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ABSTRACT 

 

Texas experienced extreme drought conditions in 2011, followed by moderate 

conditions the next year. I examined the effects of these annual weather conditions on 

habitat selection and reproduction of a federally endangered songbird, the Black-capped 

Vireo (Vireo atricapilla; hereafter vireo), in Texas. Vegetation and topographic 

characteristics in vireo territories and at vireo nest-sites were similar across years. 

However, vireos used different nesting substrates depending on year. Vireos typically 

nest in deciduous substrates, but they used Ashe juniper (Juniperus asheii), an evergreen 

species, as a nest substrate more frequently in 2011. This was, perhaps, because it was 

one of few plant species with consistently leafy foliage. Vireos had lower pairing and 

fledging success in 2011 than in 2012. Clutch size and brood size did not differ by year, 

but vireos delayed nest initiation and, consequently, laid fewer eggs and had fewer 

nesting attempts in 2011. Delayed nest initiation is often associated with reduced food 

availability, and it may provide a mechanism whereby individuals can reduce 

reproductive effort and increase survival when resources are limited. However, it is not 

without consequence as later nests may be subject to greater predation or brood 

parasitism by Brown-headed Cowbirds (Molothrus ater). During this study, predation 

and brood parasitism were higher in 2011, and year, substrate, and nest concealment best 

predicted nest success. Daily nest survival decreased over time in both years, but was 

lower in 2011. Annual variation in songbird reproduction is common and can be 

attributable to factors unrelated to weather. However, the responses of, and 
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consequences to vireos during the 2011 season are similar to those observed for birds 

nesting in other regions with variable rainfall that are periodically exposed to drought 

events. Drought is not preventable, but by understanding how at-risk species respond to 

it, we can better manage their populations. Common management strategies for vireos 

include removal of Ashe juniper and Brown-headed Cowbirds from vireo habitat. In 

drought-prone regions, managers should consider retaining some Ashe juniper in vireo 

habitat to provide refuge for foraging and nesting during dry conditions. Additionally, 

increased Brown-headed Cowbird removal efforts during drought years could reduce 

parasitism risk.  
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CHAPTER I  

INTRODUCTION  

Climate is a representation of the average weather conditions in an area over an 

extended period (Allaby 2010), and it influences all aspects of a species’ niche (i.e., the 

conditions under which a species can live) (Grinnell 1917; Hutchinson 1957). For 

example, physiological tolerances to temperature, along with water requirements, 

determine a species’ geographic range (Andrewartha and Birch 1954; Root 1988; 

Parmesan 1996). Similarly, climate regulates species’ abundance (e.g., Andrewartha and 

Birch 1954; Mehlman 1997; Veit et al. 1997), community structure (Cody 1981; Brown 

et al. 1997; Albright et al. 2010), and ecosystem dynamics (e.g., Pascual and Levin 

1999; Post and Forchhammer 2001; Traill et al. 2010). Understanding how climate 

shapes evolutionary adaptation is necessary for long-term conservation and management 

of wildlife species. However, information on species’ responses to short-term variation 

(e.g., months, years) in local and regional weather patterns is also important for 

conservation planning because the selective pressures imposed by weather can have 

consequences for population dynamics (Stenseth et al. 2002; Knape and Valpine 2011; 

Harrison et al. 2015). 

In arid and semi-arid environments, rainfall is low and unpredictable, and 

drought is common (e.g., in Texas) (Myoung and Nielsen-Gammon 2010). Though 

definitions vary (see Wilhite and Glantz 1985; McKee et al. 1993; Quiring 2009), 

drought is characterized by inadequate precipitation over a time sufficient to impact 

vegetation and deplete soil moisture (Kramer 1983). Heat waves and high temperatures 
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are often associated with summertime droughts as soil moisture declines and solar 

energy heats the air (Namias 1982). Low cloud cover during drought periods allows 

more of the sun’s energy to reach the ground, and the release of that energy into the 

environment can further exacerbate drought conditions via feedback loops that increase 

precipitation deficits (Myoung and Nielsen-Gammon 2010; also see Clark and Arritt 

1995). 

 Birds inhabiting arid and semi-arid environments may experience direct 

reproductive consequences under drought conditions. For instance, the development and 

function of ovaries and oviducts of water-deprived females is lower than that of non-

deprived females (Cain and Lien 1985; Koerth and Guthery 1991). Water-stressed 

females lay fewer, smaller, less fertile eggs and have young with lower survival rates 

(e.g., Cain and Lien 1985; Fair and Whitaker 2008; Skagen and Yackel Adams 2012). 

Similarly, under drought conditions, males can have lower testicular weight or sperm 

production, which can limit (though rarely prevents) reproductive function (Cain and 

Lien 1985). Additionally, embryonic development is disrupted and egg-hatchability 

compromised when eggs are exposed to extreme temperatures for extended periods 

(Dawson 1984; Stoleson and Beissinger 2002; Gill 2007), and nestlings born during 

drought may have reduced immune responses (Thaxton and Siegel 1970; Fair and 

Whitaker 2008).  

Drought can also impact birds indirectly through its effects on vegetation. 

Precipitation is the main driver of aboveground primary productivity (Noy-Meir 1973; 

Sala et al. 1988), and it influences vegetation structure (Tyree et al. 1993; Chaves et al. 
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2003), composition (Cody 1981; Brown et al. 1997), and mortality (Allen and Breshears 

1998; Breshears et al. 2005). When precipitation is low, delayed phenological events, 

reduced leaf area, or altered plant chemistry can occur (Rathcke and Lacey 1985; 

Larsson and Ohmart 2008; Gutbrodt et al. 2011). The overall effect is reduced greenness 

(i.e., foliage cover) on the landscape during drought, which can affect the timing and 

abundance of plant and insect foods available to nesting birds (Morrison and Bolger 

2002; Ogaya and Peñulas 2007; Greven et al. 2009) and increase the risk of predation 

(Sugden and Beyersbergen 1986; Martin 1992) and exposure to the elements (e.g., wind, 

rain, cold, heat) (Walsberg 1981).  

Birds inhabiting drought-prone environments experience considerable variation 

in precipitation and adjust their behaviors accordingly during dry periods (Cody and 

Mooney 1978). Food limitation and predation are strong drivers of habitat selection in 

birds (Cody 1981; Martin 1987, 1988, 1993; Cuttriss et al. 2015), and birds may select 

habitat features differently depending on how weather conditions affect these factors. 

Individuals may relocate to wetter sites during drought (e.g., Strong et al. 1997; Gaines 

et al. 2000; Takekawa and Beissinger 2005) or follow shifting plant distributions after 

drought (e.g., Mueller et al. 2005). Alternatively, individuals that do not relocate may 

select territories or nest-sites that maximize their use of the limited vegetation cover 

(Martin 1993).  

Birds may also adjust their reproductive behaviors according to weather 

conditions. Life history theory predicts that individuals inhabiting highly unpredictable 

environments will temper reproductive investment to maximize adult survival when 
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conditions are poor (Hirshfield and Tinkle 1975; Benton et al. 1995; Erikstad et al. 

1998). For example, birds may delay (or forgo) breeding during drought (e.g., Christman 

2002; Preston and Rotenberry 2006; Visser et al. 2006) when food or other resources are 

limited. Birds can also reduce their reproductive effort irrespective of nest initiation date 

by laying smaller clutches, abandoning nests, or engaging in fewer nesting attempts 

(Erikstad et al. 1998).  

Birds that delay nesting reduce their number of effective breeding days within a 

season, thus limiting the number of nesting attempts possible. Additionally, birds that 

delay nesting have smaller clutches (e.g., Lack 1947; Daan et al. 1989; Perrins and 

McCleery 1989), lower nestling and fledgling survival (e.g., Harris et al. 1994; 

Lindholm 1994; Naef-Daenzer et al. 2001), and reduced recruitment of offspring into 

subsequent generations (e.g., Harris et al. 1994; Verboven and Visser 1998). Nests 

initiated later in the season may also have greater rates of predation (e.g., Best and 

Stauffer 1980; Schaub et al. 1992) or brood parasitism (Marvil and Cruz 1989; Kus 

1999; Boves et al. 2014). However, despite seasonal fitness consequences, individual 

decisions regarding reproductive investment in any given year likely reflect trade-offs 

between current and future reproductive success that optimize lifetime reproductive 

success (Stearns 1989; Daan et al. 1990; Svensson and Nilsson 1995). 

By understanding how species respond to varying weather conditions land 

managers are better equipped to create, restore, or maintain habitat for species of 

conservation concern in the long-term. Shrub-nesting birds are of particular interest 

because of widespread population declines (Robbins et al. 1986; Askins 1993; Brawn et 
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al. 2001). Many shrub-nesting species require early- and mid-successional vegetation, 

but fire suppression and other practices (e.g., farm abandonment) have allowed 

vegetation in many shrubland environments to reach seral stages that prohibit occupancy 

or reproduction by shrub-nesting birds (Askins et al. 1990; Droege 1998). 

The Black-capped Vireo (Vireo atricapilla; hereafter vireo) is a federally 

endangered songbird that breeds in early-successional shrub-scrub vegetation in arid and 

semi-arid regions of Oklahoma, Texas, and Mexico (Fig. 1) (Graber 1961; Gryzbowski 

1995; Wilkins et al. 2006; González-Rojas et al. 2014). Major threats to the species 

include habitat loss and fragmentation and reduced reproductive success resulting from 

brood parasitism by Brown-headed Cowbirds (Molothrus ater) (Marshall et al. 1985; 

Ratzlaff 1987). Understanding these threats as well as the vireo’s biological and 

ecological requirements may help inform conservation and management strategies 

necessary for the species’ recovery (USFWS 1991). 

 Vireos typically breed in vegetation of irregular height and distribution that 

provides adequate cover (35–55%) for foraging and nesting (Graber 1961; Gryzbowski 

et al. 1994). Drought, fire, and grazing interact with topographic features (Graber 1961; 

McFarland et al. 2013) to maintain the vegetation configuration needed for vireo 

reproduction (Wilkins et al. 2006). Yet, little information exists regarding habitat 

selection and reproduction by vireos during periods of drought. Smith et al. (2012) 

detailed habitat use and nesting ecology by vireos at Devil’s River State Natural Area in 

the drier, southwestern portion of the species’ breeding range in Texas. They noted that 

vireo productivity is greatly influenced by precipitation, and management strategies 
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aimed at conserving vireo habitat in the west should be considerably different than those 

proposed for use in other (wetter) portions of the vireo’s breeding range (Smith et al. 

2012). 

 

 
Figure 1. Known breeding and wintering ranges for the Black-capped Vireo (Vireo 

atricapilla) based on data presented in Wilkins et al. (2006). 
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Figure 2. Drought status in Texas on 29 March 2011. Map created using ArcMap version 

10.2.2 with data from the National Drought Mitigation Center, U.S. Department of 

Agriculture, and National Oceanic and Atmospheric Administration. 

 

 

 

The objectives of this study were to examine habitat selection, breeding behavior, 

and productivity of vireos in Texas during two years of varying drought intensity. In 

September 2010, a large storm system, which had provided rain to much of the state, 

dissipated—signaling the beginning of the 2011 drought (Nielsen-Gammon 2011). 

Precipitation in fall and winter of 2010 and in spring 2011 were less than average (NCEI 

2016), and by the end of March, more than half the state experienced severe or extreme 

drought conditions (USDM 2016) (Fig. 2). The period from March–May 2011 was the 
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driest March–May period on record in Texas (Nielsen-Gammon 2011), and below 

average precipitation continued statewide for the next six months (NCEI 2016). From 

December 2011–March 2012, Texas received average or above average rainfall. Dry 

conditions returned for the remainder of 2012, but not with the same intensity of the 

previous year (USDM 2016). Only two other years (since 1895 when people began 

keeping records) have experienced precipitation deficits comparable to 2011 (i.e., 1917 

and 1956) (Fig. 3). 

Extreme drought events are, by definition, rare or infrequent. The 2011 drought 

in Texas provided a unique opportunity to observe vireo responses under extreme 

drought conditions compared to responses under more moderate (common) conditions. 

Drought has been common throughout much of the vireo’s range in Texas for over 1,000 

years (Toomey et al. 1993; Cleaveland et al. 2011; USDM 2016). As such, I expected 

vireos to exhibit behaviors during the 2011 season that minimized the impacts of the 

harsher conditions. I expected that differences in rainfall would result in lower 

vegetation greenness in 2011 than in 2012, and I predicted that, under such conditions, 

vireos would select larger territories because territory size is often inversely related to 

food availability (e.g., Seastedt and MacLean 1979; Smith and Shugart 1987), which is 

correlated with rainfall and vegetation greenness (e.g., Morrison and Bolger 2002; 

Ogaya and Peñulas 2007; Greven et al. 2009). I also predicted vireos would establish 

territories and nest-sites with flatter, northern-facing slopes in 2011 because precipitation 

and solar radiation can degrade vegetation conditions on steep, southern-facing slopes 

(Cottle 1932; Gallardo-Cruz et al. 2009; Sternberg and Shoshany 2011). Additionally, I 
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Figure 3. Annual rainfall in Texas from 1895–2014. Dashed line indicates average annual precipitation in Texas from 1901–

2000 (considered baseline). Data were obtained from National Centers for Environmental Information (NCEI 2016) and 

graphed using the statistical program R version 3.2.2. The years corresponding to the study described herein (2011 and 2012) 

are circled. 
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expected lower precipitation and greenness in 2011 to limit nest-sites with adequate 

concealment, such that nest-site characteristics would vary between years (Martin 1993). 

With regards to breeding behaviors, I predicted that vireos would exhibit reduced 

reproductive investment via lower pairing success, delayed nest initiation, lower clutch 

size, or greater nest abandonment in 2011 compared to 2012. If birds delayed nesting, I 

expected they would experience greater nest failure and lower fledging success resulting 

from increased predation and brood parasitism. Although drought is not preventable, 

understanding vireo responses to variable environmental conditions and extreme weather 

events can inform management strategies aimed at conservation and recovery, and the 

information may prove useful when considering the potential effects of climate change 

on vireo populations. 
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CHAPTER II 

EFFECTS OF DROUGHT ON HABITAT SELECTION IN BLACK-CAPPED 

VIREOS (VIREO ATRICAPILLA) 

INTRODUCTION 

Habitat refers to the location where an animal lives (Odum 1971), and it is 

comprised of abiotic and biotic features that support occupancy (Hall et al. 1997). 

