
A SYSTEM APPROACH TO STUDY THE U.S. POULTRY AND PORK

INDUSTRIES

A Dissertation

by

LEI GAO

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, James W. Richardson
Committee Members, David Bessler

Henry Bryant
Ke-li Xu

Head of Department, C. Parr Rosson

December 2016

Major Subject: Agricultural Economics

Copyright 2016 Lei Gao



ABSTRACT

In the presence of significant industrial consolidation and concentration in the

pork industry and complications of disease outbreaks facing today’s poultry industry,

as well as the increase in feed grain prices starting from 2007 strongly affecting the

U.S. livestock sectors, a more up-to-date partial equilibrium, sector-specific modelling

system is developed to facilitate analyzing the U.S. pork, broiler, egg, and turkey

sectors, understand their interactions with other sectors, and make more accurate

projections. The model can be used to analyze the effects of shocks to poultry

and pork sectors and evaluate policy proposals, especially for the broiler industry

where separate production regions have been included in the model to assist studying

regional events that affect one region but not another.

The partial equilibrium system was applied to quantify the effects of the 2015

highly pathogenic avian influenza (HPAI) outbreak on the U.S. poultry and egg

industries. The effects of the shock on production started to fade out after the second

year while the effects of the shock on exports lasted longer. Different levels of shocks

have also been assumed for broiler production in the AI-outbreak regions; although

this has not happened in reality, the simulation results help industry stakeholders

get prepared. Shocks on the broiler industry had larger effects on the other two

poultry sectors than on the pork sector since the three poultry industries are closely

correlated either from the supply side (broiler and egg) or from the demand side

(broiler and turkey) compared to the pork industry.
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1. INTRODUCTION

1.1 Statement of Problem

Livestock and poultry industries are very important to U.S. agriculture. Three

major sectors, cattle and calves, poultry and eggs, and hogs, accounted for 37 percent

of total farm cash receipts from all commodities in 2014 according to Farm Income

and Wealth Statistics [1]. They are also major staples for the American diet. In

2014, 58.4 pounds of broilers, 51.8 pounds of beef, 43.6 pounds of pork, and 12.5

pounds of turkey meat were consumed per capita according to World Agricultural

Supply and Demand Estimates (USDA)[2]. All three sectors have experienced sig-

nificant industry consolidation and concentration during the past couple of decades.

Four-firm concentration ratio (CR4), which calculates the percentage of total output

produced by the four largest firms in an industry, is often used to measure the de-

gree of concentration of the market. CR4 in livestock slaughter rose from 36 percent

and 34 percent in 1980 to 85 percent and 64 percent in 2012 for calves and hogs

respectively. Noteworthy increase in CR4 has also been witnessed in the poultry sec-

tor, from 14 percent and 23 percent in 1963 to 51 percent and 53 percent in 2012 for

broiler industry and turkey industry respectively[3, 4]. A recent study by Maisashvili

[5] analyzes the beef industries in sufficient details; and a close look at the poultry

and hog industries will be conducted in this dissertation, given their importance and

drastic changes.

Major structural changes exploiting scale economies have occurred in the U.S. hog

industry during the last twenty years. These structural changes, leading to increased

productivity in hog industry, mainly reflect in the following three aspects: increase

in use of production contracts, increase in market share of specialized operations,
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and increase in size of operations.

For the U.S. hog industry, production contracts usually stipulate that the con-

tractors have the control over some production decisions and provide feeder pigs

and management services for the growers; and the growers are paid for their labor

rendered as well as land and facilities provided. The reliance on formal production

contracts increased notably during the past 20 years: only 3 percent of all hog and

pig producers and approximately 5 percent of hogs sold by growers were under pro-

duction contracts in 1992 [6]; the proportions increased to 15 percent and 54 percent

respectively in 2012 [USDA Census of Agriculture 2012]. Among all producers in hog

industry, 98 percent of wean-to-feeder producers, 75 percent of feeder-to-finish pro-

ducers, and 50 percent of farrow-to-wean producers were operating under contracts

by 2009 [7].

Table 1.1: Percentage of Hog Farms of Different Types, 1992 and 2012

Year
Farrow to
Finish

Farrow to
Feeder

Finish
only

Farrow to
Wean

Nursery Other
All
Producers

1992 54 8 19 0 0 19 100

2012 27 8 37 9 2 17 100

Hog operations become more specialized in certain production stages. In 1992, 54

percent of U.S. hog farms were farrow-to-finish operations while the market share is

only 19 percent and 8 percent for the farms specializing in hog finishing and farrow-to-

feeder pig raising respectively according to U.S. Hog Production Costs and Returns

(USDA ERS 1992). After 20 years of development, the share of farrow-to-finish

operations decreased to 27 percent in 2012; and the more specialized hog producing

2



operators increased their market share, 37 percent for hog finishing operations and

19 percent for all types of feeder pig providers, according to Census of Agriculture

(USDA 2012) Table 1.1.

The number of U.S. hog farms declined by more than 70 percent over the past

thirty years from 243,398 in 1987 to 63,246 in 2012 ; while hog inventory maintained

a steady increasing trend as shown in Figure 1.1. From 1987 to 2012, the share of the

U.S. hog and pig inventory on farms with 2,000 head or more increased from around

20 percent to 90 percent as shown in Figure 1.2. Small farms with low production

efficiency exited the market; large hog enterprises benefiting from economy of scale

survive and thrive.

0

10000000
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30000000

40000000
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60000000

70000000

80000000

1987 1992 1997 2002 2007 2012

Hog Inventory on Farms with 1999 Head or Less 
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Figure 1.1: Number of Hog Farms and Hog Inventory 1987-2012
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Figure 1.2: Hog Inventory in Small and Large Farms 1987-2012

The shifts toward using of production contracts, larger farms, and more special-

ized production operations have mainly been driven by financial benefits, including

less product price risks and lower capital requirement for farmers; and advantages

of economies of scale for hog owners. The structural changes in the U.S. hog in-

dustry are also intensified in recent years due to surging feed cost. Starting from

2007, corn and soybean meal prices have risen unprecedentedly and reached a record

high after the worst U.S. drought in more than half a century in 2012 as shown in

Figure 1.3. Decreases in the number of hog farms with less than 2000 head in Figure

1.2 during this period suggests that many small, likely less efficient operations ceased

production.

Major structural change occurred for the U.S. poultry industry in the more distant

1950s and 1960s. But the increase in feed grain prices also affects the poultry sector

notably as feed is the largest single cost item . Due to the noteworthy and most
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Figure 1.3: Feed Grain Prices 1985-2014
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prolonged increase in feed grain prices, the U.S. poultry industry is also undergoing

a significant change.

Another ongoing shock for the U.S. poultry industry is the outbreak of the highly

pathogenic avian influenza (HPAI) H5 incidents along the Pacific, Central and Mis-

sissippi flyways since mid-December 2014. To date, the most affected flocks have been

the turkey and table egg layers located in Midwestern States according to Livestock,

Dairy, and Poultry Outlook (USDA June 16, 2015).

In the effort of controlling the spread of HPAI, large amount of infected flocks are

removed and international trade is restricted. Thus, negative impacts in production

for table eggs and turkeys as well as a hard hit for the export of U.S. poultry and

poultry products can be foreseen. Paarlberg, Seitzinger, and Lee addressed the

importance of regionalization in measuring the real export and welfare losses of an

HPAI outbreak [8].

In the presence of the massive structural changes in the pork industry and compli-

cated situations facing todays poultry industry, a more up-to-date modelling system

is required to help us study the related agriculture sectors, understand their interac-
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tions, and making more accurate forecasts and policy evaluations.

1.2 Objective

The objective of this study is to analyze the effects of the increases in input cost,

the outbreak of HPAI, as well as other possible shocks to the economy, on the U.S.

poultry industry and the pork industry as they continue to experience consolidation.

The analysis will be based on a model that includes a complete representation of

the demand for meat from the consumer sector and the supply for meat from the

livestock producers sector, and the assumption that market clears according to price

adjustment.
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2. LITERATURE REVIEW

Analysis of the U.S. livestock and poultry industries has a long history. The

development of large quantitative models proliferated during the period of 1970s to

1990s to cope with the increasing complexities and interdependencies policy makers

faced in the fast growing agriculture sectors. This cursory review of literature in-

cludes the econometric models that are still in use and/or contribute in one way or

another to the construction of the present study.

2.1 FAPSIM

USDA’s Food and Agricultural Policy Simulator (FAPSIM) is the USDA in-house

annual simulation model. The model was originally developed during the early 1980s

by Salathe et al. [9] and has been continually updated as structures changed in

the U.S. food and agricultural sectors. FAPSIM is sector-specific and commodities

included in the FAPSIM system are corn, sorghum, barley, oats, wheat, rice, upland

cotton, soybeans, cattle, hogs, broilers, turkeys, eggs, and dairy. Each livestock

commodity sub-model contains equations describing production, market and retail

prices, civilian consumption, and ending stocks. Each crop commodity sub-model

consists of a set of equations estimating production, price, civilian consumption,

exports, feed demand, seed demand, and ending stocks. Different livestock and crop

sectors are all linked together via important variables, such as feed demand and

land use for grains and grain prices for livestock sectors. The model is solved by

a price vector that clears all sub-sectors simultaneously. Single equation ordinary

least squares method is applied to estimate most of the equations since ”the large

size of the model precludes the use of econometric methods designed for systems of

equations” [10].
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For hog sector, considerable detail is provided on pork production due to its

complexity. Total production is fitted as a linear function of hogs slaughtered and

the profitability of livestock feeding. Barrow and gilt slaughter is affected by the

beginning marketing hog inventory on farm and pig crop. The beginning breeding

herd level, together with investment and disinvestment of breeding herd stock, in-

fluences pig crop, which in turn affects marketing hog inventory. Additions to the

breeding herd and slaughter of sows are affected by the profitability of livestock feed-

ing, representing by the price ratio of livestock prices to feed price. Major equations

include:

PORAP-77 = f(.TIME, (BAGKS + 1.5 SOWKS), BAGPM7C(t-1)/CORPF(t-2))

BAGKS = f(HOGSM(t-1), PIGSC)

SOWKS = f(HOGSNBR(t-1), BAGPM7C/CORPF(t-1))

HOGSM ≡ PIGSC × (1-PIGDD) BAGKS PIGSEBR + HOGSM(t-1)×(1-PIGDD)

PIGSC = f (HOGSNBR(t-1), PIGSEBR(t-1), (SOWKS PIGSEBR))

HOGSNBR ≡ PIGSEBR SOWKS + HOGSNBR(t-1)

PIGSEBR = f (HOGSNBR(t-1), SOWKS, BAGPM7C/CORPF(t-1))

BAGPM7C = f (.WRHMP, .PWO51*, PORIR.67)

where variables are defined in Table 2.1, and dummies in the original FAPSIM model

are omitted in the above description for simplicity.

Poultry production is described by much simpler model specifications. For chicken,

both young chicken and other chicken production is modeled:

CHISPYO = f (CHISPYO(t-1), (CHIPWBR9C(t-1)/FDC(-1) + CHIPWBR9C/FDC),

.TIME)
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CHIAPOT = f (CHISVLA, (EGGPF(t-1)/FDE(t-1) + EGGPF/FDE), (CHIPWXB(t-

1)/FDE(t-1) + CHIPWXB/FDE))

where young chicken production is a function of time, production in the previous pe-

riod, and the profitability of broiler feeding, representing by the price ratio of broiler

wholesale prices to feed cost index. Other chicken production comes from slaugh-

ter of chicken egg layers, and thus number of layers on farm, egg farm price, other

chicken wholesale price, and feed cost index for eggs are included in the equation.

Variables are defined in Table 2.1, and dummies in the original FAPSIM model are

omitted in the above description for simplicity.

Turkey production is modeled as a function of time, production in previous period,

and the profitability of turkey feeding, representing by the price ratio of turkey farm

price to feed cost index:

TURAP = f (.TIME, (TURPF(t-1)/FDT(t-1) + TURPF/FDT), TURAP(t-1),)

where variables are defined in Table 2.1, and dummies in the original FAPSIM model

are omitted in the above description for simplicity.

Egg production is determined by number of layers on farm and egg laying rate

with unit adjustment. The number of layers on farm is modeled as a function of the

lagged dependent variable and the profitability of egg layers feeding, representing by

the price ratio of non-broiler chicken wholesale price to feed cost index and the price

ratio of egg farm price to feed cost index. Egg-type layers laying rate is modeled as

a function of the lagged dependent variable and time trend:

EGGAP = CHISVLA × EGGAA / 12

CHISVLA = f (CHISVLA(t-1), (CHIPWXB(t-1)/FDE(t-1) + CHIPWXB/FDE),

(EGGPF(t-1)/FDE(t-1) + EGGPF/FDE))

9



Table 2.1: FAPSIM Model Variable Names and Descriptions

Variable
Names

Description
Variable
Names

Description

.NPC Population, total EGGAP Eggs, production

.PC Consumer price index, all items EGGBB Eggs, used for hatching

.PCPOU Consumer price index, poultry EGGCC Eggs, civilian disappearance

.PWO51* Fuel and utilities, consumer price index EGGIR.67 Eggs, retail price index

.TIME Year, 1955=55 EGGPF Eggs, average price received by farmers

.WRHMP Wage rate, meat packing industry FDC Feed cost index, chickens

.YPD$ Personal disposable income FDE Feed cost index, eggs
BAGKS Barrows and gilt, slaughter FDT Feed cost index, turkeys
BAGPM7C Barrows and gilts, market price, 7 markets HOGSM Hogs, market, number on farms, Dec.1
BEEIR Beef, retail price index HOGSNBR Hogs, breeding, number on farms, Dec.1
CHIAPOT Chickens, other, production PIGDD Hogs, percent death loss
CHICCOT Chicken, other, civilian disappearance PIGSC Hogs, pig crop
CHICCYO Chicken, young, civilian disappearance PIGSEBR Pigs, additions to breeding herd
CHIIRFR Chickens, grying, retail price index PORAP-77 Pork, production, carcass weight
CHIPWBR9C Broilers, 9-City wholesale price PORCC-77 Pork, civilian disappearance
CHIPWXB Chickens, non broiler, wholesale price PORIR.67 Pork, retail price index
CHISPYO Chickens, young, production SOWKS Sows, slaughter
CHISVLA Chickens, layers, number on farms TURAP Turkey, production
CHISVLA Chickens, number of layers on farms TURCC Turkey, civilian disappearance
CORPF Corn, average farm price, Oct.-Sept. TURPF Turkeys, average price received by farmers
EGGAA Eggs, number produced per layer TURPR Turkey, retail price
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EGGAA = f (EGGAA(t-1), .TIME)

where variables are defined in Table 2.1, and dummies in the original FAPSIM model

are omitted in the above description for simplicity.

An inverse demand function is used to model the domestic per capita disappear-

ance of pork, chicken, turkey, and egg. For the demand side of the egg sector, both

per capita egg consumption and eggs used for hatching are modeled:

PORIR.67 = f (.YPD$/.NPC, [(PORCC-77) × (.PC)/.NPC], BEEIR, .PCPOU,

.PC)

CHIIRFR = f (.YPD$/.NPC, [(CHICCYO + CHICCOT) × (.PC)/.NPC], BEEIR,

PORIR.67, TURPR, .PC)

TURPR = f (.YPD$/.NPC, [(TURCC) × (.PC)/.NPC], BEEIR, PORIR.67, CHI-

IRFR, .PC)

EGGIR.67 = f ([(EGGCC) ×(.PC)/.NPC], (.TIME) × (.PC))

EGGBB = f (.TIME, CHISVLA, CHISPYO)

where retail price is specified as a function of income, per capita consumption, prices

of closely related commodities, and consumer price index. Variables are defined in

Table 2-1, and dummies in the original FAPSIM model are omitted in the above

description for simplicity.

2.2 AGMOD

AGMOD is an annual econometric model of U.S. agriculture sectors with a pri-

marily recursive structure. AGMOD was first developed at Michigan State University

in 1986 by Ferris [11] and has been re-estimated every year with data going back as

far as 1965 [12, 13]. By 2013, the system contained 1190 equations and covers the
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major U.S. crop and livestock industries, including corn, wheat, other feed grain,

soybeans, cattle, hogs, broilers, turkeys, eggs, and dairy as well as an extensive in-

ternational component [13]. The model employs the Gauss-Seidel solution procedure,

which provides approximate solutions to systems of equations, and solves determin-

istically for a 15-year projection period. There is no explicit production procedure,

such as expansion or contraction in breeding herd, described in AGMOD model as in

FAPSIM. Gross margin calculated from the market price less feed costs is the direct

factor affecting livestock production in the system. For hog sector, gross margin de-

termines the number of sows farrowed, which in turn explains pork production. For

poultry sectors, gross margin determines production for chicken, turkey, and eggs

directly, similar to the model specification in FAPSIM. AGMOD has been employed

in some recent studies [13] to evaluate the effect of federal energy legislation on the

agricultural sectors.

2.3 FAPRI Model

The Food and Agricultural Policy Research Institute (FAPRI) is a joint institute

launched by the University of Missouri and Iowa State University in July 1984 [14].

The FAPRI model was initially established as an international system for a few key

crop commodities. It is comprised of detailed description for domestic market as well

as major foreign markets to replace the single-equation U.S. export function. Over

the years, the FAPRI model has been expanded greatly with different versions. The

livestock models were completely updated and specified by Brown in 1994. Besides,

domestic crop models describing barley, oats, cotton, and rice markets, as well as

three satellite models describing world trade, government cost, and farm income,

are also included in this large scale system. The system is solved by a vector of

market clearing prices at which supply equals demand in all five sub-models. Recent
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applications of FAPRI model include [15, 16].

2.4 Brown (1994)

Brown (1994) modeled the domestic market of major U.S. livestock sectors, in-

cluding beef, pork, broiler, turkey and dairy [17]. The author also reviewed the

theoretical development of breeding herd inventory management in livestock supply

response. The supply side of the pork model captured both expansion (gilts added

to the breeding herd) and contraction (sow slaughter) in production since these two

factors affected the breeding herd level, together with which, they determined the

number of sows farrowed and thus pig crop. Current and lagged gross margin were

used to explain the level of investment and disinvestment of the hog breeding herd.

Pork production was a function of the total number of hogs slaughtered and the

profitability of barrows and gilts feeding, representing by the price ratio of barrow

and gilt price to corn price. Major equations included:

PKGLTADD = f (PKSOWKS, PKGMR, PKGMR(t-1))

PKSOWKS = f (PKHOGNRB(t-1), ln(TREND) × PKHOGNBR(t-1), PKGMR)

PKHOGNBR ≡ 0.99 × PKHOGNBR(t-1) + PKGLTADD PKSOWKS

PKSOWFAR = f (PKHOGNBR(t-1), TREND × PKHOGNBR(t-1), PKGLTADD,

PKSOWKS)

PKPIGCRP ≡ PKSOWFAR × PKPIGLIT

PKPROD = f (PKHOGSLT, TREND × PKHOGSLT, PKBAGPM/CRPFRM(t-1))

PKHOGSLT ≡ PKBAGKSD + PKBAGKSI + PKSOWKS + PKBORKS

PKBAGKSD = f (PKPIGCRP, TREND × PKPIGCRP, PKHOGFRM(t-1))
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PKBORKS = f (PKHOGNBR(t-1), ln(TREND))

PKHOGFRM ≡ (1-PKPIGD) × (PKHOGFRM(T-1) + PKPIGCRP) PKBAGKSD

- PKBAGKSI

where CKYPLACE is chicks placed in the supply flock that provide hatching eggs

for broiler-type chicks production. The ratio of broiler wholesale price to feed cost

was used to represent the profitability of broiler feeding since gross margin data were

not available. Variables are defined in Table 2.2; dummies in the original Brown

model are omitted in the above description for simplicity.

Broiler production was modeled with more details in Brown (1994) than in FAP-

SIM and AGMOD. Three production stages were described:

CKYPLACE = f (CKYPLACE(t-1), [(CKYWHP + CKYWHP(t-1))/2]/CKYFEED,

TREND)

where CKYPLACE is chicks placed in the supply flock that provide hatching eggs

for broiler-type chicks production. The ratio of broiler wholesale price to feed cost

was used to represent the profitability of broiler feeding since gross margin data were

not available. Variables are defined in Table 2.2; dummies in the original Brown

model are omitted in the above description for simplicity.

CKYHATCH = f ([(CKYWHP + CKYWHP(t-1))/2]/CKYFEED, TREND, (CK-

YPLACE + CKYPLACE(t-1))/2,)

where CKYHATCH is the number of chicks hatched and it was modeled as the

number of chicks placed in the supply flock and the profitability of broiler feeding.

Variables are defined in Table 2.2; dummies in the original Brown model are omitted

in the above description for simplicity.
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Table 2.2: Brown (1994) Model Variable Names and Descriptions

Variable
Names

Description
Variable
Names

Description

BFRETPR Beef retail price, real PKHOGNBR Breeding hogs on farms, Dec. 1

CKRETPR Broiler retail price, real PKHOGSLT
Pork,
total number of hogs slaughtered

CKYFEED Broiler grower feed PKPCCW
Pork consumption per capita,
carcass weight

CKYHATCH Broiler chicks hatched PKPIGCRP Pig crop

CKYPCCRR
Broiler consumption per capita, RTC
basis, excluding pet food

PKPIGD Hog death loss
PKPIGLIT Pigs per litter

CKYPLACE Chicks placed in the broiler supply flock PKPROD Pork production
CKYPROD Broiler production PKRETPR Pork retail price, real
CKYWHP 12-city broiler price PKSOWFAR Sows Farrowed
CRPFRM Corn, season average farm price PKSOWKS Sow slaughter
PKBAGKSD Barrow and gilt domestic slaughter POPTOTW Total U.S. population

PKBAGKSI
Barrow and gilt international slaughter,
exogenous

TKHATCH Poults placed for slaughter
TKPCCR Turkey consumption per capita

PKBAGPM
Barrow and gilt price, U.S.1-3, Iowa/S.
Minnesota, 230-250 lb.

TKPROD Turkey production
TKRETPR Turkey retail price, real

PKBORKS Boar slaughter TKYFEED Turkey grower feed

PKGLTADD Gilts added to the breeding herd TKYWHP
Young Tom turkeys (14-22 lb.),
wholesale price

PKGMR Gross margin for pork producers, real ZCENFABWR
Consumer expenditure,
food and beverages, real
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CKYPROD = f (CKYHATCH, [(CKYWHP + CKYWHP(t-1))/2] /CKYFEED,

ln(TREND))

where CKYPROD is broiler production. It was a function of the number of chicks

hatched and the profitability of broiler feeding. Variables are defined in Table 2.2;

dummies in the original Brown model are omitted in the above description for sim-

plicity.

Two production stages were described to model turkey production:

TKHATCH = f (TKHATCH(t-1), [(TKYWHP + TKYWHP(t-1))/2]/TKFEED,

TREND)

where TKHATCH is the number of turkey placed for slaughter. The lagged de-

pendent variable was included to capture the large fixed costs turkey producers

encounter. The ratio of turkey wholesale price to feed cost was used to represent the

profitability of turkey feeding since gross margin data were not available. Variables

are defined in Table 2.2; dummies in the original Brown model are omitted in the

above description for simplicity.

TKPROD = f (TKHATCH, TKYWHP/TKFEED)

where TKPROD is turkey production, and was a function of turkey placed for slaugh-

ter. The ratio of turkey wholesale price to feed cost was included to reflect the

economic response of turkey slaughter weight. Variables are defined in Table 2.2;

dummies in the original Brown model are omitted in the above description for sim-

plicity.

Per capita consumptions were explained by own price, prices of closely related

meat products, food expenditures, and trend to capture structural change in meat

consumption:
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PKPCCW = f (PKRETPR, BFRETPR, CKRETPR, (ZCENFABWR/POPTOTW),

ln(TREND))

CKYPCCRR = f (CKRETPR, PKRETPR, BFRETPR, (ZCENFABWR/POPTOTW))

ln(TKPCCR) = f (ln(TKRETPR), ln(CKRETPR), ln(ZCENFABWR/POPTOTW))

where per capita consumption is specified as a function of retail price, food expen-

diture, and prices of closely related commodities. Variables are defined in Table 2.2;

dummies in the original FAPSIM model are omitted in the above description for

simplicity.

The Brown model was estimated using annual data from 1970 to 1991. 2SLS esti-

mation method was employed; the author also compared ordinary least squares and

3SLS estimation method, and no significant differences in the estimated parameters

were found.

2.5 Other Models

A number of other research models which are smaller in scale and narrowed in

scope have also provided valuable insights for understanding each of the agricultural

sub-sectors. Crom and Maki developed a recursive dynamic model of the pork and

beef sectors for the period of 1955 to 1964 [18]. The recursive feature of the model

reproduced the sequential nature in actual livestock production and has been fol-

lowed by a series of studies, including Rahn (1973) [19], Chavas (1978) [20], Chavas

and Johnson (1981) [21], Chavas and Johnson (1982) [22], Buhr (1993) [23], Brown

(1994), as well as some of the large scale systems mentioned above (FAPSIM and

FAPRI). Similar model structures following the actual production procedures will

also be specified in this study by including an equation for each important produc-

tion decision.
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Hoffman (1970) developed an eight-equation quarterly model for the egg industry

to estimate total egg production, eggs used for hatching (to produce both egg layers

and broilers), and table egg production; no disaggregation of product was considered

[24]. This concise model sketched the relationship between the egg sector and the

broiler sector consistently with the World Agricultural Supply and Demand Esti-

mates data set provided by USDA. A similar model structure was also applied in

Stillman (1985), and will be followed for the egg sector in the present study.

Maisashvili (2014) [5] estimated an annual econometric model for the U.S. beef

and dairy sectors to analyze the economic consequences of the renewable fuel stan-

dard (RFS) and the impacts of the feed cost shocks on these two sectors. Total supply

and total demand were modeled for both sectors; and each endogenous variable was

explicitly expressed by other endogenous and/or exogenous variables, except for the

primary endogenous variable, here beef retail price for the beef sector and wholesale

prices of butter, American cheese, nonfat dry milk, and evaporated and condensed

milk for the dairy sector, that were ultimately used to clear the markets and reach a

partial equilibrium. Dynamic simulation was applied when projecting future values

such that calculated market-clearing endogenous variables in a given year were used

as if they were predetermined, together with actual exogenous variables, for the next

year. These procedures in Maisashvili (2014) to solve the model and project future

values will be followed in the current work; and thus these two studies constitute a

consistent system for major U.S. livestock and poultry products.

Several studies analyzed the economic impacts of highly pathogenic avian in-

fluenza (HPAI), including Djunaidi and Djunaidi (2007) [25], Paarlberg Seitzinger,

and Lee (2007) [8], Brown (2007) [26], and Saghaian Özertan and Spaulding (2008)

[27]. Among these studies, Paarlberg et al. (2007) and Brown (2007) focused on the

U.S. market. In Brown (2007), the effect of an HPAI outbreak in some areas was
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calculated by assuming a certain amount of decrease in total poultry production ac-

cording to the historical production data (2002 Census of Agriculture) in these areas.

Yet, the study did not take into account the response of other regions in the country

due to the non-spatial character of the FAPRI model. Paarlberg et al. (2007) also

addressed the importance of regionalization in measuring the real export and welfare

losses of an HPAI outbreak. To study the poultry industry in more details and model

the effect of regionalized issues, the poultry industry will be divided into different

regions in this study according to Hatchery Production Annual Summary (USDA

NASS) with adjustments made due to data availability.
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3. METHODOLOGY

This chapter is devoted to the development of economic theory underlying the

model construction and industry analysis in later chapters. Following the literature

review in the previous chapter, total supply and total demand for each livestock or

poultry sector will be modeled; and a vector of primary prices, one from each sector,

will be calculated such that the market clears by minimizing the sum of squared

excess supply from each of the individual markets.

For each commodity, total supply consists of beginning stock, imports, and pro-

duction; and total demand comprises ending stock, exports, and domestic disap-

pearance. Due to the extensive proportion of domestic production and consumption

accounting for the total U.S. supply and disappearance respectively, two aspects will

be considered in substantial details in constructing the model: the supply response

from the livestock producers and the demand for meat from the consumers.

3.1 Production Theory

Classic supply function specified by output and input prices is derived from the

profit maximization problem for a price-taking competitive firm

max
y

π(p) = max
y

py (3.1)

where y ∈ Y , the firm’s production possibilities set; and p is the price vector.

Under the assumption that only one output is produced, and let p be the scalar

representing output price, x be the vector of inputs, w be the vector of input prices,
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the objective function becomes equation 3.2

max
x

π(p,w) = max
x

pf(x)−wx (3.2)

F.O.C :
∂π

∂xi
= p

∂f(x1, . . . , xn)

∂xi
− wi = 0 (3.3)

S.O.C :
∂2π

∂2x
=
∂2f(x)

∂2x
≤ 0 (3.4)

Under first-order condition and second-order condition (equations 3.3 and 3.4),

we can reach the factor demand function of the firm: x∗(P,w). The supply function

of the firm y∗(p,w) = f(x∗(p,w)) which is a function of output and input prices.

However, this functional form overlooks the critical sequential feature in livestock

production and thus may give incorrect projections. For example, when output price

increases, the quantity produced might not increase as suggested by classic produc-

tion theory in the short run; especially for livestock sectors with longer production

cycles such as cattle and hogs. This can be explained by the fact that output from

earlier production stages constrains later production possibilities because of the nec-

essary time taken in livestock production. Thus an unexpected price increase in the

output might not be responded to immediately. The production might even decrease

as a reaction toward the output price increase in the short run. This is because:

(1) producers might want to raise the cattle or hog to a heavier weight; and/or (2)

producers keep more animals in their breeding herd to expand production in the long

run, and thus fewer animals go to the marketing herd and production decreases in

the short run [28, 29, 17].

The complicated production procedure in livestock sectors cannot be described

precisely by the simple production equation derived from the classic supply theory.

To model the production procedure more accurately, all of the important decision
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points in the production processes should be included in the modeling system, each

with an econometric function, as in the literatures reviewed in the previous chap-

ter. Biological constraints are also incorporated in this way to reflect the nature of

livestock production processes. A flowchart describing the supply and demand for

each livestock market will be provided in the respective chapter to help illuminate

the construction of the model.

3.2 Retail Demand

Classical demand theory suggests that ordinary demand functions can be derived

from the constrained utility maximization problem

max
x∈X

u(x), s.t. px ≤ w, (3.5)

where x is the vector of commodities to be consumed and is an element of the

commodity space X ⊆ RL, p is the vector of corresponding prices, and w is the

budget constraint; and can be solved by the Lagrangian multiplier method

L(x, λ) = u(x) + λ(w − (px)) (3.6)

Under first-order conditions:

∂L

∂xi
=
∂u(x)

∂xi
− λpi = 0, for i = 1, . . . , L (3.7)

∂L

∂λ
= w − px = 0 (3.8)

optimal choice can be derived and will be of the form: x∗i = f(p1, . . . , pl, w), for i =

1, . . . , L

From the above derivation, all prices for the commodities in the commodity space
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and income should be included in the demand function. But empirical economists

usually work with more feasible functional forms consisting of fewer variables by

applying the assumption of weak separability of preferences.

According to Deaton and Muellbauer (1980b) [30] if the whole commodity set

can be partitioned into N subsets such that the preference on goods in one subset is

independent of the consumption levels in other subsets, the preferences are (weakly)

separable. Separable preferences can be represented by a utility function of the form

u = f [v1(q1), v2(q2), . . . , vG(qG), . . . , vN(qN)] (3.9)

Under the assumption of weak separability multistage budgeting is legitimate.

