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ABSTRACT

Many problems in engineering and science are represented by nonlinear partial

differential equations (PDEs) with high contrast parameters and multiple scales.

Solving these equations involves expensive computational cost because the fine-grid

needs to resolve smallest scales and high contrast. In such cases, reduced-order

methods are often needed.

Reduced-order methods can be divided into local reduction methods and global

reduction methods. Local reduced-order methods such as upscaling, Multiscale Fi-

nite Element Method (MsFEM) and Generalized Multiscale Finite Element Method

(GMsFEM) divide the computational domain into coarse grids, where each grid con-

tains small-scale heterogeneities and high contrast, and represents the computations

for macroscopic simulations. In local model reduction, reduced-order models are

constructed in each coarse region. Some known approaches, such as homogenization

and numerical homogenization, are developed for problems with and without scale

separation, respectively. Global reduced-order models, such as Proper Orthogonal

Decomposition (POD), construct the reduced-order models via global finite element

basis functions. These basis functions are constructed by solving many forward prob-

lems that can be expensive.

In this dissertation, we propose global-local model reduction methods. The idea

of global-local model reduction methods is to approximate the global basis functions

locally and adaptively. However, in the case of nonlinear systems, additional inter-

polation techniques are required, such as Discrete Empirical Interpolation Method

(DEIM).

We propose a general global-local approach that uses the GMsFEM to construct
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adaptive approximation for the global basis functions. The developments of these

methods require adaptive offline and adaptive online reduced-order model strategies,

which we pursue in this work.

We consider the applications to nonlinear flow problems, such as nonlinear Forch-

heimer flow. In this case, we construct multiscale basis functions for the velocity field

following mixed GMsFEM. In addition, we present a local online adaptive method for

the basis enrichment of the function space based on an error indicator depending on

the local residual norm. Finally, we propose a global online adaptive method to add

new global basis functions to the POD subspace. We use local error indicators and

solve the global residual problem using the GMsFEM, with local online adaptation.
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1. INTRODUCTION

Nonlinear partial differential equations (PDEs), with complex heterogeneities,

multiple scales and high contrast in media properties, represent an important class

of problems with many relevant engineering and scientific applications in porous me-

dia. For example, in fractured media, fracture widths can be very small and fracture

length can vary over a rich hierarchy of scales. The various sized fractures can con-

nect and form a network with a complex geometry. Simulations of complex processes

through these systems can be challenging because of multiple scales and high con-

trast. Similar examples appear when modeling other subsurface flows (e.g., through

carbonates), where the permeability field has a high-contrast coefficient and hetero-

geneous distributions. Another application is the gas flow in shale formation. Shale

is a rock with small organic and inorganic pores which add more complexities to the

shale system. These rocks are fractured to produce natural gas. The resulting frac-

tures can have complex geometries and simulations, these systems are prohibitively

expensive.

In general, solving these types of problems requires resolving all scales and un-

certainties. Using standard methods to resolve all the scales at once can be very

expensive. Moreover, solving nonlinear flows, such as Forchheimer flow, has further

difficulties due to the need of many iterations. Using iterative methods, such as New-

ton iterations, requires updating the numerical solution of a large system of equations

at each iteration using the previous iterate results. This complicates the simulation

of a large number of degrees of freedom. As such, some model reduction techniques

are required to reduce the degrees of freedom. This is a general objective of this

dissertation. Figure 1.1 shows the general concept of reduced-ordered methods.
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Figure 1.1: General concept of reduced-order modeling.

Typically, model reduction methods can be divided into two main categories:

global reduced-order modeling techniques and local reduced-order modeling tech-

niques. In this dissertation, we discuss and develop some global and local model

reduction techniques for nonlinear flows in highly-heterogeneous media with high

contrast.

Global model reduction methods. Global reduction techniques construct

global finite element basis functions to solve the underlying PDEs. These basis

functions are defined in the entire physical domain and use boundary conditions

that are relevant to the physical problem. For example, in the applications, where

the source terms are defined via injection and production wells, one uses various rates

to solve the global problem. These rates are typically time-dependent. Therefore,

in the offline stage, various time-dependent rates are defined to obtain snapshots,

which are used for generating global basis functions. In other applications, one can

use different physical boundary conditions or source terms to obtain these snapshots.

From this set of snapshots, the global basis functions are extracted.

Several techniques, such as Proper Orthogonal Decomposition (POD), Dynamic
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Mode Decomposition (DMD) and Balanced Truncation (BT), are used for global

model reduction. The main purpose of these techniques is to reduce the dimension

of the dynamical system by projecting the high-dimensional system into a lower-

dimensional space using a set of orthonormal basis functions constructed from a

sequence of snapshots [3, 51, 52, 4, 35]. In addition to order reduction, POD pro-

vides a powerful technique for extracting the most energetic modes from a linear or

nonlinear dynamical process [12, 50, 25, 14, 40, 3, 51, 52, 4, 39, 38].

Local model reduction methods. The general concept of local model reduc-

tion is to reduce the dimension of the models within a certain acceptable accuracy

instead of solving the full-resolved models. Typically, local model reduction tech-

niques start with dividing the computational domain into some coarse grids, where

each coarse grid is partitioned into connected fine grids (see Figure 1.2). Then,

reduced-order models are constructed for each local coarse grid. Under this general

concept, very successful approaches include homogenization and numerical homoge-

nization have been proposed.

Figure 1.2: Coarse grids and fine grids.
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Homogenization and numerical homogenization techniques [41, 19, 55, 26, 45, 34]

are designed and used for problems with periodic heterogeneities or problems with

scale separation. The scale separation assumption allows the computations to be

localized. Homogenization and numerical homogenization techniques calculate effec-

tive properties by using some averaging methods. For example, in single-phase flow

simulations, coarse-grid blocks or representative volumes are used to compute the

effective properties of these blocks. The computation of effective properties is per-

formed by solving local problems with some boundary conditions. Once the effective

properties are computed, the global problem is solved with upscaled permeability

fields. In nonlinear problems, one computes the effective nonlinear properties. For

example, in Forchheimer flow [10], the effective properties consist of nonlinear func-

tional relations between the fluxes and the pressure. These relations for each coarse

block are computed by solving multiple local problems. In these homogenization

and numerical homogenization approaches, one computes the effective properties by

averaging the local solutions. In contrast, in multiscale methods, we use these local

solutions to construct spaces for approximations of the solution space.

In multiscale methods, one constructs a coarse space that is spanned by a set

of independently computed multiscale basis functions. This allows capturing the

effects of small scales on a coarse grid. Then, the multiscale basis functions are

coupled using global formulation in order to compute the reduced-order solution.

Some multiscale methods have been introduced and used in various applications.

Multiscale Finite Volume Method (MsFVM) (see, e.g., [44]) and Multiscale Finite

Element Method (MsFEM) (e.g., [7, 20, 29, 30, 31, 36]) are particular examples of

multiscale methods that are very popular. Both methods construct the multiscale

basis functions by solving local problems with artificial boundary conditions. The

MsFVM is commonly used in subsurface applications and it constructs the basis
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functions on a dual coarse mesh to produce mass conservative solutions. Although

the efficiency of the MsFEM has been proven for many applications, a systematic

enrichment of the coarse space is required in some situations. More precisely, if a

high level of accuracy is desired, adding additional basis functions to the construction

of the coarse space is needed. The systematic enrichment of the coarse space is

important for the convergence to the fine solution. For this purpose, the Generalized

Multiscale Finite Element Method (GMsFEM) has been introduced by Efendiev et

al. [28, 21] and used in many applications [27, 29, 32, 33].

As in many multiscale and model reduction techniques, the GMsFEM method

divides the computation into two main stages: (1) the offline stage and (2) the online

stage. In the offline stage, a small dimensional space is constructed via appropriate

spectral decomposition. This space can be efficiently used in the online stage to con-

struct multiscale basis functions. In the online stage, the multiscale basis functions

are used to solve the forward model on a coarse-grid for many input parameters.

Thus, this approach provides a substantial computational saving at the online stage.

In this research, we apply the GMsFEM as an effective tool for our local model

reduction. Further discussion of this method will be in Section 3.

We would like to remark that besides MsFEM, MsFVM and GMsFEM, some

other numerical homogenization methods have been efficiently used, such as varia-

tional multiscale methods [42], heterogeneous multiscale methods [53, 48], mortar

multiscale methods [9, 54], mixed multiscale finite element methods [1, 2, 8, 43], and

mixed generalized multiscale finite element methods [22].

In a number of applications, the conservation of mass is important. For this

reason, finite volume or mixed finite element discretization techniques are used to

couple multiscale basis functions. In [22], the mixed GMsFEM was presented for

solving a mixed framework of flow in heterogeneous media where the conservation of
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mass is essential. The author considered the linear case and constructed the velocity

field for the snapshots and offline spaces and used piecewise constant basis functions

to approximate the pressure. In this dissertation, we extend this method to the

nonlinear flow, considering nonlinear Forchheimer flow as an application.

Forchheimer flow is a particularly important example of physical processes that

can be modeled by a nonlinear equation. Forchheimer flow appears in many applica-

tions related to fast flow in porous media. For example, fast flows can appear in many

regions of the domains, such as near wells. The homogenization of flows in porous

media typically considers low velocity flows that are governed by Stokes’ equations.

When the nonlinear effects due to fast flows become important, Navier-Stokes equa-

tions are solved at pore level. The homogenization of Navier-Stokes equations leads

to a nonlinear Darcy flow. These issues are investigated in the literature [15, 37, 47].

One way to model the nonlinear effects at the pore level on the Darcy scale is via

Forchheimer flow.

Heterogeneities in Forchheimer flow can occur due to variable permeability field

[45]. For example, in recent years, using near well data, e.g., core data, engineers

create increasingly complex and detailed geocellular models near the well. To reduce

the computational complexity, some type of coarsening is needed. Recently, many

approaches have been proposed for solving Forchheimer flow. For example, some

coarsening and upscaling methods have been used to reduce the computational com-

plexity for solving this equation. In [45], a special nonlinear upscaled Forchheimer

form is used to simplify the calculation. In [34], a local-global upscaling technique is

iteratively used. A new formulation for Forchheimer flow is used in [10]. The authors

reduced the original system of equations for pressure and velocity to one nonlinear

equation for pressure only. This equivalent form is obtained by using the monotone

nonlinear permeability function of the gradient of pressure.
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The global-local model reduction. Global model reduction methods derive

reduced-order models through the construction of global finite element basis functions

(global modes). These basis functions are expensive to compute. This is because the

global techniques define the basis functions in the entire physical domain using fine-

scale snapshots. Therefore, to reduce the computational cost of the global modes,

one can approximate the global snapshots first and then compute the global modes

for the resulting reduced-order model. This can be achieved by combining local

and global techniques. This combination defines the concept of global-local model

reduction. Moreover, one can use local model reduction to effectively update the

global modes and design adaptive strategies, which we pursue in this dissertation.

Global-local model reduction techniques start with using some local model re-

duction such as the GMsFEM to construct appropriate number of basis functions

in each coarse block. These basis functions are then used to solve the coarse-scale

problem. Then, the global modes are constructed by applying a global reduction

method such as POD/DMD on the coarse-scale solutions. With this approach, a

significant reduction can be achieved while preserving the main flow feature due to

the use of local modes that capture these features.

A combination of local and global model reduction schemes has been used for

linear problem [36, 27]. A significant reduction in the computational complexity when

solving linear parabolic PDE in [36] has been achieved by combining the concepts of

the GMsFEM and POD and/or DMD. In [27], balanced truncation is used to perform

global model reduction and is efficiently combined with the local model reduction

tools introduced in [29].

Adaptive methods. Some offline and online adaptive methods have been

proposed for model reduction. In the offline adaptive method (see [17, 23]), a better

reduced solution space is obtained by adding some basis functions locally in the
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coarse regions based on an a-posteriori error indicator which depends on the local

residual norm. However, the resulting reduced system, that is constructed in the

offline stage, is kept unchanged in the online stage. Therefore, the online solution

still relies on the pre-computed offline information. Unlike the offline adaption, the

online adaptive methods modify the reduced system during the online computations

[17, 23, 5, 21, 24]. All these studies are considered for the linear elliptic flows.

In the case of dealing with reduced-order models of nonlinear systems, the afore-

mentioned reduction and adaptive methods are limited by the full cost of the evalu-

ation of the nonlinear coefficients. In this case, some interpolation methods can be

used to avoid performing fine-grid computations. The Discrete Empirical Interpola-

tion Method (DEIM) introduced in [18] is one of these interpolation methods that

can be used for local and global approximations of the nonlinear functions.

Discrete empirical interpolation method. Basically, the discrete empirical

interpolation method approximates a nonlinear function through interpolatory pro-

jection of a few selected global snapshots of the function. The idea is to use empirical

snapshots and information of the nonlinear function in some selected components (in

local or global regions) to represent such function over the entire domain. The se-

lection of the empirical snapshots is based on a singular value decomposition (SVD)

for the set of snapshots of the nonlinear function. The DEIM modes used for inter-

polation are the dominant eigenmodes of the SVD. More details of this method will

be presented in the next section.

This dissertation. Our main contributions in this dissertation are: (1) We

combine three methods: a local reduction method (GMsFEM), a global mode de-

composition method (POD) and a discrete empirical interpolation technique to re-

duce the computational complexity associated with time dependent nonlinear flows

in highly heterogeneous porous media. (2) Specifically, we use DEIM to approxi-
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mate the nonlinear coefficients locally (at selected points in each coarse region) at

the offline stage and globally (at selected points in the entire domain) at the online

stage for which we refer to our method as a global-local nonlinear approach. (3) We

extend the proposed method to the mixed discretization framework. (4) We apply

the mixed-GMsFEM to solve the Forchheimer equation using local and global DEIM.

(5) We propose adaptive strategies in local and global methods. In the following, we

briefly introduce these contributions as they are organized in this dissertation.

In Section 3, we apply the proposed global-local reduction method to the nonlin-

ear multiscale parabolic equations with nonlinear diffusion coefficients. We use the

GMsFEM to introduce the coarse-scale solution for computing the global snapshots.

The global snapshots are used by the POD method to construct global basis func-

tions. We use this low dimensional global space constructed via local multiscale basis

functions to solve the forward problem for different online parameter inputs. During

these forward computations, the local basis functions are kept fixed and, thus, the

computational cost for solving for global snapshots is inexpensive and performed

by solving coarse-scale problems. Moreover, we employ DEIM to approximate the

nonlinear coefficients locally and globally in order to circumvent the issue of the fine-

scale computation cost of these coefficients. We study the effect of the number of the

local and global DEIM modes on the accuracy of our approximation. Additionally,

we apply this method using several offline parameter inputs. Then, the online space

is generated from the combination of the POD modes computed for each parame-

ter. Our numerical examples show that using several offline parameters improves the

reduced-order solutions. We present extensive numerical studies.

In Section 4, we propose a mixed GMsFEM for nonlinear flow and apply it to solve

nonlinear Forchheimer flow in highly heterogeneous porous media. In this extension,

we generate local snapshots and local spectral problems for solving Forchheimer flow
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in a mixed formulation. We consider the two term law form of Forchheimer equation

in the case of slightly-compressible single-phase flows and write the resulting system

in terms of a nonlinear flow equation for pressure with the nonlinearity depending

on the pressure gradient.

The proposed approach constructs multiscale basis functions for the velocity field

following the mixed GMsFEM as developed in [22] for the linear case. Then, we apply

the POD method to the coarse-scale problem obtained by the mixed GMsFEM. As

in Section 3, we combine the concepts of the mixed GMsFEM with POD and DEIM.

We also study the convergence rate of the proposed reduced-order model analytically.

Furthermore, we extend local online concepts and use them adaptively. The local

online basis functions are added locally to improve the accuracy of the solution.

In Section 5, our objective is to design a global-local online approach. In many

applications, the global snapshot spaces do not contain sufficient information for

all time instants. Thus, at some instants, one needs to compute new snapshots

and new global basis functions. In [13], residual-based POD modes were used to

improve the POD subspace for Navier-Stokes equations. In [49], the POD modes

for nonlinear dissipative systems are updated based on residual indicators. However,

computing the global basis functions can be expensive and one needs inexpensive

error indicators. In Section 5, we investigate these issues. We introduce a global

online adaptive method that is used to add new global basis functions to the POD

subspace. Toward this goal, we use a criterion to decide if adapting the POD subspace

is required. We use local error indicators to decide. Using local error indicators

instead of global error indicators reduces the computational time. At any time step,

if the adaption is needed, the new POD basis function is computed by solving the

global residual problem. We solve the global residual problem using the GMsFEM,

with the local online adaptation. We emphasize that global online adaptivity is

10



performed by incorporating new data that becomes available in the online stage. We

apply this method to nonlinear Forchheimer flow. Numerical results are presented,

where we vary the source terms.
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2. PRELIMINARIES∗

2.1 Model problem

For the first model problem in Section 3, we will consider a time-dependent

nonlinear flow governed by the following parabolic partial differential equation

∂p

∂t
− div (κ(x; p, µ)∇p) = f(x) in D, (2.1)

with some boundary and initial conditions. The variable p = p(t, x;µ) denotes the

pressure, D is a bounded domain, f is a forcing term, and in our case the permeability

field represented by κ(x; p, µ) is a nonlinear function. Here, µ represents a given

parameter, ∂
∂t

is the time derivative and ∇ = ( ∂
∂x
, ∂
∂y
).

In Sections 4 and 5, we are interested in solving the following form for the Forch-

heimer equation

v + β(x)|v|v = − 1

µ
κ(x)∇p, (2.2)

where v(x) and p(x) represent the velocity field and the pressure distribution, respec-

tively; x is the spatial variable in R2, κ(x) is a given high-contrast heterogeneous

permeability field, µ is the viscosity of the fluid, and β is the coefficient of inertial

flow resistance. Here, |.| denotes the Euclidean norm in R2, (|v|2 =
∑2

i=1 v
2
i ). If no

confusion arises, we will use the same variable to denote the continuous and fine-grid

variables.