Ecologists have long been interested in the factors that influence habitat selection, which 

is a hierarchical (Hildén 1965; Johnson 1980) and scale-dependent (Orians and 

Wittenberger 1991; Wiens 1989) process based on innate and learned behaviors (Klopfer 

1963; Klopfer and Hailman 1965; Partridge 1974) that allow organisms to assess habitat 

characteristics directly or indirectly (Hildén 1965; Cody 1981; Block and Brennan 

1993:38). In birds, food limitation and nest predation are strong drivers of habitat 

selection (Cody 1981; Martin 1987, 1988, 1993; Cuttriss et al. 2015), and weather can 

act as an extrinsic pressure influencing habitat selection through its impacts on these 

factors. For instance, precipitation is the main driver of aboveground primary 

productivity (Noy-Meir 1973; Sala et al. 1988); it influences vegetation structure (Tyree 

et al. 1993; Chaves et al. 2003), composition (Cody 1981; Brown et al. 1997), and 

mortality (Allen and Breshears 1998; Breshears et al. 2005). When precipitation is low, 

delayed phenological events, reduced leaf area, or altered plant chemistry can occur 

(Rathcke and Lacey 1985; Larsson and Ohmart 2008; Gutbrodt et al. 2011). The overall 

effect is reduced greenness (i.e., foliage cover) on the landscape, which affects the 

availability (i.e., timing and abundance) of plant and insect foods (Morrison and Bolger 
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2002; Ogaya and Peñulas 2007; Greven et al. 2009) and reduces vegetation cover at 

foraging and nesting sites, increasing the risk of predation (e.g., Sugden and 

Beyersbergen 1986; Martin 1992, 1993) and exposure to the elements (e.g., wind, rain, 

cold, heat) (Walsberg 1981).  

In arid and semi-arid environments, rainfall is low and unpredictable, and 

drought is common (e.g., in Texas) (Myoung and Nielsen-Gammon 2010). As such, 

birds living in these environments experience considerable annual variation in 

precipitation and must adjust their behaviors accordingly during dry periods. For 

example, they may select habitat differently during drought than they do when 

conditions are wetter. Individuals may relocate to wetter sites during drought (e.g., 

Strong et al. 1997; Gaines et al. 2000; Takekawa and Beissinger 2005) or follow shifting 

plant distributions after drought (e.g., Mueller et al. 2005). Those that do not relocate 

may select territories or nest-sites that maximize their use of limited vegetation cover 

(Martin 1993).  

By understanding how species select habitat under varying conditions managers 

are better equipped to create, restore, or maintain habitat for species of conservation 

concern in the long-term. Shrub-nesting birds are of particular interest because of 

widespread population declines (Robbins et al. 1986; Askins 1993; Brawn et al. 2001). 

Many shrub-nesting species require early- and mid-successional vegetation, and fire-

suppression and other practices (e.g., farm abandonment) have allowed vegetation in 

many shrubland environments to reach seral stages that prohibit occupancy or 

reproduction by shrub-nesting birds (Askins et al. 1990; Droege 1998).  
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The Black-capped Vireo (Vireo atricapilla; hereafter vireo) is a federally 

endangered songbird that breeds in early-successional shrub-scrub vegetation in arid and 

semi-arid regions of Oklahoma, Texas, and Mexico (Fig. 4) (Graber 1961; Gryzbowski 

1995; Wilkins et al. 2006; González-Rojas et al. 2014). Major threats to the species 

include habitat loss and fragmentation and reduced reproductive success resulting from 

brood parasitism by Brown-headed Cowbirds (Molothrus ater) (Marshall et al. 1985; 

Ratzlaff 1987). Understanding these threats as well as the vireo’s biological and 

ecological requirements may help inform conservation and management strategies 

necessary for the species’ recovery (USFWS 1991). 

Vireos typically breed in vegetation of irregular height and distribution that 

provides adequate cover (35–55%) for foraging and nesting (Graber 1961; Gryzbowski 

et al. 1994). Drought, fire, and grazing interact with topographic features (Graber 1961; 

McFarland et al. 2013) to maintain the vegetation configuration needed for vireo 

reproduction (Wilkins et al. 2006). Yet, little information exists regarding habitat 

selection by vireos during periods of drought. Smith et al. (2012) detailed habitat use and 

nesting ecology by vireos at Devil’s River State Natural Area in the drier, southwestern 

portion of the species’ breeding range in Texas. They noted that management strategies 

aimed at conserving vireo habitat in the west should be considerably different than those 

proposed for use in other (wetter) portions of the vireo’s breeding range (Smith et al. 

2012). 
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Figure 4. Map of breeding and wintering ranges for the Black-capped Vireo (Vireo 

atricapilla) based on data presented inWilkins et al. (2006). 

 

 

 

The objective of this study was to examine habitat selection by vireos over two 

years of varying drought intensity. In 2011, Texas experienced one of the most extreme 

droughts in its recent history (USDM 2016). Precipitation was less than half of the 30-

year average, and temperatures exceeded the 30-year average (SCIPP 2016). Drought 

conditions persisted the following year, but not with the same intensity as in 2011 

(USDM 2016). The differences in weather between 2011 and 2012 provided a unique 

opportunity to examine habitat selection by vireos during an extreme drought event 

compared to more moderate (common) conditions.  
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I quantified differences in precipitation and vegetation cover (greenness) 

associated with the 2011 and 2012 vireo breeding seasons and compared topographic 

and vegetation features of vireo habitat because both can affect microenvironments 

(Suggitt et al. 2011) and influence habitat selection (e.g., Weiss et al. 1988). I expected 

that the differences rainfall would result in lower vegetation greenness in 2011 compared 

to 2012, and I predicted that, under such conditions, vireos would select larger territories 

because territory size is often inversely related to food availability (e.g., Seastedt and 

MacLean 1979; Smith and Shugart 1987), which is correlated with rainfall and 

greenness (e.g., Morrison and Bolger 2002; Ogaya and Peñulas 2007; Greven et al. 

2009). I also predicted vireos would establish territories and nest-sites with flatter, 

northern-facing slopes because precipitation and solar radiation can degrade vegetation 

conditions on steep, southern-facing slopes (Cottle 1932; Gallardo-Cruz et al. 2009; 

Sternberg and Shoshany 2011). Lastly, I predicted lower precipitation and greenness in 

2011 would limit nest-sites with adequate concealment, such that nest-site characteristics 

would vary between years (Martin 1993). Although drought is not preventable, 

understanding vireo responses to variable environmental conditions and extreme weather 

events can inform management strategies aimed at conservation and recovery, and the 

information may prove useful when considering the potential effects of climate change 

on vireo populations. 
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METHODS 

Study Area 

 I surveyed vireos across an 1,100 ha study site within Dobbs Run Ranch (2,030 

ha; ~29° 38’ 60” N, -100° 24’ 36” W) (Fig. 5) from late March–late July in 2011 and 

2012. Dobbs Run Ranch is a privately-owned property located in Edwards County, 

Texas on the southwestern edge of the Edwards Plateau ecoregion (Omernik 1995). The 

Edwards Plateau is a semi-arid region (Thornwaite 1948) with highly variable summer 

climate and a large, east-west precipitation gradient (Daly et al. 2008) that experiences 

notable variation in temperature and precipitation annually and seasonally. The average 

maximum summer (April–July) temperature is 31 °C, and the cumulative average 

summer precipitation is ~25 cm (NCEI 2016). 

 Soil in the study site is mainly limestone bedrock (99.6%) (NRCS 2013). 

Common woody plants in the study site include Ashe juniper (Juniperus ashei), live oak 

(Quercus fusiformis), piñon pine (Pinus remota), Texas persimmon (Diospyros texana), 

and Texas mountain laurel (Dermatophyllum secundiflorum). Livestock grazing, which 

can interfere with avian nest success by altering vegetation structure (Kreuper et al. 

2003; Gill and Fuller 2007) or the distribution of harmful species (e.g., predators 

[reviewed in Atkinson et al. 2004] and brood parasites [e.g., Goguen and Mathews 

2000]), did not occur on or near the ranch during this study. I regularly observed 

individuals or small groups of wild, grazing ungulates, such as blackbuck (Antilope 

cervicapra), white-tailed deer (Odocoileus virginianus), axis deer (Cervus axis), and 
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Figure 5. Location of Dobbs Run Ranch in relation to nearby weather station in Edwards and Kinney counties. Top inset shows 

the study site and sampling grid within Dobbs Run Ranch where I monitored Black-capped Vireos (Vireo atricapilla) in 2011–

2012. Bottom inset shows the location within the Black-capped Vireo’s breeding range in Texas. 
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aoudad (Ammotragus lervia). However, it is unlikely that the presence of these species 

negatively affected vireo reproduction during my study (e.g., Locatelli et al. 2016). 

Additionally, hunting (of game birds and ungulates) was limited to a small area 

northwest of my study site and likely had no impact on the vireo population or my 

results. There were three active Brown-headed Cowbird traps at Dobbs Run Ranch 

during the years of this study, but data regarding number of Brown-headed Cowbirds 

trapped annually are not available.  

Annual Variation in Weather  

 To quantify differences in weather between years, I obtained daily maximum 

temperature and daily precipitation data for 2010–2012 from the National Centers for 

Environmental Information (NCEI 2016). Most data were recorded at the Brackettville 

22 N station (GHCND:USC00411013) (Fig. 5) located at Kickapoo Caverns State Park 

(KCSP) (29° 36' 36" N, -100° 27' 07" W), which is adjacent to Dobbs Run Ranch. 

However, a small number of records were missing at this station during the study period. 

When necessary, I substituted precipitation values from the Rocksprings 26 SSW station 

(GHCND:USC00417717; 29° 41' 16" N, -100° 25' 18" W) (Fig. 5), which was located 

<15 km away. The Rocksprings 26 SSW station did not record temperature information, 

so when temperature records were not available from the Brackettville 22 N station, I 

substituted average values from the next two nearest stations, which were both located 

both <30 km away. These stations were Carta Valley (GHCND:USC00411492; 29° 47' 

24" N, -100° 40' 26" W) (Fig. 5) and Brackettville (GHCND:USC00411007; 29° 18' 58" 

N, -100° 24' 50" W) (Fig. 5). Substitutions accounted for <5% of weather data.  
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 Spring and summer precipitation influences vegetation growth during the 

growing season (mid-March–mid-November in Edwards County [TSHA 2016]), but so 

does soil moisture, which is determined by fall and winter precipitation (Pielke and 

Doeskin 2008). As such I examined precipitation data for the months of September to 

March preceding each vireo breeding season as well as precipitation during each vireo 

breeding season (April–July [Gryzbowski 1995]). In addition to daily weather variables, 

I obtained monthly Palmer Drought Severity Index (PDSI) values for the study period to 

further demonstrate differences in weather conditions by year. The PDSI uses 

precipitation, soil moisture, and temperature data to assess water availability and the 

intensity of drought at regional scales (Palmer 1965). PDSI values ≤-4 reflect extreme 

drought conditions, and values ≥4 indicate extreme wet conditions (Table 1). Though it 

is the most commonly used drought index in the United States, PDSI has been criticized 

for arbitrary designations of drought intensity, sensitivities to rainfall events, and 

different sensitivities across regions (Alley 1984). 

 

 

Table 1. Classification of weather according to the Palmer Drought Severity Index 

(Palmer 1965). 

Value Description 

≥ 4.00 Extremely Wet 

3.00 to 3.99 Very Wet 

2.00 to 2.99 Moderately Wet 

1.00 to 1.99 Slightly Wet 

0.50 to 0.00 Incipient Wet Spell 

-0.49 to 0.49 Near Normal 

-0.99 to -0.50 Incipient Drought 

-1.99 to -1.00 Mild Drought 

-2.99 to -2.00 Moderate Drought 

-3.99 to -3.00 Severe Drought 

≤ -4.00 Extreme Drought 
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Annual Variation in Greenness 

  I quantified vegetation greenness across the landscape because it is associated 

with foliage cover and may influence the availability of food for vireos (Sweet et al. 

2015) or their risk of predation. I obtained 30 m resolution Landsat 5 Thematic Mapper 

(TM) imagery for 2011 and 30 m resolution Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+) imagery for 2012 for the months associated with vireo breeding (April–July 

[Gryzbowski 1995]). I pre-processed all Landsat images available during the months of 

interest for both years by performing radiometric calibration to correct for sensor 

differences between images (reviewed in Dinguirard and Slater 1999) and dark object 

subtraction to correct for atmospheric scattering (e.g., Chavez 1988). I used ENVI 

software versions 5.1 and 5.3 (Exelis Visual Information Solutions, Boulder Colorado) 

for all pre-processing. 

Pre-processing Landsat scenes enabled me to compare images taken during 

different months and years by the two satellites. However, on 31 May 2003, the Scan 

Line Corrector (SLC) on the ETM+ satellite failed, causing large data gaps to appear on 

Landsat 7 images (Fig. 6) (USGS 2016). The Landsat 7 ETM+ satellite orbits the Earth 

every 16 days, sometimes recording multiple images for each path and row during a 

given month, with images from different paths and rows often overlapping in spatial 

coverage. Overlapping Landsat 7 images of my study site were available from Path 29 

Row 39 and Path 28 Row 40. There were 3–4 images encompassing the study site 

available for each month of vireo breeding. To account for the data gaps in Landsat 7 

images, I first used the USGS gap phase statistic calculator (USGS 2016) to determine  
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Figure 6. A. Landsat 5 TM image taken 11 April 2011; B. Landsat 7 ETM+ image taken 5 April 2012; white lines indicate 

missing data due to failure of the Scan-Line Corrector; C. Gap-filled image created from Landsat 7 ETM+ images taken on 5 

April 2012 and 21 April 2012. All images are false-color composites that have undergone pre-processing. White polygon 

indicates the study site boundary within Dobbs Run Ranch. 
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the degree of overlap between images taken in the same month. I then selected the 

within-month image pairs with the greatest amount of overlap and the least amount of 

cloud cover. Finally, I used the landsat_gapfill.sav extension toolbox for ENVI, which 

uses localized linear histogram matching to fill data gaps (Scaramuzza et al. 2004) (Fig. 

6). Gap-filling was not necessary for 2011 Landsat 5 images, but I selected images from 

2011 with the least cloud cover. 

Low cloud cover images from June 2012 had less overlap than images from other 

months, and there were large areas with missing data. Similarly, July images from both 

years had excessive cloud cover masking significant portions of the study site. As such, I 

excluded images from June and July and only examined images from April and May 

(i.e., months of peak vireo nest initiation; Chapter 3) from each year. Specifically, I used 

images taken on 11 April and 29 May in 2011 and gap-filled images for 2012 that were 

comprised of scenes recorded on 5 April, 21 April, 23 May, and 30 May.  

I used ENVI software to create Normalized Difference Vegetation Index (NDVI) 

maps from the finalized April and May Landsat images, and I used the Spatial Analyst 

extension in ArcMap version 10.2.2 (Environmental Research Systems Institute, 

Redlands, California) to extract NDVI values from each pixel for all periods. NDVI is a 

widely used vegetation index correlated with vegetation cover (Wellens 1997), leaf-area 

index (Law and Waring 1994), and plant productivity (Reed et al. 1994) as well as 

climate variables (e.g., rainfall, temperature, evapotranspiration) (Nicholson et al. 1990; 

Cihlar et al. 1991). NDVI is a ratio derived from differences in the reflectance of 

radiation in the visible (red) and near-infrared (NIR) wavelengths (NDVI = [NIR-
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red]/[NIR+red]) (Rouse et al. 1973). NDVI values range from -1 to 1, with higher values 

corresponding to increased photosynthetic activity and the presence of healthy 

vegetation.  

