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ABSTRACT

The Bronze Age Objects from Tel Nami, Israel:

Their Conservation and Implications for Ancient Metallurgy 

in the Eastern Mediterranean. (August 1991) 

Georgia Lynne Fox, B.A., University of California 

Santa Barbara

Chair of Advisory Committee: Dr. D. L. Hamilton

of

This thesis investigates the conservation of bronze objects 

Nami, Israel. Since Tel Nami is located on the Mediterranean c 

problems are central to this investigation: the destructive nature 

chloride from seawater inundation, and the stabilization of the b 

from subsequent corrosion attack.

An examination of the internal structure of metal and Brohze Age

for

from Tel 

past, two 

cuprous 

rionze artifacts

metallurgy technology of copper and its alloys provides a basis 

understanding how corrosion operates in ancient metal. Furthe: 

study examines the unique combination of factors which compris^ 

coastal site in order to determine how they contribute to in-situ 

processes. The final assessment of the conservation project inclu 

discussion of the methodology and current existing technology, 

by the utility of conservation in providing important diagnostic i 

about artifacts and implications for future research.

r|more, this 

a marine 

corrosion 

des a

This is followed 

information



IV

ACKNOWLEDGEMENT

I would like to express my appreciation to my Committee Chairman, Dr.

D.L. Hamilton, for his support and inspiration. He was my expe|rt guide and 

mentor throughout my entire journey at Texas A&M University. Under his 

tutelage, I learned the basics of archaeological conservation and gained a solid 

foundation in archaeological fieldwork. His emphasis on good common sense 

and resourcefulness have instilled in me the importance of combining both a 

scholarly and practical approach to archaeology.

I would also like to thank the rest of my outstanding committee 

members. Dr. Bruce Dickson has been a mentor in the truest sense of the 

word. To him, I express my deep gratitude for his continual supiKHt and 

encouragement and ever-present wit. As his student, I have grown by leaps and 

bounds since coming to Texas A&M. For this, and many other reasons, I 

cannot thank him enough.

I would like to especially thank Dr. Michal Artzy for her Support and 

friendship, and for teaching me about the Late Bronze Age. I will always be 

grateful to her for having faith in my ability to carry out this thesis project. 

Without her, this thesis would not have been possible.

Dr. George F. Bass has made Mediterranean archaeology come alive in 

the past twenty years, and through his efforts, has inspired many of us to step 

into the discipline. I would like to thank him for this inspiration and for the



V

Kress

project.

helpful suggestions that he contributed toward the writing of this thesis.

I would also like to especially thank Dr. Vaughn Bryant, Head of the 

Department of Anthropology at Texas A&M, for his encouragement from the 

very beginning of my graduate career. Dr. Gentry Steele and Dr. Norbert 

Dannhaeuser, through their friendship and guidance, have been instrumental in 

my development as an anthropologist. I extend a word of thank} to the College 

of Liberal Arts for their support for research and the Samuel H.

Foundation for their generous contribution to my Masters Thesis

This acknowledgement would not be complete without special thanks to 

various friends who have contributed to my academic career in one way or 

another. I would like to thank Diana Thornton for teaching me WordPerfect 

and computer literacy, and Wayne Smith for taking over where Diana left off 

after she moved away. Many thanks to Helen Dewolf and Charles Moore for
4

providing two figures for this thesis.

Finally, my life in College Station has been enriched throiigh the 

kindness, generosity and friendship of Dr. Lyle Schoenfeldt and Wanda 

Hinshaw. To them, I am eternally grateful. Last, but not least, 

thank my mother for always having an unconditional belief in mV goals and 

aspirations, and to my good friend Miguel Paredes, who encouraged me to 

come to College Station to seek out a dream.

I would like to



VI

TABLE OF CONTENTS

Page

ABSTRACT ..........................................................

ACKNOWLEDGEMENT......................................

TABLE OF CONTENTS ......................................

LIST OF TABLES ...............................................

LIST OF FIGURES...............................................

CHAPTER

I. INTRODUCTION AND SITE DESCRIPTION

Background ...............................................

Site Description.........................................

The C oastline ............................................

. iii 

. iv 

. vi 

.viii 

. ix

. 1 

. 1 

.2 

13

IL THE EVOLUTION OF COPPER METALLURGY IN THE

EASTERN MEDITERRANEAN AND NEAR EAST .

Introduction

Ores and M in in g .......................................

The Development of Smelting Technology

. . 19

. . 19 

. . 19 

. . 28

III. THE CORROSION AND CONSERVATION OF COPPER

AND ITS ALLOYS ..........................................................

Introduction........................................................................

The Formation and Structure of Metals .........................

68

68

68

The Corrosion Process 80



Vll

CHAPTER

The Conservation Program 

Implications of the Study

IV. CONCLUSION ................

REFERENCES CITED..............

APPENDIX.................................

VITA .........................................

Page

138

157

162

166

188

193

4



vm

LIST OF TABLES

Table 1. Chronology for the archaeological periods of ancient Isiiael 

Table 2. Standard Electromotive Series .......................................

Page

. . 7 

. .82

4



IX

LIST OF FIGURES

Page

Figure 1. Map of three kurkar ridges located along Israel’s c< 

Figure 2. Map of Tel Nami .....................................................

last .................... 4

............................5

Figure 3. Map of the site showing Nami East ...................... ............................6

Figure 4. Map of prehistoric settlement in Israel ................. ............................10

Figure 5. Map of Israel’s coastline.......................................... ............................ 15

Figure 6. Coastal profile types for Israel: (A) Sand-ridge coa: 

(B) Bar-and-lagoon coast (w.m. = water mark) . .

it and

............................ 17

Figure 7. Zone of secondary enrichment ............................... ............................ 21

Figure 8. Map of settlement and mining sites mentioned in th 

Figure 9. Map of southern Israel and S in a i............................

e t e x t .................22

............................ 24

Figure 10. Early pottery kiln prototype for copper smelting fui
4

Figure 11. Early type of copper smelting furnace with bowl-sh 

Figure 12. Copper smelting furnace from Khirbet Jariyeh . . . 

Figure 13. Assyrian sign GIR representing a copper smelting 

F igure  14. Copper smelting furnace from Tell Qasile ...........

■nace .................34

aped depression . 35

............................ 37

umace .............. 38

............................ 39

Figure 15. Blowpipes being used in the smelting process. Fron 

tomb of Hepu at T h e b e s ..........................................

i the

............................ 41



X

Figure 16.

Figure 17. 

Figure 18. 

Figure 19. 

Figure 20. 

Figure 21. 

Figure 22. 

Figure 23. 

Figure 24. 

Figure 25. 

Figure 26.
4

Figure 27. 

Figure 28. 

Figure 29.

Figure 30. 

Figure 31.

The smelting melting and casting of bronze as depicted from 

the tomb of Rekhmire............................................

Map of sites located in Greece and Sardinia . . .

Example of an ox-hide ingot.................................

Map of C yprus.......................................................

Copper smelting furnace for producing bun ingots 

Copper smelting furnace for producing ox-hide ingo

Open mold ..........................................................

Bi-valve mold ....................................................

ts

Lost wax mold for producing a hollow cast 

Bronze juglet from Area O. Length: 15.9 cm 

Tripod incense stand from Area O. Length: 18.8 c

Ideal crystal structure in dendritic fo rm ...........

Grain structure of a section of b ra s s .................

Example of a lattice structure. (A) represents the 

and comers of a grain boundary of an incomplete

plane. (B) represents a completed p lane ..............

Oxidation and reduction reactions during electroche 

corrosion on a section of i r o n .........................

edg<

lati

Simplification of Pourbaix diagram for copper in pu

Page

m

42

50

53

55

59

59

61

61

63

65

66 

70 

70

;es

:tice

inical

72

85

re water

at 25°C 88



XI

Figure 32. 

Figure 33.

Figure 34. 

Figure 35. 

Figure 36.

Figure 37. 

Figure 38. 

Figure 39. 

Figure 40.

Figure 41.

Figure 42.

Example of bronze disease causing deterioration in a

copper alloy ....................................................

Diagrammatic representation of reactions and corrosi 

products involved in the pitting corrosion of copper,

according to Lucey .........................................

Stratified growth of an oxide film on a metal surfac^

Example of an unoccupied valence bond ...........

Comparison of two spearheads recovered from the 

matrix in Area G. (A) is heavily corroded, while 

well-preserved. Length of A: 7 cm. Length of B: 

10.8 c m ..................................................................

Section of the grave plan in Area O ...................

In-situ condition of an incense stand from Area O

Collar-rim jar burial in Area O ......................

Well-preserved bronze spearhead from collar-rim j

burial in Area O. Length: 19 cm ......................

Heavily corroded oil lamp from Area G.

Length: 15.5 cm Width: 15 c m ............................

Strainer recovered from Area O. 10.5 cm across

jar

Page

92

on

. . .99 

. . 104 

. . 106

clay 

(B) is

121

124

126

127

129

132

135



XU

Figure 43. 

Figure 44.

Figure 45.

Figure 46.

Figure 47. 

Figure 48.

4

Figure 49. 

Figure 50. 

Figure 51. 

Figure 52.

Diagram of electrolytic reduction set-up.................

Graphs illustrating changes in chloride levels

during electrolytic reduction....................................

Before (A) and after (B) electrolytic reduction of a 

bronze spearhead from Area D. Length: 16 cm . 

Before (A) and after (B) electrolytic reduction of 

a bronze spearhead with bent tip from Area O.

Length: 14 c m .....................................................

Graphs illustrating changes in chloride levels

for the sodium sesquicarbonate treatm ent...........

Before (A) and after (B) reconstruction of a bronze 

strainer from Area O ..........................................

Small knife from Area O with repaired bottom sections

Length: 16.5 c m ..................................................

Before (A) and after (B) reconstruction of a 

cracked and broken bowl from Area O ..............

Before and after reconstruction of a bowl from Area O

16 cm across

Hand and foot scrap metal pieces from Area D1 

Length of hand: 3 cm. Length of foot: 1.8 cm

Page

142

144

145

146

150

153

154

155

156

158



Xlll

Page

Figure 53. Scale plate mail armor from Area O. Length: 6 cm 159

Figure 54. Section from a Cypriot bronze tripod stand . 161

«



1

CHAPTER I

INTRODUCTION AND SITE DESCRIPTION

Background

Since 1987,1 have been involved with the Tel Nami Regional Project, which 

is directed by Dr. Michal Artzy of the Center for Maritime Studies and Institute of 

Archaeology at Haifa University, Israel.

In my first two seasons there, I participated in field excavation, serving as 

Pottery Registrar in 1987. In 1988, a sizable number of bronze artifacts was 

discovered at the site. Many of these artifacts were found in a remarkable state of 

preservation, while others were highly mineralized. It was crucial that a 

comprehensive conservation program be implemented for stabilizing the bronzes,

particularly since they had been exposed to the corrosive effects o: 

thousands of years. Late in 1988,1 received permission from Dr. 

and carry out a conservation program which was to be conducted |it Haifa University, 

as part of my Masters Thesis project.

In the Spring of 1989,1 received a grant from the Samuel A .  Kress 

Foundation. Through this grant, I was able to establish a conservation laboratory at

seawater for 

Artzy to design

Haifa University as part of the conservation program to clean and stabilize the

artifacts. Laboratory conservation began in August, and included artifacts of ivory,

This thesis follows the style and format of American Antiquity.
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this type of site

silver, faience, bronze and ceramic materials.

While the bulk of my project is directed toward the conservation of bronze, 

three other topics have been included. It was intriguing that many of the Tel Nami 

bronzes were so well-preserved, a point Dr. Artzy and I discussed on several 

occasions. From these discussions, I determined that no criteria existed for what 

constitutes a marine coastal site and how the micro-environment al: 

relates to in situ corrosion processes. Dowman (1970) and Rose (1975) have defined 

and discussed the micro-environment of land sites, and Pearson (1987) has provided 

an excellent study on the underwater environment. From these studies and my own 

experience at Tel Nami, I was able to break the micro-environment into components, 

and then see how it contributed as a whole to cuprous metal corrosion.

It was important to see whether any patterns would emerge from this research 

and what forces caused the pitting, cracking and heavy corrosion crusts found on 

some of the artifacts. This necessitated a complete discussion of metal corrosion to 

understand the corrosion processes taking place in a marine coastal

This research would not be complete without investigating ; indent metallurgy 

technology because metalworking and production influence the internal structure and 

corrosion behavior of ancient metals. Thus, a chapter on this topic is included as 

well. From these perspectives, a discussion of the existing conservation technology is 

more complete.

