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ABSTRACT 

 

Two studies were performed to evaluate the efficacy of supplementing 

exogenous enzyme combinations on broiler growth performance in reduced nutrient 

density corn-soybean meal diets. In experiment 1, 3,200 Cobb 500 broilers were 

allocated to 5 treatments with 16 replicates for 39 days. The experiment consisted of a 

nutritionally complete positive control, AME reduced negative control (NC), NC + Non-

starch polysaccharide degrading enzyme (NSPase) containing xylanase, β-glucanase, α-

galactosidase, NC + an enzyme combination of xylanase, amylase, protease (XAP), and 

NC + NSPase + XAP. Apparent metabolizable energy in the NC was reduced by 55 

kcal/kg in the starter phase and 88 kcal/kg in the finisher and withdrawal phases. Energy 

reduction in the NC significantly decreased average BW and significantly increased FCR 

through the starter and finisher phase. Non-starch polysaccharide degrading enzyme 

inclusion increased average BW significantly compared to the negative control at levels 

similar to that of the positive control during the starter and finisher phases. Non-starch 

polysaccharide degrading enzyme significantly reduced FCR compared to the NC at 

levels that were similar to the positive control. Inclusion of XAP resulted in BW similar 

to the PC at d 14 and 27, and reduced (P<0.05) FCR from d 1to 27. The combined 

inclusion of NSPase + XAP resulted in no further benefit beyond individual inclusion of 

each enzyme combination. In experiment 2, 2,590 Cobb 500 broilers were allocated to 7 

treatments with 10 replicates for 41 d. Treatments consisted of a nutritionally complete 

reference diet, and 6 AME reduced (-88 kcal/kg) treatments composing a 2 X 3 factorial 
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of phytase and XAP inclusion. Phytase was included at 600 (low) and 1,200 (high) 

FTU/kg, with XAP included at 1,200 (low), 1,800 (medium), and 2,400 (high) XU/kg. 

High phytase x low XAP and high phytase x medium XAP both resulted in similar 

cumulative FCR compared to the reference diet. Factorial analysis indicated high 

phytase compared to low phytase significantly reduced starter FCR and elevated finisher 

mortality. During the starter phase, medium XAP inclusion resulted in a significantly 

lower rate of feed consumption compared to the low XAP.  Inclusion of medium XAP 

significantly reduced cumulative FCR from d 15 to 41 compared to low level XAP.  

These data indicate that supplementation of multiple enzyme preparation into a diet can 

influence growth performance; however, combinations of enzyme preparations similar in 

mode of action do not result in performance levels beyond that of individual preparation 

inclusion.    
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NOMENCLATURE 

 

ME Metabolizable energy 

SBM Soybean meal 

DDGS Distiller’s dried grain with solubles 

NSP Non-starch polysaccharide 

BW Body weight 

FCR Feed conversion ratio 

CP  Crude protein 

AA  Amino acid 

aP  Available phosphorus 

FTU Phytase unit 

BXU Birch xylan unit 

ADG Average daily gain 

NC  Negative control 

PC  Positive control 

NSPase Non-starch polysaccharidase 

XAP Xylanase amylase protease 

MBM Meat and bone meal 

MCP Mono-calcium phosphate 

AID Apparent ileal digestibility 

WOG Without giblets 
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IACUC Institute of Animal Care and Use Committee 

ANOVA Analysis of variance 

U  Unit 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Broiler production represents the largest sector of the poultry industry in the U.S. 

with a projected 40.6 billion pounds of ready-to-cook product being produced in 2016. 

According to the National Chicken Council (2016), the broiler industry will use 

approximately 1.2 billion bushels of corn and 500 million bushels of soybean to 

manufacture over 55 million tons of mixed feed. Feed is the largest production expense 

for poultry integrators (Tahir et al., 2012), representing over 50% of production costs. 

Nutritionists are tasked with the difficult job of formulating the proper blend of 

ingredients to provide necessary nutrients in the most economical and feasible way to 

maximize production and limit feed costs.  

DIETARY INGREDIENTS 

Poultry feed is composed of a relatively small number of ingredients. Feed will 

regularly contain a cereal grain, oilseed meal, calcium source, inorganic phosphate, salt, 

vitamin premix, mineral premix, fat source, synthetic amino acids, and possibly by-

products of plant or animal origin and various feed additives. The majority of U.S. 

poultry feed is corn and soybean meal based. Corn regularly accounts for over 50% of a 

mixed feed, and its primary nutrient contribution is energy. Corn contains 3340 kcal/kg 

of metabolizable energy (ME) according to Leeson & Summers (2001). Energy is one of 

the most expensive nutrients in a feed, and including corn into diets at such a large 

amount makes it a driving force in the price determination of a finished feed. Soybean 
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meal (SBM), the most commonly used oilseed meal in U.S. poultry diets, is included for 

its high protein content. The protein content can be variable depending on how the meal 

is processed, but typically contains 48% protein (Leeson and Summers, 2001). 

Phosphorus is often considered the third most expensive nutrient following energy and 

protein, and must be included to meet the available phosphorus requirement of poultry to 

ensure proper skeletal growth and other developmental needs. Much of the phosphorus 

found in plant ingredients is in the form of phytate. It is indigestible to the monogastric 

digestive tract of poultry, and therefore the phosphorus from plant ingredients rarely 

meets the animal’s requirement in the absence of an exogenous phytate degrading 

enzyme. Therefore, inorganic phosphate is usually included as a bioavailable source of 

phosphorus to meet the bird’s requirement of this nutrient.  By-product ingredients from 

vegetable and animal sources can be an economical choice to include in feed. Corn 

distillers dried grains with solubles (DDGS) is reported to be an acceptable ingredient in 

poultry feeds at certain concentrations (Lumpkins et al., 2004, Loar et al., 2010). 

Depending on current markets, distiller’s dried grains with solubles, can be an 

economical alternative ingredient commonly included as a substitute to a portion of corn 

and SBM. Bakery by-product meal is another alternative ingredient that can be used as 

an alternative energy source to spare corn, however the nutrient content can vary greatly 

from source to source depending on the initial bakery product and processing of that 

product. Animal by-product ingredients, such as meat and bone meal and fish meal are 

high protein sources that can be used in poultry feed as well.  Continued production of 

corn ethanol in the U.S. has injected volatility to the price of corn, at times driving up 
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the cost of feed and ultimately the price of food at the consumer level. Government 

policy has increased demand of corn ethanol which has shifted massive amounts of grain 

from animal agriculture use to renewable fuel production (Aho, 2007). This increased 

demand of corn for ethanol production can result in low corn inventories, thus driving up 

the price of the grain. This may also leave the corn market more vulnerable to extreme 

price spikes which can occur from events such as drought (Aho, 2007). The cost of 

ingredients and nutrient availability from ingredients are some of the considerations 

nutritionists must account for when formulating poultry diets.  All of these 

considerations mean that researchers are regularly exploring novel methods of 

improving nutrient availability as well as lowering the cost of feed. 

DIETARY ALTERNATIVE INGREDIENTS 

The concept of alternative ingredient inclusion is that a relatively small amount 

of a more economical possibly non-traditional ingredient would be included as an 

alternative to a higher priced ingredient with the caveat of not negatively impacting 

broiler performance. One such example is the use of corn DDGS as a partial replacement 

of corn and SBM. Distiller’s dried grains with solubles, the by-product of corn ethanol 

production, have been reported as an acceptable ingredient at certain concentrations in 

poultry diets. Corn ethanol is popularly produced using a dry-grind method where corn 

is ground and mixed with water and fermented to produce ethanol. The remaining 

products from this fermented ground corn slurry are germ, fiber and protein which 

compose DDGS (Martinez-Amezcua et al., 2007). Historically, DDGS have been fed to 

ruminants as it is a high-fiber ingredient. Ethanol production has increased from the 
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renewable fuels standard program originating from the Energy Policy Act (2005), and 

thus DDGS production has increased as well. Increasing supply of this ingredient and 

improved processing technology has made DDGS an ingredient of greater interest to 

poultry integrators. Many researchers have investigated the applicability of DDGS in 

poultry feeds. Guney et al., (2013) concluded that up to 20% of low-oil DDGS may be 

included in broiler diets with no detrimental effects, and it is reported by Shim et al. 

(2011) that DDGS may be included up to 24% in broiler diets with no adverse 

performance effects. Lumpkins et al. (2004) reported slightly lower inclusion rates of 

6% DDGS for starter phase and 12 to 15% DDGS for grower and finisher phase while 

still maintaining equivalent broiler performance. Based on the recommendations of the 

above reports, nutritionists have found DDGS to be an acceptable ingredient from a 

nutritive standpoint and have been including it in poultry diets.   

EXOGENOUS ENZYMES 

The digestive system of poultry as well as other monogastric animals lacks the 

ability to completely utilize the nutrients of some ingredients, and the inclusion of 

exogenous enzymes is practiced to improve access to nutrients otherwise unavailable. 

The inclusion of exogenous enzymes in poultry diets is a method of improving 

production efficiency by increasing nutrient availability with maintained performance 

and in some instances improved performance. There are several factors of plant based 

ingredients that decrease the availability of nutrients.  Two important anti-nutritive 

structures of concern to nutritionists are non-starch polysaccharides (NSP) which are a 

component of dietary fiber found in the plant cell wall, and phytate a previously 
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mentioned storage form of phosphorus that is poorly available to poultry and can bind 

other nutrients as well. Non-starch polysaccharides found in poultry diets can include 

arabinoxylans and cellulose primarily from corn (Jaworski, 2015) as well as β-glucans, 

mannans, and pectins among others. Non-starch polysaccharides can alter digesta 

viscosity and decrease weight gain and increase feed conversion ratio (FCR) (Leeson 

and Summers, 2001). Digesta viscosity is a concern because when increased by the 

presence of NSP, nutrient digestion from regular physical transport is reduced and so is 

the likelihood of endogenous enzyme to substrate contact. Non-starch polysaccharides 

can encapsulate nutrients within ingredients as the cell wall of fiber poses a physical 

barrier to the monogastric digestive tract (Bach Knudsen, 2014). Fiber, being comprised 

of NSP, can ultimately reduce nutrient utilization in broilers and lead to lower ME 

values of feed (Bach Knudsen, 2014). 

Phytate, a form of plant phosphorus, is a major anti-nutritive factor influencing 

digestibility in poultry diets. The phosphorus in phytate is not available to birds due to 

the monogsastric digestive system of chickens lacking the endogenous phytase enzyme. 

In several ingredients, including corn, soybean meal and wheat, an average of only 

48.9% of total phosphorus was found to be in the form of non-phytate phosphorus (Tahir 

et al., 2012). The inability of birds to digest phytate phosphorus represents a problem in 

itself, as a bird may not be receiving its physiological requirement of phosphorus from 

ingredients whose main phosphorus contribution is from phytate. Adding to this issue, is 

the fact that phytate can bind other nutrients such as zinc, calcium, magnesium and iron, 

resulting in lowered bioavailability of these as well (Leeson and Summers, 2001). The 
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ability of phytate to bind other nutrients is due to its chemical structure, where 

negatively charged phosphate groups have the ability to chelate cations. The cations 

most commonly chelated to the phytate include the minerals listed earlier such as Zn, 

Ca, Mg, and Fe as well as Mn and Cu (Biehl et al., 1995, Sebastian et al., 1996, Leeson 

and Summers, 2001). Once bound to a phosphate group of phytate, the mineral is 

considered unavailable to the bird. The concept of including exogenous enzymes is that 

these anti-nutritive properties can be eliminated with the inclusion of phytase, releasing 

trapped nutrients and increasing the nutrient availability of the feed. This increased 

nutrient availability could result in improved performance, or maintained performance 

with a nutritionally marginal diet, allowing for reduced feed cost. To be effective in a 

nutritionally marginal diet, exogenous enzymes must be able to compensate for the 

reduced performance associated with the marginal diet in question. Karimi et al. (2013) 

reports that a diet containing reduced levels of available phosphorus negatively impacted 

growth performance and bone ash content. The affected performance parameters 

included body weight (BW) gain, feed intake, FCR, and mortality. Cowieson et al., 

(2006) reported similar impacts with a diet marginal in available phosphorus and 

calcium having lower BW gain than the control diet formulated to meet nutrient 

requirements. Francesch and Geraert, (2009) stated negative impacts on performance 

from reducing nutrient content as well. In this experiment, a diet marginal in ME, crude 

protein (CP), digestible amino acids (AA), available P, and calcium yielded a significant 

negative effect on growth performance. From d 0 through 21 in that experiment, average 

daily gain, average daily feed intake, and feed to gain ratio were all negatively impacted 
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compared to a control diet. These previously referenced articles highlight the effects 

from dietary reductions that exogenous enzymes must be able to overcome to allow for 

an impactful reduction in feed cost from the reduction of high cost nutrients.  

