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Abstract

Background

Trypanosoma cruzi is the etiologic agent of Chagas disease throughout the Americas. Few

population-level studies have examined the epidemiology of canine infection and strain

types of T. cruzi that infect canines in the USA. We conducted a cross-sectional study of T.

cruzi infection in working hound dogs in south central Texas, including analysis of triatomine

vectors collected within kennel environments.

Methodology/Principle Findings

Paired IFA and Chagas Stat-Pak serological testing showed an overall seroprevalence of

57.6% (n = 85), with significant variation across kennels. Dog age had a marginally signifi-

cant effect on seropositivity, with one year of age increase associated with a 19.6% increase

in odds of being seropositive (odds ratio 95% CI 0.996–1.435; p = 0.055). PCR analyses of

blood revealed 17.4% of dogs harbored parasite DNA in their blood, including both seroneg-

ative and seropositive dogs. Molecular screening of organs from opportunistically sampled

seropositive dogs revealed parasite DNA in heart, uterus, and mammary tissues. Strain-typ-

ing showed parasite discrete typing units (DTU) TcI and TcIV present in dog samples,

including a co-occurrence of both DTUs in two individual dogs. Bloodmeal analysis of Tria-

toma gerstaeckeri and Triatoma sanguisuga insects collected from the kennels revealed

exclusively dog DNA. Vector infection with T. cruzi was 80.6% (n = 36), in which T. ger-

staeckeri disproportionately harbored TcI (p = 0.045) and T. sanguisuga disproportionately

harbored TcIV (p = 0.029). Tracing infection status across dog litters showed some seropos-

itive offspring of seronegative dams, suggesting infection of pups from local triatomine vec-

tors rather than congenital transmission.
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Conclusions/Significance

Canine kennels are high-risk environments for T. cruzi transmission, in which dogs likely

serve as the predominant parasite reservoir. Disease and death of working dogs from Cha-

gas disease is associated with unmeasured yet undoubtedly significant financial conse-

quences because working dogs are highly trained and highly valued.

Author Summary

The parasite Trypanosoma cruzi can cause Chagas disease in humans and dogs. The para-

site is typically spread through the feces of a blood-sucking ‘kissing bug’ insect. Despite

many documented cases in dogs across Texas, there are few population-level research stud-

ies investigating canine Chagas disease in multi-dog kennels in Texas. We sampled a total

of 86 dogs from three kennels in south central Texas. We found 58% of the dogs had anti-

bodies indicating they had been exposed to the parasite, and 17% of the dogs had parasite

DNA circulating in their blood. We found that over 80% of kissing bugs collected from the

kennels were infected. Further, using a bloodmeal analysis technique, we detected that all

tested bugs had recently fed on dog blood. Our findings indicate that dog kennels can serve

as an environment where kissing bugs and dogs interact, and that outdoor, multi-dog ken-

nels in areas with kissing bugs are high risk areas for Trypanosoma cruzi transmission in

dogs.

Introduction

Chagas disease in humans and dogs is caused by the hemoflagellate protozoan Trypanosoma
cruzi. Active transmission cycles of the parasite occur across the southern USA, where infected

triatomine ‘kissing bug’ vectors and wildlife reservoirs co-occur [1–4]. Canines in particular

have been shown to be important reservoir and maintenance hosts throughout the Americas

(see [5] for a comprehensive review). Although epidemiological studies of canine infection

with T. cruzi in the southern USA are limited, cases are widespread, especially in Texas [4,6–

11]. The first cases of canine T. cruzi infection in the USA were documented in Texas [9], and

a recent retrospective study reported cases from across the state [8]. Studies have revealed anti-

T. cruzi seroprevalences of 7.5% in stray dogs and 8.8% in shelter dogs across Texas [10,12].

However, given variation in clinical presentation in infected dogs, which ranges from asymp-

tomatic to acute death or chronic heart disease [13], the veterinary implications of canine T.

cruzi infections are uncertain. The absence of a canine vaccination or canine antiparasitic

treatments against T. cruzi further complicates clinical case management.

Infection with T. cruzi can occur through the introduction of infected triatomine insect

feces into skin lesions as the bug defecates on the host during or shortly after blood feeding.

Oral transmission to dogs and wildlife may result from consumption of infected bugs or

infected prey species [6,14,15]. Although congenital transmission in canines has been docu-

mented [16–18], the frequency with which this occurs is unknown. Accordingly, owners of

seropositive breeding bitches are left with little information to guide breeding programs,

except for the option of removal of positive females from breeding roles [19].

Although serologic testing is a common tool for diagnosing T. cruzi infections in dogs,

parasitemia is known to peak as early as two weeks prior to detectable antibody levels. In dogs,
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experimental studies indicate that parasitemia occurs within days to four weeks after initial

infection [20–23], with development of anti-T. cruzi antibodies detected at 15 days to 4 weeks

post infection [23–25]. Further, T. cruzi genetic strain differences may play a role in disease

outcomes in canines [21,25–27], with genetic variation occurring across geographic regions

[28], yet there have been few investigations of which strains infect dogs in the USA [29]. Veter-

inarians and dog owners are faced with increasing diagnoses of canine T. cruzi infections, but

a limited ability to understand the veterinary and public health consequences. Our objective

was to compare multiple serological and molecular biology techniques to detect and character-

ize T. cruzi infections in a cross-sectional analysis of working hound dogs in a parasite-

endemic region. We documented an active T. cruzi transmission cycle in kennels in south cen-

tral Texas.

