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ABSTRACT 

 

 Congenital muscular dystrophies (CMD’s) are serious diseases affecting muscle, 

brain, eye, and other tissues and often result in premature death of patients. These forms 

of muscular dystrophy are largely underlain by defects in the glycosylation of 

dystroglycan, and specifically by defects in the O-mannosylation pathway. The fruit fly 

Drosophila melanogaster is a good model system for studying many genetic diseases, 

including CMD’s, as they utilize many of the same molecular processes as mammals. 

They have homologues of mammalian Protein O-MannosylTransferase (POMT) 1 and 2 

which have been shown to O-mannosylate dystroglycan.  

 In this dissertation I studied the biological defects associated with POMT 

mutations primarily by using a live imaging approach in Drosophila. In Drosophila the 

most prominent defect associated with POMT mutations is a clockwise torsion of 

posterior abdominal segments relative to anterior segments. The mechanism by which 

this torsion arises was not previously known. 

Here I characterized the gross physiological mechanism by which torsion arises. 

I showed that it is present at the embryonic stage, that embryos undergo chiral rolling 

within their shells during peristaltic contractions, and that abnormal contraction 

patterning in POMT mutants leads to differential rolling that gives rise to torsion of the 

dorsal midline.  

 I next demonstrated the cellular requirements for POMT in maintaining proper 

posture. I showed that POMT is required in the peripheral nervous system to mediate 
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proper feedback to the central nervous system for regulation of contraction patterning. 

Aberrations in the development of the peripheral nervous system can also cause torsion, 

even when POMT is functional. Additionally I showed that muscle tissue and possibly 

epidermis and central nervous system cells require POMT expression to maintain 

posture. 

 Finally, I investigated the molecular targets of O-mannosylation. I showed that 

O-mannosylation of dystroglycan is involved in the rise of torsion, but that  it is not the 

only relevant target. The receptor protein tyrosine phosphatase RPTP69D is also O-

mannosylated and plays a role in both neuronal and muscle tissues in regulating posture.  

 These results shed light on the biological mechanisms underlying muscular 

dystrophy, and may lead to new targets for diagnosis and therapy in human patients. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Overview of Protein Glycobiology 

Organisms ranging from bacteria to mammals depend on a variety of post-

translational modifications (PTM) of proteins in order to properly regulate their myriad 

biological processes. One of the most prominent forms of PTM, and until recently one of 

the most overlooked, is glycosylation (1). It consists of the linkage of monosaccharides 

or oligosaccharides (glycans) to specific amino acid side chains of secretory pathway 

proteins, as well as the subsequent modifications of those glycan chains. Because an 

individual monosaccharide can be linked to another at multiple positions, complex 

branching is possible, allowing for a wide variety of glycan structures to exist (2). 

Glycan diversity is believed to account for much of the difference between genetically 

similar organisms such as humans and chimpanzees, where a wider array of glycan 

linkages in humans may provide the molecular underpinnings for more complex social 

interactions (3).  

Protein glycosylation takes place predominantly in the compartments of the 

secretory pathway: the endoplasmic reticulum (ER) and the Golgi apparatus. Glycans are 

assembled by enzymes called glycosyltransferases, and individual sugars can be 

removed by glycosidases. These processes follow the general rule “one enzyme, one 

linkage.” Thus a single enzyme will usually only make one specific transfer or break one 

glycosidic bond, and a specific linkage in a glycan chain may be accounted for by a 
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single enzyme. Glycosylation of proteins can be broken down into two major subsets: N-

linked glycosylation, and O-linked glycosylation, which bear important similarities and 

differences to each other. 

N-linked glycosylation involves the linkage of glycan chains to the amide group 

of asparagine residues. Glycans of this type always start as an invariant core glycan 

common to all N-linked glycosylation sites. Prior to any carbohydrate transfer to 

asparagine residues, the core glycan is assembled one monosaccharide at a time on a 

dolichol diphosphate molecule on the membrane of the ER (4). Once fully assembled, 

this core glycan is transferred as a single unit (en bloc) to target proteins by a single ER 

enzyme, oligosaccharyltransferase (5,6). Thus mutations in any of the enzymes involved 

in production of the core glycan can entirely inhibit N-linked glycosylation. Because the 

initial transfer is always catalyzed by the same enzyme, nearly all N-linked glycans can 

be found within a specific consensus sequence: Asn-X-Ser, Asn-X-Thr, and in rare 

cases, Asn-X-Cys, where X can be any amino acid other than proline (7). After en bloc 

transfer of the core glycan, other enzymes within the ER and the Golgi modify specific 

glycans, providing a substantial variety of N-glycan end products (6) (Fig. 1A). 

O-linked glycosylation refers to the transfer of carbohydrates to the hydroxyl 

group of serine and threonine residues, and follows a different pathway. Rather than en 

bloc transfer of a preassembled glycan to a nascent protein, O-linked glycans are built 

directly onto the target protein, one monosaccharide at a time. This system allows for a 

greater diversity of initial linkages to proteins, with modifications including O-linked N-

acetylgalactosamine (GalNAc), mannose, glucose, fucose, and others (8) (Fig. 1B). 
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Multiple enzymes are involved in these initial linkages, so unlike N-linked glycans, there 

is no clear consensus sequence for O-glycosylation. Thus unlike N-linked glycosylation, 

mutations in downstream enzymes generally do not preclude assembly of partial glycans 

on proteins. Rather, assembly only stops downstream of the affected enzyme. 

Despite the differences in N-linked and O-linked glycosylation mechanisms, 

these two PTM’s often function in similar ways. For example, folding and maturation 

within the secretory pathway are generally mediated by glycan modifications that can 

only occur once the protein of interest has adopted a particular conformational state, 

allowing it to be recognized by glycosyltransferases or glycosidases. Upon modification, 

the protein is then able to continue to the next step in its pathway. While this pathway 

has classically been associated with N-linked glycans (9), recent reports have shown 

similar roles for O-linked glycans (10).  

Both O-linked and N-linked glycans provide structural support at cellular, tissue, 

and organismal levels. Proteoglycans, for example, are large proteins with several 

unbranched O-linked glycans in the extracellular space in animals. They bind important 

biological molecules such as water, and by so doing can help cells to withstand 

compression (11). As another example the glycocalyx, which consists of all of the 

glycans observed on the surfaces of eukaryotic cells, both N- and O-linked, serves as a 

physical barrier against proteases, antibodies, and some pathogens (12), helping to 

prevent auto-immune responses. 
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A 

 

B 

 

Figure 1—Glycan diversity. 
 

A) N-linked glycans. (i) is the core glycan that initially gets transferred. (ii)-(iv) show examples of 

modified glycans, from which diversity is derived: “high mannose,” “hybrid,” and “complex,” 

respectively. B) Examples of O-linked glycans. Many more combinations exist.  
 

Galactose 

Mannose 

Glucose 

GalNAc 

GlcNAc 

Sialic Acid 

Fucose 

Xylose 
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 Glycans can also modulate protein activity and interactions. As with many 

PTM’s, glycosylation of proteins may serve as a molecular “on/off” switch for some 

protein activities, but more frequently they work as molecular “attenuators,” increasing 

or decreasing interactions. This “tuning effect” can occur through multiple mechanisms. 

Some growth factors, for example, have a range of Kd values for their ligands governed 

directly by the size and composition of their glycans (13). Whereas that mechanism is 

direct, other glycans may interfere with protein interactions by physically separating 

proteins from their targets, sometimes even attenuating activities of proteins to which the 

glycans themselves are not attached, as in the case of neural cell adhesion molecules 

(14).  

In addition to glycans themselves, an important aspect of glycobiology is the 

lectin family of proteins. Lectins are carbohydrate-binding proteins and protein domains. 

They participate in the folding and maturation of glycoproteins by recognizing distinct 

glycoforms, often in association with subsequent enzymatic modifications of the 

recognized glycan. Secretory pathway proteins in the wrong glycosylation state are not 

recognized, and are thus either prevented from continuing through the pathway until they 

are properly glycosylated, or are targeted for destruction (15). Lectins also mediate cell-

cell interactions as well as interactions between cells and the extracellular matrix (ECM). 

Such interactions are important for maintaining membrane integrity, facilitating 

communication between cells, and recognition of many pathogens. Thus glycans and 

lectins play many important biological roles, and aberrations in an organism’s 

glycobiology may lead to severe disease states.   
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1.2 Glycobiology in Human Pathology 

Glycobiology has been connected to several pathological states. Many kinds of 

cancer cells, for example, exhibit distinct glycomes from their healthy counterparts (16-

18). Currently there is no evidence that a change in glycosyltransferase or glycosidase 

activity underlies oncogenesis. Some evidence suggests, however, that altered 

glycosylation may play a role in cancer progression and metastasis (18,19). Whatever its 

biological role, the presence of a unique glycome in cancer cells may serve as a 

diagnostic marker and possibly even a target for therapeutics.  

 Pathogenic microorganisms frequently employ some aspect of glycobiology in 

infecting hosts. Viruses often use lectins to bind to host cell receptors and initiate 

endocytosis, the best-known example being influenza virus binding to sialic acid on cell 

surfaces (20). These same lectins may also bind the surface of a lysed cell when newly 

formed viruses exit, and thus viruses such as influenza use neuraminidase to cleave 

glycans and facilitate efficient release. The drug oseltamivir (Tamiflu®) is a 

neuraminidase inhibitor that helps shorten the duration of influenza infections by 

impeding viral release from compromised cells (21). HIV enters cells using 

glycoproteins to mediate fusion of its envelope with the cell membrane (22), and lectins 

such as griffithsin have been the subject of study as antivirals against enveloped viruses 

including HIV, coronavirus (SARS), and Hepatitis C (23-25).  

 Bacterial pathogens also exploit principles of glycobiology to cause disease. Like 

viruses, some bacteria bind to host cells via lectins (26). Such interactions may be 

pathogenic or beneficial to the host organism. Host organisms may fend off bacterial 
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infections or keep beneficial bacteria properly localized using lectins to recognize 

bacterial glycans (27). Additionally, many bacterial toxins, such as those associated with 

cholera, whooping cough, and dysentery, as well as some plant-derived toxins such as 

ricin, are lectins (28,29).  

 Several other pathological states are also underlain by aberrant glycobiology, 

including pathological immune responses (as seen, for example, in rejection of 

xenografts) (30) and spontaneous glycation of biological molecules (often seen in 

diabetics when blood sugar levels are elevated) (31). Here, however, I will focus on 

genetic disorders of glycosylation. These disorders occur when glycosyltransferases or 

glycosidases become mutated, leading to improper, incomplete, or absent glycosylation 

of target proteins. 

Some of the first genetic disorders of glycosylation to be understood are known 

as congenital disorders of glycosylation (CDG’s). The first CDG’s described were in 

twin sisters in 1980, and included symptoms such as reduced psychomotor skills, ataxia, 

impaired blood clotting, cardiomyopathy, and morphological defects (32). By 1995 the 

underlying cause of these cases was determined to be a deficiency in 

phosphomannomutase (PMM2) (33). This enzyme is responsible for interconversion of 

mannose-6-phosphate and mannose-1-phosphate, and impaired activity ultimately leads 

to shortages of GDP-mannose, a necessary precursor in synthesis of the N-linked core 

glycan. Similar pathology has been described when the upstream enzyme 

phosphomannose isomerase (PMI), which catalyzes conversion of fructose-6-phosphate 

to mannose-6-phosphate, is inactivated. This disease can be largely relieved by mannose 
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supplementation in the diet because hexokinases can convert mannose to mannose-6P. 

Currently this is the only CDG for which a truly effective treatment is known (34). The 

CDG’s related to enzymes involved in core glycan assembly and transfer are collectively 

known as the type I CDG’s, and all manifest with similar symptoms. Aberrations in the 

N-glycanase enzyme, responsible for removing N-linked glycans from misfolded 

proteins and thus helping lead to their degradation, also result in similar phenotypes. 

This was the first characterization of deglycosylation in CDG’s (35). Mutations in 

enzymes involved in modification of N-linked glycans underlie type II CDG’s. In all 

there are 42 currently identified CDG’s associated with N-linked glycans (36).  

  Disorders arising from aberrations in O-linked glycosylation have also been 

described. Defects in the O-Xylosylation pathway, for example, can lead to incorrect 

synthesis of heparan sulfate and other proteoglycan sugar chains. This in turn can cause 

diseases such as multiple exostoses and Ehlers-Danlos Syndrome, which are 

characterized by bone spurs and defects in connective tissue, respectively. The 

mechanism by which failed O-xylosylation can lead to abnormal bone growth is not 

currently known, though it arises when there are defects in heparan sulfate proteoglycan 

synthesis (37). Ehlers-Danlos Syndrome is somewhat better understood. It is generally 

associated with collagen and the proteins that interact with it. The enzyme B4GalT7 

adds galactose to O-linked xylose in dermatan sulfate proteoglycans, which help link 

collagen fibrils (38). Loss of this linkage can lead to the syndrome. A related, unusual 
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 type of O-glycosylation involves modification of collagen lysines. In Gly-X-Lys 

triplets, the lysines are often modified by lysyl hydroxylase, which puts a hydroxyl 

group on the delta carbon of the lysine side chain. This hydroxyl group can be modified 

with the disaccharide Glucose-Galactose, which helps in crosslinking of collagen fibers 

(39). The O-fucosylation pathway is related to such diseases as Peter’s Plus Syndrome, 

associated with eye abnormalities as well as dwarfism and developmental delays, and to 

spondylocostal dysostosis, characterized by morphological defects of the abdomen. 

Peter’s Plus Syndrome arises when transfer of glucose to O-linked fucose is disrupted, 

while spondylocostal dysostosis stems from inability to modify O-linked fucose with 

GlcNAc (40,41). The biological mechanisms by which these misglycosylations translate 

to disease are unknown. 

 

1.3 Glycobiology of Muscular Dystrophy 

A better-understood disorder of O-linked glycosylation is the set of muscular 

dystrophies known as dystroglycanopathies. Muscular dystrophy is a set of diseases 

associated with progressive deterioration and weakness of the muscles (42). Several 

forms of muscular dystrophy exist, with varying underlying causes and degrees of 

severity. By far the most common form of muscular dystrophy in humans is Duchenne 

Muscular Dystrophy (DMD), an X-linked disorder not directly associated with 

glycobiology that affects approximately 1 in 3500 males (43). Although DMD is not 

itself related to protein glycosylation, an understanding of this disease sheds light on the 

less common and more severe dystroglycanopathies. 
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 DMD is caused by mutations in the gene encoding the protein dystrophin (43). 

The discovery of dystrophin and its link to DMD subsequently led to the discovery of 

several other proteins that form what is now known as the Dystrophin Glycoprotein 

Complex (DGC) (44). This complex consists of cytosolic components such as 

dystrophin and the syntrophins, extracellular components such as laminin, and 

transmembrane components such as dystroglycan (Dg), a glycoprotein responsible for 

linking dystrophin to the ECM (Fig. 2). Thus the DGC is believed to facilitate 

communication between the inside of the cell and its surrounding environment.  

The DGC is required for muscle fiber integrity, and abnormalities of several 

DGC components are associated with various forms of muscular dystrophy. Some of 

these forms include Limb-Girdle Muscular Dystrophy (LGMD), and congenital  

muscular dystrophies such as Fukuyama Congenital Muscular Dystrophy (FCMD), 

Muscle-Eye-Brain disease (MEB), and Walker-Warburg Syndrome (WWS) (45). The 

Congenital Muscular Dystrophies (CMD’s) manifest at or shortly after birth, and are 

particularly severe. WWS, the most severe form of CMD that arises from mutations in 

the Protein O-Mannosyltransferase (POMT) genes, is associated with defects in the 

brain, eyes, and muscle and typically causes death by the age of 3 (46).  

Interestingly, unlike DMD, the CMD’s often result not from mutations in the 

DGC itself, but from mutations in glycosyltransferases that act on Dg. In mammals, Dg 

is post-translationally modified by a series of enzymes including POMT’s, Protein O- 
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Figure 2—The Dystrophin Glycoprotein Complex (DGC). 

