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ABSTRACT 

 

Field crickets in the genus Gryllus are wing polymorphic and have been used for 

many years as a model for trade-offs between dispersal and reproduction.  There are two 

main morphs of adult crickets.  The first has long hindwings but small ovaries and is 

capable of flight while the other has short hindwings and cannot fly but has much larger 

ovaries and therefore higher reproduction.  This trade-off is well studied in adult crickets 

but very little work of any sort has been done with the nymphs.  Previous studies have 

shown that the morph the nymphs will become is influenced by their genetics as well as 

environmental cues such as population density.  The experiments in this thesis examine 

how the nymphs regulate their protein and carbohydrate intake and the extent to which 

food protein and carbohydrate content influences wing morph determination.  Two 

experiments, using three cricket lines, were used. Two of these lines were selected to 

produce either long winged or short winged individuals; the third line was unselected 

and representative of field populations.  First a choice experiment was conducted to 

determine the protein:carbohydrate (P:C) ratio nymphs from the different lines self-

selected.  The second experiment was a no-choice experiment that tested how the 

nymphs from the different lines regulated their protein-carbohydrate intake when they 

were restricted to a single diet as well as how those diets affected their performance and 

final wing morph.  The results from these experiments are compared to nutrient 

regulation strategies in the adults of each morph, and discussed within the context of 

how food protein-carbohydrate content influences wing morph determination. 
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CHAPTER I  

INTRODUCTION 

 

Many crickets in the genus Gryllus are wing polymorphic and exist as two main 

types either mixed in one population or separate populations of the two morphs.  These 

morphs are characterized by their wing length.  The first main morph is long winged 

(LW), these crickets have long hindwings and large wing muscles and so are capable of 

flight.  However, these wing muscles take a large amount of resources to maintain in the 

forms of both energy as well as protein.  These crickets, like all organisms, have finite 

resources available to them, so this leads to trade-offs between flight capability and other 

resource intensive processes such as reproduction.  LW crickets therefore have smaller 

ovaries and consequently much lower reproduction during their early adulthood than the 

other morphs of crickets (Zhao and Zera 2002).  In response to this trade-off, LW 

crickets histolize their wing muscles about a week after molting to adulthood which 

allows them to shift their efforts to reproduction instead of flight.  The other main morph 

is short winged (SW). It is characterized by hindwings that are too small to allow for 

flight, small wing muscles, and large ovaries.  Since these crickets don’t have large wing 

muscles to maintain they have higher rates of reproduction during early adulthood 

compared to LW crickets (Zera and Denno 1997, Zera and Larsen 2001).  Another 

possible benefit of not maintaining wing muscles is that SW crickets appear to be more 

stress tolerant than LW crickets (Zera 1994, Zera et al. 2009).  The trade-off between 

flight and reproduction has been well studied in these crickets for many years, however, 
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the exact influences that cause a particular cricket to become one morph or the other 

aren’t fully known.  Genetics are known to play a large role and lines of crickets can be 

selected to produce one morph or the other.    However, even after years of selection 

under controlled population densities these lines only produce 85-90% of the selected 

morph (Zera and Tiebel 1988, Zera and Harshman 2001, Zera and Larsen 2001, Zera 

2005). The remaining variation in wing morph is likely due to environmental influences. 

 Another potential source of environmental variation that could play a role in 

determining morph is the nutritional environment they experience as nymphs.  

Interestingly, adult female crickets of the two morphs have been shown to select 

significantly different ratios of protein to carbohydrates when offered diets that varied in 

their protein and carbohydrate content (Clark et al. 2013).  These two nutrients, and the 

ratio they occur in the diet, may have potential to influence the wing morph they 

become.  As summarized in Behmer (2009) all organisms need a suite of nutrients to 

grow and reproduce. Protein (for amino acids), lipids, and carbohydrates are required in 

large amounts.  Different organisms require different amounts/ratios of these nutrients, 

however, nutrients are never found in a pure form in nature and all foods consist of a 

mixture of different nutrients (Joern et al. 2012).  In order to achieve the highest rates of 

growth and reproduction organisms must be able to obtain these key nutrients in specific 

ratios, and they can do this by selectively eating from multiple different food sources.  

Many organisms are quite adept at assessing the nutrient content of their food and 

regulating the intake of these different nutrients accordingly (Behmer and Joern 2008, 

Roeder and Behmer 214). However, if they try to control the ratio of every nutrient in 
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their diet it would be impossible because foods with either the ideal ratio of nutrients for 

that organism or ones that are complementary to each other in their ratios of every 

nutrient don’t exist.  Because of this, organisms typically only regulate for a few major 

nutrients, such as the macronutrients.  They do this by selectively eating from among 

different foods (that contain varying ratios of key nutrients).  Many organisms are quite 

good at selecting the correct mixtures of foods that yield their preferred amounts of each 

nutrient and they have multiple methods for selecting their diets.  They can use both 

preingesitve and postingestive methods for their selections (Simpson and Raubenheimer 

2000).  Preingestive methods are ones that allow them to determine the nutrient content 

of their food before they eat it.  These methods include taste receptors that are able to 

detect particular nutrients such as amino acids or sugars and are able to be tuned to the 

current nutritional needs of the organism by becoming more sensitive when that nutrient 

is needed and less sensitive when it isn’t (Abisgold and Simpson 1988).  Postingestive 

methods are how organisms deal with excess nutrients that have already been eaten.  

These methods typically involve excreting the excess nutrients or storing them in the 

body for later use (Zanotto et al. 1993).  Postingesive methods are especially important 

because in nature certain nutrients are likely to be scarcer than others and so in order to 

obtain enough of a rarer nutrient it is likely that the organism will have to eat an excess 

of a more common nutrient. 

 In this paper the nutrient regulation of the cricket nymphs will be studied using 

the Geometric Framework.  As seen in Behmer (2009) this framework is a method for 

examining how an organism regulates one nutrient in relation to others.  Since organisms 
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need a certain mixture of nutrients they have to regulate their intake of foods that contain 

differing amounts of various nutrients in order to obtain the nutrients in correct 

proportions to each other.  The ratio of nutrients the organisms eat (when allowed to 

choose their own diets) can be measured in the lab.  This is done by observing how the 

organism feeds on a pair of foods that differ in their content of the nutrients of interest 

and are individually suboptimal for the organism’s needs, but together are nutritionally 

complementary.  By measuring how much of each of the foods are eaten the total 

amount of each of the nutrients, as well as the ratio between them, can be calculated. The 

self-selected ratio is known as the intake target, and represents the amount of each 

nutrient the organism has to eat in order to attain its ideal fitness.  This intake target is 

related to the nutrient target which is the amount of each nutrient that the organism needs 

for optimal performance. However, because not all the nutrients that are eaten are 

absorbed, and some of the nutrients that are absorbed are used for metabolism and 

maintenance of tissues, the intake target will always be higher than the nutrient target.  