Landscape-scale Data 

 I established a 300 m grid across the study site (Fig. 5), which allowed for a 

reasonable detection of singing vireos with a maximum distance of sound attenuation of 

150 m (e.g., Smith 2011; McFarland et al. 2013). Each year from 20 March to 15 July, I 

walked different routes along the grid and used auditory and visual surveys to map the 

locations of male vireos across the study site. When I detected a male vireo, I marked its 

location using a handheld Garmin RINO 120 Global Positioning System (GPS) unit with 

≤10 m accuracy. I returned to marked locations every 5–10 days between the hours of 

sunrise and 1400. I spent ≤1 h per day with each bird, which maximized the number of 

territories I could visit each day while limiting disturbance to nesting vireos. I observed 

vireos from a distance to minimize observer effects and noted their locations. Each time 

a focal bird moved ≥20 m, I marked its location with a GPS. It is difficult to identify 

potential vireo habitat using remotely sensed images, so I used ArcMap to create a 100 

m buffer around all vireo location points collected over the two years of this study and 

considered the area within the buffered region to represent habitat available (i.e., 

suitable) to vireos. This method seemed a reasonable approximation of available habitat 

as I regularly encountered vireos throughout the buffered region.  

  I then used remotely sensed data to characterize the topography within the 

buffered region. I used the Spatial Analyst extension in ArcMap to extract information 
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on the steepness and direction (i.e., aspect) of slopes within available habitat from a 

USGS National Elevation Dataset (NED) 1/3 arc-second digital elevation model (DEM; 

10 m resolution) corresponding to my study site. I determined the mean (percent) slope 

per 1.7 ha block within available habitat and used this information to represent the 

availability of slope of varying steepness to vireos. I similarly determined aspects (i.e., 

slope directions) available to vireos within the 1.7 ha blocks. This size block roughly 

corresponded to the overall mean vireo territory size at my study site and was similar to 

mean territory size reported by Graber (1961 [mean 1.5 ha]). For analyses purposes, I 

grouped slope values into 5% increments (similar to Castiaux 1995). I similarly 

classified aspect values into discrete categories corresponding to compass directions (N, 

NE, E, SE, S, SW, W, NW) and calculated the area of slopes facing each direction in 

each block. I identified the aspect category that best represented each block (i.e., covered 

the most area) and used this information to determine the aspects available to vireos. I 

only included blocks if ≥1 ha fell within available habitat.  

Territory-scale Data  

  I considered male vireos territorial if I consistently detected them in the same 

locations for ≥4 weeks. To improve my assignment of individuals to specific territories, I 

used standard target mist-netting techniques (described by Johnston 1965; Keyes and 

Grue 1982) with playback of recorded vireo song to capture adult vireos and mark them 

with unique color-band combinations. I used Geospatial Modelling Environment version 

0.7.3.0 (Beyer 2009) to create minimum convex polygons (MCP) for all territories with 

≥15 location points, which I considered the minimum number required to adequately 
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represent territory boundaries (e.g., Smith 2011; Morgan 2012). I defined territory size 

as the area within each MCP, and I considered the area within MCPs to represent habitat 

selected by vireos. I extracted information regarding the steepness and direction of 

slopes within territories from the DEM described previously. 

Nest-scale Data 

While mapping vireo locations, I watched for behavioral cues indicative of 

breeding (e.g., copulation, material or food carry) to help pinpoint nest locations. I 

focused on females because they tend to spend more time near nests (Gryzbowski 1995; 

Pope 2013a, b), but I noted male behaviors and movement patterns as well because this 

species shares parental duties (Gryzbowski 1995; Pope et al. 2013b). If I did not detect 

vireos on arrival in a territory, I searched the territory systematically for a nest—

concentrating on vegetation structure common among vireo nests (e.g., Gryzbowski et 

al. 1994; Gryzbowski 1995). This method often proved effective in the absence of 

behavioral cues, especially during the egg-laying phase, when nests were most difficult 

to find (Martin and Geupel 1993), and also accounted for differences in detection 

attributed to variation in vegetation. 

 I extracted topographic metrics (i.e., slope steepness and direction) at nest 

locations from the DEM (described above). I also catalogued vegetation characteristics 

for each active (i.e., observed contents, tended by adults) vireo nest after it fledged, 

failed, or was abandoned. Specifically, I recorded the nest substrate and measured the 

distance to the nearest edge (i.e., nest rim to nearest leafy edge), nest height (from 

ground to nest rim), substrate height, and canopy height all to the nearest 0.1 m. I 
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defined canopy height as the height of the tallest tree or shrub immediately above the 

nest. When the substrate tree or shrub was the tallest tree or shrub above the nest, I 

recorded the same value for the substrate height as for canopy height. In addition, I 

positioned a 2 m coverboard marked with 0.1 m2 squares immediately in front of each 

nest and estimated the percent of each square obscured by vegetation from 7 m away in 

each cardinal direction. I then averaged these values to obtain a single measurement of 

foliage cover. Lastly, I placed a 0.1 m2 board at each nest and estimated the percent 

visual obstruction by vegetation from 1 m away in each cardinal direction as well as 

from above and below nests. I averaged these values to get a single measurement of nest 

concealment. All measurements were consistent with those collected during other studies 

of nesting vireos (e.g., Conkling et al. 2012; Smith et al. 2012; Pope et al. 2013a, b). 

Analyses 

 I conducted all tests using the statistical program R version 3.2.2 (R Core Team, 

Vienna, Austria). I presented all means described below with standard deviations. 

Because this was a two-year study at a single site, I presented weather and greenness 

data simply to demonstrate the differences between years but, I did not include these 

data in further analyses. Instead, I used temporal variables (e.g., month, year) to examine 

differences in vireo habitat selection in response to weather. 

  Annual Variation in Weather.—I calculated the mean maximum daily 

temperature for each year, and I used a Welch’s two-sample t-test (Ruxton 2006; 

Crawley 2014:94–95) with Cohen’s d (Lakens 2013) as a measure of effect size to 

compare means between years. I also used linear regression to examine temperature as a 
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function of date within seasons (Crawley 2014:114–140). Additionally, I summed daily 

precipitation to determine cumulative monthly precipitation totals for the seven months 

prior to and the four months of each breeding season and calculated the percent 

differences between years.  

  Annual Variation in Greenness.—I compared NDVI across the study site and 

mean NDVI within territories between months and years using two-way factorial 

analysis of variance tests (ANOVA) (Crawley 2014:170–173). If there was a significant 

interaction between month and year, I used Tukey’s Honest Significant Difference 

(HSD) test to examine pairwise differences (Crawley 2014:226) in months between 

(e.g., April 2011 vs. April 2012) and within (e.g., April 2011 vs. May 2011) years. If 

there was no significant interaction, I examined the main effects of month and year 

separately.  

  Landscape-scale.— I quantified the amount of habitat available to vireos within 

the 100 m buffered region and used Chi-square tests (Crawley 2014:101–105) to 

examine the distributions of slope steepness and aspect categories across the landscape.  

  Territory-scale.— I compared territory size between years using a Welch’s two-

sample t-test (Ruxton 2006; Crawley 2014:94–95) with Cohen’s d as a measure of effect 

size (Lakens 2013). Additionally, I used Chi-square goodness-of-fit tests (Crawley 

2014:104–105) to determine if the steepness or direction of slopes within territories each 

year differed from that expected given the slopes available on the landscape. I used 

Fisher’s exact tests (Crawley 2014:105–107) instead of Chi-square tests to determine if 
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territory-scale slopes selected differed between years because some slope categories 

were not well represented (i.e., sample sizes <15).  

  Nest-scale.—I used Chi-squared tests of independence (Crawley 2014:104–105) 

to compare slope steepness at nest-sites between years, and I used a Watson’s two-

sample test of homogeneity (Lund and Agostinelli 2009:41) to compare slope direction 

(i.e., aspect) at nest-sites. This test is the equivalent of a one-factor ANOVA or two-

sample t-test for circular data (Berens 2009). Additionally, I used a Chi-square test 

(Crawley 2014:104–105) to determine if nest substrate use differed between years.  

  I used a one-way, non-parametric multivariate test within the npmv package in 

program R (Burchett and Ellis 2015) to evaluate inter-annual differences in vegetation at 

nest-sites and differences in vegetation characteristics among the most common nest 

substrates (i.e., global models). The npmv package provides several options for 

multivariate tests of this type. To determine which test would be most suitable, I first 

examined correlations between the six vegetation variables of interest (i.e., nest height, 

substrate height, overstory height, distance to the nearest edge, average cover, average 

concealment). Because data were not normally distributed, I used a Spearman’s rank test 

to examine correlations (Zar 2005). A nonparametric, ANOVA-type test (Brunner et al. 

1997) performs best when response values are positively correlated, and a Lawley-

Hotelling-type test performs better when responses are negatively correlated (reviewed 

in Bathke et al. 2008).  

  I selected the appropriate test based on correlations and applied it to the global 

models and subsequently to post hoc univariate tests examining the differences in each 
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vegetation characteristic by year and substrate. I accounted for multiple comparisons in 

post hoc tests using the Bonferroni-correction and interpreted P-values accordingly. In 

addition to the global test statistics, I provided the relative effects for each test. Relative 

effects are measures of effect size, which reflect the probability that a particular 

vegetation characteristic measured at a randomly chosen nest in a given year (or 

substrate) had a greater value than that from a randomly chosen nest from any year (or 

substrate) (Burchett and Ellis 2015). 

 

 
Figure 7. Maximum temperature (°C) at Dobbs Run Ranch, Edwards County, Texas 

from April–July in 2011 and 2012. Lines indicate linear trends of increasing temperature 

over time in both years. 
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RESULTS 

Annual Variation in Weather  

 Weather varied significantly between the years of my study, with the 2011 vireo 

breeding season being warmer and drier than the 2012 breeding season. Maximum daily 

temperature varied between years (t241.4 = 4.85, P ≤ 0.01, d = 0.62). Yet, mean maximum 

daily temperature in either year (i.e., 34 ± 4 °C [range 20–39 °C] in 2011 and 32 ± 4 °C 

[range 17–40 °C] in 2012) was comparable to the average maximum temperature for the 

region during the months of vireo breeding (NCEI 2016). Daily maximum temperature 

increased over time within years (2011: F1,120 = 59.66, r2 = 0.33; 2012: F1,120 = 80.78,  

r2 = 0.40) (Fig. 7). There was 54% less rainfall in the months leading up to the 2011 

breeding season (13.1 cm) (Fig. 8) than during the corresponding months the following 

year (28.4 cm) (Fig. 8). Similarly, 56% less rain fell during the 2011 season (10.7 cm 

(Fig. 9) than during the 2012 season (24.5 cm) (Fig. 9). Rainfall in 2011 was 

approximately half of the seasonal average for the region (NCEI 2016). However, 

monthly precipitation totals (Fig. 9) belied the true conditions of the 2011 breeding 

season during which 61% (6.48 cm) of the total rainfall occurred on a single day (May 

12), and mean precipitation of other rainfall events (n = 7) was low (0.61 ± 0.44 cm). 

Monthly PDSI values for the study period better captured the extreme difference in 

rainfall between years. PDSI ranged from -6.02 to -3.98 (extreme conditions) in 2011 

and -2.65 to -2.03 (moderate conditions) in 2012 (NCEI 2016).  
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Figure 8. Cumulative monthly precipitation from Dobbs Run Ranch, Edwards County, Texas during the seven months 

preceding the 2011 and 2012 Black-capped Vireo (Vireo atricapilla) breeding seasons. 
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Figure 9. Cumulative monthly precipitation from Dobbs Run Ranch, Edwards County, 

Texas during the 2011 and 2012 Black-capped Vireo (Vireo atricapilla) breeding 

seasons. 
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Figure 10. Slope (sampled at 1.70 ha) available to and used by Black-capped Vireos 

(Vireo atricapilla) within the study site at Dobbs Run Ranch, Edwards County, Texas in 

2011–2012. 
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Annual Variation in Greenness 

 

 There was a significant interactive effect of month and year on NDVI across the 

study site (F1,52184 = 7,326, P ≤ 0.01). Post hoc Tukey’s HSD tests showed that NDVI 

was significantly different across the study site for all combinations of months and years 

(α ≤ 0.01). NDVI across the landscape was ~3% greater in April 2012 compared to April 

2011, and ~28% greater in May 2012 compared to May 2011. Within territories, there 

was no significant interactive effect of month and year on mean NDVI (F1,556 = 0.70, P = 

0.70). However, mean NDVI within territories varied both by month (F1,558 = 5.83, P = 

0.02) and year (F1,558 = 1225.00, P ≤ 0.01). Mean NDVI within territories was ~28% 

greater in 2012 than in 2011 and ~3% greater during May compared to April. 

Landscape-scale 

I identified ~952 ha of available habitat within the study site with slopes ranging 

from ~2–18% (�̅� = 6% ± 3) (Fig. 10). Slope steepness categories were not equally 

distributed across the landscape (Χ3
2

 = 274.72, P ≤ 0.01). More than half (57%) of all 

available habitat was characterized by 5–10% slope, while only 7% was characterized by 

slopes >10% (Figs. 10, 11). Similarly, aspect categories were not equally distributed 

within available habitat (Χ7
2 = 30.21, P ≤ 0.01). Southerly-facing slopes were most 

common (including SE, S, SW; 44%) (Fig. 12), while western-facing slopes were 

uncommon (5%).  
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Figure 11. Distribution of Black-capped Vireo (Vireo atricapilla) territory sizes at 

Dobbs Run Ranch, Edwards County, Texas in 2011–2012. 
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Figure 12. Count of territories by mean slope (percent) used by Black-capped Vireos 

(Vireo atricapilla) in 2011 and 2012 at Dobbs Run Ranch, Edwards County, Texas. 

Values at the top of the graph indicate the number of 1.70 ha blocks by mean slope 

available to Black-capped Vireos within the study site. 

 

 

 

Territory-scale 

 I mapped and monitored 148 vireo territories in 2011 and 132 vireo territories in 

2012. Monitored territories covered ~249 ha of the available habitat in 2011 and ~234 ha  

in 2012. Vireos utilized other areas, but data were insufficient to include these in 

analyses (e.g., I observed individuals for <4 weeks or I collected <15 location points  
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Figure 13. Count of territories by slope direction (aspect) used by Black-capped Vireos (Vireo atricapilla) in 2011 and 2012 at 

Dobbs Run Ranch, Edwards County, Texas. Values at the top of the graph indicate the number of 1.70 ha blocks by slope 

direction (aspect) available to Black-capped Vireos within the study site. 
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over the course of the breeding season). Overall mean territory size was 1.69 ha ± 0.95, 

with annual means of 1.68 ha ± 0.09 in 2011 and 1.70 ha ± 1.00 in 2012 (Fig. 11). There  

was no significant difference in territory size between years (t265.24 = -0.09, P = 0.93, d = 

0.01).  

In 2011, mean slope steepness within territories ranged from ~2–14% (�̅� = 6% ± 

2) (Fig. 12); slope steepness within vireo territories did not differ from what was 

expected given its availability across the landscape (Χ3
2

 = 1.66, P = 0.65). In 2012, mean  

slope steepness within territories ranged from ~2–16% (�̅� = 6% ± 3) (Fig. 12); again, the 

slope steepness within territories was not different than expected (Χ3
2 = 3.55, P = 0.31). 

Similarly, there was no difference in selection of slopes between years (Fisher’s exact P 

= 0.41). Aspect within vireo territories was also as expected in both years given the 

distribution of aspects within available habitat (2011: Χ7
2 = 3.90, P = 0.79; 2012: Χ7

2 = 

5.67, P = 0.58), and there was no difference in aspects selected between years (Fisher’s 

exact P = 0.97). Southerly (16%) and southeasterly (18%) slopes were most common 

within territories (Fig. 13), while western facing slopes were least common (5%) (Fig. 