Materials and Methods

Ethics statement

Research use of all samples from dogs was secondary to collection for diagnostic purposes; the

Texas A&M University Institutional Animal Care and Use Committee granted a formal waiver

of ethical approval.

Study design and sample collection

This study was motivated by unexplained deaths of several dogs from a large network of work-

ing hound dogs used for various scent detection functions, mainly across Texas. Several dogs

died within a short time period, and postmortem histopathologic findings indicated that

canine T. cruzi infection was the probable cause of the deaths. A representative histopathology

report from a T. cruzi-seropositive six-year old female hound that died in August 2013 showed

myocarditis and epicarditis—lesions consistent with chronic Chagas disease—although no

protozoal amastigotes were observed in the myocardium or any other tissue examined (kidney,

mediastinal lymph node, lung, liver, or spleen).

Using a cross-sectional study design, we assessed and sampled 86 working dogs from three

multi-dog kennels in the network: 26 dogs from kennel A, 31 dogs from kennel B (where the

sudden deaths and T. cruzi infection diagnosis had occurred), and 29 dogs from kennel C,

which comprised all dogs in residence at these kennels. All dogs were Coonhounds, most were

bred by the facilities, and ages ranged from approximately 6 months to 13 years. Dogs were

housed in indoor-outdoor, open air, cement/concrete kennels located within a 50 km radius of

each other in south central Texas counties. Canines had limited travel history, mainly within

Texas.

General physical examinations (auscultation, rectal temperature, mucous membrane color,

and generalized palpation) were conducted, and blood samples were collected between July

and September, 2013. Over the following several months, opportunistic postmortem samples

of blood and other tissues (heart, mammary gland, testicle, uterus) were collected from dogs

euthanized for reasons unrelated to this study. Pedigree lineage records were analyzed to deter-

mine relationships among sampled dogs (i.e., dams and littermates). Triatomine bugs were

opportunistically collected from kennels in the network by kennel staff and pest control opera-

tors in summer 2013.

Serology

Serum aliquots were tested for anti-T. cruzi antibodies using indirect fluorescent antibody

(IFA) testing at the Texas Veterinary Medical Diagnostic Laboratory (TVMDL; College
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Station, TX). All samples were screened for the presence of anti-T. cruzi antibodies at 1:20,

1:80 and 1:160 dilutions. According to TVMDL protocols, titer values of 20 or greater were

considered positive for antibody.

The remaining serum was stored at -20˚C until analyzed using the Chagas Stat-Pak chro-

matographic dipstick test (ChemBio, NY). The Chagas Stat-Pak test has previously been used

for antibody-detection test in dogs [12,25,30], and may offer an economical alternative for

rapid screening of population, as had been suggested of a similar rapid test [31]. Stored serum

samples were tested according to manufacturer’s instructions and any development of a band

at 15 minutes was considered positive for antibody. Band strength was noted as faint, medium,

or bold. Samples positive using both IFA and Chagas Stat-Pak dipstick tests were considered

seropositive in the calculation of population-level seroprevalence.

Detection and characterization of T. cruzi DNA

An extraction kit (E.Z.N.A. Tissue DNA kit, Omega Bio-Tek, Norcross, GA) was used to

extract DNA from 250 μL of clotted blood from dogs for which serology testing was also per-

formed. Extracted DNA was analyzed using qPCR to detect parasite DNA.

Samples were first screened for presence of T. cruzi DNA using the real-time PCR Cruzi

1/Cruzi 2 primer set and Cruzi 3 probe [32,33]. This PCR amplifies a 166-bp region of a repeti-

tive nuclear DNA sequence, and is sensitive and specific for T. cruzi when compared to other

PCR techniques [34]. A Stratagene MxPro3000 instrument (Agilent Technologies, Santa

Clara, CA) was used to amplify DNA under previously described thermocycling parameters

[32], except with a 3-minute initial denaturation. Reactions consisted of 5 μL of template

DNA, primers at a final concentration of 0.75 μM each, 0.25 μM of probe, and iTaq University

Probes Supermix (BioRad Laboratories, Hercules, CA), in a total volume of 20 μL. Machine-

calculated thresholds and reaction curves were visually checked to assure successful amplifica-

tion. Samples producing cycle threshold (Ct) values of less than 34 were considered potential

positives and subjected to further testing for confirmation and discrete typing unit (DTU)-

typing.