The geometric framework will be used in this experiment to determine the protein to 

carbohydrate intake target selected by the nymphs.  This target will then be the basis for 

an experiment testing their performance on different diets as well as how their wing 

morph responds when they aren’t able to select their ideal ratio of nutrients. 
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CHAPTER II  

THE ROLE OF FOOD PROTEIN-CARBOHYDRATE CONTENT ON NUTRIENT 

REGULATION STRATEGIES AND WING MORPH DETERMINATION IN THE 

WING POLYMORPHIC CRICKET GRYLLUS FIRMUS. 

 

Overview 

 To understand how the nutrient content of their food influences the performance 

and development of the cricket nymphs during their last two nymphal instars I used two 

different experiments.  The first was a choice experiment that was used to determine the 

intake target of three lines of crickets.  In this experiment all three lines of crickets self-

selected similar protein to carbohydrate ratios and there were no significant differences 

between the ratios chosen by lines that were selected to produce either LW or SW 

individuals.  The second experiment was a no-choice experiment that examined the 

responses to the three cricket lines when they were restricted to one of a series of diets 

that contained varying amounts of protein and carbohydrates.  In this experiment the 

crickets practiced similar regulation strategies to their adult counterparts from earlier 

studies.  LW crickets were more selective about maintaining a specific protein to 

carbohydrate ratio in their diets and were less willing to eat excess of one nutrient in 

order to obtain the scarcer nutrient while SW crickets ate similar total amounts of 

nutrients across the different diets.  The crickets from a line that wasn’t selected to 

produce a specific morph, and so is better representative of a field population, practiced 

nutrient regulation strategies that are more similar to those from the LW line.  They ate 
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less as the foods became more imbalanced from their ideal protein and carbohydrate 

ratio.  All three of the lines showed similar patterns across the different diets with 

regards to their growth and performance.  Mass gain, lipid content, development time, 

and survival were all improved on diets that were closer to the intake target that was 

selected by the crickets in the choice experiment.  In both the choice and no-choice 

experiment significantly more crickets became SW as adults than would have been 

expected.  The exact cause of this shift is unknown though it could be due to stress 

during the experiment.   

 

Introduction 

 Wing polymorphic crickets in the genus Gryllus have been studied for many 

years as a model of the tradeoff between dispersal and reproduction.  Many species in 

this genus are known to be wing polymorphic as adults with the morph of an individual 

cricket being determined by genetics as well as environmental factors such as population 

density (Zera and Denno 1997).  There are two main adult morphs found in these 

crickets, though a third morph is formed later in the lifespan of some of the crickets.  

The first main morph that is present during the early adulthood of these crickets is long 

winged (LW).  These crickets have large hindwings and wing muscles that are capable 

of flight and dispersal. However, these large muscles require both protein (to build) and 

energy (for maintenance). This comes at the cost of having less protein and energy to 

devote to ovary development and reproduction.  As LW crickets age they tend to 

histolize their wing muscles and become a second long winged morph termed LW(h) 
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which renders them flightless but allows them to devote more energy to reproduction 

(Zhao and Zera 2002).  The second main morph is short winged (SW).  These crickets 

have short hindwings that are too small to allow for flight, small non-functional flight 

muscles, and larger ovaries during early adulthood than crickets of the LW morph.  

Since they do not have to pay the cost of developing and maintaining large wing muscles 

SW crickets have been shown to have much higher reproduction during their early 

adulthood than LW crickets (Zera and Denno 1997, Zera and Larsen 2001).   

 There are several factors that play a role in determining the adult morph of these 

crickets. One of the most important factors is genetics. Lines of crickets that have been 

selected for a certain morph for many generations will show greater than 85% purity 

(Zera and Larsen 2001, Zera 2005).  But environmental factors also play a large role in 

determining adult morph.  For example, population density is known to affect the ratio 

of the morphs that are produced in a population with high densities favoring SW crickets 

and low densities producing more LW crickets (Zera and Tiebel 1988, Zera and 

Harshman 2001, Zera and Larsen 2001).  An additional potential source of 

environmental influence on this polymorphism is the nutritional environment that the 

crickets experience as nymphs.  Protein and carbohydrates have the potential to 

influence the adult morph because they impact both nymph and adult growth processes.  

Nymphs require carbohydrates to fuel their growth as well as protein to develop new 

tissues, especially those that will be LW adults since they are forming their large wing 

muscles.  Adult crickets also require carbohydrates (for fueling flight and maintaining 

wing muscles in LW crickets) and protein (for egg development and reproduction).  
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Another reason that protein and carbohydrates are likely to influence adult morph is that 

adult females of the different morphs have been shown to choose different ratios of 

protein to carbohydrates when offered diets that varied in the proportions of the two 

nutrients. LW females chose a diet that has a higher carbohydrate ratio compared to SW 

females (Clark et al. 2013).  Therefore, it seems likely that the amounts of these nutrients 

that are eaten by the crickets as nymphs would lead to one adult morph being more 

successful in that particular environment than the other. 

 To understand the nutritional influence on the cricket morphs there must be a 

way to show how the crickets select the nutrients and the effect of specific nutrients on 

their physiology.  The Geometric Framework is useful in analyzing how each nutrient is 

balanced, relative to each other.  As reviewed in Behmer (2009), the geometric 

framework is a method used to understand the particular balance of nutrients needed by 

an individual. It works by allowing an organism to mix its intake of two different foods 

that are imbalanced in the nutrient or nutrients of interest.  By measuring how the 

organism chooses to feed on the different foods it is possible to find the intake target of 

the organism.  This intake target is relative to the total amount of a nutrient the organism 

is trying to obtain in order to achieve its optimum growth rate, but it will always be 

greater because not all of the nutrients that are eaten can be absorbed during digestion 

and those that are absorbed must also be used for maintenance of organs as well as 

fueling the organism’s activities. 