 
This is a simplified depiction of the DGC. Dystrophin binds Dg and Actin on the cytosolic side, and Dg 

binds laminin through an O-mannosyl glycan in mammals, facilitating communication between cytosol 

and the ECM. 
 

 

 

mannose Kinase (POMK), Fukutin, Fukutin Related Protein (FKRP), and like-

acetylglucosaminyltransferase (LARGE) (47-50). These enzymes are all associated with 

at least one form of CMD, and collectively produce a glycan on Dg that is required for 

Dg binding to laminin. Thus laminin interacts with Dg via lectin activity. Several studies 

have implicated failed Dg binding to laminin as an underlying mechanism for CMD’s 

(51-53). 
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In humans, the first step in the production of the laminin-binding glycan is O-

mannosylation of one or more serine or threonine residues on Dg, including Thr 317 and 

319 (50). O-mannosylation requires the joint activity of the Protein O-

MannosylTransferases POMT1 and POMT2, glycosyltransferases colocalized in the ER. 

It is subsequently modified by several enzymes including POMGnT2, B3GalNT2, 

POMK, fukutin, FKRP, B4GAT1, and LARGE (47-50) (Fig. 3). Since the terminal [—

3-xylose—a1,3-glucuronic acid-b1—] repeating unit added by LARGE is required for 

laminin binding (50,54), mutations in any of these enzymes can abolish Dg-laminin 

interactions, resulting in a CMD.  

 

 

 

 

Figure 3—The laminin-binding O-mannosyl glycan and its associated enzymes. 
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1.4 Drosophila melanogaster: A Model for Dystroglycanopathies 

The fruit fly Drosophila melanogaster has long served as a model for many 

genetic disorders. Many of the developmental pathways found in higher organisms are 

also present in Drosophila, though the Drosophila system is frequently less complex. 

The sialylation pathway in humans, for example, consists of some 20 different 

sialyltransferases (55), compared to one in Drosophila (56). Thus although the 

Drosophila system does not always perfectly echo the pathways of higher organisms, its 

relative similarity combined with its simplicity makes it an attractive system for initial 

studies. 

Additionally, Drosophila have several practical advantages as a model system. 

Since Drosophila have been studied for over a century, many genetic tools have been 

developed that allow easy genetic manipulation. Genes can be selectively removed from 

or ectopically expressed in the organism as a whole, or genetic manipulation can be 

easily limited to a specific set of cells or tissues, or to a specific developmental period. 

Their ~10 day life cycle allows data to be gathered quickly. Together these advantages 

make Drosophila a powerful model for studying a variety of developmental pathways 

and pathological mechanisms. 

Among other things, Drosophila provides a useful system for understanding the 

biological consequences of POMT mutation. Indeed, the Drosophila model expresses 

orthologues of both POMT1 and POMT2, and as in mammals both are required for O-

mannosylation of Dg (57). The Drosophila genes rotated abdomen (rt) and twisted (tw) 

correspond to POMT1 and POMT2, respectively, and derive their names from the 
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characteristic misalignment or rotation of the abdominal segments in adult flies that 

results in a clockwise rotation of posterior abdominal segments relative to the anterior 

(Fig. 4). Drosophila dystroglycan interacts with dystrophin as well as extracellular 

matrix proteins such as perlecan and possibly laminin (58-60), though the latter is 

unverified. This suggests the presence of a complex similar to the mammalian DGC, 

though some of the enzymes required for extension of the O-mannosyl glycan that binds 

laminin, such as LARGE, are not known to be present in Drosophila.  

 

 

 

Figure 4—Abdominal rotation in POMT mutant Drosophila. 

 
In POMT mutant flies, the abdominal segments rotate clockwise relative to the thoracic axis of symmetry 

and can be scored quantitatively. Blue arrows: thoracic axis, red arrows: abdominal axis. 
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Further establishing Drosophila as a model for dystroglycanopathies, mutants for 

Dg or dystrophin display progressive muscle degeneration and mobility problems, 

similar to symptoms seen in human MD patients (58,60,61). Neurological abnormalities 

have also been reported in connection with both human and Drosophila POMT 

mutations, including decreased synaptic transmission and changes in post-synaptic 

glutamate receptor composition (62), and aberrant axonal pathfinding (46,63-65). Here I 

will characterize and analyze the rise of rotation in Drosophila in both the embryonic 

and adult stages, and I will putatively connect the biological mechanisms underlying 

rotation in Drosophila to phenotypes in human WWS patients to shed light on the 

pathology of POMT mutations.  

 

1.5 Dissertation Overview 

 In this dissertation I will focus on the mechanisms giving rise to torsion in 

Drosophila. I will examine the mechanical mechanism by which rotation may arise, I 

will elucidate the cellular requirement for POMT in maintaining proper posture, and I 

will begin to characterize a new POMT molecular target and its role in the rise of 

rotation. 

 In chapter II I will focus on the gross physiological mechanism that gives rise to 

rotation in POMT mutants. I will primarily focus on the embryonic stage, where my 

predecessor Dr. Nao Nakamura discovered a torsion of the embryonic dorsal midline 

that, like the adult abdominal phenotype, is always in the clockwise direction as viewed 

from the posterior. I will characterize the embryonic contraction patterns that occur just 
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before hatching, and that coincide with the rise of rotation in POMT mutant embryos. 

Finally, I will connect these contraction patterns to torque forces applied differentially to 

posterior and anterior segments of the embryo, and I will preliminarily connect aberrant 

contraction patterning to the rise of rotation in adult abdomens. 

 In chapter III, having revealed that rotation arises due to abnormal contraction 

patterning, I will examine the cellular requirement of POMT for maintaining correct 

contraction patterning and, by extension, posture. I will show that POMT is required in 

muscles, neurons, and possibly some epidermal cells, and I will primarily focus on the 

neuronal component of POMT function with some focus on muscle tissue. Specifically, I 

will demonstrate the importance of POMT in sensory neurons, and I will show that 

muscles in POMT mutants stiffen relative to their wild-type counterparts in correlation 

with the severity of rotation. Here I will also show that ectopic expression of POMT in a 

pattern involving muscles, neurons, and epidermis is sufficient to fully rescue rotation in 

both embryos and adults, further connecting the two developmental stages. 

 In chapter IV, I will examine genetic interactions between POMT and Dg in the 

rotation phenotype, and I will show that while mutations aggravate POMT-related 

phenotypes, they are not sufficient to cause rotation, suggesting that other POMT targets 

are involved. I will examine the role of one recently discovered mammalian POMT 

target, receptor protein tyrosine phosphatase. I will show that it is modified in the 

presence of POMT in vivo, and that like Dg, it interacts genetically with POMT to 

aggravate rotation phenotypes.  
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Although human WWS patients do not experience abdominal torsion, these 

studies will help shed light on the symptoms they do experience. Clinical features of 

WWS and MEB caused by defects in the POM pathway genes commonly include 

abnormal muscle contractions (66,67), and significant evolutionary conservation of the 

POM pathway in animals suggests an intriguing possibility that its role in sensory 

neurons to control contractions may be conserved in vertebrates. Further studies in 

Drosophila and other organisms should shed light on evolutionary conservation of 

mechanisms underlying the role of O-mannosyl glycans in regulating coordinated 

muscle contractions and axonal connectivity, which will potentially lead to new 

diagnostic and therapeutic applications for treatment of diseases associated with POM 

abnormalities. 
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CHAPTER II 

THE MECHANICAL PROCESS UNDERLYING THE RISE OF TORSION 

PHENOTYPES IN POMT MUTANT DROSOPHILA 

 

2.1 Introduction 

The abdominal rotation phenotype of adult Drosophila has been known since the 

early 1900’s (68), though only recently have rt and tw genes been positively identified as 

encoding POMT1 and POMT2 homologues, respectively (69,70). How rotation arises 

and why it is always in the same direction remains largely unknown. In this chapter I 

will examine the gross physiological underpinnings of the rise of rotation. 

Previous experiments have demonstrated that abdominal rotation in rt and tw 

mutants can be fully rescued by a pulse of ubiquitous overexpression of POMT1 or 

POMT2, respectively, during late larval to early prepupal stages (71). Since the early 

prepupal stage represents the latest time at which rescue can occur, these data suggest 

that the critical event or events related to torsion of abdominal segments occurs during 

this developmental stage. However, the opaque nature of the pupal shell makes 

examination of the biological processes underlying rotation difficult to carry out. 

Drosophila embryos undergo many of the same developmental processes as 

pupae, including muscle formation, neurogenesis (or in pupae, remodeling), and 

coordinated muscle contractions (72-74). Embryos, as opposed to pupae, are nearly 

transparent and therefore much more amenable to detailed analysis of developmental 

mechanisms. Here I analyze the function of POMT genes in Drosophila embryogenesis. 
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In collaboration with Dr. Nao Nakamura I describe a previously unknown embryo 

torsion phenotype that is reminiscent of the abdomen rotation in adults.  

The torsion phenotype arises during a series of peristaltic muscle contractions in 

the late embryo. My analyses of muscle contraction waves revealed a directional rolling 

behavior of embryos inside the eggshell, which uncovered a novel chirality marker in 

Drosophila development. My results indicate that at least two contraction modes exist in 

Drosophila embryos (here designated as type 1 and type 2), and that each mode of 

contraction results in differential rolling of anterior and posterior segments. Type 1 

contractions correlate with accumulation of counterclockwise torsion of posterior 

segments, while type 2 contractions have the opposite effect. Thus type 1 and type 2 

contractions exist in a dynamic equilibrium to maintain straight body posture. Here I 

show that POMTs are involved in coordination of muscle contractions, and based on my 

results, I propose a model that explains the connection between the defect in muscle 

contractions and the torsion phenotype of POMT mutant embryos. Finally, I show 

preliminary data indicating that a similar mechanism may exist in pupae, leading to the 

abdominal rotation observed in adults. These preliminary data will be further 

corroborated in chapter III. 

 

2.2 Materials and Methods 

Drosophila stocks  

The mutant alleles for rt and tw were previously described (69,75): tw
1
is a 

hypomorphic allele; rt
2
, rt

p
, and rt

571
, are strong hypomorphic alleles that are close to 
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amorphs. All experiments involving rt mutants used rt
p
 homozygotes unless otherwise 

specified. MHC-GFP line was a gift from Cynthia Hughes (76). Other mutant and 

transgenic strains were obtained from the Bloomington Drosophila Stock Center, 

Indiana University. 

Fluorescent staining and microscopy 

Embryos were dechorionated, fixed and dissected manually from the vitelline 

membrane according to published protocols (77). They were stained with Alexa-488-

conjugated phalloidin (Molecular Probes) using 1:200 dilution. Digital images were 

obtained using Zeiss Axioplan 2 fluorescent microscope with the ApoTome module for 

optical sectioning. AxioVision and ImageJ software were used for 3D reconstruction and 

Z-projections of fluorescent samples. 

Live imaging of embryonic tissue  

A GFP-tagged myosin heavy chain (MHC) was expressed in wild-type, POMT 

mutant, and senseless mutant backgrounds. On any given day, embryos were collected 

within 18 hours of egg laying, and those that had air-filled trachea upon initial 

examination were discarded. Fifteen minutes later, stage 17 embryos with air-filled 

trachea and no obvious midline misalignment were collected and placed on a slide with 

the dorsal appendages up. Muscle contractions were recorded by a Hamamatsu ORCA-

Flash4.0 CMOS digital camera for 1-2 hours using a X-Cite BDX LED with an emission 

max of 460 nm and an ET 525/50 emission filter on a Zeiss Examiner D1 microscope. 

Videos were analyzed using ImageJ software.  
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Rolling was assessed by measuring the average distance from the trachea to the 

body axis of symmetry before and after each contraction, and was measured only for 

contractions during which no other movement, such as head wagging, was present. 

Muscle midline angle was measured by selecting points halfway between left and right 

dorsal muscles or trachea, drawing a line connecting those points, and measuring its 

angle relative to the body axis of symmetry. The body axis of symmetry was estimated 

by drawing a line between the anterior and posterior tips of the embryo. An angle greater 

than 2
o
 was scored as “having torsion,” as the difference between WT and mutant 

embryos became statistically significant at this point. 

For GFP-intensity analysis, cross-sections 5 microns wide and 25 microns apart 

each were selected along the anterior-posterior body axis. A baseline for each cross-

section was established as average intensity during the time between contraction waves. 

The most anterior and posterior cross-sections, as well as a cross-section halfway 

between anterior and posterior ends of the embryo, were used for assessment of muscle 

shortening. Integrated fluorescence intensity was measured for every frame of each 

cross-section and normalized to the baseline. Muscle shortening was estimated by 

increase in GFP intensity that occurs as muscle contractions bring more GFP into the 

focal area. Anterior intensity was divided by posterior intensity to produce a ratio.  

Pupal and adult Drosophila imaging and analysis 

 Wild type and mutant pupae were mounted on slides with the left lateral side up. 

They were imaged using a microscope-mounted Zeiss Axiocam MRc5 color camera. 

Adult hearts were imaged in wild type and rt
-
 flies expressing tdTomato in the heart. 
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Male flies were incubated for 5 days after hatching at 30
o
 C, with food being changed 

after 3 days and no more than 5 flies to a vial. Prior to imaging, flies were transferred to 

vials without food and anesthetized with FlyNap® for 1 minute. They were mounted 

dorsal side up and hearts were imaged directly through the cuticle by fluorescence on a 

Zeiss Axiovision 2 microscope with a rhodamine reflector module. Videos were taken 

on an Axiocam HRm camera and analyzed in ImageJ. For analysis of contraction 

directionality, a region 1 pixel thick was taken from the anterior portion of the heart (just 

after the conical chamber) and a similar region from the posterior end. Cardiograms 

were created for each region by lining up each frame in the video. Anterior and posterior 

regions were aligned and points of greatest contraction were highlighted. If greatest 

contraction occurred at the posterior first, the wave was scored as “forward,” and it was 

scored as “backward” if anterior contracted first. Heart diameter was scored based on the 

average size of cardiograms in diastolic and systolic states in the anterior region.  

Statistical analysis 

Statistical analyses were performed by one-way ANOVA with Tukey-HSD post-

hoc comparisons for significance using online software (statistica.mooo.com). For bar 

graphs and box plots, data for each bar or box in the graph were analyzed as a separate 

column. In all figures, 1 asterisk represents a p-value less than 0.05, 2 asterisks represent 

a p-value of less than 0.01, and 3 asterisks represent a p-value less than 0.001. 
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2.3 Results  

POMT mutant Drosophila embryos accumulate torsion of the muscle midline over 

the course of peristaltic muscle contraction waves 

Previous studies of rt and tw mutants have mostly concentrated on adult and 

larval stages, while the effect of POMT mutations on embryonic development has not 

been well characterized (60,61,69,78). With the rationale that potential phenotypes of 

POMT mutants at early developmental stages could shed light more directly on 

pathological mechanisms associated with POM defects, we decided to focus on 

embryonic stages. We first sought to determine whether embryos had any rotation 

phenotype. After fixing embryos and staining with labeled phalloidin, my predecessor 

Dr. Nao Nakamura reported that both rt and tw mutants manifest a torsion of the dorsal 

midline such that the posterior appears to be twisted in the clockwise direction relative to 

the anterior, just as abdominal segments are twisted in adults (Fig. 5). This “embryonic 

torsion” phenotype becomes most obvious in late stage 17, the last stage of embryonic 

development. The penetrance of the phenotype in rt
2/571 

mutant embryos was found to be 

32% (N=19) at an early phase of stage 17 (stages 17a-e), and 100% (N=24) at the last 

phase (stage 17 f (79)). Torsion is entirely absent in stage 16. Since muscle formation is 

already complete by stage 16, and since penetrance of the phenotype increases as mutant  
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Figure 5—Torsion of embryonic dorsal midline in POMT mutants occurs in late 

stage 17. Data of Dr. Nao Nakamura. 

 
Representative examples of wild type, tw

-
, and rt

-
 embryos at various developmental stages. In wild type 

embryos, the dorsal midline remains straight through the latest developmental stages (top). In POMT 

mutants, the midline forms straight at stage 16 but acquires torsion at the latest embryonic stages, 17e-f. 

Scale bar is 100 um. 