Consumers first allocate total expenditure over the N broad groups of goods, then

group expenditures are allocated over goods within each group independently such

that each of v1 to vN is maximized. Most of the demand analyses for meat products

are conducted under the assumption of weak separability explicitly or implicitly

[Heien (1982), Eales and Unnevehr (1993), Huang (1994), Edgerton (1997), Kinnucan

et al. (1997), Eales, Hyde, and Schrader (1998), Jones, Hahn, and Davis (2003)].

Thus, the meat demand function in the current study will concentrate within the

food group and only the prices of closely related meat commodities, price index for

non-meat food, and total expenditures on food need to be included in the set of

explanatory variables.

Ferris (2005) suggested some other factors that should be considered when mea-

suring domestic demand for a given product in empirical practices. These include

population, demographic effects, income distribution, general inflation, others fac-

tors, such as living patterns and health concerns, and seasonality and weather effects.

Since annual per capita consumption will be modeled in our system, more attention
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will be paid to the effect of general inflation and living patterns while other factors will

not be accounted for. General inflation will be treated by using GPD deflated prices

and food expenditures in the econometric functions. The effect of living patterns will

be represented by trend terms or lagged consumptions levels will be included in the

explanatory variables to represent sluggish consumption behavior, whichever gives a

better fit in a prior functional form tests.

A variety of model specifications have been applied to demand analysis since

economic theory is not informative about functional forms [Alston and Chalfant

1991]. Smallwood et al. (1990) provided a thorough review of the literature on

meat demand analysis, in which different demand models and their applications

were described. Double-log functional form will be specified due to the straight

interpretation of its parameters as elasticities in this large system. The selection of

the double-log functional form is also justified since functional form did not play a

determining role in the estimation of meat demand elasticities for the region of North

America [Gallet 2012].

To sum up, (1) a double-log functional form will be specified for the demand

equation in each livestock sector. (2) The primary explanatory variables are: own

price, price for closely related meat products, non-meat food price index, food expen-

ditures, and a trend term or lagged quantity demanded if needed. (3) Following the

procedure in Eales and Unnevehr (1993), non-meat food price index is calculated as

the ratio of non-meat food expenditure to non-meat food quantity, where non-meat

food expenditure is food expenditure minus total meat expenditures and non-meat

food quantity is food quantity minus the sum of meat quantities. Food quantity is

the ratio of food expenditure to food CPI.
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3.3 Model Specification

Critical decision points in pork production include breeding herd investment (gilts

added to the breeding herd) and disinvestment (slaughter of breeding herd), the

number of sows farrowed and pig crop, and slaughter of hogs. Contribution margin

calculated from the gross revenue less variable costs is the direct factor affecting the

number of gilts added to the breeding herd and slaughter of sows, which in turn

determines the hog breeding herd inventory, and thus the number of sows farrowed

and pig crop, and finally the number of hogs available for slaughter.

Pork production is expressed as the product of the number of hogs slaughtered

and average hog slaughter weight with unit adjustment. Average hog slaughter

weight is affected by the profitability of hog feeding, represented by the price ratio

of barrow and gilt price to feed price, and a trend term representing technology

progress. Slaughter of barrows and gilts is modeled as a function of pig crop, net

hog import, beginning marketing hog inventory, and pork wholesale price. Major

functions include:

PKPROD ≡ PKSLHOG × PKHOGSLW / 1000

PKHOGSLW = f (PKBAGLTP MIXFEED, YEAR)

PKSLHOG ≡ PKSLBAGLT + PKSLBRH

PKSLBAGLT = f (PKPIGCROP, PKHOGNIMPT, PKHOGMKTINV LAG1, 
PKWHPR)

PKPIGCROP ≡ PKSOWFAR PKPIGPL

PKSOWFAR = f (PKSOWFAR LAG1, PKADDBRH, PKSLBRH)

PKADDBRH = f (PKSLBRH, PKCMR)

PKSLBRH ≡ PKSLSOW + PKSLBRSTG
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PKSLSOW = f (PKHOGBRH LAG1, PKCMR)

PKSLBRSTG = f (PKHOGBRH LAG1)

where variables are defined in Appendix A, dummies and time shifters in the original

system are omitted in the above description for simplicity.

Critical decision points in broiler production include hatching egg production1,

which provides fertilized eggs to be hatched and raised for slaughter and is decided by

the number of hatching egg layers and the average laying rate, broiler-type hatching

eggs being set in incubators, broiler-type chicks being hatched, placed on feed, and

slaughtered. Contribution margin data are not available for the broiler industry; the

price ratio of broiler wholesale price/broiler-type chick price to feed price is used to

represent the profitability of broiler feeding in different production stages and affect

the final broiler production. The poultry industry is divided into four regions in this

study: the South Central (SC), the South Atlantic (SA), the North Atlantic (NA),

and Other Regions (OTH), according to Hatchery Production Annual Summary 

(USDA NASS) with adjustments made due to data availability. Major functions 

include:

CKPROD ≡ CKSLW × CKSLT / 1000

CKSLW = f (CKSLW LAG1, CKWHP FEED)

CKSLT ≡
∑

i CKSLTi, i=SC, SA, NA, OTH

CKSLTi = f (CKPLACEi), i=SC, SA, NA, OTH

CKPLACEi = f (CKHATCHi), i=SC, SA, NA, OTH

CKHATCHi = f (CKEGGSETi), i=SC, SA, NA, OTH

1Broiler-type hatching egg production would be more accurate; yet this data is not available
in regional level. And (total) hatching egg production, which is the summation of broiler-type
hatching egg production and egg-type hatching egg production, is used as a proxy.
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CKEGGSETi = f (CKEGGSET LAG1i,HEGGPRODi), i=SC, SA, NA, OTH

HEGGPRODi ≡ HEGGLAYERi × HEGGLRi, i=SC, SA, NA, OTH

HEGGLAYERi = f (HEGGLAYER LAG1i, CKCHKP FEED), i=SC, SA, NA, OTH

HEGGLRi = f (HEGGLR LAG1i, CKCHKPR), i=SC, SA, NA, OTH

where variables are defined in Appendix A, dummies and time shifters in the original

system are omitted in the above description for simplicity.

Egg production is comprised of hatching egg production and table egg production,

where regional hatching egg production is specified in the broiler model and U.S. total

hatching egg production is simply the summation of the regional production. Critical

decision points in table egg production include egg-type hatching egg production,

which provides fertilized eggs to be hatched and raised to table egg layers and is

decided by the number of egg-type hatching egg layers and their average laying

rate, egg-type hatching eggs being set in incubators, egg-type chicks being hatched,

placed on feed and lay eggs. Contribution margin data are not available for the egg

industry; egg wholesale price/egg-type chick price and egg layers feed cost are used

to represent the profitability and cost in different production stages for egg layer

feeding and affect the final table egg production. Major functions include:

EGGPROD ≡ HEGGPROD + TBEGGPROD

HEGGPROD ≡
∑

i HEGGPRODi, i=SC, SA, NA, OTH, specified in the broiler

model

TBEGGPROD ≡ TBEGGLR × TBEGGLAYER / 1200000

TBEGGLR = f (YEAR, EGGWHPR)

TBEGGLAYER = f (TBEGGLAYER LAG1, TBEGGHATCH)
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TBEGGHATCH = f (TBEGGSET)

TBEGGSET = f (TBHEGGPROD)

TBHEGGPROD = TBHEGGLR × TBHEGGLAYER / 1200000

TBHEGGLR = f (YEAR, EGGCKPR)

TBHEGGLAYER = f (TBHEGGLAYER LAG1, EGGCKPR, EGGFEEDR)

where variables are defined in Appendix A, dummies and time shifters in the original

system are omitted in the above description for simplicity.

Major decision points in the turkey production model start with turkey eggs being

set in incubators since no data is available for earlier production stages. Also because

of data availability, the next step to be modeled is turkey poults being placed on feed.

And the final step is turkey being slaughtered. Turkey production is modeled as the

product of average turkey slaughter weight and the number of turkey slaughtered.

Turkey wholesale price and feed cost are used to represent the profitability and cost

for turkey feeding respectively. Major functions include:

TKPROD ≡ TKSLW × TKSLT / 1000

TKSLW = f (YEAR, TKWHP FEED)

TKSLT = f (TKPLACE, TKSLT LAG1)

TKPLACE = f (TKEGGSET, YEAR)

TKEGGSET = f (TKEGGSET LAG1, TKWHPR, TKFEEDR)

where variables are defined in Appendix A, dummies and time shifters in the original

system are omitted in the above description for simplicity.

For the demand side, per capita consumptions of pork, broiler, egg, and turkey

are specified in double-log functional form:
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PKPCCR LOG = f (FOODEXPR LOG, PKRETPR LOG, BFCKRETPR LOG,

OTHFOODPR LOG, YEAR LOG)

CKPCCR LOG = f (FOODEXPR LOG, CKRETPR LOG, BFPKTKRETPR LOG,

OTHFOODPR LOG, TIME LOG)

TKPCCRBL LOG = f (FOODEXPR LOG, TKRETPR LOG, CKRETPR LOG,

OTHFOODPR LOG, TKPCCRBL LOG LAG1)

EGGPCCR LOG =f (FOODEXPR LOG, EGGRETPR LOG, OTHFOODPR LOG,

EGGPCCR LOG LAG1)

where variables are defined in Appendix A, dummies and time shifters in the original

system are omitted in the above description for simplicity.

3.4 Estimation and Validation Method

Single equation ordinary least squares (OLS) method is used to estimate the pro-

duction equations and two stage least squares (2SLS) method is applied to estimate

the per capita consumption equations in the system. Based on the assumption that

the structural errors are pairwise uncorrelated, the recursive system used to describe

livestock productions is consistently estimated by OLS.

Adjusted R-squared is used to infer the goodness of fit of the model specification.

P-value and t-statistics show the statistical significance of an explanatory variable.

Breusch-Godfrey test is applied to test for the presence of serial correlation whenever

lagged dependent variable is included in the explanatory variables. Mean Absolute

Percentage Error (MAPE) and Theil’s U2 (U2) are used to measure the accuracy of

fitted values:

MAPE =
1

n

n∑
i=1

|yi − fi
yi
| (3.10)
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U2 =

√√√√∑n−1
i=1 (fi+1−yi+1

yi
)2∑n−1

i=1 (yi+1−yi
yi

)2
(3.11)

where yi and fi are the actual and fitted values of observation i respectively.

Estimated elasticities are compared with literature. Midterm (2015 to 2024)

projection of livestock productions, prices, and consumptions are also compared with

FAPRI and USDA projections to validate the model specification.
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4. THE U.S. PORK INDUSTRY

This chapter presents an econometric model for the U.S. pork industry. The

model describes the supply and the demand for the pork sector within the U.S.

economy; retail price is the primary variable that adjusts and clears the market. Total

supply consists of beginning stock, import, and production; total demand comprises

ending stock, export, and domestic disappearance. Due to the extensive proportion

of domestic production and consumption accounting for the total U.S. pork supply

and disappearance respectively, the model focuses on modeling these two parts based

on the theoretical underpinnings developed in the previous chapter. A one-equation

description will be used to approximate the U.S. pork imports, exports, and stocks

for the current study.

The chapter is organized as follows. In the first section, the general flow in pork

production is presented as a background. Critical decision points in pork production

have been discussed in Chapter III. More detailed information about the industry

will be provided in this section. In the second section, the dataset that will be used

for estimating the econometric model will be discussed. In the third section, the

model specification and estimation results will be presented.

4.1 Pork Production

Pork production has a sequential feature starting with breeding herd inventory

management. The breeding herd inventory is determined by the number of breeding

hogs at the beginning of the period, hogs added to the breeding herd, and slaughter

of the breeding herd. The number of breeding hogs added or removed depends upon

the contribution margin hog producers receive where contribution margin is defined

as revenue minus variable costs (when these two data series are not available, in the
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case of the U.S. poultry sector, wholesale price and feed cost will be used as a proxy).

The contribution margin of two types of hog farms, farrow-to-finish hog farms

and farrow-to-feeder hog farms, are considered since they are where most breeding

hogs are kept. As mentioned in the introduction, drastic structural changes occurred

in the U.S. pork industry during the study period. Traditional farrow-to-finish pro-

ducers have given way to more specialized hog operations focusing in particular

production stages. According to the Census of Agriculture (USDA 2012) the pro-

duction share for farrow-to-finish producers has declined to 25 percent by 2009 and

remained around 25 percent thereafter. Thus during the period of 1985 to 2008, the

industry contribution margin is dominated by farrow-to-finish hog farms; and after

2008 both farrow-to-finish and farrow-to-feeder hog farms profitability are counted.

The industry contribution margin as a result is represented by a farrow-to-finish farm

contribution margin for the period of 1985 to 2008, and a weighted contribution mar-

gin (25 percent of farrow-to-finish farm and 75 percent of farrow-to-feeder farm) for

the period of 2009 to 2014.

The number of sows or gilts that can be bred is constrained by the dynamic

status of the hog breeding herd inventory and in turn determines the number of

sows farrowed and thus the number of pig crops. However, no dataset recording the

breeding stage of pork production is published consistently; and the number of sows

farrowed will be the next production stage that is modeled.

Once a swine is bred, the gestation period is around 114 days; the feeding period

for barrows and gilts usually lasts around 6 months before they reach slaughter

weight. Producers can decide the slaughter weight of barrows and gilts and also the

portion of the herd to be slaughtered, retained in the marketing inventory, or added

into the breeding herd. Total domestic supply of pork is thus the multiplication of

the average slaughter weight and the summation of barrows and gilts slaughtered
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and breeding herd slaughtered.

Not all pig crops will be placed on feed and either slaughtered in the contempo-

raneous period or kept in the marketing inventory for later slaughter due to death

loss caused by illness or other reasons. Net pig crop, calculated as pig crop less death

loss, will be included in the explanatory variables in both barrow-and-gilt slaughter

function and year-end marketing hog inventory function.

The U.S. pork model is schematically described in Figure 4.1.

4.2 Pork Data

Macro-level pork supply and demand data, including pork production, imports,

exports, stocks, and consumption, are available from Agricultural Supply and

Demand Estimates provided by USDA. Most of the production data are documented

by National Agricultural Statistics Service (NASS, USDA), including breeding herd

inventory, slaughter of different types of hogs, the number of sows farrowed, pig crop,

pigs per litter, hog death loss, marketing hog inventory, and prices for hogs. Live

hog trade (net import of hogs), even though it accounts for only a small portion of

the total hog supply compared to domestic pig crops, it is statistically significant

in affecting the marketing hog inventory and the slaughter of hogs; the data are

documented by Economic Research Service (ERS USDA). Data used to calculate

revenue and variable cost in pork production are also provided by ERS under the

subject of Commodity Costs and Returns.

The number of gilts and boars added to the breeding herd is not explicitly pro-

vided by USDA, and is recovered from breeding herd level in this period, breeding

herd level in the last period, slaughter of sows, and slaughter of boars and stags.

No data for the number of sows bred is available, so this production stage will

be skipped in the modelling of pork production. Sows farrowed, pig crop, and pigs
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Figure 4.1: U.S. Pork Model
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per litter data are all published by USDA; yet, to maintain the identity such that

annual pig crop is the number of sows farrowed multiplying pigs per litter, pigs per

litter data are recovered from the ratio of pig crop to the number of sows farrowed.

The same procedure is applied to recover the average slaughter weight of hogs which

equals the ratio of pork production over total number of hogs slaughtered.

4.3 The U.S. Pork Model

The U.S. pork model is schematically delineated in Figure 4.1. Total U.S. pork

demand equals the summation of pork ending stock, pork export, and pork domestic

disappearance. Total U.S. pork supply equals the summation of pork beginning

stock, pork import, and pork production.

Starting from the demand side, the pork total demand identity is

PKDEM ≡ PKSTK + PKEXPT + PKCDIS

where PKDEM is the total demand for pork, PKSTK is pork ending stock, PKEXPT

is pork export, and PKCDIS is pork domestic disappearance.

U.S. pork ending stock is specified as:

PKSTK = f (PKWHPR,PKPROD,SHIFT11,D87898018)

where PKWHPR is the real pork wholesale price, PKPROD is the U.S. pork pro-

duction and will be discussed in the supply side; variables starting with SHIFT and

D are time shifters and dummy variables, and will are presented in Appendix A.

Estimation results are presented in Table 4.1. Pork wholesale price has a negative

effect on pork ending stock, reflecting the fact that when price is high more meat is

sold and thus ending stock is low. Pork production has a positive effect on ending

stocks.

U.S. pork export accounts more than 20 percent of total pork production during

the past couple of years. Primary foreign markets for U.S. pork products include
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Table 4.1: Pork Ending Stock

PKSTK Estimate Std. Error t value Pr(>| t |)
(Intercept) 158.9486 118.3049 1.3400 0.1912
PKWHPR -113.6838 38.9016 -2.9200 0.0073
PKPROD 0.0231 0.0036 6.4600 0.0000
SHIFT11 64.2776 23.2116 2.7700 0.0104
D87898018 85.8107 12.5291 6.8500 0.0000
Adjusted R-squared: 0.9407 MAPE 0.0431
Breusch-Godfrey test p-value: 0.4443 Theil’s U2 0.3272

Japan, Mexico, Hong Kong, Russia, and Canada. To model the U.S. pork export

with sufficient accuracy, descriptions for the demand from these markets to certain

extent are needed yet are beyond the research scale of the current study. A single

equation description for the U.S. pork export will be specified as:

PKEXPT = f (PKEXPT LAG1, PKPROD, D09, D0811, D13, D14, D0458)

where PKEXPT is pork export, PKEXPT LAG1 is the lagged dependent variable,

and PKPROD is pork production. Based on the assumption that not all the trading

partners will change drastically, the lagged dependent variable can explain partially

the current quantity of pork export. Total pork production sets a limit on the

amount the domestic producers are willing to trade. Estimation results are presented

in Table 4.2. Both lagged dependent variable and pork production are positively

correlated with pork export as expected.

The last and largest proportion of the quantity demanded for pork is pork domestic

disappearance, which is the product of U.S. population and carcass weight per capita

consumption:

PKCDIS ≡ USPOP × PKPCCC

where PKCDIS is civilian pork disappearance, USPOP is U.S. population, and
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Table 4.2: Pork Exports

PKEXPT Estimate Std. Error t value Pr(>| t |)
(Intercept) -607.3912 244.5428 -2.4800 0.0211
PKEXPT LAG1 0.9574 0.0289 33.1600 0.0000
PKPROD 0.0420 0.0153 2.7500 0.0117
D09 -717.9520 90.7285 -7.9100 0.0000
D0811 867.3548 66.9377 12.9600 0.0000
D13 -525.5513 98.8853 -5.3100 0.0000
D14 -302.7638 95.0906 -3.1800 0.0043
D0458 334.3924 56.1343 5.9600 0.0000
Adjusted R-squared: 0.9981 MAPE 0.0797
Breusch-Godfrey test p-value: 0.7232 Theil’s U2 0.4874

PKPCCC is carcass weight per capita consumption for pork.

Carcass weight per capita consumption for pork is recovered from pork retail weight

per capita consumption by dividing the carcass to retail conversion factor:

PKPCCC ≡ PKPCCR ÷ 0.776

where PKPCCC is pork carcass weight per capita consumption, PKPCCR is pork

retail weight per capita consumption, and the ratio of 0.776 is achieved from the

historical data series of these two variables.

Following the discussions in the previous chapter, retail weight per capita consumption 

for pork is modeled by a double-log functional form:

PKPCCR LOG = f (FOODEXPR LOG, PKRETPR LOG, BFCKRETPR LOG,

OTHFOODPR LOG, YEAR LOG, D98T04, D86112)

where PKPCCR LOG is pork retail weight per capita consumption in log form,

FOODEXPR LOG is real food expenditure in log form, PKRETPR LOG is real

pork retail price in log form, BFCKRETPR LOG is comprised of real beef and
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chicken retail price in log form, OTHFOODPR LOG is the real price index of other

food commodities in log form, and YEAR LOG is trend in log form.

Estimation results are presented in Table 4.3. Food expenditure has a positive

effect on pork consumption; income elasticity is 0.38. Pork retail price is nega-

tively affecting pork consumption; own price elasticity is -0.51. Beef and broiler are

substitutes for pork and their composited retail price is positively affecting pork con-

sumption; cross price elasticity is 0.24. Other food price index is insignificant both

statistically (p-value is greater than 0.1) and economically (the corresponding coeffi-

cient is as low as 0.03), indicating that this variable has no effect on pork consumption

and thus will be omitted in the projection system. The functional specification that

will be applied in the projection system is presented in Table 4.4.

Table 4.3: Pork Per Capita Consumption Without OTHFOODPR (Retail Weight)

PKPCCR LOG Estimate Std. Error t value Pr(>| t |)
(Intercept) 106.5907 34.0270 3.1300 0.0048
FOODEXPR LOG 0.3757 0.1739 2.1600 0.0418
PKRETPR LOG -0.5118 0.0547 -9.3500 0.0000
BFCKRETPR LOG 0.2372 0.0625 3.7900 0.0010
OTHFOODPR LOG 0.0320 0.1421 0.2300 0.8239
YEAR LOG -13.6486 4.5495 -3.0000 0.0066
D98T04 0.0548 0.0064 8.5300 0.0000
D86112 -0.0253 0.0089 -2.8400 0.0095
Adjusted R-squared: 0.9114 MAPE 0.0024
Breusch-Godfrey test p-value: 0.1116 Theil’s U2 0.3243

The variable BFCKRETPR LOG in the pork retail weight per capita consump-

tion function is defined as:

BFCKRETPR LOG ≡ ln [(BFRETPR + CKRETPR)/2]
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Table 4.4: Pork Per Capita Consumption With OTHFOODPR (Retail Weight)

PKPCCR LOG Estimate Std. Error t value Pr(>| t |)
(Intercept) 87.9194 26.6778 3.3000 0.0033
FOODEXPR LOG 0.3470 0.1598 2.1700 0.0410
PKRETPR LOG -0.4987 0.0491 -10.1500 0.0000
BFCKRETPR LOG 0.2086 0.0530 3.9400 0.0007
YEAR LOG -11.1740 3.5806 -3.1200 0.0050
D98T04 0.0538 0.0061 8.8800 0.0000
D8892 0.0272 0.0091 3.0000 0.0066
D10T13 -0.0232 0.0087 -2.6700 0.0140
Adjusted R-squared: 0.9266 MAPE 0.0022
Breusch-Godfrey test p-value: 0.2949 Theil’s U2 0.2856

where BFRETPR is real beef retail price and CKRETPR is real chicken retail price.

These two retail prices are the primary endogenous variables in the two respective

sectors used to clear the markets. This equation ends the description for the demand

side of the pork industry.

The U.S. pork total supply identity is:

PKSUPP ≡ PKSTK LAG1+PKIMPT+PKPROD

where PKSTK LAG1 is pork beginning stock that can be recovered from pork ending

stock in the previous period, PKIMPT is U.S. pork import, and PKPROD is U.S.

pork production.

Following similar reasoning logic in specifying the U.S. pork export function, the

U.S. pork import will be specified as:

PKIMPT = f(PKIMPT LAG1,PKWHPR,D90T97,D08112,D89,D023)

where PKIMPT is pork import, PKIMPT LAG1 is the lagged dependent variable,

and PKWHPR is real pork wholesale price. Based on the assumption that not all

of the trading partners will change drastically, the lagged pork import can explain
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partially the current quantity of pork imports. And the real pork wholesale price

also helps explain the domestic wholesalers willingness to trade. Estimation results

are presented in Table 4.5. The lagged dependent variable and pork wholesale price

are both positively correlated with pork imports as expected.

Table 4.5: Pork Imports

PKIMPT Estimate Std. Error t value Pr(>| t |)
(Intercept) 168.9498 69.4149 2.4300 0.0231
PKIMPT LAG1 0.5262 0.0706 7.4500 0.0000
PKWHPR 211.0859 44.6653 4.7300 0.0001
D90T97 -173.4262 25.2625 -6.8600 0.0000
D08112 -111.4530 29.0796 -3.8300 0.0009
D89 -209.4795 48.4622 -4.3200 0.0003
D023 173.1800 37.3109 4.6400 0.0001
Adjusted R-squared: 0.9289 MAPE 0.0383
Breusch-Godfrey test p-value: 0.6432 Theil’s U2 0.5047

The main component of total pork supply is pork production, which is explained

by two factors, the number of hogs slaughtered and the average hog slaughter weight.

Since the measurement unit for pork production is million pounds in our data set, a

conversion rate of 1/ 1000 is needed:

PKPROD ≡ PKSLHOG × PKHOGSLW ÷ 1,000

where PKPROD is pork production, PKSLHOG is the number of hogs slaughtered,

and PKHOGSLW is the average hog slaughter weight.

Hog slaughter weight is determined by the benefit of holding and raising hogs,

which is represented by the ratio of barrow and gilt price to a weighted feed cost (a

mixture of corn price and soybean meal price). There is also a trend term in this

function representing technology improvement:
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PKHOGSLW = f (PKBAGLTP MIXFEED, YEAR, D14, D023)

where PKHOGSLW is average hog slaughter weight, PKBAGLTP MIXFEED is the

ratio of barrow and gilt price (PKBAGLTP) over a weighted feed cost (PKMIXFEED),

and YEAR is the trend term. Estimation results are presented in Table 4.6. When

the benefit of holding and raising hogs increases, farmers would keep the hogs longer

to reach a heavier weight, and vice versa. Thus the coefficient of the ratio of barrow

and gilt price over feed cost should be positive. Trend term representing technology

improvement should also be positively correlated with the slaughter weight.

Table 4.6: Average Hog Slaughter Weight

PKHOGSLW Estimate Std. Error t value Pr(>| t |)
(Intercept) -2025.8508 45.6902 -44.3400 0.0000
PKBAGLTP MIXFEED 0.4819 0.1010 4.7700 0.0001
YEAR 1.1088 0.0226 49.0800 0.0000
D14 3.3356 0.8282 4.0300 0.0005
D023 1.8402 0.5613 3.2800 0.0031
Adjusted R-squared: 0.9936 MAPE 0.0028
Breusch-Godfrey test p-value: 0.3407 Theil’s U2 0.4095

Total number of hogs slaughtered is the summation of all types of hogs slaugh-

tered:

PKSLHOG ≡ PKSLBAGLT + PKSLBRSTG + PKSLSOW

where PKSLHOG is total number of hogs slaughtered, PKSLBAGLT is barrow and

gilt slaughter, PKSLBRSTG is boar and stag slaughter, and PKSLSOW is sow

slaughter.

Barrow and gilt slaughter is determined by marketing hog inventory at the be-

ginning of the year, net pig crop, net hog imports, and pork wholesale price:
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PKSLBAGLT = f (PKPIGCROPNET, PKHOGMKTINV LAG1, PKHOGNIMPT,

PKWHPR, D93T98, D078)

where PKSLBAGLT is barrow and gilt slaughter, PKPIGCROPNET is net pig crop

which equals pig crop less pig death loss, PKHOGMKTINV is marketing hog in-

ventory on December 1st, and PKHOGMKTINV LAG1 is used to approximate the

beginning marketing hog inventory of the current period, PKHOGNIMPT is net hog

import which equals hog import less hog export, and PKWHPR is real pork whole-

sale price. Slaughter of barrows and gilts are expected to be positively correlated

to net pig crop, net hog import, beginning stock of marketing hog inventory, and

negatively related to real pork wholesale price according to the inventory theory dis-

cussed in the literature review. Estimation results are presented in Table 4.7. All

coefficients have the expected sign.

Table 4.7: Slaughter of Barrows and Gilts

PKSLBAGLT Estimate Std. Error t value Pr(>|t|)
(Intercept) -13814.4194 2229.1463 -6.2000 0.0000
PKPIGCROPNET 0.4601 0.0352 13.0600 0.0000
PKHOGMKTINV LAG1 1.1838 0.0613 19.3200 0.0000
PKHOGNIMPT 0.6990 0.0613 11.4100 0.0000
PKWHPR -1555.1227 632.1907 -2.4600 0.0218
D93T98 -1314.2411 271.7880 -4.8400 0.0001
D078 -1389.0596 430.5688 -3.2300 0.0037
Adjusted R-squared: 0.9980 MAPE 0.0040
Breusch-Godfrey test p-value: 0.9843 Theil’s U2 0.1274

Hog marketing inventory on December 1st, is expressed as a function of net pig

crop, net hog import, and slaughter of barrow and gilt:
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PKHOGMKTINV = f (PKPIGCROPNET, PKHOGNIMPT, PKSLBAGLT, SHIFT14,

D89, D85T87)

where PKHOGMKTINV is hog marketing inventory on December 1st, PKPIGCROP-

NET is net pig crop, PKHOGNIMPT is net hog imports, and PKSLBAGLT is barrow

and gilt slaughter. Net pig crop and net hog import are assumed to be positively

correlated with hog marketing inventory, and slaughter of barrows and gilts is as-

sumed to be negatively correlated with hog marketing inventory. Estimation results

are presented in table 4.8. All explanatory variables have the expected sign.

Table 4.8: Hog Marketing Inventory on Dec. 1st

PKHOGMKTINV Estimate Std. Error t value Pr(>|t|)
(Intercept) 402.6357 1310.3605 0.3100 0.7614
PKPIGCROPNET 0.6881 0.0349 19.7300 0.0000
PKHOGNIMPT 0.6396 0.0469 13.6400 0.0000
PKSLBAGLT -0.1617 0.0298 -5.4200 0.0000
SHIFT14 2653.4136 347.6773 7.6300 0.0000
D89 -1146.4416 353.6764 -3.2400 0.0036
D85T87 1610.5354 278.6291 5.7800 0.0000
Adjusted R-squared: 0.9955 MAPE 0.0046
Breusch-Godfrey test p-value: 0.3098 Theil’s U2 0.1486

Net pig crop is calculated as:

PKPIGCROPNET ≡ PKPIGCROP-PKHOGDL

where PKPIGCROP is pig crop, PKHOGDL is hog death loss.

Hog death loss is fitted as a function of pig crop, indicating that a certain propor-

tion of the pig crop will die and not be available for feeding, and a lagged dependent

variable representing technology progress (and thus the coefficient is supposed to be

less than 1). Estimation results are presented in Table 4.9.
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PKHOGDL = f (PKPIGCROP, PKHOGDL LAG1, D09T11)

Table 4.9: Hog Death Loss

PKHOGDL Estimate Std. Error t value Pr(>|t|)
(Intercept) -3616.0916 690.6207 -5.2400 0.0000
PKPIGCROP 0.043 0.0087 4.9400 0.0000
PKHOGDL LAG1 0.9139 0.0454 20.1500 0.0000
D09T11 -698.0304 180.5607 -3.8700 0.0007
Adjusted R-squared: 0.9811 MAPE 0.0294
Breusch-Godfrey test p-value: 0.3688 Theil’s U2 0.6211

Pig crop is a non-fitted function as discussed in the data section:

PKPIGCROP ≡ PKPIGPL × PKSOWFAR

where PKPIGCROP is pig crop, PKPIGPL is pigs per litter, and PKSOWFAR is

the number of sows farrowed.

Pigs per litter is a function of a lagged dependent variable representing technology

progress. Estimation results are presented in Table 4.10.