∗Parts of this section have been reprinted with permission from [6] Manal Alotaibi, Victor M
Calo, Yalchin Efendiev, Juan Galvis, and Mehdi Ghommem. Globallocal nonlinear model reduction
for flows in heterogeneous porous media. Computer Methods in Applied Mechanics and Engineering,
292:pp. 122137, 2015.
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In this section, we will consider the first model problem represented by Equation

(2.1) to explain the general concepts of our proposed global-local reduction approach.

A more detailed description for the model problem of Forchheimer flow (2.2) will be

delegated to Section 4.

First, we outline the fine-grid solution technique for solving Equation (2.1). We

partition the domain D into a set of finite elements (e.g., quadrilaterals or triangles)

called coarse-grid blocks. We denote the coarse discretization by T H , where H > 0

is the coarse mesh size. In addition, we assume that T h is a refinement of T H by

a connected union of fine-grid blocks. We use {yi}Nv
i=1 to denote the vertices of the

coarse mesh, and define the neighborhood of a node yi by

ωi =
∪

{Kj ∈ T H ; yi ∈ Kj}. (2.3)

See Figure 2.1 for an illustration of a coarse neighborhood.

To solve (2.1) using the finite element method (FEM), we search for p(x, t) ∈

Vh = span{ϕi}
Nf

i=1, where ϕi are the standard finite element basis functions defined

on T h, and Nf denotes the number of fine nodes. The finite element discretization

of (2.1) yields a system of ordinary differential equations given by

MṖ + N(P, µ) = F, (2.4)

where

P =

(
p1(t) p2(t) · · · pNf

(t)

)
is the vector collecting the pressure values at all nodes in the domain, M := [mij] =∫
D
ϕiϕj is a mass matrix, F := [fi] =

∫
D
ϕif . Using the offline basis functions, we

13



yi

K1

K2K3

K4

T H (Coarse Grid)

ωi
Coarse

Neighborhood

K

Coarse
Element

yi

Figure 2.1: Illustration of the coarse grid (T H) and coarse neighborhood (ωi).

can write (in a discrete form)

κ(x; p, µ) =

Q∑
q=1

κq(x)bq(p, µ). (2.5)

This results in

N(P, µ) ≈
Q∑

q=1

AqΛ
q
1(P, µ)P,

where we have

Aq := [aqij] =

∫
D

κq∇ϕi · ∇ϕj,

Λq
1(P, µ) = diag

(
bq(p1, µ) bq(p2, µ) · · · bq(pNf

, µ)

)
.
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Employing the backward Euler scheme for the time marching process, we obtain

Pn+1 +∆t M−1N(Pn+1, µ) = Pn +∆t M−1F, (2.6)

where ∆t is the time-step size and the superscript n refers to the temporal level

of the solution. We note that the square matrices are of size Nf×Nf . Moreover,

the nonlinear term N(P, µ) requires an iterative method to compute the nonlinear

coefficients on the fine-grid. Therefore, solving Equation (2.6) involves an expensive

computational cost. The main goal of this work is to derive a suitable reduced order

model of size Nr such that Nr ≪ Nf .

2.2 Generalized multiscale finite element method

(local model reduction)

The main idea of the GMsFEM is to construct a small dimensional local solution

space that can be used to generate an efficient and accurate approximation to the

solution of a large system, which is the solution of (2.6) in our case. As in many

multiscale and model reduction techniques, the GMsFEM divides the computation

into offline stage and online stage (see [28]). Below we summarize the offline/online

computational procedure in the following steps:

1. Offline computations:

– Generation coarse grid.

– Construction of snapshot space.

– Construction of the offline space by performing dimension reduction in

the space of local snapshots.

2. Online computations:
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– Compute multiscale basis functions for each input parameter.

– For given forcing term and boundary conditions, solve a coarse-grid prob-

lem .

2.2.1 Offline stage

In the offline computation, we first construct the local snapshot space V ωi
snap for

each coarse region ωi. Constructing the snapshot space may involve solving various

local problems for different choices of input parameters or different fine-grid repre-

sentations of the solution in each coarse region. This space is used to construct the

offline space in the following step via a spectral decomposition of the snapshot space.

We denote each snapshot vector (listing the solution at each node in the domain)

using a single index and create the following matrix

Rsnap =
[
ψsnap
1 , . . . , ψsnap

Msnap

]
,

where ψsnap
j denotes the snapshots and Msnap denotes the total number of functions

to keep in the local snapshot matrix construction.

The following step is to construct the offline space Voff. We want this space to be

a subspace of the the snapshot space that can approximate with a sufficient accu-

racy any element of the original snapshot space. Toward this goal, we construct the

offline space via an auxiliary spectral decomposition of the snapshot space. The spec-

tral decomposition enables us to select the high-energy elements from the snapshot

space by choosing the eigenvectors corresponding to the largest eigenvalues. These

eigenvectors are then used to define the offline multiscale basis functions.

Moreover, in the offline stage, the bilinear forms are chosen to be parameter-

independent (through nonlinearity) such that there is no need to reconstruct the
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offline space for each parameter. Therefore, to construct the offline space, we use

the average of the parameters over the coarse region ωi in κ(x, ν) while keeping the

spatial variations, where ν represents both p and µ in the following computations.

We consider the following eigenvalue problem in the space of snapshots,

AoffΨoff
k = λoffk S

offΨoff
k , (2.7)

where

Aoff = [aoffmn] =

∫
ωi

κ(x, ν)∇ψsnap
m · ∇ψsnap

n = RT
snapARsnap,

Soff = [soffmn] =

∫
ωi

κ̃(x, ν)ψsnap
m ψsnap

n = RT
snapSRsnap.

(2.8)

The weighted function κ̃ in the definition of Soff is defined by (see [28])

κ̃ = κ H2

Nv∑
i=1

|∇χ̂i|2.

Here, χ̂i is the standard multiscal partition of unity functions defined by

−div(κ(x; ν)∇χ̂i) = 0 K ∈ ωi

χ̂i = gi on ∂K,

for all K ∈ ωi, where gi is assumed to be linear. In Equations (2.8), the coefficients

κ(x, ν) and κ̃(x, ν) are parameter-averaged coefficients. The A and S denote the fine-

scale matrices with parameter-averaged coefficients. The fine-scale stiffness matrix
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A ( similar for S) is constructed by integrating only on ωi

A = [amn] =

∫
ωi

κ(x; p, µ)∇ψsnap
m · ∇ψsnap

n . (2.9)

Then, we choose the smallest Moff eigenvalues from Equation (2.7) and form the

corresponding eigenvectors in the respective space of snapshots by setting ψoff
k =∑

j Ψ
off
kjψ

snap
j (for k = 1, . . . ,Moff), where Ψoff

kj are the coordinates of the vector Ψoff
k .

We then create the offline matrix

Roff =
[
ψoff
1 , . . . , ψ

off
Moff

]
,

which maps the fine-grid vectors to the the vectors of coarse degrees of freedom.

Using the transformation matrix Roff ∈ RNf×Moff , we can express Equation (2.6) as

Pn+1
H +∆t(RT

offMRoff)
−1RT

offN(Roff Pn+1
H , µ) = Pn

H +∆t(RT
offMRoff)

−1RT
offH, (2.10)

where PH denotes the coarse-scale solution (offline solution). The square matrices in

(2.10) are of size Moff ×Moff, where Moff ≪ Nf . Thus, Equation (2.10) is considered

as a local model reduction of (2.6).

2.2.2 Online stage

In case of parameter dependent problem, we seek a subspace of the respective

offline space such that it can approximate well any element of the offline space. At the

online stage, the bilinear forms are parameter-dependent. The following eigenvalue
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problems are posed in the reduced offline space:

Aon(ν)Ψon
k = λonk S

on(ν)Ψon
k , (2.11)

where

Aon(ν) = [aon(ν)mn] =

∫
ωi

κ(x, ν)∇ψoff
m · ∇ψoff

n = RT
offA(ν)Roff,

Son(ν) = [sonmn] =

∫
ωi

κ̃(x, ν)ψoff
m ψ

off
n = RT

offS(ν)Roff,

and κ(x, ν) and κ̃(x, ν) are now parameter-dependent. To generate the online space,

we then choose the smallestMon eigenvalues from (2.11) and form the corresponding

eigenvectors in the offline space by setting ψon
k =

∑
j Ψ

on
kjψ

off
j (for k = 1, . . . ,Mon),

where Ψon
kj are the coordinates of the vector Ψ

on
k . Note that, if κ(x, p) can be written

as κ(x, p) = k0(x)N (p), where N (p) is a nonlinear function of p, then one can use

the parameter-independent case of the GMsFEM. In this case, there is no need to

construct an online space (i.e., the online space is the same as the offline space).

2.3 Proper orthogonal decomposition method (global model reduction)

In our proposed method, the main objective of the POD method is to construct a

low dimensional solution space that can be used to solve the forward problem for any

input parameter in the online stage. The first step of POD is to collect a sequence of

n instantaneous coarse-solution piH , where p
i
H = pH(ti). Then, we define the space

V = span{p1H , p2H , · · · , pnH}.

We assume the time spacing between two consecutive snapshots in the above sequence

is constant. Using this sequence of snapshots, we introduce the correlation matrix
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W = [wi,j]n×n ∈ R i.e.

W = VTV ,

and then compute the POD modes {φPOD} by performing eigenvalues and eigenvec-

tors of the correlation matrix W ; that is

Wzi = σ2
i zi and φPOD

i =
1

σi
Vzi.

We assume σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
d > 0, where d is the maximum number of nonzero

eigenvalues. More details on using the POD modes for online space construction will

be discussed in Sections 3 and 4.

2.4 Discrete emprical interpolation method (DEIM)

We give a quick review of the discrete empirical interpolation method (DEIM)

as presented in [18]. First of all, the need of using this method to approximate the

nonlinear function N (p) is coming from our attempt to solve (2.10) (the coarse-scale

problem) instead of (2.6) (the fine-scale problem). In the offline stage, the nonlinear

function N (p) needs to be evaluated with vectors p = RoffpH . In the online stage,

N (p) is evaluated with vectors of the form p = RoffRonpon. In both cases the vectors

p are the downscaling of solutions obtained by a reduced order model. For ease of the

notation, we use the same variable to denote fine-grid and the continuous solution.

This leads us to look for an approximation of N (p) at a reduced cost. We use discrete

empirical interpolation method (DEIM) for the local approximation of the nonlinear

functions in the offline stage and for the global approximation in the online stage.

DEIM is based on approximating a nonlinear function by means of an interpolatory

projection of a few selected snapshots of the function. The idea is to represent a

function over the domain while using empirical snapshots and information in some
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locations (or components).

Let N (τ) ∈ Rn denotes a nonlinear function where τ ∈ Rns . Here, in general, ns

can be different from n. In a reduced-order modeling, τ has a reduced representation,

τ =
l∑

i=1

αiζi,

where ζi is a basis that represents the solution space and l ≪ ns. This leads us to

look for an approximation of N (τ) at a reduced cost. To perform a reduced order

approximation of N (τ), we first define a reduced dimensional space for N (τ). That

is, we would like to find m basis vectors (where m is much smaller than n), ψ∗
1,...,

ψ∗
m, such that we can write

N (τ) ≈ Ψ∗d(τ), (2.12)

where Ψ∗ = (ψ∗
1
, · · · , ψ∗

m
) ∈ Rn×m.

The goal of DEIM is to find d(τ) using only a few rows of (2.12). In general, one

can define d(τ)’s using m rows of (2.12) and invert a reduced system to compute

d(τ). This can be formalized using the matrix P

P = [e℘1 , · · · , e℘m ] ∈ Rn×m,

where e℘i
= [0, · · · , 0, 1, 0, · · · , 0]T ∈ Rn is the ℘thi column of the identity matrix

In ∈ Rn×n for i = 1, · · · ,m. Multiplying Equation (2.12) by PT and assuming that

the matrix PTΨ∗ is nonsingular, we obtain

N (τ) ≈ Ñ (τ) = Ψ∗d(τ) = Ψ∗(PTΨ∗)−1PTN (τ). (2.13)

To summarize, approximating the nonlinear function N (τ), as given by Equa-
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tion (2.13), requires the following:

• Computing the projection basis Ψ∗ = (ψ∗
1
, · · · , ψ∗

m
);

• Identifying the indices {℘1, · · · , ℘m}.

To determine the projection basis Ψ∗ = (ψ∗
1
, · · · , ψ∗

m
), we collect function eval-

uations in an n × ns matrix B = [N (τ1), · · · ,N (τns)] and employ POD to select

the most energetic modes. This selection uses the eigenvalue decomposition of the

square matrix BTB (left singular values) and form the important modes using the

dominant eigenvalues. These modes are used as the projection basis in the approxi-

mation given by Equation (2.12). In Equation (2.13), the term Ψ∗(PTΨ∗)−1 ∈ Rn×m

is computed once and stored. The d(τ) is computed using the values of the function

N (τ) at m points with the indices ℘1, · · · , ℘m identified using the DEIM algorithm

in Table (2.1).

The computational saving is due to the resulting fewer evaluations of N (τ). This

shows the advantage of using DEIM algorithm in our proposed reduction method.

However, applying the DEIM algorithm to reduce the computational cost of the

nonlinear function requires additional computations in the offline stage, which will

be discussed in Section 3.

22



DEIM Algorithm [18]:

Input: The projection basis matrix Ψ∗ = (ψ∗
1
, · · · , ψ∗

m
)

obtained by applying POD on a sequence of ns function evaluations.

Output: The interpolation indices −→℘ = (℘1, · · · , ℘m)
T

1: Set [|ρ|, ℘1] = max{|ψ∗
1|}

2: Set Ψ∗ = [ψ∗
1], P = [e℘1 ], and

−→℘ = (℘1)

3: for k = 2, ...,m do

- Solve (PTΨ∗)w = PTψ∗
k for some w.

- Compute r = ψ∗
k −Ψ∗w

- Compute [|ρ|, ℘k] = max{|r|}

- Set Ψ∗ = [Ψ∗ ψ∗
k], P = [P e℘k

], and −→℘ =

( −→℘
℘k

)
end for

Table 2.1: Algorithm of the multiscale discrete empirical interpolation method.

23



3. GLOBAL-LOCAL METHOD FOR DIFFUSION MODEL FOR

NONLINEAR PARABOLIC EQUATION∗

In this section, we combine discrete empirical interpolation techniques, global

mode decomposition methods, and local multiscale methods such as the Gener-

alized Multiscale Finite Element Method (GMsFEM). We use this combination

to reduce the computational complexity associated with nonlinear flows in highly-

heterogeneous porous media. To solve the nonlinear governing equations, we em-

ploy the GMsFEM to represent the solution on a coarse-grid with multiscale basis

functions and apply proper orthogonal decomposition on the coarse-grid solutions.

Computing the GMsFEM solution involves calculating the residual and the Jaco-

bian on the fine-grid. As such, we use local and global empirical interpolation con-

cepts to circumvent performing these computations on the fine-grid. The resulting

reduced-order approach enables a significant reduction in the flow problem size while

accurately capturing the behavior of the fully-resolved solutions.

3.1 Model problem

We consider the model problem presented in Section 2.1 by the following equation

∂p

∂t
− div (κ(x; p, µ)∇p) = f(x) in D, (3.1)

subject to some boundary and initial conditions. We recall that D is a bounded

computational domain with high contrast permeability κ, µ is an input parameter,

p = p(t, x) denotes the pressure and f is the forcing term.

∗Parts of this section have been reprinted with permission from [6] Manal Alotaibi, Victor M
Calo, Yalchin Efendiev, Juan Galvis, and Mehdi Ghommem. Globallocal nonlinear model reduction
for flows in heterogeneous porous media. Computer Methods in Applied Mechanics and Engineering,
292:pp. 122137, 2015.
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3.2 Finite element discretization and Newton method

Following the fine-scale and coarse-scale discretization of the computational do-

main D as described in Section 2.1, we will get the following system of ordinary

differential equations

MṖ + N(P, µ) = F. (3.2)

Recall that P is the vector of pressure values at all fine nodes and F is the right-

hand-side vector obtained by discretization. And using the offline basis functions,

we can write (in a discrete form)

κ(x; p, µ) =

Q∑
q=1

κq(x)bq(p, µ). (3.3)

This results in

N(P, µ) =

Q∑
q=1

AqΛ
q
1(P, µ)P,

where we have

Aq := [aqij] =

∫
D

κq∇ϕi · ∇ϕj,

Λq
1(P, µ) = diag

(
bq(p1, µ) bq(p2, µ) · · · bq(pNf

, µ)

)
,

and ϕi are piecewise linear basis functions defined on a fine triangulation of D.

Employing the backward Euler scheme for the time marching process, we obtain

Pn+1 +∆t M−1N(Pn+1, µ) = Pn +∆t M−1F, (3.4)

where ∆t is the time-step size and the superscript n refers to the temporal level of
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the solution. The residual is defined as:

R(Pn+1) = Pn+1 − Pn +∆t M−1N(Pn+1, µ)−∆t M−1F

with derivative (Jacobian)

J(Pn+1) = DpR(P
n+1) = I +∆t M−1DpN(P

n+1)

= I +

Q∑
q=1

∆t M−1AqΛ
q
1(P

n+1) +

Q∑
q=1

∆t M−1AqΛ
q
2(P

n+1),

where

Λq
2(P, µ) = diag

(
p1

∂bq(p1,µ)

∂p
p2

∂bq(p2,µ)

∂p
· · · pNf

∂bq(pNf
,µ)

∂p

)
,

and Dp is the multi-variate gradient operator defined as [DpR(P)]ij = ∂Ri/∂Pj.

The scheme involves, at each time step, the following iterations

J(Pn+1
(k) )∆Pn+1

(k) = −
(
Pn+1
(k) − Pn +∆t M−1N(Pn+1

(k) , µ)−∆t M−1F
)
,

Pn+1
(k+1) = Pn+1

(k) +∆Pn+1
(k) ,

where the initial guess is Pn+1
(0) = Pn and k is the iteration counter. The above

iterations are repeatedly applied until ∥ ∆Pn+1
(k) ∥ is less than a specific tolerance.

