regulation and cognitive abilities related to decision-making. 

Additionally, clinical chronic pain patients have demonstrated impaired performance on 

risky decision-making tasks, often choosing immediate rewards at the cost of future 

consequences. Based on this literature, experiencing pain may lead to an increase in 

impulsive decision-making by demonstrating an increased preference for immediate 

rewards at the cost of delayed rewards on a measure of delay discounting (DD). Using a 

mixed between-group (no pain vs. pain)/within-subjects repeated measures design (DD 

before and during the manipulation), participants’ delay discounting rates were assessed 

before and while experiencing either a no pain control (n = 38) or a painful, 

inflammatory heat stimulus (n = 38). Contrary to the hypothesis, participants in the pain 

demonstrated a shift in preference towards larger, delayed rewards over time (p = .024). 

The no pain control group did not experience a significant shift in preference over time 

(p = .051).  

The results indicate that those that experienced pain displayed a reduction in 

impulsive decision-making. This shift towards larger, delayed rewards is in accordance 

with literature on experimental stressors and risky decision-making. This shift in reward 

preference may be due to a decrease in reward sensitivity.  
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NOMENCLATURE 

 

ACC Anterior Cingulate Cortex 

AUC Area Under the Curve 

BPM Beats Per Minute 

COMT Catechol-O-Methyltransferase 

DD Delay Discounting 

DDQ Delay Discounting Questionnaire 

DLPFC Dorsolateral Prefrontal Cortex 

FIR Finite Impulse Response Filter 

HR Heart Rate 

IGT Iowa Gambling Task 

OFC Orbitofrontal Cortex 

PET Positron Emission Tomography 

SAM Self-Assessment Manikin 

SCL Skin Conductance Level 

TSST Trier Social Stress Test 

TRPV1 Vanilloid Transient Receptor Potential 1 

VAS Visual Analogue Scale 

VMPFC Ventromedial Prefrontal Cortex 
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1. INTRODUCTION 

When faced with two values available at different time points, does one’s 

preference remain consistent? Or do we adapt our choice to the context, or challenge, at 

hand? And if we do adapt, which option do we choose and why? 

Goal-directed decision-making posits that pursuing a reward is dependent on the 

value of the difference between the outcome and the associated costs of that choice.1 In 

the context of pain, an organism balances the value associated with a particular action 

(e.g. going for an enjoyable jog while in pain) against the consequence of said action 

(e.g. experiencing immediate pain). However, additional dimensions, including temporal 

factors related to reward availability, complicate this simple framework. In instances of 

chronic pain, for example, the immediate pain relief attained from consuming analgesics 

must be weighed against the long-term consequences of side effects.2 

Pain motivates and drives organisms to act, or inhibit, particular behaviors. By its 

very nature, pain enhances survival by signaling potential or perceived harm and 

modifying behavior accordingly.2,3 Due to its biological relevance, the brain’s salience 

and cognitive control networks prioritize pain processing over concurrent information 

resulting in the disruption of ongoing cognitive processes.4 

In the context of risky decision-making, an increase in risky choices has been 

reported in healthy individuals exposed to persistent pain5 and in clinical patients 

experiencing chronic pain.6–10 A possible explanation for why individuals in pain tend to 

act more impulsively is that due to pain leading to increased perseveration of choices 

and choosing outcomes that yielded high immediate gains despite higher losses in the 
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future.11 However, the effect of pain on increasing risky decision-making is not always 

consistent.12 

An alternative explanation through which pain may result in increased risky 

decision-making is that it may increase one’s predisposition for making impulsive 

decisions. Impulsivity is a multidimensional construct that includes the inability to wait 

or inhibit a behavior, preference for immediate over delayed rewards, insensitivity to 

consequences, tendency to engage in risky behaviors, and having a limited attention 

span.13,14 However, impulsive decision-making is most relevant to risky decision-making 

as it refers to preference for immediate rewards without adequate regard for future 

values or consequences.15 In impulsive decision-making, the subjective value of a 

reward decreases as a function of delay to its delivery, put another way, a reward 

becomes less valued as it occurs later and later, a phenomenon known as delay 

discounting (DD).16 

While there has been extensive research on the effect of pain on cognitive 

impairments (e.g. attention, learning, memory)4,17 and self-regulation18–20, the effect of 

pain on impulsive decision-making has been overlooked.  

1.1 Intertemporal Choice and the Potential Effect of Pain 

At one point, economists endorsed the belief that intertemporal choices, or rather, 

decisions involving alternatives whose costs and benefits are distributed over time, were 

consistent.21 To better understand how people make decisions between these proximal 

and distal values, economists proposed a discounted utility model, a way of 

conceptualizing how people made decisions about immediate rewards against delayed 
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rewards.21 The model proposed that individuals make decisions in an exponential 

manner; delayed values were discounted the further they were from the present in a 

time-consistent fashion. Under this conceptualization, a delay would lead to the same 

amount of discounting, regardless of the time in which the decision was made. This 

paradigm would suggest that delaying the delivery of a product by one day would lead to 

the same amount of time discounting regardless of whether the options occurred, for 

example, 1) between consuming the product tomorrow rather than today or 2) in a year 

and a day rather than in just a year.22 

However, evidence to the contrary suggests that people do not discount future 

rewards at a constant rate. That is, options posed at times that are closer to the present 

are more salient than options that are presented further away.23 For example, choosing 

between a) one dollar in one year and two dollars in one year and a day would seem less 

significant to an individual than choosing between b) one dollar today and two dollars 

tomorrow, even though the delays between both delay periods is one day. This time-

inconsistent model of temporal discounting is known as hyperbolic discounting and 

suggests that individuals are biased to the present.24 

While the predictive power of the hyperbolic discounting model has been well 

established25, the hyperbolic discount function still provides only a limited explanation 

of intertemporal preferences.21,26 Once thought of only as a trait-like variable27,28, 

evidence for the plasticity of intertemporal choice is well documented.29 Indeed, the 

activation of visceral drive states such as sexual arousal can lead greater discounting.30 

