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ABSTRACT 

 The mechanical properties of tissues are important indicators of tissue “health”. It 

has been recorded and acknowledged that diseased tissues due to cancer or other 

conditions tend to stiffen with increase in strain, exhibiting a nonlinear stress-strain 

behavior. In literature, hyperelastic models, such as Veronda-Westmann and Blatz, have 

been widely used to model soft tissues. These models are characterized by an exponential 

function and two material parameters, namely the shear modulus μ and a nonlinearity 

parameter γ. A variety of methods and techniques have been developed to solve inverse 

problems in elasticity to determine these properties given the mechanical response of the 

tissues. Reconstruction of the nonlinear parameter using noisy measured displacement 

data is a difficult problem, and obtaining a well-posed solution is a challenge. This thesis 

is directed towards the improvement in the reconstruction of the nonlinear parameter, γ, 

by introducing a new parameter, which is a combination of γ and the first invariant of the 

Green deformation tensor. Comparative study is carried out between reconstructions of γ 

directly from previously existing formulations and the reconstruction of γ from the new 

parameter, for 2D problems. Numerical experiments are conducted and the performance 

is tested and compared based on different criteria like shape of the stiff regions 

(representing the diseased tissue), the contrast in γ and robustness for different loading 

conditions. Different arrangements and sizes of stiff inclusions are tested and critically 

analyzed. It is found that obtaining the distribution of γ from the new parameter results in 

a much better reconstruction than by directly optimizing for γ. 
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CHAPTER I  

INTRODUCTION  

 

Mechanical behavior of soft tissues has been studied in detail to provide better 

understanding on identification of abnormalities. The most commonly used method of 

detection presently is strain imaging. However, detecting abnormalities due to lesions and 

tumors based on the actual material properties would characterize the disease more 

accurately than just based on strain variations. Elasticity imaging or elastography 

introduced first by Ophir et al [1] is a medical imaging technique to approximate the elastic 

stiffness distribution of the tissue based on tissue motion, to help identify diseased regions. 

Tissue motion i.e. displacement data and strains can be obtained using different imaging 

modalities like ultrasound imaging, Magnetic Resonance Imaging (MRI) or Computed 

Tomography (CT), out of which ultrasound imaging has been most widely studied (see 

[2] - [7]).  

1.1 Linear Elasticity Imaging 

Broadly speaking the elastic properties of tissues are obtained using data from the 

deformation of tissues by two methods. One is the direct method where the elastic modulus 

is solved directly from the equations of equilibrium assuming a linear elastic solid (see 

[6], [8] - [11]). The other is the iterative method where a least squares formulation is used 

to minimize the error in measured and computed displacement fields. Unlike the direct 

method, the iterative method can be used in the case of a linear elastic solid as well as 

nonlinear hyperelastic solids.  
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While the direct method might be an efficient solution to the inverse problem it 

has serious drawbacks. This approach requires taking derivatives of noisy displacement 

data, which significantly amplifies noise and compromises the accuracy of the solution. 

Additionally, in these methods it is assumed that the material is linear elastic and the 

strains are small which is rarely true with most cases in reality. Moreover, some direct 

methods obtain the “elasticity” image by just inverting the strain image obtained from 

ultrasound data (see [1] - [2], [4]). With these methods there are possibilities of undesired 

artifacts because of the non-homogeneity of the tissues, as a result of the assumption that 

the stress is constant in the problem domain which, strictly speaking, is not valid. 

A minimization algorithm is used in iterative methods, where the difference in the 

measured and computed displacement fields in the L-2 norm is minimized subjected to 

the constraint that the computed displacement field satisfies the forward problem for a 

given distribution of material properties. The algorithm is used to obtain the right 

distribution of material properties that minimizes the error in the displacement fields. 

However, in iterative methods, the calculation of a Jacobian to compute gradients as part 

of the algorithm renders the method computationally expensive (see [12] - [15]). Oberai 

et al introduced adjoint based elasticity equations to calculate the gradients required for a 

quasi-Newton optimization scheme ([16], [17], [40]). The adjoint equations have been 

shown to save a lot of computational effort (see references for more details).  

Noise in the displacement data is handled by introducing a regularization term in 

the objective function that serves to reduce fluctuations in the material distribution arising 

as a result of measurement noise. Though the iterative methods can handle noise better, 



 

3 

 

the level of noise in the lateral displacements obtained from imaging devices can be so 

high that it is usual practice to omit them in the inverse problem formulation. However, 

this reduces the information used in the problem and can affect the uniqueness of the 

solution.  

To overcome the problem of higher noise level in the lateral displacements than 

axial displacements, Babaniyi et al developed a sparse relaxation method where the 

momentum equation is relaxed and the lateral displacement and strains are reconstructed 

for a linear elastic material without using any knowledge of the material stiffness [18]. 

The lateral displacement data together with the measured axial displacement data is then 

used for reconstructing the material stiffness. 

1.2 Elasticity Parameter Estimation by Error in Constitutive Equation 

Iterative methods with alternate minimization functions such as the error in the 

constitutive equation have been proposed in recent works. The constitutive equation gap 

method initially proposed by Geymonat [19] was used by Florentin [20] to reconstruct a 

heterogeneous distribution of elastic properties using a linear elastic model based on full 

field measurements. This method uses a minimization scheme with a two-step process that 

minimizes an error functional interpreted as an error in constitutive relation. It is defined 

as the difference between an admissible stress field and stress calculated from an 

admissible displacement field. This formulation of minimizing the error in the constitutive 

equation has also been extended to involve dynamic data induced by mechanical 

vibrations [21, 22] and to obtain the viscoelastic properties of tissues [23]. Guchhait et al 
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[24] extended the inversion method to the nonlinear regime for different hyperelastic 

materials with quasi-static loading.  

1.3 Elasticity Imaging for Nonlinear Model Behavior 

Studies have shown that tissues exhibit nonlinear behavior to mechanical stimuli 

at finite strains. The nonlinear behavior is important to identify and differentiate healthy 

tissues and diseased tissues like cancerous lesions [25,26]. The physiological functioning 

of several tissues like arterial walls, cartilage etc. have been found to exhibit nonlinear 

behavior [27].  The underlying pathology of ex vivo breast tissues has been shown to 

depend on the degree of nonlinearity of the stress-strain relationship for the material [28, 

29].  