 Because the tradeoff between dispersal and reproduction is well defined in these 

crickets, and they are easy to rear, they are frequently used as a model organism to study 
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wing morph polymorphisms and their resulting trade-offs with reproduction (Zera and 

Harshman 2001). To date, almost all experiments have been performed with adults.  As a 

result, this has led to a lack of knowledge on factors that may play a role in determining 

the final morph of an individual cricket.  In this study I assessed the effect of food 

protein carbohydrate content on wing morph determination.  This was done in two 

experiments.  The first was a choice experiment to determine whether the protein to 

carbohydrate (P:C) intake target of the nymphs is the same as that of the adults, as has 

been recently determined (Clark et al. 2013). However, nymphs cannot be assumed to 

have the same intake target as adults because they will be putting their resources toward 

growth and development instead of reproduction.  This choice experiment was followed 

by a no choice experiment to determine if the protein carbohydrate content in their diets 

would affect their final wing morph.  In this experiment nymphs were confined to one of 

a series of diets that varied in their protein and carbohydrate content for their final two 

instars. Because the crickets were only offered a single diet, they couldn’t self-regulate 

their intake of protein and carbohydrates. This allowed for the observation of the effects 

of the diets on their final wing morph as well as their responses to imbalanced diets with 

respect to their feeding patterns, development time, and performance. 
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Materials and Methods 

Experimental Insects 

 Three cricket lines were used in this study. The first two lines were produced 

from eggs from two large outbred populations maintained at the University of Nebraska-

Lincoln that were selected to produce either LW or SW individuals.  Each line was part 

of an artificial selection experiment where a pair of populations was selected to produce 

one of the morphs. This selection experiment had three separate populations selected for 

each morph, with the lines used in this study coming from block 2 (Zera and Larsen 

2001, Zera 2005).  The differences between the pair of populations in one block has been 

shown to be similar to that of the differences between the populations in the other two 

blocks (Zera 2005) so the differences observed in one block are likely to be 

representative of general differences between LW and SW populations.  The third line of 

crickets was also from the Zera lab and wasn’t selected for a specific adult morph.  Eggs 

were collected from the three populations and shipped to Texas A&M University where 

they were reared in groups of approximately 100 in 17L plastic containers for the first 14 

days after hatching and then in groups of about 40 in the same containers: rearing 

crickets at these densities doesn’t affect the final wing morph of the adult crickets (Zera 

and Tiebel 1988).  Crickets from these eggs were used to establish a stock population at 

Texas A&M which was the source population for the crickets used in these experiments. 

They were fed stock diet containing: wheat bran, wheat germ, powdered whole milk, and 

nutritional yeast (Zera and Larsen 2001) and were provided with distilled drinking water 

in a plastic tube plugged with cotton.  They were maintained in an incubator under a 
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16:8 hour day/night cycle at 28°C during both their rearing and the experiments.  For all 

the experiments, newly molted individuals that were two instars from adulthood were 

collected, weighed, and placed in 6-3/4 inches long by 4-13/16 inches wide and 2-3/8 

inch tall experimental arenas that were covered with paper on the outside to prevent the 

crickets from seeing the behaviors of those in other arenas and contained either two pre-

weighed dishes containing a pair of experimental diets (choice experiments) or a single 

dish of diet (no-choice experiments).   The arenas also contained half of a 1oz opaque 

condiment cup to provide shelter, and a plastic tube plugged with cotton containing 

distilled water. 

 

Experimental Diets 

Choice Experiments 

 The diets used in this experiment varied in their digestible protein and 

carbohydrate content.  They are based on synthetic diets originally designed to be used 

for grasshoppers (Dadd 1961, Simpson and Abisgold 1985, Behmer et al. 2001) and 

were prepared following the protocols outlined in (Behmer et al. 2002).  There were 

three diets used in the choice experiment 7% protein and 35% carbohydrates (p7: c35), 

p28: c14 and p35: c7.  All of the diets contained the same amount of total macronutrients 

(42%) and the same amounts of all other ingredients (e.g. cellulose, cholesterol, 

vitamins). 
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No-choice experiments 

 The six diets used in this experiment followed the same protocols and recipes as 

those from the choice experiment but they differed in their p:c ratios.  Five of these diets 

had a total macronutrient content of 42% of the total diet, p8:c34, p12:c30, p16:c26, 

p20:c22, and p24:c18 while the sixth had 21% total macronutrient content p8:c13.  

These diets were chosen based on the intake target found in the choice experiment.  Two 

of the diets had p:c ratios that matched the intake target from the choice experiment 

p16:c26 and p8:c13.  The four other diets had p:c ratios that were nutritionally 

suboptimal compared with the nymph’s intake target.  Two were more protein biased 

then the intake target, p20:c22 and p24:c18 and the other two were more carbohydrate 

biased, p12:c30 and p16:c26. 

 

Experimental Protocol 

Choice Experiment 

 This experiment revealed the self-selected p:c intake target of the nymphs.  Prior 

to the start of this experiment the rearing containers were checked three times per day for 

signs of molting.  When a freshly molted penultimate instar cricket was found it was 

collected and placed in an experimental arena (described above) that contained two food 

dishes containing one of two pairs of artificial diets.  The diet pairings used in this 

experiment were: 1) p7:c35 with p28:c14 and 2) p7:c35 with p35:c7.  These diet pairings 

represent foods that alone are nutritionally suboptimal but are complimentary, thus the 

crickets can eat from both of them to cover a wide range of the p: c ratios that the 
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crickets would be likely to encounter in nature.  Two pairings were used to ensure that 

the crickets were actively selecting their diets as opposed to simply eating equally out of 

each dish.  While each pairing covered a similar nutritional area the crickets would have 

to eat different amounts of each food in the different pairs to reach the same intake 

target.  

 After the crickets were placed in the experimental arenas they were checked 

three times per day for signs of molting.  When a molt was determined the cricket was 

weighed and each of the food dishes was changed for another pre-weighed dish 

containing the same diet.  The original dishes were weighed to determine the 

consumption of the diet during each instar.  The food dishes were also exchanged if one 

of them began to run low so that the cricket would always have the option to choose 

between the two dishes.  All food dishes were allowed to sit at room humidity for at least 

24 hours to allow them to equilibrate before each weighing to prevent errors from the 

diets absorbing or losing water in the arenas or storage.  When the crickets molted to 

adulthood they were weighed and their wing morph was recorded as well as their final 

mass and development time.  They were then frozen and their lipid content was 

measured following the protocols outlined in (Simpson et al. 2002).  Wing morph was 

categorized by the length of the hindwings.  We didn’t use the color of the wing muscles 

because the crickets weren’t fully sclerotized at the time of freezing. 
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No-choice experiment 

 In this experiment freshly molted penultimate instar crickets were weighed and 

placed in arenas containing a pre-weighed dish of one of the experimental diets that was 

previously described.  As in the choice experiment the arenas were checked three times 

per day for signs of molting and when a cricket was found to have molted it was 

weighed and the food dish was replaced with another pre-weighed dish of the same diet. 

Final mass, development time, wing morph and lipid content were recorded as outlined 

in the choice experiment. 

 

Experiments using non-selected lines 

 The protocols for both the choice and no-choice experiments that were performed 

using crickets from the selected lines were repeated using crickets from the unselected 

line.  In addition, the final morph ratios of crickets maintained under stock rearing 

conditions were analyzed to allow comparison between crickets reared under stock 

conditions and experimental conditions. 

 

Statistical Analysis 

 For each experiment we assessed whether the crickets survived to the adult stage, 

time to adulthood, adult mass and wing morph, and lipid composition.  For each cricket I 

also analyzed the amount of food eaten, as well as its protein-carbohydrate intake.  