17e-f 

16 

17a-d 

17e-f 
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embryos age, these data suggest that torsion arises not due to a defect in muscle 

development, but due to a physiological defect.  

During late stage 17, embryos undergo peristaltic waves of muscle contractions 

that can initiate either at the posterior or anterior end of the embryo, and progress to the 

other end. Although episodic partial contraction waves begin at about 17 hours after egg 

laying, the first complete waves of forward peristalsis begin at approximately 18.25 

hours after egg laying (80), minutes before tracheae fill with air. Since only 3 or 4 

peristaltic contractions occur before tracheae fill, and then only sporadically, I chose 

tracheal filling as a convenient marker to begin recording waves. I initially analyzed 

contraction waves in transgenic lines expressing a GFP-labeled myosin heavy chain by  

live imaging, and observed propagating waves of GFP intensity progressing both from 

the posterior to the anterior and vice versa (Fig. 6).  

To test whether these contractions are involved in the rise of midline torsion, I 

measured the angle between the midline and the body axis of symmetry immediately 

before and after each contraction. I observed that in wild type embryos, although the 

midline position changed as the embryo rolled within its shell, it remained nearly 

parallel to the eggshell axis of symmetry through all waves. In POMT mutants, on the 

other hand, the midline generally moved further to the left at the anterior than at the 

posterior. This yielded the apparent clockwise torsion of posterior segments (Fig. 7), 

which was really counterclockwise torsion of anterior segments.  
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Figure 6—Forward and backward contraction waves of muscle contractions in 

Drosophila embryos. 
 

Contractions can progress from posterior to anterior (forward) or from anterior to posterior (backward). 

Images are inverted monochromes. Dark pixels correspond to high GFP intensity. Red arrowheads 

indicate contraction wave position. Each contraction occurs over the course of ~20 seconds. Scale bar is 

100 um. 
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Figure 7—Torsion accumulates over the course of peristaltic contractions. 
 

The top panel shows the angle of the dorsal midline (solid white line) relative to the eggshell axis of 

symmetry (dotted yellow line) after the designated number of contractions. The bottom panel is a measure 

of average midline angle in wild type, tw
-
, and rt

-
 mutants after the designated number of contractions. N = 

10 embryos for WT and tw
-
, 5 for rt

-
. Scale bar is 100 um. Error bars are SEM. Wild type and mutants are 

statistically different from POMT mutants after 5 contractions. 
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The accumulated torsion remained through hatching and into the first instar 

larval stage (Fig. 8A), indicating that the torsion eventually becomes fixed, perhaps due 

to hardening of the cuticle. Interestingly, the midline torsion is relieved in 2
nd

 instar 

larvae (Fig. 8B), likely due to the formation of a new cuticle that allows muscles to 

return to their proper posture. Consistent with previous results showing that ectopic 

POMT expression in early pupal stages can rescue rotation, this demonstrates that 

rotation in adults must rise independently from embryonic rotation, though perhaps by 

similar mechanisms. These results also demonstrated that the embryonic body torsion 

defect arises in mutants during peristaltic muscle contractions and revealed a correlation 

between the increase of torsion and number of contraction waves generated by mutant 

embryos, which suggested that contraction waves could induce torsion in mutant 

embryos.  

Abnormal contraction patterning in POMT mutants correlates with the rise of 

torsion 

To further test our hypothesis, I began to search for differences between 

contractions in wild type and mutant embryos. We hypothesized that individual waves in 

mutants may have defects in their progression that ultimately lead to torsion. Initially we 

hypothesized a left-right asymmetry of muscle contractions: if the wave on the left of the 

midline were more powerful at the anterior than the wave on the right, for example, 

rolling might result. To test this, I used GFP intensity as a marker of muscle shortening 

during contractions. As labeled muscles shorten, more fluorescent molecules accumulate 

in the same focal area, and thus increased GFP intensity can serve as a readout of muscle 
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shortening (81). When I plotted intensity on left and right sides of the embryo, I did find 

some waves with greater shortening on the left side of the embryo than the right.  

 

 

A      B 

 

Figure 8—Persistence of torsion into larval stages. 

 
A) Recently hatched 1

st
 instar larvae. POMT mutants continue to have midline torsion with ~90% 

penetrance. Arrows indicate distance from the midline to the edge of the body on right and left sides to 

help illustrate midline torsion. B) At the second instar stage, torsion is gone. Scale bars are 100 um.  
 

 

However, waves more frequently progressed with similar strength on both sides of the 

midline and were just as frequently overly strong on the right side as on the left. 

Additionally, wild type embryos experienced similar frequencies of left-strong and right-

strong contractions as mutants, and no embryos experienced significant abnormalities in 

contraction synchronization on left and right sides (Fig. 9). To further verify this result, I 

directly measured the length of muscle segments in relaxed and contracted states on the  
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A 

 

B         C 

 

Figure 9—Left-right synchronization of contractions. 
 

A) Representative graphs of GFP intensity over several contractions on left and right sides (red and blue, 

respectively) of the embryo. The two sides are synchronized. B and C) Graphs of average segment lengths 

in relaxed or contracted states on left and right sides for posterior segment A7 (C) and anterior segment A2 

(D). No significant differences were observed within a genotype. Error bars are SEM. N = 5 embryos per 

genotype, and 5 waves per embryo at both posterior and anterior positions. 
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left and right side of the midline in both anterior and posterior segments. I found no 

difference in muscle shortening on left or right sides in wild type or mutant embryos 

(Fig. 9).   

Having found no discernible differences between individual contractions in wild 

type and mutant embryos, I next hypothesized that a difference in contraction patterning, 

rather than in characteristics of individual contractions, may help explain torsion. As 

discussed previously, contraction waves can propagate in the forward direction 

(posterior to anterior) or the backward direction (anterior to posterior). I quantified 

percentages of backward and forward waves in wild type and mutant embryos and found 

that indeed mutant embryos have a slight but significant increase in percentage of 

backward waves (Fig. 10). Interestingly, during this analysis I also noted that while 

some waves simply progressed from one end of the embryo to the other (here designated 

“type 1 waves”), other waves would initiate in the backward direction, halt after partial 

propagation, and would then be met and swept back to the anterior by a forward wave 

(Fig. 11A-B). I designated these more complex wave forms “type 2 waves.”  

Type 2 waves are much more abundant in mutant embryos than in wild type, 

with approximately one type 2 wave per type 1 wave in mutants, as opposed to one type 

2 wave per three type 1 waves in wild type (Fig. 11C). The backward component of type 

2 waves appears to account for the increase in overall percentage of backward waves in 

mutants. To examine whether the type 2/type 1 ratio might be related to torsion, I again 

measured the midline angle relative to the body axis of symmetry before and after each 

wave as in figure 1, but this time I discriminated between wave types. I calculated the 
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average change in the angle that occurs after a wave and found that irrespective of 

genotype, type 1 waves correlate with a slight apparent counterclockwise torsion of 

posterior segments, while type 2 waves strongly correlate with apparent clockwise  

 

 

 

Figure 10—Difference in backward/forward contraction patterning in wild type vs. 

mutant embryos. 

 
POMT mutants have increased frequency of backward contractions relative to wild type. Asterisks 

indicate statistical difference between the marked genotype and wild type. N = 10 embryos per genotype 

and at least 10 contractions per embryo.
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A 

 

B 

 

Figure 11—Embryos experience two wave modes, with “type 2” waves being overly 

abundant in POMT mutants. 

 
A and B are representative examples of type 1 and type 2 waves, respectively. Type 1 contractions 

proceed from one end of the embryo to the other. Type 2 contractions initiate at the anterior, halt before 

reaching the posterior, and are swept back to the anterior by a secondary wave. Red box in B indicates 

static overcontraction. Scale bars are 100 um. 
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C 

 

C shows percentage of waves that are type 1 in each genotype. Error bars are SEM. Asterisks are statistical 

significance relative to wild type. N = 10 embryos for each genotype and at least 130 total contractions per 

genotype. 

 

 

torsion (Fig. 12A). The correlation between type 1 waves and apparent counterclockwise 

torsion was present even when waves were subdivided into forward and backward 

directionality (Fig. 12B). I observed no “backward” type 2 waves- in which a halted 

forward wave is swept to the posterior by a backward wave- in any genotype, so no 

correlation could be made between “backward” type 2 waves and change in midline 

angle.  

 

Figure 11—Continued. 
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A 

  

B 

 

Figure 12—Correlation between contraction type and torsion. 

 
Type 1 contraction waves yield “counterclockwise” torsion (indicated by negative numbers) while type 2 

contractions yield “clockwise” torsion, regardless of genotype or contraction direction. A) depicts type 1 

vs. type 2 contractions, where both contraction types are statistically identical with themselves across 

genotypes, while each contraction type is significantly different from the other for all genotype 

comparisons. B) compares forward and backward type 1 waves, which always yield counterclockwise 

torsion. There are no statistical differences between genotypes or directions. Error bars are SEM. In A and 

B, N = 10 embryos for WT and tw-, and 7 for rt-, with a total of at least 20 contractions per wave type for 

each genotype. 
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Together these results indicate that torsion arises not as a result of changes in 

properties of individual contractions, but as a result of changes in the patterning of those 

contractions. While wild type embryos preserve correct embryo posture by maintaining a 

~3:1 type1/type2 ratio, an overabundance of type 2 waves in mutants correlates with 

accumulation of torsion. 

Torsion accumulates as embryos roll differentially due to chiral interactions and 

differential contraction strength 

 Next I wanted to better understand how each wave type might induce torsion in 

one direction or the other. I previously saw that both wild type and mutant embryos 

experience a shift in midline position during contractions as the embryo rolls within its 

shell (see Fig. 7). Additionally, I saw that both types of contractions typically result in a 

change in the midline angle, suggesting that some amount of rolling occurs in any given 

contraction, and that it is differential- that is, the rolling is stronger at either the anterior 

or posterior end of the embryo than at the opposite end.  

To better characterize embryonic rolling, I measured the change in embryonic 

positioning within the shell during type 1 contractions as measured from the middle of 

the anterior-posterior axis. I found that regardless of genotype, embryos rolled in 

correlation with the direction of contraction waves. During forward waves embryos roll 

to the left as viewed from the posterior, while during backward waves they roll to the 

right (Fig. 13 A-B). When I quantified the average distance rolled per contraction, I 

found that both forward and backward waves correlated with an average distance of ~6  
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A 

 

B 

 

Figure 13—Embryos roll within their shells in a direction that depends on 

contraction directionality. 

 
Representative images of embryos rolling to the left during forward contractions (A) and to the right 

during backward contractions (B). Red arrowheads indicate tracheal position. Scale bars are 100 um. 
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C 

 

 

 
C is average distance rolled per contraction in all genotypes for both forward and backward contractions. 

Boxes represent interquartile range, lines represent mean values, and error bars are standard deviation. N = 

10 embryos for WT and tw
-
, and 7 for rt

-
, and 5 contractions of each type per embryo.  

 

 

um, but in opposite directions (Fig. 13 C). It thus appears that during contractions, 

embryos experience a chiral interaction, perhaps between cuticle and eggshell, which 

induces rolling.  

 If indeed a chiral interaction is responsible for rolling, one would expect stronger 

contractions, or contractions with greater muscle shortening, to correlate with a greater 

distance rolled. Thus given that type 1 contractions induce leftward rolling as viewed 

from the point of wave initiation, and that they correlate with apparent counterclockwise 

torsion of posterior segments, I would expect decreasing amplitude as the wave 

progresses. In forward waves, such a decrease would produce greater rolling to the left at 

the posterior (where the wave is stronger) than at the anterior, resulting in clockwise 

Figure 13—Continued. 
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torsion of the anterior. Backward waves of this form would induce anterior segments to 

roll a greater distance to the right than posterior segments, giving the same net result on 

torsion as forward waves (See model in Fig. 17 at the end of the chapter). The backward 

component of type 2 waves could have a cancelling effect on motion of posterior 

segments, allowing anterior segments to roll further to the left than posterior segments, 

resulting in a net apparent clockwise torsion (See Fig. 17). 

Given these predictions, I measured intensity of GFP at posterior, middle, and 

anterior segments during type 1 and type 2 waves. In general type 1 waves did in fact 

diminish in intensity as they progressed, regardless of genotype or wave direction (Fig. 

14). Interestingly, the forward component of type 2 waves most frequently either 

remained relatively constant in intensity or else increased slightly as waves progressed 

(Fig. 14). Thus in addition to any potential cancelling effect of the backward component 

of these waves, it appears that type 2 waves may induce stronger leftward rolling at the 

anterior than at the posterior. Cumulatively these results are consistent with the 

hypothesis that embryos roll differentially due to changes in strength of chiral 

interactions as contractions progress. 
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A B 

C 

Figure 14—Contraction strength changes as waves progress. 

A and B are examples of type 1 and type 2 waves, respectively. In B the bracket indicates the first 

(backward) phase of the wave. C is amplitude of the latter portion of the wave normalized to the posterior 

amplitude. N = 10 embryos for WT, and 8 each for tw
-
 and rt

-
, with at least 20 waves of each type per 

genotype.
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Drosophila experience abnormal muscle contractions during the pupal and adult

  

Finally I wished to elucidate what, if anything, is the connection between the 

embryonic and adult phenotypes. Since the adult phenotype can be rescued by ectopic 

expression of POMT up through early prepupal phases (71), we first examined mutants 

at this developmental stage. Although it is difficult to directly observe contractions in 

pupae due to their opaque nature, we did find that mutant pupae develop a bulge of mid-

posterior lateral muscles (Fig. 15). This bulge was 100% penetrant in mutants and 

underlain by bulges in the corresponding muscles (not shown). The bulge was entirely 

absent in wild type pupae. It is reminiscent of the overcontraction in the initial phase of 

type 2 waves (see Fig. 11 A, red box). 

To further examine the effect of POMT on muscle contractions in late stages, we 

analyzed Drosophila adult hearts. The red fluorescent protein tdTomato was expressed 

using the heart-specific dHand-Gal4 driver in both wild type and rt mutant flies. This 

fluorophore is easily visible through the adult cuticle, allowing heart analysis in live, 

anesthetized flies. Drosophila hearts beat regularly without external stimulation, making 

them a good model for muscle contraction patterning. They take the form of a tube 

running along the anterior-posterior axis on the dorsal side, and like embryonic muscle, 

they undergo peristaltic contractions that can progress from anterior to posterior or vice 

versa. 

stages
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Figure 15—POMT mutant pupae experience muscle bulging. Data obtained in 

collaboration with Dr. Nao Nakamura. 

 
Bulging in POMT mutant pupae, indicated by the dashed box, is 100% penetrant. Arrows indicate bulging 

region in close-ups. Scale bars are 500 um. 
 

 

Previous studies have shown that in wild type flies, heart beats progress from 

posterior to anterior in ~60% of contractions, and in the opposite direction in roughly the 

remaining 40% (82). My analysis returned similar results, but found that in rt mutants, 

hearts beat from anterior to posterior nearly 60% of the time (Fig. 16). Additionally, 

when I measured heart diameters I found that rt
-
 hearts are significantly smaller than 

their wild type counterparts in both the diastolic (relaxed) and systolic (contracted) states 

(Fig. 16). Although it is currently unclear exactly why hearts might be smaller in POMT 

mutants, I hypothesize that they are perpetually overcontracted, or in other words, they 

never fully relax. Together my data show that Drosophila experience abnormalities of 

muscle contractions at various developmental stages. It may be, then, that similar 
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aberrant contraction patterns contribute to abdominal rotation in adults as in embryos, 

though more data are needed to verify this hypothesis. Further evidence connecting adult 

and embryonic phenotypes will be presented in chapter III. 

 

 

A 

 

B 

 

C 

 

Figure 16—Heart contraction defects in POMT mutant Drosophila. 

 
A is a representative fluorescent heart imaged through the cuticle of a live adult fly. Blue boxes represent 

cross-sections analyzed in B. B is a stack of anterior (top) and posterior (bottom) sections of the heart. Red 

and green lines are moments of full contraction. If red precedes green, the contraction is posterior to 

anterior, vice versa if green precedes red. C is an overlay of wild type (red) and rt
-
 (purple) hearts 

demonstrating smaller diameter of POMT mutant hearts.
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D     E 

 

F 

 

 

D demonstrates that heart rate is not changed in mutants. E shows a significant change in directionality of 

heart beats and F shows a significant reduction in both diastolic and systolic diameters for mutants. N=10 

hearts for each parameter and at least 20 beats each. Error bars are SEM. 