Therefore, the fine-grid discretization involves many solves with a large matrices of

size Nf × Nf that may become prohibitively expensive to handle numerically. In

the following we introduce a global-local model reduction technique that accurately

approximates the solution using fewer number of degrees of freedom.
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3.3 Local multiscale model reduction

In our proposed technique, we consider the GMsFEM as the tool for local model

reduction. Recall from Section 2.2 that the GMsFEM divides the computations into

offline stage and online stage. In the offline stage we construct snapshot space and

offline multiscale space. The snapshot space, essentially, is the space containing the

extensive set of basis functions which are the solutions of local problems. The of-

fline space is constructed via spectral decomposition of the local snapshot space. In

parameter-dependent problems, the online multiscale space is then constructed for

each input parameter in the online stage. We remark that in our simulations, we use

Q = 1 in Equation (3.3) as our focus is on localized multiscale interpolation of non-

linear functionals that arise in discretization of multiscale PDEs. With this choice,

we do not need to compute the online multiscale space (i.e., the online multiscale

space is the same as the offline multiscale space). We refer to Section 2.2 for more

details.

Suppose the offline multiscale basis functions {ψoff
i }Moff

i=1 are obtained following the

GMsFEM framework. We then create the offline matrix

Roff =
[
ψoff
1 , . . . , ψ

off
Moff

]
,

which maps the fine-grid vectors to the vectors of coarse degrees of freedom. Using

the transformation matrix Roff ∈ RNf×Moff , we use the solution expansion p = Roff pH

and employ the multiscale framework to obtain a set of Moff ordinary differential

equations that constitute a reduced-order model; that is,

ṖH = −(RT
offMRoff)

−1RT
offN(Roff PH , µ) + (RT

offMRoff)
−1RT

offF, (3.5)
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where PH denotes the vector of the coarse-scale solutions (offline solutions). Thus,

the original problem with Nf degrees of freedom is reduced to a dynamical system

with Moff dimensions where Moff ≪ Nf . Again, we use the same notations for

continuous and fine-grid discrete variables for the notation simplicity.

The nonlinear term (RT
offMRoff)

−1RT
offN(Roff PH , µ) in the reduced-order model,

given by Equation (3.5), has a computational complexity that depends on the dimen-

sion of the full system Nf . As such, solving the reduced system still requires extensive

computational resources and time. To reduce this computational requirement, we

use the multiscale DEIM as described in Section 2.4.

To solve the reduced system (3.5), we employ the backward Euler scheme; that

is,

P n+1
H +∆t M̃

−1
Ñ(P n+1

H ) = P n
H +∆t M̃

−1
F̃, (3.6)

where

M̃ = RT
offMRoff, Ñ(PH) = RT

offN(Roff PH , µ), and F̃ = RT
offF.

We let

R̃(P n+1
H ) = P n+1

H − P n
H +∆t M̃

−1
Ñ(P n+1

H )−∆t M̃
−1
F̃, (3.7)
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with derivative

J̃(P n+1
H ) = DpR̃(P

n+1
H ) = I +∆t M̃

−1
DpÑ(P

n+1
H )

= I +

Q∑
q=1

∆t M̃
−1
RT

offAqΛ
q
1(RoffP

n+1
H , µ)Roff

+

Q∑
q=1

∆t M̃
−1
RT

offAqΛ
q
2(RoffP

n+1
H , µ)Roff.

The scheme involves, at each time step, the following iterations

J̃(PH
n+1
(k) )∆PH

n+1
(k) = −

(
PH

n+1
(k) − P n

H +∆t M̃
−1
Ñ(PH

n+1
(k) )−∆t M̃

−1
F̃
)
, (3.8)

PH
n+1
(k+1) = PH

n+1
(k) +∆PH

n+1
(k) , (3.9)

where the initial guess is PH
n+1
(0) = P n

H . The above iterations are repeated until

∥ ∆PH
n+1
(k) ∥ is less than a specific tolerance. Furthermore, we use the multiscale

DEIM to approximate the nonlinear functions that appear in the residual R̃ and the

Jacobian J̃ to reduce the number of function evaluations.

3.4 Global-local nonlinear model reduction approach

We denote the offline parameters by θoff which include samples of the right-

hand side f(x) denoted by f off
i , samples of µ denoted by µoff

i , and samples of initial

conditions denoted by P off
0,i . Similarly, the online parameter set is denoted by θon

and includes the online source term f on, the online µ (µon), and the online initial

conditions P on
0 . We follow a global-local nonlinear model reduction approach that

includes the following steps:

• Offline Stage

The offline stage includes the following steps:
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– Consider the offline parameters set θoff = {θoffi } = {f off
i , µoff

i , P
off
0,i }.

– Use θoffi to define the fine-scale stiffness and mass matrices, source terms

and multiscale basis functions.

– Compute the local snapshots of the nonlinear functions and use DEIM al-

gorithm, as described in Section 2.4, to set the local DEIM basis functions

and local DEIM points (Llocal
0 ).

– Generate snapshots of the coarse-grid solutions using local DEIM.

– Record Nt instantaneous solutions (usually referred as snapshots) using

coarse-grid approximations from the above step and collect them in a

snapshot matrix as:

ZNt = {P 1
H , P

2
H , · · · , PNt

H }, (3.10)

where Nt is the number of snapshots and Moff is the size of the column

vectors P i
H .

– Compute the POD modes and use these modes to approximate the solu-

tion field on the coarse-grid. As such, we assume an expansion in terms

of the modes ψon
i := φPOD

i ; that is, we let

pH(x, t) ≈ p̃H(x, t) =
Mon∑
i=1

αi(t)ψ
on
i (x), (3.11)

or in a matrix form

P n
H ≈ P̃ n

H = Ronα
n, (3.12)

where Ron =
[
ψon
1 , · · · , ψon

Mon

]
.

• Online Stage
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The online stage includes the following steps:

– Given online θon = {f on, µon, P on
0 }.

– Use the solution expansion given by (3.11) and project the governing

equation of the coarse-scale problem onto the space formed by the modes

to obtain a set of Mon ordinary differential equations that constitute a

reduced-order model; that is,

α̇ = −(RT
onR

T
offMRoffRon︸ ︷︷ ︸

Mon×Mon

)−1 RT
on︸︷︷︸

Mon×Moff

RT
off︸︷︷︸

Moff×Nf

N(RoffRonα)︸ ︷︷ ︸
Nf×1

+ (RT
onR

T
offMRoffRon)

−1RT
onR

T
offF. (3.13)

– Employ Newton’s method to solve the above reduced system. The Newton

scheme involves at each time step the following iteration. We need to solve

the linear system

Ĵ(αn+1
(k) )∆αn+1

(k) = −
(
αn+1
(k) − αn +∆t M̂

−1
N̂(αn+1

(k) )−∆t M̂
−1
F̂
)
, (3.14)

where

M̂ = RT
onR

T
offMRoffRon = RT

onM̃Ron, F̂ = RT
onR

T
offF = RT

onF̃,

N̂ = RT
onR

T
offN = RT

onÑ.

Then

αn+1
(k+1) = αn+1

(k) − (Ĵ(αn+1
(k) ))−1

(
αn+1
(k) − αn +∆t M̂

−1
N̂(αn+1

(k) )−∆t M̂
−1
F̂
)
.
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Thus, the original problem with Nf degrees of freedom is reduced to a

dynamical system with Mon dimensions where Mon ≪Moff ≪ Nf .

– Use global DEIM to approximate the nonlinear functions that appear in

the residual and Jacobian. To do so, we write the nonlinear function

N(RoffRonα) in Equation (3.13) as

N(RoffRonα) ≈ Ψ∗d, (3.15)

where Ψ∗ = [ψ∗
1, ..., ψ

∗
Lglobal
0

] is the matrix of the global DEIM basis func-

tions {ψ∗
i }

Lglobal
0

i=1 . These functions are constructed using the snapshots of

the nonlinear function N(RoffPH) computed offline and employ the POD

technique to select the most energetic modes (see Section 2.4). The coef-

ficient vector d is computed using the values of the function N at Lglobal
0

global points.

– Use the solution expansion given by (3.11) in terms of POD modes to

approximate the coarse-scale solution and then use the operator matrix

Roff to downscale the approximate solution and evaluate the flow field on

the fine-grid.

3.5 Numerical results

In this section, we use representative numerical examples to illustrate the appli-

cability of the proposed global-local nonlinear model reduction approach for solving

nonlinear multiscale partial differential equations. Before presenting the individual

examples, we describe the computational domain used in constructing the GMs-

FEM basis functions. This computation is performed during the offline stage. We

discretize with linear finite elements a nonlinear PDE posed on the computational
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domain D = [0, 1] × [0, 1]. For constructing the coarse grid, we divide [0, 1] × [0, 1]

into 10 × 10 squares. Each square is divided further into 10 × 10 squares each of

which is divided into two triangles. Thus, the mesh size is 1/100 for the fine mesh

and 1/10 for the coarse one. The fine-scale finite element vectors introduced in this

section are defined on this fine grid. The fine-grid representation of a coarse-scale

vector PH is given by RoffPH , which is a fine-grid vector.

In the following numerical examples, we consider (3.1) with specified boundary

and initial conditions, where the permeability coefficient and the forcing term are

given by

κ(x; p, µ) = κq(x)bq(p, µ) and f(x) = 1 + sin(2πx1) sin(2πx2).

Here, κq represents the permeability field with high-conductivity channels as shown

in Figure 3.1 and bq(p, µ) is defined later for each example. We use the GMsFEM

along with the Newton method to discretize (3.1). Furthermore, we employ the

local multiscale DEIM in the offline stage and the global multiscale DEIM in the

online stage to approximate the nonlinear functions that arise in the residual and

the Jacobian. Using the fine-scale stiffness matrix A that corresponds to (3.1), as

defined in (2.9), we introduce the relative energy error as

∥E∥A =

√
(P− P̃)TA(P− P̃)

PTAP
. (3.16)

Moreover, we define w0 to be the solution of the problem

−div (κq(x)∇w0) = f(x) in D, (3.17)

to use it in the following examples as our initial guess. In the following, we show:

• In the first example, we compare the approximate solution of the reduced
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Figure 3.1: Permeability field that model high conductivity channels within a homo-
geneous domain. The minimum (background) conductivity is taken to be κmin = 1,
and the high conductivity (gray regions) with value of κmax = η (η = 106).

system obtained by applying the global-local approach against the solution of

the original system with full dimension (Nf ) and show the reduction we achieve

in terms of the computational cost.

• In the second example, we show the variations of the error as we increase the

number of local DEIM points, Llocal
0 , and global DEIM points, Lglobal

0 , for one

selection of the parameter µ.

• In the third example, we show the effect of using several offline parameters to

improve the reduced-order solutions. As such, we use two offline values of the

parameter µ and solve an online problem for a different value of µ.

• In the fourth example, we use two offline values of µ and show the variations

of the errors as we increase the number of local and global points.

• Random values of the parameter µ with a probability distribution are used in

the fifth example. We demonstrate the applicability of our approach in this

setup.
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3.5.1 Single offline parameter

Example 3.5.1. We consider (3.1) along with the following offline and online pa-

rameters

θoff =


f off = 1 + sin(2πx1) sin(2πx2),

µoff = 10,

P off
0 = w0,

θon =


f on = 1 + sin(2πx1) sin(2πx2),

µon = 40,

P on
0 = w0 ∗ 0.5,

where the nonlinear function bq is defined as bq(p, µ) = eµp. Here, the source term

does not need to be fixed for the method to work as we see below. We employ the

GMsFEM for the spatial discretization and the backward Euler method for time

advancing as described in Section 3.2. Furthermore, we follow the steps given in

Section 3.4 using three DEIM points (Llocal
0 = 3) per coarse region to approximate

bq in the offline stage. After generating the snapshots of the coarse-grid solutions

using local DEIM, we compute the multiscale POD modes that are used in the online

problem. We use Lglobal
0 = 5 in the online stage to approximate bq globally and then

use the generated POD modes to approximate the coarse-scale solution. In Figure

3.2, we compare the approximate solution obtained from the global-local nonlinear

model reduction approach with the solution of the original system without using the

DEIM technique to approximate the nonlinear function. A good approximation is

observed in this figure, which demonstrates the capability of global-local nonlinear

model reduction to reproduce accurately the fully resolved solution of a nonlinear
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PDE.

We have also considered a permeability field that is obtained by rotating the

permeability field κq in Figure 3.1 such that the three long channels are in the

vertical direction. Our numerical results show similar accuracy and computational

cost compared to the previous case (see Figure 3.1). In general, we expect non-

homogeneous boundary conditions to affect the numerical results.

The approximate solution shown in Figure 3.2(b) is obtained using only two

POD modes. As expected, increasing the number of POD modes used in the online

stage yields a better approximation. That is, the error decreases as we increase the

number of POD modes used as shown in Figure 3.3. The error using two POD modes

decreases slightly from 12% (at steady state) to 11.5% when using three POD modes.

The decreasing trend is steeper when considering more POD modes. For instance,

the use of 5 modes yields an error of 4.5%. In order to illustrate the computational

(a) Reference Solution (b) Approximate Solution

Figure 3.2: Comparison between reference solution of the fine-scale problem with
that obtained from the global-local multiscale approach.

savings, we compute the time for solving the system of ordinary differential equations
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Figure 3.3: Variations of the solution error with the number of POD modes.

given in (3.2) with and without using the proposed method. We denote the time

for solving the full system by Tfine and the time for solving the reduced system

using global-local nonlinear model reduction by TGL. Then, the percentage of the

simulation time is given by

PST =
TGL

Tfine
∗ 100. (3.18)

We compute PST with respect to different number of DEIM points and POD modes

and present the results in Tables 3.1 and 3.2, respectively. In Table 3.1, the first

column shows the number of local DEIM points (Llocal
0 ), the second column represents

the number of global DEIM points (Lglobal
0 ), and the third column illustrates the

percentage of the simulation time. Here two POD modes are used. As Llocal
0 and/or

Lglobal
0 increase, the percentage decreases accordingly. For example, PST decreases

from 3.7832 % to 3.3741 % by increasing Lglobal
0 from two to three, and to 3.2093 %

by increasing both Llocal
0 and Lglobal

0 from two to three. Decreasing PST means that

TGL, time for solving the reduced system, decreases as we increase the number of

DEIM points. Therefore, increasing the number of local and global DEIM points
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may speed up the simulation in addition to improving the accuracy as we see in

the next example. In Table 3.2, the numbers of POD modes used for the global

reduction are listed in the first column and the corresponding values of PST are

shown in the second column. In this case, we keep the number of local and global

DEIM points constant and equal to two and three, respectively. Now, increasing the

number of POD modes inversely affects the simulation speed-up. That is, increasing

the number of POD modes increases the value of PST which means TGL is increasing

and hence the speed-up of our simulation is decreasing. For example, PST increases

from 3.3741 % when we use two POD modes to 4.0387 % with three POD modes

and keeps increasing as we increase the number of POD modes to be 6.1414 % with

five POD modes. Although, increasing the number of POD modes slows down the

simulation, it improves the accuracy of the approximate solution (see Figure 3.3).

However, the following examples show the capability in terms of the accuracy of this

method when using two POD modes for the global reduction.

Llocal
0 Lglobal

0 R(%)
2 2 3.7832
2 3 3.3741
3 3 3.2093

Table 3.1: Variation of the percentage of the simulation time corresponding to dif-
ferent number of local and global DEIM points. Here we use two POD modes.

Example 3.5.2. In this example, we use different numbers of local and global DEIM

points, Llocal
0 = {1, 2, 3} and Lglobal

0 = {1, 2, 3}, to investigate how these numbers

affect the error. As in Example 3.5.1, we consider bq(p, µ) = eµp and the following
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POD modes R(%)
2 3.3741
3 4.0387
4 4.9158
5 6.1414

Table 3.2: Variation of the percentage of the simulation time corresponding to dif-
ferent number of POD modes. Llocal

0 = 2 and Lglobal
0 = 3.

offline and online parameters:

θoff =


f off = 1 + sin(2πx1) sin(2πx2),

µoff = 10,

P off
0 = w0,

θon =


f on = 1 + sin(2πx1) sin(2πx2),

µon = 40,

P on
0 = 0.5w0.

In Figure 3.4(a), we plot the transient variations of the error while using different

numbers of global DEIM points for a fixed number of local DEIM points equal to

one. Increasing the number of global DEIM points from one to three results in a

decrease in the error from 13% to 11% (at steady state). Further increases in the

number of global DEIM points does not yield any improvement in the total error.

This is due to the dominance of the local error. Figure 3.4(b) shows the decreasing

trend of the error as we increase the number of local DEIM points. In Figure 3.4(c),

we show the variations of the error with increasing the number of both local and
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(a) Variations of global DEIM points (b) Variations of local DEIM points

(c) Variations of both global and local DEIM
points

Figure 3.4: Effect of the number of local and global DEIM points on the approximate
solution accuracy.

global DEIM points. Increasing the number of DEIM points enables a smaller error

and then improves the solution accuracy. These examples show that the number of

local and global DEIM points need to be chosen carefully to balance the local and

global errors.
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3.5.2 Multiple offline parameters

Example 3.5.3. In this example, we define the nonlinear function as bq(p, µ) =

eµ(0.9+p) and use µoff
1 = 2 and µoff

2 = 5, separately, in the offline problem to compute

PODmodes and DEIM points. We then combine these modes to use the total number

of POD modes in the online problem with a different online value of µ (µon = 3).

In this example, we keep the number of local and global DEIM points constant and

equal to three (i.e., Llocal
0 = Lglobal

0 = 3). Furthermore, we use different online initial

conditions and source term. The following system parameters are considered.

θoff =



f off = 1 + sin(2πx1) sin(2πx2),

µoff
1 = 2,

µoff
2 = 5,

P off
0 = w0.

θon =


f on = 1 + sin(4πx1) sin(4πx2),

µon = 3,

P on
0 = 0.

We show in Figure 3.5 that the error decreases when combining two cases that

correspond to different values of offline µ. For instance, the error when considering

only one offline case is about 16% and it goes down to 13% when combining two cases

with two different values of offline µ. Hence, using multiple parameter values in the

offline stage improves the method’s accuracy independently of the online parameters.
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Figure 3.5: Transient variations of the error (using different offline values of the
parameter µ).