Survival rates and final wing morph were analyzed using Logistic Regression, 

developmental time was analyzed using Survival Analysis. MANCOVA, ANOVA and 
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ANCOVA were used to analyze mass, consumption, and growth rate.  All analyses were 

carried out using JMP pro 11.2.1.  When analyzing the data from the unselected line no-

choice experiment, data from the stock and dilute diets were not included because they 

wouldn’t provide a direct comparison with the other diets. Instead, these data are shown 

simply as a reference. 

 

Results 

Selected Lines 

Choice experiment 

In this experiment we examined the feeding behavior of the crickets in several 

ways.  Firstly, we used t-tests to determine if they favored one diet over the other.  

Crickets from both lines, and on each diet pair, showed a preference for one dish of food 

(Table 1).  Next, we used ANCOVA’s to determine if the crickets from each line and 

diet pairing selected the same ratio of protein to carbohydrates. This analysis showed no 

significant difference in the self-selected P:C ratio between the treatments (Table 2, 

Figure 1a).  We then analyzed the total amounts of protein and carbohydrates the 

crickets ate during their last two instars using MANCOVA.  For each line there was no 

significant difference in protein-carbohydrate intake on the different diet pairs.  The two 

lines did consume significantly different amounts of protein and carbohydrates, but there 

was no interaction between line and diet pair (Table 3, Figure 1b).  Since we found 

significant differences in the total amounts of protein and carbohydrates that the crickets 

ate during the experiment, but no differences in the self-selected ratio of the two 
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nutrients, the differences were likely a function of the two cricket lines eating different 

absolute amounts of food.  We tested this using an ANCOVA and found that crickets 

from the LW line consumed significantly more food than those from the SW line (Table 

4, Figure 1c).  When averaged across the diet pairings crickets from the LW line 

consumed 981.84 ± 24.76 mg of food compared with those from the SW line that 

consumed 812.63 ± 36.25 mg.  These differences were found despite the fact that 

crickets from both lines had similar starting mass (T-test T = -1.89, d.f. 161, P = 0.0598).      

 

 
 

Table 1. Results from t-tests testing whether the crickets in the choice experiment fed randomly 

out of both food dishes or selectively ate one diet over the other. 
Line Diet pairing Total food eaten 

from dish 1 

Total food eaten 

from dish 2 

T-value P-value 

LW p7:c35 w/ p28:c14 583.689 ± 23.483 393.638 ± 19.095 6.7238 <0.0001 

 p7:c35 w/ p35:c7 685.021 ± 35.742 301.523 ± 15.674 9.6806 <0.0001 

SW p7:c35 w/ p28:c14 465.566 ± 30.566 318.456 ± 26.792 5.6447 <0.0001 

 p7:c35 w/ p35:c7 550.381 ± 41.460 297.683 ± 20.428 6.1585 <0.0001 

 

 
Table 2. Results from an ANCOVA testing the effects of line and diet pairing on the log 

transformed P:C ratio consumed by the crickets. 

Source of Variation 

 

F-ratio D.F. P-Value 

Line 2.9868 1 0.0872 

Diet pair 2.4036 1 0.1243 

Line by diet pair 2.5378 1 0.1144 

Sex 0.0003 1 0.9857 

Starting mass 1.5352 1 0.2184 
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Table 3. Results from a MANCOVA testing the effects on line and diet pairing on the 

protein and carbohydrates eaten by the crickets in the choice experiment. 

Source of 

Variation 

F-ratio D.F. P-value 

Line 60.7034 2 0.0076 

Diet pair 5.1455 2 0.3134 

Line by diet pair 1.1747 2 0.5480 

Sex 0.7253 2 0.4868 

Starting mass 4.4824 2 0.0138 

 

 

Table 4. Results from an ANCOVA testing the effects of line and diet pairing on the total 

amount of food consumed by the crickets. 

Source of Variation 

 

F-ratio D.F. P-value 

Line 14.9115 1 0.0002 

Diet pair 0.2138 1 0.6448 

Line by diet pair 0.0700 1 0.7920 

Sex 5.2746 1 0.0238 

Starting mass 8.8515 1 0.0037 
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Figure 1. A) P:C ratios selected by the crickets in the choice experiment (mean ±SEM).  B) 

Protein and carbohydrate intake targets found in the choice experiment with the selected lines of 

crickets.  C) Total food eaten by each line on each diet pair (Mean ± SEM). 
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 After analyzing the feeding behavior, we looked at how the crickets performed 

on the two different diet pairings.  The crickets from the LW line gained more mass than 

those of the SW line and in both lines the crickets on the p7:c35 w/ p35:c7 diet pairing 

gained slightly more mass than those on the p7:c35 w/ p14:c28 diet pairing (Table 5, 

Figure 2a).  The LW line crickets also had a higher lipid content than the SW crickets, 

however, there was no effect from diet pairing (Table 6, Figure 2b).  There was no 

significant difference in development time between the two lines of crickets, but there 

was a significant difference between crickets on the different diet pairings (Table 7, 

Figure 2c).  In both lines the crickets on the p7:c35 w/ p28:c14 diet pair took on average 

one day longer to grow to adulthood.  Finally, while the cricket lines used in these 

experiments typically produce 80% or more of the selected morph of crickets (Zera and 

Cisper 2001) over half of the LW line crickets showed the SW phenotype, while all of 

the SW line crickets remained true to their line (Figure 2d).  Logistic regression of the 

final morph of the crickets using diet pair and line as factors showed that there was a 

significant line effect but no difference between the diet pairs (Line: 2
df=1 = 31.816, P < 

0.001; Diet: 2
df=1 = 0.000, P = 1.000).   

 

Table 5.  Results from an ANCOVA testing the effects of line and diet pairing on the mass 

gained by the crickets. 

Source of Variation 

 

F-ratio D.F. P-value 

Line 24.3404 1 <0.0001 

Diet pair 4.1596 1 0.0440 

Line by diet pair 0.4653 1 0.4967 

Sex 15.5479 1 0.0001 

Starting mass 0.0062 1 0.9374 
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Table 6. Results from an ANCOVA testing the effects of line and diet pairing on the lipid 

content of the crickets. 

Source of Variation 

 

F-ratio D.F. P-value 

Line 7.7175 1 0.0066 

Diet pair 3.5928 1 0.0612 

Line by diet pair 2.5179 1 0.1160 

Sex 2.7424 1 0.1011 

Starting mass 1.0881 1 0.2996 

Carbohydrates eaten 38.0043 1 <0.0001 

 

 

 

Table 7. Results from a survival analysis of the time spent by the crickets in their last two 

instars. 
Source of Variation 

 

Chi Squared value D.F. P-value 

Line 0.0106 1 0.9179 

Diet pair 15.0655 1 0.0001 

Line by diet pair 0.09211 1 0.3372 

Sex 11.3585 1 0.0008 

Starting mass 28.3567 1 <0.0001 
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Figure 2. A) Mass gained by the crickets during their last two instars (Mean ± SEM).  B) Lipid 

composition of the crickets as a percentage of dry mass (Mean ± SEM).  C) Development time of 

the crickets during their last two instars (Mean ± SEM).  D) Final morph distribution of the 

crickets in the choice experiment with the selected lines of crickets shown as percentage of 

crickets that matured into the adult morph their line was selected to produce. 