Breast tissues with malignant tumors are found to be much stiffer than a healthy 

tissue, at large strains. Therefore, determining the material parameters which govern the 

nonlinearity of the tissue is crucial in identifying cancerous lesions. Driven by the above 

finding of the importance of capturing the nonlinear behavior of tissues, there have been 

studies by several groups on in vivo tissues taking into account the heterogeneity induced 

by tumors. Nitta and Shiina proposed to quantify the nonlinear response of in vivo tissues 

by means of images which depict the slope of the strain contrast in the domain with the 

applied strain [30]. However, the model treats the tissue response as uniaxial and does not 

consider geometric nonlinearity. The study of geometric nonlinearity with a linear elastic 

material law (Hooke’s law) in tissues was undertaken by Skovoroda and Erkamp ([31] - 

[34]). Skovoroda et al [32] obtained an estimate of the nonlinearity of tissues by 

introducing a strain hardening parameter which is some kind of a “strain-slope” image 
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similar to Nitta and Shiina [30]. The geometric nonlinearity at large deformations is taken 

into account by Skovoroda et al [34], where the mechanical equilibrium is formulated as 

a PDE in the shear modulus 𝜇 with strains calculated from the measured displacement 

fields. The issue of noisy displacements, that creates a difficult problem to solve, is 

handled by performing an incompressibility processing (see [35]) to obtain a reasonably 

smooth lateral displacement as opposed to an extremely noisy and inaccurate measured 

displacement field in the lateral direction. This is done assuming availability of axial 

displacement data with a small noise level and an extremely noisy lateral displacement 

field. 

Hagan and Samani modeled the breast tissue based on different hyperelastic 

models, in particular Yeoh, polynomial, Ogden, Arruda-Boyce, and Veronda-Westmann 

and solved for the parameters of the models by matching an experimental force and a 

simulated force ([36] and [37]). The tissue surrounding the tumor was assumed to be 

known and the properties of the tumor was determined to capture the nonlinear 

biomechanical behavior of various types of benign and malignant tumors. It assumes the 

location of tumors to be known and their elastic properties to be constant throughout the 

tumor. However, it provides insight into the nonlinear mechanical behavior of different 

tumor types.   

The heterogeneous material properties based on hyperelastic models such as the 

modified Veronda Westmann model and the modified Blatz models were recovered for 

incompressible soft tissues under assumptions of plane stress and plane strain [38] - [39]. 

These papers also provide an estimate of how large the strain should be, at a given noise 
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level, for the nonlinear signal to be prominent enough to enable good reconstruction of the 

nonlinear parameter. The technique was applied to breast patient data at large 

deformations to identify tumors in breast tissues based on the values of the nonlinear 

parameter (see [40]). 

In all these studies the reconstruction of the nonlinear parameter is found to be 

more sensitive to noise than the shear modulus. Solving the inverse problem for the 

nonlinear parameter, especially at medium strains when the nonlinear signal is not that 

pronounced, requires a better method. 

1.4 Organization of Thesis 

In this thesis, a new parameter which is a function of the nonlinear parameter of 

the modified Blatz model (see [37]), 𝛾, and the invariants of the Cauchy Green tensor, is 

introduced to improve the estimation of the nonlinear parameter. The rest of the thesis is 

organized as following:  

Chapter II reviews the theory and finite element formulation of the nonlinear 

elasticity forward problem for incompressible materials. Specifically, details of Newton’s 

method to solve nonlinear equations due to geometric and material nonlinearity, and 

stabilization techniques to handle incompressibility are discussed. Then the inverse 

problem formulation is introduced with a brief description of the adjoint equations and the 

optimization scheme used.  

Chapter III introduces a new approach to improve the estimation of the nonlinear 

parameter 𝛾 in the modified Blatz model for plane strain incompressible problems. To this 
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end, a new parameter, 𝛽, is defined and the methodology and the steps in obtaining the 

solution to the inverse problem w.r.t this parameter are discussed.  

Chapter IV compares results obtained from the new approach to results from the 

previous methods. Different inclusion geometries and boundary conditions are tested and 

analyzed for improvement in the estimation of the nonlinear parameter.  

Chapter V concludes the thesis with a summary, drawbacks, and future work. 
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CHAPTER II 

THEORY OF NONLINEAR ELASTICITY AND INVERSE PROBLEMS 

In the context of biological soft tissues which exhibit highly nonlinear behavior 

the inverse problem becomes complicated and the solution method needs to be more 

sophisticated in order to achieve accuracy. In this chapter a description of the general 

nonlinear elasticity problem and the corresponding inverse formulation as derived in [37] 

is reviewed. A particular hyperelastic model namely the modified Blatz model for an 

incompressible material is discussed in detail under the plane strain assumption and the 

corresponding formulations are shown.  

This chapter is organized into 2 sections. The first section describes the forward 

problem in nonlinear elasticity and the finite element formulation for the same with 

stabilization terms required for an incompressible material modeled in plane strain. The 

second section formulates the inverse problem in terms of a cost function and a 

regularization term. A description of the minimization scheme and the gradient calculation 

by the adjoint equations is also included.  

2.1 Forward Problem in Nonlinear Elasticity 

The forward problem in elasticity refers to the boundary value problem that needs 

to be solved in order to predict the mechanical response of a material given the material 

properties. The boundary value problem for any material is written in terms of the 

equilibrium equations and the boundary conditions as follows. (All equations are written 

in the Lagrangian frame) 

 ∇ ∙ (𝑭𝑺) = 0   𝑖𝑛  Ω0           ( 1 ) 
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 𝒖 = 𝒈   𝑜𝑛  Γ𝑔         ( 2 ) 

 

 𝑭𝑺 ∙ 𝒏 = 𝒉   𝑜𝑛  Γℎ          ( 3 ) 

 

And the constraint due to incompressibility of the material is given by  

 det (𝑭) − 1 = 0   𝑖𝑛  Ω0          ( 4 ) 

 

where 𝑭 is the deformation gradient and 𝑺 is the second Piola-Kirchhoff stress tensor. The 

Neumann boundary conditions are described by Eq. (3) where 𝒉 is the prescribed traction 

on the undeformed boundary Γℎ on which n is the unit outward normal. Dirichlet boundary 

conditions are specified in Eq. (2) in terms of 𝒈 which are the prescribed displacements 

on the undeformed boundary Γ𝑔. The boundaries Γℎ and Γ𝑔  are assumed to satisfy 𝜕Ω0 =

Γ𝑔 ∪ Γℎ 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and  Γ𝑔 ∩ Γℎ = ∅ meaning the entire boundary is classified into regions where 

displacement is specified and regions where traction is specified.   

In addition to the equations and constraints given in Eqs.(1)-(4), the constitutive equation 

of the material is required to solve the boundary value problem. A hyperelastic material is 

defined by a unique strain energy density function from which the constitutive relation for 

the material is derived. For a general hyperelastic material of strain energy density W(C) 

which is nonlinear, the second Piola-Kirchhoff stress S is given by  

 
𝑺 = −𝑝𝐽𝑪−1 + 2

𝜕𝑊(𝑪)

𝜕𝑪
          

( 5 ) 

 

where p is the pressure and J is the Jacobian which is the determinant of the deformation 

gradient here. Different hyperelastic models have different forms of the function W(C) and 

is usually written in terms of the invariants of C which is the right Cauchy-Green 

deformation tensor. 
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2.1.1 Weak Formulation for Finite Element Analysis  

The weak form for FE analysis of the boundary value problem described in Eqs. 