A multiplex qPCR was used to confirm T. cruzi infection and determine T. cruzi DTU

based on amplification of the nuclear spliced leader intergenic region (SL-IR) with the use of a

panel of DTU-specific probes [35]. Reactions were 20 μL total volume using a QIAGEN Multi-

plex PCR Kit (QIAGEN, USA), run using the following protocol: 15 minutes at 95˚C followed

by 40 cycles of 95˚C for 30 seconds and 60˚C for 1 minute. Reactions were run on a BioRad

CFX96 (Hercules, CA, USA). Both FAM and HEX dyes were used as previously described

[35]; however, due to differing instrument capabilities, our reactions differed from published

protocol [35] by substituting Cy5 and Tex615 dyes (Integrated DNA Technologies, Inc., Coral-

ville, IA, USA) for Quasar670 and CAL Fluor Red610, respectively. Samples that yielded ampli-

fication curves on both the Cruzi 1/2/3 qPCR and the SL-IR qPCR were interpreted as PCR-

positive in our analyses. Samples that fluoresced with FAM were classified as TcI, whereas

samples that fluoresced with Tex615 were classified as TcIV; samples that fluoresced with both

FAM and Tex615 were classified as mixed TcI/TcIV. Although different TcIII isolates have

previously resulted in fluorescence of either Quasar670 alone or both Quasar670 and CAL

Fluor Red610, the TcIV isolates previously tested were shown to only cause CAL Fluor Red610

fluorescence [35]. None of the samples we tested resulted in Quasar670 (here, Cy5) fluores-

cence. Supported by the subset that we definitively typed using TcSC5D gene sequencing

(below), we classified samples with CAL Fluor Red610 (here, Tex615) fluorescence as TcIV.

In addition to probe-based DTU-typing, as an additional method to investigate strain-typ-

ing, a subset of samples were amplified using a primer set that amplifies a region of the
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TcSC5D gene, a putative lathosterol/episterol oxidase [36]. The 832-bp amplicons were visual-

ized on 1.5% agarose gel with ethidium bromide, and sequenced using Sanger sequencing

(Eton Bioscience Inc., San Diego, CA, USA). Geneious version 8 [http://www.geneious.com

[37]] was used to visually review chromatographs and sequences, align forward and reverse

sequences, and examine locations of key SNPs to determine DTUs [36].

Negative controls were included in each set of DNA extractions and PCR reactions. Positive

controls included T. cruzi DNA extracted from a TcI isolate Sylvio X10 CL4 (ATCC 50800,

American Type Culture Collection [ATCC], Manassas, VA, USA), an untyped isolate cultured

from a published Texas canine case [38], a TcIV isolate from an infected Texas raccoon [39],

and TcIV isolates from T. sanguisuga and T. gerstaeckeri from Texas.

Risk factor analyses

Samples positive using both IFA and Chagas Stat-Pak dipstick tests were considered seroposi-

tive in the calculation of population-level seroprevalence. Blood samples classified positive by

Cruzi 1/2/3 and SL-IR qPCRs were considered positive in calculation of population-prevalence

of T. cruzi DNA in blood samples. To evaluate the relationship between potential risk factors

and positive canines, bivariable analyses were performed using chi-squared, Fisher’s exact

tests, or t-tests. Variables assessed were kennel (A, B, or C), age, and sex. Logistic mixed effect

regression models were built using the lme4 package in Program R [40] to further investigate

risk factors with p< 0.25 in the initial screening and risk factors with justification for inclusion

based on published data. To determine the variation in positive dogs across age and sex, kennel

was included as a random effect. To determine the variation in positive dogs across kennels,

age was included as a random effect. Factors with values of p< 0.05 were considered signifi-

cant. Odds ratios and 95% confidence intervals were calculated. Separate models were built for

anti-T. cruzi antibody status and blood T. cruzi PCR status.

Microscopic and molecular analysis of tissues

Tissues collected opportunistically from euthanized dogs were preserved in 10% neutral buff-

ered formalin. Formalin-preserved samples were submitted for histopathologic examination

with routine hematoxylin and eosin staining at the TVMDL and reviewed by a pathologist.

Additionally, DNA was extracted from approximately 1 cm3 pieces of various fresh tissues

using the same methods as the molecular processing of dog blood samples as described above.

Given variation in parasite localization within tissues, up to five independent subsamples per

tissue were tested.

Characterization of vector T. cruzi infection and bloodmeal host

identification

Bugs were identified to species using morphologic features [41]; sex and evidence of a recent

bloodmeal were noted. After bugs were washed in 10% bleach solution and rinsed in distilled

water, sterile instruments were used to dissect the bugs and isolate hindgut material. DNA was

extracted from hindguts and tested for T. cruzi DNA and DTU determination using the same

methods described above. Two-sample tests for equality of proportions with continuity correc-

tions were used to compare the proportions of TcI and TcIV between infected T. gerstaeckeri
and T. sanguisuga. In order to determine the source of recent bloodmeals, hindgut DNA was

subjected to PCR amplification of host cytochrome B sequences using previously published

primers and cycling conditions [42,43]. Reactions included 3 μL template DNA, primers at

final concentrations of 0.66 μM each, and FailSafe PCR Enzyme Mix with PreMix E (Epicen-

tre, Madison, WI) in a final reaction volume of 50 μL. Amplicons were visualized on 1.5%
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agarose gel with ethidium bromide, and sequenced using Sanger sequencing (Eton Bioscience

Inc., San Diego, CA, USA). Resulting sequences were compared to existing sequences using

Basic Local Alignment Search Tool (National Center for Biotechnology Information, US

National Library of Medicine).

Accession numbers

Sequences of the TcSC5D genetic region amplified from samples are available at NCBI Gen-

Bank; accession numbers are KX594832-KX594840

Results

Blood samples from 86 dogs in three kennels were analyzed using a variety of serologic and

molecular techniques to detect T. cruzi exposure and infection. Additionally, tissue samples

were tested from 9 dogs. A total of 44 triatomine insects were recovered from the kennels for

testing and analyses.