 

 

 

 

 

 



 

22 

 

No-choice experiment 

 Intake arrays were fitted to consumption data to analyze how food protein-

carbohydrate content affected the nutrient regulation strategies of the different lines 

(Raubenheimer and Simpson 1999, Behmer 2009).  The array for the LW crickets most 

closely approximated a quadratic fit while the SW crickets’ array more closely 

approximated a linear fit (Figure 3a).  We also plotted the protein:carbohydrate intakes 

for the dilute diet and intake target diet for comparison and they showed the same trend 

as those from the intake target diet with the LW line eating more overall than the SW 

line (Figure 3b).  Following this we generated protein + carbohydrate (P+C) error plots 

(Raubenheimer and Simpson 1999).  The error plot (Figure 3c) for the LW line more 

closely approximated a quadratic fit (quadratic contrast F1 = 15.39, P < 0.0001), while 

the SW line more closely approximated a linear fit (linear contrast F1 = 3.78, P = 0.052).  

Again when the dilute diet was plotted with the intake target diet for comparison the 

same trends were seen (Figure 3d).  There were significant line and diet differences for 

the total amount of food eaten (Table 8). The average consumption for the LW crickets 

during their last two instars was 1050.90 ± 27.34 mg, but only 785.34 ± 19.37 mg for the 

SW line. The two lines showed similar patterns of consumption across the diets however 

(Figure 4).  Consumption was the highest on the dilute diet (p8:c13), and equally low on 

the most protein based diet (p8:c34) and two most carbohydrate biased diets (p8:c34 and 

p12:c30). It was intermediate on the two remaining diets (p16:c26 and p20:c22).   
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Figure 3.  A) Intake arrays for each of the selected lines.  The quadratic line is fitted to the LW 

array and the linear fit is the SW.  B) Intake arrays showing how the crickets on the dilute diet 

compared with the 42% macronutrient diet with the same p:c ratio.  C) P+C error plot of the 

crickets.  D) P+C error plot comparing the dilute diet with the 42% macronutrient diet with the 

same p:c ratio. 

 

 

Table 8. Results from an ANCOVA of total food eaten by the crickets from the no-choice 

experiment.  The 8:13 diet was excluded for this analysis due to the fact that it contains a 

different amount of macronutrients from the rest of the diets and so wouldn’t be a direct 

comparison. 

Source of Variation 

 

F-value D.F. P-value 

Line 47.6733 1 <0.0001 

Diet 5.7092 4 0.0004 

Line by Diet 2.2216 4 0.0736 

Sex 1.3514 1 0.2484 

Starting Mass 8.0640 1 0.0057 
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Figure 4. Total food eaten by the crickets from the selected lines during their last two instars in 

the no-choice experiment (Mean ±SEM). 

 

 

 

 Development time of the crickets was significantly affected by both the line of 

the crickets as well as their diet and there was a significant interaction between the two 

(Table 9).  Post Hoc analysis showed that crickets on the two carbohydrate biased diets 

(p8:c34 and p12:c30), had significantly longer development time than those on the diet 

that matched the intake target, or were protein biased.  The dilute diet also showed 

slower development than the most carbohydrate biased diet (Figure 4a).  Cricket mass 

gain was significantly affected by both line and diet, with a significant interaction 

between both factors (Table 10).  For both lines mass gain was highest on the protein 
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biased diets and lower on the carbohydrate biased diets.  Crickets on the dilute diet 

gained more mass than those on the most carbohydrate biased diet in both lines.  Across 

all the diets crickets from the LW line gained more mass then those from the SW line 

(Figure 4b).  Across all of the diets crickets from the LW line had a significantly higher 

final lipid content then those from the SW line.  For both lines lipid content was lowest 

on the dilute diet (p8:c13), but was relatively similar across the higher macronutrient 

content diets (Table 11, Figure 4c). As was seen in the choice experiment a significant 

number of crickets from the LW line showed the SW phenotype as adults, while most of 

the SW crickets remained SW as adults (Figure 5d).  A full model examining final 

morph, including a Line-by-Diet interaction term, indicated there was no significant line 

or diet effect, and no significant Line-by-Diet interaction (Table 12). However, when a 

simplified model was used (excluding the Line-by-Diet interaction term), Line, but not 

Diet, was found to be significant (Table 12).  Survival of the crickets was significantly 

different across the different diets though there was no difference between the lines, and 

there was no significant interaction (Table 13, Figure 6).  For both lines the p8:c34 diet 

showed significantly lower survival compared to the other diets. 

 

Table 9.  Results from a survival analysis of time spent by the crickets in their last two instars.  

The 8:13 diet was excluded due to it having a different total macronutrient content and therefore 

not being a direct comparison. 

Source of Variation 

 

Chi Square value D.F. P-value 

Line 8.3255 1 0.0039 

Diet 150.0477 5 <0.0001 

Line by Diet 9.0685 5 0.0609 

Sex 3.7832 1 0.0518 

Starting Mass 0.9900 1 0.3197 
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Table 10.  Results of an ANCOVA of mass gained by the crickets with diet and line.  The 8:13 

diet was excluded due to it having a different total macronutrient content and therefore not being 

a direct comparison. 

Source of Variation 

 

F-ratio D.F. P-value 

Line 39.7494 1 <0.0001 

Diet 47.2320 4 <0.0001 

Line by diet 2.0175 4 0.0828 

Sex 3.9013 1 0.0511 

Starting mass 2.8977 1 0.0919 

 

 

Table 11.  Results from an ANCOVA of lipid content of the crickets as a percent of dry mass 

with line and diet.  The 8:13 diet was excluded due to it having a different macronutrient content 

and therefore not being a direct comparison. 

Source of Variation 

 

F-ratio D.F. P-value 

Line 25.3128 1 <0.0001 

Diet 1.2554 4 0.2943 

Line by diet 1.2614 4 0.2919 

Sex 6.5078 1 0.0126 

Starting mass 1.3165 1 0.2546 

Carbohydrates eaten 45.7930 1 <0.0001 

 

 

 

Table 12. Results from a nominal regression of final morph of the crickets from the no-choice 

experiment.  First is the full model followed by the simplified model. 

Full Model 

Source of Variation 

 

Chi Square value D.F. P-value 

Line 9.37523*10^-6 1 0.9976 

Diet 5.9128679 5 0.3148 

Line by Diet 2.62941093 5 0.7569 

Simplified Model 

Source of Variation 

 

Chi Square value D.F. P-value 

Line 7.25621*10^-6 1 <0.0001 

Diet 5.678681 5 0.0968 
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Figure 5.  A) Development time of the crickets from the no-choice experiment during their last 

two instars (Mean ±SEM).  B) Mass gained by the crickets during their last two instars (Mean 

±SEM).  C) Lipid content of the crickets as a percentage of dry mass (Mean ±SEM).  D) Final 

morph distribution of the crickets in the choice experiment with the selected lines of crickets 

shown as percentage of crickets that matured into the adult morph their line was selected to 

produce. 