13).  

Nest-scale 

 I monitored and collected vegetation and topographic data for 186 active nests 

(i.e., observed with eggs or nestlings) in 2011 (n = 74) and 2012 (n = 112). Mean 

steepness of slopes at vireo nests was ~6% ± 3 in 2011 and ~7% ± 4 in 2012 (Fig. 14); 

there was no difference in the steepness of slopes at vireo nest-sites between years (Χ3
2

 =  

7.41, P = 0.06). The majority of nests (~45%) were on southerly-facing slopes (i.e., S, 
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SE, SW) in both years (Fig. 15) with no difference in the distribution between years 

(F1,185 = 0.09, P > 0.05). 

 

 

 

 
Figure 14. Distribution of slopes observed at Black-capped Vireo (Vireo atricapilla) 

nests within the study site at Dobbs Run Ranch, Edwards County, Texas in 2011 and 

2012. 
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Figure 15. Distribution of slope direction (aspect) observed at Black-capped Vireo 

(Vireo atricapilla) nests within study site at Dobbs Run Ranch, Edwards County, Texas 

in 2011 and 2012.  

 

 

 

Vireos placed nests in eight different plant substrates (Fig. 16), and there was a 

significant difference in nesting substrate use between years (Χ7
2 = 75.41, P ≤ 0.01). In 

2011, vireos placed 64% (n = 47) nests in Ashe juniper compared with only 15% (n = 16 

of nests in Ashe juniper in 2012 (Fig. 16). Texas persimmon was the most common nest 

substrate in 2012, accounting for 58% (n = 65) of nests compared to only 5% (n = 4) of 

nests in 2011 (Fig. 16). Vireos did not place nests net-leaf forestiera (Forestiera 

reticualta) in 2011 or coyotillo (Karwinskia humboldtiana) or shin oak (Quercus 

sinuata) in 2012; they placed nests in all other substrates similarly across years (Fig. 16). 
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Figure 16. Percent of nest substrates used in 2011 and 2012 by Black-capped Vireos 

(Vireo atricapilla) within study site at Dobbs Run Ranch, Edwards County, Texas. 

Agarita = Mahonia trifoliolata; Ashe juniper = Juniperus asheii; Coyotillo = Karwinskia 

humboldtiana; Live oak = Quercus fusiformis; Net-leaf forestiera = Forestiera 

reticualta; Shin oak = Quercus sinuate; Texas mountain laurel = Dermatophyllum 

secundiflorum; Texas persimmon = Diospyros texana.   

 

 

 Several of the vegetation measurements taken at nest-sites significantly 

correlated with one another (Table 2). Most correlations were positive, though all were 

relatively weak (r ≤ 0.31). Because most correlations were positive (Table 2), I used the 

non-parametric ANOVA-type test (Brunner et al. 1997) to examine differences in nest 
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Table 2. Spearman rank correlation matrix of vegetation and topographic variables at nest-sites used by Black-capped Vireos 

(Vireo atricapilla) within the study site at Dobbs Run Ranch, Edwards County, Texas in 2011 and 2012. Top value indicates 

Kendall’s tau, and bottom value indicates P-value.  

 Substrate 

Height 

Overstory 

Height 

Average 

Cover 

Average 

Concealment 

Distance 

to Edge 

Nest Height 0.39 

0.00 

0.22 

0.00 

-0.06 

  0.45 

-0.08 

  0.30 
  0.15 

  0.04 
Substrate Height  0.17 

0.02 

-0.06 

  0.42 
-0.16 

  0.03 

  0.01 

  0.89 

Overstory Height   -0.02 

  0.75 

-0.30 

  0.00 

  0.43 

  0.00 
Average Cover      0.10 

  0.19 
  0.18 

  0.02 

Average Concealment      -0.22   

  0.00 

 

 

 

 

Table 3. Relative effects of vegetation characteristics at Black-capped Vireo (Vireo atricapilla) nests within the study site at 

Dobbs Run Ranch, Edwards County, Texas in 2011 and 2012. Relative effects are descriptive measures of effect size that 

reflect the probability that a particular vegetation characteristic measured at a randomly chosen nest in a given year had a 

greater value than that from a randomly chosen nest from any year (Burchett and Ellis 2015). 

Nest Characteristic 2011 2012 

Nest Height 50% 50% 

Substrate Height 50% 50% 

Overstory Height 39% 61% 

Distance to Edge 42% 58% 

Average Cover 48% 52% 

Average Concealment 43% 57% 
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Figure 17. Boxplots comparing Black-capped Vireo (Vireo atricapilla) nest vegetation 

characteristics between years at Dobbs Run Ranch, Edwards County, Texas.  
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vegetation between years. The global test was not significant indicating little overall 

difference in vegetation characteristics at nest-sites between years (F4.97,875.27 = 1.96, P = 

0.08). The relative effects indicated a >50% probability that overstory height, distance to 

edge, average cover, or average concealment were higher at nests in 2012 compared with 

randomly selected nests (Table 3). However, univariate post hoc tests showed no annual 

differences in these or other characteristics (Fig. 17).  

 Because there was not a significant difference in vegetation characteristics 

between years, I pooled vegetation data across years to examine differences in the 

vegetation characteristics at nests placed in the most common substrates. Again, I 

reported results associated with the ANOVA-type test (Brunner et al. 1997). The global 

model suggested there were significant differences in overall nest vegetation 

characteristics depending on the nest substrate (F15.54,555.71 = 4.20, P = 0.00). The relative 

effects indicated a >50% probability that certain metrics were greater in some substrates 

compared to randomly selected substrates (Table 4). However, univariate post hoc tests 

suggested the only significant difference between substrates was in substrate height 

(F3.00,107.26 = 15.37, P = 0.00) (Fig. 18), wherein there was a 65% probability that 

substrate height measured at a randomly chosen nest placed in Ashe juniper would have 

a greater value than that from a randomly chosen nest from all possible nest substrates. 
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Table 4. Relative effects of vegetation characteristics at Black-capped Vireo (Vireo 

atricapilla) nests placed within different nesting substrates within the study site at Dobbs 

Run Ranch, Edwards County, Texas in 2011 and 2012. Relative effects are descriptive 

measures of effect size that reflect the probability that a particular vegetation 

characteristic measured at a randomly chosen nest in a given substrate had a greater 

value than that from a randomly chosen nest from any substrate (Burchett and Ellis 

2015). Only the most commonly used substrates were included in analyses: Ashe juniper 

(Juniperus ashei), live oak (Quercus fusiformis), mountain laurel (Dermatophyllum 

secundiflorum), and Texas persimmon (Diospyros texana). 

Nest Characteristic Ashe 

Juniper 

Live 

Oak 

Mountain 

Laurel 

Texas 

Persimmon 

Nest Height 53% 33% 50% 53% 

Substrate Height 67% 19% 34% 51% 

Overstory Height 49% 51% 41% 53% 

Distance to Edge 47% 61% 47% 50% 

Average Cover 54% 63% 38% 44% 

Average Concealment 48% 53% 45% 51% 

 

 

DISCUSSION 

 My results suggest that the extreme drought conditions experienced during 2011 

did not affect most aspects of vireo habitat selection. In both years, vireos used slopes of 

varying steepness and directions according to their availability. Additionally, vegetation 

at nest-sites was similar between years. However, vireos placed their nests in Ashe 

juniper more often in 2011 and in Texas persimmon more often in 2012.   

It is interesting that I did not see differences in most metrics given the extreme 

nature of the drought conditions in 2011. Food availability is an important component of 

habitat selection for birds (e.g., Cody 1981), particularly for species that rely on insects 

as a primary food source during the breeding season. Vireos are foliage-gleaning 
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Figure 18. Boxplots comparing Black-capped Vireo (Vireo atricapilla) nest vegetation 

characteristics by nesting substrates at Dobbs Run Ranch, Edwards County, Texas. Ashe 

juniper = Juniperus ashei, live oak = Quercus fusiformis, mountain laurel = 

Dermatophyllum secundiflorum, Texas persimmon = Diospyros texana. 
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insectivores (Gryzbowski 1995; Houston 2008; Morgan 2012) whose prey base is 

dependent on leafy, green vegetation. I expected that as drought lowered overall 

greenness in 2011, food availability would be reduced. Although I did not measure food 

availability, this assumption was not without merit because NDVI can be used to predict 

arthropod biomass (e.g., Sweet et al. 2015), and NDVI was lower in my study site in 

2011. Moreover, Cody (1981) described lower insect density in Arizona during a 

drought year compared with years of greater rainfall, and Morgan (2012) recorded lower 

mean diversity and biomass of arthropods within vireo habitat during the drought of 

2011 compared to 2010—a significantly wetter year. Thus, it is plausible that food 

resources were limited within my study site in 2011. Individuals may use foliage density 

at the time of territory selection as a cue for future food availability (e.g., Marshall and 

Cooper 2004), and territory size and food availability are often inversely related (e.g., 

Orians 1961, 1966; Pitelka et al. 1993). As such, I predicted that vireos would maintain 

larger territories in 2011 when NDVI was lower. However, my data did not support this 

prediction, and I must conclude that if food was limited, vireos compensated in other 

ways (e.g., reduced reproductive effort; see Chapter 3). 

 Graber (1961) often found vireos on steep slopes, which tend to have less soil 

due to rainfall runoff and other factors (McCool et al. 1997). She suggested that soil 

conditions on slopes facilitate microclimates and edaphic conditions conducive to the 

clumpy vegetation preferred by vireos. I expected that flatter areas would present similar 

conditions during dry years to those found on slopes in wet years. As such, I predicted 

vireos would select flatter areas more often in 2011 than they did in 2012. Contrary to 
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this prediction, however, vireos selected slopes as expected given their availability in 

both years. There are several reasons why this might be so. Most notably, slope was 

fairly uniform across the study site; 93% of slopes had inclines <10%. Alternatively, soil 

type may be more important than slope incline in creating the vegetation conditions 

preferred by vireos. More than 95% of my study site was characterized by two ecosites, 

which differ in slope but have similar soils (i.e., Low Stony Hill and Steep Rocky) 

(NRCS 2013). 

 The direction of slopes may also be important to nesting vireos. Vireos prefer 

early successional shrub habitat with open spaces and short vegetation (Graber 1961; 

Gryzbowski et al. 1994), and they are commonly found on southern-facing slopes in 

other parts of their range (e.g., Shaw 1989; LCRA 2007; Benson and Benson 1990, 

1991)—perhaps because vegetation on northern-facing slopes is more dense than is ideal 

for nesting vireos (Graber 1961). In fact, in the Northern Hemisphere, northern-facing 

slopes receive less solar radiation than southern-facing slopes and, as a result, have 

cooler and wetter climates that promote vegetation growth (Cottle 1932; Gallardo-Cruz 

et al. 2009; Sternberg and Shoshany 2011). At some locations, extreme temperatures, 

winds, or exposure on southern-facing slopes can erode potential nesting and foraging 

vegetation, and northern-facing slopes may be preferred (e.g., Cummings 2006; Smith 

2011). As such, I predicted a switch in aspect use between years, such that reduced 

vegetation greenness during drought would render northern-facing slopes more 

amenable to nesting vireos during the 2011 season. However, vireos selected slopes of 

all directions as expected given availability with no difference between years. Southerly-
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facing slopes were most common within my study site, and vireos may have settled there 

over other locations (landscape scale) because the slope direction promoted the 

vegetation characteristics necessary for nesting, but at smaller scales aspect did not 

appear to be a major component in settlement decisions. Alternatively, the assumed 

impact of drought on the vegetation on northern-facing slopes may not have been 

sufficient enough to promote increased use by vireos. 

 Finally, I expected to see differences in nest-site characteristics between years. I 

assumed that lower greenness would limit the availability of nest-sites with adequate 

foliage cover to conceal nests. Predation is the primary cause of nest failure in birds 

(Ricklefs 1969); though vireo nests are also vulnerable to brood parasitism (Graber 

1961; Gryzbowski 1995). The most common predators (and brood parasites) at vireo 

nests are snakes and birds (e.g., cowbirds, jays [Corvidae]) (Stake and Cimprich 2003; 

Conkling et al. 2012), both of which use visual cues to locate nests (Clotfelter 1998; 

Mullin and Cooper 1998; Robinson and Robinson 2001). The risk of nest predation and 

brood parasitism may be lower with greater nest concealment (Martin and Roper 1988; 

Martin 1993; Larison et al. 1998). However, I found no differences between years in 

average cover or average concealment (i.e., measures of nest concealment at 7 m and 1 

m, respectively), suggesting that vireos were able to identify sites with similar nest 

concealment in both years despite differences in vegetation greenness across the 

landscape. Conkling et al. (2012) found that nest concealment varied by site according to 

plant species composition and that other characteristics were better predictors of 

predation at vireo nest-sites. Similarly, Barber and Martin (1997) found no difference in 
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vegetation characteristics of parasitized and unparasitized vireo nests and suggested that 

the genus may be vulnerable to parasitism irrespective of vegetation at nest-sites.  

 I did observe one difference in nest-site characteristics between years. In 2011, 

vireos at my study site overwhelmingly selected Ashe juniper as a nest substrate, then 

switched to Texas persimmon in 2012. This response is similar to that observed for 

MacGillivray’s Warblers (Geothlypis tolmiei) when drought affected leaf-out in their 

preferred nesting substrate (Martin 1993). Ashe juniper and live oak are drought-tolerant 

species (Gilman and Watson 1993) that can access deep water sources when surface 

soils are dry (Jackson et al. 1999). In late March–early April 2011 when vireos arrived at 

my study site, Ashe juniper and live oak were among the few woody species that 

consistently had green foliage; though many of the small and medium sized live oaks 

were leafless (pers. obs.). This was a stark contrast to the same period the following 

year, when nearly all vegetation was green and leafy (pers. obs.).  

 Bailey and Thompson (2007) indicated that vireos were 283% more likely to nest 

in deciduous substrates compared to Ashe juniper. As such, I expected that Ashe 

junipers were likely to exhibit characteristics that made them less desirable as nest 

substrates than other tree species. However, I found no difference between vegetation 

characteristics among nest substrates, except for a slightly greater probability that Ashe 

junipers selected were slightly taller, which likely had little effect on nest-site selection. 

The use of Ashe juniper at my study site in 2011 suggests that adequate nest-sites in 

preferred substrates were limited, but that vireos were able to find similar conditions 

within Ashe junipers. That vireos typically place nests in deciduous species suggests 
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there may be differences among substrates that contribute to reproductive success that 

the variables I measured failed to capture.   

 In systems with highly variable weather, breeding habitat preferences likely 

represent the conditions best suited for reproductive success in the long-term, rather than 

immediate considerations (Clark and Shutler 1999; McLoughlin et al. 2006). Drought is 

a recurring and common phenomenon in the Edwards Plateau and other parts of the 

vireo’s range (Toomey et al. 1993; Cleaveland et al. 2011; USDM 2016), and it 

represents a source of periodic disturbance that maintains the early successional 

vegetation preferred by vireos (Wilkins et al. 2006). Evidence suggests that vireos prefer 

areas with lower Ashe juniper density throughout much of their range (Gryzbowski et al. 