Example 3.5.4. Next, we consider the following parameters

θoff =



f off = 1 + sin(2πx1) sin(2πx2),

µoff
1 = 10,

µoff
2 = 40,

P off
0 = w0,

θon =


f on = 1 + sin(2πx1) sin(2πx2),

µon = 24,

P on
0 = 0,

and the nonlinear function bq(p, µ) = eµp. In this case, we use two offline values of µ

while considering different numbers of local and global DEIM points. The effect of

the number of local and global DEIM points on the error between the reference and
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(a) Variations of global DEIM points (b) Variations of local DEIM points

(c) Variations of both global and local DEIM
points

Figure 3.6: Effect of the number of local and global DEIM points on the approximate
solution accuracy (using two offline µ).

approximate solutions when combining two cases that correspond to two different

values of µ is shown in Figure 3.6. Similar trends to those of Example 3.5.2 are

observed. Increasing both local and global DEIM points improves the approximation

to the solution. For instance, the error reduces from about 13% when using a local

and a global DEIM point to 2% when using three local and global DEIM points. The

error reduction in this case (when we use two offline µ) is bigger than the one we

obtained when only using one offline µ value where the error decreased from 13% to
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7% (see Figure 3.4(c)). We conclude that using two offline µ values and increasing

number of local and global DEIM points yields a better approximation. Therefore,

choosing the number of local and global DEIM points and the offline parameter

values are the main factors to achieve high accuracy in the proposed method.

Example 3.5.5. In this example we consider the case with random values of the

parameter µ that has a normal distribution with the mean 25 and variance 4. As

in Example 3.5.3, we use different values of the offline parameter µoff = {10, 25, 39},

and compute the POD and DEIM modes. Further, we combine these modes to get

the global POD and DEIM modes that we use in the online problem. In the online

problem, we take uncorrelated random values of µon drawn from the above probability

distribution. We rapidly compute the approximate solution and evaluate the relative

error corresponding to each value of µon. Comparing the mean solutions of the fully-

resolved model and the reduced model demonstrates the capability of the proposed

method when random values of the parameter is employed in the nonlinear functional.

Furthermore, we observe a good accuracy as shown from the error plotting in Figure

3.7.

Figure 3.7: Mean error of approximating the solution by using global-local multiscale
approach with random values of the online parameter µ.

44



4. GLOBAL-LOCAL MODEL REDUCTION FOR HETEROGENEOUS

FORCHHEIMER FLOW

In this section, we propose a mixed Generalized Multiscale Finite Element Method

(GMsFEM) for solving nonlinear Forchheimer flow in highly heterogeneous porous

media. We consider the two term law form of the Forchheimer equation in the case

of slightly-compressible single-phase flows. We write the resulting system in terms

of a nonlinear flow equation for pressure when the nonlinearity depends on the pres-

sure gradient. The proposed approach constructs multiscale basis functions for the

velocity field following the mixed GMsFEM as developed in [22] for the linear case.

To reduce the computational cost resulting from solving nonlinear system, we com-

bine the mixed GMsFEM with Discrete Empirical Interpolation Method (DEIM)

to compute the nonlinear coefficients in some selected degrees of freedom at each

coarse domain. In addition, a global reduction method such as Proper Orthogonal

Decomposition (POD) is used to construct the online space to be used to solve the

reduced-order system for different inputs. We present numerical and theoretical re-

sults to show that in addition to speeding up the simulation we can achieve good

accuracy with a few basis functions per coarse edge. Moreover, we present an online

adaptive method for basis enrichment of the multiscale space based on an error indi-

cator depending on the local residual norm. We use this enrichment method to add

some online local multiscale basis functions at some fixed time steps. Our numerical

experiments show that these additional multiscale basis functions will reduce the

error if we start with a sufficient number of initial offline basis functions.
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4.1 Problem statement

We apply our developed global-local reduction method in Section 3 to a non-

linear parabolic PDE in a mixed form. In particular, our interest is in solving the

Forchheimer equation presented in Section 2 by Equation (2.2) as following

v + β(x)|v|v = − 1

µ
κ(x)∇p. (4.1)

Recall that v(x) and p(x) are the velocity field and the pressure distribution, re-

spectively; κ(x) is a given high-contrast heterogeneous permeability field, µ is the

viscosity of the fluid, and β is the coefficient of inertial flow resistance. For simplicity

from now on we assume the viscosity µ = 1 and define

N (v) := 1 + β(x)|v|, (4.2)

then we write the nonlinear form of Darcy’s law as

κ−1N (v)v +∇p = 0.

And the equation describing the conservation of mass is given by

ϕ(x)
∂ρ

∂t
= − div(ρv) + f(x),

where ρ is the fluid density, ϕ is the rock porosity, and f(x) is an external mass flow

rate. By scaling the time variable we write continuity equation as following

∂ρ

∂t
= − div(ρv) + f(x). (4.3)
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For slightly compressible fluid (such as the compressible liquid), the equation of state

has the form, see [10],

ρ(p) = ρ0e
γp, (4.4)

where ρ0 is the density at the reference pressure p0 and γ is the inverse of the

compressibility constant. Substituting (4.4) in Equation (4.3), yields

∂ρ

∂p

∂p

∂t
= −ρ div(v)− dρ

dp
v · ∇p+ f(x).

Then,

∂p

∂t
= −ρ∂p

∂ρ
div(v)− v · ∇p+ ∂p

∂ρ
f(x). (4.5)

From (4.4), we have

∂ρ

∂p
= ρ0γe

γp = γρ.

Hence,

∂p

∂ρ
=

1

γρ
. (4.6)

Substituting (4.6) into (4.5), gives

∂p

∂t
= −1

γ
div(v)− v · ∇p+ 1

γρ
f(x). (4.7)
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Since for most slightly compressible fluids in porous media γ is very small, we drop

the second term of the RHS and write

γ
∂p

∂t
+ div(v) =

1

ρ
f.

Note that 1
ρ
= 1

ρ0eγp
≈ 1

ρ0
. Since γ and ρ0 are constants, we write

f =
1

ρ
f and

∂p

∂t
= γ

∂p

∂t
.

Then, the mixed formulation describing the fluid flow is:

κ−1N (v) v +∇p = 0 in D × J.

∂p

∂t
+ div(v) = f(x) in D × J,

p(x, 0) = p0 in D,

v.ν = g on ∂D × J,

(4.8)

where D ⊂ R2 is a bounded convex domain with boundary ∂D, J = [0, T ] is the

computational time interval, and ν is the outward unit-normal vector on ∂D. We

remark that Picard iteration method will be used as the nonlinear solver for the

above system along with backward Euler implicit time-stepping scheme.

To describe the general formulation, we introduce the following notations and

basic definitions to be used throughout the following sections.

• T H , as defined in Section 2, denotes the usual conforming partition of the

computational domain D into finite elements (triangles, quadrilaterals, tetra-

hedrals, etc.), called coarse-grid blocks, where H > 0 is the coarse mesh size.

• T h is a refinement of T H by a connected union of of fine-grid blocks, which are
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Figure 4.1: Coarse neighborhood ωi = Km∪Kn corresponding to the coarse edge Ei.

conforming across coarse-grid edges.

• EH :=
∪Ne

i=1{Ei} (where Ne is the number of coarse edges Ei ) denotes the set

of all edges of the coarse mesh T H , and EH
0 denotes the set of all interior coarse

edges.

• We define the coarse neighborhood ωi corresponding to the coarse edge Ei as

the union of all coarse-grid blocks having the edge Ei, namely,

ωi =
∪

{Kj ∈ T H ; Ei ∈ ∂Kj}. (4.9)

See Figure 4.1 for an illustration.

• Each coarse edge Ei can be written as a union of fine-grid edges, namely,

Ei =
∪Ji

j=1 ej, where Ji is the total number of fine-grid edges on Ei and ej

denotes a fine-grid edge.

49



• For a scalar function q ∈ L2(Ω), where Ω is a given open set, the L2 norm is

∥q∥2Ω = ⟨q, q⟩Ω =

∫
Ω

q2.

• For a vector field v, we define the weighted L2 norm

∥v∥2κ−1,Ω = ⟨v, v⟩κ−1,Ω =

∫
Ω

κ−1v2.

• For the time interval J = [0, T ] we define the norm

∥v∥2(J ;κ−1,Ω) =

∫ T

0

∥v(., s)∥2κ−1,Ωds.

• We define the Sobolev space

V = H(div; Ω;κ−1) := {v : v ∈ L2(Ω)2, div(v) ∈ L2(Ω)},

and is equipped with the norm

∥v∥2V = ∥v∥2H(div;Ω;κ−1) = ∥v∥2κ−1,Ω + ∥div(v)∥2L2(Ω).

If κ = 1, we write

H(div; Ω) = H(div; Ω;κ−1),

and

∥v∥2H(div;Ω) = ∥v∥2L2(Ω) + ∥div(v)∥2L2(Ω).
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4.2 Finite element discretization

Let Vh × Qh be the standard lowest-order-Raviart-Thomas space for the semi-

discrete approximation of (4.8) on the fine-grid T h. Then, the fine-grid solution

(vh, ph) ∈ Vh ×Qh satisfies

⟨N (vh) vh, wh⟩κ−1,D − ⟨div(wh), ph⟩D = 0, ∀wh ∈ V 0
h ,

⟨∂ph
∂t

, qh⟩D + ⟨div(vh), qh⟩D = ⟨f, qh⟩D, ∀qh ∈ Qh,
(4.10)

and ph(0) = p0,h , vh. ν = gh on ∂D× J , where p0,h and gh are approximations to p0

and g in Qh and Vh, respectively. We define V 0
h = Vh ∩ {v ∈ Vh : v. ν = 0 on ∂D}.

Suppose Vh = span{ϕi}Mv
i=1 and Qh = span{χi}Mp

i=1. Then, we write

vh =
Mv∑
i=1

V̂iϕi and ph =

Mp∑
i=1

P̂iχi,

Define V = (V̂1, · · · , V̂Mv)
T and P = (P̂1, · · · , P̂Mp)

T , the fully discrete system of the

above problem using backward Euler scheme with time step size ∆t can be written

in the matrix form as the following:

Nfine(V
n+1) V n+1 − BT

fineP
n+1 = 0,

Mfine
P n+1 − P n

∆t
+BfineV

n+1 = F,

(4.11)

where the superscripts n indicate the time step. Here, Nfine(V ) :=MκΓ(V ), where

Mκ = [mκi,j
] =

∫
D

κ−1ϕiϕj, Γ(V ) = diag
(
N (V̂1), · · · ,N (V̂Mv)

)
.
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The matrices Bfine, Mfine, and the vector F are respectively defined as:

Bfine = [bi,j] =

∫
D

div(ϕi)χj, Mfine = [mi,j] =

∫
D

χiχj, F = [fj] =

∫
D

f(x)χj.

The above scheme involves, at each time step, the following iteration:

Nfine(V
n+1
(k) ) V n+1

(k+1) − BT
fineP

n+1
(k+1) = 0, (4.12)

Mfine

P n+1
(k+1) − P n

(k+1)

∆t
+BfineV

n+1
(k+1) = F, (4.13)

where the initial guess is V n+1
(0) = V n, the subscripts k denote the respective Picard

iteration level. From (4.12) we have:

V n+1
(k+1) =

(
Nfine(V

n+1
(k) )

)−1

BT
fineP

n+1
(k+1), (4.14)

substitute (4.14) into (4.13),

Mfine

P n+1
(k+1) − P n

(k+1)

∆t
+Bfine

(
Nfine(V

n+1
(k) )

)−1

BT
fineP

n+1
(k+1) = F.

Mfine +∆t

(
Bfine

(
Nfine(V

n+1
(k) )

)−1

BT
fine

)
︸ ︷︷ ︸

An+1
(k)

P n+1
(k+1) = ∆t F +MfineP

n
(k+1)︸ ︷︷ ︸

Xn
(k+1)

.

Thus, we have the matrix equation

P n+1
(k+1) =

(
An+1

(k)

)−1

Xn
(k+1).

The solution of this equation is then used to compute V n+1
(k+1) in (4.14). The iterations
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are repeatedly applied until ∥V n+1
(k+1) − V n+1

(k) ∥ is less than a specific tolerance. There-

fore, solving the nonlinear system (4.8) in the fine-grid using the standard FEM is

very expensive. Our aim in the following sections is to perform an efficient reduced-

order model to approximate the solution in the coarse-grid. Moreover, when solving

the reduced-order model, we will use DEIM to approximate the nonlinear function,

N (v), at some selected components in the local and global domains. This will reduce

the computational cost for evaluating the nonlinear coefficients.

We remark that the fine-grid solutions (vh, ph) are considered as the reference

solutions in our convergence analysis in Section 4.4.

4.3 Global-local reduction method

In our presented method, we employ the mixed generalized multiscale finite ele-

ment method described in [22] to represent the coarse-grid solutions with multiscale

basis functions for the velocity field v. In our case, computing the coarse-grid so-

lutions involves computing the nonlinear function defined in (4.2) on the fine-grid.

To avoid the cost of this computation, we apply the discrete empirical interpolation

method locally at each coarse region in the offline stage. Using the snapshots of the

coarse-grid solutions of the velocity field, we compute the proper orthogonal decom-

position (POD) modes and define the online space to be the linear span of these

modes. We project the governing equations on the online space and apply the global

DEIM to approximate the nonlinear coefficients globally (i.e. at selected points in

the whole domain). This is a general overview of the global-local model reduction

method for a mixed type problem. In the following, we give a detailed description

for this method.
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4.3.1 Mixed generalized multiscale finite element method

In this section, we introduce the mixed GMsFEM as presented in [22] for the linear

case. In the mixed GMsFEM, we approximate the pressure p in the space of piecewise

constant functions with respect to the coarse-grid T H , denoted by QH ⊂ Qh. For

the velocity field v, we define a set of multiscale basis functions for each coarse

edge Ei ∈ EH . These basis functions are supported in the coarse neighborhood ωi

corresponding to the coarse edge Ei. Specifically, to obtain a basis function for a

coarse edge Ei, we use the terminology introduced in [28], where the construction

of the multisacle basis functions is done in the offline computation stage. We first

construct a snapshot space Vsnap by solving a local elliptic problem in the coarse

neighborhood ωi with a given normal velocity on Ei and zero normal velocity on the

boundary ∂ωi. The solutions of local elliptic problems with all possible boundary

conditions up to the fine-grid resolution form an extensive set of basis functions

for the snapshot space Vsnap. We will present a space reduction technique which

provides a systematic way to select the dominant modes in the snapshot space. This

technique is based on a carefully designed local spectral problem giving a rapidly

decaying error. The selected dominant modes are the multiscale basis functions for

the velocity field. Let {Ψj} be the set of multiscale basis functions for the edge Ei.

We define the multiscale space (the offline space) for the velocity field v as the linear

span of all local basis functions which is denoted as

Voff =
⊕
EH

{Ψi}.
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We also define V 0
off = Voff∩{v ∈ Voff : v ·ν = 0 on ∂D} as a subspace of Voff consisting

of vector fields with zero normal component on ∂D; that is,

V 0
off =

⊕
EH
0

{Ψi}.

We then apply the proper orthogonal decomposition as a global model reduction to

construct the online space Von ⊂ Voff. Next, we discuss the constructions of Vsnap,

Voff, and Von.

4.3.2 Snapshot space

To construct the basis functions of the snapshot space, we will find (v
(i)
j , p

(i)
j ) by

solving the following elliptic problem on the coarse neighborhood ωi corresponding

to the edge Ei ∈ EH

κ−1v
(i)
j +∇p(i)j = 0 in ωi,

div(v
(i)
j ) = α

(i)
j in ωi,

(4.15)

subject to the boundary condition v
(i)
j · νi = 0 on ∂ωi, where νi denotes the outward

unit-normal vector on ∂ωi. The above problem (4.15) will be solved separately on

each coarse-grid element Kl ⊂ ωi with extra boundary condition on Ei given by

v
(i)
j ·mi = δ

(i)
j on Ej, (4.16)
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where mi is a fixed unit-normal vector on Ei and δ
(i)
j is a piecewise constant function

on Ei defined as

δ
(i)
j =

 1, on ej,

0, on other fine grid edges on Ei,
j = 1, 2, · · · , Ji.

The function α
(i)
j in (4.15) is constant on each coarse-grid block and it satisfies∫

Kl
α
(i)
j =

∫
Ei
δ
(i)
j for allKl ⊂ ωi. We remark that, the vector field v

(i)
j can be extended

to the rest of the domain D by defining v
(i)
j = 0 outside ωi because v

(i)
j · νi = 0 on

the boundary of ωi.

The set of the solutions of (4.15) is the snapshot basis Ψi,snap
j := v

(i)
j . Using the

snapshot basis, we define the snapshot space Vsnap by

Vsnap = span{Ψi,snap
j : 1 ≤ j ≤ Ji, 1 ≤ i ≤ Ne}.

To simplify notation, we will use the following single-index notation

Vsnap = span{Ψsnap
i : 1 ≤ i ≤Msnap},

where Msnap =
∑Ne

i=1 Ji is the total number of snapshot fields.

4.3.3 Offline space

For each coarse neighborhood ωi corresponding to the coarse edge Ei, we perform

a local space reduction on the local snapshot space V
(i)
snap through the use of some

local spectral problems. The purpose of this is to determine the important local

modes in the local snapshot space and to obtain a smaller space for approximating

the solution. The local snapshot space V
(i)
snap corresponding to the coarse edge Ei is
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defined by

V (i)
snap = span{Ψi,snap

j : 1 ≤ j ≤ Ji}.