Site Description

The archaeological site of Tel Nami is situated on a peninsula, about 15 km

environment.
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) (Figure 1). This 

and north of the

south of Haifa, Israel, near Kibbutz Newe Yam. The peninsula forms part of a 

partially-submerged sandstone (kurkar) ridge, one of three such longitudinal ridges 

which run parallel to the Carmel mountain range (Ronen 1983:12 

peninsula comprises part of a larger settlement which extends east 

peninsula, under the coastal dunes, as well as southeast to an agricultural area, about 

a kilometer away. While the overall settlement is quite large, only the tell and Nami 

East have been excavated (Figure 2). The tell, which rises approximately nine meters 

from base to summit, presently consists of three main areas: Areas G, D1 and D.

The tell is connected to Nami East by a sandy tombolo which is about 100 m wide. 

Nami East is characterized by sand dunes and is bordered by modem fish ponds 

which were either a swamp or brackish lake in antiquity. The excavated section at 

Nami East has been designated as Area O (Figure 3).

The periods of settlement on the tell and the surrounding areas can be dated to 

the secofid millennium B.C., mainly the Middle Bronze IIB (MB) possibly Late 

Bronze (LB) IIA, and definitely Late Bronze IIB. The chronology of the Bronze Age 

in the Levant is largely determined by the absolute dating of the Egyptian king lists 

beginning about 3100 B.C. (Moorey 1981:79-80). Cross-dating comes from datable 

contexts in Egypt where imported ceramics from Palestine have been found, and from 

Egyptian objects such as scarab seals and royal inscriptions which 

recovered in Syro-Palestine. The chronological sequence chosen for this thesis is 

based on Mazar’s recent revisions (1990:10), presented in Table 1,

have been
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Figure 2. Map of Tel Nami.
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Figure 3. Map of the site showing Nami East (from Jacobsen 1988:12)
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Table 1. Chronology for the archaeological periods of anciei 

(after Mazar 1990:10).

it Israel

Pre-Pottery Neolithic A ca. 8500 - 7000 B.C.

Pre-Pottery N eolithic B ca. 7500 - 6000 B .C

Pottery Neolithic A ca. 6000 - 5000 B .C

Pottery Neolithic B ca. 5000 - 4300 B.C.

Chalcolithic ca. 4300 - 3300 B .G

Early Bronze I ca. 3300 - 3050 B.C.

Early Bronze II-III ca. 3050 -2300 B.G

EB IV /M iddle Bronze I ca. 2300 - 2000 B.C.

M iddle Bronze IIA ca. 2000 - 1800/1750 B .C

Middle Bronze IIB-C ca. 1800/1750 - 1550 B .C

Late Bronze I ca. 1550 - 1400 B .C

Late Bronze UA-B ca. 1400- 1200 B .C

Iron LA ca. 1200- 1150 B .C

Iron IB ca. 1150- 1000 B.C.

Iron HA ca. 1000 - 925 B .C

Iron HB ca. 925 - 720 B .C

Iron DC ca. 720 - 586 B .C

j

I



The first survey carried out by Dr. Artzy in 1985, was intended as an 

investigation of a small, ancient fishing village, but winter storms during 1985-1986 

revealed a patch of dark soil which contained sherds dating to the Late Bronze Age, 

including a sherd of imported Cypriot White Slip Ware. All this l sad to something 

more international in scope than a small fishing village. The first opportunity to 

investigate this area, named Nami East, came during the summer of 1986, the first 

official field season under Dr. Artzy’s direction.

A test trench dug in Nami East during the summer field season of 1987 

revealed a substantial structure with walls over a meter in thickness, connected to a 

drainage system. Discovery of graves, plus structures on the tell during that same 

season confirmed that this was a settlement whose occupants were involved in the 

international maritime trade of the Middle and Late Bronze Age. The fishponds and 

large sand dunes covering Nami East have made it difficult to determine the actual 

size of tile settlement, but aerial photographs and jettings done for geomorphological 

studies of the area indicate it to be much larger than previously thought.

Tel Nami can be considered as part of a string of settlements that dotted the 

Carmel Coast. Based on evidence recovered from submerged sites in the area, 

coastal settlement dates back to the seventh millennium B.C. (Pre- 

(Raban 1981:288-289, Raban and Galili 1985:326).

Pottery Neolithic)

During the first half of the Early Bronze Age, small, spread-out villages, were 

established near lagoon or river outlets along the coast (Raban 1985; 14). It appears 

that settlement then concentrated inland during the latter part of the Early Bronze Age
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in the Shepelah and mountain regions (Gophna 1984:29). Cities s uch as Megiddo and 

Arad were established on hilltops, most likely for defense purposes (Rosen 1986:16) 

(Figure 4).

The MB IIA period, unlike the Early Bronze Age, represents a time of large- 

scale and intensive settlement of the coastal plain (Gophna and Portugali 1988:225, 

Herzog 1988:92). Byblos in northern Syria, and Akko in northern Israel are notable 

coastal settlements for this period. Many of these Middle Bronze Age settlements 

were located close to an estuary or river outlet. The inhabitants chose their sites 

wisely, taking advantage of locales adjoining arable land, perennial water sources and 

access to the main longitudinal highway, the Via Maris (Artzy anq Marcus 1991, in 

press).

The observation that MB IIA settlements existed along all the coastal river 

basins and at the outlet of nearly each river supports the theory that coastal river 

mouths, Estuaries or inland bodies of water fed by these rivers served as natural 

anchorages for ships. A coastal forward port settlement would be 

anchorage and an inland site further upriver would provide communication with the 

agricultural hinterland. This hypothesis is predicated on paleogeojgraphical 

reconstructions of the shoreline since nearly all these waterways ar e currently 

inaccessible to navigation (Raban 1985:11-23, 1980:750-54).

The MB IIA period at Tel Nami is represented in Areas D, G and O. In Area 

D, located on the eastern most part of the tell, finds easily datable to this period were 

discovered (Artzy and Marcus 1991, in press). During this period), the area was used

located near the



Figure 4. Map of prehistoric settlement in Israel.
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for storerooms, probably connected to the anchorage (Artzy 1990:76). The discovery 

of charcoal, ash and burnt mudbrick indicates that the storeroom was destroyed by 

fire. Over 25 vessels have been found in Area D, including storage jars, kraters, 

bowls, juglets and a pithos. Many of the jars were found with their contents in situ. 

The organic remains included seeds of wheat, chick peas, grapes and an exotic 

legume apparently imported from the Aegean (Kislev, Artzy and Marcus 1991, in 

press). A terra cotta scarab-sealed weight was also found. Preliminary analysis 

indicates that the seal belonged to the reign of Amenemhet III who reigned ca. 1842- 

1797 (or 1859-1814), when Egypt had strong contacts with Byblos and northwestern 

Syria (Artzy and Marcus 1991, in press).

In Area G, the uppermost part of the tell, remains of the MB IIA period are 

found almost two meters down from the surface. One of the most interesting finds 

among them is a drainage system that was found in situ. Street levels have been 

excavated, and there are MB IIA walls. Artifacts include pottery sherds dating to the 

period, and a small bronze arrowhead. An MB IIA phase may be evident in Area O, 

located across the tell at Nami East, in the form of stone walls and a cistern.

The Late Bronze period is also well-represented at Tel Nami, separated by a 

70 cm layer of sterile windblown sand from the remains of the Middle Bronze IIA.

As with the end of the Middle Bronze Age IIA at Tel Nami, there is also strong 

evidence for a violent destruction at the end of the Late Bronze IIB period in the form 

of burnt materials and ash.

Two areas that reflect the international flavor of this site during the Late
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Bronze Age are G, D1 and O. Stone walls, crushed mudbrick, bronze objects, 

jewelry, and imported pottery characterize Area G for this period. Much of this 

material is associated with a LB IIB temple. It appears, however, that a Late Bronze 

IIA settlement preceded the LB IIB phase, and was destroyed by fire. In several 

squares in Area G, a robbed floor of the LB IIA stratum was discovered. The ruins 

of the LB IIA phase were then used to construct the foundation for the rampart of the 

LB IIB period. The rampart fill contains the foundations of earlier walls, ruins of 

buildings, mudbricks and ash, as well as sand from other parts of the site (Artzy 

1990:75). The predominant and remaining occupation in Area G is datable to the 

Late Bronze IIB.

Area D l, which is located right above Area D, consists of LB IIB stone 

floors, foundations and fallen mudbrick. Numerous pieces of bronze, possibly scrap 

metal were found in this area.

m e  Late Bronze period in Area O superimposes the structures of the MB IIA 

not far below it, and the inhabitants of the LB IIB phase borrowed stones from these 

structures to build their cemetery. The graves, buried underneath the sand dunes of 

Nami East, are of different types: stone-lined elliptical graves, rectangular pit, graves 

and one complete burial in a collar rim pithos, sealed by a Canaanite storage jar 

(Artzy 1990:76). Although most graves were robbed in antiquity, some were missed, 

and Area O has yielded some significant finds which parallel those of the Ulu Burun 

shipwreck (Pulak 1988: 1-37). These include a pilgrim flask, oil lamps, and imported 

Mycenaean and Cypriot wares, including fine-ware vessels of White Slip n  ware,
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Cypriot "Milk Bowls/ Base-Ring II and While-Shaved juglets. Jewelry has also been 

found, including Egyptian scarab rings and other pieces possibly of Aegean origin or 

influence.

The occupation of the tell and Nami East ends with the Late Bronze Age IIB. 

Some Byzantine pottery has been found on the tell, but not enough to substantiate any 

real occupation. The only other indication of human activity is in the form of 

twentieth-century military testing. The site now remains covered in sand and dirt 

when not being excavated.

The Coastline

The available archaeological evidence combined with geologic data indicates 

that during the Bronze Age, tectonic forces and fluctuating sea levels affected coastal 

morphology. Due to a combination of these factors, a large number of swamps 

developed along the lower parts of the coastal plain where dunes and kurkar ridges 

acted as Carriers, catching flood waters (Nir 1982:89), possibly providing anchorage 

for maritime traders (Flemming et al. 1978:37).

At Tel Nami, the presence of reeds and other hydophytes around the fish 

ponds at Nami East indicate that the area was once a natural swamp or brackish lake 

fed by Nahal Me’arot (cave river). The Nahal Me’arot, like other rivers that drain 

into the Mediterranean, is a small and ephemeral (Nir 1982:89) river that originates in 

the Carmel mountain range. It now lacks a distinct outlet since the water is diverted 

to irrigate the fish ponds.

Geomorphological investigations and cartographic evidence dating as far back
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as 1799t tend to support the notion that the Nahal Me’arot changed its course over the 

millennia, and that at some time coinciding with periods of habitation at the site, it 

emptied out into the sea near the vicinity of the tell (Artzy and Marcus 1991, in 

press). The lake that was fed by the Nahal Me'arot may have served as a protected 

anchorage for maritime coastal traffic since boats could gain access to the lake 

through the stream's estuary which ran between the tell and Nami East (Artzy 

1986:16). Because Israel's coastline lacks any natural harbors with the exception of 

Haifa Bay and the associated projection of Mount Carmel (Horowitz 1979:12) (Figure 

5), utilizing small river mouths as inner anchorages would have been a viable solution 

(Artzy 1991, in press).

A genetic classification that applies to the Israeli coastline is C.A. Cotton’s 

"coasts of mobile regions" (Cotton 1952:315). Cotton’s classification system divides 

coasts into either stable or mobile regions. Israel’s coastline fits the latter description 

since it Hhs been affected by Holocene tectonic uplift and submergence, along with 

faulting and folding. Changes in coastal morphology due to tectonic activity was 

probably partly responsible for the shift of the Nahal Me'arot as well, since much of 

the morphology and shape of Israel's coastline can be attributed to plate tectonics and 

active faulting (Neev et al. 1987:ix).

Along with tectonic activity, it is generally agreed that changes in sea level 

have occurred, but there is disagreement concerning rates and changes. Much of the 

evidence for a rise in sea level along Israel’s coast comes from investigating coastal 

archaeological sites. Relative changes in sea level at archaeological sites are noted in



Figure 5. Map of Israel’s coastline (after Nir 1985:506).
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submerged or partially submerged structures since they were built in precise relation 

to the level of the sea at their time of use (Flemming et al. 1978:37).

