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ABSTRACT

Space proximity missions essentially need on the ground hardware in the loop

(HIL) testing of sensors, algorithms, and actuators. Such testing would surpass

that of software only simulations and would mature hardware and software to vastly

reduce risk of close proximity operations. Simulation of interaction dynamics in

proximity operations is very difficult. An active pendulum system can be used to

simulate these important contact dynamics. The pendulum system can be com-

manded to track trajectories which represent plausible contact dynamic motions.

The pendulum system can also be used to investigate unknown contact dynamics.

With an external robot to simulate spacecraft motion, a payload on the gantry sys-

tem can be subjected to contact forces. The pendulum system actively moves the

payload to simulate planar space-like contact dynamics throughout and after the

interaction. This thesis develops high fidelity and first principle based controllers to

allow for simulation of both prescribed and unknown planar contact dynamics. A

linear quadratic integral controller is designed for trajectory tracking. This controller

is compared with a nonlinear trajectory tracking controller developed using partial

feedback linearization. To simulate unknown contact dynamics a controller is de-

veloped using uncollocated partial feedback linearization. The three controllers are

analyzed and compared using several test cases in software simulation. The nonlinear

trajectory tracking controller is shown to outperform the linear controller. Simula-

tion results also indicate that the unknown contact dynamics controller outperforms

the trajectory tracking controllers in the neighborhood surrounding interactions.
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CHAPTER I

INTRODUCTION

With the growing space object population, space proximity operations will be

increasingly common. There are over 20,000 pieces of orbital debris larger than

softball size currently orbiting the earth. Some studies indicate that the current

debris population will continue to grow unbounded unless action is taken to reduce

the population [2,3]. A NASA study shows that by annually removing a small number

of large objects from orbit, we can reduce the debris population so the collision risk

due to debris can be greatly reduced [4]. Apart from orbital debris removal, other

uncooperative missions include docking for repair of a spacecraft, while cooperative

proximity operations could also include satellite refueling or payload transfer.

Proximity missions essentially need on the ground hardware in the loop (HIL)

testing of sensors, algorithms, and actuators. Such testing would surpass that of

software only simulations and would mature hardware and software to vastly reduce

risk of close proximity operations. To help answer this need, several systems have

been developed in industry, academia, and government labs. Lockheed Martin has

developed a testbed in their Space Operations Simulation Center which allows for

HIL proximity operations testing [5]. The Lockheed system allows for full scale

simulation using robotic assemblies which provide both vertical and planar actuation.

The vehicle dynamics are simulated in software and the hardware is commanded

to follow a calculated trajectory. Likewise, the Naval Research Laboratory has a

frequently used facility where proximity operations using either research prototypes
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or flight hardware can be tested [6]. The Jet Propulsion Lab also has a similar test

facility [7].

Analytical modeling of contact dynamics between space objects is very difficult.

If the interaction force history is known, a reference trajectory for robot tracking

could be generated. Then the interaction could be simulated using existing testbeds.

However in cases where the contact forces are unknown, the aforementioned testbeds

are no longer suitable.

In [8] Probe designs and builds an active pendulum system which can be used

to simulate contact dynamics. Importantly, not only can such a pendulum system

can be used to track reference trajectories as in prior testbeds, but can also be used

to simulate interactions with unknown contact dynamics. Simulations of unknown

contact dynamics do not prescribe interaction behavior but rather create conditions

in which interaction behavior can be observed. This eliminates the requirement of

complex interaction modeling for the HIL simulation.

Probe’s work introduced the use an active pendulum system for contact dynam-

ics testing [8], [9]. NASA Johnson Space Center prior developed a gravity offload

system based around a gantry crane [10]. This system is used to provide humans

attached to the pendulum a simulation of the space environment. The NASA sys-

tem relies on the same principles developed in section IV.A. More recently, Hockman

developed a similar gravity offload testbed for micro-robot testing [11].

Controller design is made challenging because the system dynamics are both

nonlinear and underactuated. The tracking problem for the active pendulum sys-

tem has long been studied. Kumar [12] develops optimal control to track pendulum
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trajectories. Omar develops robust gantry crane controllers in [13]. In [14] Wang

develops sliding mode based trajectory tracking controllers. Partial feedback lin-

earization based controllers are developed by several authors [15], [16], [17].

While simulating unknown contact dynamics, a payload on the gantry system

can be subjected to contact forces delivered from an external robot (e.g. [18, 19] ).

By regulating the pendulum angle and angular rate, the dynamics keep the body

mass center in a horizontal plane and the in-plane acceleration is very nearly due

to only the external force (pendulum dynamics rendered negligible). The control

methodology holds valid for both sustained or impulsive contact. Because the body

is very nearly suspended by it’s mass center, the rotational dynamics have near

negligible suspension system torques. The rotational dynamics are dominated by

the external torques due to the contact induced torques.