The local spectral problem is: find a real number λ(i) > 0 and a function v ∈ V
(i)
snap

such that

ai(v, w) = λ(i)si(v, w), ∀w ∈ V (i)
snap, (4.17)

where

ai(v, w) =

∫
Ei

κ−1(v ·mi)(w ·mi), si(v, w) =

∫
ωi

κ−1v ·w+

∫
ωi

div(v) div(w). (4.18)

Recall that mi is a fixed unit-normal on the coarse edge Ei. However, one can use

different spectral problem, for example see [22]. Assume that the eigenvalues of

(4.17) are arranged in increasing order

λ
(i)
1 < λ

(i)
2 < · · · < λ

(i)
Ji
, (4.19)

where λ
(i)
k denotes the k-th eigenvalue for the coarse neighborhood ωi. We then select

the eigenfunctions, Z
(i)
k , corresponding to the first li eigenvalues to form the offline

space. Thus, we define the offline multiscal basis functions as

Ψi,off
k =

Ji∑
j=1

Z
(i)
kj Ψ

i,snap
j , k = 1, 2, · · · , li,

where Z
(i)
kj is the j-th component of the vector Z

(i)
k . The global offline space is then

Voff = span{Ψi,off
k : 1 ≤ k ≤ li, 1 ≤ i ≤ Ne}.
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To simplify the notations, we will use the following single-index notation

Voff = span{Ψoff
k : 1 ≤ k ≤Moff},

where Moff =
∑Ne

i=1 li is the total number of offline basis functions. Furthermore, we

define V 0
off such that all vectors in V 0

off have zero normal component on the global

domain boundary ∂D.

We define the transformation matrix, Roff, that maps from the offline space to

the fine space as following

Roff =
[
ψoff
1 , . . . , ψ

off
Moff

]
,

where ψoff
k is a vector containing the coefficients in the expansion of Ψoff

k in the fine-

grid basis functions.

Given the offline space, the mixed GMsFEM is to find (vH , pH) ∈ Voff ×QH such

that:

⟨N (vH) vH , wH⟩κ−1,D − ⟨div(wH), pH⟩D = 0, ∀wH ∈ V 0
off,

⟨∂pH
∂t

, qH⟩D + ⟨div(vH), qH⟩D = ⟨f, qH⟩D, ∀qH ∈ QH ,
(4.20)

where pH(0) = p0,h, vH . ν = gH on ∂D × J , and for each coarse edge Ei ∈ ∂D, we

have ∫
Ei

(gH − g)Ψoff
j · ν = 0,

for all basis functions Ψoff
j corresponding to the edge Ei. The GMsFEM system (4.20)
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can be represented in the matrix form as follows.

RT
offNfine(RoffVH)RoffVH −RT

offB
T
fineGHPH = 0,

GT
HMfineG

T
HṖH +GT

HBfineRoffVH = GT
HF,

(4.21)

where P0 is given, GH is the restriction operator from QH into Qh, VH and PH are

vectors of coefficients in the expansions of the solutions vH and pH in the spaces

Voff and QH , respectively. Therefore, the original system (4.11) with Mv degrees of

freedom for the velocity field is reduced to a system with Moff velocity dimension

where Moff ≪ Mv. The nonlinear term RT
offNfine(RoffVH)Roff in the reduced-order

model, given by (4.21), has a computation complexity that depends on the dimension

of the full system Mv. To reduce the computational requirements, we employ the

discrete empirical interpolation method to approximate the nonlinear term locally

at each coarse neighborhood. Let NL denotes the approximation of N using local

DEIM. Then, instead of solving the offline problem given by (4.20), we consider the

following offline problem: Find (vH , pH) ∈ Voff ×QH such that

⟨NL(vH) vH , wH⟩κ−1,D − ⟨div(wH), pH⟩D = 0, ∀wH ∈ V 0
off,

⟨∂pH
∂t

, qH⟩D + ⟨div(vH), qH⟩D = ⟨f, qH⟩D, ∀qH ∈ QH ,
(4.22)

where pH(0) = p0,h , vH . ν = gH on ∂D × J .

4.3.4 Online space

The online space is used to solve the problem for different parameters such as

source terms, initial conditions, and boundary conditions. In our simulation, the

online space is constructed via proper orthogonal decomposition method presented

in Section 2.3. Next, we recall a brief description of this method with some details.
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Computation of the POD modes [46]: Let us divide the interval [0, T ] into

(n− 1) sub-intervals for given n ∈ N,

0 = t1 < t2 < · · · < tn = T.

Let viH for i ∈ {1, · · · , n} denotes the coarse-grid solution of problem (4.22) at time

ti, i.e., v
i
H = vH(ti) and set

V = span{v1H , · · · , vnH}.

We refer to V as the ensemble consisting of the snapshots {viH}ni=1. Let {φi}di=1

denote an orthonormal basis of V with d = dimV. Then each element in the space V

can be written as a linear combination of {φi}di=1. In particular, the collected offline

snapshots can be expressed as

viH =
d∑

j=1

⟨viH , φj⟩κ−1,D φj for i = 1, · · · , n. (4.23)

The PODmethod is to choose an orthonormal basis such that for every l ∈ {1, · · · , d}

the mean square error between the elements viH , 0 ≤ i ≤ n, and the corresponding

l-th partial sum of (4.23) is minimized on average:

min
φ1,··· ,φl

1

(n− 1)

n∑
i=1

∥viH −
l∑

j=1

⟨viH , φj⟩κ−1,D φj∥2κ−1,D, (4.24)

subject to

⟨φi, φj⟩ = δij for 1 ≤ i ≤ l, 1 ≤ j ≤ i. (4.25)
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A solution {φi}li=1 to (4.24) and (4.25) is called the POD basis of rank l. We introduce

the correlation matrix W = (wi,j)n×n ∈ R corresponding to the snapshots {viH}ni=1

by

wi,j =
1

(n− 1)
⟨viH , v

j
H⟩κ−1,D.

The matrix W is positive semidefinite and has rank d.

Proposition 1. Let µ2
1 ≥ µ2

2 ≥ · · · ≥ µ2
d denote the positive eigenvalues of W and

u1, u2, · · · , ud the associated orthonormal eigenvectors. Then a POD basis of rank

l ≤ d is given by

φi =
n∑

j=1

(ui)jv
j
H ,

where (ui)j denotes the jth component of the eigenvector ui. Furthermore, the

following error formula holds

1

(n− 1)

n∑
i=1

∥viH −
l∑

j=1

⟨viH , φj⟩κ−1,D φj∥2κ−1,D =
d∑

j=l+1

µ2
j .

Online problem: We first define the online space to be the subspace of Voff

spanned by the POD basis functions with dimension Mon = l and is denoted by Von,

Von = span{Ψon
k : 1 ≤ k ≤Mon},

where Ψon
k := φk, 1 ≤ k ≤Mon. Furthermore, we define V 0

on to be the restriction of

Von with all vectors have zero normal component on ∂D. Then, the online problem
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is to find (von, pon) ∈ Von ×QH such that:

⟨NG(von) von, won⟩κ−1,D − ⟨div(won), pon⟩D = 0, ∀won ∈ V 0
on,

⟨∂pon
∂t

, qon⟩D + ⟨div(von), qon⟩D = ⟨f, qon⟩D, ∀qon ∈ QH,
(4.26)

where pon(0) = p0,h, von. ν = gon on ∂D × J , and for each coarse edge Ei ∈ ∂D, we

have ∫
Ei

(gon − g)Ψon
j · ν = 0,

for all basis functions Ψon
j corresponding to the edge Ei. NG denotes the approxi-

mation of the nonlinear function (4.2) on the global domain D using global DEIM.

Since Von ⊆ Voff, each of Ψon
k is represented in terms of a vector ψon

k containing the

coefficients in the expansion of Ψon
k in the offline basis functions. Thus we define the

mapping from the online space to the offline space by the following matrix:

Ron =
[
ψon
1 , . . . , ψ

on
Mon

]
.

Let R = RoffRon ∈ RMv×Mon , then R is the transformation matrix from online space

to the fine space. For given P0, the matrix form of the online system (4.26) is as

follows:

RTNfine(RVon)RVon −RTBT
fineGHPon = 0,

GT
HMfinG

T
HṖon +GT

HBfineRVon = GT
HF,

(4.27)

where we use the global DEIM to avoid the expensive computational cost of the

nonlinear term RTNfine(RVon)R. We emphasize that the degrees of freedom for the

velocity field is reduced to Mon ≪Moff ≪Mv.
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4.4 Convergence analysis

In this section, we will estimate the L2- norm error between the solution to

Forchheimer equation (4.1) using the global-local reduction method and the fine-

scale solution obtained by solving the fine-grid problem (4.10) in the lowest-order

Raviart-Thomas FE space, Vh × Qh. First, we will estimate the error between the

fine-scale solutions (vh, ph) ∈ Vh ×Qh and the offline solutions (vH , pH) ∈ Voff ×QH

through introducing the projection of the fine-grid velocity vh to the snapshots space,

Vsnap. Next we will derive an estimate for the difference between the offline solutions

and the online solutions, (von, pon) ∈ Von ×QH , obtained by the global reduction for

the offline velocity field using POD method.

In the following analysis we will define a projection v̂ ∈ Vsnap as follows. Let K

be a coarse-grid block and let f̄ = 1
|K|

∫
K
f be the average value of f over K. Then

the restriction of v̂ on K is obtained by solving the following problem:

κ−1N (v̂) v̂ +∇p̂ = 0 in K × J,

∂p̂

∂t
+ div(v̂) = f̄(x) in K × J,

(4.28)

subject to the following conditions:

p̂(0) = ph(0) in K, v̂. ν = vh. ν on ∂K × J.

We solve problem (4.28) on the fine-grid. Then we have v̂ ∈ Vh and by construction

we also have v̂ ∈ Vsnap. Furthermore, our results in the following analysis are obtained

based on the following assumptions and approximation properties:

A 1: Assume f ∈ L2.
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A 2: There exists constants α0, α1 such that

0 < α0 ≤ N (v) ≤ α1.

Similarly, there exists positive constants αL
0 , α

G
0 , α

L
1 , and α

G
1 such that

0 < αL
0 ≤ NL(v) ≤ αL

1 , 0 < αG
0 ≤ NG(v) ≤ αG

1 .

A 3: The nonlinear function, N (v), defined by Equation (4.2) is Lipschitz continuous

with respect to the ∥.∥κ−1,D norm, i.e. there exists a real constant CL > 0 such

that:

∥N (v1)−N (v2)∥2κ−1,D ≤ CL∥v1 − v2∥2κ−1,D ∀v1, v2 ∈ Vh.

A 4: N (v) is strictly monotone function (see [11]). More precisely, there is a positive

constant Cm > 0 such that:

(N (v1)v1 −N (v2)v2).(v1 − v2) ≥ Cm|v1 − v2|2 ∀ v1, v2 ∈ Vh.

From now on, we will use the notation a ≼ b whenever there is a uniform

constant C > 0 such that a ≤ Cb. Thus, we write the inequalities in A3 and

A4, respectively, as following:

∥N (v1)−N (v2)∥2κ−1,D ≼ ∥v1 − v2∥2κ−1,D ∀v1, v2 ∈ Vh.

⟨N (v1)v1 −N (v2)v2, v1 − v2⟩κ−1,D ≽ ∥v1 − v2∥κ−1,D ∀ v1, v2 ∈ Vh.
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A 5: Let v̂ be the projection of vh to the snapshot space obtained by solving (4.28).

We assume ∥v̂∥∞ ≤ C̃, for some positive constant C̃.

A 6: Let Pl : Voff −→ Von be a projection defined as following:

PluH =
l∑

i=1

⟨uH(t), φi⟩κ−1,D φi ∀uH ∈ Voff, (4.29)

where {φ1, · · · , φl} are the POD basis functions span the online space as dis-

cussed in Section 4.3.4. Recall that from Proposition.1 we have the following

estimate:

1

(n− 1)

n∑
i=1

∥viH −
l∑

j=1

⟨viH , φj⟩κ−1,D φj∥2κ−1,D =
d∑

j=l+1

µ2
j .

The sum on the LHS of the above estimate is the trapezoidal approximation

for the integral

∫ T

0

∥vH(s)−
l∑

j=1

⟨vH(s), φj⟩κ−1,D φj∥2κ−1,D ds.

Therefore, we can write:

∫ T

0

∥vH(s)− PlvH(s)∥κ−1,D ds =
d∑

j=l+1

µ2
j . (4.30)

To estimate the online error ∥von − vh∥κ−1,D, we assume ∀vH ∈ Voff,∃ C̃l > 0

such that ∥PlvH∥∞ ≤ C̃l.

A 7: The error of approximating a nonlinear function using discrete empirical inter-

polation method (DEIM) has been discussed in [16]. In our analysis we will

use the following notations to denote the local and the global DEIM errors,
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respectively,

EDEIM
local (vH) := ||N (vH)−NL(vH)||2κ−1,D. (4.31)

EDEIM
global (von) := ||N (von)−NG(von)||2κ−1,D. (4.32)

Lemma 4.4.1. Let (vh, ph) ∈ Vh × Qh be the solution of (4.10), and (v̂, p̂) be the

solution obtained by solving the variational problem of (4.28). Under the assumption

A1-A4 the following estimate holds true for any t ∈ [0, T ],

∫ t

0

∥vh(s)− v̂(s)∥2κ−1,Dds+ ∥ph(t)− p̂(t)∥2D ≼ Cmax

Ne∑
i=1

∫ t

0

∥f(s)− f̄(s)∥2Ki
ds,

(4.33)

where Cmax = maxK∈T H

(
κ−1
min,K

)
, κmin,K is the minimum of κ over K.

Proof. Subtracting the variational problem of (4.28) from (4.10), we have:

⟨N (vh) vh −N (v̂) v̂, wh⟩κ−1,K − ⟨div(wh), (ph − p̂)⟩K = 0, ∀wh ∈ V 0
h (K),

⟨(ph − p̂)t, qh⟩K + ⟨div(vh − v̂), qh⟩K = ⟨(f − f̄), qh⟩K , ∀qh ∈ Qh(K).

(4.34)

Taking wh = vh− v̂ and qh = ph− p̂ in (4.34) and adding the resulting equations, we

get:

⟨N (vh) vh −N (v̂) v̂, (vh − v̂)⟩κ−1,K +
1

2

d

dt
∥ph − p̂∥2L2(K) = ⟨(f − f̄), (ph − p̂)⟩K .
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Using monotone property in A4, we have:

∥vh − v̂∥2κ−1,K +
1

2

d

dt
∥ph − p̂∥2L2(K) ≼ ∥f − f̄∥L2(K) ∥ph − p̂∥L2(K), (4.35)

which implies

∥vh − v̂∥2κ−1,K +
1

2

d

dt
∥ph − p̂∥2L2(K) ≼

C1

2
∥f − f̄∥2L2(K) +

1

2C1

∥ph − p̂∥2L2(K),

where C1 is a positive constant to be determined later. Recall that the Raviart-

Thomas element satisfies the following inf-sup condition

∥qh∥L2(K) ≼ sup
wh∈Vh(K)

∫
K
div(wh)qh

∥wh∥H(div;K)

, ∀ qh ∈ Qh(K). (4.36)

Using (4.36) and first equation of (4.34) gives:

∥ph − p̂∥L2(K) ≼ sup
wh∈Vh(K)

⟨N (vh) (vh − v̂), wh⟩κ−1,K

∥wh∥H(div;K)

≤ sup
wh∈Vh(K)

(∫
K
(κ−1N (vh) (vh − v̂))2

) 1
2
(∫

K
|wh|2

) 1
2

∥wh∥H(div;K)

≤ α1 κ
− 1

2
min,K∥vh − v̂∥κ−1,K .

Thus we have:

∥ph − p̂∥2L2(K) ≼ κ−1
min,K∥vh − v̂∥2κ−1,K .

Let C2 be the hidden constant in the above inequality, we define the constant C1 in
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(4.35) to be C1 := C2 κ
−1
min,K , then (4.35) becomes

∥vh − v̂∥2κ−1,K +
d

dt
∥ph − p̂∥2K ≤ C2 κ

−1
min,K∥f − f̄∥2K .

Finally, integrate over (0, t) and sum over all elements Ki to get the desired estimate

in (4.33).

Next, we will estimate the error ∥vh − vH∥κ−1,D in Theorem 4.4.3. To prove this

theorem, we will make use of the inf-sup condition given by Theorem 4.4.2, which is

proved in [22].

Theorem 4.4.2. Let N0 be the number of interior coarse edges. For each interior

coarse edge Ei, assume that there exists a basis function Ψi,off
r ∈ V 0

off, 1 ≤ r ≤ li, such

that
∫
Ei
Ψi,off

r ·mi ̸= 0. Then, for all p ∈ QH , we have

∥p∥L2(D) ≼ Cinfsup sup
w∈V 0

off

∫
D
div(w)p

∥w∥V
, (4.37)

where Cinfsup = (max1≤i≤N0 minr

∫
wi
κ−1Ψi,off

r .Ψi,off
r + 1)2 and the minimum is taken

over all indices r with the property
∫
Ei
Ψi,off

r . mi ̸= 0.

Proof. see [22].

Theorem 4.4.3. Let (vh, ph) ∈ Vh×Qh be the solution of (4.10), (vH , pH) ∈ Voff×QH

be the solution for solving (4.22). Then, under the assumptions A1-A6, the following
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error estimate holds true,

∫ t

0

∥vh(s)− vH(s)∥2κ−1,D + ∥ph(t)− pH(t)∥2D ≼ max
K∈T H

(
κ−1
min,K

) Ne∑
i=1

∫ t

0

∥f(s)− f̄(s)∥2Ki

+ Λ−1

Ne∑
i=1

∫ t

0

ai (v̂(s), v̂(s)) ds+ tEDEIM
local (vH), (4.38)

for all t ∈ [0, T ], where EDEIM
local (vH) is the local DEIM error defined in (4.31).

Proof. We will split the proof to the following steps:

Step 1: Using the fact that V 0
off ⊆ V 0

h and QH ⊂ Qh, we can take wh = wH ∈ V 0
off

and qh = qH ∈ QH in (4.22) and subtract the resulting system from (4.10) to obtain:

⟨N (vh)vh −NL(vH)vH , wH⟩κ−1,D − ⟨div(wH), (ph − pH)⟩D = 0, ∀wH ∈ V 0
off,

⟨(ph − pH)t, qH⟩D + ⟨div(vh − vH), qH⟩D = 0, ∀qH ∈ QH ,

(4.39)

Since qH is a constant function over each coarse grid K, then

⟨(f − f̄), qH⟩K =

∫
K

(f − f̄) qH dx = qH

[∫
K

f dx− |K|f̄
]
= 0.