In an addiction population, opiate deprivation of heroin-dependent individuals leads to 
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greater discounting.31 Similarly, nicotine deprivation for smokers produces greater 

discounting as well.32–34  

Visceral influences contribute to manifestation of particular emotions that relate 

to changes in motivational drive states.21,35 Visceral influences are generated by 

biological needs (e.g. thirst, hunger, sexual arousal, fatigue, pain, fear). These visceral 

influences often overtake competing goals and lead to short-sighted, immediate 

behaviors.35 This assumption has also been embraced in a two-state decision-making 

model, which proposes that our preference for immediate rewards is related to “hot” 

emotional responses, while patience or delay of gratification emerges from more 

deliberative, “cold” reasoning.36,37 An emotionally arousing experience, such as pain, 

would then be predicted to elicit “hot” emotional responses that increase impulsive 

decision-making and delay discounting. However, despite theories regarding the 

influence of visceral factors related to motivation and impulsivity, the effect of pain on 

delay discounting has not been examined. 

1.2 Neural Mechanisms Underlying Pain and Impulsive Decision-Making 

Numerous studies have established that decision-making mechanisms are 

disrupted during chronic pain conditions in both humans and animal models.7,38–42 In 

animal studies, an inflammatory model of chronic pain in rats led to preference for high-

risk options in a risky decision-making task.38,41 Rats in the pain group demonstrated 

reduced tonic levels of dopamine, DOPAC (3,4-hydroxyphenylacetic acid; dopamine 

metabolite) and 5-HIAA (5-hydroxyindole-3-acetic acid; serotonin metabolite) in the 

OFC.41 A follow-up study found that pain disrupted the ability of OFC neurons to 



 

 5 

encode reward magnitude, thereby leading to impairment in the estimate of reward 

magnitude.38 

Evidence from clinical and preclinical human studies demonstrate a central role 

for dopaminergic neurotransmission in modifying pain perception and analgesia.43,44 

Positron emission tomography (PET) studies have shown that dopamine transmission in 

the striatum increases during noxious stimulation in healthy participants, and was shown 

to be related to sensory and affective qualities of the pain, as well as emotional responses 

to the stimulation.45 However, the extent to which experimental noxious stimulation 

affects dopaminergic activity in the prefrontal cortex, and therefore how this activity 

could lead to reduced prefrontal regulation,  remains to be determined.   

Human experimental pain models are utilized to model acute nociception and 

neuronal sensitization without producing nerve injury.46 Inflammatory based 

experimental pain application activates several underlying mechanisms that contribute to 

neuropathic pain states.47,48 Spontaneous burning pain, mediated in part by nociceptor 

sensitization, is elicited at the site of application, while central sensitization, a process 

that contributes to the development and maintenance of persistent pain, occurs in the 

nociceptors of the dorsal horn of the spinal cord. The use of inflammatory based 

experimental pain may then lend itself to studies of intertemporal decision-making as 

this modality of pain has been shown to activate cortical areas associated with executive 

and emotional functioning including the OFC, vmPFC, dlPFC, and anterior insula.49 

While there aren’t available studies that have tested the direct effect of pain on 

delay discounting, it has been established that dopamine levels in the prefrontal cortex 
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modulate impulsivity.50,51 Administering a single 20mg dose of D-amphetamine to 

healthy human participants led to a reduction in delay discounting (reduced 

impulsivity).52 This reduction in a bias towards closer temporal events is then believed to 

be due to the increase in dopamine due to the stimulant. Additionally, the presence of the 

Val158Met allele of the catechol-O-methyltransferase (COMT) gene correlates 

positively with impulsive choice. This occurs through degradation of dopamine via 

COMT  in the frontal cortex, which leads to increased impulsivity.53  

Taken together, these findings may suggest that tonic, inflammatory pain may 

also lead to reductions in dopaminergic activity in the frontal cortex, and subsequently 

greater discounting.  

1.3 Current Study 

The purpose of the present study was to determine the effect of pain on impulsive 

decision-making in healthy subjects. First, participants participated in a baseline delay 

discounting task. Next, they were randomly assigned to either the pain or control 

condition. Finally, they participated in an additional delay discounting task. A mixed 

between/within-subjects design was used to 1) assess individual delay discounting 

before and after exposure to either a pain or control manipulation and 2) assess change 

between the groups. To accomplish these purposes, a standardized acute, inflammatory 

pain stimulus was used to elicit tonic pain and individual discounting rates were assessed 

before and during exposure to the either pain or control manipulation. 

Based on with past findings between pain and risky decision-making, the current 

study’s hypothesis is that 1) individuals in the pain group will display greater delay 
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discounting (i.e. be more impulsive) when compared to the control group and 2) 

individuals in the pain group will display greater delay discounting (i.e. be more 

impulsive) after the pain manipulation, while those in the control group will not display 

a change over time. 
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2. MATERIALS AND METHODS 

2.1 Participants 

Healthy, pain-free college students of both sexes were eligible for study 

enrollment. Relative to studies using a clinical sample, the use of healthy, pain-free 

participants in the current study removes potential confounding variables such as pre-

existing alterations in pain sensitivity that may affect neuroendocrine function and 

decision-making. 