The research in this thesis improves upon Probe’s results [8] by developing higher

fidelity and improved first principle based controllers to allow for simulation of both

prescribed and unknown interaction dynamics. The work is structured as follows.

High fidelity planar dynamics are derived using first principles. The system is lin-

earized and a linear quadratic integral trajectory tracking controller is designed. A

nonlinear trajectory tracking controller is designed using collocated feedback lin-

earization. A novel application of partial feedback linearization is used to develop

a controller to simulate unknown contact dynamics. The controllers are analyzed

and compared using software simulation. A brief discussion of hardware difficulties

is presented.
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CHAPTER II

SYSTEM DYNAMICS

In this chapter a high fidelity system model is created. The dynamics for the cart

pole system are found. The actuator dynamics are derived using a motor model. The

motor dynamics are inserted into the cart pole dynamics to construct a full system

model.

II.A. Cart Pole System

The dynamics for the cart pole system are found using the Lagrangian approach.

As shown in Figure II.1 the system is modeled as a generalized pendulum [20] hanging

from a cart. In the diagram, the variables are defined as follows: mc is cart mass, mp

is pendulum mass, Fm is motor force on cart, Jpend is moment of inertia of pendulum,

x is horizontal position state, θ is angle state, Fd is disturbance force caused through

contact.

The position vectors for the cart and pendulum are shown in equations 2.1 and

2.2. Lcom is the distance from the cart to the center of mass of the pendulum. The

kinetic energy of each body can be seen in equations 2.3 and 2.4. Equation 2.5 shows

the Lagrangian which is formulated using the potential energy and kinetic energy.

pcart =

[
x 0

]T
(2.1)
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Figure II.1. System model

ppend =

[
(x+ Lcom sin θ) (−Lcom cos θ)

]T
(2.2)

Tcart =
1

2
mcẋ

2 (2.3)

Tpend =
1

2
mp[ẋ

2 + L2
comθ̇

2 + 2ẋLcomθ̇ cos θ] +
1

2
Jpendθ̇

2 (2.4)

(2.5)
L = T − V

=
1

2
ẋ2(mc +mp) +

1

2
θ̇2(mpL

2
com + Jpend) +mpLcom cos θẋθ̇ +mpgLcom cos θ

The cart is acted on by the motor force only and experiences no torques. The

pendulum is torqued by the external contact disturbance Fd and is also acted on by

a damping torque. The generalized forces are shown in equations 2.6 and 2.7. The
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damping coefficient is given by dp, and Lpend is the total length of the pendulum.

Using Lagrange’s relation shown in equation 2.8, we find the cart-pole dynamics

shown in equations 2.9 and 2.10.

Qθ̇ = −dpθ̇ + Fd(Lpend − Lcom) (2.6)

Qẋ = Fm (2.7)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qq̇i , q = [θ, x] (2.8)

(mc +mp)
d2x

dt2
+ Lcom cos(θ)mp

d2θ

dt2
+ Lcom(− sin(θ))mp

(
dθ

dt

)2

= Fm (2.9)

(2.10)

d2θ

dt2
(
Jpend + L2

commp

)
+ gLcom sin(θ)mp + Lcom cos(θ)mp

d2x

dt2

= Fd cos(θ) (Lpend − Lcom)− dp
dθ

dt

II.B. Motor Model

The motor model is derived using the procedure described by Ogata in [21]. As

shown in Figure II.2 the standard model consists of an RL circuit. The variables are

defined as follows: L is the motor inductance, Ra is the internal motor resistance, Va

is the applied voltage, Vm is the voltage across the motor, Jm is the motor inertia.

The differential equation is shown in equation 2.11.

L
dia
dt

+Raia + Vm = Va (2.11)
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Figure II.2. Motor model [1]

The input voltage Va can be written as a control signal ev multiplied by a gain

K1. Using this relation and the motor back emf constant K3, we rewrite equation

2.11 as shown in equation 2.12. Applying a laplace transform and using the motor

torque constant K2 to relate current to torque, we find the total torque as shown in

equation 2.13. By regarding the inductance as small and negligible the motor model

can be reduced from third order to second order (see equation 2.14).

L
dia
dt

+Raia +K3
dφ

dt
= K1ev (2.12)

Tnet(s) =
K2K1ev −K2K3φ(s)

Las+Ra

(2.13)
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Tnet(s) =
K2K1ev −K2K3φ(s)

Ra

(2.14)

The net torque is the sum of the torques required to drive the pendulum, all

actuator components (belt, pulleys), and motor itself [22, 23]. This is shown in

equation 2.15. We rewrite the torque expression to include any gearbox, and convert

the motor rotation variable to the linear position of the cart, the result of which is

shown in equation 2.16. Constants are as follows: N2 is an actuator parameter for

converting rotations to linear translation (radians to meters), db damping constant

on belt, mbelt mass of belt, Rp radius of pulley in actuator, Jpulley pulley inertia, N1

gearbox ratio (external/internal).