(1)-(4) in its strong form can be derived by multiplying Eq. (1) by a vector test function 

and equating the integral over the reference domain to zero. Then by applying integration-

by-parts over the domain and enforcing traction boundary conditions the weak form is 

obtained. The incompressibility constraint is also enforced in a weak sense by multiplying 

by another test function and integrating it over the reference domain. The equations of the 

weak form are given by:  

 
∫ 𝑤𝑘,𝑖𝐹𝑘𝑗𝑆𝑖𝑗𝑑Ω0

 

Ω0

+ ∫ (𝐽 − 1)𝑣 𝑑𝛺0

 

Ω0

−  ∫ 𝑤𝑖ℎ𝑖  𝑑Γ0

 

Γh

= 0          
( 6 ) 

 

∀𝑾 ≡ [𝑤, 𝑣] ∈ 𝒬 × 𝒫 

where the solution of Eq. (6) is solved for displacements and pressure represented by the 

vector 𝑼 ≡ [𝒖, 𝑝] ∈  ℳ × 𝒫.  

The functional sub-spaces are defined by  

   𝒬 = {𝒘|𝑤𝑖 ∈ 𝐻1(Ω0); 𝑤𝑖 = 0 𝑜𝑛 Γ𝑔 }         ( 7 ) 

 

 ℳ = {𝒖|𝑢𝑖 ∈ 𝐻1(Ω0); 𝑢𝑖 = 𝑔𝑖 𝑜𝑛 Γ𝑔 }          ( 8 ) 

 

 𝒫 ⊆ 𝐿2(Ω0)       ( 9 ) 

 

The weak form in Eq. (6) can be written in the semi-linear form as  

 𝒜(𝑾, 𝑼; 𝝍) − (𝒘, 𝒉)Γh
= 0       ( 10 ) 
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where 𝒜(𝑾, 𝑼; 𝝍) includes the combination of the first two terms in Eq. (6) and (𝒘, 𝒉)Γh
 

represents the surface integral of the traction in the third term. 𝝍 denotes the vector of 

material parameters for a given hyperelastic model.  

The weak form is then discretized which results in a nonlinear system of equations 

from which the displacement and pressure are to be solved. The nonlinear system of 

equations can be solved by linearization and using the Newton-Raphson method. 

2.1.2 Hyperelastic Models and Strain Energy Density Functions 

The hyperelastic models typically used to describe soft tissues produce exponential 

stiffening with increase in strain [36] – [37]. Specifically, the modified Blatz model that 

is used in this thesis has a strain energy density function given by  

  
𝑊 =

𝜇

2𝛾
 (𝑒

𝛾(𝐽
−

2
3𝐼1−3)

− 1)          
( 11 ) 

 

where 𝜇 and 𝛾 are the two material parameters of the model. 𝜇 is interpreted as the shear 

modulus at zero strain and 𝛾 captures the nonlinearity of the material response at large 

strains. 𝐼1 = 𝑡𝑟𝑎𝑐𝑒(𝑪) is the first principal invariant of the Cauchy Green tensor and J 

being the determinant of the deformation gradient represents the volume change of the 

material. The shear modulus 𝜇  dominates the response of the material at small strains and 

𝛾 governs the exponential stiffening of the material. The second Piola Kirchhoff stress for 

this material can be derived in terms of the volumetric and deviatoric part from Eq. (5) 

and Eq. (11) as  

 𝑺 = −𝑝𝐽𝑪−1 + 𝜇 𝐽−
2
3(𝑰 −

1

3
𝐼1𝑪−1)𝑒

𝛾(𝐽
−

2
3𝐼1−3)

     
( 12 ) 
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for which the Cauchy stress is given by  

 
𝝈 = −𝑝𝑰 + 𝜇 𝐽−

5
3(𝑭𝑭𝑻 −

1

3
𝐼1𝑰)𝑒

𝛾(𝐽
−

2
3𝐼1−3)

       
( 13 ) 

 

 

The hydrostatic pressure is given by 𝑝 = −
𝑡𝑟𝑎𝑐𝑒(𝜎)

3
 . The material tangent tensor for this 

model can been derived as  

𝒞𝑖𝑗𝑘𝑙 = 2
𝜕𝑆𝑖𝑗

𝜕𝐶𝑘𝑙
= 4

𝜕2𝑊

𝜕𝐶𝑖𝑗𝜕𝐶𝑘𝑙
− 2

𝜕

𝜕𝐶𝑘𝑙
(𝑝𝐽𝐶𝑖𝑗

−1)        

 
   𝒞𝑖𝑗𝑘𝑙 = 2𝜇𝑒

𝛾(𝐽
−

2
3𝐼1−3)

(𝛾𝐿𝑖𝑗𝐿𝑘𝑙 −
1

3
𝐶𝑘𝑙

−1𝐿𝑖𝑗 + 𝒟𝑖𝑗𝑘𝑙) − 𝑝ℰ𝑖𝑗𝑘𝑙                ( 14 ) 

 

 

where 

 
𝐿𝑖𝑗 = 𝐽−

2
3 (−

1

3
𝐼1𝐶𝑖𝑗

−1 + 𝛿𝑖𝑗)     
( 15 ) 

 

 
𝒟𝑖𝑗𝑘𝑙 = −

1

3
𝐽−

2
3 (𝛿𝑘𝑙𝐶𝑖𝑗

−1 −
1

2
𝐼1(𝐶𝑖𝑘

−1𝐶𝑗𝑙
−1 + 𝐶𝑖𝑙

−1𝐶𝑗𝑘
−1))   

( 16 ) 

 

 ℰ𝑖𝑗𝑘𝑙  = 𝐽(𝐶𝑖𝑗
−1𝐶𝑘𝑙

−1 − 𝐶𝑖𝑘
−1𝐶𝑗𝑙

−1 − 𝐶𝑖𝑙
−1𝐶𝑗𝑘

−1)      ( 17 ) 

 

 

2.1.3 Stabilization of the FEM Formulation for Incompressible Materials 

Discretization of the weak form given in Eq.( 6 ) using finite dimensional 

subspaces, followed by linearization for the Newton-Raphson methods leads to a system 

that does not satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) conditions (see [41]) 

when equal order polynomials are used to approximate the displacements and pressure 
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fields [39]. The linearized system of equations result in a typical saddle point problem 

which is given by 

 
[
𝑲𝟏𝟏 𝑲𝟏𝟐

𝑲𝟐𝟏 𝟎
] {

𝒖
𝒑} =  {𝑅𝐻𝑆}     

( 18 ) 

 

The matrix 𝑲𝟏𝟐 results in spurious oscillations in the pressure fields and locking in the 

displacement field because it does not satisfy the inf-sup conditions for discrete systems. 