 One enzyme that has been widely explored is phytase which is used to target the 

substrate phytate or phytic acid. With phytase inclusion into poultry diets, the inherent 

available phosphorus content of the feed will increase as well as a possible increase in 

nutrients such as calcium, sodium, and potential amino acids.  

Karimi et al., (2013) conducted an experiment to evaluate phytase in male broiler 

chicks. In that experiment phytase was supplemented alone at varying levels into diets 

deficient in available phosphorus. Inclusion rates were 0, 500, 1000, 1500, and 2000 

phytase units (FTU)/kg. The authors observed a dose-dependent response on growth 

performance with improvements on body weight, feed intake, FCR, mortality and bone 

ash content. That same dose-dependent response was observed in phosphorus 

equivalency of phytase with values of 0.08, 0.11, 0.15, and 0.19% for inclusion rates of 

500, 1,000, 1,500, and 2,000 FTU/kg, respectively. These data demonstrate the ability of 

phytase in low available phosphorus diets to improve growth performance and also 

illustrates the capacity of phytase to contribute to aP content of diets dependent on 

phytase dose.   

The effect of varying levels of phytase on broiler performance and nutrient 

digestibility was evaluated by Cowieson et al., (2006). In that experiment, 6 levels of 

phytase being 150, 300, 600, 1200, 2400 and 24,000 FTU/kg were supplemented into a 

corn-soybean meal based diet deficient in available phosphorus. Broilers were grown to 
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16 d of age, with growth performance parameters being measured along with 

digestibility of amino acids, and metabolizability of minerals and energy. The effect of 

phytase was observed at inclusion rates greater than 150 FTU/kg, where weight gain, toe 

ash, and nutrient utilization improved compared to the P deficient negative control diet. 

With the inclusion of phytase at 24,000 FTU/kg, even further improvements were 

observed regarding toe ash and the utilization of specific nutrients. The authors conclude 

that the use of phytase in low P diets can improve performance and nutrient utilization of 

broilers to that of a nutritionally sound diet. Also, the authors note that high doses of 

phytase can further improve nutrient availability compared to lower levels of phytase.  

Woyengo et al., (2010) evaluated growth performance and nutrient utilization of 

broilers fed diets supplemented with phytase at 600 FTU/kg into a low available P 

(0.26%) and Ca (0.89%) diet for broilers grown to 21 d. Phytase addition significantly 

improved BW gain and nutrient utilization. Specific improvements in nutrient utilization 

were a significant increase in ileal digestible P and metabolizable energy content of diet 

leading the authors to conclude that phytase supplementation improves broiler growth 

performance and nutrient utilization.  

 The effect of phytase on growth performance and nutrient retention was 

evaluated in a study which included a nutritionally sound corn-soybean meal diet as a 

positive control, a low phosphorus negative control, and the negative control 

supplemented with 600 FTU/kg of phytase for a 21 d experiment (Sebastian et al., 1996). 

Data from that study indicated that phytase addition significantly increased BW in 

broilers compared to the negative control to a level similar to the positive control. 
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Nutrient retention was significantly improved by phytase supplementation where P, Ca, 

Cu and Zn increased 12.5, 12.2, 19.3 and 62.3 percent, respectively. From these data, 

authors conclude that the addition of phytase to a low phosphorus diet can improve 

growth performance and increase nutrient retention.  

 The previously published reports illustrate the impact and consistency of 

response with the inclusion of phytase in poultry diets, and that though the specific 

improvement and the degree of improvement may be variable; the report of improved 

performance and nutrient availability is consistent. Phytase inclusion can compensate for 

a dietary reduction in nutrients while maintaining broiler performance. Aside from 

increasing nutrient availability, phytase allows for a reduction in inorganic phosphate in 

the diet, which can reduce the cost of feed. The proper implementation of phytase can be 

beneficial by improving production efficiency, and reducing the cost of feed without 

compromising performance.  

CARBOHYDRASES 

 Various carbohydrase enzymes are being explored as well to target the NSP of 

poultry feed along with other poorly digestible structures. An important factor to 

consider when evaluating carbohydrases is the composition of feedstuffs and the 

availability of necessary substrate in the feed. Carbohydrases are often reported to be 

more effective in high NSP ingredients, as there is greater substrate for the enzyme to 

exert its benefits on. Carbohydrase use has been explored widely just as phytase, but 

results have been more variable. This is understandable as carbohydrase encompasses a 

group of enzymes, whose substrate availability can vary greatly depending on the 
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components of a specific feed, as well as within the same ingredient from different 

sources. Despite this variability, there have been instances of carbohydrases resulting in 

improved performance and increased nutrient availability.   

The effect of various carbohydrases alone and in combination on NSP 

degradation of soybean meal was evaluated in an in-vitro study by Meng et al. (2005). 

The authors reported that cellulase was effective at reducing arabinose, xylose, and 

glucose. Pectinase was effective at reducing arabinose, galactose, and total NSP 

(arabinose, xylose, mannose, galactose, glucose, uronic acids, rhamnose, and fucose). A 

combination of xylanase + glucanase effectively reduced arabinose, xylose, galactose 

and total NSP. A combination of mannanase + cellulase reduced arabinose and glucose. 

That study illustrates the ability of carbohydrase preparations to potentially improve 

NSP degradation in broiler diets containing soybean meal when fed to broiler chickens. 

In a study referenced earlier by Karimi et al. (2013), the inclusion of xylanase 

was evaluated in male broilers fed aP deficient diets. Increasing levels of xylanase were 

included at 0, 16,000 and 32,000 BXU/kg. When xylanase was included at 32,000 

BXU/kg, BW and FCR were negatively impacted and the low inclusion rate of xylanase 

did not impact any evaluated parameter.  That study demonstrates that xylanase in 

phosphorus deficient diets did not improve performance of male broilers.  

Zhu et al. (2014) evaluated the effect of a cocktail carbohydrase on growth 

performance and digestive parameters of broilers in a factorial experiment of 2 ME 

levels and 2 enzyme inclusion levels where the enzyme preparation included xylanase, 

β-glucanase, and α-amylase. For the 21 d experiment, enzyme supplementation had no 
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effect on the growth parameters of average daily gain (ADG), feed intake, or FCR. 

Digestive parameters indicated that enzyme inclusion into a low energy diet significantly 

increased villus height and surface area in the ileum and jejunum. Furthermore, enzyme 

supplementation into the low ME diet significantly increased several digestive enzymes 

throughout the experiment including pancreatic amylase, trypsin, lipase, pepsin, and 

maltase. The authors concluded that inclusion a cocktail carbohydrase into low ME diets 

may improve the digestive capacity of the small intestine in broilers. 

Various experiments have been conducted to determine the effects of combining 

multiple enzymes on broiler performance and nutrient digestibility. Francesch and 

Geraert (2009) evaluated the effects of carbohydrases plus phytase on growth 

performance and bone mineralization in broilers. Xylanase and β-glucanase were 

combined with phytase into a negative control (NC) diet marginal in AME, CP, 

digestible AA, aP and Ca. Supplementing the NC diet with combined enzymes 

significantly increased average daily feed intake and average daily gain. Enzyme 

supplementation resulted in improved feed:gain to a value that was lower than the 

positive control (PC), indicating that the addition of carbohydrases with phytase can 

reduce the specifications of P, energy, protein and amino acids in corn-soybean meal 

based broiler diets.  

These studies evaluating the use of various carbohydrases demonstrate 

inconsistent results on growth performance. An in-vitro study supports the ability of 

non-starch polysaccharidase (NSPase) to improve nutrient availability and reduce NSP 

content of feed ingredients (Meng et al., 2005). In practice, when supplementing 
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exogenous enzymes in to poultry diets many more variables come in to consideration 

and this is primarily where the difference in results appears. Francesh and Geraert, 

(2009) suggested a possible greater efficacy may be achieved by combining multiple 

enzymes in poultry diets, where those authors combined carbohydrases with phytase. 

One such combination of enzymes that has been explored in previous studies is 

the combination of xylanase, amylase and protease (XAP). This is a combination of 

enzymes that like carbohydrases, has yielded varying results. Several reports have 

combined this enzyme complex with additional phytase, while others have evaluated the 

combination in a reduced nutrient diet. In addition, others have explored the possibility 

of a dose response.  

ENZYME COMBINATIONS 

Olukosi et al. (2007) conducted an experiment evaluating the influence of XAP 

and phytase individually and in combination on broilers. Enzymes were supplemented 

into a corn-soybean meal based control diet deficient in P and ME. Both phytase and 

XAP individually and in combination significantly improved ileal digestible P. There 

was no effect of either enzyme supplement on ileal digestible energy. Phytase inclusion 

and phytase plus XAP inclusion significantly increased final BW at d 21, and the authors 

concluded that performance improvements appeared to be primarily associated with the 

inclusion of phytase.  

A later study by Olukosi et al. (2015) reported that a blend of XAP is effective at 

increasing nutrient utilization and increasing solubilization of NSP components. In that 

experiment, increasing levels of protease and increasing levels of XAP were included 
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into a control diet marginally low in energy containing 10% DDGS. Certain levels of 

XAP inclusion resulted in significantly increased ileal digestibility of protein compared 

to the control diet. Protease inclusion alone improved nutrient utilization and NSP 

solubility; however, effects were greater with the combination of XAP. The authors 

concluded this increased effectiveness from the inclusion of xylanase and amylase with 

protease may be due to the close fiber-protein interactions in cereals and oilseeds. This 

link between protein and fiber can represent a limiting factor for the effectiveness of 

carbohydrase or protease alone, and the combination of enzymes can be expected to be 

additive in their effect on protein and carbohydrate hydrolysis (Olukosi et al., 2015).   

The effect of XAP inclusion on broiler performance was evaluated by Café et al. 

(2002). This study compared the performance of broilers fed a nutritionally sound 

control diet to broilers fed the control plus XAP inclusion over a 49-d period. At d 16, 

35, and 49 the inclusion of XAP improved BW of broilers. However, XAP addition did 

not improve FCR throughout the study. At d 16 and 42, XAP inclusion negatively 

influenced FCR resulting in a value significantly greater than the control. The authors do 

not suggest a reasoning for this negative impact on FCR, but cite other research (Zanella 

et al., 1999 and Douglas et al., 2000) on this enzyme combination reporting inconsistent 

results. 

Romero et al. (2014) reported that XAP inclusion can improve apparent ileal 

digestibility (AID) of energy and protein in broiler diets. In this particular study, the 

impact of inclusion of xylanase and amylase with or without protease on AID of protein, 

starch, fat, and energy in corn- and wheat-based broiler diets containing phytase was 
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evaluated. The addition of xylanase + amylase and XAP both improved AID of fat at d 

42 of age compared to the control. Both enzyme supplementations improved AID of 

protein at d 21 of age, however only XAP inclusion improved AID of protein at d 42 of 

age. At the conclusion of the experiment, XAP inclusion increased AID of energy by 

152 kcal/kg. The addition of protease to xylanase and amylase positively influenced AID 

values more than the inclusion of xylanase and amylase.  