Tnet = Tpendsys + Tpulleys + Tbelt + Tfriction + Tmotor (2.15)

Tnet =
1

N1

[RFm +N2ẍ(2Jpulley +mbeltR
2 + Jmotor) + dbẋN2] (2.16)

Substituting the final torque expression in equation 2.14 into equation 2.16 we

solve for the force on the pendulum system. Equation 2.17 describes the force on the

pendulum system for a given motor input based on actuator and motor characteris-

tics.

(2.17)
N2Radb

dx

dt
+N2RambeltR

2
p

d2x

dt2
+N2RaJmotor

d2x

dt2

+ 2N2RaJpulley
d2x

dt2
− k1k2N1ev + k2k3N2N

2
1

dx

dt
= −(RaRp)Fm

8



II.C. Combined System Model

Inserting equation 2.17 into equation 2.9 we can eliminate Fm. Together with

equation 2.10 we have a full system description. The combined dynamics can be

written in standard form [24] as shown in equations 2.19, 2.18. The h1, h2 expres-

sions are functions of the generalized coordinates and their derivatives, while the φ

expression is a function of the coordinates only. This form separates the actuated

state from the unactuated state. The various coefficients are defined in equations

2.20 through 2.27.

d11
d2θ

dt2
+ d12

d2x

dt2
+ h1 + φ1 + dfFd = 0 (2.18)

d21
d2θ

dt2
+ d22

d2x

dt2
+ h2 = ev (2.19)

df = Lcom − Lpend (2.20)

d21 =
RaLcom cos(θ)mpRp

k1k2N1

(2.21)

d22 =
RaRp

(
N2mbeltRp +mc + N2Jmotor

Rp
+

2N2Jpulley
Rp

+mp

)
k1k2N1

(2.22)

h2 =
RaRp

dx
dt

(
k2k3N2N2

1

RaRp
+ N2db

Rp

)
k1k2N1

−
RaLcom sin(θ)mpRp

(
dθ
dt

)2
k1k2N1

(2.23)

d11 = Jpend + L2
commp (2.24)
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d12 = Lcom cos(θ)mp (2.25)

h1 = dp
dθ

dt
(2.26)

φ1 = gLcom sin(θ)mp (2.27)

The system model uses parameters measured from the hardware system imple-

mented in the Land Air and Space Robotics (LASR) Lab at Texas A&M Univer-

sity [8,25]. Substituting constants derived for our model we find the final full system

dynamics as shown in equations 2.28 and 2.29.

(2.28)

−0.173246Fd + cos(θ)
(

3.2823ev + sin(θ)
(
dθ
dt

)2 − 156.483dx
dt

)
cos2(θ)− 2.63529

+
8.61577 sin(θ) + 0.0103131dθ

dt

cos2(θ)− 2.63529
=
d2θ

dt2

(2.29)

602.471Fd cos(θ)− 30080.1ev − 29961.7 sin(θ) cos(θ)

3054.2 cos2(θ)− 8048.69

+
−9164.33 sin(θ)

(
dθ
dt

)2 − 35.8644 cos(θ)dθ
dt

+ 1.43406× 106 dx
dt

3054.2 cos2(θ)− 8048.69
=
d2x

dt2

Equilibrium points of the system are shown in Equation 2.30.

x = rεR

θ = kπ

dx

dt
= 0

dθ

dt
= 0

(2.30)
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II.D. Linearization

Using equations 2.28 and 2.29 we linearize about the equilibrium at the origin.

The linearized system is shown in equation 2.31. The system is controllable, with

eigenvalues listed in equation 2.32. Because of the eigenvalue at the origin, we are

not able to make claims about the stability of the full nonlinear system by linear

analysis [26].

(2.31)



θ̇

θ̈

ẋ

ẍ


=



0 1 0 0

−5.26866 −0.00630662 0 95.6912

0 0 0 1

5.99895 0.00718079 0 −287.128





θ

θ̇

x

ẋ



+



0

−2.00717

0

6.02264


ev +



0

0.105942

0

−0.120627


Fd

λ1 = −5.438 ∗ 10−3 + 1.808j

λ2 = −5.438 ∗ 10−3 + 1.808j

λ3 = 0

λ4 = −2.871 ∗ 102

(2.32)
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CHAPTER III

TRAJECTORY CONTROL

In this chapter we develop controllers to track pendulum reference trajectories.