 

 

 

Table 13. Results from a nominal logistic regression of survival to adulthood with line and diet. 
Source of Variation 

 

Chi Square value D.F. P-value 

Line 3.3266*10^-7 1 0.9998 

Diet 15.3648 5 0.0090 

Line by Diet 7.7742 5 0.2249 
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Figure 6. Survival of the crickets from the selected lines during their last two nymphal instars in 

the no choice experiment. 

Non-selected Lines 

Choice experiment 

As with the selected lines we started by analyzing to see whether the crickets on 

the different diets ate randomly from both dishes, or preferred one dish over the other.  

The crickets on the diet pairing of p7:c35 with p28:c14 showed no preference, while 

crickets on the pairing of p7:c35 with p35:c7 showed a preference for the p7:c35 food 

(Table 14, Figure 7a).  In this experiment the crickets on each of the two diet pairings 

did eat significantly different amounts of protein and carbohydrates (Table 15).  When 

the amounts of protein and carbohydrates ingested by the crickets in each diet pair were 

analyzed separately it was shown that the differences were due to different amounts of 
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protein being eaten while there were no significant differences in carbohydrates eaten 

between the two diet pairs (Table 16, Figure 7b).  There were also no significant 

differences in the total food consumed by the crickets feeding on each diet pair (Table 

17, Figure 7c), or in their starting mass (T-test: T = -1.14, df = 37, P = 0.260).      

 

 

 
 

Table 14.  Results from T-tests testing if the crickets from the wild type line fed randomly from 

the two offered food dishes or if they selected one diet over the other. 

Diet Pair 

 

Total food eaten from 

dish 1 

Total food eaten from 

dish 2 

T-value P-value 

p7:c35 w/ p28:c14 458.9168 ± 32.0896 421.592 ± 15.2236 1.2215 0.2337 

p7:c35 w/ p35:c7 475.6130 ± 23.8256 379.0515 ± 19.8037 4.8845 0.0001 

 

 

Table 15.  Results from an ANCOVA testing the effect of diet pairing and sex on the log 

transformed p:c ratio eaten by the crickets. 

Source of Variation 

 

F-ratio D.F. P-value 

Diet pair 17.1549 1 0.0002 

Sex 4.7922 1 0.0353 

Starting Mass 0.6031 1 0.4426 

 

 

Table 16.  Results from a MANCOVA of protein and carbohydrates eaten by crickets from the 

wild type lines on the two diet pairings. 

Source of Variation 

 

F-ratio D.F. P-value 

Diet Pair 9.9555 2 0.0004 

Sex 8.7038 2 0.0009 

Penultimate Mass 1.9783 2 0.1539 

 

 

Table 17.  Results from an ANCOVA testing the effect of diet pairing and sex on the total 

amount of food eaten by the crickets. 

Source of Variation 

 

F-ratio D.F. P-value 

Diet pair 0.0240 1 0.8778 

Sex 15.3026 1 0.0004 

Penultimate mass 3.9175 1 0.0557 
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Figure 7. A) P:C ratios selected by the crickets from the unselected line in the choice experiment 

(mean ±SEM). B) Protein and carbohydrate intake targets found in the choice experiment with 

the unselected line of crickets.  C) Total food eaten by the unselected line on each diet pair 

(Mean ± SEM). 
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There was no significant difference in mass gained between crickets on the two 

diet pairings, though there was a significant sex effect (Table 18, Figure 8a); generally, 

females gained more mass.  There was a significant effect of both final morph and diet 

pairing on the lipid content of the crickets, as well as an interaction between them.  The 

amount of lipid stored by the crickets was positively correlated with carbohydrate intake 

(Table 19, Figure 8b).  There was a significant difference in development time between 

the crickets on each diet pairing, as well as a significant sex effect, though there was no 

interaction between the two (Table 20, Figure 8c).  The crickets on the diet pair 

consisting of p7:c35 with p35:c7 took slightly longer to grow to adulthood than those on 

the pairing of p7:c35 with p28:c14. Crickets from this non-selected line typically show a 

morph ratio of 40-65% LW, but most of the experimental crickets became SW (Figure 

8d).  Logistic regression of the final morph of the crickets showed that there was no 

significant difference between the diet pairs (Table 21).    

 

 

 
Table 18.  Results from an ANCOVA testing the effect of diet pairing and sex on the mass 

gained by the crickets. 

Source of Variation 

 

F-ratio D.F. P-value 

Diet pair 0.2625 1 0.6115 

Sex 11.1560 1 0.0020 

Penultimate mass 1.2427 1 0.2723 
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Table 19.  Results from an ANCOVA of lipid content of the crickets as a percent of dry 

mass with diet pair and final morph 

Source of Variation 

 

F-ratio D.F. P-value 

Diet Pair 2.5474 1 0.1195 

Sex 33.4163 1 <0.0001 

Penultimate Mass 1.1527 1 0.2903 

Carbohydrates Eaten 0.3236 1 0.5731 

 

 

Table 20. Results from a survival analysis testing the effects of diet pairing and sex on 

the development time of the crickets. 

Source of Variation 

 

Chi-Squared Value D.F. P-value 

Diet Pair 0.038546 1 0.5347 

Sex 14.3401 1 0.0002 

Penultimate Mass 11.89737 1 0.0006 

 

 

Table 21.  Results from a logistic regression examining the effects of diet pair on the 

final morph of the crickets. 

Source of Variation 

 

Chi-squared Value D.F. P-value 

Diet pair 0.1757113 1 0.6751 
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Figure 8. A) Mass gained by the crickets during their last two instars (Mean ± SEM).  B) Lipid 

composition of the crickets as a percentage of dry mass (Mean ± SEM).  C) Development time of 

the crickets during their last two instars (Mean ± SEM).  D) Final morph distribution of the 

crickets in the choice experiment with the unselected line of crickets. 

 

 

No-choice experiment 

 For this experiment we started by analyzing the feeding behavior of the crickets 

using intake arrays and error plots, as done with the selected lines.  The unselected line’s 

intake array approximated a quadratic fit (Fig 9a, 9b). The error plot also approximated a 

quadratic fit (quadratic contrast F1 = 18.9151, P = 0.001; Figures 9c, 9d). Significant 
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differences in consumption were observed between crickets on the different diets and 

between the sexes, but there was no significant effect of final morph (Table 22). 

Consumption was the highest on the dilute diet (p8:c34), and lowest on the most protein-

based diet p8:c34 and the stock diet. It was intermediate on the remaining diets (Figure 

10). 