 

 

 

 

 

 

 

 

Figure 16—Continued. 
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2.4 Discussion 

In this chapter I investigated the mechanism underlying embryonic torsion in POMT 

mutants using a live imaging approach. I discovered a role for POMT in regulation of 

contraction wave patterning, arriving at the conclusion that the embryo torsion 

phenotype arises due to aberrant coordination of individually normal contraction waves. 

The data indicate that muscle contractions dynamically control embryo body posture in 

all embryos, regardless of genotype, by inducing differential rolling of anterior and 

posterior segments relative to one another. Abnormal contraction patterning, rather than 

abnormal characteristics of individual contractions, gives rise to an apparent 

counterclockwise torsion of posterior muscle segments in POMT mutants. I refer here to 

“apparent counterclockwise torsion of posterior segments” several times in keeping with 

the original observation of rotated adult abdomens. I use this phrasing, however, because 

it appears that in reality it is the anterior, not the posterior, that moves. Thus here we 

have an example of the proverbial “tail wagging the dog.” It is unclear whether anterior 

or posterior segments move more in adult torsion. 

We found that embryonic muscles are properly aligned when they initially form, 

even in mutants. Torsion only arises once peristaltic contractions begin in stage 17, and 

rises rapidly thereafter (Figs. 5-7). This suggested that there is a difference between 

contractions in wild type and mutant embryos. However, my analysis suggests that 

individual contractions of the same type proceed similarly and have similar effects in 

both wild type and mutant embryos (Figs. 9, 11-14). Left-right asymmetry in contraction 

waves is rare even in mutants, equally present on both sides, and equally present in wild 
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type and mutant embryos (Fig. 9), indicating that left-right asymmetry of contractions is 

not responsible for the rise of torsion. Indeed, mutant embryos appear capable of 

generating entirely normal contraction waves on an individual basis.  

The difference, then, seems to lie in wave patterning. Here I have classified two 

different types of waves, designated type 1 and type 2 (Fig. 11). Each individual 

contraction wave has an effect on embryonic posture, with type 1 waves corresponding 

to an apparent counterclockwise torsion of posterior segments and type 2 waves 

corresponding to apparent clockwise torsion, irrespective of genotype (Fig. 12). I 

therefore propose that type 2 waves exist in wild type flies as a mechanism to 

compensate for the counterclockwise torsion that would accumulate over the course of 

several type 1 contractions. The overabundance of type 2 waves in POMT mutants 

underlies the accumulation of clockwise torsion.   

Why might different wave types cause torsion in different directions? While 

examining the effects of contraction waves, I noted that during contractions the position 

of the muscle midline changes in both wild type and mutant embryos showing that 

during peristalsis embryos roll within their shells. Further analysis showed that the 

direction of contractions correlates with the direction of rolling, with forward 

contractions causing a roll to the left and backward contractions causing a roll to the 

right (Fig. 13). Thus embryonic rolling is always left-handed when viewed in the 

direction of wave propagation. This observation unveiled an intrinsic chiral interaction 

that governs embryo rolling during peristaltic muscle contractions. I liken these 

interactions to the turning of a threaded screw. As the screw is pushed forward the thread 
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applies a torque and causes the screw to turn in one direction. If the screw is pulled out, 

it will turn in the opposite direction even though the threading has not changed, because 

its direction of propagation has changed. Although the exact biological mechanism 

behind this observation in Drosophila embryos remains unknown, it has been observed 

in Lepidoptera and other insects that the eggshell exhibits a left-handed chirality of 

protein structures on the macro scale (83), and that C. elegans have a similar left-handed 

chirality in the cuticle (84). A comparable chiral structure in Drosophila eggshell and/or 

cuticle could account for the left-handed rolling observed during contractions.  

Here I propose a model that explains the relationship between rolling and torsion 

based on the assumption that rolling forces correlate with the strength of contractions. If 

each muscle segment behaves as a semi-independent screw, and contraction strength 

varies from one segment to another, then differential rolling could result. Type 1 waves 

show on average greater muscle shortening in the beginning of a wave than at the wave’s 

end (Fig. 14), and thus my model predicts that these waves should induce stronger 

rolling in the beginning and weaker rolling in the end of propagation. Importantly, while 

opposite-direction waves generate rolling in different directions, the differential torque 

force is predicted to induce apparent counterclockwise torsion of posterior segments, 

irrespective of wave direction (Fig. 17). Indeed, this prediction is in agreement with my 

observations that type 1 waves propagating in any direction correlate with overall 

accumulation of a counterclockwise torsion of the embryonic posterior (Fig. 12).  This 

model is also consistent with the fact that biphasic (type 2) waves generate a clockwise 

torsion of posterior (or counterclockwise torsion of anterior) segments. According to my 
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observations, type 2 waves induce differential rolling mostly at the anterior part of the 

embryo, during the end of the wave. This is presumably because the anterior experiences 

stronger contractions in the second phase of the wave, as compared to the initial phase 

that induces rolling in the opposite direction. Rolling is essentially halted at the posterior 

end of the embryo, where the backward and forward moving waves collide and cancel 

each other’s effect, inducing prolonged static contractions. (Fig. 11, 17).  As a result, 

only the anterior part of the embryo experiences a significant net roll, producing a 

cumulative apparent clockwise torsion of the embryonic posterior (Fig. 17).  

Our experiments revealed that POMT mutations affect body posture by changing 

the overall pattern of contraction waves, while rolling behavior and differential torque 

associated with individual waves remain essentially unaffected.  Therefore, POMT 

mutations do not break the symmetry of processes that control body posture. Instead, 

they uncover the intrinsic chirality underlying these processes by failing to compensate 

properly for it to ensure proper alignment of body segments. Our results shed light on a 

unique physiological strategy employed by an animal to counterbalance an undesired 

asymmetry when the overall developmental outcome needs to be symmetrical. The 

dynamic correction for chiral torsion described here provides, to my knowledge, the first 

example of a “chirality-neutralizing” mechanism that monitors and maintains the 

symmetry of a developing system affected by asymmetric forces. Thus I have identified 

a new asymmetric marker associated with Drosophila development, an embryo rolling 

behavior induced by peristaltic waves of contraction (Fig. 13).  
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Figure 17—Model for the rise of torsion. 

 
Type 1 contraction waves decrease in strength as they progress, yielding differential rolling. Segments at 

the beginning of the wave roll further than segments at the end, leading to counterclockwise torsion of 

posterior segments. In type 2 waves, posterior rolling is effectively canceled, leading to net leftward roll of 

anterior segments and apparent clockwise torsion of posterior segments. 
 

 

How is this chirality related to other known markers of left-right asymmetry? 

While LR asymmetry affects numerous aspects of the development and physiology of 

more complex animals, LR asymmetry in Drosophila is relatively simple and its effects 

appear to be limited to morphogenesis of some tubular structures, such as male 

terminalia rotation and looping of gut and testis (85). These LR asymmetries are thought 

to depend on cellular interactions and common molecular regulators such as Myosin ID 
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(85).  It is tempting to speculate that the rolling asymmetry may be “hardwired” in 

intrinsic molecular chirality of some structures of the eggshell, cuticle, or muscles, and 

thus it is possible that embryo rolling and other known LR markers have different 

mechanistic bases. However, further studies are required to reveal the relationship 

between mechanisms of asymmetric rolling and other LR markers. 

Up to this point I have shown the mechanism by which torsion arises in embryos. 

This torsion has the same directionality as the adult phenotype, suggesting that the two 

may arise due to similar processes. To assess this possibility, I first monitored the 

progression of torsion through the developmental stages of the Drosophila life cycle. 

The torsion that arises in the embryonic stage persists into the 1
st
 instar larval stage, 

though by the 2
nd 

instar stage it has essentially disappeared (Fig. 8). I hypothesize that 

although midline angle is initially dynamic during embryonic peristalsis, it becomes 

static as the cuticle thickens and hardens prior to hatching (86). The hardened cuticle 

holds the midline in its torqued posture throughout the first instar stage. The 1
st
 instar 

cuticle is lost upon molting during the transition to the second instar stage, and the new 

cuticle does not harden until after ecdysis (87), potentially allowing muscles to resume 

normal posture. Thus it seems that while embryonic and adult torsion may arise via 

similar mechanisms, they do so during two independent events. In other words, an 

embryo could develop torsion while going on to have a straight abdomen as an adult, or 

an embryo could hatch with a straight midline and still have a twisted abdomen as an 

adult, if POMT is ectopically expressed during the relevant developmental stage. 

Consistent with this hypothesis is the previous observation that rotation in adult 
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abdomens can be rescued by a ubiquitous pulse of POMT expression limited to late 

larval or early prepupal stages (71).  

To assess whether there is any similarity between the rise of torsion in embryonic 

and adult stages, I examined wild type and POMT mutant Drosophila at the latest 

developmental stage during which ectopic POMT expression can rescue adult torsion- 

the early prepupal stage. Intriguingly, coordinated waves of abdominal muscle 

contractions that are thought to facilitate the prepupal-pupal transition occur during 

metamorphosis (88-90), suggesting the possibility that abnormal muscle contractions 

could be present at this critical stage. I found that both tw
-
 and rt

-
 pupae exhibit a bulge 

of lateral muscles near the posterior, while this bulge is not present in wild type pupae, 

suggesting that there may indeed be abnormal contraction coordination in pupae as well 

as embryos. 

Further corroborating the notion of abnormal contraction patterning across 

multiple developmental stages, I observed that adult Drosophila hearts spend an 

inordinate amount of time beating from anterior to posterior in mutants. This 

phenomenon is not directly related to torsion, since abdominal torsion was already 

present when these observations were made. Nevertheless, these results together strongly 

indicate that contraction patterning is compromised in late stages of the Drosophila life 

cycle, and this may be responsible for abdominal torsion in adults. Further studies are 

needed to test this hypothesis. 

O-mannosyl glycans play important developmental roles in organisms ranging 

from Drosophila to humans. Clinical feature of WWS and MEB syndromes caused by 
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defects in POM pathway genes commonly include abnormal muscle contractions (66). 

Interestingly, downregulation of POMK, a kinase that phosphorylates O-linked mannose 

and is critical in the formation of laminin-binding extended O-mannosyl glycans on 

Dystroglycan, causes abnormality in coordinated muscle contractions in zebrafish 

embryos (67).   Thus further studies in Drosophila and other organisms may shed light 

on evolutionary conservation of mechanisms underlying the role of O-mannosyl glycans 

in regulating coordinated muscle contractions, which will potentially lead to new 

diagnostic and therapeutic applications for diseases associated with POM abnormalities. 

 



 

53 

 

CHAPTER III 

CELL-SPECIFIC REQUIREMENTS OF POMT EXPRESSION FOR PROPER 

DEVELOPMENT OF POSTURE 

 

3.1 Introduction 

 In the previous chapter I discussed the mechanical means by which rotation 

arises in POMT mutant Drosophila embryos: an abnormal pattern of peristaltic 

contractions leading to differential rolling of anterior segments relative to posterior. I 

also tentatively connected that mechanism to the adult phenotype, showing that at the 

critical time for maintaining proper abdominal posture, POMT mutant pupae and adults 

experience abnormal contractions. In this chapter I will investigate the cellular POMT 

requirement for maintaining normal contraction patterning and posture. 

Peristaltic contractions are controlled by a circuit in which the central nervous 

system (CNS) sends signals to the muscles, while the peripheral nervous system (PNS) 

returns information about the result to the brain, allowing the brain to determine what to 

do next. In the absence of PNS feedback, contractions soon halt entirely at both 

embryonic and larval stages (91). When PNS feedback is present but impaired, embryos 

experience abnormal contraction patterning and locomotion (76,91,92). Additionally, 

some studies have shown that Dg is O-mannosylated in the PNS (93,94), though the role 

of POMT functionality in the PNS as it relates to muscular dystrophy or other 

physiological abnormalities has not been well studied. Thus I hypothesize that POMT in 

the PNS facilitates feedback to the CNS and is required for proper contraction 
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patterning. I will therefore examine the role of POMT in the PNS and other tissues by 

ectopically expressing POMT in mutant backgrounds in various expression patterns. My 

results demonstrate that POMT is required in several tissues, including PNS, muscles, 

and possibly epidermis and CNS to maintain proper posture. Di Antonio previously 

showed that mutations in dPOMT1 (rt) lead to defects in synaptic transmission at the 

neuromuscular junction, suggesting an additional requirement for POMT in the CNS 

(63). However, we were not able to duplicate these results in dPOMT2 (tw) mutants, 

indicating that while POMT may be important in the CNS for other biological functions, 

it may not be directly involved in torsion. Thus while I do not rule out the necessity of a 

CNS component of POMT expression, here I will focus primarily on other cellular 

requirements.  

I will first focus on the role of POMT in the PNS. I report that axons of class IV 

dendritic arborization (da) neurons experience morphological defects in POMT mutant 

backgrounds, and that these defects can be rescued by POMT overexpression limited to 

those neurons. These results are consistent with the role of class IV and other da neurons 

in proprioception, mechanosensation, and ultimately larval locomotion (95,96). I also 

demonstrate that compromising the PNS by inhibiting its development leads to abnormal 

embryonic contraction patterns and corresponding posture defects, as well as an 

aggravation of abdominal rotation in adult POMT mutants.  

Interestingly, while I will show that ectopic POMT expression in muscle is not 

sufficient to rescue posture on its own, it is required for complete rescue. Occasional 

deranged and missing muscles were reported in POMT mutants, but these defects are not 
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fully penetrant, present at low frequency and not bilaterally biased (60,61,69), and thus it 

was previously concluded that the misalignment of body segments is unlikely to be 

caused by these muscle defects (69). Some forms of muscular dystrophy are associated 

with a stiffening of muscles (97-99), so I will examine muscle stiffness in POMT 

mutants in collaboration with Zhaokai Meng and Dr. Vladislav Yakovlev of the 

Biomedical Engineering department using a technique known as Brillouin spectroscopy. 

Here I report a correlation between muscle stiffness and rotation severity. In chapter IV I 

will demonstrate that stiffness does not cause rotation, however, suggesting that muscle 

stiffening may aggravate torsion, but is not the only underlying cause.  The results in this 

chapter are shown for both embryonic and adult torsion, further suggesting a connection 

between the underlying mechanisms of the two stages. 

  

3.2 Materials and Methods 

UAS-GAL4 mediated rescue experiments and embryonic torsion scoring 

In experiments investigating spatial requirements of POMT activity, the 

expression of a UAS-tw or a UAS-rt transgenic construct (71) was induced with each of 

the drivers described. Flies were scored for torsion at embryonic and adult stages, and 

for contraction patterning at the embryonic stage as described in chapter II. All driver-

mediated rescue experiments included controls confirming that neither GAL4 drivers 

alone nor UAS-tw or UAS-rt alone influence the mutant phenotype. All flies were reared 

at 25
o
C in light and humidity-controlled environments as described previously (100). 
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Fluorescent staining and microscopy 

 Sens
-
 embryos were fixed, stained with Alexa-488 phalloidin, and imaged as 

described in chapter II. First and third instar larvae expressing GFP in the G14 

expression pattern with the muscle component removed by MHC-Gal80 (101,102) were 

dissected, fixed, and stained with rabbit α-GFP in a 1:800 dilution. Subsequently they 

were stained with goat α-rabbit in a 1:250 dilution, and imaged. 

For imaging of ventral ganglia, First and third instar larvae expressing tdTomato 

or tdGFP in the Ppk pattern (103), either in a wild-type, tw
-
, or rt

-
 mutant background, 

were collected. Brains were dissected, fixed in PBS with 4% paraformaldehyde, and 

stained with rabbit anti-dsRed or anti-GFP antibody (Clontech) in a 1:1000 dilution. 