A closer examination reveals that eustatic changes, changes that affect the 

volume of sea water, have varied locally, depending on climatic and regional 

conditions (Pirazzoli 1987:175). Isostatic changes in sea level, changes dependent on 

tectonic activity, have also taken place. The two types of changes in sea level often 

act together, producing a complex result (King 1972:192).

The position of the tell and the settlement patterns for the successive 

occupations at Tel Nami reflect the coping strategies of the inhabitants to the rising 

sea level during the Bronze Age. For example, in Area D, there are signs that the 

occupation of the MB II period extended further south and south-east than that of the 

Late Bronze Age. The change in sea level in the LB IIA reduced the area of 

settlement. During the LB IIB phase, the living area shrank even further (Artzy 

1990:76).*

The conditions resulting from sea level changes and tectonic activity along 

Israel*s coast include the formation of estuaries. According to Nichols and Biggs 

(1985:84), estuaries develop along low-lying coasts that are subject to tectonic 

activity. Estuaries also develop along sandy coasts where longshore currents carry 

sand, creating spits or barriers across river mouths (Figure 6). The sandy, low-lying 

coastline where Tel Nami is located fits the above description.

Eventually, estuaries rill up with fluvial and marine sediments. Enclosures by 

spits and barriers will also accelerate the infilling of an estuary. Because the



Figure 6. Coastal profile types for Israel: (A) Sand-ridge coast and (B) Bar- 

and-lagoOn coast (w.m. = water mark) (from Butzer 1971:220)
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Mediterranean lacks a tide, ancient harbors filled up with sedimentation (Raban 

1988:200). Galili (1986:71-72) doubts that gently graded beaches like Tel Nami 

would have adequately provided navigable estuaries and natural harbors for ancient 

mariners since the waterways would have filled too quickly with sediment and sand. 

Thus, maintaining a navigable stream would have required a continuous dredging of 

sand, an impracticable task during antiquity. Galili, however, overlooks the aspect of 

the flushing velocity of the Me’arot during the Middle and Late Bronze Age, which 

could have been adequate enough to slow-down sedimentary build-up. Climatic 

changes also could have resulted in exceptional hydrodynamic conditions that would 

have pushed river sediments seaward, so that natural estuaries and harbors did not fill 

up as quickly as Galili claims.

In conclusion, while sedimentation no doubt occurred, the equation of river- 

coast anchorages along the Syro-Palestinian coast remained viable enough to maintain 

settlements and trade contacts throughout the Middle and Late Bronze Age. That Tel 

Nami served as an anchorage during this period is partially evident through the 

discovery of imported goods. Found among these were a number of bronze objects. 

By the Late Bronze Age copper and bronze were valuable commodities that were 

traded in bulk in the form of ingots, or as scrap metal and objects of utilitarian and 

cultic use. This variety represents a technological achievement that evolves from 

many centuries of experimentation and refinement. This evolution in copper 

metallurgy is examined in more detail in the next chapter.
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CHAPTER n

THE EVOLUTION OF COPPER METALLURGY IN THE 

EASTERN MEDITERRANEAN AND NEAR EAST 

Introduction

While articles made of copper and copper alloys have been in use for several 

thousand years, the archaeological evidence for copper metallurgy in the ancient Near 

East and Eastern Mediterranean is fragmentary. It is generally agreed that copper 

metallurgy began with the use of native copper to make small items such as awls or 

pins.

The earliest evidence for the use of copper comes from Shanidar Cave in Iraq, 

in the form of a small oval pendant, dated to the early ninth millennium B.C. (Solecki 

1969:311), although the pendent is now believed to be malachite rather than metallic 

copper (Solecki, personnel communication 1991). Artifacts made from native copper 

have been recovered from Level IX at £atal Huyuk, in Turkey, dating to the seventh 

millennium B.C. (Mellaart 1964:111).

Ores and Mining

Copper is distributed world-wide in its native malleable state or in a variety of 

mineral ores (Healy 1978:57). Native copper only occurs in limited quantities in the 

oxidation zone of a copper deposit, and assumes different morphologies. The largest 

block of native copper ever reported came from Minnesota in 1856, weighing about 

500 tons (Alexander and Street 1976:25). Native copper also occurs in smaller, more
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manageable lumps or as branches in rock faults

Copper mineral ores are more common than native copper, occurring in the 

zone of secondary enrichment. This zone can be divided into two further zones: the 

upper, oxidized zone above the water table where carbonates, oxides and pure 

minerals are deposited, and the second zone below the water table as the zone of 

sulphide enrichment (Kirkaldy 1970:94) (Figure 7). The oxidized zone is 

characterized by copper oxide, cuprite, and the copper carbonates, malachite and 

azurite. These minerals appear as blue or green veins in the surface breaks of contact 

metamorphic zones or in weathered outcrops known as gossans (Wertime 1973:878). 

Below the water table, the unweathered parent ore forms the zone of sulphide ores, 

chalcolite, covellite and the chalcopyrites (Hodges 1976:65).

Remains for ancient copper mining in the Near East and Eastern 

Mediterranean are scarce or difficult to interpret. To explain the lack of 

archaeolbgical evidence for ancient mines, de Jesus (1980:99) suggests that mining 

occurred in isolated, mountainous areas, and possibly as a seasonal activity, far from 

settlement sites. These mining sites are overlooked or destroyed by weathering and 

seismic activity. Ancient mining operations are especially hard to identify and date 

because any subsequent disturbances or continuous mining could obliterate traces of 

previous workings (Weisgerber 1982:27).

Early evidence for actual copper mining comes from the shaft mines of Rudna 

Glava in Serbia (Jovanovid 1988:70) and at Ai Bunar in southern Bulgaria (Jovanovid 

and Ottaway 1976:106-107) (Figure 8). At Rudna Glava, where 40 shafts were
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Figure 8. Map of settlement and mining sites mentioned in the text.
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discovered, it appears that the ore mined was chalcopyrite. Mining activities at this 

site date to the second half of the fourth millennium B.C. (JovanovkS 1988:73).

At Eneolithic Ai Bunar, mining shafts and access platforms were discovered. 

The ores were probably removed by use of bone and wooden wedges and pulled to 

the surface. The shafts followed the configuration of the ore veins, which mostly 

consisted of malachite and some chalcopyrite (Jovanovid and Ottaway 1976:107).

Evidence of any activity has been recovered on the Sinai peninsula and the 

Eastern Desert (Figure 9). Numerous copper and turquoise mines and smelting 

centers have been located in the Timna Valley in the southern Sinai desert. The 

mines are scattered throughout the southern plateau, an isolated hilltop with rocky 

slopes. The mines date from the Chalcolithic Period through the mid-twelfth century 

B.C. (Rothenberg 1988:8), although Muhly (1973:219) and others propose that 

Egypt’s main source for copper from the Middle Kingdom onward was Cyprus.

Efecause Timna is one of the few surviving sites of discemable mining activity, 

it is often cited as an example of the progressive technological developments in 

mining and metallurgy technology in the ancient Near East. The progression begins 

with open cast mining, which consists of cave-like entrances that lead to the side of 

an ore deposit.

The earliest Chalcolithic mines at Timna have been identified by artificial 

round cave-like entrances, particularly Site 42, an outcrop containing copper ore 

nodules (Rothenberg 1972:27). Open cast mines dating to the Ramesside Period of 

the New Kingdom have been found in association with a variety of stone tools
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Figure 9. Map of southern Israel and Sinai (after Weisgerber and Hauptmann 

1988:53).
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(Rothenberg 1972:63), along with tunneling, observed by Brman (1971:468-9) at 

Wadi Maghara and Wadi Nasb in the Sinai peninsula.

At the end of the fourteenth century B.C., according to Rothenberg (1988:11), 

an Egyptian mining expedition set up sophisticated shaft and gallery operations. Most 

of these shafts are horizontal and follow the veins some 40 to 50 m into the rock 

(Bromehead 1954:564). The techniques used were similar to those used in quarrying 

the rock-cut tombs in Upper Egypt. The rock was chiseled with a copper or bronze 

spike that was pounded by a wooden mallet to break the ore, or else a wooden- 

handled bronze hoe was wielded like a modem pick-axe (Bierbrier 1982:46).

While Timna may serve as a valuable source for understanding ancient Near 

Eastern mining technology, its technological developments may have been entirely 

local in nature, and unusual in the Levant (de Jesus 1980:116).

Another useful guide in identifying ancient mining activity is the presence of 

mining t6ols. According to de Jesus (1980:105-108), mining tools comprised 

wooden, stone and metal implements. Wooden tools, of what survives, include 

shovels, hammers, picks and battering rams. A wooden shovel from the Murgul 

copper mine in Anatolia, has been dated to the late first millennium B.C. (Kaptan 

1977:96).

| Basalt was an ideal tool for picks and gads (wedges). Stone was also used for

hammers, mortars and pestles. Stone mining tools have been discovered in tomb and
iI

settlement contexts on Crete, dating to the Early and Middle Bronze periods. They
j
| include axe-hammers with broad, sharp blades and blunt ends, and various hammers
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with shafts. These tool were probably used to break off lumps of mineral ore

(Branigan 1974:66).
I

Metal tools for mining have been found out of context, and their multiple use

j makes it difficult to identify them as specifically for mining (de Jesus 1980:106).
|
I
! Metal tools for mining include adze-hammers, axe adzes, flat axes, chisels, picks and
j

| axe-hammers. Three double bronze axes, slightly splayed, were found at Ghardiki in 

Greece, possibly dating to the Late Bronze Age (Davies 1935:242).

Another indication of mining activity is the relationship of settlement sites in 

close proximity to potential mining areas. Over 50 metallic hammered copper 

artifacts have been found at the Neolithic site of Cayonu Tepesi in southeastern 

Turkey, dating to ca. 7250-6750 B.C. (Braidwood et al. 1981:250, Cambel and 

Braidwood 1983:157). The nearby Ergani Maden mines, located about 20 km north 

of the site, may be the source for the native copper objects found at Cayonu Tepesi 

and othef Neolithic sites in Anatolia and northern Mesopotamia (Muhly 1988b: 6). 

There is some doubt as to whether native copper was abundant at Ergani Maden 

(Birgi 1950-1951:340). With modem mining activity in the area, much of the 

archaeological evidence to verify this has been obliterated (de Jesus 1980:109).
i
3

In 1973, a team of geologists discovered an ancient copper mine at Kozlu in
I

northern Anatolia. The site dates to 2800 B.C., based on carbonized wood samples

taken from the shaft poles. It is composed of an outcropping of secondary ores from 

the oxidized zone, and a sulphide layer extending along the mineral horizon at the 

surface. No tools were found, but a shaft and gallery indicate that the area was

I
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mainly exploited for its copper sulphide ores (Giles and Kuijpers 1974:823-825).

At present, no dated copper mines have been located for southern 

Mesopotamia, although in an inscription found at Ur III, the ruler Gudea mentions 

copper from the mountains of Kimas, which are part of the Kerman Range (Figure 8). 

This is a possible source for ancient Sumer (Limet 1960:110). Holzer and 

Momenzadeh (1971:5) describe copper mines in the Veshnoveh area in west central 

Iran at Mazrayeh and at Chale Ghar. At Mazrayeh, cave-like diggings with rounded 

entrances were exposed, while at Chale Ghar, two to three narrow tunnels lead to a 

network of small holes, short inclines and narrow stopes. An unglazed vessel found 

at Chale Ghar dates the site to the early fourth millennium B.C. (Shepherd 1980:193). 

Caldwell (1966:4-5) reports that there are copper ores in the Kerman Range in 

southeastern Iran, a possible source for ancient southern Mesopotamia.

In recent years, a provenancing technique known as lead isotope analysis has 

shown s6me promise in locating the original source areas for copper (Reedy and 

Reedy 1988:65). This involves a statistical sampling to quantitatively determine a 

metal’s origins (Sayre 1988:41), and is based on the premise that lead deposits were 

formed at different geologic episodes or under varying geochemical conditions which 

serve as isotopic fingerprints in the geologic record. Specific isotopic compositions 

are composed of the four stable isotopes of lead: Pb204, Pb206, Pb207 and Pb208. These 

isotopic compositions can be matched with ores of known mining regions (Brill et al. 

1973:73).