PKPIGPL = f (PKPIGPL LAG1, D88, D98T06, D14)

The number of sows farrowed is fitted as a function of lagged dependent variable,

gilts added to the breeding herd, and slaughter of breeding herd:

PKSOWFAR = f (PKSOWFAR LAG1, PKADDBRH, PKSLBRH, D88924807, D869600)

where PKSOWFAR is the number of sows farrowed, PKSOWFAR LAG1 is the

lagged dependent variable, PKADDBRH is hogs added to the breeding herd, and

PKSLBRH is slaughter of the breeding herd. Estimation results are presented in
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Table 4.10: Pigs per Litter

PKPIGPL Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.112 0.1102 -1.0200 0.3193
PKPIGPL LAG1 1.0277 0.0128 80.1400 0.0000
D88 -0.1603 0.0507 -3.1600 0.0041
D98T06 -0.0873 0.0199 -4.3800 0.0002
D14 -0.4275 0.0539 -7.9200 0.0000
Adjusted R-squared: 0.9962 MAPE 0.0041
Breusch-Godfrey test p-value: 0.4714 Theil’s U2 0.3710

Table 4.11. The lagged dependent variable is used to approximate the beginning

breeding capacity, and should be positively correlated to the dependent variable.

The number of hogs added to the breeding herd positively affects the number of

sows farrowed. Slaughter of breeding herd negatively affects the number of sows

farrowed.

Table 4.11: Sows Farrowed

PKSOWFAR Estimate Std. Error t value Pr(>|t|)
(Intercept) 3212.0395 988.9664 3.2500 0.0034
PKSOWFAR LAG1 0.7352 0.0901 8.1600 0.0000
PKADDBRH 0.9039 0.1713 5.2800 0.0000
PKSLBRH -0.9596 0.1900 -5.0500 0.0000
D88924807 645.6551 72.3611 8.9200 0.0000
D869600 -431.9589 81.9791 -5.2700 0.0000
Adjusted R-squared: 0.8824 MAPE 0.0078
Breusch-Godfrey test p-value: 0.1900 Theil’s U2 0.3034

The number of hogs added to the breeding herd is fitted as a function of the num-

ber of breeding herd hogs slaughtered and the real contribution margin of pig farms.

PKADDBRH = f (PKSLBRH, PKCMR, SHIFT09, D14, D87917, D99)
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where PKADDBRH is the number of hogs added to the breeding herd, PKSLBRH is

the number of breeding herd hogs slaughtered, and PKCMR is the real contribution

margin of pig farms. The number of hogs added to the breeding herd should be

positively correlated to the number of breeding herd hogs slaughtered to represent

the renewal of breeding herd inventory; and it should be positively correlated to

the real contribution margin of pig farms, so the more profitable the industry is the

larger the breeding herd should be and vice versa. Estimation results are presented

in Table 4.12. Both the coefficients estimated are of the expected sign.

Table 4.12: Hogs Added to the Breeding Herd

PKADDBRH Estimate Std. Error t value Pr(>|t|)
(Intercept) 267.3967 142.9795 1.8700 0.0742
PKSLBRH 0.9147 0.0351 26.0400 0.0000
PKCMR 382.0789 157.3683 2.4300 0.0234
SHIFT09 -195.2676 82.5024 -2.3700 0.0267
D14 -311.9042 156.3041 -2.0000 0.0580
D87917 409.3547 59.6693 6.8600 0.0000
D99 -345.9299 95.2262 -3.6300 0.0014
Adjusted R-squared: 0.9527 MAPE 0.0153
Breusch-Godfrey test p-value: 0.9471 Theil’s U2 0.2966

The number of breeding herd hogs slaughtered is a non-fitted equation and is the

sum of slaughters of both genders in the breeding herd:

PKSLBRH ≡ PKSLSOW+ PKSLBRSTG

where PKSLBRH is the number of breeding herd hogs slaughtered, PKSLSOW is

the number of sows slaughtered, and PKSLBRSTG is the number of boars and stags

slaughtered.
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The number of sows slaughtered is fitted as a function of the beginning breeding

herd inventory and the real contribution margin in pig production:

PKSLSOW = f (PKHOGBRH LAG1, PKCMR, D85T95, SHIFT03, D879357)

where PKSLSOW is the number of sows slaughtered, PKHOGBRH LAG1 is the

breeding herd level on December 1st of the previous period used to represent the

beginning breeding herd level, and PKCMR is the real contribution margin of pig

farms. Slaughter of sows represents the replacement of the breeding herd; thus, the

larger the beginning breeding herd level the more sows should be slaughtered. The

number of sows slaughtered should be negatively correlated to the real contribution

margin of pig farms, so the more profitable the industry the larger the breeding

herd should be and vice versa. Estimation results are presented in Table 4.13. Both

coefficients estimated are of the expected sign.

Table 4.13: The Number of Sows Slaughtered

PKSLSOW Estimate Std. Error t value Pr(>|t|)
(Intercept) -679.2131 591.8386 -1.1500 0.2624
PKHOGBRH LAG1 0.6051 0.0898 6.7400 0.0000
PKCMR -261.5977 71.6932 -3.6500 0.0013
D85T95 362.7407 59.9934 6.0500 0.0000
SHIFT03 318.4982 57.7784 5.5100 0.0000
D879357 -206.8408 44.8635 -4.6100 0.0001
Adjusted R-squared: 0.9527 MAPE 0.0153
Breusch-Godfrey test p-value: 0.9471 Theil’s U2 0.2966

The number of boars and stags slaughtered is fitted as a function of the begin-

ning breeding herd inventory:

PKSLBRSTG = f (PKHOGBRH LAG1, D98T05, D9806)
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where PKSLBRSTG is the number of boars and stags slaughtered, PKHOGBRH LAG1

is the breeding herd inventory level on December 1st of the previous period used to

represent the beginning breeding herd level. Slaughter of boars and stags represents

renewal of the breeding herd; thus, the larger the beginning breeding herd level, the

more boars and stags should be slaughtered. Estimation results are presented in

Table 4.14.

Table 4.14: The Number of Boars and Stags being Slaughtered

PKSLBRSTG Estimate Std. Error t value Pr(>|t|)
(Intercept) -1863.0213 100.6689 -18.5100 0.0000
PKHOGBRH LAG1 0.3808 0.0154 24.7600 0.0000
D98T05 -202.1735 17.0461 -11.8600 0.0000
D9806 -87.4204 29.5855 -2.9500 0.0066
Adjusted R-squared: 0.9698 MAPE 0.0551
Breusch-Godfrey test p-value: 0.3203 Theil’s U2 0.5740

The breeding herd inventory is a non-fitted equation of the beginning breeding

herd inventory, the number of hogs added to the breeding herd and the number of

breeding hogs slaughtered:

PKHOGBRH ≡ PKHOGBRH LAG1 + PKADDBRH PKSLSOW - PKSLBRSTG

where PKHOGBRH is the breeding herd inventory of hogs, PKHOGBRH LAG1

is the beginning breeding herd inventory level, PKADDBRH is the number of hogs

added to the breed herd, PKSLSOW is the number of sows slaughtered, and PKSLBRSTG

is the number of boars and stags slaughtered.

Net hog import appearing in the functions of slaughter of barrows and gilts

(PKSLBAGLT) and hog marketing inventory (PKHOGMKTINV) is calculated as:

48



PKHOGNIMPT ≡ PKHOGIMPT - PKHOGEXPT

where PKHOGNIMPT is net hog import, PKHOGIMPT is hog import, and PKHOG-

EXPT is hog export.

Hog import is fitted as a function of lagged dependent variable:

PKHOGIMPT = f(PKHOGIMPT LAG1, D09, D95T04, D86058103, D037)

where PKHOGIMPT is hog imports and PKHOGIMPT LAG1 is the lagged depen-

dent variable.

Hog import is assumed to be positively correlated with real barrow and gilt

price. However, the amount of hogs imported remained at a relatively low level

(less than 2000 heads) during the period of 1985 to 1996 compared to later years

and no significant response of hog import to barrow and gilt price fluctuations was

observed during this period; also during the short period of 1996 to 2014, shifts that

cannot be explained by barrow and gilt price occurred in the hog import data series.

These two reasons prevent a statistically significant fit of the price information in the

hog import equation and more than usual dummy variables are included to account

for the historical deviations in the data set. Estimation results are presented in

Table 4.15.

Hog export is fitted as a function of lagged dependent variable and real barrow

and gilt price.

PKHOGEXPT = f (PKHOGEXPT LAG1, PKBAGLTPR, D91, D9509, D88914802,

D9200)

where PKHOGEXPT is hog export, PKHOGEXPT LAG1 is lagged dependent vari-

able, and PKBAGLTPR is real barrow and gilt price. Estimation results are pre-

sented in Table 4.16. The lagged dependent variable is positively correlated with
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Table 4.15: Hog Import

PKHOGIMPT Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.2384 100.0548 0.1600 0.8724
PKHOGIMPT LAG1 1.0189 0.0227 44.9200 0.0000
D09 -3176.6524 340.8517 -9.3200 0.0000
D95T04 563.4294 123.8006 4.5500 0.0001
D86058103 -738.0142 175.6031 -4.2000 0.0003
D037 1030.7872 237.1639 4.3500 0.0002
Adjusted R-squared: 0.9905 MAPE 0.1072
Breusch-Godfrey test p-value: 0.7845 Theil’s U2 0.6300

hog export and real barrow and gilt price is negatively correlated with hog exports

indicating that when domestic price is high, more hogs will be sold domestically and

fewer hogs will be exported.

Table 4.16: Hog Export

PKHOGEXPT Estimate Std. Error t value Pr(>|t|)
(Intercept) 95.8709 37.6024 2.5500 0.0179
PKHOGEXPT LAG1 0.6407 0.0988 6.4900 0.0000
PKBAGLTPR -120.7365 49.4364 -2.4400 0.0227
D91 116.9627 28.9207 4.0400 0.0005
D9509 -92.7782 18.4331 -5.0300 0.0000
D88914802 104.8675 15.9808 6.5600 0.0000
D9200 -83.0919 21.0794 -3.9400 0.0006
Adjusted R-squared: 0.8915 MAPE 0.3459
Breusch-Godfrey test p-value: 0.9772 Theil’s U2 0.3782

Contribution margin of pig farms (PKCMR) appearing in the breeding herd in-

vestment and disinvestment equations is calculated as:

PKCM ≡ D85T08 × PKFFCM + SHIFT09 × PKMIXCM
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where PKCM is the contribution margin of pig industry, PKFFCM is the contribution

margin of farrow-to-finish pig farms, and PKMIXCM is the weighted average of

farrow-to-finish pig farm contribution margin (25 percent) and farrow-to-feeder pig

farm contribution margin (75 percent), i.e.:

PKMIXCM ≡ 0.25 × PKFFCM + 0.75 × PKFFDCM

Contribution margin is defined as revenue less variable cost:

PKFFCM ≡ PKFFR PKFFFC PKFFOVC

PKFFDCM ≡ PKFFDR PKFFDFC PKFFDOVC

where PKFFCM is the contribution margin of farrow-to-finish pig farms, PKFFR is

farrow-to-finish farm revenue, PKFFFC is farrow-to-finish farm feed cost, PKFFOVC

is farrow-to-finish farm other variable cost; PKFFDCM is the contribution margin

of farrow-to-feeder pig farms, PKFFDR is farrow-to-feeder farm revenue, PKFFDFC

is farrow-to-feeder farm feed cost, and PKFFDOVC is farrow-to-feeder farm other

variable cost.

Farrow-to-finish pig farm revenue is fitted as a function of barrow and gilt price:

PKFFR = f(PKBAGLTP,SHIFT13,D09T12)

where PKFFR is farrow-to-finish pig farm revenue, PKBAGLTP is barrow and gilt

price. Farm revenue should be positively correlated to the price of the product.

Estimation results are presented in Table 4.17.

Farrow-to-finish pig farm feed cost is fitted as a function of the lagged depen-

dent variable and a weighted corn and soybean meal price, which represents feed

conversion efficiency and feed ingredient costs respectively:

PKFFFC = f (PKFFFC LAG1, PKMIXFEED, D96, D09102)
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Table 4.17: Farrow-to-finish Pig Farm Revenue

PKFFR Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2912 2.0621 -0.1400 0.8888
PKBAGLTP 1.0285 0.0448 22.9300 0.0000
D09T12 5.8721 1.0406 5.6400 0.0000
SHIFT13 27.4849 1.7130 16.0400 0.0000
Adjusted R-squared: 0.9898 MAPE 0.0282
Breusch-Godfrey test p-value: 0.5169 Theil’s U2 0.1873

where PKFFFC is farrow-to-finish pig farm feed cost, PKMIXFEED is the weighted

average of corn and soybean meal prices. Estimation results are presented in Ta-

ble 4.18. Both estimated coefficients have the correct sign. Improvement in feed

conversion rate is represented by the less than 1 coefficient of the lagged dependent

variable.

Table 4.18: Farrow-to-finish Pig Farm Feed Cost

PKFFFC Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.3691 1.5387 2.8400 0.0088
PKMIXFEED 2.1553 0.1711 12.6000 0.0000
PKFFFC LAG1 0.3237 0.0697 4.6400 0.0001
D09102 -9.7459 1.2793 -7.6200 0.0000
D96 7.5140 1.8618 4.0400 0.0005
Adjusted R-squared: 0.9265 MAPE 0.0532
Breusch-Godfrey test p-value: 0.7117 Theil’s U2 0.3625

Farrow-to-finish pig farm other variable cost is a composite variable consisting of

veterinary and medicine, bedding and litter, marketing, customer service, fuel, lube,

and electricity, repairs, interest on operating capital, hired labor, and feeder pig costs

when farmers decide to feed more than their own raised pigs. It is fitted as a function

52



of the lagged dependent variable; estimation results are presented in Table 4.22

PKFFOVC=f(PKFFOVC LAG1,D13)

Table 4.19: Farrow-to-finish Pig Farm Other Variable Cost

PKFFOVC Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8253 0.2544 3.2400 0.0031
PKFFOVC LAG1 0.9107 0.0263 34.5900 0.0000
D13 20.7445 0.6293 32.9600 0.0000
Adjusted R-squared: 0.9882 MAPE 0.0540
Breusch-Godfrey test p-value: 0.4400 Theil’s U2 0.1829

Farrow-to-feeder pig farm revenue is fitted as a function of feeder pig price:

PKFFDR = f (PKFDPIGP,D85T91,D04T08)

where PKFFDR is farrow-to-feeder pig farm revenue and PKFDPIGP is feeder pig

price. Farm revenue should be positively correlated to the price of the product.

Estimation results are presented in Table 4.20.

Table 4.20: Farrow-to-feeder Pig Farm Revenue

PKFFDR Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0220 4.0443 0.5000 0.6215
PKFDPIGP 1.0873 0.0387 28.0800 0.0000
D85T91 -22.1358 2.3960 -9.2400 0.0000
D04T08 -28.8816 2.8110 -10.2700 0.0000
Adjusted R-squared: 0.9866 MAPE 0.0422
Breusch-Godfrey test p-value: 0.3662 Theil’s U2 0.2298
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Farrow-to-feeder pig farm feed cost is fitted as a function of the lagged dependent

variable and the weighted corn and soybean meal price for the pork industry:

PKFFDFC = f (PKFFDFC LAG1, PKMIXFEED, D04678, D0912)

where PKFFDFC is farrow-to-feeder pig farm feed cost, PKMIXFEED is the weighted

average of corn and soybean meal prices. Estimation results are presented in Ta-

ble 4.21. Both estimated coefficients have the correct sign. Improvement in feed

conversion rate is represented by the less than one coefficient on the lagged depen-

dent variable.

Table 4.21: Farrow-to-feeder Pig Farm Feed Cost

PKFFDFC Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.7648 3.0242 -0.5800 0.5650
PKMIXFEED 4.1486 0.4724 8.7800 0.0000
PKFFDFC LAG1 0.3927 0.0984 3.9900 0.0005
D04678 16.9437 2.4855 6.8200 0.0000
D0912 -15.2346 4.3187 -3.5300 0.0017
Adjusted R-squared: 0.9384 MAPE 0.0712
Breusch-Godfrey test p-value: 0.8119 Theil’s U2 0.4271

Farrow-to-feeder pig farm other variable cost is a composite variable consisting

of veterinary and medicine, bedding and litter, marketing, customer service, fuel,

lube, and electricity, repairs, interest on operating capital, hired labor, and feeder

pig costs if occurred. It is fitted as a function of the lagged dependent variable;

estimation results are presented in Table 4.22:

PKFFDOVC = f(PKFFOVC LAG1,D92,D8809,D9804)

The pork industry weighted feed cost is comprised of 78 percent corn price and

22 percent soybean meal price with unit adjusted:
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Table 4.22: Farrow-to-feeder Pig Farm Other Variable Cost

PKFFDOVC Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6392 0.8457 0.7600 0.4571
PKFFDOVC LAG1 1.0119 0.0378 26.7700 0.0000
D92 9.5243 1.0088 9.4400 0.0000
D8809 -11.0030 0.6912 -15.9200 0.0000
D9804 -4.5455 0.6995 -6.5000 0.0000
Adjusted R-squared: 0.9682 MAPE 0.0300
Breusch-Godfrey test p-value: 0.4591 Theil’s U2 0.1777

PKMIXFEED ≡ 100 × (0.78 × CORNPCY/56 + 0.22 × SBMPCY/2000)

where CORNPCY is annual average calendar year corn price in dollars per bushel

and SBMPCY is annual average calendar year soybean meal price in dollars per

short ton. These two variables are taken as exogenous in the current study, but

corn and soybean meal are included in Rhews (2014) work studying major U.S. crop

sectors. The crop sectors modeled by Rhew(2014), beef and dairy sectors modeled

by Maisashvili (2014) and the pork and poultry sectors modeled in the current study

will be combined and interact with each other in making projections and policy

evaluations via important variables, such as feed demand for grains and grain prices

for livestock sectors.

Barrow and gilt price is explained by pork wholesale price:

PKBAGLTPR = f (PKWHPR, D12, D99, D9802)

where PKBAGLTPR is real barrow and gilt price, and PKWHPR is real pork whole-

sale price. Estimation results are presented in Table 4.23. Pork wholesale price has

the correct sign.

Feeder pig price is explained by pork wholesale price and feed cost:

PKFDPIGP = f (PKWHP, PKFFFC, D112, D906)
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Table 4.23: Barrow and Gilt Price (Real)

PKBAGLTPR Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1835 0.0271 -6.7800 0.0000
PKWHPR 0.5330 0.0178 30.0200 0.0000
D12 0.0540 0.0209 2.5900 0.0159
D99 -0.0638 0.0214 -2.9900 0.0062
D9802 -0.0505 0.0159 -3.1800 0.0039
Adjusted R-squared: 0.9762 MAPE 0.0253
Breusch-Godfrey test p-value: 0.6769 Theil’s U2 0.2118

where PKFDPIGP is feeder pig price, PKWHP is pork wholesale price, and PKFFFC

is farrow-to-finish pig farm feed cost. Feeder pig price should be positively correlated

to pork wholesale and negatively correlated to the feed cost. Both feed and feeder

pig are inputs for pork producers, when the price of one input increases the derived

quantity demanded for the other input decreases and thus its price will decrease.

Estimation results are presented in Table 4.24. Both coefficients have the correct

signs.

Table 4.24: Feeder Pig Price

PKFDPIGP Estimate Std. Error t value Pr(>|t|)
(Intercept) -128.6186 11.5998 -11.0900 0.0000
PKWHP 2.3818 0.1285 18.5300 0.0000
PKFFFC -1.8526 0.3757 -4.9300 0.0000
D112 -34.9722 7.8291 -4.4700 0.0001
D906 -20.3945 7.0565 -2.8900 0.0078
Adjusted R-squared: 0.9399 MAPE 0.0411
Breusch-Godfrey test p-value: 0.8663 Theil’s U2 0.1970

Nominal pork wholesale price is fitted as a function of pork retail price and gro-
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cery store labor cost:

PKWHP=f(PKRETP,LBCPGS,D9802)

where PKWHP is pork wholesale price, PKRETP is pork retail price which is the

primary endogenous variable for the pork industry, and LBCPGS is grocery store

labor cost. Estimation results are presented in Table 4.25. Functions are estimated

using data from 1987 to 2014 and non-fitted functional form is used in our simulation

system because no grocery store labor cost data is available for the years 1985 and

1986.

Table 4.25: Pork Wholesale Price

PKWHP Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.8316 5.0736 6.6700 0.0000
PKRETP 0.7092 0.0511 13.8800 0.0000
LBCPGS -0.0017 0.0002 -8.1400 0.0000
D9802 -16.4621 3.9037 -4.2200 0.0003
Adjusted R-squared: 0.9365 MAPE 0.0331
Breusch-Godfrey test p-value: 0.9117 Theil’s U2 0.3711

Pork retail price is assumed to positively affect pork wholesale price. Grocery

store labor compensation cost, which is used to approximate the efficiency of the

pork marketing system at retail level, is assumed to negatively affect pork wholesale

price. According to Hahn (2004) retail-wholesale price spread increases as the retail-

level marketing efficiency decreases, which is represented by the increase of grocery

store labor cost in our model specification. This function ends the description for

the pork supply side.

Other methods for modeling the wholesale price, such as a non-fitted identity

with wholesale price equals retail price minus price spread, are also available and
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plausible (Ferris 2005). The method that gives the best forecasting result is chosen

for each industry based on a priori tests.

All fitted equations have acceptable adjusted R-squares. Mean Absolute Per-

centage Error (MAPE) and Theils U2 indicating the forecasting ability of the model

specifications are at a satisfactory scale. Breusch-Godfrey tests are all passed with

p-values greater than 0.1. Estimated price elasticities of demand are in the range of

the estimated elasticities in literature listed in Table 4.261. Pork industry 2015 to

2024 projections are listed in Table 4.31. Also listed in Table 4.26 are USDA and

FAPRIs projections for the purpose of comparison. The short-run (year 2015, 2016)

and long-run (year 2019) supply elasticities are calculated as:

ePORK,SR15 =
(23547− 23482)/23482

10%
= 0.028 (4.1)

ePORK,SR16 =
(24665− 24514)/24514

10%
= 0.062 (4.2)

ePORK,LR =
(25853− 25856)/25856

10%
= −0.001 (4.3)

1When inverse demand functional forms are specified in the studies listed, flexibilities are es-
timated directly and elasticities are recovered from the estimated flexibilities. When both com-
pensated and uncompensated elasticities are provided, uncompensated elasticities are included in
Table 4.31 to keep consistent with the estimation result from the current study.
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Table 4.26: Estimates of Pork Demand Elasticities From Literature

Own Price

Elasticity

Cross Price

Elasticity

with Chicken

Cross Price

Elasticity

with Beef

Study Data Period Model Specification

-0.830 NA NA Tomek (1965) Quarterly
1949 Q4 to

1956 Q1
Linear Inverse

-0.900 NA NA Tomek (1965) Quarterly
1956 Q2 to

1964 Q1
Linear Inverse

-0.691 0.059 0.398 Menkhaus et al. (1985) Annual 1965-1981
Budget Share Translog Indirect

Utility Function with Habit Formation

-1.403 -19.608 -4.673 Buhr (1993) Quarterly 1973-1989
Approximate Almost Ideal

Inverse Demand System

-0.610 -3.257 -1.453 Dahlgran (1988) Annual 1950-1985
Income-constrained Utility

Maximization Model

-0.762 0.007 0.314 Eales and Unnevehr (1988) Annual 1965-1985 Dynamic AIDS

-0.818 -9.804 -15.152 Huang (1988) Annual 1947-1983 Rotterdam

-1.010 -3.145 -2.849 Eales and Unnevehr (1992) Quarterly 1966-1988 Inverse AIDS

-0.502 -0.141 -0.011 Tonsor and Marsh (2007) Quarterly 1976-2001 Generalized AIDS

-0.740 0.008 0.030
Tonsor, Mintert, and

Schroeder (2010)
Quarterly 1982-2007

Weighted First Difference Double

-log Function with Demand Shifters

-0.499 0.209 This Study Annual 1985-2014 Double-log
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Table 4.27: Pork Industry 2015-2024 Projections

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

PKPROD USDA 22,662 23,620 24,664 25,052 25,402 25,681 25,922 26,129 26,327 26,554 26,808

FAPRI 22,866 24,036 25,281 26,133 26,290 26,189 26,143 26,315 26,635 27,188 27,750

Current Study, No Shock 22,866 23,482 24,514 25,059 25,490 25,856 26,227 26,619 27,056 27,506 27,972

Current Study, With Shock 22,866 23,547 24,665 25,086 25,504 25,853 26,218 26,607 27,043 27,492 27,958

PKIMPT USDA 973 900 900 913 926 939 952 965 978 991 1,004

FAPRI 1,000 925 913 916 923 939 957 968 981 986 987

Current Study, No Shock 1,000 1,039 1,020 994 972 957 948 944 942 940 937

Current Study, With Shock 1,000 1,036 1,012 989 969 956 948 945 944 942 939

PKEXPT USDA 5,066 5,250 5,375 5,500 5,600 5,675 5,750 5,825 5,900 5,975 6,050

FAPRI 4,829 5,145 5,449 5,657 5,852 6,009 6,161 6,325 6,501 6,705 6,913

Current Study, No Shock 4,829 5,001 5,210 5,432 5,663 5,900 6,142 6,390 6,646 6,910 7,182

Current Study, With Shock 4,829 5,004 5,219 5,442 5,673 5,909 6,150 6,398 6,653 6,916 7,187

PKPCCR USDA 45.3 46.6 48.5 48.8 49.1 49.3 49.4 49.4 49.4 49.4 49.5

FAPRI 46.5 47.8 49.6 50.7 50.3 49.4 48.6 48.2 48.2 48.6 49.1

Current Study, No Shock 46.5 47.0 48.6 49.0 49.0 48.9 48.8 48.8 48.8 48.9 49.0

Current Study, With Shock 46.5 47.2 48.9 49.0 49.0 48.9 48.8 48.7 48.8 48.8 48.9

PKSTK USDA 580 605 600 600 600 600 600 600 600 600 600

FAPRI 540 569 621 657 659 647 638 638 646 663 681

Current Study, No Shock 540 580 625 646 661 671 681 689 699 710 722

Current Study, With Shock 540 583 632 648 661 671 680 688 698 709 721
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Table 4.27: Continued

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

PKHOGMK

-TINV
USDA 64,775 65,400 66,916 67,480 67,987 68,393 68,743 69,043 69,331 69,661 70,030

FAPRI 59,000 60,100 64,400 67,400 67,900 67,300 66,600 66,200 66,400 67,200 68,100

Current Study, No Shock 60,082 62,489 63,439 64,144 64,629 65,104 65,597 66,183 66,806 67,442 68,100

Current Study, With Shock 60,082 62,942 63,479 64,168 64,600 65,059 65,539 66,120 66,741 67,374 68,031

PKBAGLTP USDA 77.98 66.96 59.26 56.44 54.59 53.63 52.85 52.59 53.06 54.05 55.65

FAPRI 76.03 62.11 54.91 51.77 52.49 54.72 57.13 58.76 59.16 58.24 57.49

Current Study, No Shock 77.10 72.70 62.88 59.30 57.69 57.75 58.08 59.45 60.19 60.69 61.09

Current Study, With Shock 77.10 79.97 61.08 59.06 57.67 57.92 58.30 59.71 60.45 60.95 61.34

PKSLBAGLT FAPRI 103,800 109,400 116,300 120,000 120,400 119,600 119,100 119,400 120,500 122,500 124,600

Current Study, No Shock 103,731 107,651 111,882 113,826 115,225 116,282 117,335 118,457 119,748 121,105 122,498

Current Study, With Shock 103,731 107,806 112,563 113,905 115,237 116,208 117,230 118,333 119,615 120,967 122,357

PKPIGCROP FAPRI 112,700 121,800 127,800 129,300 128,600 127,500 127,200 128,000 129,900 132,200 134,600

Current Study, No Shock 112,700 117,599 120,537 122,610 124,242 125,780 127,344 129,069 130,901 132,781 134,718

Current Study, With Shock 112,700 118,318 120,792 122,701 124,237 125,726 127,260 128,967 130,786 132,656 134,584

PKSOWFAR FAPRI 11,350 11,890 12,150 12,100 11,880 11,660 11,520 11,480 11,530 11,630 11,730

Current Study, No Shock 11,350 11,667 11,781 11,805 11,783 11,751 11,719 11,700 11,688 11,678 11,670

Current Study, With Shock 11,350 11,739 11,806 11,814 11,783 11,746 11,711 11,691 11,678 11,667 11,658

PKPIGPL FAPRI 9.93 10.24 10.52 10.69 10.82 10.93 11.04 11.15 11.27 11.37 11.47

Current Study, No Shock 9.93 10.08 10.23 10.39 10.54 10.70 10.87 11.03 11.20 11.37 11.54

Current Study, With Shock 9.93 10.08 10.23 10.39 10.54 10.70 10.87 11.03 11.20 11.37 11.54
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Table 4.27: Continued

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

PKHOGBRH FAPRI 5,760 5,970 6,190 6,190 6,070 5,930 5,820 5,750 5,740 5,760 5,800

Current Study, No Shock 5,696 5,950 6,088 6,168 6,211 6,238 6,258 6,283 6,312 6,340 6,370

Current Study, With Shock 5,696 6,026 6,138 6,211 6,248 6,272 6,289 6,312 6,338 6,364 6,390

PKSOWP FAPRI 73.52 55.07 49.34 47.08 47.70 49.54 51.60 52.87 53.30 52.69 52.28

Current Study, No Shock 77.08 73.73 61.09 56.64 54.78 55.11 55.83 57.92 59.20 60.19 61.06

Current Study, With Shock 77.08 72.65 58.69 56.22 54.58 55.13 55.87 57.99 59.24 60.18 60.98

PKRETP FAPRI 402 390 376 368 372 383 399 409 414 413 412

Current Study, No Shock 402 397 376 371 372 377 383 392 399 405 411

Current Study, With Shock 402 395 371 371 372 378 384 392 399 406 412

PKHOGNIMPT FAPRI 4.9 5.1 5.1 5.2 5.2 5.3 5.3 5.4 5.4 5.4 5.4

Current Study, No Shock 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.7 5.8 5.9 6.0

Current Study, With Shock 4.9 5.0 5.1 5.2 5.3 5.4 5.6 5.7 5.8 5.9 6.0

PKCDIS FAPRI 19,114 19,787 20,693 21,354 21,360 21,130 20,948 20,958 21,108 21,451 21,805

Current Study, No Shock 19,115 19,479 20,279 20,600 20,784 20,904 21,023 21,165 21,342 21,525 21,716

Current Study, With Shock 19,115 19,535 20,410 20,618 20,786 20,891 21,007 21,147 21,324 21,507 21,699

The applied shock is a 10 percent increase in 2015 barrow and gilt price
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5. THE U.S. BROILER INDUSTRY

This chapter presents an econometric model for the U.S. broiler industry. The

model describes the supply and the demand for the broiler sector within the U.S.

economy; retail price is the primary variable that adjusts and clears the market. Fol-

lowing the construction of the U.S. pork industry, total supply consists of beginning

stocks, imports, and production; total demand comprises ending stocks, exports,

and domestic disappearance. Due to the extensive proportion of domestic produc-

tion and consumption accounting for the total U.S. broiler supply and disappearance

respectively, the model focuses on these two parts based on the theoretical founda-

tion developed in the methodology chapter. A one-equation description will be used

to approximate the U.S. broiler imports, exports, and stocks.