Alexa-546 or Alexa-488-conjugated goat anti-rabbit was used as a secondary antibody in 

a 1:125 dilution. Stained brains were mounted on slides and imaged. To minimize 

potential errors, control and experimental samples were stained using the same master-

mix of antibodies and imaged with the same settings for camera, illumination, and 

microscope. Commissural branch thickness was measured for every branch in a given 

brain using ImageJ and averaged, and the collective average from a given genotype 

reported. Longitudinal tracts were scored as “missing” if the region where a tract was 

expected to be was less than 10% brighter than the average background of the image. 

Digital images were obtained using a Zeiss Axioplan 2 fluorescent microscope 

with the ApoTome module for optical sectioning. AxioVision and ImageJ software was 

used for 3D reconstruction and Z-projections of fluorescent samples. 
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Brillouin spectroscopy 

Third instar larvae were dissected dorsally and immediately mounted on slides in ice 

cold PBS. Embryos were mounted whole. Mounted samples were analyzed by a 

background-free Brillouin spectrometer developed by our collaborators in biomedical 

engineering (104-106). The Brillouin peak was detected by a CCD camera with a 60 s 

exposure time. Since the Stokes peaks were overlapped with an absorption band of the 

iodine cell used in the optical setup, they could not be measured. We therefore assessed 

the shift of anti-Stokes peaks only.  

 

3.3 Results 

POMT function is required in muscles, neurons, and possibly epidermis for proper 

body posture 

Since coordination of muscle contractions is partially controlled by PNS cells 

(91,92), we decided to investigate the role of PNS neurons in the embryonic muscle 

misalignment phenotype. To test the requirement for POMT function in different tissues, 

we applied a rescue strategy using UAS-GAL4-driven expression of a transgenic tw or rt 

construct in tw and rt mutants, respectively. Because simultaneous expression of MHC-

GFP in these embryos proved difficult, we instead scored torsion by the angle of 

tracheae relative to the eggshell axis of symmetry (Fig. 18 A). Similar to measurements 

of muscle midline, tracheae in wild type embryos all ran essentially parallel to the 

eggshell axis, while nearly all tracheae in tw embryos experienced apparent clockwise 

torsion at the posterior (Fig. 18 B). Adult torsion was scored quantitatively by measuring 
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the angle of the most posterior segment (A8) relative to the thorax axis of symmetry (See 

Fig. 4).  

In embryos we found that a general neuronal driver (ELAV-Gal4) and a driver 

specific for class IV da sensory neurons (Ppk-Gal4) were able to significantly rescue the 

torsion phenotype, while three different muscle-specific drivers that we tested (DMEF2-

GAL4, MHC-GAL4, and HOW-GAL4) could not mediate rescue (Fig. 18 B) (76,107-

109). These results indicated that POMT function is required in neurons, and specifically 

in class IV da sensory neurons, which supported our hypothesis that POMTs function in 

the PNS to ensure a proper feedback from these cells to maintain normal body posture.  

Interestingly G14-gal4, a driver normally associated with muscles (110), was 

able to fully rescue torsion (Fig. 18 B). G14 was also able to mediate full rescue of 

abdominal torsion in both tw
-
 and rt

-
 adults (Fig. 18 C-D), indicating that a similar 

POMT expression pattern may be required for proper posture in both embryos and 

adults. However, neither neuronal drivers nor muscle drivers alone (with the exception 

of G14) were sufficient for even partial rescue in adults, indicating some difference in 

the mechanisms underlying each stage, a possibility which I will consider further in the 

discussion section.  



 

59 

 

A     B 

 

C       D 

 

Figure 18—Rescue of torsion. Data obtained in collaboration with Dr. Dmitri 

Lyalin and Dr. Nao Nakamura. 

 
A) depicts a method of scoring embryonic torsion using tracheae. Yellow line is eggshell axis of 

symmetry, red line follows right trachea. B) shows percentage of embryos with torsion when UAS-tw is 

expressed in a tw
-
 background by various drivers. All embryos were tw mutants expressing UAS-tw, but 

only drivers are listed. The bar labeled “tw” had no driver. C) and D) show rescue in adults for both tw
-
 

and rt
-
. As in B), only drivers are listed. N is at least 20 flies per genotype. Error bars are SEM. Drivers 

could not rescue in the absence of UAS-POMT, nor could UAS-POMT in the absence of a driver. Scale 

bar is 100 um.  
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Because G14 is known to be expressed in muscles, and because neuronal drivers 

could mediate only partial rescue in embryos and no rescue in adults, we hypothesized 

that POMT expression in muscles may be necessary in combination with other tissues 

for full rescue. We further hypothesized that G14 may have a neuronal component of 

expression that was previously unknown, and that helps account for the full rescue 

observed. 

To test whether G14 is indeed expressed in neurons in addition to muscle, we 

induced expression of GFP using G14-gal4, and blocked muscle expression using MHC-

gal80. Both first and third instar larvae were dissected, fixed, stained with anti-GFP, and 

imaged to approximate expression conditions at the critical developmental stages for 

torsion (embryonic and late third instar (71)). In both cases we found that G14 is 

expressed in PNS cells including chordotonal organs and, importantly, multidendritic 

neurons, though the neurons we observed appeared to be class I rather than IV. I could 

not detect overlap between GFP expressed in the G14 pattern and tdTomato expressed in 

the Ppk pattern, further suggesting that the two drivers work in different da neurons (not 

shown). We also found that G14 was expressed in histoblast nests at the third instar 

stage (Fig. 19). There was also a CNS component of expression (not shown). Taken 

together, the data so far indicate roles for POMT in muscle, PNS neurons including class 

IV da neurons, and possibly epidermal cells and CNS neurons. Here I will focus 

primarily on the former two. 

We attempted to reconstruct G14-mediated rescue by using combinations of 

drivers to induce simultaneous POMT expression in muscles and neurons in adults. We 
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found that while muscle or neuronal drivers alone were incapable of mediating rescue, a 

combination of the two was able to mediate partial rescue (see Fig. 18 C-D). Further 

screening revealed that drivers typically associated with epidermal expression were able  

 

 

A           B 

 

Figure 19—G14 non-muscle expression pattern. Data obtained in collaboration 

with Dr. Dmitri Lyalin and Michelle Alfert. 
 

A) depicts chordotonal organ (left) and multidendritic neurons (right) in first instar larvae, while be depicts 

histoblasts and MD neurons (main box, histoblast is in top left corner) and chordotonal organs as well as a 

motor neuron (insets, bottom and top, respectively) in third instar larvae 

 

 

to contribute to rescue as well (see Fig. 18 C). However, these epidermal drivers 

included neuronal components (111)(personal communication from D. Lyalin), so it is 

not possible to rule out the additional contribution to neuronal POMT expression as the 

reason for increased rescue. We also found that removal of the muscle or neuronal 
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component of G14 expression using MHC-gal80 or ELAV-gal80, respectively, 

significantly inhibited rescue (Fig. 20), demonstrating the importance of POMT in both 

muscles and neurons for posture maintenance.  

 

 

A 

 

B 

 

Figure 20—Muscular and neuronal components of G14-expression are necessary 

for rescue. Data obtained in collaboration with Dr. Dmitri Lyalin. 

 
A) Suppression of G14-mediated rescue by removal of the muscle component. B) Removal of neuronal 

component. “G14” indicates that G14-mediated UAS-POMT expression is in place, and “ELAV-Gal80” 

or “MHC-Gal80” indicates addition of that construct to everything that was previously in place. Error bars 

are SEM. Asterisks represent statistical significance of rescue suppression relative to G14-rescue. N is at 

least 20 flies per genotype. 
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To further confirm the role of POMT in class IV da neurons, I scored the 

contraction pattern of tw
-
 embryos with ectopic expression of UAS-tw in the Ppk 

expression pattern. The percentage of type 1 contractions in these embryos was between 

that of wild type and tw (Fig. 21 A), demonstrating rescue of contraction pattern as well 

as posture (see Fig. 18 B), and further confirming the relation between the two 

phenomena. I also attempted to induce embryonic torsion in a wild type or tw 

heterozygous background by expressing an RNAi against tw in the Ppk expression 

pattern. This approach failed to alter the contraction pattern from that of wild type or 

induce any torsion in embryos or adults (not shown). However, expression of the same 

RNAi in class IV da neurons of tw mutants was able to significantly aggravate the 

rotation phenotype (Fig. 21 B). Since our tw allele is a hypomorph, this result suggests 

that the RNAi was able to knock down residual tw activity in da neurons and thus 

increase phenotypic severity.    

Defects in PNS neurons lead to abnormal contraction patterns and posture 

My data so far have demonstrated a requirement for POMT in several tissues to 

maintain proper posture. Herein I will examine potential biological roles for different 

cell types. First, I examined the role of PNS neurons in embryonic and adult torsion. If 

the PNS is important in embryonic posture, then inhibiting PNS development should 

result in embryonic torsion. Thus to confirm the intrinsic importance of PNS neurons in 

maintaining proper body posture, I examined torsion phenotypes in senseless mutants 

(sens
-
). Sens

-
 embryos lose most of the peripheral sensory neurons by embryonic stage 

16 through cell-specific apoptosis (112), and thus the feedback from the PNS to the CNS  
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A 

 

B 

 

Figure 21—Class IV da neurons in torsion. 

 
A) Contraction patterning in wild type embryos, tw

-
 embryos, and tw

-
 embryos expressing UAS-tw in class 

IV da neurons (“rescue”). N = 10 embryos for wt and tw
-
, 8 for rescue, and at least 120 total contractions 

per genotype. B) Effect of RNAi against tw in class IV da neurons in a tw
-
 background compared to tw

-
 

with Ppk-gal4 or RNAi only (“Driver only” and “RNAi only” respectively). Error bars are SEM. tw, 

RNAi is significantly different than either control. N is at least 20 flies per genotype 
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is impaired in these mutants. Sens
–
 embryos are still able to generate contraction waves, 

presumably due to the fact that some dendritic arborization (da) sensory neurons are still 

present in these embryos, though the frequency of waves is significantly affected 

(91,92). I analyzed sens
–
 mutants and found that they generate apparently normal type 1 

and type 2 contraction waves, but the pattern of waves is highly variable in these 

embryos. Whereas wild type embryos stay within a type 2/type 1 ratio range of ~0.35-

0.55, in sens mutants the ratio ranges from 0 to ~1.1 (Fig. 22 A). Despite these 

differences in the pattern of wave generation, our analysis confirmed that overall 

characteristics of individual type 1 and type 2 waves in sens mutants are essentially the 

same as in wild type embryos, including the effects of these waves on rolling and body 

posture (Fig. 22 B-C). Interestingly, sens
-
 mutants did manifest backward type 2 

contractions, which correlated with clockwise torsion (Fig. 22 C). 

Considering the variability of contraction patterns in sens mutants, our model in 

chapter II predicts that some embryos should accumulate clockwise torsion (embryos 

with substantially fewer than 70% of waves being type 1, or a type 2/type 1 wave ratio 

significantly above ~0.33, as in the case of POMT mutants), some should acquire a 

counterclockwise torsion (type 2/type 1 wave ratio significantly below ~0.33, or much 

greater than 70% type 1 waves), and yet other embryos should have no torsion (type 

2/type 1 ratio is roughly equal to ~0.35, as in wild type). Indeed I found that all three 

types of torsion existed within the sens
–
 population, with ~40% of embryos twisted 

clockwise, ~40% twisted counterclockwise, and ~20% showing no torsion (Fig. 23 A-

B). These data indicated that PNS cells participate in generating the proper pattern of  
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A     B 

      

C 

 

Figure 22—Contraction pattering in senseless mutants. 
 

A) Ratio of type 2 to type 1 contractions has the same average in WT and sens
-
 embryos, but sens

-
 is more 

variable (black diamonds represent individual embryos). B) Rolling compared to contraction direction C) 

Changes in midline angle, which are the same for individual contractions in both sens
-
 and wild type. 

There were no significant differences within given contraction types. N = 12 flies per genotype and at least 

20 contractions per wave type.
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A      B 

 

C 

 

Figure 23—Torsion in senseless mutants. 
 

A) Representative images of torsion (or lack thereof) in both directions in sens
-
 mutant embryos. B) 

Quantitative data regarding torsion in various genotypes. C. clock = “counterclockwise.” C) Abdominal 

rotation in adult tw
-
 flies heterozygous for sens

-
 releative to tw mutants alone. Error bars are SEM. N = at 

least 20 flies per genotype. 

tw
-
;sens

+/-
 tw

-
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alternating type 1 – type 2 contractions, and corroborates the hypothesis that these 

contractions influence body posture.  In further experiments, I analyzed tw–sens double 

mutants and revealed that tw is epistatic to senseless, as all double mutant embryos were 

found to have torsion in the clockwise direction (Fig. 23 B). Although mutants 

homozygous for sens
-
 do not survive past the embryonic stage, I also assessed the effect 

of a single defective copy of sens on tw mutants and found a genetic interaction in the 

adult stage as well (Fig. 23 C). 

 Since da cells represent the only type of peripheral sensory neurons present in 

sens mutants (92,112), this result suggests that downregulation of POMT activity in da 

neurons is sufficient to generate an abnormal feedback from these cells to the CNS and 

affect muscle contractions in tw-sens double mutants. However, these cells do not 

suffice to maintain proper contraction patterning in sens mutants, presumably because 

normal contractions also require other PNS cells that are missing in sens mutants 

(76,92). Taken together, these results suggest that PNS neurons, while normally 

supporting the proper pattern of contraction waves, generate an aberrant feedback to the 

CNS in POMT mutants. This abnormal feedback affects the pattern of muscle 

contractions, thus underlying the pathogenic mechanism of the torsion phenotype. 

POMT mutations cause morphological defects in PNS neurons, leading to aberrant 

contraction signaling 

Since POMT expression in the PNS is required for proper contraction patterning 

and posture, I next focused on the morphology of class IV da neurons that develop 

characteristic laminar axonal projections in the ventral ganglion during embryogenesis 
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(113). To do this, I expressed the fluorescent protein tdTomato (114) or tdGFP (115) in 

the Ppk expression pattern in wild type, tw
-
, and rt

-
 embryos. Brains were dissected from 

recently hatched first instar larvae and from late stage third instar larvae, and axonal 

connections from class IV da neurons to ventral ganglia were imaged. I found that in 

both tw and rt mutants, commissural branches display significant thickening relative to 

their wild type counterparts in both developmental stages, and that rt mutants also have 

several missing longitudinal tracts (Fig. 24). Branch thickness could be rescued by 

ectopic POMT expression in the Ppk pattern, expression of which was also able to 

partially rescue torsion and contraction patterning in embryos (see Figs. 18, 21). These 

data suggest that aberrant PNS morphology may, in this case, be linked to abnormal 

signaling, which may in turn give rise to the abnormal contraction pattern observed in 

mutants. 

POMT mutations cause muscle stiffness, which may aggravate but not cause 

torsion 

 My previous evidence indicated that POMT expression in muscle cells also plays 

a role in Drosophila torsion. To explore this further, I focused first on third instar larval 

muscle. Previous work has shown that larval muscles in POMT mutants experience 

morphological defects including missing, split, thin, abnormally attached, and damaged 

muscles (60,61,69). We examined muscles in mutant larvae and found that while  
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A              B  

 

C      D 

 

Figure 24—POMT effect on class IV da neuron axonal morphology. Data obtained 

in collaboration with Ishita Chandel. 

 
A and B show labeled axons of class IV da neurons in ventral ganglia. UAS-tw and UAS-rt were driven by 

Ppk-gal4, specific to those neurons, for rescue. Red arrowheads indicate examples of thickened 

commissural branches. Blue arrowheads show normal thickness for corresponding branches in wild type. 

Red arrow indicates missing longitudinal tract. C and D show quantitative data regarding branch thickness. 

N = at least 10 embryos per genotype. Error bars are SEM.
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Third instar larval brains show similar defects of axonal morphology in POMT mutants as first instar 

larvae. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24—Continued. 
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there are indeed such defects in POMT mutants, in our experiments we could detect 

similar levels of defects in wild type larvae (not shown). The lack of obvious gross 

morphological defects suggested that something more subtle may be at play in muscles. 

Various forms of muscular dystrophy are associated with muscle stiffness (97-99), so I 

hypothesized that a similar stiffening may occur in Drosophila POMT mutants. Such 

stiffening may decrease the organism’s ability to properly sense posture, and could thus 

aggravate torsion phenotypes. 