In this mode of operation, the desired dynamics are predetermined and the testbed

is not used to learn about new motions. The prescribed motions can be used to

test actuators, sensors, and algorithms. Reference trajectories may be either theo-

retically constructed or based on data captured from real scenarios. As seen in this

chapter, the system structure (e.g. underactuated, nonlinear) makes it very diffi-

cult to achieve full trajectory tracking of reference pendulum trajectories. We have

however been able to generate approximate tracking of desired trajectories using two

separate control schemes.

III.A. Linear Quadratic Integral Control

Using the linearized system as described by equation 2.31 we can derive an

optimal linear control. Linear quadratic regulator type control generates propor-

tional gains. Because we expect to track nonzero reference trajectories, to achieve

zero steady state error in tracking integral control is needed. Hence an appropriate

formulation is that of linear quadratic integral (LQI) control.

We follow the derivation as presented in [27]. Given a standard linear system

as shown in equation 3.1 we can optimize the performance index shown in 3.2. Qy

and R are symmetric positive definite, r is a reference trajectory, v = u̇. Compared

with a standard quadratic cost function we do not penalize control effort, yet instead
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penalize changes in the control effort.

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t)

(3.1)

J =

∫ ∞
0

[y(t)− r]TQy[y(t)− r] + vT (t)Rv(t)dt (3.2)

Defining the error vector shown in equation 3.3 we can create the new state

vector shown in equation 3.4. The new error dynamics are written in equation 3.5.

e = y − r (3.3)

x̃ = [eT , (
dx

dt
)T ]T (3.4)

(3.5)
dx̃(t)

dt
=

0 C

0 A

 x̃(t) +

 0

B

 v(t)

= Ãx̃(t) + B̃v(t)

Using the new state the performance index is rewritten as shown in equation 3.6.

This performance index matches the form of a standard linear quadratic optimization

performance index. Hence we can use the same solution methods for this formulation

as is used in the linear quadratic problem.

J =

∫ ∞
0

x̃T (t)

Qy 0

0 0

 x̃(t) + vT (t)Rv(t)dt (3.6)
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As described in [27], the requirements for the Ricatti equation to have a sta-

tionary positive definite solution are the three conditions listed below.

1. Plant is controllable and observable

2. A is nonsingular

3. CA−1B is nonsingular

Because the A matrix in our system is rank-deficient, the necessary conditions

are not satisfied. While the position state is needed to fully describe the system,

for the control development its removal will allow us to rewrite the system so the

necessary conditions are satisfied. Removal of this state will make it so that we

cannot track a reference position trajectory of the pendulum. However we can still

track the velocity of the body, a reference shown in equation 3.7.

vref = ẋ+ Lpend cos θθ̇ (3.7)

After omitting x, the new system is shown in equation 3.8. Each of the necessary

conditions is satisfied. By using the small angle approximation on equation 3.7, the

linear reference shown in equation 3.9 can be generated. We now are able to solve

the optimization using standard linear quadratic solution methods.

(3.8)


θ̇

θ̈

ẍ

 =


0 1 0

−5.26866 −0.00630662 95.6912

5.99895 0.00718079 −287.128




θ

θ̇

ẋ

+


0

−2.00717

6.02264

 ev
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y =

[
0 Lpend 1

]

θ

θ̇

ẋ

 = Cx̂ (3.9)

The solution to the optimization is of the form shown in equation 3.10. We solve

the optimization using Qy = 105 and find gains shown in equation 3.11.

(3.10)ev(t) = Ke

∫ t

0

[r − y(t)]Tdτ −Kxx̂(t)

= Ke(xref − x− Lpendθ)−Kxx̂(t)

Klqi =

[
Ke Kx

]
=

[
316.2278 −839.0478 567.7563 190.0687

]
(3.11)

III.B. Partial Feedback Linearization

The controller derived in section III.A is limited in that it only drives velocity

error to zero. Additionally the integral term slows controller response. For these

reasons, in this section we develop an improved trajectory tracking controller using

nonlinear control. By examining the dynamics shown in equations 2.18, 2.19 we see

that the system is underactuated. In our n = 2 degree of freedom system, there are

m = 1 actuated degrees of freedom and l = 1 unactuated degrees of freedom. Our

goal is to track a reference trajectory for the pendulum position.

Partial feedback linearization techniques have long been useful to linearize ac-

tuated states in a dynamical system [24]. As outlined by Tedrake in [28] we can

also attempt to linearize an output which is a function of active and passive joints.
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However, referring to equation 2.2 we see that the position is a function of two gen-

eralized states. With only one control we are unable to linearize a trajectory which

is a function of more generalized states than available controls [29].

Instead, we can linearize the actuated state x and command the trajectory to

that state. This neglects the dynamics of the unactuated state θ. To help mitigate

undesirable internal dynamics, as developed in [16,17] we can add uncollocated terms

to our desired linear dynamics.