The chapter is organized as follows. In the first section, the general flow in broiler

production is presented as a background. Critical decision points in broiler produc-

tion have been discussed in Chapter III to assist present the model specification.

More detailed information about the industry will be provided in this section. In the

second section, the dataset that will be used for estimating the econometric model

will be discussed. In the third section, the model specification and estimation results

will be presented.

5.1 Broiler Production

Broiler production has a sequential feature starting with inventory management

of the hatchery supply flock which provides fertilized eggs that will be hatched and

the chicks fed to become broiler-type hatching egg layers. Broiler-type hatching

egg layers then lay fertilized broiler-type hatching eggs. The eggs are then set in

incubators and hatched to broiler-type chicks. Finally broiler-type chicks are placed
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on feed and slaughtered at an average weight around 4.5 pounds after about 35 to

49 days of feeding.

As discussed in the literature review section, to study the poultry industry in

more detail and model the effects of regionalized issues, such as an outbreak of

avian influenza and regional policy changes, the poultry industry will be divided into

different regions in this study according to Hatchery Production Annual Summary

(USDA NASS) with adjustments made due to data availability. The U.S. broiler

model is schematically described in Figure 5.1.

5.2 Broiler Data

Macro-level broiler supply and demand data, including broiler production, im-

ports, exports, stocks, and consumption, are available from World Agricultural Supply

and Demand Estimates (WASDE) provided by USDA. Broiler production data are

mainly collected from three sources: (1) annual state-level broilers slaughtered,

broiler-type chicks placed on feed, and broiler-type chick price are available from

the National Agricultural Statistics Service (NASS, USDA); (2) annual state-level

broiler-type chicks hatched, first day of month regional-level broiler-type hatching

eggs set in incubators are available in Hatchery Production (NASS, USDA); (3)

during month state-level hatching egg production1, number of hatching egg lay-

ers (1994-2014), and hatching egg layers laying rate (1994-2014) are available in

Chickens and Eggs (NASS, USDA)2.

Historical data for national level broiler production and the number of broilers

1Monthly, and thus calendar year, state production is published in Chickens and Eggs starting
from 1994. For the period of 1985 to 1993, only marketing year (proceeding December to current
November) hatching egg production data are available in Hatching Egg Production, and this is
transformed and used as calendar year data.

2To be more accurate, broiler-type hatching egg production, number of broiler-type hatching
egg layers and the corresponding laying rate should be used in the model specification. However,
they are not available at the state or regional level. (Total) Hatching egg production, (total) number
of hatching egg layers and their laying rate are thus used as a proxy.
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Figure 5.1: The U.S. Broiler Model
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slaughtered are available. We assume the average broiler slaughter weight follows

the same pattern all across the country and it is calculated from the ratio of national

broiler production divided by total number of broilers slaughtered.

Intended placement into hatchery supply flocks was modeled as the first produc-

tion step by Brown (1994). However, no state or regional level data are available

for this production stage; and thus it is omitted in the current model. Hatching egg

layer inventory is explained by price and cost variables directly.

The number of hatching egg layers and their laying rate are state-level data and

collected monthly. The following steps are performed to calculate the during-month,

state-level hatching egg layers and laying rate into meaningful annual regional data:

1.
∑

j during month production in statej = during month production in regioni,

statej from regioni

2.
∑

j during month layer in statej =during month layer in regioni, statej from

regioni

3. during month production in regioni

during month layer in regioni
=during month laying rate for regioni,

4.
∑

j during month laying rate for regioni =during year laying rate for regioni,

j = 1, 2, ..., 12

5. during year production in regioni

during year laying rate for regioni
=during year layers in regioni,

5.3 The U.S. Broiler Model

The U.S. broiler model is schematically delineated in Figure 5.1. Total U.S. broiler

demand equals the sum of broiler ending stocks, broiler exports, and broiler domestic

disappearance. Total U.S. broiler supply equals the sum of broiler beginning stocks,

broiler imports, and broiler production.

Starting from the demand side, the broiler total demand identity is
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CKDEM ≡ CKSTK + CKEXPT + CKCDIS

where CKDEM is the total demand for broiler, CKSTK is broiler ending stocks,

CKEXPT is broiler exports, and CKCDIS is broiler domestic disappearance.

U.S. broiler ending stock is specified as:

CKSTK = f (CKPRODRTC,CKWHPR,D95T05,D0311)

where CKPRODRTC is broiler production (ready-to-cook) and CKWHPR is the

GPD deflated real broiler wholesale price. Estimation results are presented in Ta-

ble 5.1. Broiler production has a positive effect on ending stocks. And broiler

wholesale price has a negative effect on broiler ending stocks, reflecting the fact that

when price is high more meat is sold and thus ending stock should be lower. U.S.

broiler production will be discussed in the supply side.

Table 5.1: Broiler Ending Stock

CKSTK Estimate Std. Error t value Pr(>|t|)
(Intercept) 302.0260 123.6437 2.4400 0.0220
CKPRODRTC 0.0208 0.0013 16.0800 0.0000
CKWHPR -476.6694 121.7834 -3.9100 0.0006
D95T05 158.9646 16.5001 9.6300 0.0000
D0311 -164.5735 31.3419 -5.2500 0.0000
Adjusted R-squared: 0.9660 MAPE 0.0683
Breusch-Godfrey test p-value: 0.1323 Theil’s U2 0.5918

The amount of U.S. broiler exports approaches 20 percent of total broiler pro-

duction during the past couple of years (WASDE, USDA). Major foreign markets

for the U.S. broiler products include Russia, China, and Mexico. To model the U.S.

broiler exports with sufficient accuracy, descriptions for the demand from these mar-

67



kets are needed yet beyond the research scale of the current study. A single equation

description for the U.S. broiler exports is specified as:

CKEXPT = f( CKEXPT LAG1, CKPRODRTC, CKRETPR, D02, D85067, D04,

D9508)

where CKEXPT is broiler exports, CKEXPT LAG1 is the lagged dependent vari-

able, CKPRODRTC is broiler production (ready-to-cook), and CKRETPR is real

broiler retail price. Based on the assumption that not all the trading partners will

change drastically, the lagged dependent variable can explain partially the current

quantity of broiler exports. The total (ready-to-cook) broiler production sets a limit

on the amount the domestic producers are willing to trade. Broiler selling price has a

negatively effect on broiler exports indicating that when domestic price is high more

meat will be sold in the home market and less will be exported, and vice versa. Esti-

mation results are presented in Table 5.2. All the signs of the estimated coefficients

are as expected.

Table 5.2: Broiler Exports

CKEXPT Estimate Std. Error t value Pr(>|t|)
(Intercept) 3150.7088 2203.5503 1.4300 0.1668
CKEXPT LAG1 0.7169 0.0764 9.3900 0.0000
CKPRODRTC 0.0531 0.0251 2.1100 0.0461
CKRETPR -1701.6622 932.0210 -1.8300 0.0815
D02 -838.9863 226.3871 -3.7100 0.0012
D85067 -387.5231 209.6789 -1.8500 0.0781
D04 -496.1707 234.0011 -2.1200 0.0455
D9508 624.6213 171.9337 3.6300 0.0015
Adjusted R-squared: 0.9914 MAPE 0.0601
Breusch-Godfrey test p-value: 0.6007 Theil’s U2 0.6190
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The last and largest proportion of the quantity demanded for broiler is broiler

domestic disappearance, which is the product of U.S. population and carcass weight

per capita consumption:

CKCDIS ≡ USPOP × CKPCCC

where CKCDIS is broiler civilian disappearance, USPOP is U.S. population, and

CKPCCC is carcass weight per capita consumption for broiler.

Carcass weight per capita consumption for broiler is calculated from broiler retail

weight per capita consumption by dividing the carcass to retail conversion factor:

CKPCCC ≡ CKPCCR ÷ 0.859

where CKPCCC is broiler carcass weight per capita consumption, CKPCCR is broiler

retail weight per capita consumption, and the ratio of 0.859 is calculated from the

historical data series of these two variables.

Following the discussions in the methodology chapter, retail weight per capita

consumption for broiler is modeled by a double-log functional form:

CKPCCR LOG = f (FOODEXPR LOG, CKRETPR LOG, BFPKTKRETPR LOG,

TIME LOG, D92T10, D990245, D0910, D91003, D14)

where CKPCCR LOG is broiler retail weight per capita consumption in log form,

FOODEXPR LOG is real food expenditure in log form, CKRETPR LOG is real

broiler retail price in log form, BFPKTKRETPR LOG is the composite real beef

and chicken retail price in log form, and TIME LOG is time in log form.

Estimation results are presented in Table 5.3. Food expenditure has a positive

effect on broiler consumption; income elasticity is 0.42. Broiler retail price is neg-

atively affecting broiler consumption; own price elasticity is -0.55. Beef, pork and

turkey, as substitutes for broiler, their composited retail price is positively affecting
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broiler consumption; cross price elasticity is 0.19. Functional form with other food

price index included in the explanatory variables has also been tried as listed in

Table 5.4, where other food price index has a negative effect on broiler consump-

tion which contradicts economic theory and is statistically insignificant, thus it is

removed.

Table 5.3: Broiler Per Capita Consumption Without OTHFOODPR (Retail Weight)

CKPCCR LOG Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.6689 0.6650 4.0100 0.0006
FOODEXPR LOG 0.4227 0.2009 2.1000 0.0476
CKRETPR LOG -0.5510 0.0904 -6.1000 0.0000
BFPKTKRETPR LOG 0.1917 0.1036 1.8500 0.0784
TIME LOG 0.0747 0.0181 4.1300 0.0005
D92T10 0.0788 0.0146 5.4000 0.0000
D990245 0.0650 0.0093 6.9900 0.0000
D950910 -0.0342 0.0098 -3.4700 0.0023
D91003 0.0328 0.0095 3.4400 0.0024
Adjusted R-squared: 0.9917 MAPE 0.0023
Breusch-Godfrey test p-value: 0.3485 Theil’s U2 0.4073

The beef-pork-turkey composite price, BFPKTKRETPR LOG in the broiler re-

tail weight per capita consumption function is defined as:

BFPKTKRETPR LOG ≡ ln [(BFRETPR + PKRETPR + TKRETPR)/3]

where BFRETPR is real beef retail price, PKRETPR is real pork retail price, and

TKRETPR is real turkey retail price. The three retail prices are the primary en-

dogenous variables in the three respective sectors used to clear the markets. This

equation ends the description for the demand side of broiler industry.

The U.S. broiler total supply identity is:
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Table 5.4: Broiler Per Capita Consumption With OTHFOODPR (Retail Weight)

CKPCCR LOG Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.9071 0.6081 3.1400 0.0054
FOODEXPR LOG 0.5884 0.1818 3.2400 0.0044
CKRETPR LOG -0.4827 0.0836 -5.7700 0.0000
BFPKTKRETPR LOG 0.3514 0.1003 3.5000 0.0024
TIME LOG 0.0617 0.0174 3.5400 0.0022
OTHFOODPR LOG -0.0415 0.1345 -0.3100 0.7609
D92T10 0.1009 0.0143 7.0800 0.0000
D990245 0.0618 0.0083 7.4600 0.0000
D0910 -0.0445 0.0126 -3.5200 0.0023
D91003 0.0333 0.0084 3.9900 0.0008
D14 -0.0593 0.0181 -3.2800 0.0039
Adjusted R-squared: 0.9114 MAPE 0.0024
Breusch-Godfrey test p-value: 0.1116 Theil’s U2 0.3243

CKSUPP ≡ CKSTK LAG1+CKIMPT+CKPRODRTC

where CKSTK LAG1 is broiler beginning stock that can be recovered from broiler

ending stock of the previous period, CKIMPT is U.S. broiler imports, and CKPRO-

DRTC is U.S. ready-to-cook broiler production.

Following similar reasoning logic in specifying the U.S. broiler exports function,

the U.S. broiler imports will be specified as:

CKIMPT=f(CKIMPT LAG1,CKWHPR,SHIFT06,D91T99,D0314)

where CKIMPT is broiler imports, CKIMPT LAG1 is the lagged dependent variable,

and CKWHPR is real broiler wholesale price. Based on the assumption that not all

the trading partners will change drastically, the lagged broiler imports can explain

partially the current quantity of broiler imports. And the real broiler wholesale price

also helps explaining the domestic wholesalers’ willingness to trade. Estimation re-

sults are presented in Table 5.5. The lagged dependent variable and broiler wholesale

price are both positively correlated with pork imports as expected.
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Table 5.5: Broiler Imports

CKIMPT Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.5176 7.3614 -1.2900 0.2133
CKIMPT LAG1 0.7314 0.0426 17.1900 0.0000
CKWHPR 31.1036 10.4541 2.9800 0.0085
SHIFT06 20.0363 3.3800 5.9300 0.0000
D91T99 -14.4766 1.9812 -7.3100 0.0000
D0314 -10.1763 2.2885 -4.4500 0.0004
Adjusted R-squared: 0.9962 MAPE 0.3836
Breusch-Godfrey test p-value: 0.5698 Theil’s U2 0.7025

The main component of total broiler supply is ready-to-cook broiler production

which equals total broiler production less broiler condemnation:

CKPRODRTC ≡ CKPROD - CKCONDM

where CKPRODRTC is ready-to-cook broiler production, CKPROD is broiler pro-

duction, and CKCONDM is broiler condemnation.

Broiler condemnation is fitted as a function of total broiler production, indicating

that a certain proportion of the broiler production will be disposed due to illness or

management practices at the farm and the processing plant:

CKCONDM=f(CKPROD,D880123)

where CKCONDM is broiler condemnation and CKPROD is broiler production. The

coefficient of broiler production in Table 5.6 has a positive sign as expected; and the

magnitude shows that around 1 percent of the total broiler production is condemned,

in accordance with historical data.

Broiler production is explained by two factors, the number of broilers slaughtered

and the average broiler slaughter weight:

CKPROD ≡ CKSLT × CKSLW ÷ 1,000
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Table 5.6: Broiler Condemnation

CKCONDM Estimate Std. Error t value Pr(>|t|)
(Intercept) -96.5158 2.1971 -43.9300 0.0000
CKPROD 0.0133 0.0001 179.2400 0.0000
D880123 9.7576 1.7552 5.5600 0.0000
Adjusted R-squared: 0.9991 MAPE 0.0124
Breusch-Godfrey test p-value: 0.2105 Theil’s U2 0.2342

where CKPROD is broiler production, CKSLT is the number of broilers slaughtered,

and CKSLW is the average broiler slaughter weight. Since the measurement unit for

broiler production is in millions of pounds, a conversion rate of 1/1000 is needed.

Broiler slaughter weight is fitted as a function of the lagged dependent variable

representing technology improvement:

CKSLW = f (CKSLW LAG1, SHIFT12, D969, D05)

where CKSLW is average broiler slaughter weight and CKSLT LAG1 is the lagged

dependent variable. Estimation results are presented in Table 5.7. The coefficient

of the lagged dependent variable is greater than 1, representing technology improve-

ment.

Table 5.7: Average Broiler Slaughter Weight

CKSLW Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0789 0.0353 -2.2300 0.0347
CKSLW LAG1 1.0339 0.0099 104.7500 0.0000
SHIFT12 -0.0300 0.0144 -2.0800 0.0477
D969 0.0643 0.0141 4.5500 0.0001
D05 0.0492 0.0198 2.4800 0.0202
Adjusted R-squared: 0.9982 MAPE 0.0039
Breusch-Godfrey test p-value: 0.7433 Theil’s U2 0.3180
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Starting from the total number of broilers slaughtered, the broiler production

model is divided into different regions. According to Hatchery Production Annual

Summary (1985 to 2014) there should be six production regions:

North Atlantic: CT, ME, MA, NH, NJ, NY, PA, RI, VT;

South Atlantic: DE, FL, GA, MD, NC, SC, VA, WV;

South Central: AL, AR, KY, LA, MS, OK, TN, TX;

East North Central: IL, IN, MI, OH, WI;

West North Central: IA, KS, MN, MO, NE, ND, SD;

West: AK, AZ, CA, CO, HI, ID, MT, NM, NV, OR, UT, WA, WY.

However, in our broiler production model we only retain the following three regions:

North Atlantic (NA), South Atlantic (SA), and South Central (SC); and categorize

the remaining three regions into one Other Region (OTH). The reason we do not

work with East North Central, West North Central, and West individually is the lack

of data disclosure at least for one production stage described in the broiler industry

flow chart.

For some production stages, data are available at the regional level, like eggs set

in incubators; for others, data are available only at the state level. To calculate

regional data, we add up the corresponding state level data that are available for

our complete study period, from 1985 to 2014. State level data that are published

for some years but not the whole period are not counted nor used to represent that

region and are lumped into the Other Region.

To sum up, (1) we divide broiler industry into four regions: North Atlantic, South

Atlantic, South Central, and Other Region. (2) For each production stage, a state is
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incorporated into its corresponding region if it has data available for the whole study

period from 1985 to 2014. (3) Data for the Other Region is the difference between

national total and the sum of the first three regions3.

Thus the total number of broilers slaughtered is the sum of the four regional level

numbers of broilers slaughtered:

CKSLT ≡ CKSLTNA+CKSLTSA+CKSLTSC+CKSLTOTH

where CKSLT is the national total number of broilers slaughtered; states in each

region for the production stage of slaughter are listed below:

NA: PA;

SA: DE, GA, MD, NC, SC, VA;

SC: AL, AR, LA, MS, TN, TX.

The number of broilers slaughtered in each region is fitted as a function of broiler-

type chicks placed on feed in that region:

CKSLTSC=f(CKPLACESC,D068112);

CKSLTSA=f(CKPLACESA,D038);

CKSLTNA=f(CKPLACENA,SHIFT13);

CKSLTOTH=f(CKPLACEOTH,SHIFT02,D85,D87T94,D9504T08,D00123);

where CKSLT is the number of broilers slaughtered, and CKPLACE is the number

of broiler-type chicks placed on feed. Estimation results are listed through Table 5.8

to Table 5.11. The number of broilers slaughtered is positively related to the number

of broiler-type chicks placed on feed in all four regions as expected.

3We will list the states in NA, SA, and SC for each production stage because of the minor
changes in data availability for future reference.
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Table 5.8: Broiler Slaughter in South Central

CKSLTSC Estimate Std. Error t value Pr(>|t|)
(Intercept) -47084.2189 46275.4361 -1.0200 0.3180
CKPLACESC 1.0654 0.0142 75.1300 0.0000
D068112 109858.3346 24383.2598 4.5100 0.0001
Adjusted R-squared: 0.9954 MAPE 0.0101
Breusch-Godfrey test p-value: 0.0093 Theil’s U2 0.2918

Table 5.9: Broiler Slaughter in South Atlantic

CKSLTSA Estimate Std. Error t value Pr(>|t|)
(Intercept) 21548.4029 27212.5334 0.7900 0.4353
CKPLACESA 0.8955 0.0092 97.8200 0.0000
D038 72729.7970 17003.3102 4.2800 0.0002
Adjusted R-squared: 0.9971 MAPE 0.0070
Breusch-Godfrey test p-value: 0.6522 Theil’s U2 0.3013

Table 5.10: Broiler Slaughter in North Atlantic

CKSLTNA Estimate Std. Error t value Pr(>|t|)
(Intercept) 12515.7070 6373.6197 1.9600 0.0599
CKPLACENA 0.6867 0.0459 14.9700 0.0000
SHIFT13 -25355.5314 4139.0258 -6.1300 0.0000
Adjusted R-squared: 0.8892 MAPE 0.0012
Breusch-Godfrey test p-value: 0.5039 Theil’s U2 0.0535

Broiler-type chicks placed on feed in each region is fitted as a function of broiler-

type chicks hatched in that region; states in each region for the production stage of

placement are listed below:

CKPLACESC=f(CKHATCHSC,SHIFT09,D14);

CKPLACESA=f(CKHATCHSA);
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Table 5.11: Broiler Slaughter in Other Region

CKSLTOTH Estimate Std. Error t value Pr(>|t|)
(Intercept) 150629.5802 53186.5410 2.8300 0.0094
CKPLACEOTH 2.3754 0.1126 21.0900 0.0000
SHIFT02 -2302017.6773 125402.9192 -18.3600 0.0000
D85 -659430.6359 40653.4087 -16.2200 0.0000
D87T94 -250345.0949 20744.6513 -12.0700 0.0000
D9504T08 -165807.4182 21678.0252 -7.6500 0.0000
D00123 121315.9814 24771.6226 4.9000 0.0001
Adjusted R-squared: 0.9892 MAPE 0.0234
Breusch-Godfrey test p-value: 0.8995 Theil’s U2 0.6008

CKPLACENA=f(CKHATCHNA,SHIFT14);

CKPLACEOTH=f(CKHATCHOTH,SHIFT02,D85,D86);

NA: PA;

SA: DE, FL, GA, MD, NC, SC, VA;

SC: AL, AR, MS, TX;

where CKPLACE is the number of broiler-type chicks placed on feed and CKHATCH

is the number of broiler-type chicks hatched. Estimation results are provided in Ta-

ble 5.12 to Table 5.15. The number of broiler-type chicks placed on feed is positively

related to the number of broiler-type chicks hatched on feed in all four regions as

expected.

Broiler-type chicks hatched in each region is fitted as a function of broiler-type

hatching eggs set in incubators in that region; feed cost and time trend are also

included in the explanatory variables for some region. States in each region for the

production stage of hatchery are listed below:

CKHATCHSC=f(CKEGGSETSC,CKFEEDR,D024);
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Table 5.12: Broiler-type Chicks Placed on Feed in South Central

CKPLACESC Estimate Std. Error t value Pr(>|t|)
(Intercept) -220743.2415 36094.8109 -6.1200 0.0000
CKHATCHSC 1.0024 0.0104 96.0000 0.0000
SHIFT09 102129.2928 16063.3010 6.3600 0.0000
D14 124089.1265 35184.0057 3.5300 0.0016
Adjusted R-squared: 0.9971 MAPE 0.0081
Breusch-Godfrey test p-value: 0.0045 Theil’s U2 0.2494

Table 5.13: Broiler-type Chicks Placed on Feed in South Atlantic

CKPLACESA Estimate Std. Error t value Pr(>|t|)
(Intercept) -241581.5608 23104.8852 -10.4600 0.0000
CKHATCHSA 1.0708 0.0077 139.9400 0.0000
Adjusted R-squared: 0.9985 MAPE 0.0051
Breusch-Godfrey test p-value: 0.0356 Theil’s U2 0.1955

Table 5.14: Broiler-type Chicks Placed on Feed in North Atlantic

CKPLACENA Estimate Std. Error t value Pr(>|t|)
(Intercept) -12855.9434 5365.0674 -2.4000 0.0238
CKHATCHNA 1.0142 0.0355 28.6000 0.0000
SHIFT14 17415.4129 4082.1522 4.2700 0.0002
Adjusted R-squared: 0.9729 MAPE 0.0187
Breusch-Godfrey test p-value: 0.0003 Theil’s U2 0.4249

CKHATCHSA=f(CKEGGSETSA,D867989);

CKHATCHNA=f(CKEGGSETNA,YEAR,D88905,D0910);

CKHATCHOTH=f(CKEGGSETOTH,D9300T04);

NA: PA;
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Table 5.15: Broiler-type Chicks Placed on Feed in Other Region

CKPLACEOTH Estimate Std. Error t value Pr(>|t|)
(Intercept) 231138.3947 31568.5575 7.3200 0.0000
CKHATCHOTH 0.1839 0.0259 7.1000 0.0000
SHIFT02 1010209.7452 23071.2336 43.7900 0.0000
D85 149533.3232 40947.6696 3.6500 0.0012
D86 -144727.1368 40044.6394 -3.6100 0.0013
Adjusted R-squared: 0.9962 MAPE 0.0236
Breusch-Godfrey test p-value: 0.0018 Theil’s U2 0.0939

SA: DE, FL, GA, MD, NC, SC, VA & WV;

SC: AL, AR, MS, TX;

where CKHATCH is the number of broiler-type chicks hatched, CKEGGSET is the

number of broiler-type hatching eggs set in incubators, CKFEEDR is GPD deflated

real broiler feed cost, and YEAR is time trend. Estimation results are presented in

Table 5.16 to Table 5.19.

Table 5.16: Broiler-type Chicks Hatched in South Central

CKHATCHSC Estimate Std. Error t value Pr(>|t|)
(Intercept) 815185.8893 56246.7482 14.4900 0.0000
CKEGGSETSC 0.8337 0.0145 57.3500 0.0000
CKFEEDR -50701.4960 10066.8098 -5.0400 0.0000
D024 160895.6496 39387.0338 4.0800 0.0004
Adjusted R-squared: 0.9920 MAPE 0.0124
Breusch-Godfrey test p-value: 0.0005 Theil’s U2 0.4275

The number of broiler-type chicks hatched is positively related to the number of

broiler-type hatching eggs set in incubators in all four regions as expected. Feed cost
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Table 5.17: Broiler-type Chicks Hatched in South Atlantic

CKHATCHSA Estimate Std. Error t value Pr(>|t|)
(Intercept) 85638.0644 32351.5027 2.6500 0.0134
CKEGGSETSA 1.1365 0.0123 92.3300 0.0000
D867989 -73202.9669 13536.4813 -5.4100 0.0000
Adjusted R-squared: 0.9969 MAPE 0.0058
Breusch-Godfrey test p-value: 0.0004 Theil’s U2 0.2724

Table 5.18: Broiler-type Chicks Hatched in North Atlantic

CKHATCHNA Estimate Std. Error t value Pr(>|t|)
(Intercept) -3707242.1920 279434.3024 -13.2700 0.0000
CKEGGSETNA 0.6467 0.1337 4.8400 0.0001
YEAR 1883.2837 147.3170 12.7800 0.0000
D88905 12038.9441 2451.8389 4.9100 0.0000
D0910 -10104.2091 3024.4042 -3.3400 0.0026
Adjusted R-squared: 0.9660 MAPE 0.0214
Breusch-Godfrey test p-value: 0.0557 Theil’s U2 0.4652

Table 5.19: Broiler-type Chicks Hatched in Other Region

CKHATCHOTH Estimate Std. Error t value Pr(>|t|)
(Intercept) -441921.0284 22371.9676 -19.7500 0.0000
CKEGGSETOTH 3.0796 0.0359 85.7700 0.0000
D9300T04 154129.3666 14125.5319 10.9100 0.0000
Adjusted R-squared: 0.9962 MAPE 0.0229
Breusch-Godfrey test p-value: 0.0440 Theil’s U2 0.4274

is supposed to have a negative effect on the number of broiler-type chicks hatched.

Since both feed and chicks are input for broiler production; when the price for one

input increases the derived quantity demanded for the other will decrease. The feed

cost variable is insignificant for other regions and thus not included in other hatchery
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functions.

For the North Atlantic there is a trend term in the equation indicating that there

is a positive trend in the number of eggs that have been hatched comparing to the

number of eggs being set in incubators as time passes (Table 5.18). This might be

caused by technology improvement in this region and/or that more hatching cycles

have been performed by producers over time. The reason we need a trend term

to represent the second possible cause is that we dont have the exact number of

eggs set in incubators by year, but only the sum of first day of month data as an

approximation when the incubation period is 21 days. For the South Atlantic region,

the coefficient before CKEGGSETSA is higher than one, which means more eggs are

hatched than eggs set in incubators. This is possible because of the same reason that

more than one hatching cycles per month may have been performed by producers

but this is not reflected in egg set data that we are using which is an approximation

of the exact during-year egg set.

For the Other Region the coefficient for CKEGGSETOTH is very high (Ta-

ble 5.19). This might be because we put all the states that belong to NA, SA,

and SC but do not have a complete data set during the study period of 1985 to 2014

for hatchery of broiler-type chicks into this region; yet the number of broiler-type

hatching eggs set in incubators is already available at the regional level, and does

not include egg set out of the East North Central, West North Central, and West.

Broiler-type hatching eggs set in incubators in each region is fitted as a function

of the lagged dependent variable representing the beginning production capacity and

the hatching egg production in that region:

CKEGGSETSC=f(HEGGPRODSC,CKEGGSETSC LAG1,D02911);

CKEGGSETSA=f(HEGGPRODSA,CKEGGSETSA LAG1,SHIFT13,D93,D09);
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CKEGGSETNA=f(HEGGPRODNA,CKEGGSETNA LAG1,D9000,D879804813);

CKEGGSETOTH=f(HEGGPRODOTH,CKEGGSETOTH LAG1,D94T9705);

where CKEGGSET is the number of broiler-type hatching eggs set in incubators and

HEGGPROD4 is hatching egg production. Regional level data for first day of month

broiler-type hatching egg set in incubators are available in Hatchery Production

Annual Summary, so we do not list the states in each region for this production

stage.

Both the lagged dependent variable and the hatching egg production should be

positively correlated with broiler-type hatching eggs set in incubators as presented

through Table 5.20 to Table 5.23. Because of the presence of the lagged dependent

variable on the right hand side of the fitted equations, Breusch-Godfrey test is applied

and with all p-values greater than 0.4, we cannot reject the null hypothesis that there

is no serial correlation.

Table 5.20: Broiler-type Hatching Eggs Set in Incubators in South Central

CKEGGSETSC Estimate Std. Error t value Pr(>|t|)
(Intercept) 146779.5467 58544.7763 2.5100 0.0188
CKEGGSETSC LAG1 0.8128 0.0432 18.8000 0.0000
HEGGPRODSC 126.6135 37.6429 3.3600 0.0024
D02911 -244547.6229 36015.9980 -6.7900 0.0000
Adjusted R-squared: 0.9933 MAPE 0.0130
Breusch-Godfrey test p-value: 0.8923 Theil’s U2 0.3653

Hatching egg production5 in each region is determined by the number of hatching

4Broiler-type hatching egg production would be more accurate, but we only have (all-type)
hatching egg production in state and regional level.

5Total hatching egg production, the sum of both broiler-type and egg-type, from large flocks
(30000 and more) is used due to data availability.
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Table 5.21: Broiler-type Hatching Eggs Set in Incubators in South Atlantic

CKEGGSETSA Estimate Std. Error t value Pr(>|t|)
(Intercept) 237914.8856 37679.8354 6.3100 0.0000
CKEGGSETSA LAG1 0.6630 0.0631 10.5100 0.0000
HEGGPRODSA 163.2424 36.5750 4.4600 0.0002
SHIFT13 92117.7373 23648.4482 3.9000 0.0007
D09 -84089.4892 33893.7532 -2.4800 0.0205
D93 132988.3182 31394.1449 4.2400 0.0003
Adjusted R-squared: 0.9937 MAPE 0.0085
Breusch-Godfrey test p-value: 0.4215 Theil’s U2 0.3463

Table 5.22: Broiler-type Hatching Eggs Set in Incubators in North Atlantic

CKEGGSETNA Estimate Std. Error t value Pr(>|t|)
(Intercept) 84102.8390 8789.6286 9.5700 0.0000
CKEGGSETNA LAG1 0.2000 0.0792 2.5200 0.0183
HEGGPRODNA 144.5982 18.9890 7.6100 0.0000
D9000 -12272.6342 2081.7321 -5.9000 0.0000
D879804813 8089.0426 1384.1227 5.8400 0.0000
Adjusted R-squared: 0.9071 MAPE 0.0146
Breusch-Godfrey test p-value: 0.5218 Theil’s U2 0.3823

Table 5.23: Broiler-type Hatching Eggs Set in Incubators in Other Region

CKEGGSETOTH Estimate Std. Error t value Pr(>|t|)
(Intercept) 4439.3457 18045.2721 0.2500 0.8076
CKEGGSETOTH LAG1 0.8753 0.0411 21.3200 0.0000
HEGGPRODOTH 26.5634 11.1701 2.3800 0.0250
D94T9705 63051.7394 14262.8310 4.4200 0.0002
Adjusted R-squared: 0.9864 MAPE 0.0232
Breusch-Godfrey test p-value: 0.8667 Theil’s U2 0.5064

egg layers and their laying rate. States in each region for the production stage of

hatching egg production are listed below:

83



HEGGPRODSC ≡ HEGGLAYERSC × HEGGLRSC/100,000;

HEGGPRODSA ≡ HEGGLAYERSA × HEGGLRSA/100,000;

HEGGPRODNA ≡ HEGGLAYERNA × HEGGLRNA/100,000;

HEGGPRODOTH ≡ HEGGLAYEROTH × HEGGLROTH/100,000;

NA: PA;

SA: FL, GA, MD, NC, SC, VA;

SC: AL, AR, MS;

where HEGGPROD is hatching egg production, HEGGLAYER is the number of

hatching egg layers on farm during the year, and HEGGLR is the average hatching

egg layers laying rate. Since the measurement unit for hatching egg production is

million eggs, for hatching egg layers is 1000 layers, and for hatching egg layers laying

rate is eggs per 100 layers in our data set, we need a conversion rate of 1/ 100,000.