In the formulation of the forward problem for incompressible materials in this thesis, the 

stabilized finite element approach based on the streamline upwind (SUPG) method (see 

[42]) is used. As a result, an additional stabilization term is added to the weak form which 

stabilizes the equations. The modified set of equations are given by  

 𝒜(𝑾ℎ, 𝑼ℎ; 𝝍) + ℛ(𝑾ℎ, 𝑼ℎ; 𝝍) = (𝒘ℎ, 𝒉)Γh
     ( 19 ) 

 

∀𝑾𝒉 ≡ [𝑤ℎ, 𝑣ℎ] ∈ 𝒬ℎ × 𝒫ℎ 

where the stabilization term is given by  

 
ℛ(𝑾ℎ, 𝑼ℎ; 𝝍) = − ∑(𝜏∇. (𝑭𝑺), 𝑭−𝑇∇𝑣ℎ)Ω0

𝑒

𝑛𝑒𝑙

𝑒=1

   
( 20 ) 

 

The solution of Eq.( 19 ) gives the displacements and pressure of the boundary value 

problem represented by the vector 𝑼 ≡ [𝒖, 𝑝] ∈  ℳ × 𝒫.  

In Eq. (20), (. , . )Ω0
𝑒  denotes the L2 (Ω0

𝑒) inner product evaluated in the interior of the eth 

element and  

 
𝜏 =

𝛼ℎ2

2𝜇
     

( 21 ) 
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where 𝜏 comprises of a factor 𝛼 ≈ 1/2 , the shear modulus 𝜇 , and h represents the 

characteristic length of the element which is the diameter of the circumcircle of triangular 

elements. The stabilization term can be simplified as (see [43]) 

 
ℛ(𝑾ℎ, 𝑼ℎ; 𝝍) = ∑(𝜏𝐽𝑭−𝑇∇𝑝ℎ, 𝑭−𝑇∇𝑣ℎ)Ω0

𝑒

𝑛𝑒𝑙

𝑒=1

     ( 22 ) 

 

The above stabilization term produces a matrix system which is more stable, prevents 

solving a saddle point problem and as a result circumvents the LBB condition. The final 

linearized matrix system is given by  

 
(

𝑲𝟏𝟏 𝑲𝟏𝟐

𝑲𝟐𝟏 𝑲𝟐𝟐
) (

𝑢
𝑝) = (𝑅𝐻𝑆)     ( 23 ) 

 

where the linearized stiffness matrix is positive definite.  

2.2 Inverse Problem Formulation 

The inverse problem for incompressible materials has been formulated as an 

optimization problem as described in [39] and [43] where the material parameters are 

optimized to fit the measured displacement fields. A regularization term is also added to 

the optimization problem to reduce noise amplification in the material parameters caused 

by noise in the displacement measurements. The limited BFGS algorithm [44] is used to 

solve this optimization problem. This algorithm requires the calculation of gradients of 

the objective function and this is achieved by the adjoint equations which are briefly 

described in section 2.2.2 and in detail in [39]. In each iteration a forward problem and an 

adjoint problem is solved.  
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2.2.1 Statement of the Inverse Problem  

The inverse problem is posed as a constrained minimization problem whose 

objective function is given by  

 

𝜋 =
1

2
∑ 𝑤𝑖‖𝑻𝒖𝒊 − 𝑻𝒖𝒎𝒆𝒂𝒔

𝒊 ‖
0

2
+

1

2
∑ 𝛼𝑗𝑅(𝜓𝑗)

2

𝑗=1

𝑛

𝑖=1

 ( 24 ) 

 

where the material properties are 𝝍 = [𝜓1, 𝜓2] = [𝜇, 𝛾]. The optimization is constrained 

such that the computed displacements 𝒖𝒊 satisfy the equilibrium equations and boundary 

conditions of the boundary value problem in the weak form. The first term in equation Eq. 

(24) minimizes the discrepancy in the measured and computed displacement fields where 

the brackets ‖. ‖0 denote the L2 norm. wi are the weights assigned to each displacement 

field depending on the magnitude of the displacement. The tensor T is a diagonal tensor 

that assigns weight to each component of the displacement field. 

The second term in Eq. (24) is the regularization term which helps alleviate the ill-

posed nature of the inverse problem. The regularization parameter 𝛼𝑗 depends on the noise 

level and can be chosen by the L-curve method or Morozov’s principle [46]. For analysis 

in this paper the total variation diminishing (TVD) regularization is used which is defined 

as  

 
𝑅(𝜓𝑗) = ∫ √|∇𝜓𝑗|

2
+ 𝑐2  𝑑Ω0 

 

Ω0

     ( 25 ) 

 

where c is a small constant value to ensure smoothness of the regularization term when 

|∇𝜓𝑗| = 0.  
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2.2.2 Adjoint Equations  

The gradients of the objective function defined in equation Eq. (24) have to be 

evaluated for the discretized problem. The gradient at the discrete level is the vector 

containing the changes in the value of the objective function for small changes in the 

material parameter applied one node at a time. This means the most direct way to obtain 

the gradients would involve solving the forward problem the number of times equal to the 

number of nodes. A more efficient way in the form of the adjoint equations was first 

introduced by Oberai et al [16, 17]. Obtaining the gradient of the objective function 

through the adjoint equations would involve solving the forward problem and an adjoint 

problem once as compared to solving the forward problem many times as part of the direct 

calculation of gradients. The details of the equations for a general nonlinear hyperelastic 

model and are not presented here. The reader is directed to [39, 43] for the derivations of 

these equations.  

A continuation in material properties scheme as described in [43] is used here as 

well to reduce computational effort in solving the inverse problem. The idea here is to use 

the converged solution of a previous BFGS iteration of the inverse problem as the initial 

guess to solve the forward problem in the current iteration by just using one load step 

instead of many under large deformations. 

In this chapter the theory and formulation of the general forward and inverse 

problems in nonlinear elasticity were reviewed. The purpose of this chapter is to provide 

the reader with a broad understanding of the concepts needed in order to appreciate the 

new parameter introduced in the next chapter and the results following that.  
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CHAPTER III 

IMPROVED ESTIMATION OF NONLINEAR BEHAVIOR WITH NEW 

PARAMETER 

The reconstruction of the nonlinear parameter, 𝛾, which characterizes the 

nonlinear behavior of tissues, in the presence of noisy displacement data is a complicated 

and challenging problem to solve. It has been shown that cancerous tissues stiffen at a 

much higher rate than healthy tissues with increasing strain (see [28, 29]). Thus, obtaining 

accurate estimations of the nonlinearity parameter is crucial to distinguish cancerous from 

healthy tumors.  

In the following subsections, the difficulties and inaccuracies in the previous 

method to obtain  𝛾 at high noise levels in the displacement field are discussed.  

3.1 Measures of Nonlinearity 

3.1.1 Previous Method of Estimating 𝛾 

Studies about the reconstruction of the two material properties of the modified 

Blatz model, namely the shear modulus 𝜇 and the nonlinear parameter 𝛾, for numerical 

experiments and for experimental data have been published. The following observations 

are made regarding the existing direct approach taken to reconstruct the desired 

parameters.  