Zanella et al. (1999) conducted 2 experiments to determine the effect of enzyme 

inclusion on nutrient digestibility and performance of broilers. The first experiment 

explored the effectiveness of a complex of xylanase, protease, and amylase included in 

nutritionally sound corn-soybean meal based diets to evaluate the impact on ileal 

digestibility of CP, starch, fat and ME, along with performance parameters. Enzymatic 

inclusion improved ileal digestibility of CP by 2.9%, and specifically improved 

digestibility of amino acids valine and threonine by 2.3% and 3.0%, respectively, while 

also increasing BW by 1.9% and improving feed:gain by 2.2%. The second experiment 

evaluated the same xylanase, protease, and amylase complex in a reduced energy diet 

compared to a control diet formulated to meet the dietary energy requirement. No 

differences in performance were observed prompting the authors to conclude that the 

enzyme complex improved nutrient utilization allowing for full compensation of the 

reduction in energy content between diets.  

Hong et al., (2002) evaluated the effects of a commercial preparation of XAP on 

performance and digestibility of nutrients in White Pekin ducks. Enzyme preparation 

was included at 2 different levels (0.375 and 0.5 g/kg) into a corn-soybean meal diet 
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with wheat middlings to be compared to a control containing no added enzyme. Ducks 

were grown to 42 d with performance parameters being measured, along with ileal 

digestibility of energy, nitrogen, and amino acids. Enzyme inclusion significantly 

improved BW gain, feed efficiency, and amino acid digestibility and retention. However, 

ileal digestibility of energy was not influenced by enzyme inclusion at either level.  

The previous series of published reports evaluating XAP document the 

variability observed in results when including this combination in broiler diets under 

differing conditions. One report found that improvements from enzyme inclusion appear 

to be primarily from phytase (Olukosi et al., 2007) when XAP is included in 

combination with phytase. In other instances, researchers have found the combined XAP 

to be more effective than individual enzymes and less complex combinations (Romero et 

al., 2014, Olukosi et al., 2015). Not only is it reported that this combination can improve 

performance, but it can compensate for dietary reductions in specific nutrients as well. 

Olukosi et al. (2015) suggest that this complex of enzymes may be effective at 

improving nutrient utilization because of the close interaction between protein and fiber 

in feed ingredients. Furthermore, negative impacts were reported when the enzyme 

complex was added to a nutritionally sound diet. Thus continued research needs to be 

completed to evaluate the most appropriate strategies for including these types of 

enzymatic products in poultry production.  

The combination of many various enzymes has been explored to determine if 

there may be interactions or synergistic effects that would not be achieved from the 

inclusion of individual enzymes. Combinations may be more effective because of the 
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interactions between nutrients, as suggested earlier by Olukosi et al. (2015) referring to 

fiber-protein relationship in some ingredients. Supplementing with multiple enzymes can 

allow each enzyme greater access to its respective substrate.  

Meng et al. (2005) evaluated the potential of NSP degradation and nutrient 

utilization from the combination of multiple carbohydrases. In this in vitro study, NSP of 

wheat and SBM were targeted with varying enzyme preparations that could contain 

cellulase, pectinase, xylanase, glucanase, galactanase and mannanase. Authors report 

that NSP degradation was greatest when enzymes were used in combination. In a follow 

up grow out experiment, all enzyme combinations significantly improved weight gain 

and feed to gain ratio. All enzyme combinations significantly increased ME, apparent 

ileal digestibility of starch and protein, and apparent total tract digestibility of NSP. The 

most complex enzyme combination (cellulase, pectinase, xylanase/glucanase, and 

mannanase/cellulase) was superior to other combinations in improving feed to gain ratio 

and protein digestibility, indicating that enzyme efficacy in broiler diets can be improved 

by the appropriate combination of carbohydrases.  

Karimi et al. (2013) evaluated increasing levels of phytase in combination with 

increasing levels of xylanase in low phosphorus diets on growth performance of male 

broilers. As previously mentioned, the author reported phytase inclusion alone 

improving growth performance in a dose-dependent fashion, and xylanase inclusion 

alone having no effect, and negative effects at the greatest inclusion rate. Varying levels 

of phytase (0, 500, 1,000, 1,500, and 2,000 FTU/kg) were combined with varying levels 

of xylanase (0, 16,000 and 32,000 BXU/kg) in phosphorus deficient diets. Throughout 
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the 18 d, there were no interactions between phytase and xylanase, leading the authors to 

conclude that the addition of xylanase to phytase was not effective at improving the 

efficacy of phytase.  

Woyengo et al. (2010) evaluated the addition of multicarbohydrase to a phytase 

supplemented diet low in available P and Ca. From the addition of phytase alone, 

significant improvements in BW and nutrient utilization were observed. The addition of 

a multicarbohydrase complex (cellulase, pectinase, mannanase, galactanase, xylanase, 

glucanase, amylase and protease) further increased d 21 BW. Multicarbohydrase 

included with phytase significantly improved ileal digestible P an additional 10.4% 

compared to phytase inclusion alone, and ME content of diet increased by an additional 

74 kcal/kg. The authors concluded that supplementing a phytase containing diet with 

multicarbohydrase can further improve broiler performance and nutrient utilization, 

which conflicts with the reports of Karimi et al. (2013).  

 The applicability of the alternative ingredient DDGS and incorporating 

enzymatic inclusion with DDGS in broiler diets is well defined, as is the use of phytase 

to improve performance and nutrient utilization. It is apparent the combination of 

enzymes supplemented in broiler diets is still a subject with greatly varying results. 

Conflicting reports within the literature of the relationships, interactions, and impacts of 

combining multiple enzymes indicates that additional research needs to be conducted in 

this area. Therefore, the objective of the research described herein is to evaluate the 

effect of enzyme preparations individually and in combination on broiler growth 

performance parameters. 
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CHAPTER II 

EXPERIMENT 1: EVALUATION OF COCKTAIL NSPASE AND XAP 

INCLUSION SEPARATELY AND IN COMBINATION IN REDUCED ENERGY 

BROILER DIETS ON MALE GROWTH PERFORMANCE 

 

OVERVIEW 

The purpose of this experiment was to evaluate the effect of a cocktail non-starch 

polysaccharidase (NSPase) and mixed enzyme blend containing xylanase, amylase, and 

protease (XAP) inclusion separately and in combination in energy reduced broiler diets 

on broiler performance and processing parameters. Criteria for evaluation included 

weight gain, feed intake, feed conversion ratio, without giblets (WOG) yield, fat pad 

yield, and mortality. Experimental diets were composed of two nutrient profiles: positive 

control (PC) and a negative control (NC) with a 55 kcal/kg metabolizable energy (ME) 

reduction during the starter phase and an 88 kcal/kg ME reduction for finisher and 

withdrawal phase.  The experimental design consisted of five dietary treatments 

including the PC, NC, and the NC supplemented with NSPase, XAP, and the 

combination of NSPase and XAP. Enzyme inclusion was applied to the NC; cocktail 

NSPase was included at 113.5 g/ton, XAP was included at 226.8 g/ton.  Dietary 

treatments were composed of 16 replicates, with each replicate containing 40 male 

broilers. In total, 3,200 chicks were placed for the 39 d experiment. Three dietary phases 

were implemented; starter from placement through d 14, finisher through d 27 and 

withdrawal through d 39. On d 14, 27 and 39, broilers were weighed on a per pen basis 
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and feed consumption was determined. On d 40, following 8 h of feed withdrawal, 7 

broilers from each pen (560 total) were processed to obtain carcass and fat pad 

measurements. Reduction of dietary energy in the NC decreased (p<0.05) average 

broiler BW and increased (p<0.05) FCR through the starter and finisher phase. Inclusion 

of the cocktail NSPase increased (p<0.05) average broiler BW significantly compared to 

the NC at levels similar to that of the positive control during the starter and finisher 

phases. Throughout the experiment, inclusion of the cocktail NSPase significantly 

reduced (p<0.05) FCR compared to the NC at levels that were similar to the positive 

control. The inclusion of XAP resulted in BW similar to the PC at d 14 and 27, and 

reduced (p<0.05) FCR from d 1 to 27. The combined inclusion of NSPase + XAP 

resulted in no further benefit beyond individual inclusion of both enzymes. This data 

confirms the capacity of cocktail NSPase and XAP inclusion to positively influence 

performance parameters in broilers fed a reduced energy diet.  

INTRODUCTION 

Over the past decade, ingredient price volatility combined with access to new and 

improved technologies such as exogenous enzymes have resulted in poultry nutritionists 

increasing the use of exogenous carbohydrases in diets.  The increased price of corn was 

primarily due to the use of corn for ethanol production which has shifted the use of corn 

away from the production of agriculture. To combat this price increase, poultry 

nutritionists focused on maximizing nutrient utilization to improve efficiency with the 

use of exogenous carbohydrases in diets that sometimes contain lower quality 

ingredients such as distiller’s dried grains with solubles (DDGS). Increasing nutrient 
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utilization and feed efficiency can positively affect poultry production both 

economically and environmentally. If less feed is required for production and less 

indigestible nutrients are excreted into the environment, then environmental impact is 

reduced.  

The presence of non-starch polysaccharides (NSP) in corn and soybeans, which 

are poorly digested by monogastric animals, represent a potential source of nutrients. 

However, NSP in feed ingredient also contain anti-nutritive properties (Meng and 

Slominski, 2005). Non-starch polysaccharides, which are a major component of dietary 

fiber, are composed of both cellulosic and non-cellulosic polysaccharides. In elevated 

concentrations NSP can increase intestinal viscosity. Increased viscosity reduces nutrient 

digestibility by decreasing enzyme to substrate contact and regular physical transport. 

Distiller’s dried grains with solubles have become a common feed ingredient in poultry 

diets since it is both cost effective and readily available as a by-product from the 

production of corn ethanol. Distiller’s dried grains with solubles have been shown to be 

an acceptable feed ingredient when included at certain concentrations (Lumpkins et al. 

2004). However, DDGS are high in NSP and therefore it is a common practice to include 

exogenous enzymes when including DDGS into a broiler diet. 

The inclusion of exogenous enzymes can be helpful in combatting the anti-

nutritive factors of NSP and allow utilization of nutrients that would otherwise be 

unavailable (Bedford, 2000). The inclusion of an NSPase cocktail in broiler diets has 

been found to improve digestibility and broiler performance (Cowison and Adeola, 

2005, Coppedge et al., 2012, Williams et al., 2014). The nature of a cocktail can vary 
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considerably in profile and enzyme presence.  An enzyme cocktail of xylanase, amylase, 

and protease (XAP) is one profile shown to increase nutrient digestibility in broiler diets. 

Conflicting reports have been published regarding the efficacy of XAP. One author 

reported no effect on performance while improving ileal nitrogen and phosphorus 

digestibility compared to a nutritionally marginal NC (Olukosi et al., 2007). Another 

author reported the ability of the enzyme combination to fully compensate for nutrient 

reductions by resulting in growth performance parameters being similar to a nutritionally 

complete diet (Zanella et al. 1999). Café et al. (2002) reported XAP to have had a 

negative impact on FCR at 2 periods within the experiment, although ultimately 

suggested the combination to be effective at increasing net energy obtained from the 

diet. There is limited information available on the combination of multiple cocktail or 

multienzyme products.  Therefore, this experiment was conducted to evaluate the 

inclusion of NSPase and XAP individually and in combination in low energy broiler 

diets containing DDGS. 