Population data

General physical examinations (auscultation, rectal temperature, mucous membrane color,

and generalized palpation) of the dogs at the time of sampling did not reveal any significant

findings suggestive of clinical presentation of T. cruzi infection.

The birthdate was known for 80 of the 86 dogs in the three kennels. Ages ranged from 6

months to 13 years, with a mean and median of 3.96 years and 3.58 years, respectively. Mean

age and standard deviation at kennels A, B, and C was 4.05 ± 3.31 years (n = 26), 3.77 ± 2.64

years (n = 27), and 4.06 ± 2.68 years (n = 27), respectively. There were 15 dogs less than 1 year

old (18.6% of 80). There were 39 males (45.3%) and 47 females (54.7%). At the time of the

cross-sectional blood sampling, there were seven dams with a total of seventeen offspring that

were included in the study (Fig 1).

Serological results

A total of 56 of 86 (65.1%) dogs had an antibody titer value of 20 or greater on IFA, and 53 of

85 (62.4%) dogs were reactive on the Chagas Stat-Pak (Table 1). Combined, 49 of 85 dogs were

positive on both antibody detection tests, yielding a seroprevalence of 57.6%. A single sample

was positive on IFA with an antibody titer of 160, but was not tested on the Chagas Stat-Pak

and was therefore not included in the overall seroprevalence estimate. There were 10 dogs pos-

itive on only one test and negative on the other; these dogs with discordant results were con-

sidered seronegative for the purpose of this study. Of these ten discordant samples: 4 dogs

were negative on IFA but had faint (positive) lines on the Chagas Stat-Pak, and 6 dogs were

negative on Chagas Stat-Pak but had IFA titer values of 20 (3 dogs), 80 (1 dog), and 160 (2

dogs). Overall seroprevalences at each kennel were: 46.2% at kennel A (n = 26), 71.0% at ken-

nel B (n = 31), and 53.6% at kennel C (n = 28).

Analysis of canine serostatus in relation to lineage revealed both positive and negative litter-

mates born to positive and negative dams. Four 20-month old pups were seropositive, despite

the concurrently-tested dam being seronegative (Fig 1).

In addition to the main 86 dogs of this study, a litter of young pups was opportunistically

sampled to gather data on serostatus and PCR status of neonatal pups born to a seropositive

dam. A litter of six pups was born to a female who tested serologically positive (� 1:160) nine

months previously, and these pups were serially sampled twice over 4 weeks. The dam acciden-

tally smothered one of the pups one day after birth. Blood samples from that pup were PCR

Canine Trypanosoma cruzi Infection in Texas
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negative for parasite, although testing on Chagas Stat-Pak gave a faint (positive) band. The

other five pups had blood sampled two weeks after birth and tested on Chagas Stat-Pak: two

gave very faint (positive) bands and three were negative. At one month of age, all five were neg-

ative on Chagas Stat-Pak. None of the two week or one-month samples were PCR positive.

Molecular detection and characterization of parasite DNA in blood

samples

PCR analysis of 86 DNA extracts of blood clots revealed 15 (17.4%) positive samples. There

were 23 samples with Ct values less than 34 on the initial Cruzi 1/2/3 qPCR and subjected to

attempted amplification using the SL-IR PCR, of which 15 samples tested positive using the

SL-IR PCR assay. Overall prevalences of PCR-positive dogs at each kennel were: 15.4% at ken-

nel A (n = 26), 25.8% at kennel B (n = 31), and 10.3% at kennel C (n = 29).

Table 1. Serological testing. Blood samples from working dogs were tested for anti-T. cruzi antibodies using IFA and Chagas Stat-Pak. Only those samples

positive on both assays were considered positive for calculation of seroprevalence. *In addition to these 55 IFA-positive dogs, there was one additional dog

with an antibody titer of 160 that was not run on the Chagas Stat-Pak.

IFA

Positive Negative Total

StatPak Positive 49 4 53

Negative 6 26 32

Total 55* 30 85

doi:10.1371/journal.pntd.0005298.t001

Fig 1. Lineages of five groups of related dogs. Each dog is represented by its number, sex, date of birth, and IFA status at time of August 2013

testing. Dams Dog 62, Dog 79, and Dog 85 were from kennel A, dams Dog 33, Dog 37, Dog 38, and Dog 57 were from kennel C.

doi:10.1371/journal.pntd.0005298.g001

Canine Trypanosoma cruzi Infection in Texas
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Of the 15 PCR positive blood samples, the SL-IR assay revealed 9 TcI, 5 TcIV, and 1 TcI/

TcIV mixed infections. Amplification and sequencing of the TcSC5D gene DNA target was

successful in five blood samples. TcSC5D and SL-IR results were congruent, except one of the

TcIV TcSC5D findings was characterized as a mixed TcI/TcIV by SL-IR PCR.

Comparison of serology and PCR

Using the serological positivity criterion of being positive on both IFA and Stat-Pak assay,

serology and PCR findings categorized 12 of 85 dogs (14.1%) as both seropositive and PCR

positive (Table 2), 37 dogs (43.5%) as seropositive and PCR negative; 3 dogs (3.5%) as PCR

positive and seronegative; and 33 dogs (38.8%) as both seronegative and PCR negative. One

dog sample with a 160 IFA titer was not run on Chagas Stat-Pak; that dog was PCR negative.