 To assess muscle stiffness in Drosophila we used Brillouin spectroscopy. 

Brillouin spectroscopy is a powerful tool for microscopic, non-invasive material 

characterization. It provides unique information on viscoelasticity properties and is 

widely used in remote sensing, material science and, more recently, biomedical 

applications (106,116,117). Brillouin scattering originates from the inelastic interaction 

between the incident light and the “acoustic phonons” in the material of interest (118). 

The incident light experiences a shift in frequency proportional to the speed of sound in 

the medium. Thus the medium’s elastic modulus, which is also directly related to the 

speed of sound in the medium, can be determined by measuring the Brillouin shift. A 

greater shift corresponds to decreased elasticity (or increased stiffness).  

 I collected wild type, tw
-
, and rt

-
 third instar larvae expressing MHC-GFP and 

dissected their muscles. In collaboration with the biomedical engineering department, I 

measured the elasticity of the muscles in each genotype, first using MHC-GFP to ensure 

that incident light was focused on muscles (Fig. 25 A). We found that the Brillouin shift 

was greater in tw muscle than in wild type, and greater still in rt muscle (Fig. 25 B-C).  
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A 

 

B        C 

 

Figure 25—POMT effect on larval muscle stiffness. Data obtained in collaboration 

with Dr. Zhaokai Meng. 

 
A) Representative example of fluorescent larval muscle exposed to Brillouin laser. B) Typical Brillouin 

shifts for WT, tw
-
, and rt

-
 muscle. C) Average Brillouin shift for each genotype. tw mutants have stiffer 

muscle than wild type, and rt mutants have stiffer muscles than tw mutants. N = 10 larvae per genotype, 

error bars are SEM.

WT tw
-
 rt

-
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D      E 

 

 
D shows rescue of muscle stiffness in rt

-
 mutants by UAS-rt driven by the muscle driver How-Gal4. E 

shows that tw
-
 embryos are no stiffer than WT. We have not been able to gather data on rt

-
 embryos. N = 5 

larvae per genotype in D, 10 embryos per genotype in E. 

 

 

 

Similar results were obtained for non-fluorescent larvae (not shown). Interestingly, 

stiffness correlates with the severity of torsional angles in adult abdomens, since rt 

mutants are significantly more severely twisted than tw mutants (75), suggesting a 

potential connection between stiffness and torsion. Stiffness could be partially rescued 

by ectopic POMT expression in muscles using a How-Gal4 driver (Fig. 25 D). Tw
-
 

embryonic muscle, on the other hand, was no stiffer than its wild type counterpart (Fig. 

25 E). This may help explain why there is no notable difference in torsion between tw
-
 

and rt
-
 embryos, and also why neuronal drivers by themselves are able to partially rescue 

torsion in embryos but not adults.  

 

 

Figure 25—Continued. 
Embryos  

WT tw
-
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3.4 Discussion 

In chapter II I proposed a model in which embryonic contraction wave patterning 

(and possibly patterning at the pupal stage) dynamically governs posture based on some 

chiral interaction between cuticle and egg or pupal shell. The torsion phenotype arises 

due to alteration in the pattern of contraction waves, while the effects of individual 

waves on posture are not significantly altered in POMT mutants. These data suggest that 

the torsion phenotype is caused primarily by a neurological abnormality, though in this 

chapter I also show that body posture is governed at least in part by POMT expression in 

other tissues, including muscles and possibly CNS neurons and epidermal cells.  

First, I demonstrated that the proper pattern of embryonic contraction waves 

requires a PNS-mediated feedback that relays information on muscle contractions and 

body posture to the CNS. I demonstrated this in several ways. First, I showed that 

ectopic expression of POMT in class IV da neurons is sufficient to partially rescue 

embryonic torsion. I simultaneously demonstrated that the contraction pattern in rescued 

mutants is closer to wild type than that of tw mutants in the absence of Ppk-Gal4-

mediated rescue (Fig. 18, 21). Thus it appears that the pattern of waves depends on 

POMT activity in the nervous system, including class IV sensory da neurons. I also 

showed that while POMT expression by neuronal drivers is insufficient to rescue adult 

torsion, it does mediate partial rescue in the presence of muscle drivers (Fig. 18). Indeed, 

the G14 driver, which expresses in both muscles and neurons, as well as histoblasts, can 

mediate full rescue of torsion at any stage (Fig. 18-19). Thus while the underlying 

physiology of adult torsion may have a stronger requirement for POMT expression in 
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muscles, it appears that there is a similar biological mechanism governing the rise of 

torsion at both embryonic and adult stages. 

To determine whether the effect of POMT in class IV da neurons was cell 

autonomous, I expressed RNAi against tw in both wild type and tw
-
 heterozygote 

backgrounds. This experiment had no effect on contraction patterning in embryos or on 

torsion in embryos or adults. These data alone are consistent with a few potential 

hypotheses. It is possible that RNAi failed to induce phenotypes even if a true knockout 

of POMT in class IV da neurons would have sufficed. For example, maternal 

contribution of POMT, persistence of maternally contributed O-mannosylated targets or 

of targets that were O-mannosylated before RNAi expression was sufficiently induced, 

or presence of POMT in other cell types that could compensate for class IV da neurons 

may all explain this result. The latter option posits that the effect of POMT is cell non-

autonomous. In that case expression of POMT in Ppk neurons could rescue the tw 

phenotype by compensating for loss of function in other cells. Consistent with this 

hypothesis is the fact that the G14 neuronal expression pattern appears to include class I 

da neurons and chordotonal organs (see fig. 19) but not class IV neurons. Conversely, 

class I da neurons and/or chordotonal organs may not normally be involved in body 

posture but compensate for the lack of POMT in class IV neurons when POMT is 

expressed in the G14 pattern. Additionally, all three classes of neurons or some 

combination thereof may normally express POMT, and expression in any of them could 

be sufficient to mediate at least partial rescue in embryos. However, since Ppk-mediated 

expression of RNAi in tw mutants is sufficient to aggravate rotation, I submit that POMT 
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expression in class IV da neurons is directly involved in contraction patterning and 

posture. This does not rule out the involvement of POMT in other PNS neurons such as 

those seen in the G14 expression pattern. 

Next, I posited that in POMT mutants, sensory cells generate an aberrant signal 

to the CNS, which results in the observed abnormal pattern of contraction waves and 

leads to the embryo torsion phenotype. The analyses of sens mutants and interactions 

between sens and tw highlighted the role of PNS cells in the etiology of the body torsion 

phenotype. My experiments demonstrated that a defect in specification of PNS neurons 

alone could cause muscle contraction and body posture phenotypes similar (though not 

identical) to those in POMT mutants (Fig. 22-23). In this case, torsion could accumulate 

in either direction, consistent with contraction patterns that ran the spectrum from type 

1-heavy to type 2-heavy. This suggests that in these mutants the PNS sends limited or 

delayed feedback to the CNS, causing the CNS to essentially “guess” which type of 

torsion is being experienced and how to compensate appropriately. In POMT mutants, 

on the other hand, the contraction pattern is always type-2 wave-heavy and torsion is 

always clockwise as viewed from the posterior. This suggests that rather than sending 

limited feedback to the CNS, the POMT
-
 PNS sends incorrect feedback, sensing or 

conveying counterclockwise torsion when no torsion or even clockwise torsion is 

present. Epistatic interaction between tw and sens also suggested that da sensory 

neurons, which remain partially intact in sens mutants, are sufficient to propagate the 

incorrect feedback generated by the PNS lacking POMT activity. Although senseless 

mutants die prior to adulthood, preventing analysis of senseless-mediated torsion in 
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adults, I was able to observe an increase in torsion in tw mutants heterozygous for sens
-
 

(Fig. 23), further indicating a mechanistic connection between embryonic and adult 

phenotypes.  

Finally, with regard to PNS neurons, I examined the morphology of axonal 

connections between class IV da neurons and the CNS and found that tw and rt are 

required for normal axon patterning of class IV da neurons (Fig. 24). Significantly 

thickened commissural branches were observed in all POMT mutants at both early and 

late larval stages, again corroborating the hypothesis that torsion rises in early and late 

stages via similar mechanisms. This phenotype, as well as the phenotype of missing 

longitudinal tracts in the more severely affected rt mutants, could be rescued by Ppk-

mediated POMT expression. This further suggested that POMT expression, while likely 

functionally important in other cell types as well, is both expressed and functionally 

important in class IV da neurons. These data led me to propose a model in which 

aberrant connectivity between sensory and CNS neurons may underlie the mechanism of 

PNS-generated abnormal feedback in POMT mutants (Fig. 26). This role of da neurons 

in the POMT-mediated effect on muscle contractions and body posture is consistent with 

the proposed role of these polymodal neurons in proprioception and mechanosensation, 

and their involvement in regulation of larval locomotion (95,96,119,120). 

As important as the PNS is in body posture, it is clear that other tissues are also 

involved in POMT-related torsion, as even a pan-neuronal driver is not sufficient to 

mediate full rescue at any developmental stage, while removal of the muscle component 

from G14 suppresses rescue (Fig. 18, 20). The possibility of CNS and epidermal  
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Figure 26—Updated model of torsion. 

 
Added to the model is the idea that POMT mutations alter PNS-CNS connections, causing aberrant 

feedback to the CNS and a subsequent abnormal patterning of contraction waves. 
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involvement in torsion are interesting and not without merit. Indeed WWS patients are 

known to have CNS defects, and similar phenotypes have been observed in fruit flies. 

However, my data suggest that the individual contraction waves generated by POMT 

mutants do not have significantly different characteristics from their wild type 

counterparts, and the CNS defects seen in rt mutants did not appear to be present in tw 

mutants. Thus it seems that in POMT mutants the CNS is capable of sending normal 

signals to the muscles, and that the known CNS defects in POMT mutants are not 

required for torsion to occur. It is possible, however, that the CNS defects in rt mutants 

partially explain the more severe torsion observed in adult Drosophila relative to tw 

mutants. Additionally, POMT in the CNS may aid PNS axons in forming proper 

connections with CNS cells. 

POMT expression may be necessary in the epidermis for proper posture, since 

drivers classically associated with epidermal cells could, in some cases, mediate partial 

rescue on their own. Additionally, epidermal drivers in combination with muscle drivers 

were able to increase rescue. Consistent with the idea of epidermal involvement, some 

recent studies have reported that dendrites sense stretching of the epidermis, are 

connected to epidermal tissue, and that laminin is required for correct patterning of 

dendrites in da neurons (114,121). If laminin must interact with O-mannosylated Dg on 

the surface of epidermal cells for proper dendritic connections to occur, for example, it 

may be that POMT is required in both da neurons and epidermis for correct stretch 

sensation. As intriguing as this possibility is, so far we could observe no morphological 

defects in the dendrites of class IV da neurons (not shown), and all epidermal drivers 
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used in this study had other components of expression as well, including neuronal 

components. Thus while there is a strong possibility of epidermal involvement, further 

studies will be needed to confirm or falsify this hypothesis. 

Whatever the influence of CNS and epidermis on torsion, it is clear that POMT 

expression in muscle is involved. Previous studies have indicated a number of muscle 

defects in POMT mutant Drosophila (60,61,69). However, these results have not been 

definitively linked to torsion. Furthermore, our observations suggested that under certain 

conditions, these phenotypes are no more prevalent in mutants than in wild type larvae 

(not shown), yet mutant larvae invariably develop rotated abdomens as adults. This led 

us to propose that the defects observed in other studies, while most likely real, are 

probably a result of muscle torsion rather than a cause. This is supported by the fact that 

the torsion in first instar larvae is only observed when larvae are killed and their muscles 

forced to relax (see Fig. 8). This suggests that while alive, larvae may exert muscle 

strength to force the twisted cuticle into a straight posture. Under particular conditions of 

food composition, genetic background, and/or population density, muscle damage may 

result.  

Taken together, our data show that muscles develop normally in POMT mutants 

from a morphological standpoint, and experience torque over time. Since we have shown 

that proprioception is required to maintain correct contraction patterning and posture, we 

hypothesized that POMT expression in muscles might be required to facilitate proper 

stretch sensing by PNS neurons. It is possible, for example, that some dendrites interact 

with muscle cells either directly or indirectly through the ECM. In either case, a laminin-
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Dg interaction or some other interaction involving O-mannosylated protein may be 

required. Whether this particular mechanism is involved in torsion will require further 

study. It is known, however, that dystrophic muscle is frequently stiffer than wild type 

(97-99). I thus reasoned that stiffening of muscle in POMT mutants could be involved in 

torsion. Stiff muscle may interact differently with PNS neurons than normal muscle, and 

may contribute to the perception of counterclockwise torsion when there is none. 

Brillouin spectroscopy revealed that indeed, POMT
-
 muscle in third instar larvae is 

stiffer than that of wild type. Furthermore, rt
-
 muscle is stiffer than tw

-
, providing a 

correlation between muscle stiffness and ultimate torsional severity in adults.  

Interestingly, increased muscle stiffness was not observed in tw
- 
embryos relative 

to wild type. This again points to a potential difference between the mechanisms of 

torsion in embryonic and adult stages. Worthy of note here is the fact that in embryos the 

difference, if any, between tw
-
 and rt

-
 torsion is negligible (see fig. 7). This may be 

accounted for, at least in part, by a lack of any difference in muscle stiffness between 

genotypes at this stage, though embryonic muscle stiffness in rt mutants remains to be 

tested. This also demonstrates that relative muscle stiffness is not required for torsion to 

occur, and as I will show in the next chapter, increasing muscle stiffness does not, on its 

own, cause torsion.  

In Drosophila, POMT is required in multiple tissues to maintain correct posture 

at both the embryonic and adult developmental stages. Here I have indicated a need for 

POMT in muscles, as well as the possibility of CNS neurons and epidermis. More 

importantly, I showed a requirement for POMT in PNS neurons. In Drosophila, a defect 
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of POMT in the PNS is associated with the rise of torsion due to chiral interactions, 

presumably between cuticle and egg or pupal shell, during peristaltic contraction waves. 

Human WWS patients do not experience such torsion, likely because no such chiral 

interactions are present during developmental processes. Nevertheless, WWS patients do 

experience abnormal muscle contractions (66). Until now, dystroglycanopathies have 

been associated with muscles, eyes, and CNS neurons, but PNS neurons, while known to 

have O-mannosylated Dg 
93,94

, have been largely overlooked. While other tissues are 

doubtlessly important, this study highlights the importance of PNS POMT expression in 

Drosophila development, and this biological functionality may translate to mammalian 

systems, including humans. A further study of POMT and other components of the O-

mannosylation pathway in higher organisms may therefore bring to light important new 

pathological mechanisms in human patients, and could ultimately lead to new targets and 

improved treatments for dystroglycanopathies. 
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CHAPTER IV 

RECEPTOR PROTEIN TYROSINE PHOSPHATASE AS A TARGET OF O-

MANNOSYLATION 

 

4.1 Introduction 

 So far I have characterized the gross mechanical means by which torsion arises 

and elucidated the cellular POMT requirement that governs it. In this chapter I will 

investigate targets of O-mannosylation with potential functional relevance to torsion. 

Dystroglycan is by far the best characterized POMT target, having been identified as an 

O-mannosylated protein in 1997 (93). Much is understood about the possible extensions 

of O-mannosyl glycan chains on Dg, as well as about the specific glycan that is both 

necessary and sufficient for laminin binding (122). Previous work has shown that Dg is 

O-mannosylated in Drosophila as well as in mammals, and that both tw and rt are 

required for O-mannosylation to occur in vivo (123). 

 Recent work has also shown, however, that Dg is by no means the only target of 

O-mannosylation in mammals. Since the turn of the millennium, several other targets 

have been identified, including receptor protein tyrosine phosphatase ζ (RPTPζ), four 

lectican proteins, and 37 different cadherins (122). Nevertheless, Dg remains the only 

known target of O-mannosylation in Drosophila.  