MATERIALS AND METHODS 

Experimental Design 

The evaluation of cocktail NSPase1 and XAP2 inclusion separately and in 

combination in reduced energy broiler diets containing DDGS was conducted in a 

randomized block design with 5 dietary treatments during a 39 d grow-out. The 

                                                 

1 Enspira®, Enzyvia LLC, Sheridan, IN. Xylanase (2,700 U/g) from A. niger and T. reesei; also contains β-

glucananse and α-galactosidase. 
2 Axtra® XAP, Danisco Animal Nutrition/DuPont, Marlborough, Wilshire, UK. Provides 2,000 U/kg endo-

xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 4,000 U/kg serine protease 

from B. subtilis. 
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experimental design was composed of a positive control diet (PC), a negative control 

diet (NC) with an AME reduction of 55 kcal/kg for the starter phase, and 88 kcal/kg 

reduction for the finisher and withdrawal phase, and the NC supplemented with NSPase, 

XAP, and the combination of NSPase and XAP.  

Experimental Diets 

All diets were corn and soybean meal based with differing energy profiles and 

increasing levels of DDGS (5 to 15%) as broilers increased with age (Table 1). The PC 

diet was formulated similar to that of a typical broiler industry diet. Energy was reduced 

in the NC diet by 55 kcal/kg AME in the starter phase and 88 kcal/kg AME in the 

finisher and withdrawal phases. Exogenous enzymes were added to the NC diet prior to 

pelleting. Throughout all dietary phases, NSPase and XAP were included in the NC diet 

at 113.5 g/ton and 226.8 g/ton, respectively. The combination of NSPase and XAP were 

included in the NC diet at these same rates for all dietary phases (NSPase + XAP). All 

diets contained phytase3 at 500 FTU/kg. The starter diet was fed from d 1 to 14 

containing 5% DDGS, the finisher diet from d 15 to 27 containing 10% DDGS, and the 

withdrawal diet containing 15% DDGS was fed from d 28 to 39. All diets were 

manufactured as a pellet, and the starter diet was crumbled. In order to  

maintain enzyme activity, conditioning and pelleting temperature did not exceed 70°C 

and conditioning time was 12 s. Feed samples were obtained in duplicate during  

 

                                                 

3 Phyzyme® XP 2500 TPT, Danisco Animal Nutrition/DuPont, Marlborough, Wilshire, UK. Escherichia 

coli derived phytase providing 500 FTU/kg. 
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Table 1.  Calculated content of experimental diets fed to male broilers in Experiment 1. 

1Vitamin premix added at this rate yields per kg diet 11,023 IU vitamin A, 3,858 IU vitamin D3, 46 IU 

vitamin E, 0.0165 mg B12, 5.845 mg riboflavin, 45.93 mg niacin, 20.21 mg d-pantothenic acid, 477.67 mg 

choline, 1.47 mg menadione, 1.75 mg folic acid, 7.17 mg pyroxidine, 2.94 mg thiamine, 0.55 mg biotin. 

The carrier is ground rice hulls. 
2Trace mineral premix at this rate yields per kg of diet 149 mg manganese, 125 mg zinc, 17 mg iron, 7 mg 

copper, 1.0 mg iodine, a minimum of 6.27 mg calcium, and a maximum of 8.69 mg calcium. The carrier is 

calcium carbonate and the premix contains less than 1% mineral oil 
3Active drug ingredient monesin sodium 90 g/lb (90 g/ton inclusion: Elanco Animal Health, Indianapolis, 

IN). As an aid in the prevention of coccidiosis caused by Eimeria necarix, Eimeria tenella, Eimeria 

acervulina, Eimeria brunetti, Eimeria mivati, and Eimeria maxima. 

4Escherichia coli derived phytase providing 500 FTU/kg. 

 Day 1 to 14 Day 15 to 27 Day 28 to 39 

Ingredient (lbs/ton) 

Positive 

Control  

Negative 

Control 

Positive 

Control  

Negative 

Control 

Positive 

Control  

Negative 

Control 

Corn 1183 1201 1211 1261 1234 1280 

Soybean Meal 545 546 430 418 323 314 

Meat & Bone 111 112 66.49 66.16 47 47 

DDGS 100 101 200 200 300 300 

Fat 26.6 5 53.88 16 57.5 19.88 

Limestone 9.20 9.30 14.56 14.74 18.43 18.61 

DL - methionine 5.49 5.58 4.25 4.20 3.02 2.95 

Vitamin premix1 5.00 5.00 4.00 4.00 3.00 3.00 

L-lysine HCl 4.24 4.39 5.18 5.36 5.41 5.51 

Salt 3.90 3.91 3.69 3.59 3.51 3.43 

Sodium sesquicarbonate 2.93 3.01 3.57 3.68 3.65 3.73 

Threonine 1.49 1.38 1.23 1.09 1.02 0.86 

Trace Mineral2 1.00 1.00 0.80 0.80 0.50 0.50 

Coccidiostat3 1.00 1.00 1.00 1.00 -- -- 

Phyzyme 2500 TPT4 (%) 0.02 0.02 0.02 0.02 0.02 0.02 

Nutrient (%) 

Metabolizable energy 

(kcal/kg) 3003 2948 3113 3025 3157 3069 

Protein 22.54 22.83 20.06 20.13 18.38 18.48 

Calcium 0.92 0.93 0.79 0.79 0.76 0.76 

Total Phosphorus 0.55 0.56 0.49 0.49 0.46 0.47 

Sodium 0.18 0.18 0.18 0.18 0.18 0.18 

DEB 213 214 195.00 193.00 179 179 

Digestible Lysine 1.18 1.18 1.04 1.04 0.91 0.91 

Digestible Methionine 0.63 0.60 0.51 0.51 0.44 0.43 

Digestible M+C 0.92 0.93 0.81 0.81 0.72 0.72 

Digestible Tryptophan 0.21 0.21 0.18 0.18 0.16 0.16 

Digestible Threonine 0.77 0.77 0.68 0.68 0.62 0.61 

Digestible Isoleucine 0.79 0.80 0.70 0.70 0.63 0.63 

Digestible Valine 0.93 0.94 0.83 0.83 0.76 0.76 
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manufacture for nutrient analysis. Crude protein was determined using AOAC by 

combustion (AOAC 990.03), total phosphorus determined by wet ash ICP (AOAC  

985.01M), acid detergent fiber determined using an ANKOM digestion unit (AOAC 

973.18), and an ether extraction to determine crude fat (AOAC 920.39).    

Animals and Management Practices 

 On d of hatch, 3,200 Cobb 500 male broiler chicks were allotted to floor-pens 

and dietary treatments based on initial BW to ensure statistically equivalent weights at d 

of age. Broilers were placed in 1.82 m x 1.82 m rearing pens equipped with tube feeders 

and nipple drinkers and fresh pine shavings provided as bedding material. Chicks were 

provided age appropriate supplemental heat and given access to feed and water ad 

libitum. All broilers were weighed on dates corresponding to dietary change (d 14, 27, 

and 39) to calculate average BW, feed consumption, and mortality corrected FCR. At 

termination of the experiment, 7 broilers from each replicate were randomly selected for 

processing to obtain carcass and fat pad data. Animal care was provided in accordance 

with an approved Institutional Animal Care and Use Committee (IACUC) protocol.  

Termination of Trial 

 All broilers were weighed in bulk the evening of d 39 prior to processing on d 40.  

Prior to processing, broilers were placed on 8 h of feed withdrawal.  Seven broilers from 

each replicate (112 broilers/treatment) were selected and weighed individually before 

processing. Eviscerated carcass and abdominal fat pad weights were obtained before 

emersion chilling for calculation and determination of corresponding yields.  
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STATISTICAL ANALYSIS 

 All data were analyzed via a one-way ANOVA with means deemed significantly 

different at p<0.05. Means were separated using Duncan’s Multiple Range Test. 

Parameters subject to evaluation included BW, FCR, mortality and processing yields.  

RESULTS 

Average broiler BW was negatively influenced by the reduction in dietary energy 

as broilers fed the NC diet had lower (p<0.05) BW compared to the PC fed broilers as 

early as 14 d of age (Table 2).  The addition of NSPase into the NC diet increased 

(p<0.05) BW on d 14 compared to the NC to a level that was similar to the PC.  The 

combined inclusion of NSPase + XAP did not impact BW as compared to individual 

inclusion. On d 27, at the conclusion of the finisher phase, the energy reduced NC 

yielded significantly lower BW compared to the PC. All enzymatic treatments yielded 

BW similar to the PC; however, the addition of NSPase alone was the only treatment to 

yield a BW greater (p<0.05) than the NC.  On d 39, all treatments were similar to one 

another with regards to average BW. At no time did the combination of XAP and 

NSPase outperform either enzyme when added individually.  Throughout the 

experiment, no differences in mortality were observed between experimental treatments.  

Similar to BW, mortality corrected FCR was negatively impacted with the reduction in 

dietary energy as the NC fed broilers has a significantly higher FCR as compared to PC 

fed broilers (Table 3).  During the starter phase, none of the enzymatic treatments were 

able to reduce FCR to levels similar to the PC. However, the inclusion of NSPase 

decreased (p<0.05) FCR compared to the NC. During the finisher phase of the  
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Table 2. Average body weight and mortality of male broilers fed diets reduced in energy 

and supplemented with an enzyme blend containing xylanase, amylase, and protease1, a 

cocktail NSPase2, or combination of both. 
       

  Body Weight (Kg) Mortality (%) 

 

Treatment Day 0 Day 14 Day 27 Day 39  Day 1-39 

 PC3  0.045 0.526a 1.639a 2.817 3.7 

 NC4   0.045 0.511c 1.599b 2.789 2.2 

 NC + XAP 0.045 0.517abc 1.608ab 2.795 3.4 

 NC + NSPase 0.045 0.522ab 1.636a 2.823 3.0 

 NC + XAP + NSPase 0.045 0.513bc 1.616ab 2.800 2.3 

 Pooled SEM 0.1 2 0.004 0.007 0.3 

 Pooled TRT CV (%) 1.0 2.9 2.4 2.3 10 

       
a-c Means within columns with different superscripts differ significantly at p<0.05.   
1 Provides 2,000 U/kg endo-xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 

4,000 U/kg serine protease from B. subtilis. 
2 Xylanase (2700 U/g) from A. niger and T. reesei; also contains β-glucananse and α-galactosidase. 
3 Positive control diet 
4 Negative control diet formulated to have a 55kcal/kg AME reduction in starter and 88kcal/kg AME 

reduction in finisher and withdrawal phases compared to PC.  

 

 

 

Table 3. Mortality corrected feed conversion of male broilers fed diets reduced in energy 

and supplemented with an enzyme blend containing xylanase, amylase, and protease1, a 

cocktail NSPase2, or combination of both. 
       

  Feed Conversion Ratio 

 Treatment Day 1 to 14 Day 14 to 27 Day 1 to 27 Day 27 to 39 Day 1 to 39 

 PC3 1.177c 1.494b 1.397c 1.958 1.631c 

 NC4   1.211a 1.535a 1.437a 1.979 1.670a 

 NC + XAP 1.196ab 1.528ab 1.426b 1.970 1.657ab 

 NC + NSPase 1.195b 1.500b 1.408bc 1.969 1.645bc 

 NC + XAP + NSPase 1.202ab 1.503b 1.413bc 1.934 1.632c 

 Pooled SEM 0.003 0.004 0.003 0.007 0.003 

 Pooled TRT CV (%) 2.1 2.5 1.8 3.2 1.7 

       
a-c Means within columns with different superscripts differ significantly at p<0.05.  
1 Provides 2,000 U/kg endo-xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 

4,000 U/kg serine protease from B. subtilis. 
2 Xylanase (2700 U/g) from A. niger and T. reesei; also contains β-glucananse and α-galactosidase. 
3 Positive control diet  
4 Negative control diet formulated to have a 55kcal/kg AME reduction in starter and 88kcal/kg AME 

reduction in finisher and withdrawal phases compared to PC.  
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 experiment, the energy reduced NC again yielded an increased (p<0.05) FCR compared 

to the PC. The inclusion of NSPase and combination inclusion NSPase + XAP both 

significantly reduced (p<0.05) FCR compared to the NC, to level similar to the PC. 