The advantages to using this technique are twofold; it only requires a small



sample, causing less damage to an artifact, and the chemical history of an object does 

not interfere with the isotopic reading (Brill et al. 1973:73). Lead isotope analysis 

has been used for pigment studies (Keisch and Callahan 1976:181-193), and for 

provenancing silver in archaic Greek coins (Muhly 1988a:338). The most active 

adherents of lead isotope analysis are Noel Gale and Zophie Stds-Gale of Oxford 

University,

There are some inherent problems in using this technique. While a given lead 

deposit has its isotopic ratios, the ratios are not always unique to that deposit.

Isotopic compositions of lead from separate sources may be indistinguishable if the 

deposits were formed under similar geologic conditions (Healy 1978:220).

Another drawback to this method is the problem of metal salvaging and 

remelting of scrap metals together. This results in an inaccurate isotope reading 

where the reading reflects a midpoint between the ratios of the original metal and 

those added to the mix (Brill et al. 1973:73). Yet the Gales claim that scrap metal 

was only hoarded and traded in any quantity at the very end of the Late Bronze Age 

(Gale and Stds-Gale 1985:90), so that lead isotope analysis is reliable up to this point.

The Development of Smelting Technology

Attempts have been made to reconstruct a technological sequence of 

developments for ancient copper metallurgy technology (Renfrew 1979:171-173). 

Some of these reconstructions have been based on diffusionist theories that attribute 

the spread of metallurgy technology through the exchange of ideas. Childe (1944:17) 

maintained that copper metallurgy technology originated in the Near East, then spread
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out to the Aegean, the Balkans and central Europe. In a similar vein, Wertime 

(1973:885-886) maintains that copper metallurgy began in the upland belt and river 

valleys of southwestern Asia and spread from there.

Recent trends, however, favor separate regional developments as Reed first 

suggested in 1934 (383). For example, Davey (1988:68) proposes that the 

metallurgical tradition of Mesopotamia, northern Syria, Palestine and Egypt, which he 

designates as the "Southern Tradition," differs from the traditions of Iran, Anatolia 

and areas of the Mediterranean.

Tracing a logical sequence of developments in copper metallurgy is hampered 

by the poor preservation of metal artifacts, the random nature of archaeological 

discovery and chronology problems (Muhly 1988b:2). Another problem is the 

confusion over terminology. Melting and smelting are loosely used terms that have 

been interchanged since they both involve molten metal, but their meanings are 

definite fend distinct. Melting refers to the physical conversion of a solid to a liquid, 

whereas smelting is a chemical change where a mineral substance converts to a metal.

The confusion is also partially based on the examination of crucible slag 

remains. In analyzing these fragments, there is often disagreement over whether the 

operation was one of smelting or simple melting. Tylecote (1976:5) argues that 

crucible slags of native melted copper can be distinguished from smelted copper ores. 

Unlike melted native copper, smelted copper contains small amounts of ferrous 

silicates from the iron oxides used in fluxing.

Wertime (1968:935) believes that crucibles were used only for smelting rather
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than melting, although melting copper in a crucible may have led to the development 

of smelting technology. Madden et al. (1980:223) conclude that no adequate criteria 

exist to distinguish melted native copper from worked and recrystallized smelted 

copper of high purity. Under microscopic examination, both reveal similar 

deformations. Rapp (1988:23), however, states that a detailed chemical analysis will 

lead to the distinction. A chunk of slag recovered from Level VI A at Catal Hiiyiik is 

still under question. Tylecote (1976:5) dismisses this as slag, while Cooke and
I

Nielson (1978:182) view it as purely representative of melting, if it is slag at all.

; In tracing the development of copper metallurgy, several theories have been

proposed over the years. The most popular and enduring is the "camp fire" scenario 

which depicts prehistoric ancestors unwittingly building a hearth with copper bearing 

ores. A hot fire, stoked by wind, would leave blobs of metallic copper in the ash 

heaps. This basic outline has been reconstructed and embellished to produce romantic 

accounts ̂ such as the one below (Davis 1924:24):

That night, the thoughtful chief dreamed of rivers of reddish, fiery 
liquid sweeping over and annihilating his enemies. Before the sun rose, he 
was raking over the ashes of the festal fire of the night before. No liquid was 
there. But he found a strange stone, blackened and shaped like a frozen 
puddle. He wondered at it, and tried to crack it with a stone quarry sledge. It 
did not split asunder, but the blow left a dent, a mark that was like that left on 
the valuable reddish rock of the quarry that was so much desired.

The application of heat to stones was already a part of flint technology

(Charles 1979:8), so this scenario was unlikely. Also, the melting point of copper

requires high heat, up to 1083°C, which is rarely possible in an open camp fire, even

under windy conditions. For copper to be melted or smelted, two conditions must be
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met. First, the necessary high heat, and secondly, an oxygen-starved atmosphere rich 

in carbon. These conditions draw oxygen from the heated ore and reduce copper to a 

molten, metallic form (Coghlan 1975:28).

When native copper is melted, the unwanted portions of the ore, called 

gangue, separate out from the molten copper. These soluble segregates dissolve, 

leaving a homogenous metal (Tylecote 1976:2). Any residual gangue left forms a 

lighter molten substance which hardens and becomes a glassy substance called slag 

(Raymond 1984:10-13). While an open campfire made with charcoal produces carbon 

monoxide to act as a reducing agent, Coghlan (1941:57-60) found that the proper 

reducing conditions were lacking in his experiments with simulated campfires.

Since the 1970s, other theories have been proposed to explain how copper 

metallurgy began. Charles (1979:9) maintains that smelting and melting were not 

separate innovative events. Rather, native copper would be melted along with its 

associated oxide minerals. During heating the ores were recognized by their 

distinctive colors and odors. As native copper became scarce, closer attention would 

have been paid to the mineral ores (Charles 1979:9, 1980:163).

Wertime (1973:882) suggests a similar development, whereby early smelting 

involved reducing several metallic ores in juxtaposition with one serving to flux the 

others. Wheeler et al. (1979:16-17) also propose that smelting and melting were 

contemporaneous. Coghlan (1975:29), on the other hand, views this as unlikely for it 

would depend on the native copper being associated with adhering minerals of a 

suitable nature. Therefore, in his view, melting preceded smelting in metallurgical
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development. The chief difference that distinguishes melting from smelting is the 

separation of the molten reduced copper from the gangue by the use of a flux.

Charles (1979:9) proposes that iron oxides served as the first flux material, since they 

occur naturally as part of a gossan deposit.

To create the high temperatures needed to smelt copper requires a closed 

container that can provide the proper reducing conditions. Hodges (1970:65) suggests 

that in fourth millennium Mesopotamia, the method for making faience, (Egyptian 

type) was adapted to smelting metal. The faience was made from sand with soda or 

potash added to form a quartz paste, which was then fired at high temperatures in a 

closed container, much like a crucible.

Coghlan (1975:30) suggests that the prototype for the Bronze Age smelting 

furnace was the pottery kiln. Experimenting with a small kiln-like chamber and 

charcoal, he was able to produce small beads of copper from crushed malachite 

(1941:6Cf-63). Potters were well-versed in maintaining the necessary conditions for 

firing. The evidence from £atal Hiiyuk supports this hypothesis by the production of 

black and red pots made from the same clay (Raymond 1984:13-14). In a kiln, 

malachite can reduce to metallic copper given the proper reducing conditions. Both 

malachite and azurite will decompose below a temperature of 200°C, according to 

experiments conducted by Simpson et al. (1964:1114), so that early copper smelting 

could have been conducted below the melting temperature of copper (Caldwell 

1966:12).

From his archaeological report on the Neolithic site of Tepe Sialk in Iran,
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Ghirshman (1938:38-39) describes a type of kiln that could be applicable to 

developing furnace technology. Inside the kiln, a fire would be lit underneath the 

chamber with a shelf above it to hold the pottery. Mylonas (1929:16.) reports a 

similar type from his excavations at Olynthos (Figure 10).

Whether or not the Neolithic pottery kiln was the precursor to later smelting 

furnaces, it appears that furnace technology evolved from a simple operation. 

According to Tylecote (1980:183), a pottery kiln itself would not be suitable for 

smelting since the chemical transformation of converting an ore to metal is different 

than the process of hardening pottery. In order to reach the necessary reducing 

conditions to cause separation of metal and ore, close contact between the ore and 

charcoal is necessary. This does not follow pottery kiln design. Rather, the 

reduction process is best carried out in a clay bowl or hole in the ground where the 

right proportions of charcoal to ore are combined. A typical Chalcolithic furnace 

then woftld consist of a bowl-shaped depression in the ground with a pile of hot 

charcoal and stones. The fuel and ore were piled together in the depression, with the 

addition of forced draught (Figure 11). During smelting, the slag and metal would 

form simultaneously and separation would take place in the lower part of the furnace 

since slag has a specific gravity of 3.5 to 4.0 while metal is about 8.9.

To complete separation between the slag and copper takes time, so the 

Chalcolithic smelter would have settled for a mixture of copper and slag, which he 

could then break up into pieces once it cooled. In breaking up the pieces, the smelter 

could recover small globules of copper known as prills, trapped inside (Tylecote
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Figure 10. Early pottery kiln prototype for copper smelting furnace (after Mylonas 

1929:310).
4
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Figure 11. Early type of copper smelting furnace with bowl-shaped depression 

(after Tylecote 1976:18).
4
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1980:185, Rothenberg 1985:124). The copper prills were then refined by placing 

them in a crucible in the furnace.

Based on his findings from Timna, Rothenberg calculates a Chalcolithic 

furnace to be about 20 cm in diameter and 40 to 50 cm in height, which includes 

a superstructure of stone* A similar furnace type was discovered by Glueck 

(1940:59, 63) at Khirbet-Jariyeh and Khirbet-en-Nahas in the Wadi Arabah (Figure 

12). Although these are Iron Age sites, their furnaces vary little from the type 

proposed by Rothenberg. Khirbet Nahas was a copper mining and smelting site. A 

number of smelting furnaces, copper slag and ruins have been found there. Less than 

3 km from Khirbet Nahas is Khirbet Jariyeh, where two types of smelting furnaces 

were found, the square type similar to the type found at Khirbet Nahas, measuring 

2.70 m, and a rounded version, approximately 2.9 by 2.6 m, as described by Glueck 

(1940:63).

Limet (1960:114-115) mentions a rounded type of furnace with a chimney to 

release fumes, which he partly bases on the Assyrian sign GIR (Figure 13), which he 

claims visually represents an image of a smelting furnace. A copper smelting furnace 

from the tenth century B.C., Level XI at Tel Qasile near Tel Aviv provides an 

example of this design (Figure 14) (Maisler 1950-1951:74, Mazar 1985:127).

Charcoal was the chosen fuel from the Chalcolithic period onward, because it 

could provide the necessary high heat. Properly carbonized charcoal contains little or 

no hydrogen, thus eliminating gas bubbles which can spoil a casting (Tylecote 

1962:109). Efficient and controlled smelting also required the use of forced draught
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Iisi

Figure412. Copper smelting furnace from Khirbet Jariyeh (after Glueck 1940:63).

|
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Figure 13. Assyrian sign GIR representing a copper smelting furnace (Limet

1960:114).
«
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Figure 14. Copper smelting furnace from Tell Qasile 

(after Maisler 1950-1951:74).
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to the furnace, which was provided by clay blow pipes, as seen in the Egyptian tomb 

of Hepu at Thebes (Figure 15). Blowpipes were still used in the Late Bronze Age, 

but probably for welding and soldering (Zwicker et al. 1985:104).

By the Late Bronze Age, clay tuyeres were used to provide forced draught.

They were extended into the furnace horizontally or vertically with bellows attached 

at the other end of the tuyere. A blast of air was provided by pumping the bellows.

A similar arrangement is depicted in the Eighteenth Dynasty tomb painting of 

Rekhmire, where Egyptian metalworkers are shown smelting, melting and pouring 

casts to make bronze doors (Figure 16). This type of arrangement has also been 

observed in different parts of Africa in the twentieth century (Hodges 1970:142,

Bemus and Echard 1985:75).