1994). However, Gryzbowski et al. (1994) noted that habitat varies regionally, and in 

drier portions of the species range, Ashe juniper may provide necessary cover. In this 

study, the use of Ashe juniper as a nest substrate during drought suggests that it may 

provide a necessary alternative for vireos when suitable deciduous substrates are limited. 

Campbell (1995) recommends cool season burns and the selective removal of Ashe 

juniper within vireo habitat to help maintain the early successional vegetation preferred 

by vireos. However, this practice may not be necessary or beneficial to vireos in drier 

portions of their range. Morgan (2012) indicated that Ashe juniper was an important 

foraging substrate for vireos in the eastern portion of their range, but research is still 

needed to determine the extent to which vireos rely on Ashe juniper in other parts of its 

range under drought conditions.  
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CHAPTER III 

EXTREME VARIATION IN RAINFALL AND ITS EFFECTS ON REPRODUCTION 

IN BLACK-CAPPED VIREOS (VIREO ATRICAPILLA)  

 

INTRODUCTION 

Climate is a representation of the average weather conditions in an area over an 

extended period (Allaby 2010), and it influences all aspects of a species’ niche (i.e., the 

conditions under which a species can live) (Grinnell 1917; Hutchinson 1957). For 

example, physiological tolerances to temperature, along with water requirements, 

determine a species’ geographic range (Andrewartha and Birch 1954; Root 1988, 

Parmesan 1996). Similarly, climate regulates species’ abundance (e.g., Andrewartha and 

Birch 1954; Mehlman 1997; Veit et al. 1997), community structure (Cody 1981; Brown 

et al. 1997; Albright et al. 2010), and ecosystem dynamics (e.g., Pascual and Levin 

1999; Post and Forchhammer 2001; Traill et al. 2010). Understanding the ways climate 

shapes evolutionary adaptation in species is necessary for long-term conservation and 

management. However, information on species’ responses to short-term variation (e.g., 

months, years) in local and regional weather patterns is also important for conservation 

planning because the selective pressures imposed by weather can have consequences for 

population dynamics (Stenseth et al. 2002; Knape and Valpine 2011; Harrison et al. 

2015). 

In arid and semi-arid environments, rainfall is low and unpredictable, and 

drought is common (e.g., in Texas) (Myoung and Nielsen-Gammon 2010). Though 
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definitions vary (see Wilhite and Glantz 1985; McKee et al. 1993; Quiring 2009), 

drought is characterized by inadequate precipitation over a time sufficient to impact 

vegetation and deplete soil moisture (Kramer 1983). Heat waves and high temperatures 

are often associated with summertime droughts as soil moisture declines and solar 

energy heats the air (Namias 1982). Low cloud cover during periods of drought allows 

more of the sun’s energy to reach the ground, and the release of that energy into the 

environment can further exacerbate drought conditions via feedback loops that increase 

precipitation deficits (Myoung and Nielsen-Gammon 2010; also see Clark and Arritt 

1995). 

 Birds inhabiting arid and semi-arid environments may experience direct impacts 

to reproduction under drought conditions. For instance, the development and function of 

ovaries and oviducts of water-deprived females is lower than that of non-deprived 

females (Cain and Lien 1985; Koerth and Guthery 1991). Water-stressed females lay 

fewer, smaller, less fertile eggs and have young with lower survival rates (e.g., Cain and 

Lien 1985; Fair and Whitaker 2008; Skagen and Yackel Adams 2012). Similarly, under 

drought conditions, males can have lower testicular weight or sperm production, which 

can limit (though rarely prevents) reproductive function (Cain and Lien 1985). 

Additionally, embryonic development is disrupted and egg-hatchability compromised 

when eggs are exposed to extreme temperatures for extended periods (Dawson 1984; 

Stoleson and Beissinger 2002; Gill 2007), and nestlings born during drought may have 

reduced immune responses (Thaxton and Siegel 1970; Fair and Whitaker 2008).  
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Drought can also impact birds indirectly through its effects on vegetation. 

Precipitation is the main driver of aboveground primary productivity (Noy-Meir 1973; 

Sala et al. 1988), and it influences vegetation structure (Tyree et al. 1993; Chaves et al. 

2003), composition (Cody 1981; Brown et al. 1997), and mortality (Allen and Breshears 

1998; Breshears et al. 2005). When precipitation is low, delayed phenological events, 

reduced leaf area, or altered plant chemistry can occur (Rathcke and Lacey 1985; 

Larsson and Ohmart 2008; Gutbrodt et al. 2011). The overall effect is reduced greenness 

(i.e., foliage cover) on the landscape during drought, which can affect the timing and 

abundance of plant and insect foods available to nesting birds (Morrison and Bolger 

2002; Ogaya and Peñulas 2007; Greven et al. 2009) and reduce vegetation cover at 

foraging and nesting sites, increasing the risk of predation (Sugden and Beyersbergen 

1986; Martin 1992) and exposure to the elements (e.g., wind, rain, cold, heat) (Walsberg 

1981).  

Birds inhabiting drought-prone environments experience wide variation in 

precipitation and adjust their behaviors accordingly (Cody and Mooney 1978). Life 

history theory predicts that individuals inhabiting highly unpredictable environments 

will temper reproductive investment to maximize adult survival when conditions are 

poor (Hirshfield and Tinkle 1975; Benton et al. 1995; Erikstad et al. 1998). For example, 

birds may delay (or forgo) breeding during drought (e.g., Christman 2002; Preston and 

Rotenberry 2006; Visser et al. 2006) when food or other resources are limited. Birds can 

also reduce their reproductive effort irrespective of nest initiation date by laying smaller 

clutches, abandoning nests, or engaging in fewer nesting attempts (Erikstad et al. 1998).  
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Birds that delay nesting reduce their number of effective breeding days within a 

season, thus limiting the number of nesting attempts possible. Additionally, birds that 

delay nesting have smaller clutches (e.g., Lack 1947; Daan et al. 1989; Perrins and 

McCleery 1989), lower nestling and fledgling survival (e.g., Harris et al. 1994; 

Lindholm 1994; Naef-Daenzer et al. 2001), and reduced recruitment of offspring into 

subsequent generations (e.g., Harris et al. 1994; Verboven and Visser 1998). Nests 

initiated later in the season may also have greater rates of predation (e.g., Best and 

Stauffer 1980; Schaub et al. 1992) or brood parasitism (Marvil and Cruz 1989; Kus 

1999; Boves et al. 2014). However, despite seasonal fitness consequences, individual 

decisions regarding reproductive investment during drought likely reflect trade-offs 

between current and future reproductive success that optimize lifetime reproductive 

success (Stearns 1989; Daan et al. 1990; Svensson and Nilsson 1995). 

By understanding how species respond to varying weather conditions, managers 

may be able to identify long-term conservation actions that benefit species of 

conservation concern. Shrub-nesting species are of particular interest because of 

widespread population declines (Robbins et al. 1986; Askins 1993; Brawn et al. 2001). 

Many of these species require early- and mid-successional vegetation, but fire-

suppression and other practices (e.g., farm abandonment) have allowed vegetation in 

many areas to reach seral stages that prohibit occupancy or reproduction by shrub-

nesting birds (Askins et al. 1990; Droege 1998).  

The Black-capped Vireo (Vireo atricapilla; hereafter vireo) is a federally endangered 

songbird that breeds in early-successional shrub-scrub vegetation in arid and semi-arid 
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regions of Oklahoma, Texas, and Mexico (Fig. 19) (Graber 1961; Gryzbowski 1995; 

Wilkins et al. 2006; González-Rojas et al. 2014). Major threats to the species include 

habitat loss and fragmentation and reduced reproductive success resulting from brood 

parasitism by Brown-headed Cowbirds (Molothrus ater) (Marshall et al. 1985; Ratzlaff 

1987). Understanding these threats as well as the vireo’s biological and ecological  

 

 

 
Figure 19. Black-capped Vireo (Vireo atricapilla) range map based on data presented in 

Wilkins et al. (2006). 
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requirements may help inform conservation and management strategies necessary for the 

species’ recovery (USFWS 1991). 

Vireos typically breed in vegetation of irregular height and distribution that 

provides adequate cover (35–55%) for foraging and nesting (Graber 1961; Gryzbowski 

et al. 1994). Drought, fire, and grazing interact with local features (e.g., topography) 

(Graber 1961; McFarland et al. 2013) to maintain the vegetation configuration needed 

for vireo reproduction (Wilkins et al. 2006). Yet, little information exists regarding 

reproduction by vireos during periods of drought. Smith et al. (2012) detailed the 

reproductive ecology of vireos at Devil’s River State Natural Area in the drier, 

southwestern portion of the species’ breeding range in Texas. They noted that vireo 

productivity is greatly influenced by precipitation, and management strategies aimed at 

conserving vireo habitat in the west should be considerably different than those proposed 

for use in other (wetter) portions of the vireo’s breeding range (Smith et al. 2012).  

In this study, my objectives were to examine breeding behavior and productivity 

of vireos in Texas during two years of varying drought intensity. In September 2010, a 

large storm system, which had provided rain to much of Texas, dissipated—signaling the 

beginning of what became the 2011 drought (Nielson-Gammon 2011). Fall and winter 

precipitation in 2010 and spring precipitation in 2011 were less than average (NCEI 

2016), and by the end of March, more than half of the state experienced severe or 

extreme drought conditions (USDM 2016) (Fig. 20). The period from March–May 2011 

was the driest March–May period on record in Texas (Nielsen-Gammon 2011), and 

below average precipitation continued statewide for the next six months (NCEI 2016). 
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From December 2011–March 2012, Texas received average or above average rainfall. 

Dry conditions returned for the remainder of 2012 but not with the same intensity as the 

previous year (USDM 2016).  

 

 

 

 

 
Figure 20. Status of drought in Texas on 29 March 2011. Data were made available by 

the National Drought Mitigation Center, U.S. Department of Agriculture, and the 

National Oceanic and Atmospheric Administration and mapped using ArcMap version 

10.2.2. 
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Extreme weather events are, by definition, rare or infrequent. The 2011 drought 

in Texas provided a unique opportunity to observe the responses of vireos under extreme 

conditions compared to responses under more moderate conditions. I examined the 

reproductive ecology of vireos inhabiting a semi-arid region in the Edwards Plateau in 

Texas during the 2011 drought as well as the wetter 2012 season. Drought has been 

common in the Edwards Plateau for over 1,000 years (Toomey et al. 1993; Cleaveland et 

al. 2011; USDM 2016), and, as such, I expected vireos in this region to exhibit reduced 

reproductive effort and experience lower reproductive success during the drought but be 

resilient when conditions improved the following year.  

Specifically, I compared pairing and fledging success at the territory scale and 

examined nest initiation dates, clutch and brood size, and frequency of nest 

abandonment, parasitism, and failure. Vireos in other parts of their range show varied 

nest success and daily nest survival as a consequence of nest-scale vegetation as well as 

temporal factors (e.g., Noa et al. 2007; Conkling et al. 2012; Smith et al. 2012). As such, 

I also measured vegetation at each nest and created models of nest success and daily nest 

survival that incorporated vegetation characteristics and temporal components. I 

expected differences in rainfall between years (and associated differences in vegetation; 

Chapter 2) to correspond to one or more of the following responses in 2011 compared to 

2012: lower pairing success, lower fledging success, later mean initiation date, lower 

clutch size, reduced egg hatchability, or higher overall nest failure via increased 

abandonment, brood parasitism, or predation. Although drought is not preventable, by 

understanding species’ responses to drought, managers can inform long-term 
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management and conservation plans. In addition, information on drought-response may 

prove useful when considering the potential effects of climate change on species of 

conservation concern. 

METHODS 

Study Area 

 I surveyed breeding vireos across an open (i.e., not enclosed) 1,100 ha study site 

within Dobbs Run Ranch (2,030 ha; ~29° 38’ 60” N, -100° 24’ 36” W) (Fig. 21) from 

late March–late July in 2011 and 2012. Dobbs Run Ranch is on the southwestern edge of 

the Edwards Plateau ecoregion (Omernik 1995) in the southwestern portion of the 

vireo’s breeding range in Texas (Fig. 21). The Edwards Plateau is a semi-arid region 

(Thornwaite 1948) with highly variable summer climate and a large, east-west 

precipitation gradient (Daly et al. 2008) that experiences notable variation in temperature 

and precipitation annually and seasonally. The average maximum summer (April–July) 

temperature is 31 °C, and the cumulative average summer precipitation is ~25 cm (NCEI 

2016). 

  Soil at the study site is predominantly limestone bedrock (99.6%) (NRCS 2013), 

and common woody plants include Ashe juniper (Juniperus ashei), live oak (Quercus 

fusiformis), piñon pine (Pinus remota), Texas persimmon (Diospyros texana), and Texas 

mountain laurel (Dermatophyllum secundiflorum). Livestock grazing, which can 

interfere with avian nest success by altering vegetation structure (Kreuper et al. 2003; 

Gill and Fuller 2007) or the distribution of harmful species (e.g., predators [reviewed in 

Atkinson et al. 2004], brood parasites [e.g., Goguen and Mathews 2000]), did not occur  
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Figure 21. Dobbs Run Ranch and nearby weather station locations, located in Edwards and Kinney counties, Texas. Top inset 

shows the study site and sampling grid within Dobbs Run Ranch where I monitored Black-capped Vireos (Vireo atricapilla) in 

2011–2012. Bottom inset shows the location within the Black-capped Vireo’s range in Texas.
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on or near the ranch. I regularly observed individuals or small groups of wild, grazing 

ungulates, such as blackbuck (Antilope cervicapra), white-tailed deer (Odocoileus 

virginianus), axis deer (Cervus axis), and aoudad (Ammotragus lervia). However, it is 

unlikely that the presence of these species negatively affected vireo reproduction during 

my study (e.g., Locatelli et al. 2016). Hunting (of game birds and ungulates) was limited 

to a small area northwest of my study site and likely had no impact on the vireo 

population or my results. There were three active Brown-headed Cowbird traps at Dobbs  

Run Ranch during the years of this study, but data regarding number of Brown-headed 

Cowbirds trapped are not available. 

Annual Variation in Weather 

 To quantify differences in weather between years, I obtained daily maximum 

temperature and precipitation data for 2010–2012 from the National Centers for 

Environmental Information (NCEI 2016). Most data were recorded at the Brackettville 

22 N station (GHCND:USC00411013) (Fig. 21) located at Kickapoo Caverns State Park 

(KCSP) (29° 36' 36" N, -100° 27' 07" W), which is adjacent to Dobbs Run Ranch. 

However, a small number of records were missing at this station during the study period. 

When necessary, I substituted precipitation values from the Rocksprings 26 SSW station 

(GHCND:USC00417717; 29° 41' 16" N, 100° 25' 18" W) (Fig. 21), which was <15 km 

away. The Rocksprings 26 SSW station did not record temperature information during 

my study, so when temperature records were not available from the Brackettville 22 N 

station, I substituted average values from the next two nearest stations, which were both 

<30 km away. These stations were Carta Valley (GHCND:USC00411492; 29° 47' 24" 
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N, 100° 40' 26" W) (Fig. 21) and Brackettville (GHCND:USC00411007; 29° 18' 58" N, 

100° 24' 50" W) (Fig. 21). Substitutions accounted for <5% of weather data.  