Inclusion of XAP alone had no significant effect during the finisher phase. From d 1 to 

27 FCR of the NC was significantly increased (p<0.05) compared to the PC. The 

inclusion of NSPase and NSPase + XAP significantly reduced (p<0.05) FCR compared 

to the NC to levels similar to the PC. The inclusion of XAP significantly reduced FCR 

compared to the NC, although not to a level similar to the PC. During the withdrawal 

phase of the experiment, no differences were observed. Regarding cumulative FCR (d 1 

to 39), reducing dietary energy level negatively impacted FCR as the NC fed broilers 

had a significantly higher FCR compared to the PC. The addition of NSPase and NSPase 

+ XAP to the NC diet significantly reduced (p<0.05) FCR compared to the NC to a level 

that was similar to the PC; however, the combination of XAP and NSPase did not 

outperform individual inclusions.  

Enzyme inclusion had no impact on feed consumption during the starter and 

finisher phases (Table 4). During the withdrawal period, NSPase + XAP reduced  

(p<0.05) FC compared to the NC and NSPase inclusion alone. Similar effects are 

observed regarding total feed consumption with inclusion of NSPase + XAP resulting in 

significantly reduced (p<0.05) values compared to the NC and NSPase inclusion alone. 

At no point was there a difference in feed consumption between the PC and NC. 

  The processing parameters of carcass weight, fat pad weight, WOG yield and fat 

pad yield were not significantly impacted by any of the dietary treatments. 
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DISCUSSION 

The inclusion of exogenous enzymes in poultry diets has become common 

practice as a means of improving productive performance in broilers (Cowieson and 

Adeola, 2005).  These improvements can recover negative effects that are associated 

with a reduction in dietary energy (Coppedge et al., 2012). Dietary energy content be 

reduced by substituting fat with corn and by dilution with the use of alternative high 

fiber ingredients, such as DDGS used in this experiment. Both methods of energy 

reduction can be practiced as a means of decreasing feed cost, which can represent over 

50% of total production expenses.  Based on the results of this experiment, the energy 

reduction in the NC negatively affected broiler performance throughout the study. 

O’Neill et al. (2012) reported similar findings with an energy reduction of 100 kcal/kg 

increasing FCR.  The reduction in energy decreased early BW during the first 2 phases 

of the feeding period and increased FCR for the entirety of the experiment. The inclusion 

of NSPase in the NC improved growth performance (increased BW and decreased FCR) 

of broilers to levels that were similar to the PC. This improvement in broiler 

performance supports the ability of NSPase to eliminate negative effects from dietary 

energy reduction. Throughout the experiment XAP inclusion did not impact average BW 

compared to the NC. The inclusion of XAP led to an improvement in FCR compared to 

the NC during the finisher phase. The combined inclusion of NSPase + XAP in the NC 

resulted in no difference from the NC for average BW. The addition of NSPase + XAP 

positively influenced FCR throughout the experiment by reducing FCR level similar to  
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Table 4. Feed consumption of male broilers fed diets reduced in energy and 

supplemented with an enzyme blend containing xylanase, amylase, and protease1, a 

cocktail NSPase2, or combination of both. 
      

  Feed Consumption (kg/bird) 

 Treatment Starter Finisher Withdrawal Total 

 PC3 0.570 1.531 2.227ab 4.329ab 

 NC4   0.565 1.542 2.297a 4.404a 

 NC + XAP 0.570 1.529 2.246ab 4.346ab 

 NC + NSPase 0.571 1.541 2.281a 4.394a 

 NC + XAP + NSPase 0.565 1.527 2.168b 4.261b 

 Pooled SEM 0.001 0.005 0.013 0.018 

 Pooled TRT CV (%) 2.562 3.216 5.304 3.846 

      
a,b Means within columns with different superscripts differ significantly at p<0.05.   
1 Provides 2,000 U/kg endo-xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 

4,000 U/kg serine protease from B. subtilis. 
2 Xylanase (2700 U/g) from A. niger and T. reesei; also contains β-glucananse and α-galactosidase. 
3 Positive control diet  
4 Negative control diet formulated to have a 55kcal/kg AME reduction in starter and 88kcal/kg AME 

reduction in finisher and withdrawal phases compared to PC.  

 

 

 

Table 5. Processing parameters and yield of male broilers fed diets reduced in energy and 

supplemented with an enzyme blend containing xylanase, amylase, and protease1, a 

cocktail NSPase2, or combination of both. 

       

  Processing Parameters 

 Treatment Live Wt (g) WOG (g) Fat Pad (g) WOG % Fat Pad % 

 PC3 2827 2101 31.2 74.3 1.48 

 NC4 2845 2126 30.5 74.7 1.41 

 NC + XAP 2835 2113 29.8 74.5 1.41 

 NC + NSPase 2839 2121 30.1 74.7 1.42 

 NC + XAP + NSPase 2818 2127 31.5 75.5 1.48 

 Pooled SEM 9.3 6.5 0.3 0.08 0.01 

 Pooled TRT CV (%) 2.9 2.9 9.9 2.1 9.6 
1 Provides 2,000 U/kg endo-xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 

4,000 U/kg serine protease from B. subtilis. 
2 Xylanase (2700 U/g) from A. niger and T. reesei; also contains β-glucananse and α-galactosidase. 
3 Positive control diet 
4 Negative control diet formulated to have a 55kcal/kg AME reduction in starter and 88kcal/kg 

AME reduction in finisher and withdrawal phases compared to PC 
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the PC. However, the combination of NSPase and XAP at no time resulted in a benefit 

beyond individual enzyme inclusion. This could be due to a major component of each 

enzyme product being xylanase. The combination of enzyme products may have 

contributed more xylanase than there was necessary substrate for the enzyme to act on in 

the feed. In that instance, the inclusion of more enzyme would not lead to greater 

improvements. It could only be economical to include one of the enzyme preparations 

from the data generated in this experiment. Including both preparations would add 

unnecessary cost to the feed with no added benefit.  

 The use of a cocktail NSPase, such as the one used in this experiment, has 

repeatedly shown positive results regarding broiler performance in reduced energy diets. 

Coppedge et al. (2012) observed decreases of 2 to 4% in FCR in diets containing 

NSPase through the starter and grower phases The NSPase used in that study was similar 

to the one used in the current experiment, containing xylanase, α-galactosidase, and β-

glucanase as well as β-mannanase. Similar results were observed in this experiment with 

a reduction in FCR for the NSPase treatment compared to the NC.  Another study, using 

a multi-enzyme complex containing carbohydrase and phytase included into energy 

reduced diets (-65 kcal/kg and -85 kcal/kg) resulted in reduced FCR, supporting the use 

of enzyme supplementation to eliminate the negative effects associated with reduced 

dietary energy (Francesh and Geraert, 2009).  The authors reported significant 

improvements in FCR and weight gain during the first 2 phases of the experiment 

(Francesh and Geraert, 2009).  Furthermore, the inclusion of cocktail NSPase resulted in 

reduced FCR compared to the NC for the entirety of the experiment. Klein et al. (2015) 
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reported improved FCR in broilers supplemented with cocktail NSPase similar to the 

one used in the current experiment when included in a reduced ME diet. Campasino et 

al. (2015) reported improvements in FCR during the grower phase, and BW comparable 

to a PC when including NSPase into a reduced ME diet. Results from this experiment 

correspond with those previously mentioned supporting the use of cocktail NSPase to 

improve growth performance in broilers fed reduced energy diets. 

 Similar to the results found early in this experiment regarding the effects of XAP 

inclusion, Olukosi et al. (2007) concluded there to be no significant improvements in 

performance parameters from the inclusion of XAP in poultry diets. However, 

contradicting results have been reported in other studies. In one experiment the inclusion 

of XAP was found to improve both feed-to-gain ratio, which was also reported during 

the early phases of this experiment, as well as body weight gain (Cowieson and Adeola, 

2005). These inconsistencies in results from the inclusion of XAP indicate that perhaps 

additional factors may be related to efficacy such as ingredient profile or nutrient 

concentration. However, it has been suggested that the unsuccessful results of XAP 

inclusion could be due to the conventional nonspecific enzyme preparations (Cowieson 

and Adeola, 2005), and also to the nutritional variety of feed ingredients from different 

sources and their substrate availability (Yegani and Korver, 2013).  

 The basis of evaluating a combination of NSPase and XAP as based upon 

reports where enzyme combinations were shown to be effective in significantly 

improving weight gain and feed-to-gain ratio (Meng et al., 2005, Klein et al., 2015, 

Williams et al., 2014).  In this experiment, the inclusion of cocktail NSPase + XAP in 
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the NC resulted in decreased FCR during the finisher phase, d 1 to 27, and cumulative d 

1 to 39, at levels that were similar to the PC. Again, at no evaluation time point did the 

combination outperform the 2 enzymes when added individually. The approach of using 

an enzyme combination can potentially be more beneficial as compared to using a 

specific enzyme complex as there may be greater necessary substrate availability with a 

greater variety of enzymes in the combination. However, in this study, both enzymes 

used were a cocktail or an enzyme blend with a major component of each being 

xylanase.  The duplication of components between the 2 enzyme products could be the 

reason for lack of a combination effect which has been reported by Klein et al. (2015) 

and Williams et al. (2014).  However, the enzyme combinations used in those studies 

included a cocktail NSPase and a β-mannanase which target different substrates in 

different ingredients. It is notable that the combined inclusion of NSPase and XAP 

decreased feed consumption compared to the NC and resulted in the lowest consumption 

value in the withdrawal phase and also from d 1 to 39. It is possible that this late impact 

is related to the relatively higher level of DDGS included in the withdrawal phase. 

Where earlier in the experiment the duplication from combining enzyme products was 

not effective there may now have been sufficient substrate from DDGS included at 15%. 

The increased level of DDGS would increase the level of NSP compared to earlier 

feeding periods. It is possible that this increase of NSP led the level of xylanase that was 

included from combined products to cross a threshold from excessive to effective. This 

theory could possibly translate into other parameters with broilers grown to a greater 

age. 
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In conclusion, a reduction in dietary energy resulted in negative impacts on 

broiler growth performance as demonstrated by increased FCR throughout the 

experiment, and decreased BW in the early phases of the experiment.  The inclusion of 

cocktail NSPase and XAP individually in the energy reduced diet eliminated the 

negative effects on growth performance, thus resulting in BW and FCR measurements 

that were similar to the PC.  The combination of a cocktail NSPase with XAP did 

improve growth performance, however not to a level beyond individual inclusion. 
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CHAPTER III  

EXPERIMENT 2: EVALUATION OF MULTIPLE LEVELS OF PHYTASE AND 

XYLANASE, AMYLASE, PROTEASE INCLUSION ON BROILER GROWTH 

PERFORMANCE 

 

OVERVIEW 

An experiment was conducted to determine the effect of two levels of phytase 

(600 and 1200 FTU/kg) and three levels of a multienzyme (xylanase, amylase, and 

protease - XAP) product inclusion (1200 U/kg, 1800 U/kg, and 2400 U/kg) in a reduced 

nutrient corn-soybean meal diets containing DDGS on broiler growth performance. The 

experimental design consisted of seven treatments including a reference control diet, and 

the remaining six treatments composing a two by three factorial of the varying levels of 

enzymes included in a reduced energy (-88 kcal/kg ME) reduced available phosphorus (-

0.12%) diet. Each treatment included 10 replicates with 37 male chicks per treatment 

group (2590 total placement). Dietary program consisted of a three phase program, 

starter (5% DDGS), grower (10% DDGS), and finisher (15% DDGS).  Broilers were 

weighed and feed consumption determined on d 15, 28, and 41. At the conclusion of the 

experiment average body weight of each treatment was similar to the reference diet. 