Bellows were introduced to Egypt by the Hyksos in the first quarter of the 

second millennium B.C. (Zwicker et al. 1985:104), and could be operated by hand or 

foot. Hand-operated bellows have been found in Anatolia, the coast of the Levant 

and Cyprus, while the foot-operated bellows have been discovered in Mesopotamia, 

the inland areas of the Levant, Sinai and Egypt (Davey 1988:66). One type of 

bellows known to have been used were the pot bellows. Cumbersome and large, potl
!
1 bellows were probably used in large-scale smelting operations, while more portable
ij
\ small skin bellows were used in smelting operations near the mines (Davey 1979:110- ;

111).

It is conceivable that smelting was done as early as the sixth millennium B.C.

The recovery of a necklace of 13 lead beads from Level VIA at Catal Huyuk
i
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4

at Thebes (from Garis Davies 1963: Plate VIII: by permission of Oxford University

Press).



Figure 16. The smelting melting and casting of bronze as depicted from the tomb of 

Rekhmire (from Garis Davis 1973: Plate LII).
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(Mellaart 1967:217) and a lead bracelet from Yarim Tepe I in Level XII, (Merpert et 

al. 1977:82) is significant. Lead does not occur in a native state as copper does, so it 

must be obtained from ores (Wheeler et al. 1979:17), usually galena. Lead ores can 

be smelted in a wood-fueled fire, since the separation of lead as molten metal requires 

only temperatures in excess of 327°C (Charles 1985:22).

While the presence of lead this early in the archaeological record indicates a 

knowledge of smelting technology, no concrete evidence exists for smelted copper 

prior to the fifth millennium B.C. (Muhly 1988b:7). The earliest example of smelted 

copper artifacts comes from Tepe Yahya in Iran, dating to the late fourth millennium 

B.C. (Tylecote 1976:5).

Alloying: Arsenic

The first clear evidence for alloying copper in the Near East and Eastern 

Mediterranean comes from objects that have a high arsenic content. Copper-arsenic 

alloys first date to the end of the Chalcolithic Period and precede the use of tin- 

bronzes, which appear in the Middle Bronze Age (Charles 1985:25). Copper-arsenic 

alloys become the dominant form of copper metallurgy in the third millennium B.C., 

in the Levant, Aegean, Anatolia, Egypt, Transcaucasus and Central Asia (Muhly 

1977b:74-75, Eaton and McKerrell 1976:174).

The use of arsenical copper also supports the hypothesis that copper metallurgy | 

developed according to copper deposit stratigraphy (Tylecote 1976:8), whereby the 

oxidized ores in the weathered surface outcrops were utilized first, followed by use of ; 

the deeper sulphide ores. (Charles 1985:23). Arsenical copper minerals are often
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found in association with other minerals in a copper deposit, in the oxidized zone as 

green arsenates similar to malachite in appearance (Charles 1979:10). Arsenates also 

appear in veins of lead, silver or gold in the form of realgar, particularly in the 

Aegean (Branigan 1974:58), and in the lower sulfide deposits as enargite and 

tennantite (Charles 1985:25). McKerrell and Tylecote (1972:209) regard tennantite as 

a common source of arsenic in antiquity.

Analyses of arsenical copper artifacts demonstrate that their arsenic content 

varied from less than to .25% to 4%, and even up to an occasional 10% to 12% 

(Wertime 1973:881). The varying percentages and types of artifacts analyzed have 

led some scholars to believe that arsenic was deliberately added to copper, as 

proposed by Caley in 1941 (60-63). There is some evidence to substantiate this view.

In 1961, a large hoard of copper objects was discovered in a cave on the west 

bank of the Dead Sea. Known as the Nahal Mishmar hoard, this find establishes the 

use of afsenical copper during the Chalcolithic Period and directly bears on the 

question of deliberate alloying. In a hoard of over 400 copper artifacts, including cult 

items and tools, 30 were analyzed. Trace element analysis showed that the arsenical 

copper came from the sulphide zone. Of eight tools recovered from the hoard, only 

one contained arsenic, while many of the cult objects contained over 5 % arsenic (Key 

1980:238-240, Bar Adon 1980:201). Cult objects recovered from Shiqmin in the 

Negev reveal a similar pattern. The everyday tools, ores and slags from this 

Chalcolithic site showed no traces of arsenic, while the culdc objects, similar to the 

maceheads, crownheads and scepters from Nahal Mishmar contained a high content of
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arsenic (Levy and Shalev 1989:359).

These results have led Levy and Shalev to believe that two distinct 

metalworking traditions existed side by side in the southern Levant during the 

Chalcolithic period; one for ordinary utilitarian objects, the other for cultic/prestige 

items. The utilitarian objects would have been made in open casts followed by 

annealing and hammering to work the final shape, while the cultic/prestige objects 

were made by the lost wax fcire perdue) method of casting.

Charles (1967:21,1979:10,1985:25)) has long advocated the idea of deliberate 

alloying, maintaining that arsenical minerals were deliberately selected and hand- 

sorted in a carefully controlled manner by recognition of their color and "garlic" 

odor. If arsenical copper ores were purposefully chosen as Charles suggests, why 

were they so desirable? Moorey (1985:16,1988:185) states that the hardness and fine, 

shiny, "silvery" appearance that arsenic lends to copper was superior to those of 

unalloyed copper. The addition of arsenic also improves the hardening capabilities of j
i!

copper without causing cracking of the metal.

Arsenic improves the casting ability of copper as well. Normally, native 

copper is difficult to cast due to the high temperature needed to melt it, and also 

because it has a tendency to oxidize and form bubbles from trapped gases (Raymond 

1984:26). Arsenic acts as a deoxidizing agent in copper by forming a separate 

metallic phase which becomes insoluble in copper and separates out from the liquid as 

a sublimate (Charles 1967:22). This improves the fluidity for pouring casts, 

particularly for decorative elements (Potaszkin and Bar Avi 1980:237).
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Not ail scholars agree on the deliberate alloying of arsenic to copper.

Tylecote (1980:185) claims that arsenic-rich copper artifacts were the result of 

accidental smelting with arsenic-loaded minerals. In his view, the higher percentage 

of arsenic was only retained when the percentages were below 7%, otherwise if the 

ore contained over 7% ,  then much of the arsenic was lost since arsenic is volatile. 

Refining in a crucible would have resulted in an even greater loss as the arsenic 

dissipated. Thus, if an artifacts indicates a high arsenic under analysis, then the 

object was probably cast as soon as the metal was melted.

Charles (1967:25), on the other hand, states that only the purposeful selection 

of arsenic-rich minerals could guarantee any consistency for casting and workability. 

Based on the predominance of arsenical copper objects recovered for the Chalcolithic 

and Early Bronze periods, it is likely that Charles’ assertion is correct.

Alloying: Tin

Arsenic was gradually replaced by tin, which became the dominant alloy to 

copper by the early second millennium B.C. (Muhly 1977b:75). Since there is little 

difference between the two in workability and hardness, the switch from arsenic to tin 

is puzzling. Charles (1967:26) suggests that the poisonous fumes of arsenic eventually 

ruled out its use. Another possibility is that the direct smelting of raw arsenical ores 

with copper prevented uniform casting on a consistent basis because of the varying 

content of arsenic in the ores. (Charles 1977:30).

When tin was first utilized or discovered remains unknown. The earliest 

evidence for the use of tin in the Near East and Aegean dates no earlier than the
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fourth millennium B.C. (Muhly 1977:76). A tin bracelet from the Early Bronze Age 

Level IV at Thermi on Lesbos was recovered by Lamb in the 1930s (1936:171). 

During the Middle Bronze Age, tin bronzes begin to show up in the archaeological 

record for the Near East, although there is no firm evidence for their use in Palestine 

until the end of the Early Bronze Age (Moorey and Schweizer 1972:192).

The archaeological evidence for pure or nearly pure tin is scarce, as well as 

any evidence for the mining and smelting of tin (Tylecote and Merkel 1985:12). 

Disintegration of tin objects from corrosion has been ruled out as the cause of its 

scarcity since tin is relatively stable and does not corrode easily (Charles 1977:26).

A tin pilgrim flask containing 6%  lead, dated to the Eighteenth Dynasty from a grave 

at Abydos, has been reported (Ayrton et al. 1904:50, Penhallurick 1986:9). More 

recently, a metal pilgrim flask from the shipwreck at Ulu Burun has been identified as 

tin (Bass and Pulak 1989:12). The bezel of a tin ring from Gurob from the 

Eighteenth Dynasty (Petrie 1891:19) was discovered, as well as a collection of clay 

vases covered with tinfoil from several Late Bronze Age Aegean sites (Muhly 

1977a: 46).

Tin in nature is found in two distinct forms, as stannite (CujFeSnS^ in copper 

deposits (Shepherd 1980:167) or as cassiterite (SnO^ in fissure veins or as crystals in 

lode deposits in granitic rock (de Jesus 1977:33, Forbes 1964:126). While tin occurs 

widely in over 50 minerals, most are extremely rare or hard to recover.

Only cassiterite accounts for virtually all the tin that has been recovered 

(Penhallurick 1986:1). Cassiterite is exposed through weathering of the parent rock.
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As a stable oxide, it remains unaltered where weathering has destroyed the host rock, 

leaving a concentration of alluvial or placer deposits, commonly known as stream tin 

(Penhallurick 1986:1), since the deposits are often found in stream beds. This 

remaining tin usually assumes the form of nuggets or lumps known as tin stone.

! Cassiterite has a specific gravity so that it sinks to the bottom of a stream bed. For
*

| this reason, it was probably collected and panned in the same manner as gold (Maddin 

I et al. 1977:40). In fact, gold is frequently found in association with stream tin 

(Penhallurick 1986:xi).i|
Pure cassiterite contains approximately 78.6 % tin, although the percentage is 

usually higher in alluvial tin than in vein ores, since the agitation of a rushing stream 

| washes the tin and removes useless debris from the dark brown nuggets (Forbes 

| 1964:126-127). Ancient miners probably recognized cassiterite by its brown color

j and extreme density (Charles 1985:26).

j The precise locations of the archaeological sources for tin in the ancient Near
i

East and the Mediterranean are problematic and controversial. Present-day sources
j
1 for tin are limited and not necessarily indicative of ancient sources, with the exception

| of obvious locations such as Cornwall in Britain. Muhly (1985:287-288) argues for a
|

Comwall-Aegean trade in tin, but there is currently little evidence to support this 

claim. Nevertheless, the implication is that the Eastern Mediterranean was dependent 

on faraway sources for tin (Waldbaum 1978:66).

Both Iran and Afghanistan have been cited as possible sources of tin. For 

Iran, however, there is no evidence to document this (Penhallurick 1986; 19). A
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Sumerian text mentions Zarha and BAR-gun-gun-nu as the tin mountains, but the

location is unknown (Muhly 1977a:44), although the mountains of northwestern Iran
ii

have been proposed as the source (Leemans 1968:213-214). In Afghanistan, there is
j

geological evidence for tin deposits (Muhly 1985:281). Afghanistan is also a known 

ancient source for lapis lazuli (Penhallurick 1986:24).
i
j

| For the Late Bronze Age, Sardinia has been attributed as a source for tin. Tin

j is principally known from the Sardinian sites of Monte Mannu in the north and in the 

south at Igtesias (Figure 17), although the highly inaccessible nature of these deposits 

would have posed a serious challenge to the ancient miner (Penhallurick 1986:79). It 

appears that the Sardinian sources were not exploited in antiquity (Lo Schiavo 

1988:98).

The bronzeworking industry of Anatolia may indicate Turkey as an ancient 

| source for tin. Until recently, there was no geological evidence to support this, but 

an Early*Bronze Age mine at Kestel in the Taums Mountains of south central Turkey 

was recently discovered by Yener and her colleagues (1989:200). The site contains

veins of cassiterite and placer deposits in nearby streams. Near the mine, Yener and
I

her team located a major Bronze Age metal processing site containing 25,000 stone 

tools, including hammerstones, pounders, adzes, mortars and pestles (1990:xx).

By the second millennium B.C., tin composed part of the maritime trade. The 

discovery of disintegrated tin resembling "toothpaste" on the shipwreck at Cape 

Gelidonya (Bass 1967:82-83), and over 40 tin ingots and many ingot fragments found 

on the shipwreck at Ulu Burun (Pulak 1988:8) now provide strong evidence for this.



Figure 17. Map of sites located in Greece and Sardinia.