Two dogs that were PCR positive but did not meet the positivity criterion on both serological

assays were positive on IFA with antibody titers of 20 and 80. Of the 37 seropositive, PCR-neg-

ative dogs, only one was less than 1-year old, indicating that seropositive dogs were not posi-

tive due to maternal antibodies.

Risk factor analyses

Bivariable analysis of putative risk factors for canine seropositivity indicated that kennel

(p = 0.146) and age (p = 0.077), but not sex (p = 0.535), were associated with p-values below

the threshold significance level for inclusion in the regression model (Table 3). Bivariable

Table 2. Results of serologic and PCR testing. Blood samples from working dogs were tested for anti-Trypanosoma cruzi antibodies using IFA and Cha-

gas Stat-Pak; DNA extracted from the blood clots were tested for presence of T. cruzi DNA using two PCR assays. Samples were considered serologically

positive if positive on both IFA and Chagas Stat-Pak and PCR positive if they were positive on both assays.

Serology

Positive Negative Total

PCR Positive 12 3 15

Negative 37 33 70

Total 49 36 85

doi:10.1371/journal.pntd.0005298.t002

Table 3. Bivariable analyses. Characteristics of working hounds dogs and serologic and infection status with Trypanosoma cruzi, Texas, 2013.

Anti-T. cruzi antibody status Blood PCR status

Risk factor Seropositive dogs

(n = 49)

Seronegative dogs

(n = 36)

p-value PCR-positive dogs

(n = 15)

PCR-negative dogs

(n = 71)

p-value

Dogs in kennel, n (%) 0.146a 0.310c

A 12 (46.2) 14 (53.8) 4 (15.4) 22 (84.6)

B 22 (71.0) 9 (40.9) 8 (25.8) 23 (74.1)

C 15 (53.6) 13 (46.4) 3 (10.3) 26 (89.7)

Age in years, mean

(SE)d
4.4 (0.4) 3.2 (0.5) 0.077b 3.3 (0.8) 4.1 (0.3) 0.344b

Sex, n (%) 0.535a 0.863a

Female 29 (61.7) 18 (38.3) 9 (19.1) 38 (80.9)

Male 20 (52.6) 18 (47.4) 6 (15.4) 33 (84.6)

n: sample count; %: percentage; and SE: standard error.
a Evaluated with Chi-squared.
b Evaluated with t Student test.
c Evaluated with Fisher exact test.
d Ages of 6 dogs were unknown, and these dogs were not included in analysis.

doi:10.1371/journal.pntd.0005298.t003
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analysis of putative risk factors for blood PCR-status indicated that neither kennel (p = 0.310),

age (p = 0.344), nor sex (p = 0.863) were associated with p-values below the threshold signifi-

cance level for inclusion in the regression model (Table 3). Nonetheless, all putative risk factors

were retained in the regression models based on previous work [14,44–46]. In logistic regres-

sion models to predict serostatus while including kennel as a random effect, dog age was mar-

ginally positively (p = 0.055) associated with seropositivity, where one year of increase in canine

age was associated with a 19.6% increase in the odds of being seropositive, and there was no

effect of sex (p = 0.855) (Table 4). The odds of being seropositive were 6.6 (95% CI 1.32–32.88)

times greater for dogs in kennel B than in the referent kennel (kennel A) (p = 0.022). In the

logistic regression models to predict blood PCR status, none of the putative risk factors of ken-

nel (p = 0.251 and p = 0.670), age (p = 0.296) or sex (p = 0.637) were significant.

Microscopic and molecular analysis of tissues

A total of five tissue samples opportunistically collected from four IFA-positive dogs were

examined histologically. Three of four cardiac samples had lesions consistent with chronic

canine trypanosomiasis (Table 5), although no amastigotes were observed in any of the sec-

tions. Lesions included cardiomyofiber degeneration (ranging from minimal to moderate),

with accumulations of lymphocytes, plasma cells, and rare macrophages. One uterine tissue

section was viewed; no amastigotes or significant lesions were observed (Table 5).

T. cruzi DNA was detected in heart, blood, uterus, and mammary gland tissues collected

opportunistically from multiple serologically-positive dogs (Table 5). Three dogs did not have

detectable parasite DNA in tested uterine tissue, whereas four of the five samples from the

body of the uterus of one dog were PCR positive. Three dogs did not have detectable parasite

DNA in tested testicular tissue. One dog (Dog 88) had multiple parasite positive tissues,

including heart, blood, uterus, and mammary gland. One dog (Dog 432) had PCR-positive

blood and heart tissue.

Cardiac and uterine samples from one dog (Dog 88) revealed TcIV in uterine and mam-

mary gland tissue and TcI in cardiac tissue; these results were congruent between SL-IR and

TcSC5D DTU-typing methods. One dog (Dog 432) had TcI in heart tissue and TcIV in blood.