The number of hatching egg layers in each region is fitted as a function of the

lagged dependent variable and the ratio of boiler-type chick price over feed cost.

States in each region for the production stage of hatching egg production are listed

below:

HEGGLAYERSC = f (HEGGLAYERSC LAG1, CKCHKP FEED, D11, D12, D95036)

HEGGLAYERSA = f (HEGGLAYERSA LAG1, CKCHKP FEED, D9509112, D96)

HEGGLAYERNA = f (HEGGLAYERNA LAG1, CKCHKP FEED, D0311, D078,

D13)

HEGGLAYEROTH = f (HEGGLAYEROTH LAG1, CKCHKP FEED, D980613,

D07, D11, D03)
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NA: PA;

SA: FL, GA, MD, NC, SC, VA;

SC: AL, AR, MS;

where HEGGLAYER is the number of hatching egg layers and CKCHKP FEED is

the ratio of broiler-type chicks price over broiler feed cost. Broiler-type chick price

and broiler feed cost are used to represent revenue and cost for raising hatching

egg layers respectively. The ratio of these two variables is expected to have positive

effect on the number of hatching egg layers. Estimation results are presented through

Table 5.24 to Table 5.27. Because of the presence of the lagged dependent variable

on the right hand side of the fitted equations, the Breusch-Godfrey test was applied.

Breusch-Godfrey tests are all passed and the null hypothesis that there is no serial

correlation cannot be rejected. Functions are fitted using data from 1994 to 2014

and non-fitted functional form is used in the simulation system because no regional

data are available for the period of 1985 to 1993.

Table 5.24: Hatching Egg Layers in South Central

HEGGLAYERSC Estimate Std. Error t value Pr(>|t|)
(Intercept) 7065.0024 2495.4627 2.8300 0.0133
HEGGLAYERSC LAG1 0.5747 0.1389 4.1400 0.0010
CKCHKP FEED 38015.2456 13448.3168 2.8300 0.0135
D11 1710.2887 515.6616 3.3200 0.0051
D12 -2347.4665 637.9837 -3.6800 0.0025
D95036 -1237.1276 370.7484 -3.3400 0.0049
Adjusted R-squared: 0.8747 MAPE 0.0142
Breusch-Godfrey test p-value: 0.8837 Theil’s U2 0.3872
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Table 5.25: Hatching Egg Layers in South Atlantic

HEGGLAYERSA Estimate Std. Error t value Pr(>|t|)
(Intercept) 13931.2080 2305.3736 6.0400 0.0000
HEGGLAYERSA LAG1 0.2486 0.1267 1.9600 0.0686
CKCHKP FEED 21146.5868 6154.9939 3.4400 0.0037
D96 -716.3302 321.3266 -2.2300 0.0415
D9509112 -1028.1210 187.1763 -5.4900 0.0001
Adjusted R-squared: 0.8669 MAPE 0.0095
Breusch-Godfrey test p-value: 0.4628 Theil’s U2 0.4656

Table 5.26: Hatching Egg Layers in North Atlantic

HEGGLAYERNA Estimate Std. Error t value Pr(>|t|)
(Intercept) -252.4370 110.6911 -2.2800 0.0388
HEGGLAYERNA LAG1 1.0640 0.0703 15.1400 0.0000
CKCHKP FEED 2270.9214 1074.1272 2.1100 0.0529
D0311 249.3178 50.9787 4.8900 0.0002
D078 -424.9934 53.5680 -7.9300 0.0000
D13 768.7917 74.5431 10.3100 0.0000
Adjusted R-squared: 0.9431 MAPE 0.0356
Breusch-Godfrey test p-value: 0.5632 Theil’s U2 0.2348

Table 5.27: Hatching Egg Layers in Other Region

HEGGLAYEROTH Estimate Std. Error t value Pr(>|t|)
(Intercept) -1478.2277 913.9800 -1.6200 0.1298
HEGGLAYEROTH LAG1 1.0248 0.0335 30.5500 0.0000
CKCHKP FEED 14859.8460 7950.8676 1.8700 0.0843
D980613 6545.6812 321.3359 20.3700 0.0000
D07 -7661.5548 634.9061 -12.0700 0.0000
D11 -2698.7733 534.2196 -5.0500 0.0002
D03 1834.1479 533.0798 3.4400 0.0044
Adjusted R-squared: 0.9849 MAPE 0.0172
Breusch-Godfrey test p-value: 0.4919 Theil’s U2 0.1413
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Hatching egg layers laying rate is fitted as a function of the lagged dependent

variable and real boiler-type chick price. States in each region for the production

stage of hatching egg production are listed below:

HEGGLRSC = f (HEGGLRSC LAG1, CKCHKPR, D970214, D98, D0512, D9611)

HEGGLRSA = f (HEGGLRSA LAG1, CKCHKPR , D9604T07, D134, D05)

HEGGLRNA = f (HEGGLRNA LAG1, CKCHKPR, D09T12, D08, D0313)

HEGGLROTH = f (HEGGLROTH LAG1, CKCHKPR, D0512, D06134, D0712,

D04)

NA: PA;

SA: FL, GA, MD, NC, SC, VA;

SC: AL, AR, MS;

where HEGGLR is hatching egg layers’ laying rate and CKCHKPR is GDP deflated

real broiler-type chick price. Both variables should be positively related to the de-

pendent variable. Estimation results are presented through Table 5.28 to Table 5.31.

Breusch-Godfrey tests have been applied due to the presence of the lagged dependent

variable on the right hand side of the fitted functions. All p values are greater than

0.15 indicating that there is statistically no serial correlation problem. Functions are

estimated using data from 1994 to 2014 and non-fitted functional form is used in the

simulation system because no regional data are available for the period of 1985 to

1993.

Boiler-type chick price is fitted as a function of broiler wholesale price:

CKCHKP = f (CKWHP, SHIFT99, D04, D05, D8711, D013)
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Table 5.28: Hatching Egg Layers’ Laying Rate in South Central

HEGGLRSC Estimate Std. Error t value Pr(>|t|)
(Intercept) 8514.6500 1344.0648 6.3300 0.0000
HEGGLRSC LAG1 0.4504 0.0862 5.2200 0.0002
CKCHKPR 13564.5126 2747.5085 4.9400 0.0003
D970214 -309.2113 70.3477 -4.4000 0.0007
D98 -574.0469 112.0095 -5.1200 0.0002
D0512 542.2665 84.3903 6.4300 0.0000
D9611 259.9596 82.6894 3.1400 0.0078
Adjusted R-squared: 0.9572 MAPE 0.0029
Breusch-Godfrey test p-value: 0.2152 Theil’s U2 0.2742

Table 5.29: Hatching Egg Layers’ Laying Rate in South Atlantic

HEGGLRSA Estimate Std. Error t value Pr(>|t|)
(Intercept) 7867.5024 993.2774 7.9200 0.0000
HEGGLRSA LAG1 0.4616 0.0595 7.7500 0.0000
CKCHKPR 14780.8373 1635.1054 9.0400 0.0000
D9604T07 375.7271 30.8390 12.1800 0.0000
D134 -315.4991 44.3284 -7.1200 0.0000
D05 287.9507 63.5666 4.5300 0.0005
Adjusted R-squared: 0.9735 MAPE 0.0015
Breusch-Godfrey test p-value: 0.1862 Theil’s U2 0.2128

where CKCHKP is broiler-type chick price and CKWHP is broiler wholesale price.

Estimation results are presented in Table 5.32.

Following the same reasoning logic as the pork wholesale price, nominal boiler

wholesale price is fitted as a function of the broiler retail price and grocery store

labor cost:

CKWHP=f(CKRETP,LBCPGS,D047,D99T05)

where CKWHP is broiler wholesale price, CKRETP is broiler retail price, and

LBCPGS is grocery store labor cost. Estimation results are presented in Table 5.33.
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Table 5.30: Hatching Egg Layers’ Laying Rate in North Atlantic

HEGGLRNA Estimate Std. Error t value Pr(>|t|)
(Intercept) -4339.5515 2803.8293 -1.5500 0.1440
HEGGLRNA LAG1 0.5822 0.1149 5.0700 0.0002
CKCHKPR 42023.8717 15666.8101 2.6800 0.0179
D09T12 1664.2579 665.3745 2.5000 0.0254
D08 5622.8551 596.7795 9.4200 0.0000
D0313 -2920.8154 496.7218 -5.8800 0.0000
Adjusted R-squared: 0.9751 MAPE 0.0253
Breusch-Godfrey test p-value: 0.5636 Theil’s U2 0.2358

Table 5.31: Hatching Egg Layers’ Laying Rate in Other Region

HEGGLROTH Estimate Std. Error t value Pr(>|t|)
(Intercept) -2148.0913 1826.9356 -1.1800 0.2608
HEGGLROTH LAG1 0.5612 0.0576 9.7500 0.0000
CKCHKPR 38454.4534 7935.6319 4.8500 0.0003
D0514 2353.3009 332.0051 7.0900 0.0000
D06134 -4038.0109 313.2317 -12.8900 0.0000
D0712 3153.2441 361.1978 8.7300 0.0000
D04 1041.9770 459.7292 2.2700 0.0411
Adjusted R-squared: 0.9507 MAPE 0.0161
Breusch-Godfrey test p-value: 0.3031 Theil’s U2 0.1414

Functions are estimated using data from 1987 to 2014 and non-fitted functional form

is used in the simulation system because no grocery store labor cost data are available

for the years 1985 and 1986.

Grower chicken feed cost is used to represent the feed cost for the broiler industry.

It is fitted as a function of the lagged dependent variable and a weighted corn and

soybean meal price, which represents feed conversion efficiency and feed ingredient

costs, respectively:

CKFEED = f (CKFEED LAG1, CKMIXFEED, D029, D8595)
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Table 5.32: Broiler-type Chick Price

CKCHKP Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7750 0.9749 2.8500 0.0091
CKWHP 0.2599 0.0161 16.1600 0.0000
SHIFT99 4.2848 0.3460 12.3800 0.0000
D04 -6.3928 0.7709 -8.2900 0.0000
D05 -4.0524 0.7678 -5.2800 0.0000
D8711 2.9291 0.5488 5.3400 0.0000
D013 -2.8029 0.5750 -4.8700 0.0001
Adjusted R-squared: 0.9694 MAPE 0.0246
Breusch-Godfrey test p-value: 0.0477 Theil’s U2 0.6713

Table 5.33: Broiler Wholesale Price

CKWHP Estimate Std. Error t value Pr(>|t|)
(Intercept) -32.3227 10.0820 -3.2100 0.0039
CKRETP 0.7611 0.1144 6.6500 0.0000
LBCPGS -0.0004 0.0002 -2.4700 0.0213
D047 12.0863 2.6981 4.4800 0.0002
D99T05 -5.8082 1.5926 -3.6500 0.0013
Adjusted R-squared: 0.8882 MAPE 0.0417
Breusch-Godfrey test p-value: 0.3061 Theil’s U2 0.4338

Table 5.34: Broiler Industry Feed Cost

CKFEED Estimate Std. Error t value Pr(>|t|)
(Intercept) -40.6179 7.6178 -5.3300 0.0000
CKFEED LAG1 0.6278 0.0508 12.3500 0.0000
CKMIXFEED 19.9988 1.9722 10.1400 0.0000
D029 41.4770 10.6092 3.9100 0.0006
D8595 -24.5367 10.7478 -2.2800 0.0312
Adjusted R-squared: 0.9891 MAPE 0.0429
Breusch-Godfrey test p-value: 0.6036 Theil’s U2 0.4082
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where CKFEED is broiler industry feed cost, CKMIXFEED is the weighted average

of corn and soybean meal prices. Estimation results are presented in Table 5.34.

Both estimated coefficients have the correct sign. Improvement in feed conversion

rate is represented by the less than one coefficient of the lagged dependent variable.

Breusch-Godfrey test shows that there is statistically no serial correlation problem

with a p-value of 0.6036.

The weighted corn and soybean meal costs in the broiler industry feed cost func-

tion is based on 58 percent corn price and 42 percent soybean meal price with unit

adjustment6

CKMIXFEED ≡ 100 ×(0.58× CORNPCY
56 + 0.42× SBMPCY

2000 )

where CKMIXFEED is the weighted corn and soybean meal prices, CORNPCY

is calendar year annual average corn price and SBMPCY is calendar year annual

average soybean meal price. This this equation ends the description for the broiler

supply side.

All fitted equations have acceptable adjusted R-squares. Mean absolute percent-

age error (MAPE) and Theil’s U2 indicating the forecasting ability of the model

specifications are at a satisfactory scale. Breusch-Godfrey tests are all passed with

p-values greater than 0.1 for the functions with the lagged dependent variable in-

cluded in the explanatory variables. Estimated price elasticities of demand are in the

range of the estimated elasticities in literature listed in Table 5.357. Broiler industry

2015 to 2024 projections are listed in Table 5.36. Also listed in Table 5.36 are USDA

and FAPRI’s projections for the purpose of comparison. The short-run (year 2015)

6In USDA Agricultural Projections to 2024 (USDA 2015), broiler feed price is comprised of 58
percent corn price and 42 percent soybean price.

7When inverse demand functional forms are specified in the studies listed, flexibilities are es-
timated directly and elasticities are recovered from the estimated flexibilities. When both com-
pensated and uncompensated elasticities are provided, uncompensated elasticities are included in
Table 5.35 to keep consistent with the estimation result from the current study.
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and long-run (year 2019) supply elasticities are calculated as:

eBROILER,SR =
(39517− 39274)/39274

10%
= 0.076 (5.1)

eBROILER,LR =
(42573− 42479)/42479

10%
= 0.022 (5.2)
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Table 5.35: Estimates of Broiler Demand Elasticities From Literature

Own Price

Elasticity

Cross Price

Elasticity

with Pork

Cross Price

Elasticity

with Beef

Cross Price

Elasticity

with Turkey

Study Data Period Model Specification

-2.680 NA NA NA Tomek (1965) Quarterly 1949 Q4 to 1956 Q1 Linear Inverse

-2.330 NA NA NA Tomek (1965) Quarterly 1956 Q2 to 1964 Q1 Linear Inverse

-0.531 0.264 0.293 -0.049 Huang (1985) Annual 1953 to 1983
Differential-form

Demand System

-0.682 0.461 0.911 NA Menkhaus et al. (1985) Annual 1965-1981

Budget Share Translog Indirect

Utility Function with Habit

Formation

-1.838 -9.709 -2.538 13.333 Buhr (1993) Quarterly 1973-1989
Approximate Almost Ideal

Inverse Demand System

-0.372 0.047 0.103 -0.023 Huang (1993) Annual 1953 to 1990
Differential-form

Demand System

-0.426 -1.429 -0.533 NA Dahlgran (1988) Annual 1950-1985
Income-constrained Utility

Maximization Model

-0.276 0.021 0.250 NA Eales and Unnevehr (1988) Annual 1965-1985 Dynamic AIDS

-0.944 -3.584 -2.137 NA Huang (1988) Annual 1947-1983 Rotterdam

-1.325 -1.112 -1.075 NA Eales and Unnevehr (1992) Quarterly 1966-1988 Inverse AIDS

-0.205 -0.120 -0.015 NA Tonsor and Marsh (2007) Quarterly 1976-2001 Generalized AIDS

-0.099 0.012 -0.111 NA
Tonsor, Mintert,

and Schroeder (2010)
Quarterly 1982-2007

Weighted First Difference

Double-log Function

with Demand Shifters

-0.551 0.192 This Study Annual 1985-2014 Double-log
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Table 5.36: Broiler Industry 2015-2024 Projections

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Production

USDA 38,484 39,630 40,586 41,525 42,307 43,081 43,805 44,421 44,967 45,483 45,997

FARPRI 38,173 40,176 41,209 41,868 42,389 42,812 43,279 43,867 44,499 45,202 45,895

Current Study, No Shock 38,173 39,274 40,203 41,032 41,776 42,479 43,165 43,862 44,573 45,291 46,026

Current Study, With Shock 38,173 39,571 40,366 41,175 41,893 42,573 43,239 43,920 44,620 45,329 46,058

Production

(Ready-to-cook)

USDA 38,072 39,206 40,151 41,081 41,854 42,620 43,336 43,946 44,486 44,997 45,505

Current Study, No Shock 37,759 38,846 39,763 40,581 41,315 42,009 42,686 43,373 44,075 44,783 45,508

Current Study, With Shock 37,759 39,139 39,924 40,722 41,431 42,101 42,759 43,431 44,122 44,821 45,540

Retail Price

FARPRI 196 197 196 196 201 206 211 214 215 215 215

Current Study, No Shock 195 202 200 201 203 206 210 214 218 222 226

Current Study, With Shock 195 199 200 200 203 206 210 214 218 222 226

Ending Stocks

USDA 610 645 650 650 650 650 650 650 650 650 650

FARPRI 675 726 752 760 759 754 752 754 757 765 772

Current Study, No Shock 675 723 756 779 796 809 820 830 841 852 865

Current Study, With Shock 675 691 761 785 800 812 823 831 842 853 866

Exports

USDA 7,319 7,400 7,629 7,805 7,952 8,098 8,234 8,350 8,452 8,549 8,646

FARPRI 7,291 7,407 7,556 7,753 8,005 8,240 8,462 8,691 8,894 9,090 9,289

Current Study, No Shock 7,291 7,336 7,487 7,673 7,861 8,031 8,183 8,311 8,428 8,541 8,653

Current Study, With Shock 7,291 7,400 7,552 7,740 7,924 8,087 8,231 8,351 8,462 8,569 8,676

Per Capita Consumption

USDA 83.4 85.4 86.7 88.1 89.2 90.2 91.1 91.7 92.2 92.7 93.1

FARPRI 83.5 87.8 89.5 90.0 90.0 89.8 89.7 90.0 90.4 91.0 91.5

Current Study, No Shock 82.4 84.4 85.8 86.9 87.6 88.3 89.0 89.8 90.6 91.4 92.3

Current Study, With Shock 82.4 85.1 86.0 87.1 87.8 88.4 89.1 89.8 90.6 91.4 92.3

Civillian Disappearance

USDA 30,930 31,887 32,634 33,394 34,021 34,642 35,223 35,718 36,157 36,572 36,984

Current Study, No Shock 30,575 31,580 32,365 33,008 33,561 34,090 34,618 35,180 35,764 36,359 36,972

Current Study, With Shock 30,575 31,845 32,425 33,083 33,616 34,128 34,643 35,198 35,778 36,370 36,981

The applied shock is a 10 percent increase in 2015 turkey wholesale price
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6. THE U.S. EGG INDUSTRY

This chapter presents an econometric model for the U.S. egg industry. The model

describes the supply and the demand for the broiler sector within the U.S. economy;

wholesale price is the primary variable that adjusts and clears the market. Following

the construction of the U.S. pork industry, total supply consists of beginning stocks,

imports, and production; total demand comprises ending stocks, exports, hatching

use, and domestic disappearance. Due to the extensive proportion of domestic pro-

duction and consumption accounting for the total U.S. egg supply and disappearance

respectively, the model focuses on these two parts following the theoretical establish-

ment outlined in the methodology chapter. A one-equation description will be used

to approximate the U.S. egg imports, exports, and stocks.

The chapter is organized as follows. In the first section, the general flow in egg

production is presented as a background. Critical decision points in egg production

have been discussed in Chapter III to assist presenting the model specification. More

detailed information about the industry will be provided in this section. In the second

section, the dataset that will be used for estimating the econometric model will be

presented. In the third section, the model specification and estimation results will

be presented.

6.1 Egg Production

Egg production consists of table egg production and hatching egg production.

Table egg production has a sequential feature starting with inventory management of

the hatchery supply flock which provides fertilized eggs that will be hatched and the

chicks fed to become egg-type hatching egg layers. Egg-type hatching egg layers then

lay fertilized egg-type hatching eggs. The eggs are then set in incubators and hatched
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to egg-type chicks. Egg-type chicks are raised to table egg layers. Finally table egg

layers are placed on feed and produce table eggs. Hatching egg production comprises

egg-type hatching egg production mentioned above and broiler-type hatching egg

production mentioned in the U.S. broiler model. The U.S. egg model is schematically

described in Figure 6.1.

6.2 Egg Data

Macro-level egg supply and demand data, including table egg production, hatch-

ing egg production, imports, exports, stocks, hatching use, and consumption, are

available from World Agricultural Supply and Demand Estimates (WASDE) pro-

vided by USDA. Egg-type hatching egg production, egg-type hatching egg layers

laying rate, egg-type hatching eggs set in incubators, and table egg layers’ laying

rate are available from Chickens and Eggs Annual Summary (NASS, USDA); egg-

type chicks hatched is available from Hatchery Production (NASS, USDA).

During-month egg-type hatching egg layers’ laying rate are added to get during-

year egg-type hatching egg layers’ laying rate; monthly egg-type hatching egg produc-

tion are added to get annual egg-type hatching egg production; the average number

of egg-type hatching egg layers is calculated as annual egg-type hatching egg pro-

duction divided by during-year egg-type hatching egg layers’ laying rate.

Similarly, during-month table egg layers’ laying rate are added to get during-year

table egg layers’ laying rate; annual table egg production is available in WASDE;

the average number of table egg layers is calculated as annual table egg production

divided by during-year table egg layers’ laying rate.

6.3 The U.S. Egg Model

The U.S. egg model is schematically delineated in Figure 6.1. Total U.S. egg

demand equals the sum of egg ending stocks, egg exports, egg hatching use, and
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Figure 6.1: The U.S. Egg Model
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egg domestic disappearance. Total U.S. egg supply equals the sum of egg beginning

stocks, egg imports, hatching egg production, and table egg production.

Starting from the demand side, the egg total demand identity is

EGGDEM ≡ EGGSTK+EGGEXPT+EGGHATCHUSE+EGGCDIS

where EGGDEM is the total demand for eggs, EGGSTK is egg ending stocks,

EGGEXPT is egg exports, EGGHATCHUSE is egg hatching use, and EGGCDIS

is egg domestic disappearance.

U.S. egg ending stock is specified as:

EGGSTK=f(EGGPROD,EGGWHPR,SHIFT08,D11,D85T95,D9359,D01267,D87896)

where EGGSTK is egg ending stocks, EGGPROD is total egg production and EGG-

WHPR is the GPD deflated real egg wholesale price. Estimation results are presented

in Table 6.1. Egg production has a positive effect on ending stocks. And egg whole-

sale price has a negative effect on egg ending stocks, reflecting the fact that when

price is high the wholesalers intend to sell more eggs and thus ending stock should

be lower. Total egg production will be discussed in the supply side.

A small proportion of the U.S. egg production is exported (less than 5 percent

of total egg production) during the past couple of years (WASDE, USDA). Major

foreign markets for U.S. egg products include Canada and Mexico. To model the

U.S. egg exports with sufficient accuracy, descriptions for the demand from these

markets are needed yet beyond the research scale of the current study. A single

equation description for the U.S. egg exports is specified as:

EGGEXPT = f( EGGEXPT LAG1, EGGRETPR, SHIFT07, D916, D13)

where EGGEXPT is egg exports, EGGEXPT LAG1 is the lagged dependent vari-

able, and EGGRETPR is real egg retail price. Based on the assumption that not
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Table 6.1: Egg Ending Stock

EGGSTK Estimate Std. Error t value Pr(>|t|)
(Intercept) -36.7785 2.8635 -12.8400 0.0000
EGGPROD 0.0071 0.0004 18.9200 0.0000
EGGWHPR -2.7409 0.8681 -3.1600 0.0048
SHIFT08 3.4880 0.4957 7.0400 0.0000
D11 8.2331 0.5802 14.1900 0.0000
D85T95 9.8964 0.4667 21.2000 0.0000
D9359 -3.6188 0.3531 -10.2500 0.0000
D01267 -3.3769 0.3672 -9.2000 0.0000
D87896 2.3435 0.3548 6.6100 0.0000
Adjusted R-squared: 0.9884 MAPE 0.0305
Breusch-Godfrey test p-value: 0.1153 Theil’s U2 0.1633

all the trading partners will change drastically, the lagged dependent variable can

explain partially the current quantity of egg exports. Egg selling price has a negative

effect on egg exports indicating that when domestic price is high more eggs will be

sold in the home market and less will be exported, and vice versa. Estimation results

are presented in Table 6.2.

Table 6.2: Egg Exports

EGGEXPT Estimate Std. Error t value Pr(>|t|)
(Intercept) 134.2964 51.9411 2.5900 0.0162
EGGEXPT LAG1 0.7869 0.0870 9.0500 0.0000
EGGRETPR -75.3493 36.6248 -2.0600 0.0507
SHIFT07 70.6367 22.2902 3.1700 0.0041
D916 55.2884 18.0319 3.0700 0.0053
D13 63.6221 25.5333 2.4900 0.0200
Adjusted R-squared: 0.9037 MAPE 0.0944
Breusch-Godfrey test p-value: 0.9998 Theil’s U2 0.6322
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U.S. egg hatching use is specified as a function of the total number of hatching

eggs set in incubators:

EGGHATCHUSE=f(TEGGSET,D024,D8503)

where EGGHATCHUSE is eggs used for hatching and TEGGSET is the total number

of hatching eggs set in incubators. Estimation results are presented in Table 6.3.

Table 6.3: Egg Hatching Use

EGGHATCHUSE Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5695 1.9846 2.3000 0.0296
TEGGSET 1.4427 0.0033 435.6900 0.0000
D024 21.9217 1.3282 16.5000 0.0000
D8503 13.4889 1.3359 10.1000 0.0000
Adjusted R-squared: 0.9999 MAPE 0.0015
Breusch-Godfrey test p-value: 0.4869 Theil’s U2 0.0552

The total number of hatching eggs set in incubators is the sum of broiler-type

hatching eggs set in incubators and egg-type hatching eggs set in incubators:

TEGGSET ≡ CKEGGSET+TBEGGSET

where TEGGSET is the total number of hatching eggs set in incubators, CKEG-

GSET is broiler-type hatching eggs set in incubators discussed in the broiler model,

and TBEGGSET is egg-type hatching eggs set in incubators that will be discussed

in the egg production part.

In the U.S. broiler model discussed in the previous chapter, the number of broiler-

type hatching eggs set in incubators in each of the four regions has been fitted as the

lagged dependent variable and hatching egg production in the respective region. The
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national total broiler-type hatching eggs set in incubators is the sum of the regional

data with unit adjustment:

CKEGGSET≡(CKEGGSETSC+CKEGGSETSA+CKEGGSETNA+

CKEGGSETOTH)/12,000

The last and largest proportion of the quantity demanded for eggs is egg domestic

disappearance (in million dozen), which is the product of U.S. population (in million

persons) and per capita consumption (in number):

EGGCDIS ≡ USPOP×EGGPCCR/12

where EGGCDIS is egg civilian disappearance, USPOP is U.S. population, and EGG-

PCCR is (shell egg equivalent) per capita consumption for egg.

Following the discussions in the methodology chapter, per capita consumption

for eggs is modeled by a double-log functional form:

EGGPCCR LOG = f (FOODEXPR LOG, EGGRETPR LOG, SHIFT12, SHIFT14,

D85T88, D89T98, D0789, D85, D8895, D8904)

where EGGPCCR LOG is egg per capita consumption in log form, FOODEXPR LOG

is real food expenditure in log form, and EGGRETPR LOG is real egg retail price

in log form.

Estimation results are presented in Table 6.4. Functional form with other food

price index included in the explanatory variables has also been tried as listed in

Table6.5, where other food price index has a negative effect on egg consumption

which contradicts economic theory and thus it is removed. Own price elasticity is

-0.14; income elasticity is 0.30; cross price elasticities with broiler, turkey, pork, or

beef are not estimated due to the functional specification. This equation ends the

description for the demand side of broiler industry.
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Table 6.4: Egg Per Capita Consumption Without OTHFOODPR (Retail Weight)

EGGPCCR Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.4993 0.2179 20.6500 0.0000
FOODEXPR LOG 0.2953 0.0610 4.8400 0.0001
EGGRETPR LOG -0.1364 0.0210 -6.4800 0.0000
SHIFT12 0.0276 0.0072 3.8600 0.0011
SHIFT14 0.0191 0.0079 2.4100 0.0263
D0789 0.0160 0.0071 2.2600 0.0360
D85T88 0.0643 0.0144 4.4700 0.0003
D89T98 -0.0369 0.0078 -4.7400 0.0001
D85 0.0472 0.0090 5.2400 0.0000
D8895 -0.0287 0.0056 -5.0900 0.0001
D8904 0.0223 0.0049 4.5400 0.0002
Adjusted R-squared: 0.9734 MAPE 0.0007
Breusch-Godfrey test p-value: 0.7371 Theil’s U2 0.3280

Table 6.5: Egg Per Capita Consumption With OTHFOODPR (Retail Weight)

EGGPCCR Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.3249 0.2088 20.7100 0.0000
FOODEXPR LOG 0.3639 0.0619 5.8800 0.0000
EGGRETPR LOG -0.1332 0.0189 -7.0400 0.0000
OTHFOODPR LOG -0.1210 0.0511 -2.3700 0.0292
SHIFT12 0.0280 0.0064 4.3500 0.0004
SHIFT14 0.0161 0.0072 2.2200 0.0398
D0789 0.0137 0.0064 2.1400 0.0465
D85T88 0.0566 0.0133 4.2700 0.0005
D89T98 -0.0393 0.0071 -5.5600 0.0000
D85 0.0490 0.0081 6.0400 0.0000
D8895 -0.0286 0.0050 -5.6600 0.0000
D8904 0.0175 0.0049 3.5900 0.0021
Adjusted R-squared: 0.9786 MAPE 0.0006
Breusch-Godfrey test p-value: 0.1092 Theil’s U2 0.2866

The U.S. egg total supply identity is:

EGGSUPP ≡ EGGSTK LAG1+EGGIMPT+EGGPROD
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where EGGSTK LAG1 is egg beginning stock that can be recovered from egg ending

stock of the previous period, EGGIMPT is U.S. egg imports, and EGGPROD is U.S.

egg production. Following similar logic in specifying the U.S. egg exports function,

the U.S. egg imports is specified as:

EGGIMPT=f(EGGWHPR,SHIFT99,SHIFT14,D89,D0210,D910789)

where EGGIMPT is egg imports and EGGWHPR is real egg wholesale price. The

real egg wholesale price helps explain the domestic sellers’ willingness to trade. Esti-

mation results are presented in Table 6.6. Egg wholesale price is positively correlated

with egg imports as expected.