Individuals were unable to participate if they met any of the following criteria: 

(a) age less than 18; (b) ongoing chronic pain problems; (c) diagnosed with hypertension 

or taking medication for blood pressure; (d) circulatory disorders; (e) history of cardiac 

events; (f) history of metabolic disease or neuropathy; (g) pregnant; (h) use of nicotine, 

(i) use of prescription medication (e.g., analgesics, tranquilizers, antidepressants, 

corticosteroids, oral contraceptives, or ADHD medication); (j) neurological or 

psychiatric, or (k) chronic or acute health problems that affect the neuroendocrine 

system. Individuals were also asked to refrain from use of: (a) over-the-counter pain and 

allergy medication within 3 days of the study, (b) alcohol within 12 hours the 

experiment, and (c) caffeine within 4 hours of the experiment.  

A total of 103 volunteers participated in the study, of which 2 were excluded for 

equipment malfunction. An additional 4 were excluded from analyses upon discovering 

they met exclusion criteria. A final 16 were excluded due to non-systematic presentation 

on the decision-making task after assessing for orderliness of the data.54 The final 
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sample consisted of 81 healthy participants [33 male, 48 female, aged 18-21 years, M = 

18.74 years, standard deviation (SD) =.91 years]. 

The study complied with the revised Declaration of Helsinki (2008) and was 

approved by Texas A&M University’s Institutional Review Board. Informed consent 

was obtained from each participant at the beginning of the experiment. Participants 

received course credits for their participation and were informed that they could 

withdraw from the study at any time without forfeiting the credits.  

2.2 Delay Discounting Questionnaire 

The Delay Discounting Questionnaire (DDQ) was used to measure the effect of 

pain on preferences for immediate vs. delayed rewards.55 The DDQ has been used to 

investigate impulsive decision-making related to addiction, risk behaviors, stress and 

psychiatric illness.56–58 Participants were presented with choices between $10 available 

after a specified delay (i.e., 1, 2, 30, 180, or 365 days) and a smaller amount available 

immediately (e.g., “would you rather have $10 in 30 days or $2 now?”). This task used 

an adjusting amount process (adjusting the immediate amount in increments of ± $0.50) 

to determine indifference points between the delayed standard and immediate adjusting 

options for each of the five delays assessed. An indifference point reflected the smallest 

amount of money an individual chose to receive immediately instead of the delayed 

standard amount ($10) at the specific delay. The choice questions were presented in a 

randomized order determined by the computer program. Participants were told to pay 

attention to each scenario and to perform the task as if they were dealing with actual 

money. Previous work comparing real and hypothetical money rewards - using both 
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between and within-subjects designs - demonstrated that choices made in response to 

hypothetical rewards are similar to real rewards and can act as a proxy for real reward 

choices in delay discounting research.59–61  

The choice questions were presented using a titration procedure that was 

determined by participant choices, with each participant making a total of approximately 

60 choices. Indifference points across the different delays were characterized with an 

area under the curve (AUC) method with smaller area values indicating greater 

discounting by delay.62 Greater preference for immediate reward is indicative of greater 

discounting of delayed reward and greater impulsivity. 

To assess orderliness of delay discounting data, the Johnson and Bickel (2008) 

algorithm was used.54 These criteria flag participants for whom either (1) the earliest 

indifference point is not greater than the latest indifference point by at least 10% of the 

delayed reward, or (2) any indifference point (starting with the second delay) exceeds 

the preceding indifference point by a magnitude greater than 20% of the delayed reward 

amount. These flexible criteria were developed to be used to identify participants who 

discount according to unexpected or atypical patterns. 

2.3 Experimental Conditions 

Participants were tested in one experimental session. To get a baseline measure 

of delay discounting, everyone participated in the first DDQ prior to any experimental 

manipulation. Afterwards, participants were randomly assigned to either the painful or 

the non-painful active control condition. Participants were blinded to which condition 
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they were assigned to; during the consenting processes, they were informed that they 

may or may not receive the painful treatment. 

2.3.1 Pain Condition 

For the painful condition, 0.3 mL of a 10% topical capsaicin solution (one-gram 

of capsaicin in 10 ml of 50% ethanol, 50% water) was topically applied to the center of 

the participant’s non-dominant volar forearm via a circular filter paper with a diameter 

of 1.9-cm.63 The filter paper was then covered by Tegaderm transparent dressing (3M 

Health Care, St. Paul, MN, USA). Then, a tonic thermal stimulus was applied to the area 

capsaicin using an electrical heating pad with a surface area of 35.56cm X 35.56cm 

(ZHP1414, BodyMed, Hudson, OH, USA). The heating pad was wrapped around the 

forearm to raise the skin temperature to a constant 37 °C. The capsaicin and heat 

combination was kept on the forearm for the rest of the experiment. 

Capsaicin is the active ingredient of chili peppers. When coupled with heat, it 

induces heat sensitization by activating temperature-dependent TRPV1 receptor 

(vanilloid transient receptor potential 1) ion channels.64 The combination of 10% topical 

capsaicin with heat has previously been shown to reach peak intensity at approximately 

15 min and induce a stable level of pain intensity for approximately 1 hr. 63,65,66 

2.3.2 Control Condition 

Participants in the control condition were treated with 0.3mL of a vehicle 

solution (50% ethanol, 50% water). Thermal stimulation procedures and pain rating 

procedures were the same as the painful condition. 
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2.4 Manipulation Checks 

Subjective pain responses and physiological measures were recorded to confirm 

whether the painful condition was more arousing than the control condition. 