Therefore, if we let qh = qH in the second equation of (4.34), we will get:

⟨(p̂− ph)t, qH⟩K + ⟨div(v̂ − vh), qH⟩K = 0 ∀qH ∈ QH .

Sum over all K and add the resulting equation to the system (4.39), we obtain the

following system:

⟨N (vh)vh −NL(vH)vH , wH⟩κ−1,D − ⟨div(wH), (ph − pH)⟩D = 0 ∀wH ∈ V 0
off, (4.40)
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⟨(p̂− pH)t, qH⟩D + ⟨div(v̂ − vH), qH⟩D = 0 ∀qH ∈ QH . (4.41)

Note that

⟨div(wH), (ph − pH)⟩D = ⟨div(wH), (ph − p̂)⟩D + ⟨div(wH), (p̂− pH)⟩D.

Using the first equation of (4.34) we have:

⟨div(wH), (ph − pH)⟩D = ⟨N (vh)vh −N (v̂)v̂, wh⟩κ−1,D + ⟨div(wH), (p̂− pH)⟩D.

(4.42)

Substituting (4.42) into (4.40) gives:

⟨N (vh)vh −NL(vH)vH , wH⟩κ−1,D − ⟨div(wH), (ph − pH)⟩D =

⟨N (v̂)v̂ −NL(vH)vH , wH⟩κ−1,D − ⟨div(wH), (p̂− pH)⟩D.

Thus, we rewrite the system (4.40) - (4.41) as following

⟨N (v̂) v̂ −NL(vH)vH , wH⟩κ−1,D − ⟨div(wH), (p̂− pH)⟩D = 0, ∀wH ∈ V 0
off,

⟨(p̂− pH)t, qH⟩D + ⟨div(v̂ − vH), qH⟩D = 0, ∀qH ∈ QH .

(4.43)

Recall that v̂ ∈ Vsnap. We can therefore write v̂ as

v̂ =
Ne∑
i=1

Ji∑
k=1

v̂ij Ψ
i,off
k . (4.44)
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Let us define v̂H ∈ Voff by

v̂H =
Ne∑
i=1

li∑
k=1

v̂ij Ψ
i,off
k , (4.45)

where we recall that li ≤ Ji is the number of eigenfunctions selected for the coarse

neighborhood ωi and Ψi,off
k are the eigenfunctions of the local spectral problem (4.17).

Notice that v̂H ∈ V 0
off. Then, we can take wH = v̂H − vH and qH = p̂− pH in (4.43),

and add the resulting equations, we obtain:

⟨N (v̂)v̂ −NL(vH)vH , v̂ − vH⟩κ−1,D + ⟨(p̂− pH)t, p̂− pH⟩D = ⟨div(v̂H − v̂), p̂− pH⟩D

+ ⟨N (v̂)v̂ −NL(vH)vH , v̂ − v̂H⟩κ−1,D.

Then we can write,

⟨N (v̂)v̂ −N (vH)vH , v̂ − vH⟩κ−1,D︸ ︷︷ ︸
I1

+ ⟨(p̂− pH)t, p̂− pH⟩D =

⟨div(v̂H − v̂), p̂− pH⟩D︸ ︷︷ ︸
I2

+

⟨N (v̂)v̂ −NL(vH)vH , v̂ − v̂H⟩κ−1,D︸ ︷︷ ︸
I3

+

⟨NL(vH)vH −N (vH)vH , v̂ − vH⟩κ−1,D︸ ︷︷ ︸
I4

.

(4.46)

Step 2: By the assumption A4, we have

I1 = ⟨N (v̂)v̂ −N (vH)vH , v̂ − vH⟩κ−1,D ≽ ∥v̂ − vH∥2κ−1,D.
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Therefore, (4.46) can be written as

∥v̂ − vH∥2κ−1,D +
1

2

d

dt
∥p̂− pH∥2L2(D) ≼ I2 + I3 + I4. (4.47)

Step 3: Using Cauchy-Schwarz inequality, we have

I2 = ⟨div(v̂H − v̂), p̂− pH⟩D ≤ ∥div(v̂H − v̂)∥L2(D) ∥p̂− pH∥L2(D). (4.48)

By the definition of the spectral problem (4.18), we write:

∥div(v̂H − v̂)∥2L2(D) =

∫
D

(div(v̂H − v̂))2 ≼
Ne∑
i=1

∫
wi

(div(v̂H − v̂))2

≼
Ne∑
i=1

si(v̂H − v̂, v̂H − v̂).

(4.49)

By the inf-sup condition (4.37) and the error equation (4.43), we have:

∥p̂− pH∥L2(D) ≼ Cinfsup sup
w∈V 0

off

∫
D
div(w)(p̂− pH)

∥w∥V

= Cinfsup sup
w∈V 0

off

⟨N (v̂)v̂ −NL(vH)vH , w⟩κ−1,D

∥w∥V

= Cinfsup sup
w∈V 0

off

{
⟨N (v̂)v̂ −NL(vH)v̂, w⟩κ−1,D

∥w∥V
+

⟨NL(vH)(v̂ − vH), w⟩κ−1,D

∥w∥V
}.

By A5, there is a positive constant C̃ such that ∥v̂∥∞ ≤ C̃. Then,

∥p̂− pH∥L2(D) ≼ Cinfsup sup
w∈V 0

off

{
C̃∥N (v̂)−NL(vH)∥κ−1,D∥w∥κ−1,D

∥w∥V
+

αL
1 ∥v̂ − vH∥κ−1,D∥w∥κ−1,D

∥w∥V
}.
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Thus,

∥p̂− pH∥L2(D) ≼ Cinfsup{∥N (v̂)−N (vH)∥κ−1,D + ∥N (vH)−NL(vH)∥κ−1,D

+ ∥v̂ − vH∥κ−1,D}.

Using A3 and (4.31), we write

∥p̂− pH∥L2(D) ≼ Cinfsup{∥v̂ − vH∥κ−1,D +
√
EDEIM

local (vH)}. (4.50)

Substitute (4.49) and (4.50) into (4.48), we get :

⟨div(v̂H − v̂), p̂− pH⟩D ≼ Cinfsup

[
Ne∑
i=1

si(v̂H − v̂, v̂H − v̂)

]1/2

∥v̂ − vH∥κ−1,D

+ Cinfsup

[
Ne∑
i=1

si(v̂H − v̂, v̂H − v̂

]1/2√
EDEIM

local (vH).

Using Young’s inequality,

I2 = ⟨div(v̂H − v̂), p̂− pH⟩D ≼ { 1

2C3

Ne∑
i=1

si(v̂H − v̂, v̂H − v̂) +
C3

2
∥v̂ − vH∥2κ−1,D

+
1

2

Ne∑
i=1

si(v̂H − v̂, v̂H − v̂) +
1

2
EDEIM

local (vH)},

where C3 > 0 will be determined later.

Step 4: For I3 we can write:

⟨N (v̂)v̂ −NL(vH)vH , v̂ − v̂H⟩κ−1,D = ⟨(N (v̂)−NL(vH))v̂, v̂ − v̂H⟩κ−1,D

+ ⟨NL(vH)(v̂ − vH), v̂ − v̂H⟩κ−1,D.
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Note that

⟨(N (v̂)−NL(vH))v̂, v̂ − v̂H⟩κ−1,D ≤ C̃∥N (v̂)−NL(vH)∥κ−1,D ∥v̂ − v̂H∥κ−1,D

(4.51)

and

⟨NL(vH)(v̂ − vH), v̂ − v̂H⟩κ−1,D ≤ αL∥v̂ − vH∥κ−1,D ∥v̂ − v̂H∥κ−1,D. (4.52)

Using Young’s inequality in (4.51):

⟨(N (v̂)−NL(vH))v̂, v̂ − v̂H⟩κ−1,D ≼ C4

2
∥N (v̂)−NL(vH)∥2κ−1,D +

1

2C4

∥v̂ − v̂H∥2κ−1,D

≼ C4

2
∥v̂ − vH∥2κ−1,D +

C4

2
EDEIM

local (vH)

+
1

2C4

∥v̂ − v̂H∥2κ−1,D.

Similarly, for (4.52),

⟨NL(vH)(v̂ − vH), v̂ − v̂H⟩κ−1,D ≼ C4

2
∥v̂ − vH∥2κ−1,D +

1

2C4

∥v̂ − v̂H∥2κ−1,D.

Therefore:

I3 = ⟨N (v̂)v̂ −NL(vH)vH , v̂ − v̂H⟩κ−1,D ≼ C4∥v̂ − vH∥2κ−1,D +
C4

2
EDEIM

local (vH)

+
1

C4

∥v̂ − v̂H∥2κ−1,D.
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Step 5: We can split I4 as following:

I4 = ⟨NL(vH)vH −N (vH)vH , v̂ − vH⟩κ−1,D ≤ ⟨NL(vH)(vH − v̂), v̂ − vH⟩κ−1,D

+ ⟨(NL(vH)−N (vH))v̂, v̂ − vH⟩κ−1,D

+ ⟨N (vH)(v̂ − vH), v̂ − vH⟩κ−1,D.

Using A2, we have

⟨NL(vH)(vH − v̂), v̂ − vH⟩κ−1,D ≤ αL
1 ⟨vH − v̂, v̂ − vH⟩κ−1,D

≤ max{α1, α
L
1 }⟨vH − v̂, v̂ − vH⟩κ−1,D

(4.53)

and

⟨N (vH)(v̂ − vH), v̂ − vH⟩κ−1,D ≤ α1 ⟨v̂ − vH , v̂ − vH⟩κ−1,D

≤ max{α1, α
L
1 }⟨v̂ − vH , v̂ − vH⟩κ−1,D.

(4.54)

Consequently,

I4 = ⟨NL(vH)vH −N (vH)vH , v̂ − vH⟩κ−1,D ≤ ⟨(NL(vH)−N (vH))v̂, v̂ − vH⟩κ−1,D.

Using Cauchy-Schwarz inequality:

I4 ≤ C̃∥NL(vH)−N (vH)∥κ−1,D∥v̂ − vH∥κ−1,D.

By Young’s inequality,

I4 ≼
1

2C5

EDEIM
local (vH) +

C5

2
∥v̂ − vH∥2κ−1,D.
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Step 6: From steps 3, 4 and 5, we have:,

I2 + I3 + I4 ≼
(

1

2C3 + 2

) Ne∑
i=1

si(v̂H − v̂, v̂H − v̂) +

(
C3 + C5 + 2C4

2

)
∥v̂ − vH∥2κ−1,D

+

(
1 + C4

2
+

1

2C5

)
EDEIM

local (vH) +
1

C4

∥v̂ − v̂H∥2κ−1,D.

(4.55)

We notice that

∥v̂H − v̂∥2κ−1,D ≤
Ne∑
i=1

∥v̂H − v̂∥2κ−1,ωi
≤

Ne∑
i=1

si (v̂H − v̂, v̂H − v̂) .

Let C6 be the hidden constant in (4.55), we then choose C3, C4 and C5 such that

C6
C3+C5+2C4

2
= 1

2
. Then,

I2 + I3 + I4 ≼
Ne∑
i=1

si(v̂H − v̂, v̂H − v̂) +
1

2
∥v̂ − vH∥2κ−1,D + EDEIM

local (vH).

Step 7: Substituting the above inequality into (4.47), we get:

1

2
∥v̂ − vH∥2κ−1,D +

1

2

d

dt
∥p̂− pH∥2L2(D) ≼

Ne∑
i=1

si(v̂H − v̂, v̂H − v̂) + EDEIM
local (vH). (4.56)

By (4.44) and (4.45) and the fact that Ψi,off
k are eigenfunctions of (4.17), we have:

si (v̂H − v̂, v̂H − v̂) =

Ji∑
k=li+1

(
λ
(i)
k

)−1

(v̂ik)
2ai

(
Ψi,off

k , Ψi,off
k

)
.

Assume eigenvalues of (4.17) are ordered as λ
(i)
1 < λ

(i)
2 < ... < λ

(i)
ji
, then by orthogo-
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nality of Ψi,off
k , we obtain:

si (v̂H − v̂, v̂H − v̂) ≤
(
λ
(i)
li+1

)−1

ai (v̂H − v̂, v̂H − v̂) ≤
(
λ
(i)
li+1

)−1

ai (v̂, v̂) .

Taking Λ = min1≤i≤Ne λ
(i)
li+1, we obtain:

Ne∑
i=1

si(v̂H − v̂, v̂H − v̂) ≼
Ne∑
i=1

Λ−1ai (v̂, v̂) .

Substitute in (4.56), we have:

∥v̂h − vH∥2κ−1,D +
d

dt
∥p̂− pH∥2D ≼

Ne∑
i=1

Λ−1ai (v̂, v̂) + EDEIM
local (vH). (4.57)

Step 8: Finally, by the triangle inequality, we have

∥vh − vH∥2κ−1,D +
d

dt
∥ph − pH∥2D ≤ ∥vh − v̂∥2κ−1,D +

d

dt
∥ph − p̂∥2D + ∥v̂h − vH∥2κ−1,D

+
d

dt
∥p̂− pH∥2D.

Integrating with respect to time and using Lemma 4.4.1 and inequality (4.57), we

obtain the desired estimate (4.38).

Next, we will estimate the online error ∥vh − von∥κ−1,D through the use of the

projection Pl : Voff −→ Von defined in (4.29).

Theorem 4.4.4. Let (vh, ph) ∈ Vh × Qh be the solution of (4.10) and (von, pon) ∈

77



Von×QH be the solution for solving (4.26). Using the assumptions A1-A6, we have

∫ t

0

∥vh − von∥2κ−1,D + ∥ph(t)− pon(t)∥2D ≼ max
K∈ T H

(
κ−1
min,K

) Ne∑
i=1

∫ t

0

∥f(s)− f̄(s)∥2Ki
ds

+ Λ−1

Ne∑
i=1

∫ t

0

ai (v̂(s), v̂(s)) ds+ tEDEIM
local (vH)

+
d∑

j=1

µ2
j + tEDEIM

global (von), (4.58)

for all t ∈ [0, T ], where EDEIM
local (vH) is the local DEIM error given by (4.31) and

EDEIM
global (von) is the global DEIM error given by (4.32) .

Proof. Step 1: Consider the following problem in Von ×QH space:

⟨N (vH) PlvH , won⟩κ−1,D − ⟨div(won), pl⟩D = 0, ∀won ∈ V 0
on,

⟨∂pl
∂t
, qon⟩D + ⟨div(PlvH), qon⟩D = ⟨f, qon⟩D, ∀qon ∈ QH .

(4.59)

Since Von ⊂ Voff, we can replace wH in (4.20) by won and subtract (4.59) to get:

⟨N (vH) (vH − PlvH), won⟩κ−1,D − ⟨div(won), pH − pl⟩D = 0, ∀won ∈ V 0
on,

⟨(pH − pl)t, qon⟩D + ⟨div(vH − PlvH), qon⟩D = 0, ∀qon ∈ QH .

By restricting the proof of Theorem 4.4.2 to the online space, we can obtain the

following inf-sup condition. For all p ∈ QH , we have:

∥p∥L2(D) ≼ Con
infsup sup

w∈V 0
on

∫
D
div(w)p

∥w∥V
, (4.60)

where Con
infsup = (max1≤i≤N0 minr

∫
wi
κ−1Ψi,on

r .Ψi,on
r + 1)2 and the minimum is taken
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over all indices r with the property
∫
Ei
Ψi,on

r .mi ̸= 0. Using this condition we have:

∥pH − pl∥L2(D) ≼ Con
infsup sup

w∈V 0
on

∫
D
div(w)(pH − pl)

∥w∥V

≼ Con
infsup sup

w∈V 0
on

⟨N (vH) (vH − PlvH), w⟩κ−1,D

∥w∥V
.

Hence,

∥pH − pl∥L2(D) ≼ ∥vH − PlvH∥κ−1,D. (4.61)

Step 2: Subtracting (4.26) from (4.59) gives us:

⟨N (vH) PlvH −NG(von)von, won⟩κ−1,D − ⟨div(won), pl − pon⟩D = 0, ∀won ∈ V 0
on,

⟨(pl − pon)t, qon⟩D + ⟨div(PlvH − von), qon⟩D = 0, ∀qon ∈ QH .

Take won = PlvH−von ∈ Von and qon = pl−pon ∈ QH and add the resulting equations

to obtain:

⟨N (vH) PlvH −NG(von)von, PlvH − von⟩κ−1,D + ⟨(pl − pon)t, pl − pon⟩D = 0,

which implies:

α0∥PlvH − von∥2κ−1,D +
1

2

d

dt
∥pl − pon∥2L2 6 ⟨(NG(von)−N (vH))von, PlvH − von⟩κ−1,D.

(4.62)
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Note that:

⟨(NG(von)−N (vH))von, PlvH − von⟩κ−1,D = ⟨NG(von)(von − PlvH), PlvH − von⟩κ−1,D

+⟨(NG(von)−N (vH))PlvH , PlvH − von⟩κ−1,D

+⟨N (vH)(PlvH − von), PlvH − von⟩κ−1,D.

By the assumption A2, we have

⟨NG(von)(von − PlvH), PlvH − von⟩κ−1,D ≤ αG
1 ⟨von − PlvH , PlvH − von⟩κ−1,D

≤ max{αG
1 , α1}⟨von − PlvH , PlvH − von⟩κ−1,D.

(4.63)

Similarly,

⟨N (vH)(PlvH − von), (PlvH − von)⟩κ−1,D ≤ α1⟨PlvH − von, PlvH − von⟩κ−1,D

≤ max{αG
1 , α1}⟨PlvH − von, PlvH − von⟩κ−1,D.

(4.64)

By the assumption A6 and Young’s inequality, we have

⟨(NG(von)−N (vH))PlvH , (PlvH − von)⟩κ−1,D ≤ C̃l{
1

2C7

∥NG(von)−N (vH)∥2κ−1,D

+
C7

2
∥PlvH − von∥2κ−1,D}.