One-way analysis indicated that the individual treatment of high phytase x low XAP and 

high phytase x medium XAP, both resulted in similar cumulative FCR as compared to 

the reference diet while all other individual treatments failed to reach a similar FCR of 

the reference diet.  Factorial analysis confirmed that 1200 FTU/kg of phytase reduced 
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(p<0.05) starter FCR although had an elevated level of mortality during the finisher 

phase compared to the 600 FTU/kg level. During the starter phase, mid level of XAP 

inclusion resulted in a lower (p<0.05) rate of consumption compared to the low level of 

XAP inclusion.  Inclusion of the mid level of XAP reduced observed (p<0.05) FCR for 

the combined FCR for the grower and finisher phases (d 15-41) as compared to the low 

XAP level.  These data confirm that the use of combination inclusion of phytase and 

multienzyme can compensate for reductions in dietary available phosphorus and 

metabolizable energy.  

INTRODUCTION 

Feed represents the largest portion of production expenses in the poultry industry 

(Tahir, et al., 2012). As a result, researchers are exploring multiple methods of 

improving broiler production efficiency and are evaluating more cost effective 

alternatives to commonly used ingredients. Two popular ingredients in the U.S. domestic 

market that can account for the majority of a poultry diet are corn and soybean meal 

(SBM). These ingredients are included primarily for their contributions to energy and 

protein content of the diet. Energy and protein can be considered 2 of the most expensive 

nutrients in a poultry diet (Tahir, et al., 2012). One economical alternative ingredient that 

has demonstrated value in poultry diets DDGS. A considerable amount of previous 

research confirms our ability to include DDGS as a partial replacement of corn and SBM 

in broiler diets without sacrificing bird performance (Lumpkins, et al., 2004, Loar, et al., 

2010, Shim, et al., 2011). The main nutritional components of DDGS remaining after 

ethanol production are protein, fat, and fiber, which can be 2 to 3 times the value of the 
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original grain (NRC, 1994). The increased amount of fiber can lead to an increased 

amount of non-starch polysaccharides (NSP) (Kiarie et al., 2014). Non-starch 

polysaccharides are a major component of fiber that can reduce the digestibility of other 

nutrients and have been correlated to reducing energy content (Leeson and Summers, 

2001). 

The use of exogenous enzymes in poultry diets is being widely explored in order 

to utilize otherwise unavailable nutrients within feed ingredients. Ingredients of poultry 

diets, even those considered high quality such as corn and soybean meal contain 

components that have anti-nutritive properties which do not allow all nutrients to be 

utilized by the monogastric digestive system of chickens. For example, phytate can 

compose 50% of plant P, and is poorly digestible to chickens and can chelate to other 

nutrients, thus reducing their availability to the bird. The inclusion of exogenous phytase 

has been reported to effectively improve nutrient utilization and growth performance 

(Sebastian, et al., 1996, Pieniazek, et al., 2016). Pieniazek et al. (2016) reported phytase 

supplementation to compensate for reductions in available P by improving BW, FCR 

and amino acid digestibility. Phytase inclusion can also contribute to available P content 

of diets. Karimi et al. (2014) reported P equivalency ranging from 0.08 to 0.19 from 

phytase included at 500 to 2,000 FTU/kg. 

Some major NSP found in cereal grains can include cellulose, arabinoxylan, and 

β-glucan (Bach Knudsen, 2014). Oligosaccharides, a group of NSP found in soybean 

meal, are indigestible to poultry since poultry lack endogenous α-galactosidase. Non-

starch polysaccharides can completely encapsulate nutrients and chelate metal ions 
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resulting in reduced starch, protein, and lipid digestion (Leeson and Summers, 2001). 

The use of NSP degrading exogenous enzymes to improve nutrient availability and 

growth performance has yielded varying results. Several studies indicate that the use of 

exogenous enzymes has improved nutrient availability and growth performance 

(Cowieson and Adeola, 2005, Kiarie et al., 2014), while others do not (Kaczmarek et al. 

2014). Kiarie et al. (2014) reported improved growth performance and AME when 

supplementing xylanase in corn and wheat diets. Phytase plus XAP supplementation in 

broiler feed improved feed to gain ratio, BW gain and ileal digestible energy as reported 

by Cowieson and Adeola (2005).  

It is reported that there can be benefits from including XAP with phytase and 

therefore, it was theorized that there would be an optimal inclusion rate of each enzyme 

product that would result in the greatest benefit. An experiment was conducted to 

evaluate the potential interaction between phytase and a multienzyme complex 

containing xylanase, amylase, and protease (XAP) at multiple levels when included in 

nutritionally marginal broiler diets. 

MATERIALS AND METHODS4 

Experimental Design 

 To evaluate multiple levels of phytase4 and multienzyme5 inclusion on broiler 

performance an experiment was conducted using a complete randomized block design 

with 7 dietary treatments containing 10 replicates per treatment during a 41 d 

                                                 

4 Axtra®PHY 10,000 TPT, Danisco Animal Nutrition/DuPont, Marlborough, Wilshire, UK. 
5 Axtra® XAP, Danisco Animal Nutrition/DuPont, Marlborough, Wilshire, UK. 
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experiment. The phytase and multienzyme used in this experiment are commercially 

available products. The experimental design consisted of a reference diet and six energy-

reduced enzymatic treatments composing a 2 X 3 factorial of varying levels of phytase 

and XAP. The energy reduction for the enzymatic treatments was 88 kcal/kg throughout 

the experiment.  

The Experimental Diets 

 Diets were corn and soy bean meal based containing animal protein, soy oil, and 

increasing levels of DDGS from 5 to 10 to 15% in the starter, grower and finisher 

periods, respectively (Table 6). The reference diet was formulated to be similar to that of 

a typical industry broiler diet. Diets were formulated to be equal regarding the amount of 

digestible amino acids present in the feed. The reference diet contained phytase at 600 

FTU/kg and did not contain XAP. All enzymatic treatments were formulated with a 

reduction of 88 kcal/kg ME compared to the reference diet. The reduced energy 

enzymatic treatments were manufactured as one large basal diet that were then divided 

into sub batches and individual treatments with the addition of enzymes as a premix of 

enzyme and corn starch at an inclusion rate of 500 g/ton. Two different levels of phytase 

were included, being 600 FTU (referred to as low phytase) and 1,200 FTU (high 

phytase), and three varying levels of XAP were included at 1,200 (low XAP), 1,800 

(mid XAP), and 2,400 U/kg of feed (high XAP). These 2 inclusion rates of phytase and 

three inclusion rates of XAP created a 2 X 3 factorial of enzymatic treatments. The six 

enzymatic treatments were low phytase X low XAP, low phytase X mid XAP, low 

phytase X high XAP, high phytase X low XAP, high phytase X mid XAP, and high  
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Table 6. Calculated content of experimental diets fed to male broilers in Experiment 2. 

  Starter d 1 to 15 Grower d 15 to 28 Finisher d 28 to 41 

 

Reference 

Diet 
-88 kcal/kg 

Reference 

Diet 
-88 kcal/kg 

Reference 

Diet 
-88 kcal/kg 

Ingredient (%) 

Corn 55.87 57.66 59.60 61.75 61.80 63.80 

SBM 31.64 31.62 22.60 22.56 15.72 15.72 

DDGS 5.00 5.00 10.00 10.00 15.00 15.00 

MBM 3.00 3.00 3.00 3.00 3.00 3.00 

Soy Oil 2.25 0.50 2.84 0.71 2.77 0.73 

Limestone 0.92 0.92 0.79 0.79 0.86 0.86 

MCP 0.35 0.35 0.15 0.15 0.00 0.00 

Salt 0.36 0.36 0.34 0.34 0.32 0.32 

DL-Met 0.23 0.23 0.20 0.20 0.13 0.13 

L-Lysine 0.12 0.12 0.23 0.23 0.26 0.26 

Choline 60 0.08 0.08 0.10 0.10 0.00 0.00 

Trace min.1 0.05 0.05 0.08 0.08 0.08 0.08 

Vitamins2 0.25 0.25 0.05 0.05 0.05 0.05 

Threonine 0.00 0.00 0.05 0.05 0.04 0.04 

Phytase3 

(FTU/kg) 
600 600 600 600 600 600 

Nutrient (%) 

ME (kcal/kg) 3008 2925 3086 2997 3130 3041 

Crude Protein 22.29 22.40 20.00 19.80 18.00 18.00 

Av. Phosphorus4 0.44 0.44 0.40 0.40 0.37 0.37 

Calcium5 0.90 0.90 0.78 0.78 0.76 0.76 

Lysine 1.31 1.31 1.18 1.18 1.03 1.03 

Methionine 0.61 0.61 0.55 0.55 0.47 0.47 
1Trace mineral premix at this rate yields per kg of diet 149 mg manganese, 125 mg zinc, 17 mg iron, 7 mg 

copper, 1.0 mg iodine, a minimum of 6.27 mg calcium, and a maximum of 8.69 mg calcium. The carrier is 

calcium carbonate and the premix contains less than 1% mineral oil 
2Vitamin premix added at this rate yields per kg diet 11,023 IU vitamin A, 3,858 IU vitamin D3, 46 IU 

vitamin E, 0.0165 mg B12, 5.845 mg riboflavin, 45.93 mg niacin, 20.21 mg d-pantothenic acid, 477.67 mg 

choline, 1.47 mg menadione, 1.75 mg folic acid, 7.17 mg pyroxidine, 2.94 mg thiamine, 0.55 mg biotin.  
3 Buttiauxella spp. Phytase. Additional 600 FTU/kg added for high phytase treatments. 
4Value includes contribution from phytase of 0.12% 
5Value includes contribution from phytase of 0.11% 
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phytase X high XAP. The starter diet was fed from placement to d 15, grower was fed to 

d 28, and the finisher phase was fed to termination of the experiment at d 41. All diets 

were processed at 82°C, with the starter fed as a crumble and the grower and finisher fed 

as a pellet.  

Animals and Management Practices 

On d of hatch, 2,590 Cobb 500 male broiler chicks were transported from the 

hatchery to the research facility. Upon arrival, chicks were wing banded for 

identification, weighed, and allocated to floor pens based on chick weight. Each pen 

contained 37 chicks for a stocking density of 0.075 m2/bird. Floor pens measured 1.52 m 

X 1.82 m and contained used litter mixed with fresh pine shavings for bedding material. 

Each pen was equipped with a 13.6 kg capacity tube feeder and nipple type watering 

system with ad libitum access to feed and water. Broilers were weighed on a per pen 

basis and feed consumption was measured at the conclusion of each dietary phase. Age 

appropriate environmental conditions were maintained inside the facility by automated 

control systems. All animals were raised in accordance with an approved Institutional 

Animal Care and Use Committee (IACUC) protocol.  

STATISTICAL ANALYSIS 

Data from enzymatic treatments was subjected to a 2 X 3 factorial analysis with 

main effect means deemed significantly different at p≤0.05. For all comparison back to 

the reference diet, data from individual treatments were analyzed via a one-way 

ANOVA with means deemed significantly different at p≤0.05. Means were separated 

using Duncan’s Multiple Range Test. Evaluated parameters included: average body 
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weight (BW), feed consumption (FC), mortality corrected feed conversion ratio (FCR), 

average daily gain (ADG), and mortality.  

RESULTS 

At the conclusion of the starter phase on d 15, no significant differences in 

average BW were observed between main effects or individual treatments (Table 7). On 

d 28, following the grower phase, no differences were observed in main effects of 

phytase or XAP. However, one-way analysis did indicate that inclusion of high phytase 

x high XAP was the only treatment not similar to the reference diet, and was 

significantly lower compared to the high phytase x low XAP diet.   At termination of the 

experiment on d 41, all enzymatic treatments were able to reach a statistically similar 

BW to the reference diet. For the analysis of main effects and interactions, no main 

effect differences or interactions were observed on BW for either phytase and XAP 

levels.  