 

 

 

 
Figure 9. A) Intake arrays for the unselected line.  B) Intake arrays showing how the crickets on 

the dilute diet compared with the 42% macronutrient diet with the same p:c ratio.  C) P+C error 

plot of the crickets.  D) P+C error plot comparing the dilute diet with the 42% macronutrient diet 

with the same p:c ratio. 
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Table 22. Results from an ANCOVA testing the effect of diet on the total amount of food eaten 

by the crickets.  For this analysis the dilute and stock diets were excluded because they wouldn’t 

provide a direct comparison. 
Source of Variation 

 

F-ratio D.F. P-value 

Diet 8.9283 4 <0.0001 

Sex 14.4607 1 0.0003 

Penultimate Mass 1.0235 1 0.3158 

 

 

 

 
Figure 10. Total food eaten by the crickets from the unselected line during their last two instars 

in the no-choice experiment (Mean ±SEM). 

 

 

 

 

 Development time of crickets from the non-selected line was significantly 

affected by both Diet and Sex, (Table 23).  Post hoc analysis showed that crickets on the 

most carbohydrate-biased diet had the longest development time, followed next by the 

p8:c13 and p12:c30 diet (Figure 11a); development time on the remaining diets was 
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equally fast. Mass gain for the non-selected line crickets was significantly affected by 

the diet and sex, but the interaction between diet and sex was not significant (Table 24).  

It was equally high on the p16:c26, p20:c22 and p24:c16 diets, intermediate on the 

p12:c30, and lowest on the p8:c34 diet (Figure 11b).  Lipid content showed significant 

differences as a function of diet, but there was no significant influence of sex, and the 

diet-by-sex interaction term was not significant (Table 25).  The lipid content of crickets 

was lowest on the dilute diet (p8:c13) and in the higher nutrient diets the lipid content of 

the crickets increased as the diets became more balanced and it increased as the amount 

of carbohydrates eaten by the crickets increased (Figure 11c). As was seen in the choice 

experiment a significant number of crickets showed the SW phenotype as adults (Table 

26).  There was no significant effect of the different diets on the final wing morph of the 

crickets (Table 11d) despite the fact that the LW crickets on the most carbohydrate 

biased diet p8:c34 all became SW adults. Crickets on all the treatments had a high 

survival rate, unlike the selected lines where some diets caused high mortality (Figure 

12). 

 

 

 

 
Table 23.  Results from a survival analysis testing the effect of diet on the development time of 

the crickets. For this analysis the stock diet was excluded because it wouldn’t provide a direct 

comparison. 

Source of Variation 

 

Chi-squared Value D.F. P-value 

Diet 64.1294 4 <0.0001 

Sex 3.9836 1 0.0459 

Penultimate mass 0.1159 1 0.7335 
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Table 24.  Results from an ANCOVA testing the effect of diet on the mass gained by the 

crickets.  For this analysis the dilute and stock diets were excluded because they wouldn’t 

provide a direct comparison. 

Source of Variation 

 

F-ratio D.F. P-value 

Diet 25.9139 4 <0.0001 

Sex 6.1201 1 0.0162 

Penultimate Mass 2.8627 1 0.0958 

 

 

 
Table 25.  Results from an ANCOVA of lipid content of the crickets as a percent of dry mass 

with diet and final morph.  For this analysis the dilute and stock diets were excluded because 

they wouldn’t provide a direct comparison. 

Source of Variation 

 

F-ratio D.F. P-value 

Diet 11.1014 5 <0.0001 

Sex 1.2645 1 0.2645 

Penultimate Mass 1.9503 1 0.1668 

Carbohydrates Eaten 81.0319 1 <0.0001 

 

 
Table 26. Results from a logistic regression examining the effect of diet the final morph of the 

crickets.  For this analysis the stock diet was excluded because it wouldn’t provide a direct 

comparison 

Source of Variation 

 

Chi-squared Value D.F. P-value 

Diet 13.75224 5 0.0173 
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Figure 11. A) Development time of the crickets from the no-choice experiment during their last 

two instars (Mean ±SEM).  B) Mass gained by the crickets during their last two instars (Mean 

±SEM).  C) Lipid content of the crickets as a percentage of dry mass (Mean ±SEM).  D) Final 

morph distribution of the crickets in the choice experiment with the unselected lines of crickets. 
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Figure 12. Survival of the crickets from the unselected line during their last two nymphal instars 

in the no-choice experiment. 

 

 

 

Discussion 

Wing morph polymorphism has been well studied in Gryllus crickets due to the 

fact that they are large, easily reared in the laboratory, and have easily distinguishable 

phenotypes (Zera and Harshman 2001).  However, despite the fact that many researchers 

have investigated this trade-off it wasn’t until recently that any studies looked at the 

nutrient regulation in these crickets and this study is the first to look at how they regulate 

their nutrition as nymphs and how it affects which wing morph they develop as adults.  

This is important because the differences that are found between adults of the different 

phenotypes may be linked to the nutritional state of the nymphs, and knowing how 

nymphs regulate their intake could be useful in understanding their trade-off between 

dispersal and reproduction as adults (Simpson et al. 2002, Lee et al. 2008, Boggs 2009). 
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 Insects commonly regulate their nutrient intake by eating a mixture of foods that 

contain different ratios of the nutrients they are regulating and will self-select diets that 

contain ideal amounts of the various nutrients to allow them to have the highest 

performance possible (Behmer 2009).  In these experiments the cricket nymphs from all 

three lines self-selected similar protein to carbohydrate ratios, though they did vary in 

the total amounts of both nutrients that they ate with the crickets from the LW line eating 

significantly more than those from the SW line.  This was somewhat unexpected because 

adult females of the two different morphs self-select significantly different ratios with 

the LW crickets preferring a diet higher in carbohydrates and while the adults eat 

significantly different amounts of total food it is the SW females that eat more as adults 

(Clark et al. 2013).  This difference could possibly be due to the fact that even though 

the LW nymphs are growing their large wing muscles they don’t need a different ratio of 

nutrients to be able to do so and instead just need more nutrients overall. 

The differences in the total food that the crickets eat as nymphs and as adults are 

likely to be because the nymphs that are going to be LW have to obtain enough nutrients, 

especially protein, to grow their large wing muscles (Clark et al. 2015).  In contrast, SW 

crickets grow large ovaries, but only after they have become adults (Tanaka 1993, Clark 

et al. 2015). As such, they have a need to eat more as adults so that they can acquire 

sufficient quantities of protein and energy to build their ovaries. Despite nymphs 

showing a reversal in total consumption (compared to the adults), the nymphs from the 

selected lines did regulate their intake of nutrients in a fashion similar to their adult 

counterparts. An inspection of the P+C error plots revealed the LW line showed a 
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quadratic fit, while the SW line showed a linear fit.  This shows that even though the 

nymphs from the two lines don’t select significantly different protein:carbohydrate ratios 

they still apply the same rules for dealing with imbalanced diets as they will as adults. 