For inverse reconstructions involving only displacement boundary conditions, the 

inhomogeneous shear modulus 𝜇 can be recovered only up to a multiplicative constant. 

This can be shown from the equilibrium equation defined in Eq. (1). Due to the particular 

form of total variation diminishing(TVD) regularization, the regions of lower 𝜇, i.e. softer 
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regions, are driven to the lower bound specified for the minimization problem. In the case 

of a stiff inclusion in a soft background, the region outside the inclusion are driven to the 

lower bound. However, the ratio of the shear modulus of inclusion to background is still 

preserved. This property is very useful and can be used effectively to obtain accurate 

relative inclusion contrast.  

However, the reconstruction of the nonlinear parameter 𝛾 is not as simple or well 

behaved as that of the shear modulus. It has been observed that the lower bound used in 

the optimization process significantly affects the solution obtained but with no contrast 

 

Figure 2. (a) Reconstructed 𝜸 – Lower Bound 1, (b) Reconstructed 𝜸 – Lower 

Bound 0.01 

 

 

Figure 1. Target 𝜸 (comparison)  
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preservation. In the presence of displacement noise levels close to 3%, which is commonly 

observed in actual ultrasound measurements, the solution to the inverse problem (𝛾 

distribution) has been found to be highly sensitive to the region of search for the solution. 

The results vary significantly for different lower bounds as shown in Figure 2. The 

reconstructions reported in [37] at high nonlinearities (meaning large enough strain to 

observe significant nonlinearity) are well recovered owing to the reason that the lower 

bound is close to the target value of 𝛾 in the background. However, when the problem was 

attempted to be solved with a lower bound smaller than the target, it was observed the 

reconstructions reduced in quality in terms of shape and contrast and in some cases the 

nonlinear signal was not even observable. This is a major issue because in actual tissues, 

e.g., breast tissues, the background value of 𝛾 is not known, that might lead to poor 

reconstructions, resulting in biased interpretation of tissue pathology. 

The stress-strain relationship in 3D defined in Eq. (13) can be expressed for 

uniaxial loading with stretch 𝜆 as  

 
𝜎 = 𝜇 (𝜆2 −

1

𝜆
) 𝑒𝛾(𝜆2+

2
𝜆

−3)
 ( 26 ) 

 

From the uniaxial stress stretch plot shown in Figure 3, one can observe that at low 

stretch values the curves corresponding to different 𝛾 values are very close to each other 

and will be indistinguishable in the presence of dominating noise. A minimum strain 

required to capture the nonlinear signal can thus be calculated to distinguish between 𝛾 

values [36]. From Figure 3 the minimum strain also depends on the contrast of 𝛾 in the 

problem. Smaller contrasts require higher strains and larger contrasts require smaller 
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strains for a good reconstruction when there is noise in the displacement data. Considering 

the issues outlined above for the previous method of recovering the nonlinearity parameter 

𝛾, a new method is sought. 

3.1.2 Definition of a New Parameter for Nonlinear Behavior 

The shear modulus reconstruction has the advantage of preserving the relative 

contrast as described before. It is understood that relative contrast reconstructions of the 

shear modulus work very well with the regularizations utilized in this thesis. Thus, we 

attempt to make use of this observation to introduce a new parameter that improves the 

nonlinear parameter reconstruction. In the strain energy density function of the modified 

 

Figure 3. Uniaxial Stress-stretch plot for different values of 𝜸 and a constant shear 

modulus value of 1, (Ref. [43]) 
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Blatz model defined in Eq. (12), the shear modulus, 𝜇 , and the exponential term appear 

as a product. So the idea is to define a new parameter, 𝛽, that combines them, as 

 𝛽 = 𝑒𝛾(𝐼1−3) ( 27 ) 

 

which will lead to the definition of the second Piola Kirchhoff stress as  

 𝑺 = −𝑝𝐽𝑪−1 + 𝜇 𝛽𝐽−
2
3(𝑰 −

1

3
𝐼1𝑪−1)     

( 28 ) 

 

and the material tangent becomes  

 
   𝒞𝑖𝑗𝑘𝑙 = 2𝜇𝛽 (−

1

3
𝐶𝑘𝑙

−1𝐿𝑖𝑗 + 𝒟𝑖𝑗𝑘𝑙) − 𝑝ℰ𝑖𝑗𝑘𝑙 ( 29 ) 

 

with the tensors in the above equation defined in Eqs. (15)-(17). It is noted that for the 

modified Blatz model studied here, the desired properties of the shear modulus can be 

obtained with 𝛽. This is because both parameters occupy an indistinguishable position in 

Eq. (28).  

The range of values that 𝛽 can take depends on the range of 𝛾 and 𝐼1 − 3. For 

incompressible materials one can show that  𝐼1 − 3 is always greater than 0. And from 

thermodynamic constraints on the hyperelastic Blatz model, 𝛾 is also always greater than 

0. From this, one can deduce that 𝛽 is always greater than 1. Under a given stress state,  𝛾 

and 𝐼1 − 3 act in an opposing fashion, i.e. higher the value of 𝛾 at a certain region lower 

the strain experienced in that region and vice-versa. It is important to note that the new 

parameter, 𝛽, is not an actual material property based on the model but rather a convenient 

parameter devised to make computations in the inverse problem simpler and possibly more 

accurate.  
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Now that the new parameter is introduced, we look at how the inverse problem is 

solved for 𝛽. In accordance with the introduction of 𝛽, the corresponding nonlinear finite 

element equations are modified. With the input of measured displacement data, obtained 

from numerical or physical experiments, the inverse problem is solved for the 𝛽 

distribution by minimizing the discrepancy in the measured and computed displacements. 

Suitably modified adjoint equations are used for the calculation of gradients and a TVD 

regularization scheme is implemented. It is straight forward to express the adjoint 

equations for this model and is omitted here. Finally, the regularization term given in Eq. 

(25) will be used for the reconstruction of the new parameter, 𝛽 .  

3.2 Estimation of Nonlinear Behavior with New Parameter 

3.2.1 Post Processing of 𝛽 to Obtain 𝛾 

The parameter 𝛽 in itself may not have a direct physical meaning with regard to 

the nonlinear behavior of the material, but it serves as an intermediate parameter to obtain 

the nonlinear parameter 𝛾 accurately which in turn characterizes the nonlinear behavior of 

the material. Therefore, once the reconstruction of 𝛽 is obtained by solving the inverse 

problem, post processing is needed to obtain the distribution of the “actual” nonlinear 

parameter, 𝛾, of the modified Blatz model. The computed displacement field in the 

objective function, under the constraint of the forward elasticity problem, is utilized after 

the inverse problem converges to calculate 𝛾 from 𝛽. This computed displacement field 

results in a strain field and invariants that are significantly smoother than that from the 

measured displacement field. Eq. (27) can be rewritten to obtain 𝛾 as  
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𝛾 =

ln(𝛽)

𝐼1 − 3
 

( 30 ) 

 

where the value of the first invariant, 𝐼1,  of the Cauchy Green Tensor, 𝑪, is calculated 

from the computed displacement field.  