An early response was observed in the starter phase for FCR, as the inclusion of 

high phytase regardless of XAP level resulted in similar FCR compared to the reference 

diet, while low phytase treatments were significantly higher than the reference diet 

(Table 8). During the grower phase, the lowest FCR was observed in the reference diet 

while the only enzymatic treatment that reached a similar level of the reference diet was 

the high phytase X low XAP. No differences in FCR were observed in the finisher phase 

of the experiment. Regarding main effects and interactions, the inclusion of high phytase 

in the starter phase significantly reduced FCR compared to the low phytase treatment. 
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Table 7. Average body weight of broilers fed varying levels of phytase and XAP. 

a,b Means in columns with different superscripts differ at p<0.05. 
1 Reference diet formulated to meet nutrient requirements of birds depending on phase. Enzymatic 

treatments have 88kcal/kg AMEn reduction. 
2 Buttiauxella spp. Phytase. Recovery analysis indicates phytase activity of 706 and 1,446 FTU/kg for 

inclusion rates 600 and 1,200 FTU/kg, respectively 
3 Provides 2,000 U/kg endo-xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 

4,000 U/kg serine protease from B. subtilis. Recovery analysis indicates xylanase activity of 1,692, 1,741, 

and 2,304 U/kg for inclusion rates 1,200, 1,800 and 2,400 U/kg, respectively. 

 

 Body weight (kg) 

 Treatment  Day 15 Day 28 Day 41 

 Reference Diet1 0.469 1.561a 2.871 

 600 U/kg Phytase2 + 1200 U/kg XAP3 0.471 1.543ab 2.868 

 600 U/kg Phytase + 1800 U/kg XAP 0.423 1.533ab 2.846 

 600 U/kg Phytase + 2400 U/kg XAP 0.467 1.540ab 2.842 

 1200 U/kg Phytase + 1200 U/kg XAP 0.473 1.567a 2.906 

 1200 U/kg Phytase + 1800 U/kg XAP 0.473 1.535ab 2.893 

 1200 U/kg Phytase + 2400 U/kg XAP 0.474 1.519b 2.837 

    

ANOVA    

Pooled SEM 0.002 0.006 0.017 

Treatment, P-value 0.638 0.013 0.554 

    

                                                       Main Effects and Interactions 

Phytase    

600 U/kg 0.467 1.539 2.848 

1200 U/kg 0.473 1.540 2.879 

XAP    

1200 U/kg 0.472 1.555 2.882 

1800 U/kg 

2400 U/kg 

0.468 

0.471 

1.534 

1.529 

2.869 

2.839 

    

P-value    

Phytase 0.118 0.890 0.258 

XAP 0.635 0.098 0.243 

Phytase x XAP 0.690 0.209 0.609 
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Table 8. Feed conversion ratio corrected for mortality of each phase for broilers fed 

varying levels of phytase and XAP. 
 Corrected FCR 

 Treatment  Starter Grower Finisher 

 Reference Diet1 1.273c 1.468c 1.871 

 600 U/kg Phytase2 + 1200 U/kg XAP3 1.330a 1.511b 1.881 

 600 U/kg Phytase + 1800 U/kg XAP 1.318ab 1.496b 1.884 

 600 U/kg Phytase + 2400 U/kg XAP 1.325ab 1.496b 1.888 

 1200 U/kg Phytase + 1200 U/kg XAP 1.298abc 1.491bc 1.876 

 1200 U/kg Phytase + 1800 U/kg XAP 1.289bc 1.517ab 1.833 

 1200 U/kg Phytase + 2400 U/kg XAP 1.297abc 1.539a 1.888 

    

ANOVA    

Pooled SEM 0.005 0.004 0.008 

Treatment, P-value 0.011 <0.001 0.303 

    

                                                                        Main Effects and Interactions 

Phytase    

600 U/kg 1.324x 1.501 1.884 

1200 U/kg 1.295y 1.515 1.865 

XAP    

1200 U/kg 1.314 1.501 1.878 

1800 U/kg 

2400 U/kg 

1.303 

1.312 

1.507 

1.517 

1.858 

1.888 

    

P-value    

Phytase 0.003 0.038 0.248 

XAP 0.652 0.144 0.258 

Phytase x XAP 0.978 0.001 0.255 
a-c Means in columns with different superscripts differ at p<0.05. 
x,y Means in columns with different superscripts differ at p<0.05. 
1 Reference diet formulated to meet nutrient requirements of birds depending on phase. Enzymatic 

treatments have 88kcal/kg AMEn reduction. 
2 Buttiauxella spp. Phytase. Recovery analysis indicates phytase activity of 706 and 1,446 FTU/kg for 

inclusion rates 600 and 1,200 FTU/kg, respectively 
3 Provides 2,000 U/kg endo-xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 

4,000 U/kg serine protease from B. subtilis. Recovery analysis indicates xylanase activity of 1,692, 1,741, 

and 2,304 U/kg for inclusion rates 1,200, 1,800 and 2,400 U/kg, respectively. 
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There were no differences in ADG regarding individual treatment comparison or 

among main effects during the starter phase (Table 9). Throughout the grower phase, the 

inclusion of high phytase X high XAP reduced average daily gain compared to the 

reference diet and the high phytase X low XAP while all other enzymatic treatments 

were similar to the reference diet. No differences in ADG were observed between 

treatments for the finisher phase of the experiment. No main effect differences were 

observed with either phytase or XAP inclusion level for ADG during any dietary phase.  

Feed consumption was influenced by enzymatic inclusion however only during 

the starter phase (Table 10).  During this phase, the reference diet yielded the lowest 

observed FC and was similar to low phytase X mid XAP, high phytase X mid XAP, and 

high phytase X high XAP while all other enzymatic treatments had a significantly higher 

rate of feed intake.   During the starter phase, the addition of mid XAP fed broilers 

consumed at a rate lower than that of broilers fed the low XAP dose while no impact was 

observed with phytase level.  For the remaining phases of the experiment, there were no 

significant differences in FC between individual treatments or main effects  

Cumulative mortality corrected FCR from d 1 to 28 including the starter and 

grower phases indicated that none of the enzymatic treatments were able to reach a level 

similar to the reference diet (Table 11). However, during the grower and finisher phases 

of the experiment (d 15 to 41), all enzymatic treatments were statistically similar to the 

reference diet with the exception of the high phytase X high XAP. Cumulative FCR for 

the entirety of the experiment period was influenced by enzymatic inclusion as the high  
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Table 9. Average daily gain of each phase for broilers fed varying levels of phytase and 

XAP. 
 Average Daily Gain (kg/bird) 

 Treatment  Starter Grower Finisher 

 Reference Diet1 0.029 0.083a 0.099 

 600 U/kg Phytase2 + 1200 U/kg XAP3 0.029 0.081ab 0.101 

 600 U/kg Phytase + 1800 U/kg XAP 0.028 0.082ab 0.099 

 600 U/kg Phytase + 2400 U/kg XAP 0.028 0.082ab 0.098 

 1200 U/kg Phytase + 1200 U/kg XAP 0.029 0.083a 0.100 

 1200 U/kg Phytase + 1800 U/kg XAP 0.029 0.081ab 0.101 

 1200 U/kg Phytase + 2400 U/kg XAP 0.029 0.080b 0.098 

    

ANOVA    

Pooled SEM 0.000 0.000 0.001 

Treatment, P-value 0.664 0.024 0.630 

    

                                                                      Main Effects and Interactions 

Phytase    

600 U/kg 0.028 0.082 0.099 

1200 U/kg 0.029 0.081 0.100 

XAP    

1200 U/kg 0.029 0.082 0.100 

1800 U/kg 

2400 U/kg 

0.028 

0.029 

0.081 

0.081 

0.100 

0.098 

    

P-values    

Phytase 0.162 0.332 0.792 

XAP 0.907 0.372 0.242 

Phytase x XAP 0.421 0.028 0.398 
a,b Means in columns with different superscripts differ at p<0.05. 
1 Reference diet formulated to meet nutrient requirements of birds depending on phase. Enzymatic 

treatments have 88kcal/kg AMEn reduction. 
2 Buttiauxella spp. Phytase. Recovery analysis indicates phytase activity of 706 and 1,446 FTU/kg for 

inclusion rates 600 and 1,200 FTU/kg, respectively 
3 Provides 2,000 U/kg endo-xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 

4,000 U/kg serine protease from B. subtilis. Recovery analysis indicates xylanase activity of 1,692, 1,741, 

and 2,304 U/kg for inclusion rates 1,200, 1,800 and 2,400 U/kg, respectively. 
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Table 10. Feed consumption on a gram/bird/day basis of each phase for broilers fed 

varying levels of phytase and XAP. 
 Feed Consumption (g/bird/day) 

 Treatment  Starter Grower Finisher 

 Reference Diet1 36.7c 123.4 188.3 

 600 U/kg Phytase2 + 1200 U/kg XAP3 38.7a 125.0 191.6 

 600 U/kg Phytase + 1800 U/kg XAP 37.6abc 123.8 190.6 

 600 U/kg Phytase + 2400 U/kg XAP 38.0ab 123.9 189.1 

 1200 U/kg Phytase + 1200 U/kg XAP 37.9ab 126.1 193.8 

 1200 U/kg Phytase + 1800 U/kg XAP 37.4bc 124.9 192.4 

 1200 U/kg Phytase + 2400 U/kg XAP 37.6abc 123.7 191.6 

    

ANOVA    

Pooled SEM 0.1 0.6 1.258 

Treatment, P-value 0.023 0.493 0.404 

    

                                                                       Main Effects and Interactions 

Phytase    

600 U/kg 38.1 124.5 190.2 

1200 U/kg 37.7 124.9 192.6 

XAP    

1200 U/kg 38.3x 126.0 192.5 

1800 U/kg 

2400 U/kg 

37.5y 

  37.8xy 

124.3 

123.8 

191.5 

190.3 

    

P-value    

Phytase 0.132     0.689     0.292 

XAP 0.049     0.146     0.621 

Phytase x XAP 0.646     0.838     0.990 
a-c Means in columns with different superscripts differ at p<0.05. 
x,y Means in columns with different superscripts differ at p<0.05. 
1 Reference diet formulated to meet nutrient requirements of birds depending on phase. Enzymatic 

treatments have 88kcal/kg AMEn reduction. 
2 Buttiauxella spp. Phytase. Recovery analysis indicates phytase activity of 706 and 1,446 FTU/kg for 

inclusion rates 600 and 1,200 FTU/kg, respectively 
3 Provides 2,000 U/kg endo-xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 

4,000 U/kg serine protease from B. subtilis. Recovery analysis indicates xylanase activity of 1,692, 1,741, 

and 2,304 U/kg for inclusion rates 1,200, 1,800 and 2,400 U/kg, respectively. 
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Table 11. Cumulative feed conversion ratio for periods of days 1-28, 15-41, and 1-41 for 

broilers fed varying levels of phytase and XAP. 
 Cumulative Corrected FCR 

 Treatment  Day 1-28 Day 15-41 Day 1-41 

 Reference Diet1 1.423b 1.685b 1.624c 

 600 U/kg Phytase2 + 1200 U/kg XAP3 1.473a 1.713ab 1.657a 

 600 U/kg Phytase + 1800 U/kg XAP 1.458a 1.706ab 1.650ab 

 600 U/kg Phytase + 2400 U/kg XAP 1.457a 1.708ab 1.651ab 

 1200 U/kg Phytase + 1200 U/kg XAP 1.456a 1.700b 1.640abc 

 1200 U/kg Phytase + 1800 U/kg XAP 1.462a 1.691b 1.631bc 

 1200 U/kg Phytase + 2400 U/kg XAP 1.473a 1.729a 1.661a 

    

ANOVA    

Pooled SEM 0.003 0.004 0.003 

Treatment, p-value 0.001 0.033 0.010 

    

                                                                       Main Effects and Interactions 

Phytase    

600 U/kg 1.463 1.708 1.652 

1200 U/kg 1.464 1.706 1.644 

XAP    

1200 U/kg 1.465 1.705xy 1.647 

1800 U/kg 

2400 U/kg 

1.460 

1.465 

1.699y 

1.718x 

1.640 

1.656 

    

P-value    

Phytase 0.824 0.866 0.257 

XAP 0.768 0.100 0.134 

Phytase x XAP 0.112 0.110 0.166 
a-c Means in columns with different superscripts differ at p<0.05. 
x,y Means in columns with different superscripts differ at p<0.05. 
1 Reference diet formulated to meet nutrient requirements of birds depending on phase. Enzymatic 

treatments have 88kcal/kg AMEn reduction. 
2 Buttiauxella spp. Phytase. Recovery analysis indicates phytase activity of 706 and 1,446 FTU/kg for 

inclusion rates 600 and 1,200 FTU/kg, respectively 
3 Provides 2,000 U/kg endo-xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 

4,000 U/kg serine protease from B. subtilis. Recovery analysis indicates xylanase activity of 1,692, 1,741, 

and 2,304 U/kg for inclusion rates 1,200, 1,800 and 2,400 U/kg, respectively. 
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phytase X low XAP and high phytase X mid XAP dietary treatments resulted in similar 

FCR as compared to the reference diet.  No main effect differences were observed in any 

cumulative FCR period regarding phytase inclusion.  However, the mid level of XAP 

inclusion yielded a lower FCR for the evaluation period of d 15 to 41 (grower and 

finisher periods) as compared to the high XAP inclusion rate although no difference was 

observed when evaluating the entire experimental period.  