To develop the linearizing control, we follow the derivation as presented by Spong

in [24]. Beginning from the standard underactuated form presented in Chapter II,

with the disturbance force set to zero we solve equation 2.18 for θ̈. The result of this

is shown in equation 3.12. Substituting equation 3.12 into equation 2.19 results in

equation 3.13, the terms of which are defined in equation 3.14.

θ̈ = −d−111 (d12ẍ+ h1 + φ1) (3.12)

d̄22ẍ+ h̄2 + φ̄2 = ev (3.13)

(3.14)

d̄22 = d22 − d21d−111 d12

h̄2 = h2 − d21d−111 h1

φ̄2 = −d21d−111 φ1

d̄22 is symmetric positive definite by construction [24]. By choosing the control

shown in equation 3.15, the resulting system dynamics are shown in equations 3.16,

3.17. x is linearized, with θ dynamics remaining nonlinear.

16



ev = d̄22ν2 + h̄2 + φ̄2 (3.15)

d11θ̈ + h1 + φ1 = −d12ν2 (3.16)

ẍ = ν2 (3.17)

To track a reference trajectory, we choose ν2 as shown in equation 3.18. By

introducing new states as shown in equation 3.19, the full system dynamics can be

rewritten. These dynamics are shown in equations 3.20, 3.21, 3.22, 3.23.

ν2 = ẍref + kd(ẋref − ẋ) + kp(xref − x) (3.18)

(3.19)

z1 = x− xref

z2 = ẋ− ẋref

η1 = θ

η2 = θ̇

ż1 = z2 (3.20)

ż2 = −kpz1 − kdz2 (3.21)

η̇1 = η2 (3.22)

17



η̇2 = −d−111 (h1 + φ1)− d−111 d12(ẍref − kpz1 − kdz2) (3.23)

Setting z to zero, the zero dynamics of the system can be analyzed. As done in [17], a

θ̇ term can be added to ν2 for damping to the internal dynamics. With this included,

the expression for ν2 is shown in equation 3.24. The total control for our system

model parameters is shown in equation 3.25.

ν2 = ẍref + kd(ẋref − ẋ) + kp(xref − x)− kθθ̇ (3.24)

(3.25)ev = ν2
(
0.267576 − 0.101536 cos2 θ

)
− 0.996065 sin θ cos θ

− 0.304665 sin θθ̇2 − 0.0011923 cos(θ)θ̇ + 47.6747ẋ

To analyze system stability, we use the approach presented in [16]. First we find

the internal dynamics and linearize about the origin. We insert the ν2 expression

from equation 3.24 into equation 3.16. Expanding all terms and setting x and xref

and their derivatives to zero results in the zero dynamics shown in 3.26.

θ̇ (Lcom cos(θ)kθmp − dp)
Jc + L2

commp

− gLcom sin(θ)mp

Jc + L2
commp

= θ̈ (3.26)

Linearizing the zero dynamics about the equilibrium point of the origin, we find

the resulting linear system shown in equation 3.27.

(3.27)

θ̇
θ̈

 =

 0 1

− gLcommp
Jc+L2

commp

kθLcommp−dp
Jc+L2

commp


θ
θ̇


=

 0 1

A21 A22


θ
θ̇
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The eigenvalues of the system can be found as shown in equation 3.28. There are

two scenarios in which the system is hurwitz. The first case is with two negative real

eigenvalues, and the second case is with two complex eigenvalues with negative real

parts. The requirement on kθ for the system to have two complex stable eigenvalues

is shown in equation 3.29. Conditions 3.30, 3.31 must be satisfied for the system to

have two stable real eigenvalues.

λ1,2 = −A22

2
± (A2

22 + 4A21)
1
2

2
(3.28)

dpmp

Lcom

< kθ <

(Jc + L2
commp)

(
2Lcomdpmp
Jc+L2

commp
+

4
√
gL

3/2
comm

3/2
p√

Jc+L2
commp

)
2L2

comm
2
p

(3.29)

(3.30)kθ >

(Jc + L2
commp)

(
2Lcomdpmp
Jc+L2

commp
+

4
√
gL

3/2
comm

3/2
p√

Jc+L2
commp

)
2L2

comm
2
p

(3.31)
dp − kθLcommp

2Jc + 2L2
commp

< −0.5

(
(dp − kθLcommp)

2 − 4gLcommp (Jc + L2
commp)

(Jc + L2
commp) 2

)
0.5

In either of the two cases the zero dynamics are strictly stable, hence by Lya-

punov’s linearization method [26] the origin is asymptotically stable (in the full non-

linear system). Because the zero dynamics are asymptotically stable at the origin,

we say that the system is minimum phase.
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CHAPTER IV

ANGLE REGULATION CONTROL

In this chapter we discuss a method to simulate contact dynamics interactions

without prescribing motion through predetermined trajectories. The controller cre-

ates conditions necessary for the body dynamics to be affected only by contact forces

and torques. This chapter develops the methodology used for this type of simulation

and presents a nonlinear controller which creates the desired system response.