2.4.1 Subjective Responses to Pain 

Participants were trained to make pain ratings prior to capsaicin application. 

They were also given time to practice rating until they were confident with their abilities. 

A computerized 10-point visual analogue scale (VAS) was used to rate pain intensity 

and unpleasantness.67 The VAS consisted of a horizontal bar on a computer screen that 

ranged from 0 to 10, with 0 signifying “no pain intensity/unpleasantness” and 10 

representing “the most intense/unpleasant pain imaginable”. 

To measure subjective emotional reaction to the painful stimulus, each VAS 

rating was followed by a rating on a computerized version of the Self-Assessment 

Manikin (SAM).68 The SAM is a three-item questionnaire that yields valence (sad to 

happy), arousal (calm to excited), and dominance ratings (no control to complete 

control) that range from 1 to 9. Higher scores indicate greater valence, arousal, and 

dominance. Participants responded by clicking on any of the nine pictographs 

individually for each of the 3 subscales. The SAM provides a valid and reliable measure 

to assess emotional responses to stimulation. The split-half coefficients for the valence 

and arousal dimensions have been shown to be highly reliable, with coefficients for 

valence and arousal being r = .94 and r = .94, respectively.69 It has also been previously 

used to measure emotional responses to capsaicin.68,70,71 
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2.4.2 Physiological Measurement 

Psychophysiology was recorded using a Biopac MP150 system (BIOPAC 

Systems Inc., Goleta, CA, USA). Recordings were sampled at 1000hz. Skin temperature 

was measured with a Biopac SKT100C amplifier and a stainless steel skin thermistor 

applied on the volar forearm, two cm distal to the site of capsaicin application. ECG was 

recorded with a Biopac ECG100C amplifier and two disposable Ag-AgCl electrodes, 

positioned in a modified lead-2 placement. The peak of the R- waves was used for the 

calculation of heart rate (HR) in beats per minute (BPM). Skin conductance level (SCL) 

were measured with a Biopac GSR100C amplifier via two electrodes attached on the 

volar surfaces of the medial phalanx of the index and middle fingers. All the recordings 

were reduced and analyzed offline using AcqKnowledge 4.2 (BIOPAC Systems Inc., 

Goleta, CA, USA). A band-pass finite impulse response (FIR) filter (35.0-0.5Hz) was 

used to remove noise for heart rate data and low-pass FIR filter (1Hz) was use for skin 

conductance data. 

2.5 Procedure 

All participants were tested between the hours of 2 pm and 8 pm in order to 

minimize circadian variation in cortisol. The experiments were conducted in a sound 

attenuated and temperature controlled room. The DDQ, self-report ratings, and 

physiological data collection were administered via computer with dual monitor 

capability. The control room contained one computer monitor for the experimenter to 

observe physiological signals and direct the experiment, while a second monitor in the 

participant’s room was used to answer questionnaires, make pain ratings, and perform 
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the DDQ. Participants were monitored from the adjacent control room via a video 

camera. 

Figure 1 illustrates the timeline of experimental procedures. All participants were 

provided an overview of the experiment before informed consent was obtained. 

Demographics, health status, and psychological measures were then assessed during 

baseline questionnaires. Participants were then familiarized with the VAS and practiced 

making ratings until they felt comfortable. 

Next, the experimenter attached electrodes to the participant, then left the room 

while a 10 min baseline physiological recording occurred, with the instructions that the 

participant remain as still as possible during the recording. At the end of the recording, 

the experimenter returned to the room and explained the instructions for the DDQ. The 

participant was then left alone in the room while the participant answered the DDQ. 

At the end of the decision-making task, the experimenter re-entered the room to 

apply either the capsaicin or vehicle solution and heating pad to the forearm. The 

participant was reminded that they could receive either compound and that once applied, 

they would begin to make ratings of the sensation at 2 min intervals. The experimenter 

then left the room while physiological recordings and pain ratings took place. 

After approximately 15 min, the experimenter entered the room and re-read the 

instructions for the DDQ to the participant. The participant was again left alone in the 

room and answered the DDQ while also continuing to experience the painful or control 

stimulus. 
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At the conclusion of the second DDQ, participants filled out the exit 

questionnaires. Participants were then debriefed and provided course credit. Each 

experiment took approximately 2.5 hrs to run. 

2.6 Statistical Analyses 

Prior to data analysis, all variables were examined for missing values, outliers, 

normality of distribution, and homogeneity of variance and covariance. 

To test our main hypothesis - the influence of pain on impulsive decision-making 

- a mixed ANOVA was calculated with condition as the between-subjects factor and 

pre/post DDQ scores as the within-subjects factor.  To test the second hypothesis of 

comparing changes between two time points within a group, paired samples t-tests were 

conducted. Effect sizes were calculated as Cohen’s d. 

 Following significant interaction effects of the ANOVAs, post hoc simple main 

effects were conducted to compare mean values between conditions. Effect sizes were 

calculated as partial eta squared (partial η2).  

To assess the effect of capsaicin and heat on pain and affect responses relative to 

individuals in the control, heat alone condition, two-way mixed analysis of variances 

(ANOVAs) for pain intensity, pain unpleasantness, and SAM responses were conducted. 

To evaluate the whether the two conditions differentially influenced autonomic 

responses, mixed analyses of covariance (ANCOVAs) were conducted for HR and SCL 

during the stimulation period with condition (capsaicin + heat or heat alone) as the 

between-subjects factor and time at one min increments as the within-subjects factor. 