3.2.2 Uniqueness of 𝛽 𝑎𝑛𝑑 𝜇  Using Dirichlet Boundary Conditions 

When the problem of interest consists of boundary conditions only in the form of 

prescribed displacements, from Eq. (28) it can be deduced that values of  𝛽 and 𝜇 can be 

determined only up to a multiplicative factor. This idea has been discussed in detail for 

the shear modulus 𝜇 and the pressure p (see [43]). When the term 𝜇𝛽 in Eq. (28) is chosen 

as 𝜇(𝒙)𝛽(𝒙) = 𝛽0𝜇(𝒙)𝛽𝑟(𝒙) and the pressure is chosen as 𝑝(𝒙) = 𝑝0 + 𝑝𝑟(𝒙), where 𝛽0 

and 𝑝0 are constants, the equilibrium equation Eq. (1) would be satisfied for any values of 

𝛽0 and 𝑝0. 𝑝𝑟(𝒙) and 𝛽𝑟(𝒙) are the values of as 𝑝 and 𝛽 obtained as solutions from the 

inverse problem.  

In [43] it is argued that in the presence of zero normal traction conditions the value 

of 𝑝0 is zero.  So when using only displacement boundaries, it is important to take care of 

the calibration of 𝜇 and 𝛽 from the inverse problem solution. This is especially relevant in 

terms of application of this method in identification of tumors in biological tissues using 

ultrasound techniques. These parameters could potentially be calibrated using an overall 

measured force and the solution of 𝛾 distribution is obtained from Eq. (30). The calibration 

of the parameter 𝛽 is needed when only Dirichlet boundary conditions are specified to 

estimate the multiplicative constant, 𝛽0. Let  𝛽 and 𝛽𝑟 be defined by Eq. (27) with 𝛾 and 

𝛾𝑟 respectively, and 𝛽 = 𝛽0𝛽𝑟, then  
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𝑒𝛾(𝐼1−3) = 𝑒( 𝛾0(𝐼1−3)+𝛾𝑟(𝐼1−3) ) 

𝛾 = 𝛾0 + 𝛾𝑟 ( 31 ) 

 

where 

 
𝛾0(𝒙) =

ln(𝛽0)

𝐼1(𝒙) − 3
 

( 32 ) 

 

The value of 𝛽0 can be found from the equation of force at the boundary which is 

given in terms of the stress from Eq. (3) by  

 
𝑇 =  ∫ 𝑭𝑺 ∙  𝒏 𝑑𝐴

 

Γℎ

 
( 33 ) 

 

where S is a function of 𝛽0 and 𝛽𝑟, as seen from Eq. (28), and 𝑇 is the total force at the 

boundary Γℎ.  

Thus it is shown that, before calibration, the calculation of 𝛾 is off by an additional 

term 𝛾0 which is a function of the first invariant of strain and so is not necessarily a 

constant over the domain. This creates a difficulty especially when the inverse problem is 

solved for 𝛾 directly. Eq. (32) shows that calibration for 𝛾 is not straight forward as the 

calibration factor 𝛾0 is a function of the strain, 𝐼1(𝒙) − 3, which varies in space. However, 

it is much simpler to calibrate for 𝛽. Results from both methods are presented and 

compared in Chapter IV.   
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CHAPTER IV 

NUMERICAL EXPERIMENTS  

In this chapter results, comparison and discussion of different numerical 

experiments based on the methods described in Chapter III are presented. It is organized 

into two major sections corresponding to two different inclusion geometries in 2D. In each 

section the results from the previous and new methods are compared. In the numerical 

experiments, measured displacement data is simulated by obtaining the displacement field 

based on a known target distribution of 𝜇 and 𝛾 and then adding random white noise. This 

is then fed as input to the inverse solver to recover the known target distributions. The 

displacement data is added with noise to emulate experimental observations obtained from 

ultrasound devices. The parameters 𝜇 and 𝛾  can either be obtained simultaneously or in 

sequence with two different displacement fields [43]. Because of the dependability of the 

parameter 𝛽 on the strain, 𝐼1 − 3, its distribution varies depending on the loading. So in 

all reconstructions in this thesis, the sequence approach is followed where the shear 

modulus distribution is first separately reconstructed with a smaller loading. The material 

parameter reconstructions obtained by solving the inverse problem by both methods are 

presented in this chapter along with discussions. 

4.1 One Big Inclusion 

A target material distribution corresponding to a large stiff inclusion at the center 

of the domain is studied first. Here two sub-problems are considered- one with a higher 

shear modulus and higher 𝛾 in the inclusion and the other one with a uniform shear 
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modulus distribution but higher 𝛾 in the inclusion. The following sections contain results 

and discussion for the two sub-problems. 

4.1.1 Inclusion with Contrast in Both 𝛾 and 𝜇   

The target distributions for μ and γ are shown in Figure 4&7, where one inclusion 

of diameter 40% the size of the domain, is located at the center. Two separate loadings of 

compressive traction are applied as boundary conditions on the top surface, while the sides 

 

Figure 5. Horizontal Centerline plot of the Shear  

Modulus 

 

Figure 4. (a) Target 𝝁, (b) Reconstructed 𝝁 (3% noise)  
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are subjected to zero traction and the bottom surface is fixed in the direction of loading 

while allowed to slide freely in the lateral direction. The first smaller loading is of 

magnitude 0.05 and second larger loading is 0.6. The center of the bottom surface is fixed 

both axially and laterally to avoid rigid body motion causing instability in the FEM 

solution. The unit square domain shown in the figure is subjected to a uniform traction 

compressive loading on the top. The system is solved by discretizing the domain into a 

mesh of 7200 triangular elements. The measured displacement data is obtained for each 

loading by solving the forward problem for the target distribution shown in Figure 7, and 

adding Gaussian white noise of magnitude 3% to the displacement in the direction of 

loading. The inverse problem is then solved by matching the displacements in the axial 

direction.  

The reconstruction of the shear modulus can be obtained by ignoring the effect of 

the nonlinear parameter for the smaller loading because the deformations are small. This 

reconstructed shear modulus distribution, shown in Figure 4(b)&5, is then fixed in order 

to obtain the reconstructions of the nonlinear parameter, 𝛾 and the new parameter 𝛽 using 

the larger loading.  