In this chapter I first investigate the interaction of Dg and POMT using a genetic 

approach. I will show that while Dg is involved in the rotation phenotype, it must not be 

the only relevant target. For example, RPTPζ is hypoglycosylated in mouse models of 



 

85 

 

the CMD muscle-eye-brain disease (MEB) that lack POMGnT1, a glycosyltransferase 

that modifies O-mannosylglycans (124) (see Fig. 3). Although Drosophila do not have 

any known homologues for RPTPζ, they do have 6 RPTP’s, all of which are involved in 

axonal guidance and at least one of which (RPTP69D) is specifically known to have an 

effect on the axonal guidance of class IV da neurons (113). I therefore hypothesized that 

one or more of these RPTP’s may be both O-mannosylated and relevant to torsion, so I 

examined the interaction between the RPTP’s and POMT. I found that RPTP69D and 

possibly LAR are likely O-mannosylated and appear to be involved in the rise of torsion. 

Surprisingly, I show preliminary evidence indicating a role for RPTP69D O-

mannosylation in muscles that may be more important to torsion than RPTP69D in 

neurons.   

 

4.2 Materials and Methods 

RPTP stocks 

 All RPTP deficiency stocks, Lar RNAi, and Dg086 and 248 were obtained from 

Bloomington. RPTP mutants are all deficiencies of RPTP4E, 10D, 52F, 69D, 99A, and 

Lar, and have been previously described (125-128). Dg 086 is a point mutation that 

inactivates the gene, and Dg 248 is a deficiency that is homozygous inviable but is 

viable with Dg086 (129,130). Dominant negative RPTP69D and UAS-RPTP69D were 

gifts from Paul Hardin’s lab (131,132). 

 

 



 

86 

 

Western blot 

 Western blots against RPTP69D were performed on lysed larvae overexpressing 

RPTP69D in muscles in wild type and rt
-
 hetero- and homozygous backgrounds. After 

crossing parents, vials were incubated for 5 days at 25
o
 C and 30 third instar larvae were 

collected from vial walls for each genotype. Larvae were lysed by crushing in 600 uL of 

buffer containing 50 mM Tris-HCl, 200 mM NaCl, 0.5% Triton-X100, PMSF, and a 

cocktail of protease inhibitors. The lysate was centrifuged at 18,000 g for 15 minutes at 

4
o
 C, and the supernatant was mixed with SDS-PAGE loading buffer with b-

mercaptoethanol. Samples were boiled for 3 minutes, briefly spun down, and 15 uL of 

each were loaded onto a 10% SDS polyacrylamide gel. The gel was run for 1 hour at 190 

V and then transferred to nitrocellulose at 200 mA for 90 minutes. RPTP69D was 

detected using a monoclonal mouse-derived antibody against the N-terminal portion of 

the processed protein (Antibody 3F11 obtained from DSHB) (133) in a 1:12 dilution. 

The blot was counterstained with a goat anti-mouse antibody conjugated to horseradish 

peroxidase and developed using a kit from Thermo Scientific. It was imaged on a 

BioRad GelDoc imager. As a loading control, beta-tubulin was stained with mouse-

derived monoclonal anti-tubulin (E7), also obtained from DSHB. 

Other techniques 

 All other experiments and analyses in this chapter were carried out as described 

in chapters II and III. 
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4.3 Results 

Dystroglycan is not the only functionally relevant target of O-mannosylation 

The best characterized target of O-mannosylation is the transmembrane protein 

dystroglycan (Dg). Dg interacts with dystrophin on the cytosolic side of the cell 

membrane and with laminin and other proteins in the extracellular matrix. O-

mannosylation of Dg and subsequent glycan extension is required for binding to laminin 

in mammals (50), which is why the muscular dystrophies associated with defects in the 

O-mannosylation pathway are collectively known as dystroglycanopathies. We therefore 

hypothesized that genetic defects in Dg would interact with the abdominal rotation 

phenotype. 

 To test this hypothesis, we first examined the angle of abdominal rotation in 

adult tw and rt flies and compared them to the angle observed in tw
-
, dg

086/248
 or rt

-
, 

dg
086/248

 double mutants, respectively. We found that Dg mutations did indeed interact 

with POMT mutations, causing a significantly higher average rotational angle in both tw
-
 

and rt
-
 backgrounds. Interestingly, however, Dg mutations alone were not sufficient to 

induce rotation (Fig. 27 A).  

 We further tested interactions between POMT and Dg using Brillouin 

spectroscopy in third instar larvae. We found that Dg mutations alone cause muscles to 

stiffen even more than in tw mutants, and that tw-Dg double mutants were even stiffer 

than Dg mutants (Fig. 27 B). Together our data so far indicate that Dg is not required to 

maintain correct posture, though it is required for normal muscle elasticity. Thus muscle 

stiffness does not cause rotation, though our results are consistent with the hypothesis 
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that stiffness may aggravate rotation when it is present. Furthermore, since complete 

absence of Dg can not induce rotation, and removal of Dg in POMT mutant backgrounds 

does not alleviate rotation, it appears that one or more other POMT targets are also 

involved in rotation phenotypes. 

Receptor protein tyrosine phosphatases are functionally relevant targets of O-

mannosylation 

 We previously noted that POMT mutations result in abnormal axonal 

connections from the PNS to the CNS. A similar phenotype has been observed in larvae 

with mutations in the receptor protein tyrosine phosphatase RPTP69D (113). 

Additionally, in mammals RPTPζ has been shown to be a target of O-mannosylation 

with potential relevance to CMD’s (122,124), and we therefore hypothesized that 

Drosophila RPTP’s might be involved in rotation phenotypes. To test this hypothesis, I 

measured the abdominal angle in double mutants for either tw
-
 and a null mutation of 

one of the 6 Drosophila RPTP’s, or rt
-
 and an RPTP mutant. Because Drosophila 

homozygous for most of these RPTP alleles do not survive to adulthood, I measured the 

interaction in flies heterozygous for RPTP mutations. I found that several of the 

Drosophila RPTP’s genetically interact with POMT (Fig. 28), the most prominent two 

being RPTP69D (hereafter simply called 69D) and Leukocyte Antigen-Related RPTP 

(LAR), which are part of the same subfamily and the only two Drosophila RPTP’s in that 

subfamily (134). RPTP 52F and 99A may have had slight genetic interactions with 

POMT, but these were not statistically significant. RPTP 10D had no detectable 

interaction, and RPTP 4E was not viable in combination with rt
-
. Thus although 4E may  
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A      B   

 

C 

 

Figure 27—Genetic interactions between Dg and POMT. Data obtained in 

collaboration with Dr. Dmitri Lyalin and Dr. Zhaokai Meng. 

 
A and B show that Dg mutations can aggravate, but not cause rotation. C shows that Dg mutations both 

cause and aggravate muscle stiffness. N = at least 20 flies per genotype in A and B, 10 larvae per genotype 

in C. Error bars are SEM. Asterisks in C are relative to tw. Dg and tw-Dg are also statistically different 

from each other, with p < 0.05. 
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A 

 

B 

 

Figure 28—Genetic interactions between several RPTP’s and POMT. 

 
RPTP 69D and Lar strongly interact with POMT to aggravate (but not cause) rotation. Other RPTP’s have 

weaker interactions or no interactions. N = at least 20 flies for each genotype, error bars are SEM. 

Asterisks represent significance relative to tw
-
 or rt

-
.   
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actually have the strongest interaction, it is not feasible to work with. Here I will focus 

primarily on 69D, with some discussion of LAR. 

Next I analyzed the interaction of 69D with rt in embryos. When I examined 

embryonic double mutants homozygous for both rt
-
 and 69D

-
, I found that although 

tracheae still filled with air, peristaltic contractions were completely absent in all six 

embryos measured over the course of 1 hour of recording (not shown). It remains to be 

seen whether 69D heterozygotes can affect contraction patterning in a POMT
-
 

background, or whether 69D mutants by themselves have any contraction phenotype. I 

also analyzed the interaction of 69D with the POMT phenotype of axonal connections in 

class IV da neurons. Interestingly, I could detect no difference in commissural branch 

thickness in double mutants (heterozygous for 69D
-
) relative to tw mutants alone (not 

shown). Thus it seems that any interaction between 69D and POMT in axonal 

connections is weak. 

69D O-mannosylation is required in muscle tissue for regulation of torsion 

I was surprised to see no interaction between POMT and PTP in axonal 

guidance, since axonal guidance is the best-characterized role for the RPTP’s. LAR has 

also, however, been shown to have a role in other tissues including muscle (135-137), so 

I hypothesized that LAR and, by extension, 69D might need to be O-mannosylated in 

muscle tissue. I therefore examined the tissue-specific requirement for 69D by 

expressing a dominant negative form of 69D (69D
DN

) in various cell types in a tw
-
 

background. I found that G14-mediated expression was able to induce an increase in 

abdominal rotation relative to tw
-
 alone. The neuron-specific driver 1407-Gal4 (pan-
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neuronal) was also able to induce an increase comparable to that in G14 (Fig. 29 A), 

while ELAV-Gal4-induced 69D
DN

 expression resulted in flies failing to survive to 

adulthood. It therefore appears that despite my inability to detect interactions in axonal 

guidance, 69D may interact with POMT in neurons to help maintain posture. However, 

the greatest observed change in rotation occurred when I expressed 69D
DN

 specifically in 

tw
-
 muscles using an MHC-Gal4 driver (Fig. 29 A). This indicated a putative role for O-

mannosylation of 69D in muscle in posture maintenance.  

I also attempted to rescue torsion in rt mutants by overexpression of functional 

69D in various tissues. I found that expression in both G14 and MHC patterns could 

slightly but significantly rescue the phenotype, though I could observe no such rescue 

when 69D was expressed only in neurons (Fig. 29 B). To test for a cell autonomous role 

for RPTP’s in muscles, I expressed an RNAi against LAR in a tw
-
 background and again 

found a significant increase in abdominal torsion (Fig. 29C).  

I also preliminarily tested the interaction between 69D and POMT in the heart 

phenotype described in chapter II by expressing 69D
DN

 with the dHand-Gal4 driver. I 

found a slight increase in the number of backward contractions relative to rt mutants 

alone, though additional data will have to be gathered to verify the significance of this 

difference (Fig. 30 A). I also found that the diastolic diameter was substantially different 

in rt mutants expressing 69D
DN

 than in rt mutants alone. Interestingly, systolic diameter 

in rt
-
-69D

DN
 flies was no different from systolic diameter in rt

-
 background alone (Fig. 

30 B). 
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A     B 

 

C 

 

Figure 29—Tissue-specific requirements for RPTP’s. 

 
A) Interaction of a dominant negative 69D with tw

-
 in various tissues. B) Rescue of rotation by 

overexpression of 69D in specific tissues. X-axis in A and B describes the driver used to express 69D
DN

 

and functional 69D, respectively. All drivers are in addition to either tw
-
 and 69DDN or rt

-
 and UAS-69D. 

C shows effect of LAR knockdown in muscles. Asterisks are significance relative to controls, error bars 

are SEM. N = at least 20 flies for all genotypes.   
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A      B 

 

C 

 

Figure 30—69D
DN

 effect on heart. 

 
In A I show that heart rates are unaffected by mutations and transgenes. B shows that there may be a 

decrease in forward contractions in rt mutants when 69D
DN

 is present in the heart, though there are not yet 

enough data to assess significance. Diastolic diameter is smaller in double mutants than in rt mutants 

alone, but systolic diameter is not. WT and rt
-
 data are identical to that in Fig. 16. N = 4 hearts for double 

mutants. Error bars are SEM. Asterisk indicates a difference in double mutant relative to single mutant. 
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So far my data indicate that POMT interacts with 69D and LAR in muscles as 

well as potentially in neurons. To test more fully whether 69D is O-mannosylated in 

muscles, I overexpressed 69D in Drosophila larvae with wild type and rt
-
 backgrounds 

as well as a background heterozygous for rt
- 
using MHC-Gal4 driver. I collected and 

lysed third instar larvae and performed a Western blot to detect 69D in the lysates of 

each background. In wild type larvae I found that 69D existed in two species: a high 

molecular weight species and a low molecular weight species. The low molecular weight 

species increases in relative abundance as rt is compromised, with more present in rt
-
 

heterozygotes and even more in rt
-
 homozygotes. The high molecular weight species 

shows the opposite effect (Fig. 31). These data show a molecular interaction between 

69D and POMT in Drosophila muscles, although further studies will be needed to verify 

that the interaction is an O-mannosylation event. However, given that POMT is an O-

mannosyltransferase, RPTPζ is known to be O-mannosylated in mammals, and POMT 

interacts with 69D in such a way as to increase its molecular weight, such an outcome 

seems likely. Taken together, my data show that Dg is not the only POMT target 

involved in posture maintenance, that 69D and LAR are likely O-mannosylated in 

muscles, and that this O-mannosylation is relevant to torsion as well as heart phenotypes. 
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Figure 31—69D is altered, directly or indirectly, by POMT. 

 
69D was overexpressed in muscles in various genetic backgrounds and detected by Western blot. Two 

molecular weight species exist when POMT is functional, only one when POMT is not, suggesting POMT 

modifies 69D. Tubulin is a loading control. 
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4.4 Discussion 

 In this chapter I have shown that Dg interacts genetically with POMT in such a 

way as to affect torsion. Dg deficiency alone caused muscle stiffness but not torsion. 

Double mutants for Dg null mutations and tw
-
 or rt

-
, however, experience more severe 

rotation and muscle stiffness than POMT mutants alone (Fig. 27). These data are 

consistent with the hypothesis that stiffness can aggravate rotation but not cause it. Since 

Dg mutations are not sufficient to cause rotation, I would expect Dg removal in POMT 

mutant backgrounds to relieve rotation if Dg were the only relevant O-mannosylation 

target. Because this is not what I observe, I hypothesized that there must be other 

relevant POMT targets that contribute to rotation when O-mannosylation fails. 

 Dg is currently the only known POMT target in Drosophila, but studies in 

mammalian systems suggested several other potential targets. I focused on the receptor 

protein tyrosine phosphatases because RPTPζ is hypoglycosylated in mouse models of 

MEB, they are involved in axonal guidance, and 69D is specifically involved with class 

IV da neurons (113,124,133). In mammals RPTPζ is currently the only known RPTP to 

be O-mannosylated, and Drosophila do not have a known homologue of RPTPζ (134). 

Nevertheless I hypothesized that some similarity in sequence may be enough for O-

mannosylation to occur. My data demonstrate that 69D does interact with POMT, as 

does the closely related LAR (Fig. 28-31). My western blot data also provide evidence 

consistent with the hypothesis that 69D is indeed O-mannosylated (Fig. 31), though 

further evidence will be needed to confirm this. These data introduce the possibility that 
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other mammalian RPTP’s, such as the 69D homologues PTP-σ, PTP-δ, and hLAR (134) 

may be both O-mannosylated and functionally relevant to muscular dystrophy.  

 Classically, the RPTP’s are involved in axonal guidance, and mutations in 69D 

can alter the morphology of class IV da neurons (113). Since I demonstrated that these 

neurons are involved in the rise of torsion, and since the phenotype seen in these neurons 

in 69D mutants is very similar to that of POMT mutants, I hypothesized that a genetic 

interaction between the two may exist to guide axons in class IV da neurons. Although I 

did find that downregulation of 69D in neurons had an effect on rotation, I could not find 

any interaction between 69D and POMT with respect to ventral ganglia morphology. It 

seems, then, that there may be an effect of 69D O-mannosylation in neurons including 

class IV da neurons, but any morphological effects were beyond my ability to measure. 

This may in part be due to the fact that I used larvae heterozygous for the 69D mutation. 

Perhaps a single copy of functional 69D is sufficient to avoid any obvious morphological 

neuronal defects. Homozygous double mutants might show a detectable interaction. I 

observed that these double mutants do not undergo embryonic peristaltic contractions 

and therefore do not hatch. However, they do develop into stage 17 embryos, so 

examining their ventral ganglia may still be possible. 

 Nevertheless, if the only relevant aspect of 69D O-mannosylation were in axonal 

guidance, I would be surprised to find such a weak morphological interaction and still 

find a significant change in torsion. I previously showed that POMT in muscle tissue is 

also important in maintaining embryonic posture, and LAR has been shown to have a 

role in muscles (135-137). Since LAR and 69D belong to the same subfamily, I 
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hypothesized that 69D may also be important in muscles in addition to neurons. I 

therefore assessed the role of 69D in muscle tissue and found a strong genetic interaction 

between POMT and 69D
DN

 expressed specifically in muscle (Fig. 30). Knockdown of 

LAR in muscle by RNAi also showed an interaction, further supporting a cell 

autonomous role for RPTP’s in muscle tissue with respect to O-mannosylation and 

torsion. 