The last five mins of the baseline physiological recording served as the covariate.72   
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The Greenhouse-Geisser correction was applied to the degrees of freedom when 

needed for violations of sphericity.73 Each analysis was a 2-tailed test with a p-value of < 

0.05 considered significant, unless otherwise indicated. All statistical analyses were 

performed using SPSS, version 20 (IBM, Chicago, IL, USA).  

2.6.1 Handling Missing Values and Outliers 

When there were missing values for physiological data due to excess artifacts 

during the recordings that could not be appropriately reduced, listwise deletion was used 

to exclude those participants from physiological analyses.74 Based on this criteria, 21 

participants were excluded from physiological analysis. 

Outliers were assessed with inspection of boxplots, studentized residuals > ±3 

standard deviations, and visual inspection of QQ plots for normality of studentized 

residuals. Based on these methods of inspection, there were a few outliers for pain 

intensity and unpleasantness at different time points, and one outlier for SAM valence. 

Additionally, there were a few outliers for the physiological data. After the data was 

inspected for abnormalities, it was kept in for analysis. 

2.6.2 Assumptions For Statistical Analyses 

Shapiro-Wilk’s test was performed to check normality after outliers were 

addressed. When the assumption of normality was violated, skew and kurtosis were 

examined. Skew and kurtosis values were used to conduct a z-test by dividing the skew 

or kurtosis values by their standard errors. A score within the ±2.5 range is considered 

normally distributed at a statistical significance level of .01.75  
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Pain intensity and unpleasantness ratings were not consistently normally 

distributed at each time point. Logarithmic transformation did not consistently fix 

normality, so data was left untransformed. 

Using the prior criteria, the assumption of normality was not violated for most 

psychological and physiological data. However, even when normality could not be 

assumed for some measures (e.g. pain ratings), robustness was expected in this sample 

because of equal samples in groups, two-tailed tests, and greater than 20 degrees of 

freedom for error.73 

Levene’s test was used to assess homogeneity of variances between groups for 

the dependent variable. The test indicated equal variances for physiological and most 

SAM data (p’s > .05). However, the assumption was violated for pain intensity and 

unpleasantness, as well as SAM Arousal ratings. 

Box’s M was used to assess homogeneity of covariances when running mixed 

ANOVAs. All data violated this assumption (p’s < .05). 
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3. RESULTS 

3.1 The Impact of Pain on Delay Discounting 

During the baseline DDQ, there was no difference in the average delay 

discounting between the pain 0.48 (SD = 0.27) and control 0.52 (SD = 0.26) groups, 

F(1,74) = 1.301 p = .258, partial η2 = .017. This suggests that any differences between 

groups in their DDQ scores would likely be due to the pain manipulation and not pre-

existing differences. 

To test the hypothesis that pain would lead to an increase in discounting rate, a 

one-way ANOVA was conducted to examine the effect of the condition on delay 

discounting AUC. The initial analysis revealed no significant difference between groups 

post manipulation, F(1, 76) = 1.125, p = .292, partial η2 = .015. Next, an ANCOVA was 

conducted with post manipulation DDQ AUC as the dependent variable and baseline 

DDQ AUC as the covariate. This analysis also revealed no significant difference 

between the groups, F(1, 74) = 0.005, p = .944, partial η2 = .000. 

A follow-up mixed 2 (Pain vs. control) X 2 (Pre and Post DDQ AUC) ANOVA 

revealed no significant interaction or main effect of group (p’s > .100), however there 

was a significant main effect of time, F(1,74) = 9.366, p = .003, partial η2 = .112. This 

time effect indicates that discounting increased after the manipulation relative to baseline 

discounting (Figure 2).  

While no significant interaction occurred, follow-up paired samples t-tests were 

conducted to determine which group was driving the main effect of time. T-tests 

revealed that the pain group showed a significant increase in DDQ values, t(37) = 2.35, p 
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= .024, d = .36, after the manipulation (M = .45, SD = .28)  relative their baseline DDQ 

performance (M = .41, SD = .23). However, the control groups did not show a significant 

change DDQ values after pain (p = .051). 

Interestingly, the change from lower to higher AUC values in the pain group 

indicates that participants shifted their preferences towards larger, delayed rewards, 

suggesting that participants in the pain condition made less impulsive decisions after the 

painful stimulation. Participants in the control group, however, did not display a 

significant shift in preferences between the two trials.  

3.2 Manipulation Checks 

3.2.1 Pain Ratings 

To determine if the capsaicin + heat produced a painful sensation above heat 

alone, a mixed 2 (pain vs. control group) by 8 (time points) ANOVA was conducted. 

Analysis revealed a Group X Time interaction for pain intensity, F(1.866, 3.170) = 

21.847, p < .0001, partial η2 = .219, and pain unpleasantness, F(2.197, 3.294) = 18.021, 

p < .0001, partial η2 = .188. 

Participants in the pain group (capsaicin + heat) reported greater pain intensity 

and unpleasantness within the first two mins (intensity M = 0.2, SD = 0.38; 

unpleasantness M = 0.4, SD = 0.73) when compared to the control (heat alone) group 

(intensity M = 0, SD = 0.01; unpleasantness M = 0.1, SD = 0.05) (See Table 1 for pain 

ratings).  

Figure 3 shows that participants in the pain condition steadily increased their 

ratings over time, then plateaued towards the tail end of the 15-min period.  The pain 
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group also reported significantly greater ratings than the control group throughout the 

15-min period. 