The tin trade is mentioned in an eighteenth century economic text from Mari (A 

1270), during the time of Zimri Lin. The text records the incoming and outgoing 

consignments of tin at the palace at Mari. In this account, tin is reported to be 

shipped to Mari from an unspecified area to Ugarit, which served as a trading 

emporium between the Mediterranean and the Middle Euphrates region. The areas 

mentioned as receiving shipments of tin are Aleppo and Qatna in Syria, Karia in 

southern Anatolia, Laish (Tel Dan) and Hazor in Israel. The text mentions an 

overseas merchant, a Caphtorite, who is stationed in Mari. His presence there 

indicates trade links to the Aegean, as Caphtor either represents Crete or the general 

Aegean area (Malamat 1971:31, 38).

The standard ratio for alloying copper to tin in the Late Bronze Age was 9:1. 

How copper and tin were alloyed is not entirely clear. The addition of tin to copper 

may have been accomplished by adding tin as a pure ingot, or by a cementation-type 

process in which cassiterite was roasted then added to the molten copper in a charcoal 

furnace, with the metal being reduced in the melt (Charles 1977:27). The origins for 

this type of alloying may have begun by mixing copper and tin ores from the same 

gossan (Charles 1980:173).

Smelting tin from cassiterite with charcoal is a relatively simple procedure, 

since tin oxide melts at a lower point (232°C) than copper and can be easily reduced 

to metal, if strong reducing conditions are present (Charles 1985:26). These 

conditions would permit the direct addition of cassiterite, thus minimizing the loss of 

tin through a single reduction process, resulting in a single slag (Charles 1977:27).

51
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Marfchal (1962:171-172) has shown that when copper ores with some tin content are 

smelted, the tin reduces in the presence of copper due to the intermetallic affinity. 

With the addition of 5% tin, the melting point is lowered from 1083°C to 1050°C. 

Adding 10% tin lowers the temperature to 1005°C, and 15% tin to 960°C (Lucas 

1962:217).

It is unlikely that tin ores were directly added to smelted copper since the 

cumbersome ores would required being hauled long distances from mountainous 

regions to urban smelting centers (Madden et al. 1977:41). Thus, in the Late Bronze 

Age, tin was probably smelted and formed into ingots at a site near the mines, then 

transported to secondary refining centers to be added to refined copper.

Late Bronze Age Metallurgy

To meet the demand for bronze, Late Bronze Age copper metallurgy was 

directed toward increased output and more large-scale operations. This included the 

production of pure copper ingots, which appear in the Late Bronze Age, particularly 

those of the "ox-hide" shape (Figure 18). Their production represents a final, refined 

product (Merkel 1986:251). Preliminary analysis now indicates that some of the 

copper ox-hide ingots recovered from the shipwreck at Ulu Burun are of pure copper 

(Pulak, personal communication 1991).

To refine copper requires a sophisticated furnace technology.

The best evidence for refining operations and increased copper production is found on 

the island of Cyprus. Evidence from Enkomi and other Late Bronze Age sites now 

supports the idea of secondary smelting and refining operations, devoted to melting
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Figure 18. Example of an ox-hide ingot



and casting (Stech 1982:105, Stech et al. 1985:401).

Catling (1964:299) states that copper metallurgy began on Cyprus in the 

middle of the third millennium B.C. by foreign settlers whose metallurgical tradition 

was well-established. According to Catling, Cypriot metallurgy was primitive as 

demonstrated by the lack of two-piece molds which didn’t appear until the end of the 

thirteenth century B.C. At this time, the metallurgy tradition expands to include 

shaft-hole tools, sheet metal working, and lost-wax casting (Catling 1986:94). This 

technology improved partly due to Near Eastern and Egyptian influences (Catling 

1986:99).

Actual copper mining on Cyprus is difficult to verify, although it is generally 

agreed that Cyprus was one of the chief copper-producing areas of the Eastern 

Mediterranean during the Late Bronze Age. Copper ores have been found in the 

Troodos Massif on the western half of the island and to a lesser extent, the area 

around Troulli (Bear 1963:38, Lilljequist 1969:46) (Figure 19).

Sulphide metallurgy probably reached Cyprus by the beginning of the Late 

Bronze Age (Wertime 1973:882), and it is likely that primary smelting was carried at 

or near the mining site. Mining and preliminary smelting operations on Cyprus are 

indicative by a widespread occurrence of slag heaps on the island (Bruce 

1937:642). More than 40 heaps have been located, and the estimated total exceeds 

over four million tons (Constantinou 1982:19)! Recent lead isotope analysis of some 

Late Bronze Age bronze artifacts from Cyprus also indicates that they were made 

from Cypriot copper. From this, it can be suggested that tin bronze was made on



Figure 19. Map of Cyprus.
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Cyprus from Cypriot copper and imported tin (Gale and Stis-Gale 1989:254).

To prepare for primary smelting, the sulphide ores needed to be roasted to 

remove any residual moisture and sulphide and carbonate compounds. Roasting may 

have been repeated several times to obtain more copper (Wheeler and Madden 

1980:111, Mardchal 1985:29-30). Following roasting, the copper would then undergo 

primary smelting.

Steinberg and Koucky (1974:176) propose that Late Bronze Age copper 

smelting furnaces on Cyprus were small, bowl-shaped affairs lined with clay. The 

bowl-shape was designed to be placed below the charcoal in order to receive the 

molten copper. Primary smelting operations would be carried out for approximately 

an hour until small copper prills formed on the bottom of the furnace, entrapped in a 

mass of cinders and ash (Craddock and Meeks 1987:191). The chunks produced from 

the primary smelting would be glassy and blistered, so that the extra debris would 

have lobe chipped away (Hodges 1970:71-72). The prills and enriched slags from 

the primary smelting sites were probably transported to large settlements where they 

would be smelted and refined a second time in a furnace containing bone ash. Bone 

ash has been discovered at Kition in pits in workshops adjacent to Temple 1 (Zwicker 

1985:412). Bone ash may have been used as a fluxing agent since it lowers the 

melting point of slag from 1177°C to below 1000°C.

Late Bronze Age smelting furnaces on Cyprus have been found at Kition, 

Enkomi and other sites. At Kition, much of the evidence comes from a workshop 

area in Area 1 and a religious workshop/temple complex in Area II (Stech et al.
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1985:388). Remains of crucibles, tuyeres and large chunks of slag have been 

excavated as well as fire-blacked cavities. At Kition, it appears that clay crucibles 

were used for smelting operations; unlike pre-Late Bronze Age crucibles, which were 

smaller, the crucibles from Kition were large with a hole in the sidewall. The inner 

diameters of these crucibles range to about 25 cm, the wall thicknesses to 

approximately 2.5 cm and the heights to 30 cm. The hole is either in the center or at 

the bottom (Zwicker et al. 1985:104). The hole could have been used for introducing 

air for refining blistered copper (Zwicker 1985:412). For alloying tin, refined 

cassiterite was added to the liquid copper. Remains of this process have been 

uncovered at Area II at Kition (Zwicker 1985:415).

The remains at Enkomi also indicate a thriving metal industry. Copper 

workshops have been found in Level IIB (Dikaios 1971:65). It has been proposed 

that Enkomi was the center of the Cypriot copper industry during the Late Bronze 

Age, ex{x)rting products to Egypt and the Levant, along with large amounts of 

Cypriot pottery (Muhly et al. 1988:294).

The secondary smelting operations may have been directed toward the 

production of pure copper ingots, bronze ingots and other objects. The ingots were 

produced in a plano-convex or bun shape, in bars and most notably in the ox-hide 

shape. Copper and bronze ingots have been found scattered throughout 

Mediterranean land sites, but the largest collections have been found on the 

shipwrecks at Cape Gelidonya and Ulu Burun, Turkey (Bass 1967, Pulak, 1988; 6-7). 

The copper ox-hide ingot trade was probably under Semitic control from the fifteenth
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century to the end of the thirteenth century B.C. (Bass 1967:163-167, 1973:32), The 

archaeological evidence indicates that ox-hide ingots were not produced before 1600 

B.C., but their manufacture appears to have continued on Cyprus until the twelfth 

century B.C. (Bass 1973:31-33).

How copper ingots were produced is still unknown. Catling (1964:267) 

suggests that their design was related to ease of handling in trade, rather than for 

smelting considerations. Tylecote (1980:190) suggests that the plano-convex ingots 

were produced in a furnace where the slag was tapped at the end of the smelt to leave 

an ingot at the bottom of the furnace, what Rothenberg (1985:133) calls the "slag-on- 

top-with-plano-convex ingot-at-the-bottom model" (Figure 20). Tylecote also 

proposes that the ox-hide ingots were cast from a different type of furnace that 

included a spout or launder system (Figure 21).

Based on the Late Bronze Age furnaces found at Timna, Rothenberg 

(1985:1^3) states that Tylecote’s original furnace model is oversimplified. Opie et al. 

(1979:17) report that tapping molten slag in a smelting furnace would have to be 

nearly complete and perfect in order to be successful. Any residual slag left in the 

furnace would lower the quality of the copper; thus a smelting furnace that could 

produce a 30-kg copper ox-hide ingot would demand an inordinate amount of skill 

(Merkel 1986:260).

Once the copper was refined, it was then poured into a mold in its molten 

form. How this was done is not certain. To produce a large ox-hide ingot required a 

substantial amount of molten copper. Numerous simultaneous pourings from
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Figure 20. Copper smelting furnace for producing bun ingots (after Tylecote 

1980:195).

Figure 21. Copper smelting furnace for producing ox-hide ingots (after Tylecote 

1980:190).
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secondary smelting have been suggested, as depicted in the tomb of Rekhmire (Figure 

16). This presents serious problems, however, since the cooling metal would 

congeal, making uniform pourings into one ox-hide mold difficult.

A more likely possibility is that refined copper was melted and poured into 

sand castings (Bass 1961:272), although a stone ox-hide ingot mold was recovered 

from a palace workshop at Ras Ibn Hani near Ugarit (Jacques et al. 1983:277).

The size and shape of the ox-hide ingots represent an advanced stage of a 

casting technology that dates back to the Chalcolithic Period. The earliest form is the 

open mold, which derives from the tradition of making mudbricks. Open molds 

involved carving a shape into stone. Steatite was often preferred since it is not 

enough to carve. The cast was made by pouring the molten metal into the carved 

depression (Hodges 1970:72) (Figure 22).

This type of casting is limiting, however, since the upper surface of the object 

has to be4flat. Open molds were therefore used for flat objects which had flat 

surfaces, like an axe head. Surface defects could be ground off later. Another 

problem with open molds is the difficulty in removing the cast object after 

solidification. Any uneven or undercut areas of the original mold would make it 

almost impossible to remove the object from the mold (Steinberg (1967:10).

The concept of the open mold was carried further with the two-piece or bi 

valve mold, where two open molds are fastened together, with a place to introduce 

the molten metal (Steinberg 1967:10) (Figure 23). With this type of mold, a hollow 

portion could be included for creating sockets. Hollow casts also reduced the need



Figure 22. Open mold (after Hodges 1970:72).

Figure 23. Bi-valve mold (after Hodges 1970:73).
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for costly additional metal.

In two-piece molds, the shape was prepared from wood or clay. The pattern 

was then pressed halfway into the lower half of the mold, which was smoothed out 

and levelled and covered with soot to prevent the top half from sticking to the bottom 

half. Any hollow area was created by inserting a core. Sometimes dowel pins, 

known as chaplets, were inserted into the core’s surface to prevent the displacement 

of the core (Coghlan 1975:53-55, Steinberg 1967:10).

The most sophisticated molding technique, the lost-wax or £irg perdue method, 

allowed for more detailed and elaborate castings. The shape was created from a clay 

core which was then covered with bees-wax to accept the details. Outer coats of first 

fine and then coarser clay were applied and dried, then heated to fire the clay and 

melt and bum out the wax. Molten bronze was then poured into the cavity left by the 

melted wax (Steinberg 1967:11).

For hollow castings, a clay core was inserted with the mold being built over it. 