Traction Controlled Loading 

In the first sub-case, the boundary conditions or loading on the top surface of the 

domain are prescribed in terms of traction. The reconstruction of 𝛽 for the larger loading 

condition is given in Figure 7(a). Suitable values are chosen for the regularization 

parameter, 𝛼, described in Eq. (24). The corresponding 𝛾 distribution calculated during 

post processing is shown in Figure 6&7(b). 
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 The lower bound used for the reconstruction of 𝛽 is 1.01 and the upper bound is 

5. These bounds were chosen to approximately be equivalent to a lower bound of 0.01 and 

an upper bound of 30 in the direct optimization problem for 𝛾. The reconstruction of 𝛾 

from the direct optimization of 𝛾, which is the previously existing method, is given in 

Figure 7(b). The superior performance of reconstruction using the new parameter is easily 

seen from Figure 6&7(b). 

The quality of the reconstruction of 𝛾 is compromised in terms of the shape of the 

recovered inclusion and the contrast in the previous method. The new method produces 

 

Figure 7. Traction Controlled: (a) 𝜷 reconstruction, (b) 𝜸 reconstruction from 𝜷 

by post-processing  

 

Figure 6. Traction Controlled: (a) Target 𝜸 distribution, (b) 𝜸 reconstruction 

from direct optimization with lower bound 0.01 
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good reconstructions at medium strains which the previous method is shown to fail in the 

presence of noise. This is because of less pronounced nonlinearity at medium strains as 

discussed in section 3.1.1 and illustrated in Figure 3. When the applied load is not 

sufficiently large to invoke strong nonlinearity or when the nonlinearity is not strong 

enough (low 𝛾), noise in the displacement data can result in poor contrast of inclusion 

versus background. This has been discussed in [36] and a rough estimate of the 

relationship between the noise level and the applied strain has been derived. However, this 

estimate does not address the fact that the effect of the noise level also depends on the 

mesh size chosen and so we conclude that this estimate is not very robust. In this example, 

the magnitude of the traction loading is controlled in such a way as to induce medium 

strains (around 10%) in order to showcase the effectiveness of the new parameter. 

 

Figure 8. Traction Controlled : Horizontal Centerline plot of 𝜸 obtained from the 

two methods compared with the target 
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Dirichlet Boundary Conditions 

For the purpose of comparison, the same loading considered in the previous section 

is applied in terms of specified displacements on the top surface instead of uniform 

traction. The displacement response at the top surface is obtained from the forward 

problem of a uniform traction loading and prescribed as boundary conditions on the top 

surface for the inverse problem. It is to be noted that both problems are physically 

equivalent. It is the method of enforcing boundary conditions that differs. Since most 

 

Figure 10. Dirichlet BC: (a) 𝜷 reconstruction, (b) 𝜸 reconstruction from 𝜷 by 

post-processing  

 

 

Figure 9. Dirichlet BC: (a) Target 𝜸 distribution, (b) 𝜸 reconstruction from 

direct optimization with lower bound 0.01  
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ultrasound devices measure displacements at the boundaries and the interior of the 

specimen, the behavior of the new method under displacement boundary conditions is 

studied.  

The 𝛽 reconstruction for this case is shown in Figure 10(a) and the corresponding 

𝛾 that is calculated during post-processing is shown in Figure 10(b).  In the new method, 

the quality of recovered 𝛾 distribution is better in terms of shape definition and contrast of 

the inclusion than the previous method as can be seen from Figures 9(b)&10(b). The 

recovered 𝛾 distribution from the new method follows similar patterns in distribution in 

both cases considered because the strain distribution is the same as they are the same 

problem physically. However, as discussed in section 3.2.3, when only displacements are 

specified at the boundaries the reconstruction of 𝛽 is accurate only up to a multiplicative 

 

Figure 11. Dirichlet BC: Horizontal Centerline plot of 𝜸 obtained from the two 

methods compared with the target 
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constant. The figures shown for reconstructed 𝛾 distribution are obtained after calibrating 

the solution of 𝛽 with a multiplicative constant, 𝛽0, which is calculated from the total force 

on the top surface. In this example, 𝛽0 was calculated to be 1.011 and 𝛾0 was found from 

𝛽0 by Eq. (32) and calibrated according to Eq. (31).  

4.1.2 Inclusion with Contrast Only in 𝛾   

 The target distribution considered in this example has an inclusion with contrast 

in 𝛾 as shown in Figure 6(a), but has a uniform 𝜇. A compressive traction loading of 0.3 

 

Figure 13. Uniform 𝝁: (a) 𝜷 reconstruction, (b) 𝜸 reconstruction from 𝜷 by post-

processing for displacement B.C. 

 

Figure 12. Uniform 𝝁: (a) Target 𝜸 distribution, (b) 𝜸 reconstruction from direct 

optimization with lower bound 0.01  



 

33 

 

units is applied on the top surface for this case. A sequential process is followed where the 

nonlinear parameters are solved by fixing the shear modulus distribution which is uniform 

in this case. The bounds on the values of 𝛽 and 𝛾 are the same as used in the previous 

cases. The 𝛽 distribution is shown in Figure 12(a) and the final solutions of 𝛾 from both 

methods are shown in Figures 12(b)&13(b). As seen from the plots, the solutions obtained 

from both methods match closely and so it is shown that the new method is as good as the 

previous method, if not better, in an extreme case of uniform 𝜇. The reason behind 

considering this case is to show that the 𝛽 method is able to handle distributions where 

there is no contrast in strain arising from the presence of a shear modulus, 𝜇. It is important 

to demonstrate this example where 𝛾 is a dominating component in the 𝛽 distribution, 

 

Figure 14. Uniform 𝝁: Horizontal Centerline plot of 𝜸 obtained from the two 

methods compared with the target 
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whereas in the previous example the effect of the contrast in the invariant of strain, 𝐼1 − 3, 

induced by 𝜇 and 𝛾 were equal but in an opposing sense.  

It is worth noting that a clear inclusion in the 𝛽 distribution is seen in this example 

because 𝐼1 − 3 is more uniform compared to the previous examples. This can be explained 

by looking at the definition of 𝛽 in Eq. (34) which is the exponential of the product of 

𝐼1 − 3 and 𝛾. For any given loading these two quantities are inversely related, i.e. higher 

the value of 𝛾, lower the deformation (i.e. 𝐼1 − 3) and vice-versa. So in the previous 

examples the contrast in 𝜇 created an inverse contrast in 𝐼1 − 3 and so its product with 𝛾, 

i.e. 𝛽, was pretty uniformly distributed. The previous method provides reasonably good 

results in this particular example possibly because the strain is sufficiently large due to a 

uniform 𝜇.  