 My data also indicate that 69D and its mammalian homologues, PTP-σ, PTP-δ, 

and hLAR may be regulated by O-mannosylation differently than RPTPζ, which has its 

phosphatase activity attenuated by O-mannosylation (138). If O-mannosylation of 69D 

attenuated its phosphatase activity, then I would expect lower 69D expression levels to 

similarly attenuate dephosphorylation of tyrosine residues and thus recapitulate the 

effect of O-mannosylation. Such an effect should partially rescue the torsion phenotype, 

or at the very least not aggravate it. However, as described above, I observed the 

opposite (Fig. 28, 29), suggesting that O-mannosylation of 69D may upregulate 

phosphatase activity in Drosophila. Further evidence will be required to verify this. 

However, I also showed that increased levels of 69D in the muscles of flies can mediate 

a partial rescue. If O-mannosylation acts as an upregulator of activity that is already 

present, rather than an “on/off switch,” increased 69D expression levels might mimic the 

effect of O-mannosylation. Curiously, upregulation of 69D in muscles alone was able to 

mediate partial rescue (Fig. 29 B), even though POMT overexpression in muscle was 

not. The simplest explanation is that POMT activity can not increase 69D activity 

beyond a maximum level governed by the endogenous 69D levels, and thus may not be 
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able to compensate for a lack of O-mannosylated POMT targets in other tissues. An 

increase in the actual levels of 69D, on the other hand, might increase phosphatase 

activity sufficiently to have an impact. 

 My work here has preliminarily established a new target of O-mannosylation in 

Drosophila, RPTP69D. This target is similar to a known mammalian counterpart, 

RPTPζ, but belongs to a different subfamily (134). Thus my work may have revealed a 

new target or targets of O-mannosylation for mammalian systems as well, such as PTP-

σ, PTP-δ, or hLAR. I also provided supporting evidence for a role for RPTP’s outside 

the nervous system, and specifically connected this role to O-mannosylation. These 

findings may be of import to the pathology of CMD’s such as Walker-Warburg 

Syndrome by providing new putative therapeutic targets at the molecular level, 

particularly since upregulation of 69D helps relieve the torsion phenotype in Drosophila. 

Much research remains to be done, but mimicking this upregulation or otherwise 

targeting RPTP activity in WWS patients could potentially offer an effective treatment 

for some of the most severe forms of muscular dystrophy.    



 

101 

 

CHAPTER V 

SUMMARY AND FUTURE DIRECTIONS 

 

5.1 Summary 

Protein glycosylation is one of the most prominent forms of post-translational 

modification. It has a wide range of biological functions and is related to a variety of 

pathological states including cancer biology, infectious disease, autoimmune responses, 

and genetic disorders related to misglycosylation. Enzymes known as 

glycosyltransferases attach and extend glycan chains onto asparagine (N-linked) and 

serine/threonine (O-linked) amino acid residues, and glycosidases remove sugars from 

glycan chains. Defects in any of these enzymes can cause congenital disorders of 

glycosylation. The enzyme complex Protein O-MannosylTransferase (POMT) links 

mannose to serine and threonine residues on various target proteins, and these O-

mannosyl glycans are subsequently extended by various enzymes including POMGnT2, 

POMK, Fukutin, FKRP, and LARGE (47-50). Failure of these enzymes to properly 

glycosylate their targets is linked to the most severe forms of congenital muscular 

dystrophy, collectively known as dystroglycanopathies. 

In this dissertation I used fruit flies as a model system to investigate the 

biological mechanisms underlying physiological and developmental defects associated 

with POMT mutations. The most prominent and best characterized phenotype in 

Drosophila POMT mutants is a torsion of posterior segments in the clockwise direction 

relative to anterior segments. This phenotype was characterized near the beginning of the 
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20
th

 century, but has only relatively recently been associated with POMT defects. The 

mechanism by which torsion occurs has remained elusive.  

Here I have focused on the role of POMT mutations in the rise of rotation in 

Drosophila embryos and adult abdomens. I have characterized the gross biological 

mechanism that causes rotation, demonstrating that embryos of all genotypes experience 

a chiral interaction during peristaltic contractions. This interaction is manifested as 

rolling of the developing larva within the eggshell in a direction that correlates with the 

direction of the contraction wave. I hypothesize that this interaction may be between the 

embryonic cuticle and the vitelline membrane. Simple contraction waves that propagate 

from one end of the embryo to the other (designated here as “type 1 waves”) tend to 

decrease in intensity as they progress, and thus induce a smaller roll distance at the end 

of the wave than at the beginning. Because the rolling is left-handed in nature, this 

results in a stronger leftward roll at the beginning of the wave than at the end when 

viewed from the point of initiation, and leads to an apparent counterclockwise torsion of 

posterior segments relative to the anterior (See Fig. 17, 26).  

If type 1 waves were the only wave form, wild type embryos would accumulate 

counterclockwise torsion, and presumably, so would adult abdomens. Thus some 

mechanism must exist to counteract the accumulation of counterclockwise torsion. This 

mechanism is found in the form of “type 2 waves,” which have a more complex nature 

than type 1. Type 2 waves initiate in an anterior-posterior direction, halt part way 

through, and are swept back to the anterior by a second wave. I observed a strong 

correlation between type 2 waves and apparent torsion of posterior segments in the 
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clockwise direction. This presumably occurs both because the initial phase of type 2 

waves cancels rolling in posterior segments and because the 2
nd

 phase of the wave tends 

to increase in strength as it progresses. 

POMT mutants experience an overabundance of type 2 waves, resulting in a net 

accumulation of clockwise torsion. This phenomenon suggested a defect in posture 

sensing by PNS neurons. When POMT is restored to affected class IV da sensory 

neurons, which play a role in proprioception, embryos experience a partial rescue of both 

contraction patterning and torsion. Although POMT expression limited to neurons is 

insufficient to rescue abdominal rotation in adults, removal of the neuronal component 

of G14-Gal4-mediated expression, which can fully rescue rotation at all stages, inhibits 

rescue. Additionally, expression of RNAi against tw in class IV da neurons results in an 

aggravation of torsion in mutants, suggesting that POMT expression in these neurons is 

important in maintaining posture at both embryonic and adult stages. Confirming a role 

for POMT in class IV da neurons, POMT mutations cause defects in the axonal 

connections between these neurons and CNS cells in the ventral ganglion, with 

thickening of commissural branches and, in some cases, missing longitudinal tracts. 

These defects can be rescued by ectopic POMT expression in class IV da neurons alone.  

In fact, PNS function is required generally for correct contraction patterning and 

body posture in embryos. Removal of nearly all PNS neurons by a mutation in the 

senseless gene causes abnormal contraction patterns that can be overabundant in type 1 

or type 2 waves, and correspondingly causes both clockwise and counterclockwise 

torsion. POMT mutations, however, always cause torsion in a single direction with 
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corresponding overabundance of type 2 contractions, indicating that rather than failing to 

send signals to the CNS, POMT mutations cause erroneous signaling. These incorrect 

signals can also be propagated through the PNS neurons that are present in senseless 

mutants, since double mutants always manifest clockwise torsion. 

PNS neurons are not, however, the only cells involved in the rise of torsion. 

Rescue experiments demonstrated that POMT is also required in muscles and possibly 

other tissues including epidermis and CNS. Although the exact means by which failed 

POMT activity in these tissues may contribute to torsion is unknown, it is clear that 

muscles are stiff in POMT mutant late third instar larvae relative to wild type. While this 

stiffness is not sufficient to cause torsion, the evidence suggests that it is able to 

aggravate any torsion that has been induced. 

At the molecular level, both the muscle and neuronal components of torsion may 

be underlain by hypoglycosylation of dystroglycan (Dg). Dg is an integral component of 

the dystrophin-associated glycoprotein complex (DGC), known to be involved in a 

number of muscular dystrophies, and is abundant in muscle and in CNS neurons. It has 

also been shown to be present and O-mannosylated in PNS neurons. In Drosophila, Dg 

genetically interacts with POMT, increasing rotational severity in double mutants. 

However, Dg mutations alone can not cause torsion, suggesting that other POMT targets 

may play a role. This fact may help explain, at the molecular level, why 

dystroglycanopathies are among the most severe forms of muscular dystrophy: more 

than just the DGC is compromised. 
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Receptor protein tyrosine phosphatases (RPTP’s) have recently been 

characterized as POMT targets in mammals and are known to be hypoglycosylated in 

Muscle-Eye-Brain disease mouse models (124). At least some RPTP’s also appear to be 

O-mannosylated in Drosophila, and play a role in torsion phenotypes. Although RPTP’s 

are best known for their role in axonal guidance (which may well be a factor in torsion 

and symptoms associated with dystroglycanopathies in humans), here I show that RPTP 

O-mannosylation likely also plays a role in muscles. 

In short, I have characterized the rise of torsion at the organismal level, 

elucidated the cellular requirement for POMT that governs this mechanism, and 

identified a new functionally relevant target of O-mannosylation. Together these 

findings indicate previously unknown roles for O-mannosylation at both the cellular and 

molecular levels. These new roles may find application in both diagnostic and 

therapeutic techniques to help treat a disease that currently has no good long-term 

solutions. 

 

5.2 Future Directions 

 In this work I have shown that embryos experience a chiral interaction during 

peristaltic contractions. I proposed that this interaction is likely between the cuticle and 

vitelline membrane. However, it is currently unknown what the true basis for this 

interaction is. Electron microscopy might be informative as it could show whether there 

is any left-handed chirality of structures on the macro scale either in the cuticle, vitelline 

membrane, or both. Other structures may be examined as well. 
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 My characterization of the mechanical basis for torsion was primarily in 

embryos. Preliminary evidence suggests that similar abnormalities of muscle 

contractions may exist in the pupal stage, which is the critical stage for rescue of adult 

torsion. I have also shown that similar but not identical sets of drivers can mediate 

rescue in embryos and adults, connecting the two phenotypes. Moving forward, it would 

be useful to examine contractions in wild type and mutant pupae directly. Previously this 

has been difficult as pupae are relatively opaque. However, fluorescently labeled muscle 

can be imaged through the pupa, and now that we know what to look for an analysis of 

pupal contractions may prove fruitful. It may shed light on both the similarities and 

differences between the rise of torsion in embryos and adults.  

 I am frequently asked whether there are any known mutations that cause 

counterclockwise torsion. In this work I showed that sens
-
 can cause counterclockwise 

torsion, but not with 100% penetrance, and it can not be observed in adults because sens 

mutants do not survive to adulthood. There is, however, at least one known mutation that 

causes counterclockwise rotation in adults, in the gene now known as abdomen rotatum 

(AR) (139). This phenotype was first described in 1931 (140), and little work has been 

done on it since. Neither the molecular function of this gene nor the mechanism by 

which it causes rotation are known. I would love to see whether ar
-
 embryos, and 

perhaps pupae, undergo abnormal contraction patterning in these mutants with an 

overabundance of type 1 contractions and whether defects in PNS morphology might be 

observed. 
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 Regarding PNS morphology, further work should be done to determine how the 

observed PNS defects of POMT mutants translate to aberrant signaling and ultimately 

rotation. Similar defects of PNS morphology in other mutants do not necessarily cause 

rotation and may not be associated with abnormal feedback. Thus the morphological 

defects described here are likely a symptom rather than an underlying cause of signaling 

defects. Control theory in electronic circuits says that offsets in baseline feedback can 

result in offsets in the desired outcome (Personal communication from Alan Baker). For 

example, if a thermometer is miscalibrated such that it is off by 20 degrees, and is used 

to set the temperature of a refrigerator, the end result will be a refrigerator that is too hot 

or too cold due to a feedback offset. A similar offset may exist in POMT mutant 

neuronal circuits, and could help explain why torsion is always in the same direction. A 

better understanding of the relevant neuronal connections and measurements of their 

action potentials could be informative, though technological limitations may make such 

studies currently impractical. 

 In addition to the peripheral nervous system, muscle, epidermis, and CNS have 

potential roles in posture. Muscle stiffness may play a role in aggravating torsion, but 

can not be the cause on its own. I suspect that muscles make aberrant connections to the 

PNS, either directly or indirectly through the ECM, that may contribute to generation of 

incorrect feedback to the CNS. Similarly, I hypothesize the dendritic connections to the 

epidermis may be compromised, though so far we have not observed any alterations in 

dendritic morphology in POMT mutants. I also propose the possibility that although the 

CNS is evidently able to stimulate normal muscle contractions, axonal connections from 
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the PNS to the CNS may be compromised by failed O-mannosylation in the CNS. 

Studies examining connections between da neurons and epidermis, muscle, and CNS 

would therefore be enlightening. 

 Further work should also be done at the molecular level. Dystroglycan is 

evidently involved in the rise of torsion associated with POMT mutations. However, the 

molecular underpinnings for this role are unclear. In Drosophila, it is not yet even clear 

whether Dg binds laminin, though Drosophila Dg failed to bind human laminin 

(personal communication from N. Nakamura). Future studies should include an 

assessment of Dg-laminin interactions in Drosophila, and if such interactions exist, the 

necessary glycan chains should be characterized. In mammals, Dg-linked O-mannosyl 

glycans must be phosphorylated by POMK and subsequently extended by Fukutin, 

FKRP, and LARGE for laminin binding to occur (50,141). Drosophila do not have any 

known LARGE homologues, and it is unknown whether O-linked mannose is modified 

at all in Drosophila, though they do have an FKRP homologue (142). A more in-depth 

characterization of any O-mannosyl glycan extension that may exist in Drosophila, 

including whether O-linked mannose is phosphorylated and what role FKRP may play 

could help further establish both the utility and the limitations of Drosophila as a model 

system.   

 In this work I showed that RPTP69D and LAR are likely targets of O-

mannosylation with relevance to the torsion phenotype. Functional data suggest that it 

plays a role in neurons and, surprisingly, muscles. However, we have so far been unable 

to detect an interaction between POMT and RPTP69D in terms of neuronal morphology. 



 

109 

 

Further studies involving homozygous double mutants and neuronal rescue by ectopic 

expression of UAS-RPTP69D may help shed light on any interactions that exist. 

Downregulation studies in muscles have so far only been performed for LAR, and 

downregulation of RPTP69D would be helpful in further establishing this model. In 

mammalian systems, loss of LAR has been shown to impair muscle function and results 

in mitochondrial defects. Further studies might therefore include examination of 

mitochondria in Drosophila muscle in LAR and RPTP69D mutants and in flies with 

LAR and 69D downregulated in muscles specifically. 

 Finally, future work could examine roles for POMT’s outside of O-mannosyl 

transfer. POMT1 in several species has been shown have domains with a sequence 

similar to that of ryanodine receptors (143). Furthermore, inhibition of calcium flux in 

dystrophic mice has been shown to alleviate some dystrophy symptoms, while an 

increase in calcium flux in healthy mice can induce some symptoms seen in dystrophy 

(144-146). We therefore hypothesize that POMT1 may help regulate calcium flux in the 

ER of one or more cell types. Preliminary evidence suggests that POMT1 but not 

POMT2 does indeed alter calcium flux in cellulo (Personal communication from Agustin 

Guerrero-Hernandez). In the future we will examine the effect of POMT on calcium 

regulation in fly hearts both by inhibiting flux with thapsigargin and by monitoring 

calcium directly using the Ca
2+

-sensitive fluorophore GCaMP (82). These studies may 

shed light on a new role for POMT1 and also highlight a difference in the roles of 

POMT1 and POMT2. 
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 Ultimately, these data will present evidence regarding the rise of a previously 

mysterious phenotype in Drosophila, make potential links between Drosophila 

mechanisms and human pathology, and shed light on the biochemical and cellular roles 

of POMT and subsequent glycosyltransferases in maintaining proper development and 

physiology. This information could be of great value in treating patients with the most 

severe forms of muscular dystrophy. 
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