The molten wax was poured into the space left between the core and the outer mold 

(Hodges 1970:149-151) (Figure 24). Most cores were self-supporting, but chaplets 

were used if the cores were too weak (Coghlan 1975:62). Several chaplets have been 

found at Tel Nami in Area G, along with small pieces of slag, scrap metal and small 

pieces of lead. Lead was used to reduce the viscosity in molten bronze, thus making 

pouring easier for intricate molds. The addition of lead also encouraged rapid cooling 

which was especially important for more complicated castings (Hodges 1970:147- 

148).
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Figure 24. Lost wax mold for producing a hollow cast (after Hodges 1970:150).
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Several artifacts recovered from Tel Nami were manufactured in the cire 

perdue method. A small bronze juglet was produced in this manner (Figure 25), as 

well as a small incense stand from Area O (Figure 26). Catling (1964:190-191) 

categorizes this type of stand into a metal tripod tradition that includes wheeled and 

standing tripods. According to Catling, these stands were probably made on Cyprus, 

although they also exhibit Near Eastern and Aegean influences in their design 

(1986:98). His categorization is based on their common artistic and technical 

traditions. Stands similar to the one from Tel Nami have been found at Ras Shamra 

(Schaeffer 1952: Figure 18:65), Megiddo (Guy and Engberg 1938: Plate 119) and, 

badly corroded, Beth Shan (Fitzgerald 1934: Plate VII, Figure 2).

The different parts of these stands were probably cast separately as component 

parts, either through two-piece molds or through the lost-wax method, then joined 

together by hard soldering. Hard soldering, also known as brazing, involved joining 

parts together with metal alloys requiring high melting points. The solder itself was a 

copper alloy such as a low-tin bronze. This produced a strong join, unlike soft 

solders, commonly of lead-tin, which were weak (Cronyn 1990:213, 162). Recently, 

a solder made of lead and tin was recovered at the return expedition to Cape 

Gelidonya (Bass 1989:13).

To sum up technological developments in copper metallurgy in the Near East 

and Eastern Mediterranean, it seems that ancient metalworkers conducted their craft 

with accurate knowledge of their raw materials. Early experimentation begin with 

the simple use of native copper ore, followed by melting and smelting technology.



Figure 25. Bronze juglet from Area O. Length: 15.9 cm.



Figure 26. Tripod incense stand from Area O. Length: 18.8 cm.
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Smelting technology developed from simple bowl furnaces to more complex types 

over a long span of time, with regional variations. By the beginning of the Early 

Bronze Age, alloyed metals show up in the archaeological record, as evidenced by the 

use of arsenical copper. By the Late Bronze Age, metalworkers have almost fully 

abandoned arsenical copper in preference to using tin-bronze. By this time, 

improvements in smelting technology also allowed for the production of large ingots 

which could be traded in bulk and transported by ship. The legacy of this once 

thriving trade is evident through the remains of copper and bronze ingots, and tools, 

weapons, and other objects. This legacy is more thoroughly examined in the next 

chapter.

4
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CHAPTER HI

THE CORROSION AND CONSERVATION OF COPPER AND ITS ALLOYS

Introduction

Removing metal artifacts from their archaeological context disturbs the 

chemical equilibrium that has taken hundreds or thousands of years to establish. 

Changes in temperature and humidity create secondary reactions, thus instigating a 

new phase of corrosion in a shorter amount of time than the earlier attacks which took 

place in situ. This presents unique problems for conservators, especially for artifacts 

recovered from marine sites where cuprous chlorides become concentrated in the 

corrosion products. The conservation of chloride-contaminated ancient bronze 

requires more than just a rudimentary knowledge of "kitchen" conservation (Thomson 

1966:266). Rather, it requires understanding the nature of metal and the principles of 

metal cdrrosion, as well as the role environmental factors play in promoting 

corrosion.

The Formation and Structure of Metals 

Outwardly, a piece of metal appears to be a dense, homogeneous substance. 

Yet, with the aid of a suitable etching reagent, a polished piece of metal under 

magnification exhibits a complex crystalline structure composed of crystal faces, 

edges, comers, boundaries and layers (Gwathmey 1948:33). Metals are made of 

atoms, and when grouped, form crystals known as grains. Ultimately, the physical 

properties of metals are partly affected by the size and shape of the grains. The
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crystals that form grains vary in shape and size, their external form being determined 

by the conditions in which they were created (Norton 1959:101).

When liquid metal cools, rapid growth occurs in particular crystallographic 

directions. If the liquified metal is brought to just below its melting-point, the atoms 

join together simultaneously in several points of the liquid mass to form several 

micro-crystals. The first crystal to form serves as the nucleus for other crystals to 

bind to (France-Lanord 1980:15). As the nuclei grow, they form branch-shaped 

crystals called dendrites (Figure 27). The remaining liquid metal between the 

branches solidifies to fill in the spaces. Each dendrite forms a polyhedral crystal with 

its surfaces in contact with other surrounding crystals. These clusters of crystals, 

which have irregular boundaries, form grains, which develop where the alignment of 

atoms is the same (Rogers 1964:307) (Figure 28). A relatively pure metal like copper 

contains only atoms of a single, metallic element that has one kind of grain structure 

(Norton41959:99).

Atoms in metal are held together by forces which are electrical in nature, 

primarily due to the electron exchange of individual atoms. These bonds are not 

completely rigid, though, and should be thought of as strong springs rather than being 

fixed since atoms in metal are more or less in continuous motion, even at 

temperatures far below their melting points (Rogers 1964:94). Atoms are continually 

rearranging themselves to achieve the most stable configuration which is dependent 

upon many factors. Temperature affects atomic configuration with higher 

temperatures instigating thermal agitation, while cooler temperatures result in slower
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atomic movement. This is logical if one considers that metal working is dependent on 

high heat to produce the malleability that is necessary to bend and shape it.

Subsequent heating, known as annealing, may produce smaller equiaxial grains which 

contain a degree of increasing strength and loss of some brittleness.

The internal crystalline structures of metals are made up of orderly, three- 

dimensional patterns called lattice structures. (Figure 29). A pure metal consists of 

organized crystal lattice structures where atoms are packed together to achieve a state 

of low energy (Singley 1988:26). The most common lattice configurations are usually 

cuboid or hexagonal, as in copper. Lattice structure relate to metal corrosion in a 

specific way. Because no metal surface exists as a perfect plane, edges will exist at 

the boundaries of incomplete lattice structures (Figure 29). These areas may be 

considered "weak," where the metal is more likely to go into solution and becomes 

susceptible to corrosion attack (Butler and Ison 1966:7). The internal crystalline 

structures of alloys differ from pure metals, particularly in their homogeneity. Some 

metals only partially dissolve together, thus forming two or more types of grains each 

being a solution of one metal in the other. Other metals have complete mutual 

solubility in the liquid state, and hence are called solid solution metals. The different 

solutions in alloys are referred to as phases, and occur when metals of different-sized 

atoms are alloyed. Most alloys contain more than one phase, and alloys usually 

consist of a succession of single and two-phase regions as the composition changes 

throughout the alloy (Norton 1959:103). Bronze contains more than one kind of 

element, and therefore contains more than one structural phase. Hither a solid
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Figure 29. Example of a lattice structure. (A) represents the edges and comers of 

grain boundary of an incomplete lattice plane. (B) represents a completed plane 

(after Bfttler and Ison 1966:7).
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solution of two metals or a compound between two metals can constitute a phase. 

Phases are designated by letters of the Greek alphabet; (a) as the alpha phase, (/?) as 

the beta phase, and (6) as the delta phase. If two metals come from the same column 

of the Periodic Table with a similar chemical valence, then their solid solubility will 

be greater. If they come from opposite sides of the chart, then compounds rather 

than solid solutions will form, such as magnesium-lead (Rogers 1964:80).

Each phase has different physical properties and will contribute some of these
j

characteristics to the resultant metal (Cronyn 1990:160). For example, phases in 

bronze occur in varying concentration throughout the metal so that some areas 

become tin-rich and others copper-rich (Dowman 1970:19). Two main factors affect 

phase development in bronze: the cooling rate of the molten metals and the amount of

I tin added to the copper (Singley 1988:26).

i Usually pure metals are little affected by the rate of cooling, but, the

solidification process for alloys is far less uniform so that the last portions to solidify 

in the cooling process may contain a smaller percentage of the predominant metal in 

the alloy. This results in areas of differing composition, affecting metal homogeneity. 

Slow cooling allows the atoms to form in a stable array and to be more evenly 

distributed throughout the metal.

If the alloy is suddenly quenched by plunging it into cold water, then the 

crystal transformation is incomplete, and the alloy remains in an unstable state 

(Norton 1959:107). For example, rapid cooling of bronze prevents an even diffusion 

of copper so that the first dendritic branches of the crystals to cool remain rich in
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copper, while the latter branches to solidify have a lower copper content. As a result, 

the metal is less homogeneous, and in some cases, surface enrichment can result 

where a bronze has a higher percentage of copper at the surface than in the interior 

(Walker 1980:277). This can be remedied by reheating or annealing the metal which 

restores its homogeneity by providing the thermal agitation necessary for the atoms to 

rearrange themselves. For bronze, the single phase can transform into a  and 0  

phases where the transformation process can become complete, and a state of 

equilibrium can be reached (Norton 1959:107).

Along with the cooling rate, the percentage of tin added to copper will also 

affect phase development and metal homogeneity in bronze. When copper is alloyed 

with a small proportion of tin, less than 5%, an a  phase is formed in the solidification 

process. In the a  phase, the copper-rich dendrites grow outward from the crystal 

nucleus, with the concentration of copper on the central portions of the dendrites, and 

the peripheral areas less so (Stambolov 1969:71). In cr-phase bronzes, the tin is 

mainly dissolved in the copper matrix, but will segregate during casting so that tin 

becomes concentrated at the grain boundaries, the interface area where the phases 

meet (Walker 1980:279). Microscopic examination of a low-tin bronze often reveals
1

copper-rich dendrites with an in-filling of tin-rich material (Hodges 1976:213).

In single-phase bronzes where the tin content is above 7%, the infilling is 

fairly tin-rich. This is especially true for ancient bronze artifacts. Tin-bronzes that 

contain up to 10% tin usually contain no inter-metallic compounds, so they are 

relatively soft and ductile (Hodges 1976:214). Bronzes with over 10% tin contain an
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inter-metallic phase, the 0  phase, which is arbitrarily distributed over the lattice 

points. This 0  phase is predominantly tin rich, while the alpha phase is mainly 

copper rich (Walker 1980:279). The occurrence of an intermetallic compound is the 

rule rather than the exception (Alexander and Street 1976:75).

High-tin bronzes containing over 15.8% tin, or lower tin bronzes that cool 

rapidly (over 6%), will form a new phase as a result of reactions in a solid solution 

alpha phase and the eutectic ct +  0  phase. The eutectic phase in an alloy is the phase 

of the lowest melting point, characterized by a conversion of the liquid alloy into two 

solid constituents during the solidifying process. It can be thought of as an 

intermediate phase, usually a tin-rich phase in bronzes. The structure of eutectics 

may consist of alternate thin layers of the alloys, or as small globules of one metal 

embedded in a matrix of the other (Alexander and Street 1976:76). The new 5 phase 

resulting from the a  and a  +  0  phase is not fully understood (Stambolov 1969:71).

Under the proper thermal conditions,, copper can dissolve up to 16% of tin 

without any change in the crystal structure, but a tin content exceeding over 25% 

results in too much of the 0  phase in the solid state. This makes the bronze brittle, 

which is characteristic when the intermetallic compound predominates (Alexander and 

Street 1976:75). Bronze objects with a tin content over 32% contain too many inter 

metallic compounds of copper and tin (Stambolov 1969:72).

This raises another question. Do the various percentages of tin in copper 

affect the rate of corrosion? It has been proposed that when copper is alloyed with 

tin, the rate of corrosion increases (Plenderleith 1941:808). In bronzes containing
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less than 10% tin, the a-phase grains are likely to corrode first since their peripheral 

areas are tin-rich and are more electro-potentially negative than the copper-rich 

regions (Stambolov 1969:98). The interface (grain boundaries) will be the greatest 

points of weakness with mineralization spreading out from these areas (Dowman 

1970:19). This is especially true for cast bronzes (Leidheiser 1971:73). After grain 

boundary corrosion sets in, corrosion will occur throughout the surface of the a-phase 

grains where the lattice points are occupied by atoms of tin (Stambolov 1969:98). 

Corrosion at the grain boundaries can actually destroy the soundness of a metal object 

(McKay and Worthington 1936:92), particularly objects that have been annealed 

(Robinson 1982:223).