Spring and summer precipitation influences vegetation growth during the 

growing season (mid-March–mid-November in Edwards County [TSHA 2016]), but so 

does soil moisture, which is determined by fall and winter precipitation (Pielke and 

Doeskin 2008). As such I examined precipitation data for the months of September to 

March preceding each vireo breeding season as well as precipitation during each vireo 

breeding season (April–July [Gryzbowski 1995]). 

 In addition to daily weather variables, I obtained monthly Palmer Drought 

Severity Index (PDSI) values for the study period to further demonstrate differences in 

weather conditions by year. The PDSI uses precipitation, soil moisture, and temperature 

data to assess water availability and the intensity of drought at regional scales (Palmer 

1965). PDSI values ≤-4 reflect extreme drought conditions and values ≥4 indicate 

extreme wet conditions (Table 5). Though it is the most commonly used drought index 

in the United States, PDSI has been criticized for arbitrary designations of drought 

intensity, sensitivities to rainfall events, and different sensitivities across regions (Alley 

1984). 
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Table 5. Classification of drought according to the Palmer Drought Severity Index 

(Palmer 1965). 

 

 

 

 

 

 

 

 

Vireo Surveys 

 I established a 300 m grid across the study site (Fig. 21), which allowed for a 

reasonable detection of singing vireos with a maximum distance of sound attenuation of 

150 m (e.g., Smith 2011 and McFarland et al. 2013). Each year from 20 March to 15 

July, I walked different routes along the grid and used auditory and visual surveys to 

map the locations of male vireos across the study site. When I detected a male vireo, I 

marked its location using a handheld Garmin RINO 120 Global Positioning System 

(GPS) unit with 10 meter accuracy. I returned to marked locations every 5–10 days 

between the hours of sunrise and 1400 to define territory boundaries and determine 

mating (i.e., paired or unpaired) and reproductive (e.g., nesting behavior, presence of 

fledglings) status. I spent no longer than one hour per day in each territory, which 

maximized the number of territories I could visit each day, while limiting disturbance to 

nesting vireos. When I detected vireos during territory visits, I observed them from a 

Value Description 

≥ 4.00 Extremely Wet 

3.00 to 3.99 Very Wet 

2.00 to 2.99 Moderately Wet 

1.00 to 1.99 Slightly Wet 

0.50 to 0.00 Incipient Wet Spell 

-0.49 to 0.49 Near Normal 

-0.99 to -0.50 Incipient Drought 

-1.99 to -1.00 Mild Drought 

-2.99 to -2.00 Moderate Drought 

-3.99 to -3.00 Severe Drought 

≤ -4.00 Extreme Drought 



 

65 

 

distance to minimize observer effects and noted their locations. Each time a focal bird 

moved ≥20 m, I marked its location with a GPS. To improve my assignment of 

individuals to specific territories, I used standard target mist-netting techniques 

(described by Johnston 1965 and Keyes and Grue 1982) with playback of recorded vireo 

song to capture and band adult vireos with unique color-band combinations. I considered 

male vireos territorial if I consistently detected them in the same locations for ≥4 weeks. 

  To locate nests, I identified behaviors indicative of breeding (e.g., copulation, 

material carry, food carry, presence of fledglings) and observed the movements of vireos 

engaged in those behaviors. While nest-searching, I focused on females because they 

tend to spend more time near nests (Gryzbowski 1995; Pope et al. 2013b), but I noted 

male behaviors and movement patterns as well because this species shares parental 

duties (Gryzbowski 1995; Pope et al. 2013b). If I did not detect vireos on arrival in a 

territory, I searched the territory systematically—concentrating on vegetation structure 

common among vireo nests (e.g., Gryzbowski et al. 1994; Gryzbowski 1995). This 

method often proved effective in the absence of behavioral cues, especially during the 

egg-laying phase, when nests were most difficult to find (Martin and Geupel 1993), and 

also accounted for differences in detection attributed to variation in vegetation.  

  I checked vireo nests every 2–3 days until they fledged young, failed, or were 

abandoned (i.e., no longer active). On each visit, I recorded adult behaviors and nest 

contents. I defined active nests as those attended by vireo adults and containing at least 

one egg or nestling (vireo, Brown-headed Cowbird, or both). I did not remove Brown-

headed Cowbird eggs from parasitized nests as their presence may deter future 
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parasitism (Ortega et al. 1994), but I did dispatch and remove all Brown-headed 

Cowbird young on discovery. Parasitized vireo nests rarely fledge host young (Tazik 

1991; Gryzbowski 1995; Boves et al. 2014). By dispatching Brown-headed Cowbird 

young before they fledged, vireos did not engage in post-fledging care of non-host 

young and had greater opportunities to re-nest. Additionally, removing newly hatched 

Brown-headed Cowbird young enabled me to observe nests for longer periods, thereby 

improving opportunities to observe predation events, vireo fledgling movements, and 

other activities important in concurrent research projects.  

 I banded vireo nestlings aged 6–8 days with unique color-band combinations, 

which aided in assessments of nest success. Occasionally, I found nests with vireo young 

≥9 days of age. I did not band these older nestlings because banding at this age can cause 

premature fledging. I considered a nest successful if it fledged ≥1 vireo young provided 

there were no Brown-headed Cowbird eggs present or the cowbird eggs failed to hatch. 

It is not always possible to visit nests on the day of fledging, but young vireos remain 

with the adults for two or more weeks before gaining independence (Gryzbowski 1995). 

So, I surveyed all territories in which I suspected fledging for a minimum of two weeks 

after the expected fledging date. If I detected a fledgling (≤2 weeks of age) within the 

territory, I recorded the nest as successful. I also considered a nest successful if two or 

more observers independently identified the unique color-band combination of a hatch-

year (HY) bird banded in the nest regardless of fledgling age or location within the study 

site.  
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 I randomly deployed nest cameras on a subset of nests, which further improved 

my nest fate assignments. The camera system consisted of a weatherproof bullet camera 

(Rainbow, Costa Mesa, CA) connected to a digital video recorder (Detection Dynamics, 

Austin, TX) and powered by a 12v26ah battery (Batteries Plus, Hartland, WI) and 20-

watt solar panel (Suntech, San Francisco, CA). I placed cameras no closer than 1 m to 

active nests, and I placed all other components under vegetation within 15 m of nests, 

which reduced disturbance to nesting vireos during subsequent equipment checks. I 

observed adult behavior for 30 min after camera installation, and I removed cameras if 

adults had not returned to normal behaviors during this period. I installed cameras as 

early as possible during the nesting cycle, but only after the egg-laying stage was 

completed (Stake and Cimprich 2003).  

Nest Vegetation  

I catalogued vegetation characteristics for each active (i.e., observed contents, 

tended by adults) vireo nest after it fledged, failed, or was abandoned. Specifically, I 

recorded the nest substrate and measured the distance to the nearest edge (i.e., nest rim 

to nearest leafy edge), nest height (from ground to nest rim), substrate height, and 

canopy height all to the nearest 0.1 m. I defined canopy height as the height of the tallest 

tree or shrub immediately above the nest. When the substrate tree or shrub was the tallest 

tree or shrub above the nest, I recorded the same value for the substrate height as for 

canopy height. In addition, I positioned a 2 m coverboard marked with 0.1 m2 squares 

immediately in front of each nest and estimated the percent of each square obscured by 

vegetation from 7 m away in each cardinal direction. I then averaged these values to 
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obtain a single measurement of foliage cover. Lastly, I placed a 0.1 m2 board at each nest 

and estimated the percent visual obstruction by vegetation from 1 m away from nests in 

each cardinal direction as well as from above and below. I averaged these values to get a 

single measurement of nest concealment. All measurements were consistent with those 

collected during other studies of nesting vireos (e.g., Conkling et al. 2012; Smith et al. 

2012; Pope et al. 2013a, b). 

Analyses 

 I conducted all tests using the statistical program R version 3.2.2 (R Core Team, 

Vienna, Austria). I presented all means described below with standard deviations. 

Because this was a two-year study at a single site, I presented weather data simply to 

demonstrate the differences between years but, I did not include these data in further 

analyses. Instead, I used temporal variables (e.g., day, year) to examine differences in 

vireo reproduction in response to weather. 

  Annual Variation in Weather.— I calculated the mean maximum daily 

temperature for each year, and I used a Welch’s two-sample t-test (Ruxton 2006; 

Crawley 2014:94–95) with Cohen’s d (Lakens 2013) as a measure of effect size to 

compare means between years. I also used linear regression to examine temperature as a 

function of date within seasons (Crawley 2014:114–140). I summed daily precipitation 

to determine cumulative monthly precipitation totals for the seven months prior to and 

the four months of each breeding season and calculated the percent differences between 

years.  
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  Territory Pairing and Fledging Success.—I considered male vireos paired if they 

were consistently observed with females (≥4 weeks) or had active nests. I calculated 

pairing success as the number of paired males consistently observed with females (or 

active nests) relative the total number of territorial males (e.g., Stewart et al. 2014; Long 

et al. 2015). Similarly, I considered territories successful if I observed dependent host 

fledglings. I calculated fledging success as the number of paired males in territories with 

one or more host fledglings relative to the total number of paired males (e.g., Stewart et 

al. 2014; Long et al. 2015). I examined inter-annual differences in pairing and fledging 

success using Fisher’s exact tests (Crawley 2014:105–107) and calculated the odds ratio 

(OR) as a measure of effect size (McHugh 2009). 

 Nesting Phenology, Clutch Size, and Brood Size.—I estimated the laying date of 

the first egg (i.e., initiation date) of each nest by backdating observations from nest 

checks with known nesting intervals. After excluding nests for which nest initiation 

dates could not be determined (e.g., a nest found with four eggs that failed before the 

next nest check), I calculated the mean initiation date for each year and examined annual 

differences using a Welch’s two-sample t-test (Welch 1938, 1947; Ruxton 2006) and 

Cohen’s d as a measure of effect size (Lakens 2013). I then subtracted the mean 

initiation date of the earliest 20% of nests from the mean initiation date of the latest 20% 

of nests to characterize the length of each breeding season (e.g., Weatherhead 2005).  

I calculated mean clutch and brood sizes of nests from each year, excluding from 

analyses nests for which clutch or brood size could not be determined (e.g., nests found 

in the nestling stage with less than full a complement of nestlings). I used a one-way 
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analysis of covariance (ANCOVA) (Tabachnick and Fidel 2006:20) to examine the 

effect of year on clutch size while controlling for nest initiation date because clutch size 

in many passerines decreases over the season (Klomp 1970; Drent and Daan 1980; 

Martin 1987), and this pattern is present in Black-capped Vireos (Graber 1961; 

Gryzbowski 1995; Campomizzi et al. 2013; Locatelli et al. 2016). I used a Chi-square 

test (Crawley 2014:101–105) with phi (φ) as a measure of effect size (Hojat and Zu 

2004) to compare hatching success between years. I then used ANCOVA (Tabachnick 

and Fidel 2006:20) to examine the effect of year on brood size, while controlling for 

clutch size. I excluded parasitized nests from analyses of clutch and brood size because 

Brown-headed Cowbirds may remove eggs or young from nests (Sealy 1992; Conkling 

et al. 2012; Peer and Bollinger 2012). I calculated eta-squared (ƞ2) (Maher et al. 2013) as 

a measure of effect size for all ANCOVA tests. 

 Nest Fate.—I used Fisher’s exact tests (Crawley 2014:105–107) with odds ratios 

(OR; McHugh 2009) to examine inter-annual differences in the frequency of nest 

abandonment, brood parasitism, and nest failure. In addition, I developed a priori 

models that included year and nest vegetation characteristics (i.e., nest height, distance 

to edge, average cover, average concealment, overstory height, nest substrate) to 

examine their effects on nest success. I coded nest substrate as a binary variable with 1 = 

dominant substrate (i.e., Ashe juniper in 2011 or Texas persimmon in 2012; Chapter 2) 

and 0 = other substrate (i.e., all other year-substrate combinations).  

 I used a generalized linear model approach to determine which models best 

predicted nest success. Models included a null model, main effects models for year and 
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each of the vegetation characteristics, and additive models with year and each vegetation 

characteristic. I also examined additive models with nest substrate and each of the other 

vegetation characteristics with year as a covariate. Nest substrate was correlated with 

distance to edge (r = -0.16, P = 0.03) and substrate height (r = 0.23, P ≤ 0.01). As such I 

excluded additive models that included substrate and these metrics from the final model 

set. I ranked models of nest success using Akaike’s Information Criterion adjusted for 

small samples sizes (AICc) (Burnham and Anderson 2002:49–97). I considered models 

with ∆AICc <2.0 to be equally possible and used Akaike weight (wi) to determine the 

most plausible model from among the possible models.  

 In addition to looking at nest success, I also examined at daily nest survival. I 

developed a priori models that included year, parasitism, nest stage (i.e., egg or 

nestling), and linear and quadratic terms representing day of season because these are 

known to impact daily nest survival in vireos and other species (e.g., Conkling et al. 

2012; Skagen and Yackel Adams 2012). To account for differences in season length 

between years, I considered the first day of each season to coincide with the earliest nest 

initiation date in that year. I used the logistic exposure method described by Shaffer 

(2004) to estimate daily nest survival. This method examines survival during the 

intervals between nest checks and accounts for varying interval lengths (i.e., exposure). I 

excluded all nests with unknown fates (n = 4) from analyses, but I included abandoned 

nests, which I considered as failed during the interval that I first suspected abandonment. 

I also included nests parasitized by Brown-headed Cowbirds, but because I dispatched 

all cowbird young on discovery, it was impossible to know with certainty how much 
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longer parasitized nests would have survived with cowbird young. That said, Brown-

headed Cowbird nestlings often outcompete nestlings of their hosts (e.g., Dearborn 

1998), and host nestlings that are small relative to cowbird nestlings have higher 

mortality (Kilner 2003). Vireos are markedly smaller than Brown-headed Cowbirds, and 

it is rare that vireos successfully fledge host young from parasitized nests (Tazik 1991; 

Gryzbowski 1995; Boves et al. 2014). As such, I considered parasitized nests as failed 

during the interval in which Brown-headed Cowbird eggs hatched.  

 Models included a null model, main effects models for all variables, and additive 

models with combinations of these variables. Again I ranked models of daily nest 

survival using Akaike’s Information Criterion adjusted for small samples sizes (AICc) 

(Burnham and Anderson 2002:49–97) and considered models with ∆AICc <2.0 to be 

equally possible. I used Akaike weight (wi) to determine the most plausible model from 

among the possible models. Using the best fit model, I then calculated the mean 

predicted daily survival rates for each year and their associated 95% confidence 

intervals. 
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Figure 22. Seasonal trends in maximum daily temperature (°C) at Dobbs Run Ranch, 

Edwards County, Texas from April–July in 2011 and 2012. Lines show linear models of 

increasing temperature over time in both years. 