 In many studies, organisms have been shown to have better performance (e.g., 

growth or reproduction) as the nutrient ratios in their diets become more balanced 

toward their ideal ratio. Additionally, those on balanced but nutrient poor diets (i.e. total 

nutrient content is low) often have better performance compared to those on diets that 

have greater absolute total nutrient amounts of nutrients, but are extremely imbalanced 

relative to the optimal ratio (Raubenheimer and Simpson 1999, Le Gall and Behmer 

2014, Roeder and Behmer 2014, Clark et al. 2015).  This trend of having better 

performance on balanced diets than dilute diets is also shown by all three lines in regards 

to their growth and development.  Insects from all three lines showed similar trends in 

their performance, those on the dilute diet gained more mass, developed faster, and had 

more lipid reserves at their adult molt than those on more imbalanced diets especially the 

highly carbohydrate biased diets.  These results are likely due to the costs incurred from 

consuming excess amounts of nutrients, especially carbohydrates.  Insects as well as 

other organisms can use multiple strategies to regulate the nutrients they absorb and 

utilize nutrients obtained from their food, but this has been shown to be costly and 

therefore will negatively impact the insect’s performance (Lee et al. 2008, Cease et al. 

2012). 

 In both the choice and no-choice experiments significantly more crickets became 

SW than would have been expected. Interestingly, it seems that the LW may be 
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particularly susceptible to stress, and when this occurs they expresses the SW morph 

(Zera and Tiebel 1988).  The exact cause of the stress is unknown. It may be the arenas 

or some aspect of the experimental protocol. A group of crickets from the WT line that 

were maintained on the stock diet fed to the colony but in otherwise identical 

experimental conditions to the rest of the crickets also produced mostly SW adults.  

However, the non-selected line experiment suggests nutrition may be playing a 

contributing role, as significant diet effects were observed.  In contrast, diet was not 

significant for the selected line no-choice experiment, but some trends were observed.  

In both experiments the diets that were less balanced compared to the intake target 

produce more SW adults while those closer to the target produce more LW.  Also in the 

LW line the dilute diet produced more LW adults than the most carbohydrate biased diet 

even though the carbohydrate biased diet contained twice the total macronutrients of the 

dilute diet.  These results fit well with other studies that have looked at nutrient 

balancing on insect performance.  In these studies it is generally shown that the balance 

of nutrients in the diets in comparison to the ideal balance for the specific insect is more 

important to their performance than the total amount of nutrients in the diet (Le Gall and 

Behmer 2014, Roeder and Behmer 2014, Clark et al. 2015). 

 While these results have allowed for greater insight into the nutritional aspects of 

the wing length polymorphism of these crickets there is still further work that could be 

done.  One important study that would provide highly useful information would be to 

look at what these crickets feed on in field conditions.  At this point all that is known of 

their natural diet is that they are generalists that feed on a variety of plants, fungi, and 
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insect remains (Capinera et al. 2004).  With this information, the diets used in the 

laboratory and the diet they eat in the field could be compared which would allow for 

predictions of how nutrition affects the polymorphism in the wild.  Other studies that 

would provide additional useful information would be ones that examine the effects of 

population density on the nutritional regulation of these crickets and how those two 

factors together influence their wing-morph polymorphism. 
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CHAPTER III 

CONCLUSIONS 

 

These experiments provide more information about nutrient regulation in Gryllus 

firmus and how it impacts their performance and final wing morph.  By using the 

geometric framework to show how they selected their specific protein to carbohydrate 

ratio I was able to analyze how the patterns of regulation used by the nymphs compared 

with those used by the adults in other studies.  In general, the nymphs followed similar 

regulation strategies to the adults with the LW line of crickets being more selective and 

sensitive to errors in overeating one nutrient to compensate for a lack of the other while 

the SW line ate similar amounts of nutrients across the range of different diets even 

though there were no differences in the p:c ratio that the two lines were regulating 

towards.  However, there were differences in that the LW line of crickets ate more as 

nymphs than those from the SW line when SW adults eat more than the LW adults.  

These differences are interesting, however, they aren’t entirely unexpected.  As adults 

the LW crickets prefer a diet that is high in carbohydrates compared with SW adults 

because they will use those carbohydrates to make lipids for fueling their flights.  Since 

nymphs don’t fly those from the LW line don’t yet need to eat as many carbohydrates as 

they will as adults so the two lines will therefore be more likely to select the same ratio 

of protein to carbohydrates.  The differences in total amount of food the crickets eat are 

also likely due to the different developmental stages requiring different amounts of 

nutrients.  The cricket nymphs are producing their wing muscles during their last few 
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nymphal instars and so since the crickets from the LW line will need to produce much 

larger wing muscles they are likely to need to eat more food overall to acquire the 

protein and energy they need.  Unlike the wing muscles, ovary development happens 

mostly during early adulthood in these crickets and so since SW crickets are developing 

much larger ovaries during early adulthood than the LW crickets are it makes sense that 

they would also need larger amounts of food to support the growth. 

 These crickets also showed a similar trend as many other studies looking at how 

nutrients affect performance.  All three lines consistently performed better on a diet that 

was balanced relative to their intake target but had been diluted to half the normal 

nutrient content than on diets that weren’t diluted but were highly imbalanced.  Since 

crickets like many other organisms are capable of using post-ingestive methods to 

regulate their nutrient uptake they can still perform fairly well on diets that imbalanced 

but are relatively close to their ideal balance.  However, as the diets became more 

imbalanced the crickets weren’t able to perform as well because post-ingestive methods 

of nutrient regulation also carry costs and the harder the crickets have to work to 

compensate for imbalanced diets the higher those costs become.   

 These trends were also seen in the final wing morph of the crickets in these 

experiments.  Across all three lines there were significantly more SW adults produced 

than would have been expected.  Since SW crickets are thought to be more stress 

resistant these results are likely due to the crickets being stressed somehow during the 

experiments either by the experimental conditions or the p:c ratios of the diets being 

imbalanced.  Since there were no significant differences between the ratios of LW and 



 

46 

 

SW adults produced by the LW selected line and the SW selected line it is likely that 

diet doesn’t play a large role in determining what morph these crickets become as adults. 

 Future work is still needed to thoroughly understand exactly what environmental 

conditions are important in determining the wing morph of these crickets and how the 

different factors interact to determine the final morph.  More work is also needed on the 

nutrition of these crickets.  There is very little known about what they actually eat in the 

field other than that they are generalists that eat a wide variety of plants, insect remains, 

and fungi.  Field studies are needed to determine what they are eating in the field so that 

the diets they are fed in the laboratories can be compared to the natural diet.  If the lab 

diets are too different from the field diets than the results from many of the lab studies 

could be shown to be simply artifacts of the laboratory conditions and not relevant to 

how these crickets behave in the field. 
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