3.2.2 SAM Ratings 

Measures of affective valence, arousal, and dominance were expected to 

significantly change from baseline during the 15-min stimulation period for both groups, 

with the pain condition then demonstrating a significant decrease in valence and 

dominance, and a significant increase in arousal, relative to the control group during the 

15-min stimulation period. 

Supporting this, a two-way mixed ANOVA indicated that there was a statistically 

significant interaction between the group and time for each affective dimension, valence: 

F(3.026, 236.011) = 8.998, p < .0001, partial η2 = .103; arousal: F(3.150, 245.678) = 

7.913, p < .0001, partial η2 = .092; dominance: F(2.647, 238.252) = 5.295, p = .003, 

partial η2 = .63. 

Figure 4 shows that participants in the painful condition experienced lower 

valence and greater arousal at 2 mins into the stimulation period when compared to the 

control group (See Table 2 for SAM ratings). At 6 mins, the painful condition began to 

report significantly lower dominance scores than the control group. These differences 

between groups continued through the rest of the stimulation period, with the exception 

of 10 mins for dominance scores in which no difference was seen, F(1, 79) = 3.912, p = 

.05, partial η2 = .047. 

Taken together, participants in the pain group experienced greater subjective 

stress during the stimulation period relative to the control group.  
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3.2.3 Psychophysiology 

Prior work has demonstrated a significant difference between participants 

experiencing capsaicin + heat vs. heat alone control group on measures of physiological 

response.76 As such, autonomic activity, as indexed by heart rate and skin conductance 

level, were expected between the Pain and control conditions. A two-way mixed 

ANCOVA indicated that there was not a statistically significant main effect of group, 

nor was there a Time X Group interaction (p’s > .100) for heart rate and skin 

conductance levels. 

Figure 5 shows heart rate and skin conductance values during the stimulation 

period (See Table 3 for physiological values). After controlling for baseline physiology, 

no significant differences emerged at any of the 15-min time points between the two 

groups. Paired samples t-test showed that participants in the painful condition 

experienced a statistically significant mean decrease of 2.99 BPM from baseline to the 

first 1 min of recording, 95% CI [1.91, 4.06], t(29) = 5.676, p < .0001, d = 1.04. 

However, participants in the control group experienced a similarly significant mean 

deceleration of 3.56 BPM, 95% CI [2.16, 4.95], t(29) = 5.217, p < .0001, d = .95. 

Relative to baseline, participants’ SCL in the pain condition significantly increased by 

3.24 µS, 95% CI [2.38, 4.10], t(29) = 7.70, p < .0001, d = 1.41. Participants in the 

control group also experienced a similarly significant mean increase of 3.03 µS relative 

to baseline, 95% CI [2.17, 3.89], t(29) = 7.23, p < .0001, d = 1.31. These data would 

suggest that changes from baseline to the start of the stimulation are similar for both 

groups, and that the capsaicin + heat is not producing a change beyond heat alone.  
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4. DISCUSSION AND CONCLUSIONS 

By its nature, pain is an experience that demands attention and orients individuals 

to the immediate threat. One would expect then, that experiencing a painful stimulus 

would lead to preference for immediate over delayed rewards. Indeed, both clinical and 

preclinical evidence has shown that experiencing pain tends to produce risk-prone choice 

patterns that favor immediate, large gains at the cost of even larger losses.11,41,77  

The primary objective of the current study, then, was to test the hypothesis that 

experimental pain would cause individuals to discount delayed rewards for immediate 

rewards. This hypothesis, however, was not supported by evidence from the study. 

Using a delay discounting questionnaire to measure discounting rates before and after a 

pain manipulation, the data suggests the contrary. Individuals in the pain group 

discounted delays less (i.e. AUC value was higher) than they did prior to the pain 

manipulation. While individuals in the control group trended towards less delay 

discounting, the difference before and after the active control manipulation was not 

significant. 

4.1 Pain and Impulsive Decision-Making Studies  

This is the first study to investigate the effect of experimental pain on 

intertemporal decision-making in healthy individuals. The finding that pain leads to a 

shift towards less impulsive choices on the DDQ is in line with a growing body of work 

that suggests that painful, physical stressors can lead to less risky decision-making. For 

example, Porcelli & Delgado (2009) found that a stress-inducing cold-pressor task led to 

individuals making fewer risky choices (stronger risk aversion behavior) in the domain 
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of gains when compared to the no stress group during a probability based financial 

decision-making task.78 Additionally, Lighthall et al. (2009) found that after a cold-

pressor task, women made less risky decisions on a measure of risky decision-making 

involving monetary rewards compared to the control group.79 However, men made more 

risky choices relative to their controls. These contrasting results of sex were mediated by 

a differential cortisol response to the stimulus: women produced a greater cortisol 

response to the stressor relative to baseline whereas men did not.  

An important difference in these two cold-pressor studies is the interval of time 

between when the cold-pressor stressor was administered and when the decision-making 

task was introduced. Cold-pressor studies that administer the stressor approximately 15 

mins prior to presentation typically do so with the goal of inducing HPA axis activation 

and peak levels of cortisol release.80 This is in contrast to activation of sympathoadrenal 

axes at the onset of a stressor, which is associated with an immediate release of 

norepinephrine and epinephrine.81 While Lighthall et al. (2009) utilized a 15 min interval 

during their study, Porcelli & Delgado (2009) introduced their financial task 

immediately after the stressor, potentially capturing effects of sympathetic-adrenal 

activation as opposed to the HPA axis. However, both studies observed a reduction in 

risky choices, regardless of timing. 