Table 6.6: Egg Imports

EGGIMPT Estimate Std. Error t value Pr(>|t|)
(Intercept) -12.5881 2.5558 -4.9300 0.0001
EGGWHPR 25.5012 3.3425 7.6300 0.0000
SHIFT99 8.6955 0.9781 8.8900 0.0000
SHIFT14 11.6426 2.5187 4.6200 0.0001
D89 13.2601 2.2618 5.8600 0.0000
D02101 6.3995 1.3742 4.6600 0.0001
D910789 -4.1599 1.2910 -3.2200 0.0038
Adjusted R-squared: 0.9173 MAPE 0.1857
Breusch-Godfrey test p-value: 0.3980 Theil’s U2 0.2939

The main component of total egg supply is egg production which is the sum of

hatching egg production and table egg production:

EGGPROD ≡ HEGGPROD+TBEGGPROD

where EGGPROD is total egg production, HEGGPROD is hatching egg production,

and TBEGGPROD is table egg production.
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Regional hatching egg production has been discussed in the U.S. broiler model.

For each region, hatching egg production (from flocks with 30,000 heads and above,

as large flocks) is calculated as the product of the number of hatching egg layers and

the respective laying rate. Thus the national total hatching egg production from

large flocks is simply the sum of the regional production:

HEGGPRODLF ≡ HEGGPRODSC+HEGGPRODSA+HEGGPRODNA

+HEGGPRODOTH

where HEGGPRODLF is national total hatching egg production from large flocks.

National total hatching egg production is then fitted as a function of the hatching

egg production from large flocks. Estimation results are presented in Table 6.7.

Table 6.7: Hatching Egg Production

HEGGPROD Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8381 2.2614 0.3700 0.7139
HEGGPRODLF 0.9995 0.0023 425.4200 0.0000
D94T97 63.5313 1.1004 57.7300 0.0000
D089 -9.1600 1.5295 -5.9900 0.0000
Adjusted R-squared: 0.9998 MAPE 0.0014
Breusch-Godfrey test p-value: 0.9504 Theil’s U2 0.0687

Table egg production (million dozen) is determined by the number of table egg

layers (1,000 layers) and table egg layers laying rate (eggs per 100 layers):

TBEGGPROD ≡ TBEGGLAYER × TBEGGLR ÷ 1,200,000

where TBEGGPROD is table egg production, TBEGGLAYER is the number of table

egg layers, and TBEGGLR is table egg layers laying rate.
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Table egg layers’ laying rate is fitted as a function of trend representing technology

improvement and egg-type chick price:

TBEGGLR = f (YEAR, EGGCKPR, D017)

where TBEGGLR is table egg layers’ laying rate, YEAR is time trend, and EGGCKPR

is GDP deflated real egg-type chick price. Both variables should be positively related

to the dependent variable. Estimation results are presented in Table 6.8.

Table 6.8: Table Egg Layers’ Laying Rate

TBEGGLR Estimate Std. Error t value Pr(>|t|)
(Intercept) -196753.8361 5760.9933 -34.1500 0.0000
YEAR 111.2981 2.8789 38.6600 0.0000
EGGCKPR 1132.8555 262.6293 4.3100 0.0002
D017 -307.8903 101.1905 -3.0400 0.0053
Adjusted R-squared: 0.9811 MAPE 0.0038
Breusch-Godfrey test p-value: 0.02255 Theil’s U2 0.7133

The number of table egg layers is fitted as a function of the lagged dependent

variable representing the scale of production and the number of egg-type chicks

hatched representing additional layers adding to the laying flock:

TBEGGLAYER=f(TBEGGLAYER LAG1,TBEGGHATCH,D99T06,D078,
D85689,D8990)

where TBEGGLAYER is the number of table egg layers, TBEGGLAYER LAG1 is

the lagged dependent variable, and TBEGGHATCH is the number of egg-type chicks

hatched. Estimation results are provided in Tables 6.8. Both explanatory variables

have positive effects on the number of table egg layers as expected.

Egg-type chicks hatched is fitted as a function of egg-type hatching eggs set in

incubators and feed cost:
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Table 6.9: The Number of Table Egg Layers

TBEGGLAYER Estimate Std. Error t value Pr(>|t|)
(Intercept) -3204.3733 5387.4289 -0.5900 0.5578
TBEGGLAYER LAG1 0.8901 0.0368 24.1900 0.0000
TBEGGHATCH 0.0796 0.0201 3.9500 0.0006
D99T06 3169.2039 1144.9461 2.7700 0.0109
D85689 -4853.6566 1262.0554 -3.8500 0.0008
D078 -6961.9790 1733.0635 -4.0200 0.0005
D8990 -4726.1819 1576.7134 -3.0000 0.0064
Adjusted R-squared: 0.9928 MAPE 0.0054
Breusch-Godfrey test p-value: 0.4904 Theil’s U2 0.3612

TBEGGHATCH=f(TBEGGSET,EGGFEEDR,D97T01,D067,D8811)

where TBEGGHATCH is the number of egg-type chicks hatched, TBEGGSET is the

number of egg-type hatching eggs set in incubators, EGGFEEDR is GPD deflated

real layer feed cost. Estimation results are presented in Tables 6.10.

Table 6.10: Egg-type Chicks Hatched

TBEGGHATCH Estimate Std. Error t value Pr(>|t|)
(Intercept) 60516.4922 5229.3683 11.5700 0.0000
TBEGGSET 11598.2737 230.4535 50.3300 0.0000
EGGFEEDR -4379.9611 1065.6393 -4.1100 0.0004
D97T01 9831.9472 1332.5178 7.3800 0.0000
D067 -16300.6836 2065.6012 -7.8900 0.0000
D8811 -9862.3009 1875.3922 -5.2600 0.0000
Adjusted R-squared: 0.9957 MAPE 0.0043
Breusch-Godfrey test p-value: 0.801 Theil’s U2 0.0996

The number of egg-type chicks hatched (in 1,000 chicks) is positively related to

the number of egg-type hatching eggs set in incubators (in million dozen eggs). Feed
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cost is supposed to have a negative effect on the number of egg-type chicks hatched.

Since both feed and chicks are input for table egg production; when the price for one

input increases the derived quantity demanded for the other will decrease.

Egg-type hatching eggs set in incubators is fitted as a function of egg-type hatch-

ing egg production:

TBEGGSET=f(TBHEGGPROD,D089,D9013,D9124,D04)

where TBEGGSET is the number of egg-type hatching eggs set in incubators and

TBHEGGPROD is egg-type hatching egg production. Both the lagged dependent

variable and the egg-type hatching egg production should be positively correlated

with egg-type hatching eggs set in incubator as presented in Tables 6.11. Since

data for egg-type hatching egg production is not available before 1990, a non-fitted

functional form is used in the simulation system.

Table 6.11: Egg-type Hatching Eggs Set in Incubator

TBEGGSET Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.7695 3.1470 -3.1000 0.0058
TBHEGGPROD 0.6754 0.0483 13.9900 0.0000
D089 5.7305 0.8076 7.1000 0.0000
D9013 -5.1817 0.8997 -5.7600 0.0000
D9124 -2.5258 0.6519 -3.8700 0.0010
D04 2.4721 1.0812 2.2900 0.0339
Adjusted R-squared: 0.9115 MAPE 0.0217
Breusch-Godfrey test p-value: 0.2958 Theil’s U2 0.6373

Egg-type hatching egg production is determined by the number of egg-type hatch-

ing egg layers and their laying rate:

TBHEGGPROD ≡ TBHEGGLAYER × TBHEGGLR/1,200,000
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where TBHEGGPROD is egg-type hatching egg production, TBHEGGLAYER is the

number of egg-type hatching egg layers on farm during the year, and TBHEGGLR

is the egg-type hatching egg layers laying rate. Since the measurement unit for egg-

type hatching egg production is million dozens of eggs, for hatching egg layers is 1000

layers, and for hatching egg layers laying rate is eggs per 100 layers, a conversion

rate of 1/ 1,200,000 is needed.

The number of egg-type hatching egg layers is fitted as a function of the lagged

dependent variable, real egg-type chick price, and real egg layer feed cost:

TBHEGGLAYER = f (TBHEGGLAYER LAG1, EGGCKPR, EGGFEEDR, SHIFT10,

D089, D13, D96804811, D990912, D02)

where TBHEGGLAYER is the number of egg-type hatching egg layers and EGGCKPR

is GDP deflated real egg-type chick price, and EGGFEEDR is GDP deflated egg layer

feed cost. Chick price and feed cost are used to represent revenue and cost for raising

egg layers respectively; thus the coefficients of these two variables are expected to be

positive and negative, respectively. Estimation results are presented in Table6.12.

Because of the presence of the lagged dependent variable on the right hand side of the

fitted equations, the Breusch-Godfrey test was applied. A p-value of 0.45 indicates

that there is no serial correlation. The function is fitted using data from 1990 to

2014 and the non-fitted functional form is used in the simulation system because no

egg-type hatching egg production data are available for the period of 1985 to 1989.

The actual production procedure of egg-type chicks added into the hatchery sup-

ply flock has also been tried in the explanatory variables using pullet chicks hatched

for intended placement in egg-type hatchery supply flocks data. However, includ-

ing this production stage does not help increase the explanatory power of the fitted

model, and thus it was excluded.
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Table 6.12: Egg-type Hatching Egg Layers

TBHEGGLAYER Estimate Std. Error t value Pr(>|t|)
(Intercept) 1595.5884 122.0115 13.0800 0.0000
TBHEGGLAYER LAG1 0.3867 0.0542 7.1400 0.0000
EGGCKPR 581.9720 157.8604 3.6900 0.0024
EGGFEEDR -108.6106 25.0543 -4.3400 0.0007
SHIFT10 278.3001 45.4748 6.1200 0.0000
D089 -135.6616 39.1170 -3.4700 0.0038
D13 284.0309 38.9514 7.2900 0.0000
D96804811 -100.6364 18.4041 -5.4700 0.0001
D990912 103.3262 26.0881 3.9600 0.0014
D02 -86.0768 34.1128 -2.5200 0.0243
Adjusted R-squared: 0.9725 MAPE 0.0064
Breusch-Godfrey test p-value: 0.4522 Theil’s U2 0.1626

Egg-type hatching egg layers laying rate is fitted as a function of the trend variable

and real egg-type chick price:

TBHEGGLR = f (HEGGLRSC LAG1, EGGCKPR, D90T94, D98, D91913)

where TBHEGGLR is egg-type hatching egg layers’ laying rate and EGGCKPR is

GDP deflated real egg-type chick price. Both variables should be positively related

to the dependent variable. Estimation results are presented in Table 6.13. The

function is estimated using data from 1990 to 2014 and the non-fitted functional

form is used in the simulation system because no egg-type hatching egg production

data are available for the period of 1985 to 1989.

Egg-type chick price is fitted as a function of egg wholesale price:

EGGCKP = f (EGGWHP, D09T13, D8990, D06, D0514, D91603)

where EGGCKP is egg-type chick price and EGGWHP is egg wholesale price. Esti-

mation results are presented in Table 6.14.
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Table 6.13: Egg-type Hatching Egg Layers’ Laying Rate

TBHEGGLR Estimate Std. Error t value Pr(>|t|)
(Intercept) -144030.0549 15976.3069 -9.0200 0.0000
YEAR 85.5898 8.0850 10.5900 0.0000
EGGCKPR 957.2442 455.7538 2.1000 0.0501
D90T94 -846.0323 128.9579 -6.5600 0.0000
D93508 -364.6117 87.9706 -4.1400 0.0006
D98 515.7716 148.5154 3.4700 0.0027
D91913 372.7726 87.6291 4.2500 0.0005
Adjusted R-squared: 0.9803 MAPE 0.0033
Breusch-Godfrey test p-value: 0.8439 Theil’s U2 0.3182

Table 6.14: Egg-type Chick Price

EGGCKP Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.8799 3.0511 8.4800 0.0000
EGGWHP 0.5612 0.0528 10.6400 0.0000
D09T13 15.7991 2.5197 6.2700 0.0000
D8990 -10.2492 3.1648 -3.2400 0.0035
D0610 9.7982 3.2544 3.0100 0.0060
D91603 -7.9424 2.6396 -3.0100 0.0061
Adjusted R-squared: 0.9216 MAPE 0.0490
Breusch-Godfrey test p-value: 0.3156 Theil’s U2 0.9711

Following the same reasoning logic as the pork wholesale price, nominal egg retail

price is fitted as a function of the egg wholesale price and grocery store labor cost:

EGGRETP=f(EGGWHP,LBCPGS,SHIFT04,D09)

where EGGRETP is egg retail price, EGGWHP is egg wholesale price, and LBCPGS

is grocery store labor cost. Estimation results are presented in Table 6.15. Functions

are estimated using data from 1987 to 2014 and the non-fitted functional form is

used in the simulation system because no grocery store labor cost data are available

for the years 1985 and 1986.
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Table 6.15: Egg Retail Price

EGGRETP Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.7294 11.9111 -0.0600 0.9517
LBCPGS 0.0008 0.0002 3.2200 0.0038
EGGWHP 1.1787 0.1189 9.9100 0.0000
SHIFT04 23.9655 6.2711 3.8200 0.0009
D09 20.3418 9.1759 2.2200 0.0368
Adjusted R-squared: 0.9513 MAPE 0.0564
Breusch-Godfrey test p-value: 0.5926 Theil’s U2 0.6362

Laying feed (complete) cost is used to represent the feed cost for the egg industry.

It is fitted as a function of the lagged dependent variable and a weighted corn and

soybean meal price, which represents feed conversion efficiency and feed ingredient

costs, respectively:

EGGFEED = f (EGGFEED LAG1, EGGMIXFEED, D0814, D859510)

where EGGFEED is egg industry feed cost, EGGMIXFEED is the weighted average

of corn and soybean meal prices. Estimation results are presented in Table 6.16.

Table 6.16: Egg Industry Feed Cost

EGGFEED Estimate Std. Error t value Pr(>—t—)
(Intercept) -16.3079 6.3657 -2.5600 0.0168
EGGFEED LAG1 0.6056 0.0509 11.9000 0.0000
EGGMIXFEED 19.1245 1.8249 10.4800 0.0000
D0814 39.9360 9.5275 4.1900 0.0003
D859510 -25.9861 7.2420 -3.5900 0.0014
Adjusted R-squared: 0.9898 MAPE 0.0372
Breusch-Godfrey test p-value: 0.3389 Theil’s U2 0.3980

Both estimated coefficients have the correct sign. Improvement in feed conversion
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rate is represented by the less than one coefficient of the lagged dependent variable.

Breusch-Godfrey test shows that there is statistically no serial correlation problem

with a p-value of 0.3389.

The weighted corn and soybean meal cost in the egg industry feed cost function

is based on 75 percent corn price and 25 percent soybean meal price with unit

adjustment1

EGGMIXFEED ≡ 100 × (0.75 ×CORNPCY
56 + 0.25× SBMPCY

2000 )

where EGGMIXFEED is the weighted corn and soybean meal prices, CORNPCY

is calendar year annual average corn price and SBMPCY is calendar year annual

average soybean meal price. This this equation ends the description of the egg

supply side.

All fitted equations have acceptable adjusted R-squares. Mean absolute percent-

age error (MAPE) and Theil’s U2 indicating the forecasting ability of the model

specifications are at a satisfactory scale. Breusch-Godfrey tests are all passed with

p-values greater than 0.1 for the functions with the lagged dependent variable in-

cluded in the explanatory variables. Estimated price elasticities of demand are in

the range of the estimated elasticities in literature listed in Table 6.17. Egg industry

2015 to 2024 projections are listed in Table 6.20. Also listed in Table 6.20 are USDA

projections for the purpose of comparison. The short-run (2015) and long-run (2019)

supply elasticities are calculated as:

eBROILER,SR =
(8436− 8407)/8436

10%
= 0.035 (6.1)

eBROILER,LR =
(8818− 8813)/8813

10%
= 0.005 (6.2)

1In USDA Agricultural Projections to 2024 (USDA 2015), egg feed price is comprised of 75
percent corn price and 25 percent soybean price.
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Table 6.17: Estimates of Egg Demand Elasticities From Literature

Own Price Elasticity Study Data Period Model Specification

-0.143 Huang and Haidacher (1983) Annual 1950-1981 Relative-change-form Demand System

-0.145 Huang (1985) Annual 1953 to 1983 Differential-form Demand System

-0.110 Huang (1993) Annual 1953 to 1990 Differential-form Demand System

-0.057 Huang and Lin (2000) Cross-sectional Data 1987 to 1988 AIDS

-0.240 Okrent and Alston (2012) Monthly 1998-2010
Generalized Ordinary

Differential Demand System

-0.136 This Study Annual 1985-2014 Double-log
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Table 6.18: Egg Industry 2015-2024 Projections

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Production USDA 8,237 8,430 8,540 8,651 8,780 8,912 9,019 9,127 9,228 9,329 9,432

Current Study, No Shock 8,339 8,407 8,514 8,615 8,713 8,813 8,913 9,015 9,121 9,228 9,337

Current Study, With Shock 8,339 8,436 8,524 8,623 8,720 8,818 8,916 9,018 9,122 9,229 9,338

Wholesale Price USDA 120 112 100 99 95 92 90 89 89 89 89

Current Study, No Shock 107 107 104 104 105 106 107 108 109 110 111

Current Study, With Shock 107 117 102 102 104 105 107 108 109 110 111

Imports USDA 33 40 40 40 40 40 40 40 40 40 40

Current Study, No Shock 33 32 31 31 31 31 30 30 30 30 30

Current Study, With Shock 33 35 31 30 30 30 30 30 30 30 30

Exports USDA 362 355 358 361 364 367 370 373 376 379 382

Current Study, No Shock 395 375 361 351 344 339 335 332 330 329 329

Current Study, With Shock 395 369 357 349 343 338 335 332 330 329 329

Ending Stocks USDA 23 23 23 23 23 23 23 23 23 23 23

Current Study, No Shock 23 24 25 25 26 27 28 28 29 30 31

Current Study, With Shock 23 24 25 26 26 27 28 28 29 30 31

Per Capita

Consumption
USDA 261.1 266.0 267.5 269.0 271.2 273.5 274.9 276.4 277.7 278.9 280.2

Current Study, No Shock 263.4 264.2 266.3 267.9 269.6 271.0 272.5 274.0 275.6 277.2 278.9

Current Study, With Shock 263.4 262.1 266.7 268.4 269.7 271.1 272.6 274.1 275.6 277.2 278.9
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Table 6.18: Continued

Hatching Use USDA 975 1,000 1,019 1,036 1,051 1,065 1,078 1,090 1,100 1,109 1,118

Current Study, No Shock 976 988 997 1,005 1,012 1,017 1,022 1,026 1,031 1,036 1,041

Current Study, With Shock 976 989 997 1,005 1,012 1,017 1,022 1,026 1,031 1,036 1,041

Civillian

Disappearance
USDA 6,933 7,115 7,203 7,294 7,405 7,520 7,611 7,704 7,792 7,881 7,972

Current Study, No Shock 6,996 7,073 7,187 7,289 7,391 7,487 7,586 7,687 7,789 7,892 8,000

Current Study, With Shock 6,996 7,017 7,199 7,300 7,395 7,492 7,589 7,689 7,790 7,893 8,001

The applied shock is a 10 percent increase in 2015 egg wholesale price
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7. THE U.S. TURKEY INDUSTRY

This chapter presents an econometric model for the U.S. turkey industry. The

model describes the supply and the demand for the turkey sector within the U.S.

economy; retail price is the primary variable that adjusts and clears the market. Fol-

lowing the construction of the U.S. pork industry, total supply consists of beginning

stocks, imports, and production; total demand comprises ending stocks, exports, and

domestic disappearance. Due to the extensive proportion of domestic production and

consumption accounting for the total U.S. turkey supply and disappearance respec-

tively, the model focuses on these two parts following the theoretical establishment

elaborated in the methodology chapter. A one-equation description will be used to

approximate the U.S. turkey imports, exports, and stocks.

The chapter is organized as follows. In the first section, the general flow in

turkey production is presented as a background. Critical decision points in turkey

production have been discussed in Chapter III to assist in presenting the model

specification. More detailed information about the industry will be provided in this

section. In the second section, the dataset used for estimating the econometric model

will be discussed. In the third section, the model specification and estimation results

will be presented.

7.1 Turkey Production

Turkey Production Turkey production has a sequential feature starting with in-

ventory management of the hatchery supply flock which provides fertilized eggs that

will be hatched and the turkey poults (parents) fed to become hatching egg layers.

Hatching egg layers lay fertilized hatching eggs. The eggs are set in incubators and

hatched to turkey poults (children). Turkey poults are raised and slaughtered at an
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average weight around 25 pounds. The U.S. turkey model is schematically described

in Figure 7.1.

7.2 Turkey Data

Macro-level turkey supply and demand data, including turkey production, im-

ports, exports, stocks, and consumption, are available from World Agricultural Sup-

ply and Demand Estimates (WASDE) provided by USDA. Total number of turkeys

slaughtered and the number of turkey poults placed on feed are available from the Na-

tional Agricultural Statistics Service (NASS, USDA). Data for turkey hatching eggs

set in incubators can be found from Hatchery Production (NASS, USDA). However,

no data are available for production stages prior to hatching eggs set in incubators;

and thus production stages earlier than hatching eggs set in incubators are omit-

ted in the current model. The number of turkey hatching eggs set in incubators is

explained by price and cost variables directly.

7.3 The U.S. Turkey Model

The U.S. turkey model is schematically delineated in Figure 7.1. Total U.S. turkey

demand equals the sum of turkey ending stocks, turkey exports, and turkey domestic

disappearance. Total U.S. turkey supply equals the sum of turkey beginning stocks,

turkey imports, and turkey production.

Starting from the demand side, the turkey total demand identity is

TKDEM ≡ TKSTK+TKEXPT+TKCDIS

where TKDEM is the total demand for turkey, TKSTK is turkey ending stocks,

TKEXPT is turkey exports, and TKCDIS is turkey domestic disappearance.

U.S. turkey ending stocks is specified as:

TKSTK=f(TKPRODRTC,TKWHPR,SHIFT05,D99T11,D9708)
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Figure 7.1: The U.S. Turkey Model
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where TKSTK is turkey ending stocks, TKPRODRTC is ready-to-cook turkey pro-

duction, and TKWHPR is GPD deflated real turkey wholesale price. Estimation

results are presented in Table 7.1. Turkey production has a positive effect on ending

stocks. And turkey wholesale price has a negative effect on turkey ending stocks,

reflecting the fact that when price is high the wholesalers intend to sell more and thus

ending stock should be lower. Ready-to-cook turkey production will be discussed in

the supply side.

Table 7.1: Turkey Ending Stocks

TKSTK Estimate Std. Error t value Pr(>|t|)
(Intercept) 225.5816 120.3780 1.8700 0.0732
TKWHPR -194.0245 107.1050 -1.8100 0.0826
TKPRODRTC 0.0332 0.0144 2.3000 0.0302
D99T11 -32.5147 15.1959 -2.1400 0.0428
SHIFT05 -45.2560 21.4515 -2.1100 0.0455
D9708 131.1965 23.2341 5.6500 0.0000
Adjusted R-squared: 0.7419 MAPE 0.0856
Breusch-Godfrey test p-value: 0.3687 Theil’s U2 0.4692

The United States is the world’s largest exporter of turkey products1. Approach-

ing 15 percent of the U.S. ready-to-cook turkey production is exported during the

past couple of years (WASDE, USDA). The largest foreign market for the U.S. turkey

products is Mexico. To model the U.S. turkey exports with sufficient accuracy, a de-

scription for Mexicos import demand for the U.S. turkey products is needed yet

beyond the research scale of the current study. A single equation description for the

U.S. turkey exports is specified as:

1http://www.ers.usda.gov/topics/animal-products/poultry-eggs/trade.aspx
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TKEXPT = f( TKEXPT LAG1, TKPRODRTC, TKRETPR, SHIFT10, D856, 

D8797089, D9010)

where TKEXPT is turkey exports, TKEXPT LAG1 is the lagged dependent variable,

TKPRODRTC is ready-to-cook turkey production, and TKRETPR is GDP deflated

real turkey retail price. Based on the assumption that our trading partners will not

change drastically, the lagged dependent variable can explain partially the current

quantity of turkey exports. When production is high, more turkey products will be

exported. Thus, both the explanatory variables are expected to have positive effects

on turkey exports. Turkey selling price has a negative effect on turkey exports

indicating that when domestic price is high less turkey products will be exported,

and vice versa. Estimation results are presented in Table 7.2. Breusch-Godfrey test

shows that there is statistically no serial correlation problem with a p-value of 0.4909.

Table 7.2: Turkey Exports

TKEXPT Estimate Std. Error t value Pr(>|t|)
(Intercept) 187.3130 432.7839 0.4300 0.6692
TKPRODRTC 0.1801 0.0382 4.7100 0.0001
TKRETPR -573.4770 188.3658 -3.0400 0.0058
SHIFT10 401.9836 63.3313 6.3500 0.0000
D856 343.9241 52.3602 6.5700 0.0000
D8797089 146.2225 34.1161 4.2900 0.0003
D9010 -142.2840 35.2661 -4.0300 0.0005
Adjusted R-squared: 0.9655 MAPE 0.2345
Breusch-Godfrey test p-value: 0.4909 Theil’s U2 1.3747

The largest proportion of the quantity demanded for turkey is turkey domestic

disappearance (in million pounds), which is the product of U.S. population (in million

persons) and per capita consumption (in pounds):
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TKCDIS ≡ USPOP × TKPCCC

where TKCDIS is broiler civilian disappearance, USPOP is U.S. population, and

TKPCCC is carcass weight per capita consumption for turkey.

Carcass weight per capita consumption for turkey is calculated from turkey retail

weight per capita consumption by dividing the carcass to retail conversion factor:

TKPCCC ≡ TKPCCR ÷ 0.79

where TKPCCC is turkey carcass weight per capita consumption, TKPCCR is turkey

retail weight per capita consumption, and the factor of 0.79 is calculated from the

historical data series of these two variables.

Following the discussions in the methodology chapter, per capita consumption

for turkey is modeled by a double-log functional form:

TKPCCR LOG = f (TKPCCR LOG LAG1, FOODEXPR LOG, TKRETPR LOG,

CKRETPR LOG, SHIFT97, D85045, D87, D906807)

where TKPCCR LOG is turkey per capita consumption in log form, TKPCCR LOG LAG1

is the lagged dependent variable, FOODEXPR LOG is real food expenditure in log

form, TKRETPR LOG is real turkey retail price in log form, CKRETPR LOG is real

broiler retail price. Estimation results are presented in Table 7.3. Breusch-Godfrey

test shows that there is statistically no serial correlation problem with a p-value of

0.7415.

Functional form with other food price index included in the explanatory variables

has also been tried as listed in Table7.4, where other food price index has a negative

effect on turkey consumption which contradicts with economic theory since other

food and turkey are considered as substitutes for each other; also the more related

broiler meat price turns insignificant under the functional specification. Removing
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Table 7.3: Turkey Per Capita Consumption Without OTHFOODPR (Retail Weight)

TKPCCR LOG Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4570 0.1921 2.3800 0.0269
TKPCCR LOG LAG1 0.6235 0.0416 15.0000 0.0000
FOODEXPR LOG 0.1332 0.0561 2.3700 0.0272
TKRETPR LOG -0.2368 0.0427 -5.5400 0.0000
CKRETPR LOG 0.2131 0.0548 3.8900 0.0009
SHIFT97 -0.0321 0.0093 -3.4500 0.0024
D85045 -0.0436 0.0086 -5.0500 0.0001
D87 0.0588 0.0133 4.4200 0.0002
D906807 0.0268 0.0067 3.9900 0.0007
Adjusted R-squared: 0.9857 MAPE 0.0029
Breusch-Godfrey test p-value: 0.7415 Theil’s U2 0.2198

other food price index from the fitted function improves the significance level for

broiler retail price and the cross elasticity with respect to broiler products. Own

price elasticity is -0.24; income elasticity is 0.13; cross price elasticities with broiler

is 0.21. This equation ends the description for the demand side of broiler industry.

Table 7.4: Turkey Per Capita Consumption With OTHFOODPR (Retail Weight)

TKPCCR LOG Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1754 0.2810 0.6200 0.5390
TKPCCR LOG LAG1 0.7786 0.0460 16.9200 0.0000
FOODEXPR LOG 0.1750 0.0801 2.1800 0.0399
TKRETPR LOG -0.1052 0.0443 -2.3700 0.0269
CKRETPR LOG 0.0843 0.0697 1.2100 0.2392
OTHFOODPR LOG -0.4122 0.1241 -3.3200 0.0031
D87 0.0519 0.0147 3.5300 0.0019
D8597045 -0.0456 0.0076 -5.9700 0.0000
Adjusted R-squared: 0.9822 MAPE 0.0034
Breusch-Godfrey test p-value: 0.6344 Theil’s U2 0.2494
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The U.S. turkey total supply identity is:

TKSUPP ≡ TKSTK LAG1+TKIMPT+TKPROD

where TKSTK LAG1 is turkey beginning stock that can be recovered from turkey

ending stock in the previous period, TKIMPT is U.S. turkey imports, and TKPROD

is U.S. turkey production.

The U.S. turkey imports are small, accounting for less than 2 percent of domestic

production according to WASDE (USDA), and it is specified as a function of turkey

wholesale price:

TKIMPT=f(TKWHPR,SHIFT14,D95T00,D09)

where TKIMPT is turkey imports and TKWHPR is real turkey wholesale price.

When price is high, more turkey products will be imported and vice versa. Estimation

results are presented in Table 7.5. The lagged dependent variable and turkey retail

price are both positively correlated with turkey imports as expected. Since data for

turkey import is not available before 1994, a non-fitted functional form is used in the

simulation system.

Table 7.5: Turkey Imports

TKIMPT Estimate Std. Error t value Pr(>|t|)
(Intercept) -32.3853 5.8759 -5.5100 0.0001
TKWHPR 85.3267 10.9082 7.8200 0.0000
SHIFT14 62.3073 3.8925 16.0100 0.0000
D95T00 -10.5851 1.7229 -6.1400 0.0000
D09 10.2889 3.5854 2.8700 0.0117
Adjusted R-squared: 0.9697 MAPE 1.7445
Breusch-Godfrey test p-value: 0.8800 Theil’s U2 1.6365
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The main component of total turkey supply is ready-to-cook turkey production

which equals total turkey production less turkey condemnation:

TKPRODRTC≡TKPROD-TKCONDM

where TKPRODRTC is ready-to-cook turkey production, TKPROD is turkey pro-

duction, and TKCONDM is turkey condemnation.

Turkey condemnation is fitted as a function of total turkey production, indicating

that a certain proportion of the turkey production will be disposed due to illness

or management practices at the farm and the processing plant, and a trend term,

representing technology improvement:

TKCONDM=f(TKPROD,YEAR,D89,D878,D9608)

where TKCONDM is turkey condemnation, TKPROD is turkey production, and

YEAR is the trend term. Both coefficients presented in Table 7.6 are of expected

signs.