IV.A. Methodology

Using equation 2.10 we can inspect the effect of the contact force on the system.

As shown in equation 4.1, we regard θ as a small constant ε. Applying the small

angle approximation to 2.10, the resulting dynamics are shown in equation ??

θ = ε0 + ε→ θ = ε (4.1)

(4.2)
gLcomεmp + Lcommpẍ

Lpend − Lcom
= Fd

This development shows that for small angles, the x dynamics are only a func-

tion of the contact force. If the angle in the pendulum is regulated and the pendulum

dynamics effectively removed, the body will remain in the plane with a planar accel-

eration being proportional to the input contact forces. This enables a realistic simu-

lation of unknown contact dynamics to occur as expected from Newtonian physics.

By regulating the angular dynamics, we can simulate unknown contact dynamics.
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As shown in equation 4.3, by setting ẍ = 0 we see there is a residual term from

the pendulum dynamics. These dynamics create a deadband in which force inputs do

not result in body motion. Robot interactions should be planned with knowledge of

this deadband, and consequently any accelerations in the body must be interpreted

using this relation.

(4.3)
Fdmin =

gLcomεmp + Lcommpẍ

Lpend − Lcom
|ẍ=0

=
gLcomεmp

Lpend − Lcom

In our simulations, a bias term is added to all forces delivered to the pendulum

so as to avoid the deadband region. The magnitude of the small angle used in our

simulation corresponds to a single encoder count. As shown in equation 4.4, the sign

of epsilon should match the direction in which force is applied. These details are

handled externally by the planning engine running the robot delivering the contact

forces.

ε = sgn(Fd)εmag, εmag > 0 (4.4)

IV.B. Uncollocated Partial Feedback Linearization

To control and regulate the angular dynamics we use an extension of the previ-

ously presented partial feedback linearization [24]. The angular states are unactuated

and not directly controlled. Spong shows that if certain coupling conditions are sat-

isfied, the unactuated states can be successfully linearized. This uncollocated partial

feedback linearization uses integral backstepping to construct a linearizing control
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for the unactuated states.

We start from the system shown in equations 3.16, 3.17. The condition shown in

equation 4.5 is necessary for what Spong calls strong inertial coupling. This inertial

coupling is explained as an analog of controllability for use of the backstepping

method. Examining equation 2.25 we see this strong intertial coupling requirement

for our system is satisfied within our operating range in which θ � π
2
.

rank(d12(θ, x)) = l = 1,∀(θ, x) (4.5)

Because the strong inertial coupling requirement is satisfied and d12 is scalar,

we can compute the pseudoinverse of d12 as in equation 4.6. Using this inverse, ν2 is

found as shown in equation 4.7.

d†12 = dT12(d12d
T
12)
−1 = d−112 (4.6)

ν2 = −d−112 (d11ν1 + h1 + φ1) (4.7)

With this choice of ν2 the resulting system is as shown in equations 4.8, 4.9. The

corresponding input is shown in equation 4.10, with coefficients defined in equation

4.11.

θ̈ = ν1 (4.8)

d12ẍ+ h1 + φ1 = −d11ν1 (4.9)
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ev = d̄21ν1 + h̄2 + φ̄2 (4.10)

(4.11)

d̄22 = d21 − d22d−112 d11

h̄2 = h2 − d22d−112 h1

φ̄2 = −d22d−112 φ1

Because in this case we are only regulating the angular state, linearization alone

is adequate and the control does not need to be formulated as a tracking problem.

The control input for our system is shown in equation 4.12 with ν1 chosen as shown

in equation 4.13.

(4.12)ev = 0.304665ν1 cos θ − 0.802879ν1 sec θ − 2.62492 tan θ

− 0.304665 sin θθ̇2 − 0.00314205 sec θθ̇ + 47.6747ẋ

(4.13)ν1 = −kdθ̇ − kpθ
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CHAPTER V

SIMULATION

In this chapter the simulation structure is described and the controllers devel-

oped in chapters III and IV are tested.

V.A. Simulation Structure

The simulations are based on the three contact force cases shown in Figure V.1.

The goal body trajectories for each of these test cases are derived using equation 4.2.