Bugs

A total of 44 bugs (Table 6) were opportunistically collected in summer 2013 from the network

of working dog kennels, including the three kennels that housed dogs tested in the cross-sec-

tional serological study. Bugs included 16 adult Triatoma gerstaeckeri and 28 adult T. sangui-
suga. Of the 36 insects that were tested for T. cruzi, 29 (80.6%) were positive, including 16 of 16

Table 4. Regression models. Factors associated with Trypanosoma cruzi seropositivity and PCR-positivity in working hound dogs, Texas, 2013.

Model to predict seropositivity Model to predict PCR-positivity

OR 95% CI p-value OR 95% CI p-value

Kennel Kennel A referent referent

Kennel B 6.585 1.319–32.884 0.022 2.445 0.532–11.241 0.251

Kennel C 1.376 0.332–5.702 0.660 0.683 0.119–3.939 0.670

Age (years) 1.196 0.996–1.435 0.055 0.889 0.713–1.108 0.296

Sex Female referent referent

Males 1.099 0.399–3.031 0.855 0.756 0.236–2.418 0.637

95% CI: 95% confidence interval.

doi:10.1371/journal.pntd.0005298.t004

Canine Trypanosoma cruzi Infection in Texas
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(100%) tested T. gerstaeckeri and 13 of 20 (65%) T. sanguisuga. The proportion of infected T.

gerstaeckeri that harbored TcI was significantly greater than that of infected T. sanguisuga
(χ2 = 4.026; p = 0.045), whereas the proportion of infected T. sanguisuga that harbored TcIV

was significantly greater than that of T. gerstaeckeri (χ2 = 4.765; p = 0.029); Table 6). Based on

visual examination, 30 of the 44 bugs had evidence of a recent bloodmeal in their guts. Of 24

bugs with sufficient bloodmeal volume for successful bloodmeal PCR and Sanger sequencing,

all 24 had�97% identity to Canis lupus familiaris (domestic dog).

Discussion

Over half (57.6%) of a population of working hound dogs were seropositive for T. cruzi, and

17.4% harbored parasite DNA in their blood (Table 2). Additionally, we documented parasite

DNA in heart, mammary, and uterine tissues in dogs from this network. A high (80.6%) infec-

tion prevalence was found in triatomines recovered from the kennels, and the only bloodmeal

Table 5. Opportunistic additional testing of serologically positive dogs. Serologic, molecular, and histologic results of tissue samples opportunistically

collected from T. cruzi-infected dogs.

Dog

ID

Sex Age at time of

sampling

Tissue tested and PCR

results* (DTU detected)

Histopathology results

Dog 4 F 5 y uterus—negative NA

Dog 5 F 5 y uterus—negative NA

Dog 7 F 8 y uterus—negative NA

Dog

50

M 15 mo • heart–positive (DTU TcIV)

• testicle—negative

heart—minimal cardiomyofiber degeneration and loss with accumulation of a few

lymphocytes and plasma cells

Dog

51

M 15 mo • heart—negative

• testicle—negative

• blood—negative

heart—no significant lesions

Dog

53

M 3 y • heart—negative

• testicle—negative

NA

Dog

75

M 2 y • heart–positive (DTU TcI)

• testicle—negative

heart—multifocal, mild foci of cardiomyofiber degeneration and loss with interstitial

fibrosis and accumulation of lymphocytes, plasma cells and rare macrophages

Dog

88

F 13 mo • heart—positive (4/4) (DTU

TcI)

• blood—positive (2/5)

• uterus—positive (4/5) (DTU

TcIV)

• mammary gland—positive

(2/2) (DTU TcIV)

• heart–moderate cardiomyofiber degeneration and loss with accumulation of

lymphocytes, plasma cells and a few macrophages

• uterus—no significant lesions

Dog

432

M 6 mo • heart—positive (DTU TcI)

• blood—positive (DTU TcIV)

NA

*Fractions in parenthesis indicate number of positive subsamples over total subsamples tested.

doi:10.1371/journal.pntd.0005298.t005

Table 6. Triatomine insects collected from kennels. Triatoma spp. bugs collected from kennels were tested for Trypanosoma cruzi. T. cruzi DTUs and

bloodmeal sources were determined.

Submitted No. positive / no. tested (Infection prevalence) T. cruzi DTUs Bloodmeal source

T. gerstaeckeri 16 16/16 TcI (10 bugs; 62.5%) Canis lupus familiaris

(6M, 10F) (100%) TcIV (4 bugs; 25.0%) (9/9 bugs)

TcI/TcIV mix (2 bugs; 12.5%)

T. sanguisuga 28 13/20 TcI (2 bugs; 15.4%) Canis lupus familiaris

(10M, 18F) (65.0%) TcIV (9 bugs; 69.2%) (15/15 bugs)

TcI/TcIV mix (2 bugs; 15.4%)

doi:10.1371/journal.pntd.0005298.t006
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host detected in these bugs was dog. Coupled with the documented history of multiple deaths

due to Chagas disease in these working dogs, our findings highlight a key role of dog kennels

as a nidus of T. cruzi transmission. While Chagas disease impacts many types of dogs across

the southern USA, including pet dogs and stray dogs, there is an additional unmeasured yet

undoubtedly important financial consequence when Chagas disease impacts working dogs

because they are highly trained and have a significant economic worth that results from the

value of the duties they perform.