Table 7.6: Turkey Condemnation

TKCONDM Estimate Std. Error t value Pr(>|t|)
(Intercept) 549.3405 142.2868 3.8600 0.0007
TKPROD 0.0250 0.0008 31.0500 0.0000
YEAR -0.3076 0.0729 -4.2200 0.0003
D89 -35.1591 1.7303 -20.3200 0.0000
D878 13.5041 1.3365 10.1000 0.0000
D9608 -5.0162 1.2742 -3.9400 0.0006
Adjusted R-squared: 0.9932 MAPE 0.0252
Breusch-Godfrey test p-value: 0.3182 Theil’s U2 0.0461

Turkey production is explained by two factors, the number of turkeys slaughtered

and the average turkey slaughter weight:
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TKPROD ≡ TKSLT × TKSLW ÷ 1,000

where TKPROD is turkey production, TKSLT is the number of turkeys slaughtered,

and TKSLW is the average turkey slaughter weight. Since the measurement unit for

turkey production is in millions of pounds, a conversion rate of 1/ 1000 is needed.

Turkey slaughter weight is fitted as a function of trend and wholesale price to

feed cost ratio:

TKSLW = f (YEAR, TKWHP FEED, D85T00, D912, D9905)

where TKSLW is average turkey slaughter weight, YEAR is trend, and TKWHP FEED

is the ratio of turkey wholesale price over turkey feed cost. The trend term is used

to represent technology improvement, the turkey wholesale price and turkey feed

cost are used to represent revenue and cost for raising turkeys respectively. Both

variables should have positive effects on the dependent variable. Estimation results

are presented in Table 7.7.

Table 7.7: Average Turkey Slaughter Weight

TKSLW Estimate Std. Error t value Pr(>|t|)
(Intercept) -574.4109 19.0600 -30.1400 0.0000
YEAR 0.2970 0.0094 31.5500 0.0000
TKWHP FEED 5.8233 1.9142 3.0400 0.0056
D85T00 -0.5776 0.1288 -4.4800 0.0002
D912 -0.3963 0.1305 -3.0400 0.0057
D9905 0.3382 0.1269 2.6600 0.0136
Adjusted R-squared: 0.9963 MAPE 0.0065
Breusch-Godfrey test p-value: 0.5224 Theil’s U2 0.4382

The number of turkeys slaughtered is fitted as a function of the lagged dependent

variable representing the beginning production capacity and the number of turkey
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poults placed on feed:

TKSLT=f(TKSLT LAG1,TKPLACE,SHIFT09,D0813,D9506714,D90089)

where TKSLT is the number of turkeys slaughtered, TKSLT LAG1, is the lagged

dependent variable, and TKPLACE is the number of turkey poults placed on feed.

Estimation results are listed in Table 7.8. The number of turkeys slaughtered is posi-

tively related to both the lagged dependent variable and the number of turkey poults

placed on feed as expected. Breusch-Godfrey test shows that there is statistically no

serial correlation problem with a p-value of 0.9013.

Table 7.8: The Number of Turkeys Slaughtered

TKSLT Estimate Std. Error t value Pr(>|t|)
(Intercept) 2938.8127 5440.4181 0.5400 0.5940
TKSLT LAG1 0.2235 0.0348 6.4200 0.0000
TKPLACE 0.6898 0.0407 16.9300 0.0000
SHIFT09 -4296.5345 1260.4597 -3.4100 0.0023
D0813 5749.5671 1915.3071 3.0000 0.0062
D9506714 -6428.0784 1457.8104 -4.4100 0.0002
Adjusted R-squared: 0.9904 MAPE 0.0066
Breusch-Godfrey test p-value: 0.9013 Theil’s U2 0.1655

The number of turkey poults placed on feed is fitted as a function of the lagged

dependent variable and the number of turkey hatching eggs set in incubators.

TKPLACE=f(TKPLACE LAG1,TKEGGSET,SHIFT06,D85813,D90089)

where TKPLACE is the number of turkey poults placed on feed, TKPLACE LAG1

is the lagged dependent variable representing the beginning production capacity, and

TKEGGSET is the number of turkey hatching eggs set in incubators. Estimation
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results are provided in Table 7.9. The number of turkey poults placed on feed is

positively related to the number of turkey hatching eggs set in incubators as expected.

Breusch-Godfrey test shows that there is statistically no serial correlation problem

with a p-value of 0.2041.

Table 7.9: The Number of Turkey Pouts Placed on Feed

TKPLACE Estimate Std. Error t value Pr(>|t|)
(Intercept) 35129.0767 5544.3934 6.3400 0.0000
TKPLACE LAG1 0.1815 0.0277 6.5500 0.0000
TKEGGSET 0.5466 0.0268 20.3900 0.0000
SHIFT06 9699.0973 1208.6175 8.0200 0.0000
D85813 -12182.5099 1739.0438 -7.0100 0.0000
D90089 -7604.1950 1559.6323 -4.8800 0.0001
Adjusted R-squared: 0.9922 MAPE 0.0064
Breusch-Godfrey test p-value: 0.2041 Theil’s U2 0.1395

Data for the number of turkey poults hatched, which is the production stage in

between of turkey hatching eggs set in incubators and turkey poults placed on feed,

is not available and thus the production stage of the number of turkey poults hatched

is not included in the simulation system.

Turkey hatching eggs set in incubators is fitted as a function of the lagged de-

pendent variable, real turkey wholesale price, and real turkey feed cost:

TKEGGSET=f(TKEGGSET LAG1,TKWHPR,TKFEEDR,D98)

where TKEGGSET is the number of turkey hatching eggs set in incubators, TKEG-

GSET LAG1 is the lagged dependent variable representing the beginning produc-

tion capacity, TKWHPR is GPD deflated real turkey wholesale price representing

the revenue for raising turkeys, and TKFEEDR is GPD deflated real turkey feed

127



cost representing the cost for raising turkeys. Estimation results are presented in

Table 7.10. All the estimated coefficients have the expected sign. Breusch-Godfrey

test shows that there is statistically no serial correlation problem with a p-value of

0.6933. No data is available for production stages prior to turkey hatching eggs set

in incubators, and thus this ends the description for turkey production.

Table 7.10: The Number of Turkey Hatching Eggs Set in Incubators

TKEGGSET Estimate Std. Error t value Pr(>|t|)
(Intercept) 34834.7720 49048.1980 0.7100 0.4841
TKEGGSET LAG1 0.9002 0.0867 10.3800 0.0000
TKWHPR 87009.6725 42221.2470 2.0600 0.0499
TKFEEDR -11325.7724 3988.2551 -2.8400 0.0088
D98 -31821.8045 14784.4871 -2.1500 0.0412
Adjusted R-squared: 0.8668 MAPE 0.0277
Breusch-Godfrey test p-value: 0.6933 Theil’s U2 0.6534

Turkey hen price is fitted as a function of turkey wholesale price:

TKHENP = f (TKWHP, D99T05, D11T14, D96)

where TKHENP is turkey hen price and TKWHP is turkey wholesale price. Esti-

mation results are presented in Table 7.11.

Following the same reasoning logic as the pork wholesale price, nominal turkey

wholesale price is fitted as a function of the turkey retail price and grocery store

labor cost:

TKWHP=f(TKRETP,LBCPGS,D87039,D07814,D01213,D06)

where TKWHP is turkey wholesale price, TKRETP is turkey retail price, and

LBCPGS is grocery store labor cost. Estimation results are presented in Table 7.12.
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Table 7.11: Turkey Hen Price

TKHENP Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.8643 1.0548 14.0900 0.0000
TKWHP 1.2335 0.0236 52.1600 0.0000
D99T05 4.1827 0.3490 11.9800 0.0000
D11T14 2.6514 0.7400 3.5800 0.0014
D96 -1.7745 0.7695 -2.3100 0.0297
Adjusted R-squared: 0.9972 MAPE 0.0079
Breusch-Godfrey test p-value: 0.4659 Theil’s U2 0.1368

Functions are estimated using data from 1987 to 2014 and a non-fitted functional

form is used in the simulation system because no grocery store labor cost data are

available for the years 1985 and 1986.

Table 7.12: Turkey Wholesale Price

TKWHP Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.6357 1.3603 -6.3500 0.0000
TKRETP 0.5220 0.0191 27.3100 0.0000
LBCPGS -0.0001 0.0000 -2.2300 0.0366
D87039 -7.7127 0.8157 -9.4500 0.0000
D067814 5.0615 0.8510 5.9500 0.0000
D01213 -4.7601 0.8611 -5.5300 0.0000
Adjusted R-squared: 0.9874 MAPE 0.0206
Breusch-Godfrey test p-value: 0.2404 Theil’s U2 0.3119

Turkey Grower Feed Cost is used to represent the feed cost for the turkey industry.

It is fitted as a function of the lagged dependent variable and a weighted corn and

soybean meal price, which represents feed conversion efficiency and feed ingredient

costs, respectively:

TKFEED = f (TKFEED LAG1, TKMIXFEED, D8595103, D89907, D960458)
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where TKFEED is turkey industry feed cost, TKMIXFEED is the weighted average

of corn and soybean meal prices. Estimation results are presented in Table 7.13.

Both estimated coefficients have the correct sign. Improvement in feed conversion

rate is represented by the less than one coefficient of the lagged dependent variable.

Breusch-Godfrey test shows that there is statistically no serial correlation problem

with a p-value of 0.2844.

Table 7.13: Turkey Industry Feed Cost

TKFEED Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.9647 4.2173 -4.2600 0.0003
TKFEED LAG1 0.6661 0.0283 23.5300 0.0000
TKMIXFEED 18.6851 1.0367 18.0200 0.0000
D8595103 -38.9987 3.9845 -9.7900 0.0000
D89907 -19.7401 4.3781 -4.5100 0.0001
D960458 22.9866 3.9461 5.8300 0.0000
Adjusted R-squared: 0.9966 MAPE 0.0177
Breusch-Godfrey test p-value: 0.2844 Theil’s U2 0.2132

The weighted corn and soybean meal costs in the turkey industry feed cost func-

tion is based on 51 percent corn price, 28 percent soybean meal price, and 21 percent

wheat price with unit adjustment2:

TKMIXFEED ≡ 100 × (0.51× CORNPCY
56 + 0.28× SBMPCY

2000 + 0.21× WHEATPCY
60 )

where TKMIXFEED is the weighted corn and soybean meal prices, CORNPCY is

calendar year annual average corn price, SBMPCY is calendar year annual average

soybean meal price, and WHEATPCY is calendar year annual average wheat price.

This equation ends the description for the turkey supply side.

2In USDA Agricultural Projections to 2024 (USDA 2015), turkey feed price is comprised of 51
percent corn price, 28 percent soybean price, and 21 percent wheat price.
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All fitted equations have acceptable adjusted R-squares. Mean absolute percent-

age error (MAPE) and Theils U2 indicating the forecasting ability of the model

specifications are at a satisfactory scale except for the case of turkey imports and

turkey exports where the historical data used to estimate the functional form in-

creased drastically as time passes. Breusch-Godfrey tests are all passed with p-values

greater than 0.1 for the functions with the lagged dependent variable included in the

explanatory variables. Estimated own price elasticity of demand are more inelastic

than the estimated elasticities in literature listed in Table 7.14. One reason to explain

the difference is that the previous studies used data prior to 1990 while consumer

preferences for poultry products changed recently. Turkey industry 2015 to 2024

projections are listed in Table 7.17. Also listed in Table 7.17 are USDA and FAPRI

projections for the purpose of comparison. The short-run (year 2015) and long-run

(year 2019) supply elasticities are calculated as:

eTURKEY,SR =
(6044− 5976)/5976

10%
= 0.114 (7.1)

eTURKEY,LR =
(6398− 6358)/6358

10%
= 0.064 (7.2)
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Table 7.14: Estimates of Turkey Demand Elasticities From Literature

Own Price Elasticity
Cross Price Elasticity

with Broiler
Study Data Period Model Specification

-0.680 -0.170 Huang (1985) Annual 1953 to 1983 Differential-form Demand System

-1.332 3.968 Buhr (1993) Quarterly 1973-1989
Approximate Almost Ideal

Inverse Demand System

-0.535 -0.077 Huang (1993) Annual 1953 to 1990 Differential-form Demand System

-0.240 0.210 This Study Annual 1985-2014 Double-log
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Table 7.15: Egg Industry 2015-2024 Projections

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Production USDA 5,739 5,925 6,041 6,162 6,280 6,371 6,464 6,540 6,615 6,692 6,773

FARPRI 5,739 6,001 6,155 6,280 6,349 6,384 6,417 6,470 6,533 6,607 6,680

Current Study, No Shock 5,739 5,976 6,066 6,157 6,254 6,358 6,470 6,594 6,732 6,882 7,045

Current Study, With Shock 5,739 6,044 6,135 6,217 6,304 6,398 6,503 6,621 6,754 6,900 7,060

Exports USDA 799 820 825 830 835 840 845 850 860 870 880

FARPRI 799 814 830 842 854 870 888 906 924 942 960

Current Study, No Shock 799 814 841 862 883 907 931 958 989 1,023 1,062

Current Study, With Shock 799 840 859 880 898 919 941 966 995 1,029 1,066

Retail Price FARPRI 163 162 159 158 160 163 167 170 172 174 176

Current Study, No Shock 160 165 164 167 170 172 175 178 180 181 183

Current Study, With Shock 160 157 164 166 169 172 174 177 179 181 182

Ending Stocks USDA 215 275 300 300 300 300 300 300 300 300 300

FARPRI 200 248 268 282 289 292 295 299 304 310 316

Current Study, No Shock 200 253 260 262 265 268 272 276 281 286 292

Current Study, With Shock 200 243 262 265 268 270 274 277 282 287 293

Turkey Hen Price USDA 107.6 106.5 107 105.7 103.7 102.1 99.9 98.7 99.3 100.4 102.3

FARPRI 107.6 101.9 95.9 93.3 93.6 95.4 97.5 98.9 99.7 100.0 100.4

Current Study, No Shock 108 101 100 102 103 104 106 107 108 109 110

Current Study, With Shock 108 110 100 101 102 104 105 107 108 109 110
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Table 7.15: Continued

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Per Capita

Consumption
USDA 15.7 15.8 16.2 16.5 16.7 16.8 17.0 17.1 17.2 17.3 17.3

FARPRI 15.7 16.1 16.5 16.7 16.8 16.7 16.6 16.6 16.6 16.6 16.7

Current Study, No Shock 15.7 15.9 16.1 16.2 16.3 16.4 16.5 16.7 16.9 17.1 17.3

Current Study, With Shock 15.7 16.1 16.2 16.3 16.4 16.5 16.6 16.8 16.9 17.1 17.3

Civillian

Disappearance
USDA 4,991 5,073 5,219 5,360 5,473 5,559 5,647 5,718 5,783 5,850 5,920

Current Study, No Shock 4,991 5,112 5,219 5,294 5,365 5,443 5,528 5,622 5,725 5,836 5,955

Current Study, With Shock 4,991 5,169 5,256 5,331 5,399 5,471 5,551 5,640 5,740 5,848 5,965

The applied shock is a 10 percent increase in 2015 turkey wholesale price
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8. AN EVALUATION OF THE 2015 OUTBREAK OF AVIAN INFLUENZA IN

THE U.S.

This chapter of the study focuses on the evaluation of the effects of the 2015

highly pathogenic avian influenza (HPAI) outbreak on the U.S. poultry and egg

industries. Avian influenza (AI) is caused by avian influenza viruses that occur

naturally among wild aquatic birds worldwide and can infect domestic poultry and

other bird and animal species. The symptoms of AI mainly include internal bleeding

and diarrhea in poultry (Ishida et al 2010). According to Mu et al. (2015), highly

pathogenic AI spreads rapidly with a high mortality rate among infected birds (up

to 90%100% within 48 hours) and can spread to humans. In the effort of controlling

the spread of AI, a large number of infected flocks are removed and international

trade is restricted.

Brown et al (2007) studied the effects of two hypothetical HPAI outbreaks, the

8-county outbreak scenario and the 4-state outbreak scenario, by assuming a certain

percentage decrease in production and exports according to the historical data. In

this study, the actual changes in 2015 poultry and egg production and trade published

by USDA will be used to shock the model; the lasting effects of the AI outbreak are

examined by comparing the 10-year projection results for production, exports, prices,

and per capita consumption for broiler, turkey, egg, and the related pork industry

with their baseline scenario projections.

USDA 2015 projections for productions and exports of the poultry and egg indus-

tries before and after the AI outbreak are listed in Table 8.11. According to Livestock,

1Source for projections before AI: USDA Agricultural Projections to 2024 (USDA, February
2015); Source for projections after AI: World Agricultural Supply and Demand Estimates (USDA,
February 2016).
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Dairy, and Poultry Outlook (USDA June 16, 2015), the most affected flocks have

been the turkey and table egg layers located in Midwestern States. Projections for

turkey production and egg production decreased 5 percent and 6.3 percent, respec-

tively. The primary impact for the broiler industry has been on broiler product

exports. Projections for broiler, turkey, and egg exports decreased 15.5 percent, 35

percent, and 10.5 percent respectively. Since reductions in both the number of table

egg layers and table egg layers laying rate have been reported2, the decrease of egg

production will be attributed to the reduction of these two factors equally, each with

3.2 percent.

Table 8.1: Actual Shocks on the Poultry and Egg Industries due to the 2015 AI
Outbreak

Broiler Turkey Egg

Million Lbs Million Lbs Million Dozen
Production Projection Before AI 39630 5925 8430

Projection After AI 39614 5628 7896
Percentage Change -0.04% -5.01% -6.33%

Export Projection Before AI 7480 820 355
Projection After AI 6319 533 317.6
Percentage Change -15.52% -35.00% -10.54%

The effect of the AI outbreak on consumer preference for meat products has been

analyzed in several studies. Beach and Zhen (2008) studied the Italian consumers

response to AI outbreak and concluded that media coverage of AI outbreak either

in Italy or in the rest of the world has net negative effects for fresh and frozen

poultry and net positive effects on beef and pork consumptions. Ishida et al (2010)

investigated the impact of BSE and AI outbreak on Japanese consumers demand for

2Livestock, Dairy, and Poultry Outlook (USDA, January 2016, November 2015, October 2015).
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Table 8.2: Shocks Applied to the Poultry and Egg Industries Due to the 2015 AI
Outbreak

Year Broiler Turkey
Table Egg

Laying Rate
Table Egg Layers

Production 2015 0.0% -5.0% -3.2% -3.2%
2016 0.0% 0.0% 0.0% -1.6%

Export 2015 -15.5% -35.0% -10.5%
2016 0.0% 0.0% 0.0%

Import 2015 0.0% 0.0% 70 Million Dozen

meat. For an AI outbreak, negative effects on the demand for chicken were found;

and the estimated impact of the AI outbreak lasted for 6 months. However, studies

for the U.S. consumers response to AI outbreak found different opinions. The study

of Piggott and Marsh (2004) found that the average consumers response to food

safety events is small; and even though there existed larger responses corresponding

with prominent food safety events, they were short-lived with no lagged effects.

Mu et al (2015) studied the effects of the AI outbreak on domestic beef, pork, and

broiler demand; the number of confirmed human deaths by WHO significantly affects

the consumers preferences, yet the AI outbreak itself did not have a statistically

significant effect on the U.S. consumers demand for broiler or pork. Also since there

is no effect of the AI outbreak on domestic consumers preference for poultry and

eggs has been reported in Livestock, Dairy, and Poultry Outlook (USDA, Feb 2015

to Jan 2016), we follow Brown (2007) in this study and make the assumption that

there are no adverse or cross effects from the 2015 AI outbreak on domestic demand

for meat.

Production shocks for egg and turkey sectors as well as trade shocks for egg,

turkey, and broiler sectors that were generated according to USDA publications are

described in Table 8.2 and referred to as Scenario 1. An assumption of 1.6 percent
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Table 8.3: Effects of the 2015 AI Outbreak on the U.S. Broiler Industry

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Broiler Production, Ready-to-cook (Million lbs.)

Baseline 38,846 39,763 40,581 41,315 42,009 42,686 43,373 44,075 44,783 45,508

Scenario 1 38,596 39,473 40,287 41,038 41,762 42,474 43,195 43,927 44,660 45,406

Change -250 -290 -294 -277 -247 -212 -178 -148 -122 -102

% Change -0.6 -0.7 -0.7 -0.7 -0.6 -0.5 -0.4 -0.3 -0.3 -0.2

Broiler Exports (Million lbs.)

Baseline 7,336 7,487 7,673 7,861 8,031 8,183 8,311 8,428 8,541 8,653

Scenario 1 6,199 6,740 7,158 7,491 7,757 7,974 8,148 8,300 8,439 8,572

Change -1,137 -747 -515 -370 -274 -209 -163 -128 -102 -82

% Change -15.5 -10.0 -6.7 -4.7 -3.4 -2.6 -2.0 -1.5 -1.2 -0.9

Broiler Retail Price (Cents/lb.)

Baseline 202 200 201 203 206 210 214 218 222 226

Scenario 1 192 195 199 202 206 210 214 218 222 226

Change -10 -6 -2 -1 0 0 0 0 0 0

% Change -5.0 -2.8 -1.2 -0.5 -0.1 0.0 0.1 0.1 0.1 0.1

Broiler Per Capita Consumption (Lbs.)

Baseline 84.4 85.8 86.9 87.6 88.3 89.0 89.8 90.6 91.4 92.3

Scenario 1 86.7 87.1 87.5 87.9 88.4 89.0 89.7 90.5 91.4 92.2

Change 2.3 1.2 0.6 0.2 0.1 0.0 0.0 -0.1 -0.1 -0.1

% Change 2.7 1.5 0.7 0.3 0.1 0.0 0.0 -0.1 -0.1 -0.1

Broiler Ending Stocks (Million lbs.)

Baseline 723 756 779 796 809 820 830 841 852 865

Scenario 1 751 768 781 793 804 816 825 837 849 862

Change 28 12 2 -3 -4 -5 -4 -4 -3 -3

% Change 3.9 1.6 0.2 -0.3 -0.5 -0.6 -0.5 -0.5 -0.4 -0.3
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decrease in the number of table egg layers in 2016 is made because of the longer

production cycle for table eggs compared to broilers. Since 90 percent of the laying

flock reaches peak egg production at an age of 30 to 32 weeks, the reduction in the

number of table egg layers in 2015 may last to 2016 but with a smaller scale. Also a

shock of 70 million dozen increase in 2015 egg imports was added to incorporate the

WASDE forecast since the estimated system cannot forecast the egg imports that

high; in other words, a dummy variable were needed if we include year 2015 in our

study period. Simulation results are listed through Tables 8.3 to Table 8.6.

For the broiler industry, since there is no production shock and exports have

been reduced by a substantial amount (15.5 percent), significant decreases in prices

and increases in ending stocks and per capita consumption are expected. Simula-

tion results are listed in Table8.3 and confirm our expectation. Broiler production

is reduced less than 1 percent in all years. Broiler exports decrease by 1137 million

pounds in 2015, which leads to the decrease in broiler retail price of 10 cents per

pound. Broiler per capita consumption increases by 2.3 pounds and ending stocks

increase by 28 million pounds. The drop in broiler exports decreases to 747 million

pounds in 2016, which is 10 percent of the baseline projection. And the impact con-

tinually diminishes over time; by 2024 broiler exports is only 0.9 percent lower than

the baseline projection. As a result broiler retail price and per capita consumption

return back to the baseline level in 5 years (with the differences fluctuate within 1

percent of the baseline projection).

Figure 8.1 depicts the domestic market and the international trade for the U.S.

broiler industry. S0 is broiler production (ready-to-cook), DD is broiler domestic

disappearance, Q0 is broiler total quantity demanded (sum of exports and domestic

consumption). The 2015 AI outbreak decreases the demand for broiler meat from

the trade partners, reflected in Figure 8.1 by the shift of DT0 to DT1, and thus
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Figure 8.1: The U.S. Broiler Industry under AI Shock

the equilibrium broiler wholesale price drops from P0 to P1. The change in welfare

(∆Welfare) induced by the AI outbreak is -$516.86 million, calculated by compar-

ing the original consumer surplus (CS0) and producer surplus (PS0) and the new

consumer surplus (CS1) and producer surplus (PS1).

CS0 = a

PS0 = b+ c+ d+ e

CS1 = a+ b+ c

PS1 = e

(8.1)
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∆Welfare = −d

= −[(Q0 −QDD0) + (Q1 −QDD1)]× (P0 − P1)÷ 2

= −[(38846− 31580) + (38596− 32437)]× (89.6− 81.9)÷ 2

= −51, 686million cents

(8.2)

For the egg industry, a greater reduction in production than exports causes prices

and imports to be much higher and per capita consumption is expected to be lower

than baseline projections. Simulation results are listed in Table 8.4 and confirm our

expectation.

2015 reduction in egg production is 487 million dozens; this number decreases to

125 million dozens in 2016 and keeps diminishing over time. By 2024, the reduction

in egg production is only 12 million dozens, which is 0.1 percent of the baseline

projection. 2015 egg exports decrease by 39 million dozens. The impact on egg

exports vanishes much more slowly than on egg production: by 2020, the amount

of egg exports is still 5.6 percent lower than the baseline projection; by 2024, the

difference drops to 2.3 percent. Egg wholesale price increases by 81 cents per dozen in

2015, which is 75.8 percent higher than the baseline projection; 2016 egg wholesale

price is projected to be 15.2 percent higher than the baseline projection; it takes

six years for the price to return to the baseline level (with the difference fluctuating

within 1 percent of the baseline projection). 2015 domestic consumption decreases by

13.2 eggs per person. This cut in consumption recovers quickly after the shock: 2016

per capita consumption is 3.1 eggs (1.2 percent) less than the baseline projection;

2017 per capita consumption is only 0.6 percent less than the baseline projection and

the difference is kept within 1 percent from then on.
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Figure 8.2: The U.S. Egg Industry under AI Shock
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Table 8.4: Effects of the 2015 AI Outbreak on the U.S. Egg Industry

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Egg Production (Million dozens)

Baseline 8,407 8,514 8,615 8,713 8,813 8,913 9,015 9,121 9,228 9,337

Scenario 1 7,920 8,390 8,529 8,654 8,770 8,881 8,990 9,101 9,211 9,325

Change -487 -125 -86 -59 -43 -32 -25 -19 -17 -12

% Change -5.8 -1.5 -1.0 -0.7 -0.5 -0.4 -0.3 -0.2 -0.2 -0.1

Egg Exports (Million dozens)

Baseline 375 361 351 344 339 335 332 330 329 329

Scenario 1 336 322 317 315 315 316 317 318 320 321

Change -39 -38 -34 -29 -23 -19 -15 -12 -9 -8

% Change -10.4 -10.7 -9.7 -8.4 -6.9 -5.6 -4.4 -3.5 -2.8 -2.3

Egg Wholesale Price (Cents/dozen)

Baseline 107 104 104 105 106 107 108 109 110 111

Scenario 1 187 120 113 110 109 109 109 110 111 112

Change 81 16 8 5 2 1 1 1 0 1

% Change 75.8 15.2 8.1 4.7 2.3 1.2 0.5 0.7 0.2 0.9

Egg Per Capita Consumption (Eggs)

Baseline 264.2 266.3 267.9 269.6 271.0 272.5 274.0 275.6 277.2 278.9

Scenario 1 251.0 263.2 266.3 268.6 270.5 272.2 273.9 275.4 277.1 278.7

Change -13.2 -3.1 -1.7 -1.0 -0.5 -0.3 -0.1 -0.1 0.0 -0.2

% Change -5.0 -1.2 -0.6 -0.4 -0.2 -0.1 0.0 -0.1 0.0 -0.1

Egg Ending Stocks (Million dozens)

Baseline 24 25 25 26 27 28 28 29 30 31

Scenario 1 18 23 25 26 27 27 28 29 30 31

Change -5 -1 -1 -1 0 0 0 0 0 0

% Change -23.0 -5.2 -3.2 -2.1 -1.3 -0.9 -0.7 -0.5 -0.4 -0.4

143



Figure 8.2 depicts the domestic market and the international trade for the U.S.

egg industry. The 2015 AI outbreak decreases the production of egg from S0 to

S1, DD is domestic disappearance of egg, Q0 is total quantity demanded for egg

(sum of exports and domestic consumption). The 2015 AI outbreak decreases the

demand for egg from the trade partners, reflected in Figure 8.2 by the shift of DT0

to DT1. Decrease in egg exports is less than the decrease in egg production, as a

result the equilibrium egg wholesale price increases from P0 to P1. The change in

welfare (∆Welfare) induced by the AI outbreak is -$6328.21 million, calculated by

comparing the original consumer surplus (CS0) and producer surplus (PS0) and the

new consumer surplus (CS1) and producer surplus (PS1)3.

CS0 = a+ b+ c+ d

PS0 = f + g

CS1 = a

PS1 = b+ c+ e+ f

∆Welfare = −g − d+ e

(8.3)

∆Q

Q1

× P1

P1 − P0

= εEGG = 0.14

⇒ ∆Q = 0.14× 7920× (187− 107)÷ 187 = 478.11

⇒ x1 = ∆Q+Q0 −Q1 = 478.11 + 8407− 7902 = 965.44

(8.4)

3Egg supply elasticity, εEGG, is approximated by shocking egg wholesale price by 20 percent
and dividing the percentage change in egg production by this 20 percent change in price.
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x1

Q0

÷ h

P0

= εEGG

⇒ h =
1

0.14
× 965.44

8407
× 107 = 87.7

⇒ Areag = h× (Q1 −∆Q) +
1

2
× h× x1 = 695, 536.7

(8.5)

Areae − Aread = AreaABCD − AreaEBC

AreaABCD =
1

2
(AB + CD)× (P1 − P0)

=
1

2
[(Q1 −QDD0) + (Q1 −QDD1)]× (P1 − P0)

⇒ AreaABCD =
1

2
× [(7920− 7073) + (7920− 6721)]× (187− 107) = 81840

AreaEBC =
1

2
∆Q× (P1 − P0)

=
1

2
× 478.11× (187− 107) = 19124.4

⇒ ∆Welfare = −g − d+ e = −632, 821.1million cents

(8.6)

For the turkey industry, the 2015 reduction in ready-to-cook turkey production

(291 million pounds) is at a similar level as the reduction in turkey exports (285

million pounds); however, the spill-over effects from the broiler industry causes the

decrease in retail price and per capita consumption for turkey. Simulation results

are listed in Table 8.5 and confirm our expectation.

The 2015 turkey retail price decreases by 9 cents per pound and domestic con-

sumption is maintained around the before-shock level. Turkey production recovers

from the AI shock gradually and by 2019 the decrease in turkey production is within
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Table 8.5: Effects of the 2015 AI Outbreak on the U.S. Turkey Industry

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Turkey Production, Ready-to-cook (Million lbs.)

Baseline 5,896 5,985 6,074 6,169 6,270 6,380 6,501 6,636 6,782 6,942

Scenario 1 5,606 5,910 6,005 6,110 6,222 6,341 6,470 6,611 6,763 6,926

Change -291 -75 -69 -59 -49 -40 -32 -25 -19 -15

% Change -4.9 -1.3 -1.1 -1.0 -0.8 -0.6 -0.5 -0.4 -0.3 -0.2

Turkey Exports (Million lbs.)

Baseline 814 841 862 883 907 931 958 989 1,023 1,062

Scenario 1 529 761 826 861 890 919 948 981 1,017 1,057

Change -285 -80 -36 -22 -16 -12 -10 -8 -6 -5

% Change -35.0 -9.6 -4.2 -2.5 -1.8 -1.3 -1.0 -0.8 -0.6 -0.5

Turkey Retail Price (Cents/lb.)