Using this relation, the bias term is subtracted from the input force to determine the

expected goal x dynamics. These reference dynamics are shown in figure V.2.
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Figure V.1. Contact force time history for each test case
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Figure V.2. Reference dynamics for each test case

The simulation consists of three main substructures: dynamics, measurements,

controller. Each of these areas has been implemented as separate a function in

Matlab. The full nonlinear dynamics are propagated at a rate equal to the fastest

measurements (100 Hz). The truth dynamics are input to a measurement model to

simulate noisy sensor readings.

Angular measurement is simulated as being recorded from a 10, 000 count en-

coder to which is discretization error is added. To smooth the data, the measurements

are inserted into an α filter, the model of which is shown in equation 5.1. The angular

rate is simulated as measured from a gyroscope with appropriate white noise added.

The noisy measurement is passed through a first order low pass filter filter.
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θ̂k = θ̂k−1 + h ˆ̇θk−1

r = θ̃ − θ̂k

θ̂k = θ̂k + αr

(5.1)

While the angular rate and angle are measured at 100 Hz, the position mea-

surements are recorded at 50 Hz from encoders on board the motor. These encoders

are at a much lower resolution with only 2000 counts per revolution. The position

measurements are taken directly from encoder reading without smoothing or filter-

ing. The velocity is not measured directly but is estimated by the finite difference

method on the position measurements. A first order low pass filter is applied to the

output to reduce the frequency content [30].

V.B. Trajectory Control Results

The trajectory tracking errors of all three force cases are shown in figures V.3,

V.4. The peak errors are shown in table V.1. Examining the LQI performance, we

note from the position plot that in test cases 1 and 3 there is a large steady state

error which does not appear to be converging to zero. This behavior is not surprising

as we removed the position state from the tracking formulation and instead are only

tracking velocity.

Looking to figure V.4 as expected we see that the LQI velocity errors converge

to zero for test cases 1 and 3. However for test case 2 the errors do not converge

to zero. This is the only test case which is sinusoidal and the reference does not

stabilize to a fixed value over time. It appears there is a phase offset due to the delay
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Figure V.3. Position trajectory tracking error for each test case

introduced by the integrator.

The LQI velocity errors converge rapidly to zero in test cases 1 and 3 after the

reference stabilizes, yet error increases when the setpoint changes. This response

in velocity can be further tuned by adjusting the weighting matrix in optimization.

Based on the velocity results, the controller appears to be performing as designed.

Examining figure V.3 and focusing now on the PFL performance, we see that

there is converging position error in test cases 1 and 3. The initial behavior is subject

to some disturbance, but this is expected as we are not regulating angular states

directly. Performance in test case 2 is very similar in error to the LQI controller.

The velocity results in figure V.4 show converging velocity error for cases 1

and 3. However, in comparing to the zero steady state velocity error with the LQI

controller, the PFL controller has noticeable perturbations from zero error.
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controller max position error (m) max velocity error (m/s)

LQI Case 1 0.0753 0.0262

PFL Case 1 0.0188 0.0238

LQI Case 2 0.0390 0.0244

PFL Case 2 0.0185 0.0248

LQI Case 3 0.0365 0.0239

PFL Case 3 0.0126 0.0283

Table V.1. Peak trajectory tracking controller errors
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Figure V.4. Velocity trajectory tracking error for each test case

The PFL response can be explained by recalling equation 3.24 and inspecting

figure V.5. The only angular regulation is in the form of the damping term θ̇ in

ν2. As seen in figure V.5, for each test case, especially in case 3, there is a large
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Figure V.5. θ response for PFL controller

jump in angular rate. These perturbations in angular dynamics are the source of the

oscillations in trajectory error for the PFL controller. We see the trajectory error

disturbances do eventually stabilize. This controlled stabilization through feedback

is preferred to relying on the natural system damping to remove angular oscillations.

The control efforts of each controller are shown in figure V.6. The oscillations

introduced by θ̇ are visible in the PFL based control. Both control outputs are

bounded and within the range of acceptable motor inputs.

V.C. Angle Regulation Control Results

The results of simulating the PFL angle regulation controller are shown in figures

V.7, V.8. The peak errors are shown in table V.2. The errors are smallest in case

2 where there is a large sustained contact. The errors are largest when there are
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Figure V.6. Control effort for trajectory controllers

multiple perturbations as in case 3.

Comparing the results to the tracking controller results in the previous chapter,

the velocity errors in this new controller are significantly lower. In cases 1 and 2 the

errors are one order of magnitude reduced. However, the position errors are larger in

all cases but case 2. The position errors are especially large in case 3 where multiple

impacts are simulated.

test case max position error (m) max velocity error (m/s)

1 0.0220 0.0041

2 0.0046 0.0053

3 0.0411 0.0106

Table V.2. Peak angle regulator controller errors
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Figure V.7. Position trajectory error for angle regulation controller

In this control scheme there is no specification of desired behavior. When there

is a force, regulating the angular dynamics is sufficient to create resultant motion

in the body as approximated by equation 4.2. Once the contact forces are removed,

the controller only continues to regulate the angular dynamics. Over time, any small

velocity errors when compared to the goal velocity will not be zeroed, but will remain

constant in the absence of further perturbations. As shown in figure V.8 the velocity

errors in cases 1 and 3 are not centered around zero, but are nonzero and near

constant in the absence of further perturbation. Over time the tiny errors in velocity

compound to growing error in position.