Although the current study did not observe significant differences in autonomic 

activity through objective measures of HR and SCL, there were significant differences in 

subjective distress (e.g. valence, arousal, and dominance/control) to the manipulation, 

indicating that a mild distress response was produced (See Table 2 for SAM ratings). 
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Taken together, the findings from these studies suggest that multiple factors related to 

the nature and timing of pain, including affective and neuroendocrine responses, may 

influence reward related decision-making. 

However, despite prior evidence from our laboratory that the capsaicin + heat 

pain manipulation led to poorer performance and greater immediate reward 

responsiveness on a separate risky decision-making task5, participants who experienced 

the pain in the current study displayed less impulsive decision-making. This may be 

attributable to the nature of the risky decision-making task utilized in the past study, the 

Iowa Gambling Task (IGT). The IGT is dissimilar from the DDQ used in the current 

study in that the IGT does not directly present options that are more immediately 

rewarding against options that are more rewarding in the future, but rather is built on risk 

(i.e. gain and loss). Looking at similar work, individuals that experienced an acute pain 

stressor displayed greater risky choices (less risk aversion behavior) in the domain of 

losses when compared to the no stress group during a probability based financial 

decision-making task (although it did not reach significance [p < .10]).78 It is possible 

that individuals experiencing acute pain and stress may react differently in situations 

where the context is more risk-oriented due to the inclusion of loss in the decision-

framework. 

4.2 Stress and Delay Discounting Studies  

While no other study has examined the effect of experimental pain on delay 

discounting, laboratory psychosocial stressors have been utilized to study the effect of 

stress on delay discounting.82–84 However, the results of these studies are inconsistent.  
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For instance, a study by Kimura et al. (2013) found that participants did not 

differ in discounting rates prior to and after a Trier Social Stress Test (TSST).82 

However, they did notice a shift towards increased discounting of delayed rewards 

(preference for immediate rewards) when they compared a subset of participants 

grouped as responders and non-responders to the stressor (highest vs. lowest quartile in 

cortisol response). The shift in discounting towards immediate rewards was in the 

opposite direction from the current study. These opposing findings may be attributable to 

the difference in stress response magnitude produced between the TSST and the 

capsaicin + heat used in the current study. Although the two tasks’ stress responses have 

not been compared within one study, the TSST produces greater HPA response than the 

cold pressor test, a commonly used experimental pain task.85 

Based on the results from Kimura et al. (2013), our lab (Rassu et al. [2016]), 

examined the effects of a painful cold-pressor manipulation on delay discounting rates in 

individuals with high perceived stress.86 The goal was to utilize a painful stressor that 

could mimic the intense physiological stress response that the Kimura group observed 

with their psychosocial stressor. Relative to controls, the manipulation checks indicated 

that the pain group experienced significantly greater SAM subjective arousal (M = 6.57, 

SD = 2.13) and sympathetic activation, as indexed by skin conductance levels (M = 5.77, 

SD = 2.46). After adjustment for pain tolerance time and perceived stress on the day of 

the experiment, the pain group displayed greater delay discounting AUC values relative 

to the high perceived stress control group, suggesting that pain led to significantly less 

discounting, or reduced impulsivity, compared to the no pain group. This decrease in 
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delay discounting from Rassu et al. (2016) is in line with another study reporting that 

participants with high perceived stress discounted rewards at a lower rate when 

challenged with an anticipatory psychosocial stressor relative to high stressed 

individuals who did not receive the laboratory stressor.83 

The findings from these previous delay discounting studies82,83,86 and the present 

study suggest that the context in which an acute stressor is presented can produce varied 

effects on intertemporal choice; they reveal an important interaction between 1) basal 

stress levels and 2) the magnitude of stress reactivity to acute stressors on delay 

discounting. While the current study did not observe increases in subjective or 

autonomic arousal levels (See Table 2 for SAM ratings, Tables 3 and 4 for physiological 

responses) as high as observed in Rassu et al. (2016), a similar shift in direction for 

arousal levels and discounting rate were observed. However, the lack of an observed 

significant interaction effect in the current study between the manipulation condition and 

time for delay discounting may be explained by the relatively smaller physiological 

stress response produced. 

4.3 Possible Mechanism  

A possible reason for the shift towards choosing larger, delayed rewards in the 

current study may be due to the effect of pain on reward sensitivity. In other words, the 

painful stressor may be producing a stress-induced anhedonia that could alter the value 

placed on rewards at different time points. To understand why this is relevant, consider 

that the value of a reward typically decreases as the distance in time increases. As such, 

individuals generally prefer immediate rewards to delayed rewards. However, if the 
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value of the immediate reward is reduced due to a lack of pleasure that the reward elicits, 

an individual may be more inclined to choose a larger, delayed reward.  

Evidence for shifts in discounting rates due to reduced reward responsiveness 

comes from a study that observed that anhedonia was negatively associated with 

discounting rates, suggesting that individuals displaying anhedonia chose larger, delayed 

rewards.58 The authors interpreted this finding to mean that these individuals were less 

biased to immediate rewards due to their lack of reward responsivity.  