These two problems successfully show the counteracting effects of 𝛾 and 𝐼1 − 3 

on 𝛽 as can be seen from Figures 7(a) & 13(a). The new method is able to extract the right 

contrast in 𝛾 in both problems. The effect of the type of boundary conditions and different 

shear modulus distributions have been shown in this section. However, the effect of the 

size and multiple inclusions have to be studied. This is discussed in the next section.  
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4.2 Multiple Smaller Inclusions 

In this section, the performance of the new method for a case with multiple small 

inclusions of varying 𝜇 and 𝛾 is demonstrated. The target shear modulus distribution is 

shown in Figure 15(a) and the target distribution of 𝛾 is shown in Figure 17(a), where 3 

small inclusions of varying 𝛾 values are shown. The diameter of each inclusion is about 

20% of the domain. The value of 𝛾 is 1 in the background, 5 in the left most inclusion, 10 

 

Figure 15. Multiple Inclusions: (a) Target 𝝁, (b) Reconstructed 𝝁 (3% noise)  

 

 

Figure 16. Multiple Inclusions: Horizontal Centerline plot of the shear  

modulus  
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in the right most inclusion and 15 in the center inclusion. This target distribution is chosen 

to show the effectiveness of the new method for various inclusions. Uniform traction 

loading conditions of magnitudes specified in section 4.1.1, i.e. 0.05 and 0.6, are applied 

on the top surface and 3% Gaussian noise is added to the displacement field in the direction 

of loading. The boundary conditions for the other sides of the domain are the same as in 

the previous examples. The reconstructed shear modulus distribution and the comparison 

with the target distribution are shown in Figure 16. For the larger loading producing 

 

Figure 18. Multiple Inclusions: (a) 𝜷 reconstruction, (b) 𝜸 reconstruction from 𝜷 

by post-processing  

 

Figure 17. Multiple Inclusions: (a)  𝜸  target distribution (for comparison), (b) 𝜸 

reconstruction from direct optimization with lower bound 0.01 
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approximately 10% strain at the top, the effect of 𝛾 is considerable and is therefore used 

for reconstructing its distribution.  

 Comparing the reconstruction of 𝛾 from both methods, there is a significant 

difference in the quality of reconstruction. The new method produces better inclusion 

shapes than the previous method. Though, from Figure 19 it seems like the contrast is 

better achieved from the previous method, a closer look at Figure 17(b) will reveal that 

the uniformity of 𝛾 inside the middle inclusion is compromised. There is also significantly 

less noise in the background for the image produced from the new method.  

The low values of 𝛾 in the left and right inclusions and the presence of larger 𝜇 in 

the same locations (therefore low strain in the inclusions), results in low nonlinear 

response in those locations. This leads to poor reconstruction by the previous method in 

 

Figure 19. Multiple Inclusions: Horizontal centerline plot of 𝜸 obtained from the 

two methods compared with the target 
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the presence of noise because of reasons discussed in section 3.1.1. However, 𝛽, which is 

a combination of 𝛾 and 𝐼1 − 3,  is shown to handle noisy displacements better and 

produces solutions of higher quality overall.  

 4.3 Discussion 

The superior performance of the new method has been demonstrated for various 

examples. A qualitative explanation for this may be seen by noticing the regularization 

term in Eqs. (24)&(25). The total variation diminishing regularization term includes the 

spatial gradient of the solution which results in an overall smoothening of the parameter 

reconstructed. When the regularization parameter is appropriately chosen, the contrast in 

the distribution is recovered while overall the solution is smoothened. The regularization 

parameter serves as the weight for the spatial gradient and so choosing a high value can 

result in loss of contrast between the inclusion and the background while compromising 

on matching the measured displacement field. In the previous method, the regularization 

term caused a smoothness in 𝛾 which resulted in a smooth computed displacement field 

obtained from solving the forward problem.  

 

Figure 20: (a) Axial strain from new method, (b) Axial strain from previous 

method  
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However, in the new method the regularization term contains 𝛻𝛽 instead of 𝛻𝛾. 

From the definition of 𝛽 in Eq. (27), one can derive  

 

𝛻𝛽

𝛽
=

𝛾

𝐼1 − 3
(

𝛻𝛾

𝛾
+

𝛻(𝐼1 − 3)

𝐼1 − 3
 ) 

( 34 ) 

 

As the objective function is minimized the regularization term reduces 𝛻𝛽 which results 

in reduction of both 𝛻𝛾 and 𝛻(𝐼1 − 3) as shown in Eq. (34). In addition to smoothening 

in displacement caused by a smooth 𝛾, there is also an indirect smoothening of the 

computed displacements because of reduction in 𝛻(𝐼1 − 3). In the new method the 

computed displacement fields can be expected to be smoother and this is seen in Figure 

20. The axial strain plots for the two methods are shown for the multiple inclusions 

example. For both methods, the regularization parameter was chosen carefully in order to 

maintain contrast while achieving maximum smoothening. Though, it is possible to 

achieve the same level of axial strain smoothening with the previous method by using a 

higher regularization parameter, it would result in significant loss of contrast in the 

inclusion. The new method is able to smoothen the computed displacement field more 

while still maintaining the contrast of 𝛾 in the inclusion. It certainly helps that the post-

process calculation of 𝛾 in the new method is performed using a smooth displacement 

field.  

Moreover, by introducing 𝛽, the nonlinearity arising due to an exponential of the 

strain is conveniently removed. Post process calculation of 𝛾 from 𝛽 is done using the 

smooth strains that are obtained after convergence of the inverse problem. Thus, a higher 

level of smoothness in 𝛾 can be expected.  
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CHAPTER V 

CONCLUSION  

A new improvised method of obtaining distribution of parameters describing 

nonlinearity of heterogeneous soft tissues was proposed. The proposed method introduced 

a new parameter, 𝛽, for computational convenience, that reduced the degree of 

nonlinearity in the hyperelastic modified Blatz model used to describe the mechanical 

properties of soft tissues. Quality of reconstructions in terms of shape, contrast and 

background noise were assessed for the new method and compared with the existing 

method. It was demonstrated that the new method outperforms the previous method when 

the displacement field is polluted with considerable amount of random noise, through a 

variety of examples with different boundary conditions and target material parameter 

distributions. A qualitative reasoning was provided to explain the superior performance of 

the new method in terms of the degree of smoothness of the computed displacement field 

in both methods.  

The most significant drawback of the new method is that only one displacement 

field can be used for the inverse reconstructions. That is, multiple loading conditions and 

the corresponding responses cannot be used simultaneously as that would result in 

different 𝛽 distributions for each loading. Multiple loading conditions increase 

information about the material and therefore typically result in better quality of solutions 

with the previous method. This also implies that 𝜇 and 𝛾 cannot be obtained 

simultaneously in the new method. Some other drawbacks include lack of physical 
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meaning of 𝛽, the need for additional post-processing to obtain 𝛾 and restriction of 

application to a specific hyperelastic model for soft tissues in plane strain.  

In conclusion, the new method serves as an improvised tool in determining the 

nonlinear parameters of soft tissues and provides encouragement to develop similar tools 

for efficient and accurate determination of nonlinear properties of soft tissues. The most 

notable application of these techniques is in medicine where, like mentioned before, 

healthy and cancerous tissues can be differentiated based on stiffness (𝜇) and rate of 

stiffening (𝛾) with strain. (see [10], [40]).  
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