The 57.6% seroprevalence in these kenneled working dogs is much higher than the 8.8%

seroprevalence found in a general population of dogs across Texas [12]. This difference is simi-

lar to findings in Louisiana, in which kenneled hunting dogs had a seroprevalence of 51.6%,

which was higher than the 22.1% seroprevalence reflected in a general population of dogs in

the surrounding area [30]. This population of working dogs we sampled was selected due to

recent deaths in a focal kennel and is not representative of all kennels or south Texas. Dogs

were considered at high risk to acquiring T. cruzi infection due to the presence of infected vec-

tors in the kennel environment as well as outdoor working settings. All sampled dogs were

intensively trained for pack tracking of lost and missing persons; when working, dogs trail

intently while running and are undistracted by their surroundings. Therefore, although dogs

may also encounter vectors outside the kennel environment, it is most plausible that infection

was acquired within the kennels.

Older dogs were more likely to be seropositive, with approximately 19.6% increase in odds

of seropositivity with each additional year of age, although the trend was only marginally sig-

nificant (p = 0.055; Table 4). Increasing infection with age has been previously reported [7,14]

and is expected, since older dogs have had longer opportunity to be exposed to T. cruzi and

develop life-long seropositivity. Our findings of higher seroprevalence in older dogs are sug-

gestive of an ongoing transmission cycle in these kennels, rather than an emerging recent phe-

nomenon. It is unclear why dogs in kennel B were more likely to be seropositive than dogs in

kennel A; one potential risk factor not examined in this study was additional outdoor kennels

at kennel B that possibly served as refugia for triatomine bugs.

In this study, both serological diagnostic approaches (IFA and Chagas Stat-Pak) resulted in

similar population-level estimates of seroprevalence (65.1% vs. 62.4%, (Table 1). However dis-

cordant results (positive and negative results on the same sample across different testing plat-

forms) occurred in 10 dogs, the majority of which were negative on one test and only faintly

positive (faint band or 20 endpoint titer) on the other. Although dogs with discordant results

were interpreted as seronegative in our study, at least some of these dogs were infected, based

on PCR-positive results in 2 dogs, likely reflecting acute infections. This observation under-

scores the importance of using personal protective equipment when handling canine blood

even from seronegative individuals.

While the Stat-Pak has not been validated using dogs with known infection histories, this

test has shown high sensitivity (87.2–100%) and specificity (93.2–98.6%) in human samples

when compared with other serological techniques [47–49]; however, others have found con-

siderable variation and lower sensitivity (26.6–87.5%) [50]. It is difficult to compare canine

infection prevalence across studies because data from the same diagnostic tools may be inter-

preted differently. For example, whereas we interpreted any development of color to indicate a

positive result for the Stat-Pak as per manufacturer’s instructions, others have considered faint

band development as negative [30]. Further, in our study, serum dilutions for IFA of 1:20 or

higher were considered positive for antibody as per TVMDL reporting standards. In other

canine T. cruzi studies, however, dilutions interpreted as positive included those equal to or

greater than 1:128 or 1:160 [4,8] (however, see [51]); and one previous study found chronically

infected dogs produced positive results of serum dilutions ranging from 1:120 to 1:320 [20].

Canine Trypanosoma cruzi Infection in Texas
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Faint bands on the Stat-Pak, low antibody titers on the IFA, and discordant results across mul-

tiple testing platforms may result from T. cruzi strain type variation, weak immune response,

an early, rising antibody response to a recent infection, and variation in test sensitivity or spec-

ificity. Imperfect diagnostics and the absence of a gold standard indeed represent one of the

major challenges in canine Chagas disease research.

Prior research of experimental chronic Chagas disease in dogs has demonstrated that multi-

ple extractions and PCRs are needed to ensure detection of T. cruzi DNA from whole blood

samples [52], although another study found that T. cruzi DNA was more likely to be detected

the blood clot (which was used in this study) than buffy coat or whole blood samples [53]. One

study conducting controlled experimental reinfection in dogs found that parasitemia was not

as common in reinfections as it was in initial infection, and that parasitemia profile varied

depending upon the individual dog [23]. While PCR of samples does not confirm the presence

of whole, viable parasites in the blood, findings of parasite DNA in the blood suggest that posi-

tive dogs could potentially be infectious to blood-feeding insect vectors. It is likely the rela-

tively high prevalence of T. cruzi DNA found in this study (17.4%) reflects the timing of the

blood sampling (late July) corresponding with the time of year kissing bugs are most likely to

be encountered in Texas [54]. With potential for continued exposure to kissing bugs and

repeat infections with T. cruzi, it is possible that dogs with positive serological and positive

PCR results (Table 2) could have been recently reinfected. Additional diagnostic difficulties

are the result of parasitemia waning after initial infection [55] or lower parasitemic peaks from

reinfection [23].

In comparing molecular and histology results, we found that all four PCR-positive hearts

subjected to histology were associated with lesions consistent with chronic T. cruzi infection,

although no amastigotes were seen in heart samples (Table 5). The lack of apparent amasti-

gotes is not surprising, however, given that experimental studies have shown parasites are not

always histologically detected in cardiac tissue of chronically infected dogs [20,23]. Further, T.

cruzi strain type can also influence level of cardiac damage and presence of amastigotes [22],

although more research is needed on pathology variation owing to parasite strain.