(4.65)

From (4.63), (4.64) and (4.65), we get:

⟨(NG(von)−N (vH))von, (PlvH − von)⟩κ−1,D ≼ 1

2C7

∥NG(von)−N (vH)∥2κ−1,D

+
C7

2
∥PlvH − von∥2κ−1,D,

(4.66)

where the hidden constant in the above inequality is max{αG
1 , α1, C̃l}. We can rewrite
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(4.66) as follows:

⟨(NG(von)−N (vH) ) von, (PlvH − von)⟩κ−1,D ≼ 1

2C7

∥NG(von)−N (von)∥2κ−1,D

+
1

2C7

∥N (von)−N (vH)∥2κ−1,D

+
C7

2
∥PlvH − von∥2κ−1,D

≼ 1

2C7

EDEIM
global (von)

+
CL

2C7

∥von − vH∥2κ−1,D

+
C7

2
∥PlvH − von∥2κ−1,D.

Using the triangle inequality, ∥von−vH∥2κ−1,D 6 ∥PlvH−vH∥2κ−1,D+∥PlvH−von∥2κ−1,D.

Therefore,

⟨(NG(von)−N (vH))von, (PlvH − von)⟩κ−1,D ≼ 1

2C7

[
EDEIM

global (von) + ∥PlvH − vH∥2κ−1,D

]
+

(
1

2C7

+
C7

2

)
∥PlvH − von∥2κ−1,D.

(4.67)

Let C8 > 0 be the hidden constant in the above inequality, then we choose C7 such

that C8

(
1

2C7
+ C7

2

)
< α0 and substitute (4.67) in (4.62), we have

∥PlvH − von∥2κ−1,D +
d

dt
∥pl − pon∥2L2(D) ≼ EDEIM

global (von) + ∥PlvH − vH∥2κ−1,D.
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Step 3: By the triangle inequality, we have:

∥vH − von∥2κ−1,D +
d

dt
∥pH − pon∥2L2(D) 6 ∥vH − PlvH∥2κ−1,D + ∥PlvH − von∥2κ−1,D

+
d

dt
∥pl − pon∥2L2(D) +

d

dt
∥pH − pl∥2L2(D)

≼ EDEIM
global (von) + ∥PlvH − vH∥2κ−1,D

+
d

dt
∥pH − pl∥2L2(D).

Integrating in time, we obtain:

∫ t

0

∥vH(s)− von(s)∥2κ−1,Dds+ ∥pH(t)− pon(t)∥2L2(D) ≼ tEDEIM
global (von)

+

∫ t

0

∥PlvH − vH∥2κ−1,D

+ ∥pH(t)− pl(t)∥2L2(D).

(4.68)

By (4.61), we have

∥pH(t)− pl(t)∥2L2(D) ≼ ∥vH(t)− PlvH(t)∥2κ−1,D,

for t ∈ [0, T ]. Therefore, from Proposition 1, we have:

∥pH(t)− pl(t)∥2L2(D) ≼ ∥vH(t)− PlvH(t)∥2κ−1,D 6
n∑

i=1

∥viH − Plv
i
H∥2κ−1,D ≼

d∑
j=1

µ2
j .

Also, using (4.30), we have:
∫ t

0
∥PlvH − vH∥2κ−1,D 6

∑d
j=1 µ

2
j . Hence, (4.68) becomes

∫ t

0

∥vH(s)− von(s)∥2κ−1,Dds+ ∥pH(t)− pon(t)∥2L2(D) ≼
d∑

j=1

µ2
j + tEDEIM

global (von).
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Using the triangle inequality and Theorem 4.4.3 we obtain the desired result in

(4.58).

4.5 Local online adaptive method

The local online adaptive method is an enrichment algorithm used to add new

local multiscale basis functions, at some coarse regions, to the local offline multiscale

basis functions. More precisely, we first start with the offline multiscale space, Voff,

as our initial online space and use an enrichment algorithm to adaptively add some

new basis functions based on the residual of the previous solution and special min-

imum energy snapshots. The advantage of adding these online basis functions is to

accelerate the convergence based on the initial number of offline basis functions as

we will show in our numerical examples. In the earlier works [17, 23], such method

was used for linear elliptic problems. In our case, which is time-dependent, we do

this enrichment at some fixed time steps and update the online basis functions in

every 10-th time step to save the computational time.

We define VΩ for a given region Ω ⊆ D, to be the space of functions in Vsnap

which are supported in Ω, i.e. VΩ = ⊕ωi⊆ΩV
(i)
snap. Let V̂Ω denote the divergent free

subspace of VΩ. We denote the local online multiscal space by Vms. Furthermore, we

use the index m ≥ 0 to represent the enrichment level and V m
ms is the corresponding

online multiscale space obtained by applying the proposed enrichment algorithm.

The multiscale solutions obtained by solving the variational problem in V m
ms ×QH is

then denoted by (vmms, p
m
ms). At m = 0, we define V 0

ms = Voff and we have (v0ms, p
0
ms) =

(vH , pH).

At the fixed n-th time step, define the nonlinear functional Rn
Ω on VΩ by

Rn
Ω(u) =

∫
Ω

κ−1N (vn,mms ) vn,mms .u−
∫
Ω

div(u) pn,mms , ∀u ∈ VΩ,
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and define the norm

∥Rn
Ω∥V ∗

Ω
= sup

u∈VΩ

Rn
Ω(u)

∥u∥H(div;Ω,κ−1)

.

To simplify the notation, from now on, we will not use the time step index repre-

sentation, n, as we know all the following computations are conducted in a specific

fixed time step. The online adaptive method is summarized in the following steps:

Step 1: Find the multiscale solutions vmms ∈ V m
ms and p

m
ms ∈ QH .

Step 2: Select non-overlapping regions Ω1, ...,ΩJ ⊆ D, where each Ωj is a union of

some coarse grid neighborhood.

Step 3: Find the online basis functions. For each Ωj, find ϕ̂j ∈ V̂Ωj
such that

RΩj
(u) =

∫
Ωj

κ−1N (vm−1
ms ) ϕ̂j. u ∀u ∈ V̂Ωj

.

Step 4: Update the velocity space by setting V m+1
ms = V m

ms ⊕ span{ϕ̂1, ϕ̂2, ..., ϕ̂J}

and go back to Step 1. Repeat these steps until the global error indicator is small or

we have a certain number of basis functions.

Remark 4.5.1. In our calculations, we compute the error to be the difference be-

tween the online solution vmms and the snapshot solution vsnap ∈ Vsnap(Ωj) . If this

error is very small, i.e., vmms is close to vsnap, the norm of ϕ̂j will be small. In this

case, we normalize it before computing the matrix in the finite element method to

avoid having a singular matrix in our computation.

The convergence rate of the online adaptive method has been studied and proved

in [17]. The result states that the error ∥vsnap − vm+1
ms ∥κ−1,D depends on the value of

the first eigenvalue of the offline spectral problem that the corresponding eigenvector
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was not included in the construction of the offline space. In other words, recall that

we ordered the eigenvalue of the spectral problem (4.17) as in (4.19), the convergence

rate of the online adaptive method can be small if Λ
(I)
min = mini∈I λ

(i)
li+1 is large, where

li is the initial number of the offline basis functions determined at the beginning

of the method. That is we should choose li so that λ
(i)
li+1 is significantly large. We

demonstrate this result in the next section.

4.6 Numerical results

In this section, we will present some numerical examples using global-local adap-

tive method for mixed framework of nonlinear Forchheimer flow given in (4.1) . We

will use different numbers of local and global DEIM modes and different numbers

of POD modes to perform the online space. We use these examples to illustrate the

effect of these numbers on the accuracy and complexity of our computation. We also

present examples to test the efficiency of using the online adaptive method to reduce

the error. We will use different numbers of initial offline basis functions to show that

the convergence rate depends on the number of the initial offline basis functions.

4.6.1 Global-local reduction method

In our simulations, the computational domain is D = (0, 1)2. The number of

coarse grids in each direction is N = 10 and the number of fine grids in each direction

is n = 100. We also use time step size ∆t = 5 in the time interval t ∈ [0, 100]. We

are considering the permeability field shown in Figure 4.2 with contrast 103, i.e.,

maxκ(x)/minκ(x) = 103.

4.6.1.1 Comparing the reference solution and the approximate solution

We use the fine solution as our reference solution. The approximate solution

is the solution obtained by our proposed global-local method. In this example,
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Figure 4.2: Permeability field (κ).

we obtained our approximate solution using two DEIM points to approximate the

nonlinear functionN (v) locally at each coarse region in the offline stage. In the online

stage, we, also, used two DEIM points to approximate N (v) in the global domain.

Furthermore, to perform the online space we used four POD modes. Therefore, the

dimensions of the fine-grid space, offline space and online space are: Mv = 20200,

Moff = 540 and Mon = 4, respectively. In Figure 4.3, we compare the pressure

solution of the fine-grid problem with the pressure solution obtained from the offline

problem (4.22) and the online problem (4.26). The corresponding velocity solutions

in x-direction and y-direction are shown in Figures (4.4) and (4.5), respectively. From

this comparison, we observe a good approximation, which shows the capability of the

global-local reduction technique to present the fully resolved solution of the nonlinear

Forchheimer equation.

In addition to this comparison, we show the accuracy of the proposed method by

computing the relative L2 error for the online pressure and online velocity using the
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(a) Fine Pressure (b) Offline Pressure (c) Online Pressure

Figure 4.3: Comparison of pressure solutions.

(a) Fine Velocity (b) Offline Velocity (c) Online Velocity

Figure 4.4: Comparison of velocity solutions (x-direction).

(a) Fine Velocity (b) Offline Velocity (c) Online Velocity

Figure 4.5: Comparison of velocity solutions (y-direction).
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following error equations:

REon(P ) =
∥ph − pon∥L2(D)

∥ph∥L2(D)

, REon(V ) =
∥vh − von∥κ−1,D

∥vh∥κ−1,D

. (4.69)

In Figure 4.6, we plot the error of the online pressure and velocity solutions

computed using (4.69). The velocity error (on the top) is less than 7% and the

pressure error (on the bottom) is less than 27%. We, also, observe that the errors

for the velocity and the pressure is getting stable after almost 10 time steps.

Figure 4.6: Top: the relative L2 error for the online velocity field. Bottom: the
relative L2 error for the online pressure. Here, we use 2 local DEIM points, 2 global
DEIM points and 4 POD modes.
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Beside the good accuracy, we observe a significant reduction in the computational

time as our principle goal for this proposed method. We first compute the time for

solving the original system, T0, and the time for the solving the reduced systems

in the offline and online stages Toff and Ton, respectively. Then, we compute the

percentage of the simulation time using:

PST =
T0
Ti

× 100,

where Ti denotes either Toff or Ton. In Table (4.1), we list these numbers to show the

efficiency of the global-local approach in terms of saving the computational time.

Full system (fine-scale problem (4.10)) T0 = 702.6800

Offline reduced system ( offline problem (4.22)) Toff = 2.0096 (PST = 0.2860%)

Online reduced system (online problem (4.26)) Ton = 0.0822 (PST= 0.0117%)

Table 4.1: Time record.

4.6.1.2 Using different number of POD modes

The approximate solutions in the first example are obtained by using 4 POD

modes. However, increasing the numbers of POD modes used in the online stage

yields a better approximation. This is shown in Figure 4.7 where we plot the relative

L2 error for the velocity corresponding two different numbers of the POD modes.

4.6.1.3 Using different number of the local and global DEIM points

The effect of the number of the local and global modes used to approximate

the nonlinear function N (v) in the offline and online problems is shown in Figure
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Figure 4.7: Variations of the velocity error with the number of POD modes.

4.8. In (a), we show the velocity L2 error with using 2, 3 and 4 DEIM modes to

approximate N (v) locally while using fixed number for the global DEIM modes equal

to two. In (b), we fix the number of the local DEIM and use different numbers for

the global DEIM points. From these figures we see that the error is decreasing by

increasing either local or global DEIM points used to approximate the nonlinear

function locally or globally. However, further increasing for the global DEIM points

does not affect the error as shown in (b). This is related to the dominance of the local

error. In (C), we plot the velocity error with different numbers of both local and

global DEIM points to show that increasing these numbers improves the solution

accuracy. Therefore, to balance the local and global error one needs to carefully

choose these numbers.

4.6.2 Local online adaptive method

We apply the local online adaptive method to solve the system of equations

given by (4.8). This example shows the performance of using local online adaptive

method to get better approximation of our solution and demonstrates the effect of

choosing different initial number of offline basis functions. We consider the domain
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(a) Variations of local DEIM points.

(b) Variations of global DEIM points.

(c) Variations of both local and global DEIM points.

Figure 4.8: Variations of the velocity error with the number of local and global DEIM
points. Here, we used 4 POD modes in online problem.
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[0, 1] × [0, 1] with homogeneous boundary conditions, i.e., g = 0. We divide the

domain into 15 × 15 coarse grid and divide each coarse grid into 40 × 40 fine grid.

The source term f is chosen to be 1 on top left coarse grid block, −1 on bottom right

coarse grid block and zero elsewhere. We use the permeability filed in Figure 4.2

with the contrast value of 102. For the time variable, we use time step size ∆t = 5

in the time interval t ∈ [0, 100]. In each enrichment level, the regions Ω1, ...,ΩJ are

chosen to be disjoint coarse-grid neighborhoods. We also emphasize that the online

basis functions are added at the first time step and are updated in every 10-th time

step. In Figure 4.9, we plot the snapshot velocity solution as our reference solution

on the top and the online velocity solution in the bottom. We can see from this figure

that we get a good approximation with using two initial number of basis functions.

Figure 4.9: Comparing the snapshot velocity solution with online solution using two
initial basis functions.
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To show the effect of using different numbers of initial basis functions, we solve

the equations using 1, 2, 3, and 4 basis functions and compute the error e given by:

e =
∥vsnap − vms∥κ−1,D

∥vsnap∥κ−1,D

. (4.70)

In Figure 4.10, we plot the snapshot error e against the number of the basis function

used initially. We observe that the error decay faster with larger number for the

initial basis functions. This is also observed from Table 4.2, which shows the value of

e. The first column of Table 4.2 represents the number of basis functions used for each

coarse neighborhood and the total degrees of freedom (DOF), which are the numbers

in parentheses. The other columns represent the snapshots errors when using 1, 2,

3, and 4 basis functions. This observation can be explained by the value of Λmin,

which depends on the number of the initial basis functions used offline. Choosing

larger number for the initial basis functions gives larger value for Λmin. For example,

with 1, 2, 3, and 4 basis functions, the value of Λmin are 0.0776, 1.9511, 3.6204 and

5.2765, respectively. In online adaptive method the rate of convergence is bounded

above by Λ−1
min. Therefore, increasing the number of the initial basis functions yields

to the increase of Λmin, and hence, the decrease of the error.

number of basis e (1 basis) e (2 basis) e (3 basis) e (4 basis)
(DOF) Λmin = 0.0776 Λmin = 1.9511 Λmin = 3.6204 Λmin = 5.2765
1(420) 0.1772 / / /
2(840) 0.0563 0.0474 / /
3(1260) 0.0413 0.0086 0.0345 /
4(1680) 0.0213 0.0068 0.0074 0.0263
5(2100) 0.0096 0.0062 0.0064 0.0067

Table 4.2: Snapshot error of online adaptive method with 1, 2, 3 and 4 initial bases.
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Figure 4.10: Snapshot error with different number of initial basis functions.
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5. GLOBAL-LOCAL ONLINE ADAPTIVE REDUCTION METHOD

FOR HETEROGENEOUS FORCHHEIMER FLOW

In this section, we introduce a global online adaptive method that is used to

add new global basis functions to the POD subspace based on an inexpensive error

indicators. Since the global error indicators are expensive to compute, we use local

error indicators as our criterion to reduce the computational time. At any time step,

if the adaption is needed, the new POD basis function is computed by solving the

global residual problem. We solve the global residual problem using the GMsFEM,

with the local online adaptation as presented in Section 4.5. For that we refer to the

proposed method as the global-local online adaptive method. We emphasize that

the global online adaptivity is performed by incorporating new data that become

available in the online stage. This feature plays an important role to improve the

accuracy of the approximate solution as we will see in the numerical experiment. We

will consider the nonlinear Forchheimer flow (see Section 4.1) as our model problem.

To introduce the proposed method, we first recall the fine-scale problem under

our consideration.

5.1 Fine-scale model

Recall the fine-scale problem for Forchheimer flow, presented in Section 4.2, is

given by:

Nfine(V
n) V n − BT

fineP
n = 0, (5.1)

Mfine
P n − P n−1

∆t
+BfineV

n = F, (5.2)
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where V and P are the velocity and pressure vectors, respectively. F is the vector

represents the source term. The matrices Nfine, Bfine and Mfine are defined in Section

4.3. Let F̃ = ∆tF +MfineP
n−1. From Equation (5.2), we have

P n =M−1
fine(F̃ −∆tBfineV

n),

and substitute the above equation in Equation (5.1) to get:

Nfine(V
n) V n −BT

fine(M
−1
fineF̃ ) + ∆tBT

fine(M
−1
fineBfine)V

n = 0.

Then,

[
Nfine(V

n) + ∆tBT
fine(M

−1
fineBfine)

]
V n = BT

fine(M
−1
fineF̃ ). (5.3)

Define A(V n) =
[
Nfine(V

n) + ∆tBT
fine(M

−1
fineBfine)

]
and H = BT

fine(M
−1
fineF̃ ), we can

re-write Equation (5.3) in a simple form as:

A(V n)V n = H. (5.4)

This equation is expensive to solve. To avoid the complexity of solving Equation

(5.4), we use a global reduction method, precisely, POD method, to solve the problem

in a reduced-order dimension which will be discussed in the following section.

5.2 Global offline space

The global offline space is defined to be the reduced space of global basis functions

(POD modes) construed offline. The construction of the global offline space starts

with constructing the snapshot space by solving some local problems. In our method,

we use Problem (4.15) to construct the snapshot space, Vsnap. Using the whole
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snapshot space, we solve the Forchheimer flow equation to obtain the global snapshot

solutions vsnap ∈ Vsnap. These snapshot solutions are then used to construct the global

POD basis functions. More precisely, we collect Nt snapshot solutions and define

V = spsan{v1snap, · · · , vNt
snap}.