 

 

 

 

RESULTS 

Annual Variation in Weather 

 Weather varied significantly between the years of my study, with the 2011 vireo 

breeding season being warmer and drier than the 2012 breeding season. Maximum daily 

temperature varied statistically among years (t241.4 = 4.85, P ≤ 0.01, d = 0.62). Yet, mean 



 

74 

 

maximum daily temperature in either year (i.e., 34 ± 4 °C [range 20–39 °C] in 2011 and 

32 ± 4 °C [range 17–40 °C] in 2012) was comparable to the average maximum 

temperature for the region during the months of vireo breeding (NCEI 2016).  Daily 

maximum temperature increased over time within years (2011: F1,120 = 59.66, r2 = 0.33; 

2012: F1,120 = 80.78, r2 = 0.40) (Fig. 22). There was 54% less rainfall in the months 

leading up to the 2011 breeding season (13.1 cm) (Fig. 23) than during the 

corresponding months the following year (28.4 cm) (Fig. 23). Similarly, 56% less rain 

fell during the 2011 season (10.7 cm) (Fig. 24) than during the 2012 season (24.5 cm) 

(Fig. 24). Rainfall in 2011 was approximately half of the seasonal average for the region 

(NCEI 2016). However, monthly precipitation totals (Fig. 24) belied the true conditions 

of the 2011 breeding season during which 61% (6.48 cm) of the total rainfall occurred 

on a single day (May 12), and mean precipitation of other rainfall events (n = 7) was low 

(0.61 ± 0.44 cm). Monthly PDSI values for the study period better captured the extreme 

difference in rainfall between years. PDSI ranged from -6.02 to -3.98 (extreme 

conditions) in 2011 and -2.65 to -2.03 (moderate conditions) in 2012 (NCEI 2016). 
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Figure 23. Total monthly precipitation at Dobbs Run Ranch, Edwards County, Texas during the seven months preceding the 

2011 and 2012 Black-capped Vireo (Vireo atricapilla) breeding seasons. 
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Figure 24. Total monthly precipitation at Dobbs Run Ranch, Edwards County, Texas 

during the 2011 and 2012 Black-capped Vireo (Vireo atricapilla) breeding seasons. 

 

 

 

Territory Pairing and Fledging Success 

 I mapped and monitored 148 vireo territories in 2011 and 132 vireo territories in 

2012. The percentage of males within these territories that successfully paired was 82% 

(n = 121) in 2011 and 99% (n = 130) in 2012. The number of paired males differed 

significantly between years (Fisher’s exact test P ≤0.01, OR = 14.40). Twelve percent (n 
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= 15) of paired males successfully fledged host young in 2011, and 78% (n = 102) of 

paired males successfully fledged host young in 2012. Brown-headed Cowbirds 

parasitized nests in two of territories that successfully fledged vireo young in 2011. 

Because I interfered with Brown-headed Cowbird young at nests in both territories, it is 

unclear what fate these territories may have otherwise experienced. Excluding these 

territories reduced the percentage of paired males that successfully fledged young in 

2011 to 11% (n = 13). The number of paired males that fledged young varied 

significantly between years (Fisher’s exact test P ≤0.01, OR = 29.66).  

Nesting Phenology, Clutch Size, and Brood Size 

 I located and monitored 186 active nests in 2011 (n = 74) and 2012 (n = 112). 

Through backdating, I determined the earliest initiation dates were 18 April in 2011 and 

1 April in 2012. There were nests each year for which I was unable to determine 

initiation dates; however, based on nest observations and the known nesting phenology 

of vireos (described in Gryzbowski 1995), it is unlikely that nest initiation of monitored 

nests did not occur prior to these dates in either year. Mean nest initiation date overall 

was 9–10 May ± 19 days, but variation in the timing of breeding was significantly 

different among years (t153.96 = 3.45, P < 0.01, d = 0.56). On average, vireos laid their 

clutches 11 days later in 2011 than they did in 2012 (2011: �̅� = 16 May ± 14 d, 2012: �̅� = 

5 May ± 23 d). Note, however, that later breeding in 2011 was not a function of later 

arrival on the breeding grounds as vireos arrived in similar numbers in both years 

starting in late March (pers. obs.). The mean initiation dates of the earliest 20% of nests  
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Figure 25. Density plot showing initiation dates (Julian) of Black-capped Vireo (Vireo 

atricapilla) nests within the study site at Dobbs Run Ranch, Edwards County, Texas in 

2011 and 2012. 

 

 

were 25 April and 11 April in 2011 and 2012, respectively. The mean initiation dates of 

the latest 20%of nests were 4 June 2011 and 6 June 2012. Based on these values, season 

length was 39 days in 2011 and 56 days in 2012, a difference of 17 days.  

 Because vireos often re-nest after failed nesting attempts or lay a second clutch 

after successful attempts (Gryzbowski 1995), mean nest initiation dates alone may not 

accurately reflect the difference in the timing of breeding between years. To better 
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demonstrate inter-annual differences, I graphed nest initiation dates by year (Fig. 25). In 

2012, nest initiation dates had a bimodal distribution, with the second peak likely 

corresponding with re-nesting or second brood attempts. It is difficult, however, to limit 

analyses only to first nesting attempts because many failed attempts go unfound 

(Mayfield 1975), and observed nests may unknowingly be re-nesting attempts. That said, 

three nests in 2011 and 19 nests in 2012 were known re-nesting attempts following a 

prior nest failure, and seven nests in 2012 were attempts to produce a second brood after 

an earlier nest fledged; only one pair successfully double brooded in 2012.  

 

 

 
Figure 26. Clutch size by year for Black-capped Vireos (Vireo atricapilla) nesting within 

the study site at Dobbs Run Ranch, Edwards County, Texas (2011–2012).  
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Overall clutch size ranged from 2–4 eggs with a mean of 3.75 ± 0.47 eggs (n = 

128 nests). Annual means were 3.64 ± 0.53 eggs in 2011 and 3.81 ± 0.42 eggs in 2012. 

Proportionally, there were more 3-egg clutches in 2011 than in 2012 (F1,110 = 5.62, P = 

0.02) (Fig. 26), but there was no effect of year on the clutch size of nests after 

controlling for nest initiation date (F1,109 = 2.57, P = 0.11, ƞ2 = 0.02). Fifty-one percent 

(n = 30) and 67% (n = 70) of non-parasitized vireo nests survived to hatching in 2011 

and 2012, respectively (Χ1
2 = 3.14, P = 0.08, φ = 0.14). Overall brood size ranged from 

1–4 young (Fig. 27) with a mean of 3.48 ± 0.79 young. The annual mean was 3.18 ± 

0.91 in 2011 and 3.61 ± 0.70 in 2012. After for controlling for clutch size, there was no 

effect of year on brood size (F1,68 = 1.27, P = 0.26, ƞ2 = 0.01) suggesting no differences 

in egg hatchability. 

Nest Fate 

Vireos abandoned 9% (n = 7) of nests in 2011 and 6% (n = 7) in 2012 (Fisher’s 

exact test P = 0.57, OR = 1.56). Brown-headed Cowbirds parasitized 20% (n = 15) and 

7% (n = 8) of nests in 2011 and 2012, respectively (Fisher’s exact test P = 0.01, OR = 

3.28). It was rarely possible to determine the exact dates that Brown-headed Cowbirds 

parasitized nests, but I only found two parasitized nests before mid to late May. Nest 

failure (including abandonment and parasitism) occurred in 85% (n = 60) of nests in 

2011 and 56% (n = 65) of nests in 2012 (Fisher’s exact test P < 0.01, OR = 3.83). I 

placed cameras at 12 nests in 2011 and captured six predation events (i.e., ants [2], gray 

fox [1; Urocyon cinereoargenteus], Western Scrub-jay [2; Aphelocoma californica],  
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Figure 27. Brood size (i.e., number of eggs hatched) as a function of clutch size and year for Black-capped Vireo (Vireo 

atricapilla) nests in 2011 and 2012 within the study site at Dobbs Run Ranch, Edwards County, Texas.
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Table 6. Models of nest success of Black-capped Vireos (Vireo atricapilla) monitored at Dobbs Run Ranch, Edwards County, 

Texas in 2011 and 2012. 

Model Ka Log likelihood AICc
b ∆AICc

c wi
d 

Year + Nest Substrate + Average Concealment 4 -98.44 205.61 0.00 0.60 

Year + Nest Substrate + Overstory Height 4 -99.49 207.71 2.10 0.21 

Year + Nest Substrate 3 -101.50 209.42 3.81 0.09 

Year + Nest Substrate + Nest Height 4 -101.02 210.77 5.16 0.05 

Year + Nest Substrate + Average Cover 4 -101.41 211.55 5.94 0.03 

Year + Average Concealment 3 -103.51 213.44 7.83 0.01 

Year + Overstory Height 3 -103.57 213.57 7.96 0.01 

Year 2 -106.08 216.38 10.77 0.00 

Year + Substrate Height 3 -105.21 216.86 11.25 0.00 

Year + Nest Height 3 -105.34 217.11 11.50 0.00 

Nest Substrate 2 -108.67 221.56 15.95 0.00 

Average Concealment 2 -110.18 224.57 18.96 0.00 

Overstory Height 2 -112.36 228.94 23.33 0.00 

Null 1 -113.51 229.09 23.48 0.00 

Substrate Height 2 -112.61 229.43 23.82 0.00 

Nest Height 2 -112.91 230.04 24.43 0.00 

Average Cover 2 -113.02 230.25 24.64 0.00 

Distance to Edge 2 -113.33 230.88 25.27 0.00 

Year + Average Cover 3 -112.56 231.55 25.94 0.00 

Year + Distance to Edge 3 -112.81 232.04 26.43 0.00 
a Number of parameters in the model 
b Akaike’s Information Criteria corrected for small sample size 
c AICc relative to best fit model 
d Model weight 
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Brown-headed Cowbird [1]). In 2012, I placed 19 cameras and captured three predation 

events (Brown-headed Cowbird [1], greater arid-land katydid [2; Neobarrettia spinosa]).  

Apparent nest success was 15% in 2011 compared to 41% in 2012. The additive effects 

of year, nest substrate, and average concealment best predicted overall nest success 

(Table 6). The predicted probability of nest success increased with increasing nest 

concealment in 2012 but was lower with use of the most common nesting substrate (i.e., 

Texas persimmon; Chapter 2) that year (Fig. 28). The same pattern was also evident, but 

not significant, in 2011 due to widely overlapping confidence intervals (Fig. 28). I did 

not consider nest initiation date in models of nest success because this information was 

missing for a number of nests, especially from 2011. However, nest initiation date was 

most likely a factor influencing nest success. After graphing only those nests with 

known nest initiation dates (Fig. 29), I found that nests initiated during the first six 

weeks of 2012 fledged young more often than nests initiated after the sixth week (May 

6–12). That same week corresponded to the greatest percentage of nest success in 2011; 

however, nesting earlier in 2011 did not confer the same benefit it did in 2012. 
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Figure 28. Predicted probability of Black-capped Vireo (Vireo atricapilla) nest success (with 95% confidence intervals) as a 

function of nest concealment and use of common nesting substrate at Dobbs Run Ranch, Edwards County, Texas in 2011 and 

2012. Vireos that nested in Ashe juniper (Juniperus asheii) in 2011 are coded yes as are those that nested in Texas persimmon 

(Diospyros texana) in 2012. Vireos using other substrates in either year are coded no. 
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Figure 29. Percentage of Black-capped Vireo (Vireo atricapilla) nests that fledged by 

initiation date across the breeding seasons of 2011 and 2012 at Dobbs Run Ranch, 

Edwards County, Texas. Week 1= April 1–7, Week 6 = May 6–12, Week 12 = June 17–

23.  
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Table 7. Models of daily nest survival of Black-capped Vireo (Vireo atricapilla) nests 

monitored at Dobbs Run Ranch, Edwards County, Texas in 2011 and 2012. 

Modela Kb Log likelihood AICc
c ∆AICc

d wi
e 

Year + Day2 + Nest Stage 4 -349.72 708.18 0.00 0.46 

Year + Day2 3 -351.83 710.09 1.92 0.18 

Year + Day + Nest Stage 4 -350.86 710.46 2.28 0.15 

Year + Day 3 -352.33 711.09 2.92 0.11 

Year + Day2 + Parasitism 4 -351.58 711.89 3.71 0.07 

Year + Day + Parasitism 4 -352.16 713.04 4.87 0.04 

Day 2 -358.76 721.72 13.55 0.00 

Day2 2 -359.18 722.57 14.39 0.00 

Year + Parasitism + Nest Stage 4 -367.18 743.09 34.91 0.00 

Year + Nest Stage 3 -368.44 743.31 35.13 0.00 

Nest Stage 2 -371.10 746.41 38.23 0.00 

Year + Parasitism 3 -371.10 746.63 38.45 0.00 

Year 2 -371.29 746.80 38.62 0.00 

Parasitism 2 -371.44 747.09 38.92 0.00 

Null 1 -373.22 748.51 40.33 0.00 
a Abbreviations for explanatory variables as follows: Day = day of season, Parasitism = nests parasitized  

by Brown-headed Cowbird (Molothrus ater) 
b Number of parameters in the model 
c Akaike’s Information Criteria corrected for small sample size 
d AICc relative to best fit model 
e Model weight 

 

 

 

 

Daily nest survival was best predicted by year, quadratic day trends, and nest 

stage (Table 7). Daily nest survival was lower in 2011 and decreased over time within  

seasons (Fig. 30). Survival was also lower during the nestling stage than during egg-

laying or incubation (e.g., egg stage). Mean predicted daily nest survival was 93% (± 3) 

in 2011 and 95% (± 4) in 2012.  
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Figure 30. Predicted daily nest survival of Black-capped Vireo (Vireo atricapilla) nests as a function of quadratic day trend and 

year within the study site at Dobbs Run Ranch Edwards County, Texas in 2011 and 2012.
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DISCUSSION  

  I identified significant differences in several measures of reproductive behavior 

and productivity in vireos during two years of varying drought intensity. Specifically, 

vireos had reduced pairing and fledging success and later nest initiation during the dry 

2011 season compared to the wetter 2012 season. Additionally, they experienced greater 

nest parasitism, lower overall nesting success, and lower daily nest survival in 2011 than 

in 2012. I attributed the observed variation to differences in cumulative rainfall both 

before and during the breeding seasons because the differences between years were 

substantial and because others have observed similar reproductive behaviors and 

consequences for this (Smith et al. 2012) and other species (e.g., Grant and Boag 1980; 

Boag and Grant 1984; Morrison and Bolger 2002) during dry periods. However, I 

recognize that differences between years could have resulted from annual variation in 

other factors (e.g., carry-over effects [Harrison et al. 2010], sex or age composition [Oro 

et al. 2010]).  

 Morrison and Bolger (2002) suggested that reproductive success was food-

mediated in dry years and predator-mediated in wet years. Food availability can 

influence many of the metrics I measured in this study, each of which contributes to 

overall productivity. For example, pairing success is low when food resources are 

limited (e.g., Probst and Hayes 1987; Burke and Nol 1988; Gibbs and Faaborg 1990). 

Though I did not measure food abundance during this study, there is evidence to support 

the hypothesis that arthropod availability was lower in 2011 than in 2012—especially at 

the start of the season. Arthropod biomass is positively correlated with primary 



 

89 

 

productivity (e.g., Bell 1985), which is driven by rainfall (Noy-Meir 1973; Sala et al. 