 During the starter, grower, and finisher phases there were no differences in 

mortality between any of the individual treatment groups (Table 12). No differences 

were observed in main effects on mortality rate associated with XAP inclusion level, 

however, a main effect of phytase inclusion on mortality during the finisher phase was 

observed as the high level of phytase yielded mortality rates significantly greater than 

the low inclusion of phytase although this difference did not persist when evaluating 

mortality for the entire experimental period.   

DISCUSSION 

 The goal of this experiment was to evaluate the effect of varying levels of 

phytase and XAP on broiler growth performance in nutritionally marginal broiler diets. 

Data generated during this experiment demonstrated that the use of certain levels of 

these combined enzyme products may be more efficacious at improving growth 

performance in broilers.  

 Previous studies have indicated similar results when combining phytase with an 

XAP.  Olukosi, et al. (2007) evaluated XAP and phytase individually and in combination 

on broiler performance during a 21-d experiment. Enzymatic treatments were formulated  
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Table 12. Mortality (%) of broilers fed varying levels of phytase and XAP. 
 Mortality (%) 

 Treatment  Starter Grower Finisher Total 

 Reference Diet1 2.4 0.8 1.7 4.9 

 600 U/kg Phytase2 + 1200 U/kg XAP3 3.2 2.8 0.0 6.0 

 600 U/kg Phytase + 1800 U/kg XAP 3.8 1.1 0.6 5.4 

 600 U/kg Phytase + 2400 U/kg XAP 3.2 0.3 0.3 3.8 

 1200 U/kg Phytase + 1200 U/kg XAP 4.6 2.0 0.9 7.3 

 1200 U/kg Phytase + 1800 U/kg XAP 2.4 1.4 1.1 4.9 

 1200 U/kg Phytase + 2400 U/kg XAP 2.2 1.4 0.9 4.3 

     

ANOVA     

Pooled SEM 0.4 0.3 0.2 0.5 

Block, p-value 0.929 0.159 0.408 0.606 

Treatment, p-value 0.753 0.188 0.089 0.646 

     

                                                                       Main Effects and Interactions  

Phytase     

600 U/kg 3.423 1.4 0.3b 5.0 

1200 U/kg 3.063 1.6 1.0a 5.5 

XAP     

1200 U/kg 3.919 2.4 0.5 6.6 

1800 U/kg 

2400 U/kg 

3.108 

2.703 

1.2 

0.9 

0.9 

0.6 

3.5 

4.0 

     

P-value     

Block 0.855 0.107 0.349 0.708 

Phytase 0.716 0.715 0.032 0.708 

XAP 0.592 0.073 0.575 0.219 

Phytase x XAP 0.471 0.387 0.876 0.811 
a,b Means in columns with different superscripts differ at p<0.05. 
1 Reference diet formulated to meet nutrient requirements of birds depending on phase. Enzymatic 

treatments have 88kcal/kg AMEn reduction. 
2 Buttiauxella spp. Phytase. Recovery analysis indicates phytase activity of 706 and 1,446 FTU/kg for 

inclusion rates 600 and 1,200 FTU/kg, respectively 
3 Provides 2,000 U/kg endo-xylanase from T. reesei, 200 U/kg alpha-amylase from B. licheniformis, and 

4,000 U/kg serine protease from B. subtilis. Recovery analysis indicates xylanase activity of 1,692, 1,741, 

and 2,304 U/kg for inclusion rates 1,200, 1,800 and 2,400 U/kg, respectively. 
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to be deficient in metabolizable energy and P. The inclusion of XAP alone did not 

improve performance although the inclusion of phytase alone did improve broiler weight 

gain compared to the NC. The effect on performance when using supplements in 

combination resulted in a sub-additive effect with improvements of final BW, weight 

gain and feed-to-gain compared to the NC. The authors indicated that the improvement 

in performance appeared to be mainly from the use of phytase. The current experiment 

yielded results similar to Olukosi et al. (2007) in that certain combinations of phytase 

and XAP improved early performance regarding feed consumption (FC) and FCR. These 

data indicate that phytase may be more responsible for the improvement in growth 

performance as the high phytase inclusion improved FCR beyond that of the low 

inclusion rate during the starter phase. Subsequently at the conclusion of the experiment, 

the only treatments that were able to reach the level of the reference diet were enzymatic 

treatments that included the high level of phytase. However, the level of XAP does seem 

to impact growth performance as the high inclusion rate did not reach a similar level to 

the reference diet.    

 The inclusion of XAP in corn-soybean meal based diets and its impact on broiler 

performance has been previously evaluated (Café, et al., 2002). However, in that 

particular experiment XAP was included in a nutritionally sound diet with broilers 

grown to 49 d of age while in the experiment described here XAP was included in a 

lower energy diet. The inclusion of XAP improved body weight of broilers at d 16, 35, 

and 49 (Café, et al., 2002), however, it negatively impacted FCR at d 16 and 42. In the 

current experiment, the inclusion of XAP in combination with phytase in a nutritionally 
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marginal diet yielded FCR values similar to the reference diet of adequate nutritional 

density. In the starter phase of this experiment, all high phytase containing treatments, 

regardless of XAP inclusion rate, resulted in FCR similar to the reference diet and in the 

grower phase the inclusion of high phytase X low XAP yielded a FCR similar to the 

reference diet. Interestingly, differences were observed between the different levels of 

XAP included.  Observations included a reduction in starter feed consumption as XAP 

level increased as well as an increase in cumulative FCR (d 15 to 41), indicating the dose 

of XAP is an important factor to consider. These data indicate the effectiveness of 

enzyme inclusion on FCR may be greater when included in reduced nutrient diets or 

when combined with phytase.  

 Throughout the grower phase of this experiment, several parameters with the 

inclusion of high phytase X high XAP were negatively influenced including reduced 

average BW and ADG and increased FCR. It appears that to some extent, there may be a 

threshold limit to the level of enzyme inclusion one could expect to see positive results 

from in this scenario. Negative impacts from XAP inclusion were reported by Café et al. 

(2002) as well. In that experiment, XAP inclusion in nutritionally complete diets 

negatively impacted feed:gain compared to a control diet when measured at d 0-16 and d 

0-42, though the author concluded the use of XAP can result in improved performance 

as observed on other parameters and at other phases of that experiment. 

 Francesh and Geraert (2009) reported that the use of combined non-starch 

polysaccharidase (NSPase) and phytase suggests reduced amino acid, phosphorus, 

energy and protein specifications of corn-soybean meal diets as supplementation with 
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the enzyme complex improved average daily gain and feed:gain. Their results are similar 

to the current experiment, where at certain concentrations the inclusion of phytase and 

XAP into a reduced ME and P diet resulted in growth performance similar to that of the 

nutritionally sound reference diet indicating that the included enzymes compensated for 

the reduction in dietary available phosphorus and metabolizable energy. This idea was 

supported by Woyengo et al. 2010, who reported a benefit from the addition of 

multicarbohydrase to a phytase-supplemented diet on 21 d BW gain and FCR compared 

to phytase inclusion alone.  A phytase or XAP alone treatment was not included as 

multiple reports indicated the positive benefit of the combination (Francesh and Geraert, 

2009; Olukosi et al., 2007; Woyengo et al., 2010).  This experiment focused on the 

relationship between phytase and XAP inclusion related to multiple inclusion rates to 

identify an optimum level of the combination to maximize performance. There were 

periods during this experiment where phytase and XAP inclusion influenced parameters 

with a main effect. However, due to the negative effect the high inclusion of XAP 

seemed to have at times it is suggested that the majority of growth improvement can be 

attributed to phytase inclusion. The level of phytase and XAP to be included in poultry 

diets is an important consideration to the ultimate performance of a flock. In addition to 

performance, enzyme product inclusion is an important economic consideration that can 

impact production efficiency by adding to the cost of feed.  
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CHAPTER IV  

CONCLUSION 

 

In the two experiments, varying enzyme preparation combinations and doses of 

enzyme preparation combinations were evaluated for effects on growth performance of 

broilers. Previous research (Olukosi et al., 2015, Romero et al., 2014) on the subject 

suggests that enzyme combination can be more effective than individual or less complex 

enzyme combinations at improving growth performance and nutrient utilization. 

However, several past studies indicate varying results when testing this hypothesis. 

 In experiment 1, a cocktail of xylanase, β-glucanase, and α-galactosidase and a 

combination of xylanase, amylase, and protease were included into reduced energy diets 

individually and in combination. Supplementation of NSPase increased BW in the starter 

and finisher phases and reduced FCR throughout the experiment. Including XAP 

improved BW at d 14 and 27 and improved FCR from d 1 to 27. From the data of that 

experiment, it can be concluded that individual enzyme product combinations can be 

effective at improving broiler performance in low energy diets and compensate for 

nutrient reductions. However, supplementing these 2 enzyme product combinations that 

have similar modes of action together does not yield any further benefit superior to 

individual inclusion.  

 In Experiment 2, 2 varying levels of phytase were included with 3 varying levels 

of xylanase, amylase, and protease to determine if combining enzyme preparations of 

differing modes of action could compensate for reductions specifically in energy. At the 
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conclusion of the experiment, BW of all treatments was similar to the reference diet. 

Inclusion of high phytase X low XAP and high phytase X mid XAP resulted in 

cumulative FCR similar to the reference diet. High phytase had a main effect of reducing 

starter FCR. Factorial analysis indicates mid XAP reduced starter feed consumption 

compared to low XAP. Mid XAP reduced d 15 to 41 FCR compared to low XAP. The 

data from Experiment 2 indicates that a combination of phytase and XAP can be 

effective at improving performance in diets containing a lower level of energy; however, 

dose seems to be an important factor as the two highest doses of enzyme were not the 

most effective.  An important consideration when including an enzyme product or 

combination of products is the economic impact that can be expected on production 

efficiency. The effective inclusion of enzymes is beneficial when cost-effective. The 

price of including enzymes should be worth a gain in growth performance or should be 

cheaper than nutrients that can be compensated for. An improvement in growth 

performance can translate into heavier BW which can lead to more marketable product. 

Also, performance improvements can result in reduced production costs from more 

efficient feed conversion, meaning less feed consumed to meet target BW. The value of 

marketable product gained or feed saved should be greater than the cost of including the 

enzyme product to be considered economical. Including enzyme products to compensate 

for nutrient reductions can be economical in the instance that the cost of the nutrients 

removed is greater than the cost to include the enzyme product. In the situation of 

nutrient reductions included enzymes must be able to compensate by maintaining 

expected growth performance. In totality, the data from the research herein indicate that 
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supplementation of enzyme products into a reduced energy diet can influence growth 

performance. However, combinations of enzyme products with similar mode of action 

do not result in performance levels beyond that of individual inclusion.    
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