In case 2 the body is always subject to a contact force imparting an acceleration

and there is no accumulation of position error. During contact the velocity error

oscillates around zero, thereby ensuring against buildup of position error. Examining
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Figure V.8. Velocity trajectory error for angle regulation controller

the early period of case 1 while contact is occurring, we see similar behavior in that

the error is very small in the neighborhood of the interaction. From this we conclude

that the angle regulation controller is very successful in simulating contact dynamics

during interactions and in the neighborhood after interactions. Post interaction,

position error compounds over time due to the presence of small velocity error.

Figure V.9 shows the angular states for the PFL regulation controller in all the

test cases. The angles are regulated to one encoder tick, and the rates are quickly

regulated as well. The control effort is shown in figure V.10. The voltage command

is within specification and there is no jitter or undesired oscillation.

32



0 1 2 3 4 5 6 7 8 9 10
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
PFL Theta v. Time

Time (s)

T
h
e
ta

 (
d
e
g
)

 

 

Case 1

Case 2

Case 3

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

0.3
PFL Thetad v. Time

Time (s)

T
h
e
ta

d
 (

d
e
g
/s

)

 

 

Case 1

Case 2

Case 3

Figure V.9. Angular states for angle regulation controller
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Figure V.10. Control effort for angle regulation controller
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CHAPTER VI

CONSIDERATIONS FOR HARDWARE IMPLEMENTATION

Attempts were made to incorporate the simulated controllers into the upgraded

hardware developed in [25]. In this section, we will outline reasons why this effort

was unsuccessful and suggest modifications to the hardware which will likely yield

better results.

The primary cause of controller failure was due to the unmodeled dynamics

present in the system. Although great care was taken into determining the pendulum

moment of inertia, and center of mass, the rigid body assumption did not hold in

the real hardware. The carbon fiber rod which makes up most of the length of the

pendulum is nonrigid and fast acceleration of the cart causes low frequency vibration

modes in the rod.

This can be demonstrated in an experiment conducted in the hardware. As

shown in figure VI.1 a constant input is applied to the motors for a short time,

followed by a sudden zero input to the motors. As shown in figure VI.2, while there

is an initial oscillation in angle due to the motion starting from rest, when the control

signal goes to zero a high frequency component in introduced in the angular states.

Using the fourier transform we can analyze the frequency content of the angular

rate as shown in figure VI.3. The pendulum natural frequency corresponds to the

spike at 0.2 Hz, while the remaining frequency content is due to vibration. Finite

impulse response lower pass filters were designed for the angular rate measurements,

however the delay introduced significantly slowed control response.
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Figure VI.1. Control signal in hardware experiment

Instead of processing the data to fit our expected system response, it makes

more sense to either redesign the system to better match the rigid body assumption,

or to develop controllers based around a flexible system. In addition to reducing

the vibrations in the pendulum, other concerns such as slop in the joints must be

addressed. Even if the flexible modes cannot be mitigated through hardware redesign,

the hardware in its current state needs improvement.
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CHAPTER VII

CONCLUSION

Proximity operations and contact dynamics simulations typically prescribe tra-

jectories for vehicle motion. While this is valuable, simulating unknown interactions

is important and allows for insights into algorithm and sensor performance that can

be neglected by tracking predefined trajectories. This thesis developed controllers

for both trajectory tracking simulations and for simulations of unknown contact dy-

namics.

The work done in this thesis shows that the angle regulation controller is a

very good method to simulate unknown contact interactions. Performance during

and in the neighborhood of interactions outperforms trajectory tracking. The perfor-

mance of the trajectory tracking controllers was acceptable. The nonlinear trajectory

tracking controller outperformed the linear controller when comparing peak errors.

Tracking using a fully actuated robot or robots could likely produce better results

than the trajectory tracking controllers presented here.

The failure of the controllers in hardware opens up several directions for future

work. If the hardware can be designed and implemented to better match the rigid

body assumptions in this thesis, then the controls developed here would likely per-

form better in hardware. The other approach would would be to explore controllers

based around a flexible body model. The work done by Olfati-Saber in the control

of underactuated flexible end effectors would be a good starting point for such ef-

forts [31]. Regardless of the redesign, the gantry crane system has been shown to be
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a useful tool for both prescribed and unknown contact dynamics simulations.
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