There is an interest, particularly in the canine breeding community, in whether T. cruzi can

be sexually transmitted between dogs. We used PCR testing to evaluate testicle and uterine

samples from seropositive dogs. None of four testicle samples were positive, but small sample

size and conflicting reports in previous literature [56–58] leave us unable to draw firm conclu-

sions. Of four uteri tested, we detected a single positive uterus in which four of the five samples

taken from the body of the uterus were positive. The mix of positive and negative samples sug-

gests that T. cruzi distribution in the tissue is not uniform. The detection of parasite DNA in

uterine tissue supports previous reports of transplacental transmission of this parasite in dogs

and in humans [17,59]. In addition to reproductive tissues, the potential for transmammary

transmission has been suggested by others [14,16]. Our finding of T. cruzi DNA in mammary

gland tissue was in a dog that also had evidence of parasites in heart and uterine tissue.

Congenital transmission of T. cruzi in dogs has been shown, with one study finding circu-

lating antibodies in 45-day old pups born to experimentally infected dams [17], and is a con-

cern to breeders. We conducted a cross-sectional study with concurrent sampling of dams and

their offspring, and the infection status of dams was not specifically known at the time of

whelping. Although this study design limits the ability to draw conclusions about congenital

transmission in this setting, the observed patterns of infection across family lines are useful for

inferring transmission pathways. For example, we found both seropositive and seronegative

littermates from a seronegative dam, supporting the likelihood of local vector-borne transmis-

sion. In contrast, we observed several seropositive bitches associated with both seropositive

and seronegative offspring; scenarios for which congenital transmission cannot be rule out.

Canine Trypanosoma cruzi Infection in Texas
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None of the PCR-positive dogs in this study were the offspring/dams of any other concur-

rently-sampled PCR-positive dogs. Additionally, although no parasite DNA was detected in

six young pups from a seropositive dam, faint bands produced on the Chagas Stat-Pak test on

early blood draws might be the result of maternal antibodies circulating in the pups. Addi-

tional research is needed regarding congenital transmission rates and relation between mater-

nal and self-produced anti-T. cruzi antibodies.

We found higher infection prevalence (>80%) in kissing bugs than recent statewide esti-

mates of 63% and 51% [54,60]. Bloodmeal analysis of the triatomines revealed all evaluated

bugs had fed on dogs (Table 6). Other studies in the USA have found evidence of dog blood in

triatomines, including bugs associated with houses and dog kennels [61–64]. High infection

prevalence in vectors collected from canine quarters, combined with evidence of bugs feeding

on dogs, supports vector-host contact and parasite transmission to dogs. Combined with our

findings of PCR positive dog blood, it is likely that dogs are the source of vector infection and

serve as the main reservoir in this setting. Prevention of canine infection with T. cruzi relies

heavily on vector control. Integrated pest management strategies consisting of pesticide use,

barrier methods (netting or mesh around kennels), and physical management of dogs (moving

dogs to indoor facilities at night) have been employed in different areas around Texas.

We found TcI and TcIV infections in dogs, including three dogs infected with both DTUs.

These dogs may have been re-infected given that the vector populations in the same areas also

harbored both strains (Table 6). Previous strain typing efforts of limited dog samples from the

USA have shown almost exclusively TcIV infections [29,65], although one TcI/TcIV mixed

infection was documented in a USA dog [29], and mixed strain infections have been docu-

mented in dogs in Columbia [66]. T. gerstaeckeri were disproportionately infected with TcI

(p = 0.045), whereas T. sanguisuga were disproportionately infected with TcIV (p = 0.029), in

contrast to previous findings of only TcI in limited T. sanguisuga samples from the eastern

USA [29]. Differing host preferences and geographic distribution of these triatomine species

[60] may put geographically disparate dog populations at risk of acquiring different strains of

T. cruzi. Previous research suggests that parasitemia, antibody development, and disease may

vary according to strain type of T. cruzi, as well as length of infection and infected host species

[21,22,67,68]. We found DTU determination using the probe-based qPCR [35] was more use-

ful than the TcSC5D gene target assay, likely because the latter assay was developed using

DNA from pure parasite culture [36] was not optimized for use in field-collected samples with

mixed DNA populations [see [39,69]].

Although dogs have been shown to be important T. cruzi reservoirs in areas of Latin Amer-

ica [66,70,71], with one model of a rural Brazilian village estimating that an infected dog could

infect one triatomine per day [72], the ecological settings of dogs in central Texas may limit

their importance as reservoirs of human infections. Dogs in central Texas are typically housed

either in a kennel separate and somewhat distant from the human dwelling or indoors in a

house constructed with screens and doors that limit bug entry. The infected Texas dogs likely

serve as reservoirs within the kennel setting, serving to infect bugs that can subsequently infect

other dogs. However, the infectiousness of dogs to bugs has been shown to vary widely, and

depends upon a variety of factors, including: dog body condition, coinfections, dog history of

infection, vector competence, bug bloodmeal size, and bug feeding duration ([73], see [5] for a

comprehensive review). Given our findings of high infection prevalence in dogs and vectors

that fed on dogs, we conclude canine kennels represent a high-risk environment for T. cruzi
transmission.

Canine Trypanosoma cruzi Infection in Texas
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