1988), and many researchers have reported reduced arthropod biomass during drought 

(e.g., Bell 1985; Morgan 2012). The density of arthropods, particularly of Lepidopteran 

larvae—an important component of the vireo’s diet (Graber 1961)—is typically greatest 

on oak species in April and on Ashe juniper in May (Quinn 2000; Morgan 2012; 

Marshall et al. 2013). Vireos arrive on the breeding grounds in late March and usually 

begin nesting in April (Gryzbowski 1995), but no rain fell at my study site in March or 

April of 2011, and most deciduous oak species, and many live oaks, were leafless during 

this period (pers. obs.). It is plausible that the lack of foliage on oak species early in the 

2011 season resulted in reduced food availability, which contributed to the differences I 

observed between years.  

 For birds, as with most animals, the timing of breeding activities has important 

consequences for reproductive success (Clutton-Brock 1988; Nilsson 1999). To 

maximize fitness, birds must engage in reproductive activities on a schedule that 

coincides with the environmental conditions best suited for each stage of breeding. For 

example, pairs must anticipate when adequate food resources will be available to meet 

nestling demands and then initiate nest-building and egg-laying accordingly. Thus, they 

must use environmental cues, such as photoperiod (light), rainfall, temperature, 

vegetation phenology, or current food availability to predict future conditions (Farner 

and Follett 1979; Marshall and Cooper 2004; Bourgault et al. 2010). Timing 

reproductive activities with rainfall is a common behavioral strategy for birds inhabiting 

arid regions (e.g., Ohmart 1969; Zann et al. 1995; Lloyd 1999). Immelmann (1963, 
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1965), for instance, observed Zebra Finches (Taeniopygia guttata) copulating within the 

first few hours of a rainfall event following months of drought, and Lloyd (1999) noted 

that rainfall stimulates breeding activities in several South African arid-zone species. 

Vireos at my study site initiated clutches considerably later in 2011 than in 2012. The 

mean nest initiation date in 2011 (May 16) was within a few days of the single greatest 

day of rainfall that season (May 12), suggesting that, as with other species, rainfall 

stimulated breeding in vireos.  

 Though delayed nest initiation may be adaptive when food resources are limited, 

but there are still consequences for annual fecundity in birds. For example, clutch size 

declines seasonally in many bird species (Klomp 1970; Drent and Daan 1980; Martin 

1987). In this study, I found no difference in clutch size after accounting for nest 

initiation date. However, birds that nested later in the season did lay fewer eggs than 

those that nested earlier. Similarly, fecundity may be determined by the number of 

nesting attempts, which is a function of season length. Later nest initiation at my study 

site in 2011 corresponded to a shortened breeding season that year, and I observed fewer 

re-nesting attempts and lower overall fledging success within territories.  

 Predation is the leading cause of nest failure in birds (Ricklefs 1969; Martin 

1993; Schmidt and Whelan 1999), and, in many systems, predation increases over time 

within seasons putting nests initiated later at greater risk (Best and Stauffer 1980; Marvil 

and Cruz 1989; Schaub et al. 1992). Predation accounted for the majority of nest failure 

at my study site, and daily nest survival decreased with season day in both years. Snakes 

and birds are among the most frequent predators of vireo nests (Stake and Cimprich 
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2003; Conkling et al. 2012). Snakes are more active later in the summer in Texas (Sperry 

et al. 2008), and Brown-headed Cowbirds were more active at my study site beginning 

in May. Later nest initiation in 2011 likely exposed a higher proportion of nests that year 

to snakes and Brown-headed Cowbirds leading to the differences in apparent nest 

success between years.  

 Vegetation at nest-sites is an important component of habitat for breeding breeds 

that can reduce their likelihood of being depredated or parasitized (Martin 1993), and at 

my study site, nests with greater concealment had a greater probability of success than 

less concealed nests. Average concealment at the nest, however, did not differ among 

years (Chapter 2), so this feature is not likely responsible for the inter-annual difference 

in nest success that I observed. Parasitism was low at my site in 2012 (n = 8), and I did 

not have an adequate sample size to examine the incidence of parasitism in relation to 

characteristics of nest vegetation. I did, however, identify a significant difference in the 

rate of parasitism between years, with greater parasitism during 2011. 

 Nest substrate was also important in predicting nest success in 2012, but not in 

the way I had expected. In 2011, vireos overwhelming placed their nests in Ashe juniper. 

Texas persimmon was the most commonly selected nest substrate the following year. I 

assumed vireos selected these species because they offered the greatest likelihood of 

success under the conditions of each year. However, in 2012, vireos nesting in Texas 

persimmon actually had a lower probability of nest success than those nesting in other 

substrates. Selection of Ashe juniper as a nest substrate is uncommon within vireo 

habitat (Bailey and Thompson 2007). Under drought conditions it may have offered 
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greater cover than deciduous species that were leafless, while still being of lower quality 

than deciduous nest substrates. Martin (1993) observed a similar pattern with 

McGillivray’s Warblers (Geothlypis tolmiei) which had lower nest success in evergreen 

fir trees following drought. Vireos may have selected Texas persimmon more frequently 

in 2012 because it was the most common deciduous species available rather than for any 

characteristics associated with the species that offered an advantage as a nest substrate 

over other species. I did not measure species composition, however, so I can only 

speculate.  

 Though it is not possible to control abiotic weather events, wildlife managers can 

plan for their inevitability by understanding the responses of species of conservation 

concern and identifying ways to minimize reproductive consequences. In this study, 

vireos had lower overall productivity under drought but showed resilience the following 

year with increasing rainfall. Historically, low rainfall and extreme drought events have 

persisted for more than one year, and global climate models predict drought will become 

more frequent and intense (e.g., Watson et al. 1998; Seager et al. 2007). Jiang and Yang 

(2012) predict that temperatures will steadily increase in Texas through the 21st century, 

with warmer weather corresponding to drier conditions. My study provides only a 

snapshot of the consequences of drought to nesting vireos, and longer term studies are 

needed to understand how population persistence (or species recovery) might be affected 

if climate predictions are realized and the frequency and severity of drought increases.  

 Food supplementation could help to maintain populations of species of 

conservation concern during dry conditions. Studies suggest that provisioned birds nest 
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earlier and have greater nesting success (reviewed in Martin 1987). However, this is not 

a realistic solution for managing wild, insectivorous birds, like vireos. Current 

management recommendations include the selective removal of Ashe juniper within 

vireo habitat to help maintain the vegetation structure preferred by vireos (Campbell 

1995). However, this practice may not be necessary or beneficial to vireos in drier 

portions of the range. Morgan (2012) indicated that Ashe juniper was an important 

foraging substrate for vireos, and I showed that vireos depend on Ashe juniper as a nest 

substrate under drought conditions. As such, retaining an appropriate level of Ashe 

juniper within vireo habitat may provide vireos with necessary resources when 

conditions are dry. Morgan (2012) suggested that Ashe juniper cover between 10–25% is 

sufficient to meet the foraging needs of vireos, but research is still needed to determine 

what levels might be most beneficial for vireos nesting in dry areas.  

The total number of vireo nests parasitized by Brown-headed Cowbirds at my 

site was low. However, in 2011, parasitism accounted for 20% of nests found. Managers 

typically try to limit parasitism to <10% of vireo nests annually (e.g., USFWS 2000; 

Kostecke et al. 2005). During drought years, however, greater Brown-headed Cowbird 

removal efforts (e.g., shooting, trapping) may be warranted. However, it is important to 

plan activities so as to be most effective. March and April are most effective months to 

run cowbird traps that remove locally-breeding individuals from the population before 

they become reproductively active (Summers et al. 2006). Cowbird trapping is less 

effective in May—when most nest parasitism takes place (Smith 2011, Summers et al. 

2006)—and shooting is recommended (Summers et al. 2006). It is possible that locally-
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breeding Brown-headed Cowbirds are no longer attracted to grain-baited traps in May, 

because they switch to an insectivorous diet once they become reproductively active 

(Ankney and Scott 1980). If insect abundance is lower during drought years, continued 

trapping during May might be beneficial alone or in addition to shooting.  
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CHAPTER IV 

CONCLUSIONS 

 

 My results suggest that habitat selection by Black-capped Vireos (Vireo 

atricapilla; hereafter vireo) is similar under moderate and extreme drought conditions. 

Vireos prefer early successional shrub habitat with open spaces and short vegetation 

(Graber 1961; Gryzbowski et al. 1994). Within vireo habitat, these conditions are 

common on steep (Graber 1961), southern facing slopes (Shaw 1989; LCRA 2007; 

Benson and Benson 1990, 1991), as these slopes tend to have less soil due to rainfall 

runoff and other factors (McCool et al. 1997) and may facilitate microclimates and 

edaphic conditions conducive to the vegetation structure preferred by vireos. At a 

landscape scale, vireos may have selected my study site because the topography present 

(i.e., southerly-facing slopes with ≤10% steepness) enabled suitable vegetation growth. 

Weather conditions can erode potential nesting and foraging vegetation on slopes in 

some locations (e.g., Cummings 2006; Smith 2011); however, vireos at my study site 

selected slopes as they were available both years, suggesting that differences in 

vegetation across slope-types and years did not influence selection decisions at smaller 

scales.  

 In both years, vireos selected nest-sites with similar vegetation characteristics 

that were consistent with nest-sites across the vireo’s breeding range (Smith 2011; 

Conkling et al. 2012; Pope et al. 2013a, b). However, vireos at my study site 

overwhelmingly placed nests in Ashe juniper (Juniperus asheii) under the extreme 
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drought conditions of 2011. Others have indicated that vireos are considerably less likely 

to place nests in Ashe juniper (Bailey and Thompson 2007). However, Ashe juniper is a 

drought-tolerant, evergreen species (Gilman and Watson 1993) that can access deep 

water sources when surface soils are dry (Jackson et al. 1999), and at my study site, 

Ashe juniper was one of the few species with consistently leafy, green foliage in 2011. 

Vireos may prefer deciduous nest substrates (Bailey and Thompson 2007), but my 

research suggests that Ashe juniper can offer potential nest-sites with characteristics 

similar to those found in deciduous substrates, thus increasing opportunities for nesting 

when conditions are dry.  

 Though vireos were able to locate nest-sites in Ashe juniper during drought, they 

still experienced lower reproductive success in 2011 some of which may have resulted 

from different reproductive investment between years. Fewer vireos paired during the 

dry conditions in 2011 compared to the wetter 2012 season. Those that did pair in 2011 

delayed nesting until mid-May. Birds often use environmental cues to predict future 

conditions (Farner and Follett 1979; Marshall and Cooper 2004; Bourgault et al. 2010), 

and timing reproductive activities with rainfall is a common behavioral strategy for birds 

inhabiting arid regions (e.g., Ohmart, 1969; Zann et al., 1995; Lloyd 1999). The mean 

nest initiation date for vireos at my study site in 2011 (May 16) was within a few days of 

the single greatest day of rainfall that season (May 12), suggesting that, as with other 

species, rainfall stimulated breeding in vireos.  

 Delayed nest initiation may be adaptive when food resources are limited, 

however, there are still consequences for annual fecundity in birds. For example, clutch  



 

97 

 

Figure 31. Annual precipitation in Texas from 1895–2014. Dashed line indicates average annual precipitation in Texas from 

1901–2000 (considered baseline). Data were obtained from National Centers for Environmental Information (NCEI 2016) at 

graphed using the statistical program R version 3.2.2. The years corresponding to the study described herein (2011 and 2012) 

are circled. 
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size declines seasonally in many bird species (Klomp 1970; Drent and Daan 1980; 

Martin 1987). In this study, I found no difference in clutch size after accounting for nest 

initiation date, but birds that nested later in the season did lay fewer eggs than those that 

nested earlier. Similarly, fecundity may be determined by the number of nesting 

attempts, which is a function of season length. Later nest initiation at my site in 2011 

corresponded to a shortened breeding season that year, and I observed fewer re-nesting 

attempts and lower overall fledging success within territories. Additionally, nests 

initiated later may experience higher predation or brood parasitism (Best and Stauffer 

1980; Marvil and Cruz 1989; Schaub et al. 1992). Vireo nests in 2011 were less 

successful and depredated and parasitized more frequently than nests in 2012. Snakes 

and Brown-headed Cowbirds are among the most frequent predators and brood parasites 

at vireo nests (Stake and Cimprich 2003; Conkling et al. 2012), and both tend to be more 

active later in the season (e.g., Sperry et al. 2008; pers. obs.) increasing the risks for 

birds who delay nesting.  

 Though it is not possible to control abiotic weather events, wildlife managers can 

plan for their inevitability by understanding the responses of species of conservation 

concern and identifying ways to minimize the consequences. In this study, vireos had 

lower overall productivity under drought but showed resilience the following year with 

increasing rainfall. Historically, low rainfall and extreme drought events have persisted 

for multiple years (Fig. 31), and global climate models predict drought will become 

more frequent and intense (e.g., Watson et al. 1998; Seager et al. 2007). Jiang and Yang 

(2012) predict that temperatures will steadily increase in Texas through the 21st century, 



 

99 

 

with warmer weather corresponding to drier conditions. My study provides only a 

snapshot of the consequences of drought to nesting vireos, and longer term studies are 

needed to understand how population persistence (or species recovery) might be affected 

if climate predictions are realized and the frequency and severity of drought increases. 

 Food supplementation can help maintain populations of some species of 

conservation concern during dry conditions. Studies suggest that food provisioned birds 

nest earlier and have greater nesting success (reviewed in Martin 1987). However, this is 

not a realistic solution for managing wild, insectivorous birds, like vireos. Current 

management recommendations for vireos include the selective removal of Ashe juniper 

within vireo habitat to help maintain the vegetation structure preferred by vireos 

(Campbell 1995). However, this practice may not be necessary or beneficial to vireos in 

drier portions of their range. Morgan (2012) indicated that Ashe juniper was an 

important foraging substrate for vireos, and I showed that vireos depend on Ashe juniper 

as a nest substrate under drought conditions. As such, retaining an appropriate level of 

Ashe juniper within vireo habitat may provide vireos with necessary resources when 

conditions are dry. Morgan (2012) suggested that Ashe juniper cover between 10–25% is 

sufficient to meet the foraging needs of vireos, but research is still needed to determine 

what levels might be most beneficial for vireos nesting in dry areas.  

The total number of vireo nests parasitized by Brown-headed Cowbirds at my 

site was low. However, in 2011, parasitism accounted for 20% of nests found. Managers 

typically try to limit parasitism to <10% of vireo nests annually (e.g., USFWS 2000; 

Kostecke et al. 2005). During drought years, however, greater Brown-headed Cowbird 
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removal efforts (e.g., shooting, trapping) may be warranted. However, it is important to 

plan activities so as to be most effective. March and April are most effective months to 

run cowbird traps that remove locally-breeding individuals from the population before 

they become reproductively active (Summers et al. 2006). Cowbird trapping is less 

effective in May—when most nest parasitism takes place (Smith 2011, Summers et al. 

2006)—and shooting is recommended (Summers et al. 2006). It is possible that locally-

breeding Brown-headed Cowbirds are no longer attracted to grain-baited traps in May, 

because they switch to an insectivorous diet once they become reproductively active 

(Ankney and Scott 1980). If insect abundance is lower during drought years, continued 

trapping during May might be beneficial alone or in addition to shooting.  
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