Baseline 165 164 167 170 172 175 178 180 181 183

Scenario 1 156 158 169 171 173 176 178 180 182 183

Change -9 -6 1 2 1 1 1 1 1 0

% Change -5.6 -3.7 0.7 0.9 0.6 0.5 0.4 0.3 0.3 0.2

Turkey Per Capita Consumption (Lbs.)

Baseline 15.9 16.1 16.2 16.3 16.4 16.5 16.7 16.9 17.1 17.3

Scenario 1 15.9 16.1 16.1 16.2 16.3 16.5 16.6 16.8 17.0 17.3

Change 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.0

% Change -0.2 0.0 -0.5 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.2

Turkey Ending Stocks (Million lbs.)

Baseline 253 260 262 265 268 272 276 281 286 292

Scenario 1 252 263 259 262 266 270 274 279 285 291

Change -1 3 -3 -3 -3 -2 -2 -1 -1 -1

% Change -0.5 1.1 -1.3 -1.2 -0.9 -0.7 -0.6 -0.5 -0.4 -0.3
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Figure 8.3: The U.S. Turkey Industry under AI Shock

1 percent of the baseline projection. By 2024 the decrease in turkey production is 0.2

percent of the baseline projection. The AI impact on turkey exports also vanishes

over time: comparing the 285 million pounds drop in 2015, the decrease in 2016

turkey exports is only 80 million pounds (9.6 percent of the baseline projection) and

by 2021 the amount of turkey exports is 1 percent lower than the baseline projec-

tion, and remains as close to the baseline projection thereafter. Starting from 2017,

turkey retail price is higher than the baseline projection. The primary reason is that

the decrease in turkey production is now greater than the decrease in turkey exports

and thus price needs to rise to clear the market. The secondary reason is that the

decrease in broiler retail price is now only 2 cents per pound lower than the baseline

projection, and less increase in consumer demand for turkey is induced.

Figure 8.3 depicts the domestic market and the international trade for the U.S.

turkey industry. The 2015 AI outbreak decreases the production of turkey from S0
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to S1, DD is domestic disappearance of turkey, Q0 is total quantity demanded for

turkey (sum of exports and domestic consumption). The 2015 AI outbreak decreases

the demand for turkey from the trade partners, reflected in Figure 8.3 by the shift

of DT0 to DT1. Decrease in turkey exports is at the similar level as the decrease

in turkey production. As a result the equilibrium turkey wholesale price tends to

remain around the pre-outbreak level P0. However, the big decrease in broiler price

(10 cents per pound for broiler retail price) and the significant turkey-broiler cross

price elasticity of the demand for turkey products (0.21) drags the equilibrium price

down to P2. The change in welfare (∆Welfare) induced by the AI outbreak is -

$269.24 million, calculated by comparing the original consumer surplus (CS0) and

producer surplus (PS0) and the new consumer surplus (CS1) and producer surplus

(PS1)4.

CS0 = a

PS0 = b+ c+ d+ e

CS1 = a+ b

PS1 = c

∆Welfare = −(d+ e)

(8.7)

Q1

h2

× P2

Q1

= εTURKEY = 0.457

⇒ h2 =
1

εTURKEY

× P2 =
1

0.457
× 65.02 = 142.3

⇒ x1 = ∆Q+Q0 −Q1 = 478.11 + 8407− 7902 = 965.44

(8.8)

4Turkey supply elasticity, εTURKEY , is approximated by shocking turkey wholesale price by 20
percent and dividing the percentage change in turkey production by this 20 percent change in price.
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Q0

h0

× P0

Q0

= εTURKEY = 0.457

⇒ h0 =
1

εTURKEY

× P0 =
1

0.457
× 69.76 = 152.7

(8.9)

Areab =
1

2
(QDD0 +QDD1)× (P0 − P2)

=
1

2
× (5112 + 5105)× (69.76− 65.02) = 24214.3

Aread+e =
1

2
× h0 ×Q0 −

1

2
× h2 ×Q1 − Areab

=
1

2
× 152.7× 5896− 1

2
× 142.3× 5606− 24214.3 = 26924.2

⇒ ∆Welfare = −Aread+e = −26, 924.2 million cents

(8.10)

The effects of the 2015 AI outbreak on the U.S. pork industry are also simulated,

and the results are listed in Table 8.6. Not much change is induced to the pork

industry; the largest adjustment is the 0.4 percent decrease in pork retail price in

2015. The AI outbreak does not affect the pork industry directly, but because of the

big decrease in broiler price and the significant pork-broiler cross price elasticity of

the demand for pork products, per capita consumption for pork tends to decrease

slightly and thus pork retail price has to decrease to clear the market; this spill-over

effect from the broiler industry lasts till 2016 after which the decrease in broiler retail

price is less significant. The 0.4 percent decrease in pork retail price in 2015 leads

to the 0.1 percent decrease in pork production in 2016 due to the production lag

caused by the long production period for the pork sector. The 2016 pork per capita

consumption is 0.1 percent lower than the baseline projection led by the decrease in

pork production. All projections for the pork industry return to their baseline levels

after 2016.
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Table 8.6: Effects of the 2015 AI Outbreak on the U.S. Pork Industry

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Pork Production (Million lbs.)

Baseline 23,482 24,514 25,059 25,490 25,856 26,227 26,619 27,056 27,506 27,972

Scenario 1 23,476 24,497 25,049 25,484 25,854 26,227 26,621 27,058 27,509 27,975

Change -6 -16 -11 -6 -2 0 2 2 3 3

% Change 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pork Exports (Million lbs.)

Baseline 5,001 5,210 5,432 5,663 5,900 6,142 6,390 6,646 6,910 7,182

Scenario 1 5,001 5,209 5,431 5,662 5,898 6,140 6,389 6,645 6,909 7,181

Change 0 -1 -1 -2 -2 -1 -1 -1 -1 -1

% Change 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pork Retail Price (Cents/lb.)

Baseline 397 376 371 372 377 383 392 399 405 411

Scenario 1 395 375 371 372 377 383 392 399 405 411

Change -2 0 0 0 0 0 0 0 0 0

% Change -0.4 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pork Per Capita Consumption (Lbs.)

Baseline 47.0 48.6 49.0 49.0 48.9 48.8 48.8 48.8 48.9 49.0

Scenario 1 47.0 48.5 48.9 49.0 48.9 48.8 48.8 48.8 48.9 49.0

Change 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% Change 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pork Ending Stocks (Million lbs.)

Baseline 580 625 646 661 671 681 689 699 710 722

Scenario 1 581 625 646 661 671 681 689 699 710 722

Change 1 0 0 0 0 0 0 0 0 0

% Change 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Two different levels of shocks have also been assumed for broiler production in

the AI-outbreak regions, a 5 percent decrease in the number of broilers slaughtered

in South Central Region and the Other Region (referred to as Scenario 2) and a

10 percent decrease in the number of broilers slaughtered in South Central Region

and the Other Region (referred to as Scenario 3); although this has not happened in

reality, the simulation results help industry stakeholders get prepared.

The 2015 AI outbreak resulted in the quantity of exports demanded decreasing

by 15.5 percent. The decreased exports were due to a reduction in U.S. production

of 0.6 percent and a decrease in the demand for U.S. exports. For Scenarios 2, it

was assumed that production would decrease 3.2 percent and combining this with

a decrease in export demand we calculated a 17.9 percent decrease in broiler meat

exports. Similarly, the exports of broiler meat were reduced 20.3 percent for Scenario

3.

Simulation results are presented in Tables 8.9 to Table 8.12. For the broiler indus-

try, a greater reduction in exports than in production was assumed under Scenario

2, which causes prices to decrease and domestic consumption to increase. Under

Scenario 3, broiler production decreases more than broiler exports, and thus prices

rises and domestic consumption drops. Broiler production recovers quickly from the

AI outbreak. Starting from 2016, the reduction in broiler production is less than

1 percent of the baseline projection under both scenarios. The impact on broiler

exports lasts longer. By 2018, effects are about 5 percent lower than the baseline

projection under both scenarios; and the number decreases to 0.9 percent and 0.8

percent by 2024 in Scenarios 2 and 3, respectively. Broiler prices adjust accordingly.

Starting from 2016 the reduction in broiler exports is greater than that in broiler

production under both scenarios, and which causes the projected broiler retail price

to be lower than the baseline projection in both cases. As a result, starting from 2016
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broiler per capita consumption is higher than the baseline projection. Broiler retail

price and per capita consumption return to their baseline levels in 5 years (with the

differences fluctuating within 0.2 percent of the baseline).

The production shocks in the broiler industry interact with the egg industry;

all changes in the egg industry due to the AI shock remain in the same direction as

under Scenario 1. The 2015 reduction in egg production is 464 and 437 million dozens

under Scenario 2 and Scenario 3, respectively. Under both scenarios, the impact on

egg production recovers quickly. By 2024, egg production is only 12 million dozens

lower than the baseline projection, which is 0.1 percent of the baseline. The impact

on egg exports vanishes much more slowly than on egg production: by 2020, the

amount of egg exports is more than 5 percent lower than the baseline projection; by

2024, the difference drops to 2.3 percent. The 2015 increase in egg wholesale price

is 70.7 and 65 cents per dozen under Scenarios 2 and 3 respectively, which is more

moderate than under Scenario 1. And it takes six years for the price to return to

the baseline level (with the difference fluctuating within 1 percent of the baseline).

The 2015 domestic consumption decreases by 12.4 and 11.6 eggs per person under

Scenarios 2 and 3, respectively. This cut in consumption recovers quickly after the

shock. By 2017 the difference in per capita consumption is less than 0.7 percent from

the baseline and is low from then on.

The turkey industry also responds accordingly to the production shocks applied

to the broiler production because of the significant turkey-broiler cross price elasticity

of the demand for turkey products. Under Scenario 2, 2015 turkey retail price drops

by 2 cents per pound which is much lower than the decrease of 9 cents per pound

under Scenario 1; Under Scenario 3, the change in 2015 turkey retail price in the

opposite direction since broiler retail price is now 7 cents per pound higher than

the baseline. The impact on turkey production diminishes fast, starting from 2016
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the difference in production from the baseline under both scenarios is less than 1

percent. Since the 2016 reduction in turkey production is less than that in turkey

exports under both scenarios, also because of the decrease in 2016 broiler retail price

(7 cents per pound under Scenario 2 and 9 cents per pound under Scenario 3), the

2016 turkey retail price decreases to 156 cents per pound under Scenario 2 and 154

cents per pound under Scenario 3. The drop in turkey price recovers after 2017 with

the turkey price staying close to the baseline thereafter.

There is still not much change induced to the pork industry under Scenarios 2

and 3 (Table 8.12). Pork retail price adjusts according to the change in broiler price

because of the significant pork-broiler cross price elasticity of the demand for pork

products. 2015 pork retail price decreases by 0.1 percent under Scenario 2, and

increases by 0.4 percent under Scenario 3. The changes lead to a 6 million pound

decrease and a 7 million pound increase in 2016 pork production under Scenarios

2 and 3, respectively. Because of the decrease in 2016 broiler retail price (7 cents

per pound under Scenario 2 and 9 cents per pound under Scenario 3), pork retail

price also decreases in 2016 by 1 cent per pound under Scenario 2, and 2 cents per

pound under Scenario 3. The 2016 reduction in pork price decreases the 2017 pork

production and the 2017 pork per capita consumption is 0.1 percent lower than the

baseline. All projections for the pork industry return to their baseline levels after

2017.

To sum up, this chapter evaluates the effects of the 2015 AI outbreak and two

hypothetical AI outbreaks on the U.S. poultry and egg industries. The lasting effects

of the AI outbreak are examined by comparing the 10-year projection results for

production, exports, prices, and per capita consumption for broiler, turkey, egg, and

the related pork industry with their baseline scenario projections. In all cases, the

effects of the shock on production started to fade out after the second year while the
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effects of the shock on exports lasted longer. Shocks on the broiler industry have

larger effects on the other two poultry sectors than on the pork sector since the three

poultry industries are closely correlated either from the supply side (broiler and egg)

or from the demand side (broiler and turkey) compared to the pork sector. If the

crop sectors modeled by Rhew(2014), beef and dairy sectors modeled by Maisashvili

(2014) are also included in the system, more response from the pork industry could be

expected since more interactions among the livestock sectors will be induced through

the feed demand for grains and the feed costs for livestock sectors.
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Table 8.7: Effects of the Hypothetical AI Outbreaks on the U.S. Broiler Industry

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Broiler Production, Ready-to-cook (Million lbs.)

Baseline 38,846 39,763 40,581 41,315 42,009 42,686 43,373 44,075 44,783 45,508

Scenario 2 37,615 39,567 40,358 41,089 41,797 42,498 43,212 43,939 44,670 45,415

Change -1,232 -195 -222 -226 -212 -188 -161 -136 -113 -93

% Change -3.2 -0.5 -0.5 -0.5 -0.5 -0.4 -0.4 -0.3 -0.3 -0.2

Scenario 3 36,581 39,676 40,442 41,150 41,839 42,527 43,232 43,955 44,683 45,425

Change -2,265 -87 -139 -165 -170 -159 -141 -120 -100 -83

% Change -5.8 -0.2 -0.3 -0.4 -0.4 -0.4 -0.3 -0.3 -0.2 -0.2

Broiler Exports (Million lbs.)

Baseline 7,336 7,487 7,673 7,861 8,031 8,183 8,311 8,428 8,541 8,653

Scenario 2 6,026 6,644 7,114 7,475 7,753 7,976 8,153 8,305 8,444 8,576

Change -1,311 -842 -559 -386 -278 -207 -158 -123 -97 -77

% Change -17.9 -11.3 -7.3 -4.9 -3.5 -2.5 -1.9 -1.5 -1.1 -0.9

Scenario 3 5,844 6,545 7,070 7,460 7,752 7,981 8,160 8,313 8,451 8,582

Change -1,492 -941 -603 -401 -279 -202 -151 -116 -90 -71

% Change -20.3 -12.6 -7.9 -5.1 -3.5 -2.5 -1.8 -1.4 -1.1 -0.8

Broiler Retail Price (Cents/lb.)

Baseline 202 200 201 203 206 210 214 218 222 226

Scenario 2 200 193 197 201 206 210 214 218 222 226

Change -1 -7 -4 -2 -1 0 0 0 0 0

% Change -0.6 -3.5 -1.9 -0.9 -0.3 -0.1 0.0 0.1 0.1 0.1

Scenario 3 210 192 196 201 205 209 214 218 222 226

Change 9 -9 -5 -3 -1 0 0 0 0 0

% Change 4.4 -4.4 -2.7 -1.3 -0.6 -0.2 0.0 0.0 0.1 0.1
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Table 8.7: Continued

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Broiler Per Capita Consumption (Lbs.)

Baseline 84.4 85.8 86.9 87.6 88.3 89.0 89.8 90.6 91.4 92.3

Scenario 2 84.7 87.4 87.8 88.1 88.5 89.0 89.8 90.5 91.4 92.2

Change 0.3 1.6 0.9 0.4 0.2 0.0 0.0 0.0 0.0 0.0

% Change 0.3 1.9 1.0 0.5 0.2 0.1 0.0 0.0 0.0 0.0

Scenario 3 82.6 87.8 88.1 88.3 88.6 89.1 89.8 90.6 91.4 92.2

Change -1.9 2.0 1.2 0.6 0.3 0.1 0.0 0.0 0.0 0.0

% Change -2.2 2.3 1.4 0.7 0.3 0.1 0.0 0.0 0.0 0.0

Broiler Ending Stocks (Million lbs.)

Baseline 723 756 779 796 809 820 830 841 852 865

Scenario 2 702 775 786 797 807 817 826 837 849 862

Change -22 19 8 1 -2 -3 -4 -3 -3 -3

% Change -3.0 2.5 1.0 0.1 -0.3 -0.4 -0.4 -0.4 -0.3 -0.3

Scenario 3 648 782 793 801 809 818 827 838 850 862

Change -76 27 14 5 0 -2 -3 -3 -2 -2

% Change -10.5 3.5 1.8 0.6 0.0 -0.2 -0.3 -0.3 -0.3 -0.3
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Table 8.8: Effects of the Hypothetical AI Outbreaks on the U.S. Egg Industry

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Egg Production (Million dozens)

Baseline 8,407 8,514 8,615 8,713 8,813 8,913 9,015 9,121 9,228 9,337

Scenario 2 7,944 8,397 8,530 8,653 8,769 8,881 8,990 9,101 9,212 9,325

Change -464 -117 -86 -60 -44 -32 -25 -19 -16 -12

% Change -5.5 -1.4 -1.0 -0.7 -0.5 -0.4 -0.3 -0.2 -0.2 -0.1

Scenario 3 7,971 8,405 8,531 8,652 8,768 8,880 8,991 9,101 9,213 9,325

Change -437 -109 -85 -61 -45 -33 -25 -20 -15 -12

% Change -5.2 -1.3 -1.0 -0.7 -0.5 -0.4 -0.3 -0.2 -0.2 -0.1

Egg Exports (Million dozens)

Baseline 375 361 351 344 339 335 332 330 329 329

Scenario 2 336 323 317 315 315 316 317 318 320 321

Change -39 -38 -34 -29 -24 -19 -15 -12 -9 -8

% Change -10.4 -10.6 -9.7 -8.4 -7.0 -5.7 -4.5 -3.6 -2.8 -2.3

Scenario 3 336 323 317 315 315 315 317 318 320 321

Change -39 -38 -34 -29 -24 -19 -15 -12 -10 -8

% Change -10.4 -10.4 -9.6 -8.4 -7.1 -5.8 -4.6 -3.6 -2.9 -2.3

Egg Wholesale Price (Cents/dozen)

Baseline 107 104 104 105 106 107 108 109 110 111

Scenario 2 182 119 113 110 109 109 109 110 111 112

Change 75 15 9 5 3 2 1 1 0 1

% Change 70.7 14.5 8.3 5.1 2.6 1.5 0.7 0.7 0.1 0.9

Scenario 3 176 118 113 110 109 109 109 110 111 111

Change 69 14 9 6 3 2 1 0 1 1

% Change 65.0 13.6 8.6 5.6 2.9 1.7 0.8 0.2 0.5 0.5

157



Table 8.8: Continued

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Egg Per Capita Consumption (Eggs)

Baseline 264.2 266.3 267.9 269.6 271.0 272.5 274.0 275.6 277.2 278.9

Scenario 2 251.8 263.3 266.2 268.5 270.4 272.1 273.9 275.4 277.1 278.7

Change -12.4 -3.0 -1.7 -1.1 -0.6 -0.3 -0.1 -0.1 0.0 -0.2

% Change -4.7 -1.1 -0.6 -0.4 -0.2 -0.1 -0.1 -0.1 0.0 -0.1

Scenario 3 252.6 263.5 266.1 268.4 270.3 272.1 273.8 275.5 277.1 278.8

Change -11.6 -2.8 -1.8 -1.2 -0.6 -0.4 -0.2 -0.1 -0.1 -0.1

% Change -4.4 -1.0 -0.7 -0.4 -0.2 -0.1 -0.1 0.0 0.0 0.0

Egg Ending Stocks (Million dozens)

Baseline 24 25 25 26 27 28 28 29 30 31

Scenario 2 19 23 25 26 27 27 28 29 30 31

Change -5 -1 -1 -1 0 0 0 0 0 0

% Change -21.7 -4.9 -3.2 -2.1 -1.4 -1.0 -0.7 -0.5 -0.4 -0.3

Scenario 3 19 24 25 26 26 27 28 29 30 31

Change -5 -1 -1 -1 0 0 0 0 0 0

% Change -20.3 -4.5 -3.2 -2.2 -1.5 -1.0 -0.7 -0.5 -0.4 -0.3
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Table 8.9: Effects of the Hypothetical AI Outbreaks on the U.S. Turkey Industry

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Turkey Production, Ready-to-cook (Million lbs.)

Baseline 5,896 5,985 6,074 6,169 6,270 6,380 6,501 6,636 6,782 6,942

Scenario 2 5,606 5,938 6,024 6,122 6,229 6,345 6,473 6,613 6,765 6,927

Change -291 -47 -51 -47 -41 -35 -28 -23 -18 -14

% Change -4.9 -0.8 -0.8 -0.8 -0.7 -0.5 -0.4 -0.3 -0.3 -0.2

Scenario 3 5,606 5,969 6,045 6,136 6,238 6,351 6,476 6,616 6,766 6,929

Change -291 -16 -30 -34 -33 -29 -25 -20 -16 -13

% Change -4.9 -0.3 -0.5 -0.5 -0.5 -0.5 -0.4 -0.3 -0.2 -0.2

Turkey Exports (Million lbs.)

Baseline 814 841 862 883 907 931 958 989 1,023 1,062

Scenario 2 529 769 834 867 894 921 950 982 1,018 1,057

Change -285 -72 -27 -16 -13 -10 -9 -7 -6 -4

% Change -35.0 -8.6 -3.1 -1.9 -1.4 -1.1 -0.9 -0.7 -0.6 -0.4

Scenario 3 529 778 844 874 898 924 951 983 1,018 1,058

Change -285 -63 -17 -10 -8 -8 -7 -6 -5 -4

% Change -35.0 -7.5 -2.0 -1.1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

Turkey Retail Price (Cents/lb.)

Baseline 165 164 167 170 172 175 178 180 181 183

Scenario 2 164 156 167 170 173 175 178 180 182 183

Change -2 -8 -1 1 1 1 1 1 0 0

% Change -1.0 -4.9 -0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.2

Scenario 3 172 154 164 169 172 175 178 180 182 183

Change 7 -10 -3 0 0 0 0 0 0 0

% Change 4.2 -6.2 -1.7 -0.2 0.1 0.2 0.2 0.2 0.2 0.2
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Table 8.9: Continued

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Turkey Per Capita Consumption (Lbs.)

Baseline 15.9 16.1 16.2 16.3 16.4 16.5 16.7 16.9 17.1 17.3

Scenario 2 15.9 16.1 16.2 16.2 16.3 16.5 16.6 16.8 17.0 17.3

Change 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0

% Change 0.0 0.2 -0.3 -0.5 -0.5 -0.4 -0.4 -0.3 -0.2 -0.2

Scenario 3 16.0 16.2 16.2 16.2 16.3 16.5 16.6 16.8 17.0 17.3

Change 0.0 0.1 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0

% Change 0.3 0.4 -0.1 -0.4 -0.4 -0.4 -0.3 -0.3 -0.2 -0.1

Turkey Ending Stocks (Million lbs.)

Baseline 253 260 262 265 268 272 276 281 286 292

Scenario 2 245 266 261 263 267 270 274 279 285 292

Change -8 6 -1 -2 -2 -2 -1 -1 -1 -1

% Change -3.2 2.2 -0.4 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

Scenario 3 237 269 263 264 267 271 275 279 285 292

Change -16 9 2 -1 -1 -1 -1 -1 -1 -1

% Change -6.3 3.3 0.6 -0.3 -0.4 -0.4 -0.4 -0.4 -0.3 -0.2
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Table 8.10: Effects of the Hypothetical AI Outbreaks on the U.S. Pork Industry

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Pork Production (Million lbs.)

Baseline 23,482 24,514 25,059 25,490 25,856 26,227 26,619 27,056 27,506 27,972

Scenario 2 23,481 24,508 25,048 25,482 25,852 26,225 26,619 27,057 27,508 27,974

Change -1 -6 -11 -8 -4 -1 0 1 2 2

% Change 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Scenario 3 23,487 24,520 25,047 25,480 25,849 26,223 26,618 27,056 27,507 27,974

Change 5 7 -12 -9 -7 -3 -1 0 1 1

% Change 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pork Exports (Million lbs.)

Baseline 5,001 5,210 5,432 5,663 5,900 6,142 6,390 6,646 6,910 7,182

Scenario 2 5,001 5,210 5,431 5,662 5,899 6,141 6,389 6,645 6,909 7,181

Change 0 0 -1 -1 -1 -1 -1 -1 -1 -1

% Change 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Scenario 3 5,002 5,210 5,432 5,663 5,899 6,141 6,389 6,645 6,909 7,181

Change 0 0 0 0 -1 -1 -1 -1 -1 -1

% Change 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pork Retail Price (Cents/lb.)

Baseline 397 376 371 372 377 383 392 399 405 411

Scenario 2 397 375 371 372 377 383 392 399 405 411

Change 0 -1 0 0 0 0 0 0 0 0

% Change -0.1 -0.3 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Scenario 3 399 374 371 372 377 383 392 399 405 411

Change 1 -2 -1 0 0 0 0 0 0 0

% Change 0.4 -0.5 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 8.10: Continued

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Pork Per Capita Consumption (Lbs.)

Baseline 47.0 48.6 49.0 49.0 48.9 48.8 48.8 48.8 48.9 49.0

Scenario 2 47.0 48.6 48.9 49.0 48.9 48.8 48.8 48.8 48.9 49.0

Change 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% Change 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Scenario 3 47.1 48.6 48.9 49.0 48.9 48.8 48.8 48.8 48.9 49.0

Change 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

% Change 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pork Ending Stocks (Million lbs.)

Baseline 580 625 646 661 671 681 689 699 710 722

Scenario 2 580 626 646 661 671 681 689 699 710 722

Change 0 1 0 0 0 0 0 0 0 0

% Change 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Scenario 3 579 627 647 661 671 681 689 699 710 722

Change -1 1 0 0 0 0 0 0 0 0

% Change -0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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9. SUMMARY AND CONCLUSION

The U.S. hog industry experienced significant industry consolidation and con-

centration during the past couple of decades. Major structural changes exploiting

scale economies have occurred during the last twenty years, including an increase

in use of production contracts, increases in market share of specialized operations,

and increases in size of operations, and have led to increased productivity in hog

industry. The structural changes in the U.S. hog industry have also been intensified

in recent years due to higher feed cost. Starting from 2007, corn and soybean meal

prices have risen unprecedentedly and reached a record high after the worst U.S.

drought in more than half a century in 2012.

Major structural change occurred for the U.S. poultry industry in the more distant

1950s and 1960s. The increase in feed grain prices also affected the poultry sector

notably as feed is the largest single cost item. The 2015 outbreak of the highly

pathogenic avian influenza (AI) H5 incidents is another ongoing shock for the U.S.

poultry and egg industries. In the effort to control the spread of HPAI, a large number

of infected flocks were destroyed and international trade was restricted. Production

and exports were thus negatively affected.

In the presence of the structural changes in the pork industry and complications

of disease outbreaks facing todays poultry industry, a more up-to-date partial equi-

librium, sector-specific modelling system is developed to facilitate analyzing these

agriculture sectors, understand their interactions with other sectors, and making

more accurate projections.

For each of the four industries, pork, broiler, turkey, and egg, a complete rep-

resentation of the demand for meat from the consumer sector, the supply for meat
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from the livestock producers sector, as well as trade and ending stocks has been

developed; and a vector of primary prices, one from each industry, is used to clear

the markets such that the sum of squared excess supply from each of the individual

markets is minimized.

Consumer demand in each livestock sector is modeled by a double-log functional

form for its straightforward interpretation of the coefficients as elasticities. The

primary explanatory variables are: own price, price for closely related meat products,

non-meat food price index, food expenditures, and a trend term or lagged quantity

demanded representing the effect of living patterns as needed.

Livestock production is modeled in a way that all of the important decision

points in the production process are included, each with an econometric function, to

reflect the sequential nature of production decisions and to incorporate the biological

constraints in livestock production.

Critical decision points in pork production included in the model are breeding

herd investment (gilts added to the breeding herd) and disinvestment (slaughter of

breeding herd), the number of sows farrowed and pig crop, and the slaughter of hogs.

Contribution margin calculated from the gross revenue less variable costs is the direct

factor affecting hog breeding herd investment and disinvestment. Unlike previous

studies, both farrow-to-finish and farrow-to-feed hog farms contribution margin are

considered in the current model as traditional farrow-to-finish hog producers have

given way to more specialized hog operations during the recent structural changes

which occurred in the U.S. pork industry.

Critical decision points in broiler production include hatching egg production,

broiler-type hatching eggs being set in incubators, broiler-type chicks being hatched,

placed on feed, and the number of broilers slaughtered. Contribution margin data are

not available for the broiler industry; the price ratio of broiler wholesale price/broiler-
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type chick price to feed price is used to represent the profitability of broiler feeding

in different production stages and affect the final broiler production. Separate pro-

duction regions of the broiler industry have been included in this study to assist

studying events that effect one region but not another. The poultry industry is di-

vided into four regions: the South Central (SC), the South Atlantic (SA), the North

Atlantic (NA), and Other Regions (OTH), according to Hatchery Production Annual

Summary (USDA NASS), with adjustments made due to data availability.

Egg production is comprised of hatching egg production and table egg production,

where regional hatching egg production is specified in the broiler model and U.S. total

hatching egg production is simply the summation of the regional production. Critical

decision points in table egg production include egg-type hatching egg production, egg-

type hatching eggs being set in incubators, egg-type chicks being hatched, placed on

feed and lay eggs. Egg wholesale price/egg-type chick price and egg layers feed cost

are used to represent the profitability and cost in different production stages for egg

layer feeding and the final table egg production.

Major decision points in the turkey production model start with turkey eggs

being set in incubators since no data is available for earlier production stages. Also

because of data availability, the next step to be modeled is turkey poults being placed

on feed. And the final step is the number of turkey slaughtered. Turkey wholesale

price and feed cost are used to represent the profitability and cost for turkey feeding

respectively.

The study period is 1985 to 2014. Annual data is used for all variables. Single

equation ordinary least squares method is used to estimate the production equations

since the large size of the model precludes the use of econometric methods designed

for systems of equations [Sands and Westcott (2011)]. And two stage least squares

(2SLS) method is applied to estimate the per capita consumption equations in the
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system. Based on the assumption that the structural errors are pairwise uncorrelated,

the recursive system used to describe livestock productions is consistently estimated

by OLS.

Adjusted R-squared is used to infer the goodness of fit of the model specification.

P-value and t-statistics show the statistical significance of an explanatory variable.

Breusch-Godfrey test is applied to test for the presence of serial correlation whenever

lagged dependent variable is included in the explanatory variables. Mean Absolute

Percentage Error (MAPE) and Theils U2 (U2) are used to measure the accuracy

of fitted values. All equations were deemed reasonable because the coefficients had

the correct signs, significant t-statistics, and large R-squares. Estimated elasticities

were compared with literature. Midterm (2015 to 2024) projections of livestock

productions, prices, and consumptions were also compared with FAPRI and USDA

projections to validate the model specification.

The estimated partial equilibrium system was applied to evaluate the effects of

the 2015 highly pathogenic avian influenza (HPAI) outbreak on the U.S. poultry

and egg industries. The actual changes in 2015 poultry and egg production and

trade published by USDA were used to shock the model; the lasting effects of the AI

outbreak were examined by comparing the 10-year projection results for production,

exports, prices, and per capita consumption for broiler, turkey, egg, and the related

pork industry with their baseline scenario projections. The effects of the shock on

productions started to fade out after the second year while the effects of the shock on

exports lasted longer. Shocks on the broiler industry had larger effects on the other

two poultry sectors than on the pork sector since the three poultry industries are

closely correlated either from the supply side (broiler and egg) or from the demand

side (broiler and turkey) compared to the pork industry. If the crop sectors modeled

by Rhew(2014), beef and dairy sectors modeled by Maisashvili (2014) were also
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included in the system, more response from the pork industry could be expected

because more interactions among the livestock sectors would be induced through the

feed demand for grains and the feed costs for livestock sectors.
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