Then, we apply the POD method introduced in Section 2.3 to the correlation matrix

(W = VTV) to obtain the global offline POD basis functions. We denote the global

POD modes by ψG
i and define the POD projection matrix, ΨG, to be the matrix

whose columns are ψG
i . In the following sections, new global basis functions will be

constructed during online process. To distinguish the global basis functions computed

offline from those computed online, we will use ψG
off for offline global basis and ψG

on

for online global basis. Similarly, ΨG
off is the offline POD projection matrix and ΨG

on

is the online POD projection matrix which is obtained by updating ΨG
off with new

online basis functions, ψG
on, this will be discussed in details in Section 5.3.

Once the offline global space is constructed, we can solve the original large-scale

dynamical system (5.1)-(5.2) in a lower dimension. For example, in Section 5.4,

the offline solution is obtained using only 2 offline global basis functions, i.e., the

dimension of the offline reduced system is 2. The POD reduced-order system for

Equation (5.4) is:

(ΨG
off)

T A(ΨG
off V

n
r ) Ψ

G
off V

n
r = (ΨG

off)
T H, (5.5)

where the subscript r in the above equation indicates the representation of the vector

in the reduced dimension. In other words, Vr is a vector of reduced-order offline

solutions vr ∈ span{ψG
off}. Therefore, the accuracy of the reduced-order solution, vr,
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depends on the offline information and how these information represents the problem

with initial input parameters.

In many applications, as time advancing, the global offline space (POD subspace)

may not be sufficient to represent the full resolved solution at some time instants.

To explain this, we call Case 1 of Example 5.4.1 (see Section 5.4). In this case, the

reduced system is construed in the offline stage and kept unchanged in the online

stage. In other words, no global online basis is added to the reduced solution space.

Therefore, the reduced-order solution vr, relies only on the pre-computed information

from the offline stage. In the online stage, we solve the forward reduced system with

different source term at some time instants. Since this change was not incorporated

at the offline stage, the pre-computed offline information will not be sufficient to

approximate the online solution. For example, Figure 5.1 shows that the error is

large (10%) and has two jumps at the time instants when the source term has been

changed in the online stage. We refer to Section 5.4 for more details.

Figure 5.1: L2− Error of the reduced-order solution in Case 1, vr ∈ {ψG
off}.

We conclude that in this case and similar situations, the constructed global offline

space is not sufficient to approximate the solution within desired accuracy. For this
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reason, one needs to add some new global basis functions to the global POD subspace

in the online process to improve the accuracy of the approximate solution. In order

to add new global basis and adapt the POD subspace, we must know two main

things: (1) at which time step to adapt and (2) how to adapt the POD subspace.

The following sections are specified to address these issues.

5.3 Global online space

Global online space consists of global offline basis functions, {ψG
off}, and some

new global online basis functions, {ψG
on}, that are computed whenever updating the

global POD subspace is required based on an error indicator. To decide in which

time instant updating the global POD subspace is needed, one needs to compute the

norm of the following residual,

Res = H−A(ΨG
off V

n
r )Ψ

G
off V

n
r . (5.6)

Then, if the residual norm is larger than a specific error tolerance at time step

k, updating the global basis functions is required and the new global online basis

function to be added in this time step is then given by solving

A(ψG,k
on )ψG,k

on = Res. (5.7)

Notice that Equation (5.7) is a fine-grid problem. Therefore, computing the global

residual and the new global online basis can be very expensive. To avoid the fine-scale

computational cost, we solve Equation (5.7) adaptively using local model reduction

and local online adaptive method introduced in Section 4.5. This will be discussed

in Section 5.3.1.

Moreover, instead of using the global error indicator based on the global residual
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given by Equation (5.6), we use local error indicator based on the norm of the local

residual which is cheaper to compute. Precisely, we define the local residual Ri

to be the restriction of the residual given by Equation (5.6) in the coarse blocks

ωi, ∀ i = 1 · · · , Ne (recall that Ne denotes the total number of the coarse edges

Ei in the coarse mesh T H). Then, we compute their corresponding energy norm.

If the number of coarse blocks with large error (i.e. the residual norm is greater

than a certain tolerance) is greater than a specific number, then the POD subspace

cannot give a good approximation and the adaption is needed. Next, we discuss

how to adapt the POD subspace using the proposed global-local adaptive reduction

method.

5.3.1 Global-local online adaptive method

To reduce the computational cost for solving Equation (5.7), we employ a local

reduced order model to approximate the global solution by a coarse-scale solution

which is cheaper to compute. Toward this goal, we apply the mixed GMsFEM

introduced in Section 4.3.1 to construct the local multiscale basis functions. These

basis functions are computed by performing a local spectral decomposition in the

snapshot space, Vsnap, and choosing the eigenvectors corresponding to the smallest

eigenvalues. We denote the local multiscale basis functions by ψL
i and let

ΨL
off = span{ψL

1 · · ·ψL
Moff

},

to be the local offline multiscale space. We refer to Section 4.3.1 for more details. As

in global basis functions, the local multiscale space constructed in the offline stage

will be updated with new local online multiscale basis functions using the local online

adaptive method discussed in Section 4.5. For that, from now on, we use ψL
off and

ψL
on for offline and online local multiscale basis functions, respectively.
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Suppose at a fixed time step k, the global space is spanned by Nk−1 number of

initial POD modes, that is

ΨG
k = {ψG

1 , · · · , ψG
Nk−1

}.

Assume at this time step, ΨG
k was not sufficient to approximate the velocity solution

for Forchhiemer flow based on the above described local error indicator. Then, ΨG
k

needs to be updated by adding a new online global basis ψG,k
on . This basis function is

obtained by solving Equation (5.7). Since this equation is nonlinear, we may linearize

it to simplify the computation. That is instead of (5.7), we consider the following

equation

A(ψG
Nk−1

)ψG,k
on = Res. (5.8)

Using online local multiscale space ΨL
on, we will compute the coarse-scale solution of

Equation (5.8) and then the global solution, ψG,k
on , will be obtained by projection. We

emphasize that we will start with the offline local multiscale space ΨL
off as the initial

online local space. To clarify this, we describe the whole process in the following

steps.

Step 1: Solve for the multiscale solution of Equation (5.8)

We solve for ψ̂ ∈ ΨL
on the following reduced-order system:

Â ψ̂ = R̂, (5.9)

where Â = (ΨL
on)

T A(ΨL
on ψ

G
Nk−1

) (ΨL
on) and R̂ = (ΨL

on)
T Res. The global online

basis is then given by ψG
on = ΨL

on ψ̂.

r
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Step 2: Compute the local residual of the approximation in Step 1:

The multiscale residual is given by:

Rms = A(ψG
on) ψ

G
on − Res. (5.10)

For each coarse region ωi, we define the local residual Ri
ms to be the restriction of

Rms in ωi.

Step 3: Update the local online multiscale space ΨL
on:

To update ΨL
on, we will use the index m ≥ 0 to represent the enrichment level of

the local multiscale space. We denote the local multiscale space at the enrichment

level m by ΨL
m and let ΨL

0 = ΨL
off. Moreover, we denote the restriction of ΨL

m on ωi

by ΨL,i
m .

Suppose at the enrichment level m, ΨL
m = {ψL

1 , · · · , ψL
r }. For each coarse region

ωi, we solve for ϕ̂i ∈ ΨL,i
m such that

Ri
ms = A(ψL

r )|ωi
ϕ̂i. (5.11)

Then, we define ψL
on = ⊕Ne

i=1ϕ̂
i. We update the online local space by setting ΨL

m+1 =

{ΨL
m, ψ

L
on} and let ΨL

on = ΨL
m+1. Before going to the next step, we repeat from Step

1 to Step 3 until the multiscale residual in (5.10) is less than a specific tolerance or

we have certain number of local basis functions.

Step 4: Update the global POD space:

Finally, we update the global online POD subspace at the time step k to be

ΨG
k = {ψG

1 , · · · , ψG
Nk−1

, ψG
on}.

In this way, the number of POD modes increased by one at the time step requires
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the adaption.

5.4 Numerical results

In this section, we present numerical results to show the performance of the

global-local online adaptive method for approximating Forchheimer flow problem (see

Section 4.1). We will consider two examples. The first example is to demonstrate

the efficiency of adapting the global snapshot space using our adaptive method to

improve the accuracy of the approximate solution of the reduced system. In this

example, we compare the accuracy of the approximate solution in three cases. (1)

The solution space is the global offline space, i.e., no global online basis is involved.

(2) The solution space is the global online space, which consists of the offline global

basis and some online global basis which are obtained using global residual and

global error indicator. (3) The solution space is the global online space where, in

this case, the global online basis are computed cheaply using our proposed adaptive

method. In the second example, we will show the effect of the initial number of

the offline global basis functions on the number of the adaption needed throughout

the computational time interval to achieve the desired accuracy. In this example,

we will show that the number of the time instants, where the adaption is needed,

is increased as we decrease the number of the global offline basis functions. This

is because the sufficiency of the global offline space in approximating the reduced

solution is decreasing using fewer number of global basis functions. As a result, more

adaption is needed.

Example 5.4.1. In this example, the computational domain is [0, 1] × [0, 1]. For

applying the mixed GMsFEM, we divide the domain into 15×15 coarse grids, where

each coarse grid contains 40×40 fine grids. We solve the problem using homogeneous

boundary conditions and consider the permeability field κ1 as depicted in Figure 5.2
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with the contrast value of 102. For the time variable, we use the time step size ∆t = 5

in the time interval [0, 100]. The source term f , in the offline stage, is chosen to be 1

on the top left coarse-grid block, −1 on the bottom right coarse-grid block and zero

elsewhere. In the online stage, we vary the source term at some time instants.

Figure 5.2: Permeability field κ1.

Moreover, in the offline stage, we use the initial number of multiscale basis func-

tions to be 3 for each coarse region (coarse-grid neighborhood) to construct the offline

local space. Using 3 basis functions per coarse edge gives 1260 total number of de-

grees of freedom. This number is increased during enrichment process in the online

stage using local online adaptive method. For the POD subspace, we initially start

with 2 POD modes to define the offline global space. Using global-local online adap-

tive method as described in Section 5.3.1, the number of POD modes is increased by

one whenever the adaption is required based on the error indicator.

To show the effect of adapting the POD subspace at some instance using global-
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local online adaptive method, we compare the L2 relative error for the velocity solu-

tion of reduced-order model, vr, with and without the adaption. We use the snapshot

solution, vsnap, as our reference solution and compute the error using the following

equation:

eonline =
∥vsnap − vr∥κ−1,D

∥vsnap∥κ−1,D

. (5.12)

We consider 3 cases to compute the approximate online solution and the corre-

sponding relative error.

• Case 1: In this case, the reduced-order solution, vr, is obtained by solving

the global reduced model generated by global POD basis functions computed

offline, i.e., by ψG
off only without adding any online global basis functions. The

error in this case is plotted in Figure 5.1. We see that the error in this case has

jumps at t ∈ {25, 40}. These jumps are due to having different source term f

at these time instants, which change the flow field drastically.

• Case 2: For this case, we use global error indicator to monitor the accuracy

of the approximate solution. The global error indicator depends on the global

residual given by (5.6). A new global online basis function, ψG
on, is then added

to the offline POD basis functions whenever the adaption is need. That is the

online solution belongs to {ψG
off, ψ

G
on}. The error of this case is shown in Figure

5.3. The POD subspace is updated by adding one global online basis function

at time instants {25, 40}, where the error had jumps in the first case.

• Case 3: We use local error indicator as discussed in Section 5.3 and use the

global-local adaptive method described in Section 5.3.1 for updating the POD

subspace. In this case the global online basis functions are computed using
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local multiscal basis functions. At t = 25, the number of local basis functions

increased from 1260 to 2520 and to 3150 at t = 40. This increasing is resulting

from adding some local online multiscale basis functions at some coarse blocks,

where the error is greater than a specific error tolerance. Once the multiscale

basis functions is updated it then used to compute a new global online basis

function to be added to the POD space generated offline. Figure 5.4 represents

the error in this case.

Figure 5.3: L2− Error of the reduced-order solution in Case 2, vr ∈ {ψG
off, ψ

G
on}. ψG

on

is computed using global error indicator and global residual.

In Table 5.1, we list the error computed in the above three cases at the time

instants {25, 40} when the error in case 1 has jumps and the POD subspace is

updated in case 2 and 3. The first column represents the time instants. The other

columns are the error corresponding to the three cases. We observe that the error

drops from 10−1 in the first case to 10−6 in case 2 and 3 at t = 25. At t = 40 the

error in case 2 drops to 10−7 and in case 3 the error is 10−6. Although Case 2 gives

a good accuracy, it is expensive since we need to solve Equation (5.6) for new global

online basis function in the fine-grid dimension. To conclude, among the three cases
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Figure 5.4: L2− Error of the reduced-order solution in Case 3, vr ∈ {ψG
off, ψ

G
on}. ψG

on

is computed using local error indicator and local residual.

the global-local online adaptive method used in Case 3 provides an inexpensive way

to improve the accuracy of the approximate velocity solution.

t Case 1 Case 2 Case 3
25 0.2017 3.0134e− 6 3.0153e− 6
40 0.3026 3.0903e− 7 1.9406e− 6

Table 5.1: L2 relative error for the online approximate solution at the time instants
t = 25 and t = 40 in Cases 1, 2 and 3.

Example 5.4.2. Our objective in this example is to show the effect of the initial

number of offline global basis functions on the number of time steps when updating

the online solution space is needed. In our simulation, the computational domain is,

also, [0, 1] × [0, 1]. We divide this domain into 8 × 8 coarse grids and divide each

coarse grid into 32× 32 fine grids. The source term and boundary conditions are the

same as in Example 5.4.1. The permeability field, κ2, considered for this example

is shown in Figure 5.5. In this example, we construct the global offline space using

1, 2 and 3 POD modes. Therefore, the dimension of the initial global online space is
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1, 2 and 3, respectively. Then, we apply the global-local online adaptive method to

update the global online space, in other words, to add more global online basis.

Figure 5.5: Permeability field κ2.

We observe that using only one POD mode to construct the offline global space

yields to more adaption steps during the time interval. For example, in this case, the

online global space is updated by adding one online global basis at each time step.

This is due to the initial poor choice of snapshots used. In Figure 5.6, we plot the

L2− error of the reduced order solution in case of using one offline global basis. This

figure shows that even with the adaptive enrichment of the online space, the accuracy

is not satisfied comparing with the other cases (see Figures 5.7 and 5.8). In contrast,

using two or three POD modes for constructing the offline global space reduces the

number of adaption steps to two times. In addition, the accuracy of the approximate

solution drops from 10−1, in case of using one offline global basis, to 10−5. We, also,

observe that the number of the adaption steps is still two even with using further

108



Figure 5.6: L2− Error of the reduced order solution using one POD mode for the
initial online global space.

number of global offline basis. However, the accuracy of the approximate solution

when using three POD modes is better than in case of using two POD modes. This

shows that the number of the offline global basis functions need to be chosen carefully

to efficiently employ the global-local online adaptive method.

Figure 5.7: L2− Error of the reduced order solution using two POD modes for the
initial online global space.
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Figure 5.8: L2− Error of the reduced order solution using three POD modes for the
initial online global space.
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6. CONCLUSION

In this dissertation, we present a global-local nonlinear model reduction approach

to reduce the computational cost for solving high-contrast nonlinear parabolic PDEs

in Section 3 and for solving nonlinear Forchheimer flow in Section 4. The reduction

is achieved through two main stages: offline and online.

In Section 3, the generalized multiscale finite element method (GMsFEM) is used

in the offline step to represent the coarse-scale solutions through applying the local

discrete empirical interpolation method (DEIM) to approximate the nonlinear func-

tions that arise in the residual and Jacobian. Using the snapshots of the coarse-scale

solutions, we compute the proper orthogonal decomposition (POD) modes. In the

online step, we project the governing equation on the space spanned by the POD

modes and use the global DEIM to approximate the nonlinear functions. Although

one can perform global model reduction independently of the GMsFEM, the com-

putations of the global modes can be very expensive. Combining both local and

global model reduction methods along with applying DEIM to inexpensively com-

pute the nonlinear function can allow a substantial speed-up. We demonstrate the

effectiveness of the proposed global-local nonlinear model reduction method on sev-

eral examples of nonlinear multiscale PDEs that are solved using fully implicit time

marching schemes. The results show the great potential of the proposed approach

to reproduce the flow field with good accuracy while reducing significantly the size

of the original problem. Increasing the number of the local and global modes to

improve the accuracy of the approximate solution is examined. Furthermore, the

robustness of the proposed model reduction approach with respect to variations in

initial conditions, permeability fields, nonlinear function’s parameters, and forcing
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terms is demonstrated.

In Section 4, we employ the mixed GMsFEM in the offline stage to represent

coarse-scale velocity solution. As in Section 3, we approximate the nonlinear function

using local DEIM when solving the offline reduced model. The main contribution in

this stage is to construct the snapshot space and the offline space for the velocity field.

Then, a multiscale proper orthogonal decomposition technique is used as a global

reduction method to find the best subspace of offline (multiscale) space. We then

use DEIM in the global domain when solving the online problem to circumvent the

issue of the fine-grid computations associated with the projected nonlinear terms.

Convergence analysis and some numerical experiments are presented to show the

performance of our method. Additionally, we present an enrichment algorithm to

adaptively improve the offline space by adding some local online multiscale basis

functions at some selected time steps. The numerical tests show the effect of this

enrichment method and the initial dimension of the offline space.

In the last section, we propose a global-local online adaptive method that is

used to adapt the global POD solution space during the online stage. The purpose

of this adaption is to improve the accuracy of the online approximate solution in

some applications where the global POD basis functions do not contain sufficient

information for all time instants. In this method, we add new global online basis

functions to the global POD modes computed offline. We employ local techniques

to reduce the computational cost for evaluating the residual and for computing the

online global basis functions. We apply this method to Forchhiemer flow and present

numerical examples to compare the accuracy of the proposed method vs the accuracy

of using the static POD space without updating.
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