Further evidence for why pain may affect reward sensitivity lies in the fact that 

pain and reward processing share overlapping brain circuitry (e.g. anterior and posterior 

insula, amygdala, anterior cingulate cortex (ACC), dorsal and ventral striatum, and the 

orbitofrontal cortex). 87–89 Clinically, chronic pain patients display increased levels of 

anhedonia and lower levels of self-report reward responsiveness when compared to 

healthy controls.90,91 This reduction is also correlated with diminished nucleus 

accumbens volume, suggesting that pain the may lead to morphological changes in 

reward brain regions.92 

Shifting focus to pre-clinical research, a study by Berghorst et al. (2013) found 

that individuals who were high stress responders to a threat-of-shock stimulus, with 

regards to cortisol and negative affect, demonstrated reduced reward sensitivity relative 

to participants in the no stress group on a probability based decision-making task.93 

Similarly, a study by Bogdan and Pizzagalli (2006) found that participants in the threat-

of-shock condition displayed less response bias (reward responsivity) when compared to 

a no stress control group.94 
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Work with animals has also indicated that acutely injured adult rats displayed 

increased motivation to remain at the center of open field arena where rewarding food 

pellets were present, when compared with uninjured controls.95 However, the same 

injured rats did not eat more food than the control group. This would suggest that pain 

did not increase the rewarding properties of food, as evidenced by unaltered eating 

behavior between the groups. Similarly, a study by Gandhi et al. (2013) found that 

human participants who experienced a tonic painful capsaicin + heat stimulus displayed 

increased motivation behavior for larger monetary rewards, but did not experience 

increased liking, or reward responsiveness.76 In other words, winning a larger amount of 

money was valued the same during both the pain and no pain conditions. Although 

anhedonia was not measured in the current study, it did utilize a similar pain stimulus to 

Gandhi et al. (2013), and as such, may also be affecting reward responsiveness in 

participants to a similar degree. 

While it is evident from the aforementioned studies that stressors are able to 

produce a reduced reward response on several monetary decision-making tasks, would a 

reduction in reward responsivity affect delay discounting as well? To answer this, one 

could observe underlying reward related brain circuitry affected by stressful stimuli that 

are necessary for delay discounting. As such, a recent neuroimaging study determined 

that a reduction in reward responsiveness to monetary values was associated with stress 

induced reductions in activation of the striatum during the consumatory phase of a 

monetary choice task.96  
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This finding is also mirrored when using acute, painful stimuli; a cold-pressor 

administered immediately prior to a reward paradigm led to reduced activity in brain 

regions involved in reward processing, including the orbitofrontal cortex and dorsal 

striatum.97 Considering the involvement of these brain regions for intertemporal choice 

98,99, this lack of activation of the orbitofrontal cortex and striatum due to stress may then 

contribute to a reduction in responsiveness to immediate rewards, which could manifest 

as less delay discounting, or rather, selection of larger, distant rewards. 

4.4 Limitations 

The shift in reduced delay discounting in the pain group was based on post hoc 

mean comparisons using a paired samples t-test. The t-test was used as a follow-up to a 

significant main effect of time observed when using a mixed ANOVA, rather than a time 

by group interaction. While a significant interaction was not observed when using a 

mixed ANOVA, a recent study from our lab also observed a reduction in delay 

discounting for individuals experiencing a laboratory cold pressor pain stimulus, relative 

to a control group.86 

Although a shift in delay discounting rate in the pain group was observed in the 

current study, the use of a between-within group design may have also been a limitation 

that may have prevented a more robust effect from being observed. Considering the brief 

interval between the first and second administration of the DDQ, the participants may 

have recalled their response style from the first DDQ and tried to mimic it for the second 

DDQ. However, a within-subject design with a stressor manipulation has been 

successfully used in previous delay discounting work during one session.82 Moreover, 
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the current study observed a significant effect of time for the DDQ, suggesting that there 

were changes in responses between the two administrations. 

Additionally, the current study induced a lower level of pain intensity, 

unpleasantness, and arousal relative to other heat + capsaicin studies.76,100,101 The lower 

ratings may have contributed to the small effect size observed. A future study may want 

to replicate the current study’s design, but incorporate standardization of pain levels by 

adjusting heating temperatures until a certain pain rating is attained.76 

4.5 Conclusion 

In conclusion, the current study found that tonic laboratory pain led to a 

reduction of delay discounting for future rewards. Although physiological arousal 

induced by the pain stimulus was minimal, pain that increased subjective stress ratings 

produced reductions in impulsive decision-making on a monetary intertemporal choice 

task. 
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APPENDIX 

Figure 1 | Timeline of the experiment. 
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Figure 2 | Comparison of DDQ values between the control and pain groups at baseline 

and after group manipulations. Paired samples t-test revealed a significant increase in 

DDQ values from baseline to after stimulation in the pain group. Mean ± SEM. * = p < 

.05. 
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Figure 3 | Comparison of pain ratings between the control and pain groups during the 

stimulation period. Mean ± SEM. * = p < .05. 
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Figure 4 | Comparison of SAM ratings between the control and pain groups during the 

stimulation period. Mean ± SEM. * = p < .05. 
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Figure 5 | Comparison of physiological activity between the control and pain groups 

during the stimulation period. Mean ± SEM. * = p < .05. 
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Table 1 | Comparison of pain ratings between the control and pain groups. 

The pain group experienced significantly greater pain intensity and unpleasantness than 

the control group during each minute of the stimulation period. * = p < .05 
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Table 2 | Comparison of SAM ratings between the control and pain groups. 

The pain group reported significantly lower valence and greater arousal than the control 

group within the first two minutes of the stimulation period. The pain group also 

experienced less dominance, or less control, than the control group, beginning at minute 

6. SAM = self-assessment manikin; * = p < .05 
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Table 3 | Comparison of physiological responses between the control and pain groups. 

After adjustment for baseline physiological covariates, comparisons of autonomic 

activity between the two groups during the stimulation period lacked clear distinction for 

heart rate and skin conductance level means. HR = heart rate; SCL = skin conductance 

level; * = p < .05 

 
 