Bronzes which contain a higher percentage of tin corrode differentially and 

have a greater tendency to corrode than low-tin bronzes. This is chiefly due to the 0 

phase where atoms are arbitrarily distributed over the lattice points (Stambolov 

1969:98), and intergranularly. Thus, disintegration eventually occurs, beginning at 

the outer surface, then continuing inward (Walker 1980:279). In high-tin bronzes, 

both the a  and j8 phases will corrode at the tin-rich areas. In two-phase bronzes, the 

6 phase, which is richer in tin than the a  phase, is also susceptible to corrosion 

(Nielson 1977:25). If zinc is present in trace amounts, the corrosion will begin at the 

a , copper-rich portion. If in contact with seawater, bronzes with trace amounts of 

zinc and some lead will undergo a two-fold corrosion which involves the simultaneous 

attack of both the a  and j3 phases (Stambolov 1969:98). Hours and Michel (1973:71) 

examined 27 ancient Egyptian copper and bronze objects from the Louvre, and found
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that bronzes which contained 7% to 10% tin were fairly well-preserved, while a 

bronze tool with almost 17% tin was heavily corroded. They concluded that high-tin 

bronzes have a greater tendency to corrode.

While phase development affects the internal structure of metal, an external 

event, cold-working will also influence a metal's structure as well as its resistance to 

corrosion. Cold-working, the hammering of metal, is carried out when a metal is 

solid, that is, below the recrystallization temperature of the metal. In copper, cold 

working affects the size and disposition of the grains. The grains in the metal become 

distorted and elongated in shape and the metal becomes harder and stronger than 

annealed metal (Newton and Wilson 1942:389, France-Lanord 1980:22). Cold 

working copper during antiquity had the special advantage of producing hard and 

stable cutting tools.

For bronze, the more it has been cold-worked and annealed, the finer the grain 

structure will be. Repeated hammering results in "twins,” which are pairs of identical 

grains whose lattice structures are mirror images of each other formed on each side of 

a common plane. Twins result when whole regions of atoms in a grain shift as a unit 

in response to the stress caused by hammering. Thus, repeated hammering causes 

dislocations along the crystallographic planes (Rogers 1964:216). Madden et al. 

(1980:225) tried to determine whether twin grains could serve as a diagnostic feature 

in identifying artifacts made from native copper, and decided that it wasn't possible 

since hammering smelted copper produces the same effect.

Cold-working is also important to consider because ancient hammered copper



78 ;
i

and bronze appear to corrode in areas where concentrated hammering has occurred 

(Cushing 1959:120). Cold-working and annealing processes can actually create 

internal structural alterations that will eventually affect the artifact's resistance to 

corrosion. The distortion in grains causes a change in the mechanical properties of a 

metal. When copper is hammered, the grains may be crushed to the extent that the 

copper becomes brittle (France-Lanord 1980:22). If the treatment is continued, the 

copper will eventually crack (Hodges 1976:73).

On the other hand, cold-working decreases the electrical conductivity of 

copper (Newton and Wilson 1942:389). France-Lanord (1980:22) states that cold- 

worked metal is more resistant to corrosion, whereas metal cast copper objects are 

more susceptible to corrosion attacks. The cast bronze objects found at Tel Nami 

refute this observation, as they were found to be in superior condition to those objects 

that appear to have been hammered in antiquity. Two metal sieves made of 

hammefted bronze sheet metal, were badly corroded in comparison to three bronze 

incense burners and a juglet that were cast. This takes into account that these objects 

were found in the same area in a similar micro-environment from the same time 

period.

Furthermore, as cold-worked metals are commonly subject to surface tension 

and inner compression, this instability is concentrated at the grain boundaries, freeing 

metal ions, so that the metals under stress behave anodically, thus negating France- 

Lanord's position that low conductivity is caused by cold-working. In fact, lattice 

defects, caused by cold-working, can actually convert an insulating crystal into a
i
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semi-conductor. As the metal comes into contact with an aggressive agent such as 

seawater, the conductivity increases and a chemical attack occurs in the crystallo 

graphic planes, both in the intercrystalline areas and in the transcrystalline regions 

(Stambolov 1969:14).

The presence of impurities in a metal also affects its internal structure.

Bronzes produced in antiquity often contain impurities reducing their corrosion resis 

tance. Impurities present in casting affect the crystalline structure during the cooling 

process (Walker 1980:277). Caley (1964:5) observes that little internal corrosion 

takes place within alloys of high fineness since the metal below the surface is 

homogeneous.

One type of impurity is slag which contains some crystalline material from the 

siliceous components present in most ores. The slag is either found at the grain 

boundaries or within the grains (Cronyn 1990:161).

flron is another impurity found in ancient bronze, either as part of the copper 

ore or from iron oxide that was deliberately added as flux (Walker 1980:277). The 

copper ores of the Troodos Massif on Cyprus are rich in iron, and ancient copper 

slags from Cyprus show a high iron content (Bear 1963:190-191). Craddock and 

Meeks (1987:202) suggest that a higher iron content in bronzes from the Near Hast is 

indicative of a more sophisticated smelting technology since lower grade ores rich in 

iron were successfully smelted. While the internal structure of a metal partially 

determines its resistance to corrosion, external factors, aside from cold-working, play
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a role as well in the corrosion process. These aspects will be examined in the next 

section.

The Corrosion Process

A non-technical definition of corrosion is "the deterioration of a metal brought 

about through reaction to its chemical environment resulting in the most stable 

compound of the metal" (Cushing 1959:110). This means that any metal is 

susceptible to losing electrons and reverting back to the ore which is its stable form in 

nature (Singley 1988:26). Iron provides an example: when exposed to rain, iron 

rusts. Rust is simply iron oxide, which is iron ore in its natural state. Given the 

proper environment, all metals will corrode, even gold, although it requires a highly 

oxidizing environment (Payer 1987). Corrosion is also defined as "the chemical 

reaction of a metal with a non-metal in the surrounding environment, with the 

formation of compounds which are referred to as corrosion products," (Chandler 

1985:8)? This reaction involves a series of energy relationships that are 

electrochemical in nature.

Once the surface of a metal establishes contact with another substance like 

seawater, various places on the metal’s surface develop differences in potential, 

creating an electromotive force that results in forming corrosion cells (Zajic 1969:22). 

The condition of the surface prior to and during the corrosion process will play a role 

in how the electrochemical process will affect the metal (Roebuck et al. 1957:89). 

Occlusions on the surface of a metal can encourage chemical attack, as well as areas 

that are shielded from atmospheric oxidation (Organ 1976:244).
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Contact with an electrolyte causes the metal to react by an electrochemical 

exchange which is known as the solution potential of the metal (McKay and 

Worthington 1936:83-84). The solution potential for metals is determined by placing 

the metal in a solution of its own salts. Based on these observations, metals can then 

be arranged in order of their exact potentials. This ordering is known as the Standard 

Electromotive Series, based on the Nemst equation (Table 2). The Nemst scale of 

solution potentials enables scientists to "classify metals in order of their nobility, 

according to the value of the equilibrium potential of their reaction of dissolution in 

the form of a simple given ion considered in a standard state" (Pourbaix 1966:73).

For example, magnesium, which is highly corrosive, will fizzle and dissolve when 

dropped into a glass of water, whereas gold or platinum at the other end of the series 

will remain inert in water (Payer 1987). As such, noble metals reduce more easily, 

but corrode less, while the more reactive metals reduce with difficulty, but corrode 

more (Ybung 1970:91).

Generally, if the electro-potential in the environment is less than the 

equilibrium value, then the metal is stable in its metallic state and will not corrode, 

but if the electro-potential is greater than the equilibrium value, then the metal will be 

stable only in a dissolved state, so that corrosion will occur (Payer 1987). This 

electrochemical relationship is likened to a simple flashlight battery. Here, a 

combination of two electrical conductors (electrodes) are immersed in an electrolyte 

which in turn creates a galvanic cell. The galvanic cell converts chemical energy into 

electrical energy. The electrolyte allows the current to conduct both negative and



Table 2. Standard Electromotive Series.

Element Standard Electrode Potential 
Em* Volte, 25 °C

Gold
Platinum
Palladium
Silver
Copper
Hydrogen
Lead
Tin
Nickel
Cadmium
Iron
Chromium
£inc
Aluminum
Magnesium
Sodium
Potassium

1.68
1.20
0.83
0.800
0.522 - 0.345 
0.000 

-0.126 
-0.136 
-0.250 
-0.402 
-0.440 
-0.71 
-0.762 
-0.67 
-2.34 
-2.712 
-2.922
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positive carriers known as ions, which are electrically-charged atoms or groups of 

atoms. Ions are found in solutions of acids, alkalis and salts.

The current carried by each ion is determined by its mobility and electrical 

charge (Uhlig and Revie 1985:9). In order for a flow of electrons to occur, there 

must be a difference in potential between the negatively-charged (anode) and 

positively-charged (cathode) areas on the metal. This basic concept was originally 

introduced by Faraday (1839:230-258).

On a technical level this process is known as oxidation and reduction, where 

destructive corrosion usually occurs at the anode as an oxidation reaction while a 

simultaneous non-destructive reduction of the electrode proceeds at the cathode, 

usually producing hydrogen gas. The hydrogen gas may insulate the cathode from the 

electrolyte, so the current flow stops any polarization of the cell. Usually oxygen or 

some other depolarizing agent is present to react with the hydrogen, reducing this 

effect, sft the cell continues to function (Berger 1989:3).

For example, in iron, a loss of electrons causes the metal to dissolve at the 

j anode, while ferrous ions leave the metal and diffuse into the electrolyte solution

I (North and MacLeod 1987:70). Other electrons from the anode pass through the bulk

of the iron to the cathode where they meet with hydrogen ions in solution which act 

as electronic receptors at the cathode surface. Hydrogen molecules then form at the 

cathode, resulting in a high concentration of hydroxyl ions which counteract the 

acidity of the solution. Molecules of hydrogen gas are formed, and a plating out of 

hydrogen occurs at the cathode, coating the iron surface with an oxide film (Cushing
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1959:111) (Figure 30).

On the surface of a metal, millions of galvanic cells can form, and within a 

short time, providing that environmental conditions are conducive, corrosion takes 

place freely and on a large scale. This will continue until a state of equilibrium is 

reached, when the cells become polarized by a build-up of hydrogen at the metal’s 

surface. If enough atmospheric oxygen is present, corrosion will continue (Leigh 

1973:205). Corrosion may take a variety of forms that range from fairly uniform to 

highly localized attacks involving pitting or cracking, while other areas remain 

unaffected (Chandler 1985:10).

Copper and copper alloys are fairly resistent to corrosion since copper is a 

noble metal to hydrogen in the Electromotive Series (Uhlig and Revie 1985:327). 

Copper is widely used because of its resistance to corrosion and its mechanical 

workability and electrical conductivity.

Tin, on the other hand, is a more reactive metal, although tin compounds are 

more thermodynamically stable than copper compounds (Walker 1980:279). Pure tin 

forms a film of stannous oxide which is protective until it becomes too thick (Organ 

1976:245). When alloyed together, copper and tin produces bronzes 

that have excellent mechanical-working abilities and good resistance to corrosion. 

This is evidenced by the existence of so many well-preserved bronzes from antiquity. 

It might be noted that on the Electromotive Scale, bronze occupies a position above 

copper, so that bronze can be considered more noble than unalloyed copper.

Inspite of its overall resistivity, bronze will corrode under moist or wet
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Fe +  +
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Figure 30. Oxidation and reduction reactions during electrochemical corrosion on a

section of iron.
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conditions since water acts as an electrolyte, promoting an electrochemical exchange. 

Except for arid conditions which promote good preservation, most burial 

environments contain some degree of moisture. For coastal and underwater sites, the 

continual presence of saltwater results in aqueous corrosion.

Aqueous Corrosion

Most corrosion takes place in aqueous environments. The electrical 

conductivity of water is governed by the amount of dissolved chemicals in the water 

(Cushing 1967:61), thereby making water an electrolyte that disassociates into 

hydrogen ions and hydroxyl ions (Goffer 1980:254). In order to determine how a 

solution will affect the corrosion potential of a metal, Pourbaix diagrams are often 

used.

Pourbaix diagrams map the regions of stability of a stable metal, based on 

thermodynamic calculations (Payer 1987). These diagrams only concern pure metals, 

however? so the behavior of alloys is unpredictable (Piontelli 1966:15). Pure water is 

the electrolyte standard, calculated at 25° C. Pourbaix (1966:71) identified three 

regions of stability on the diagram: 1) the immune area where the metal is a stable 

solid; 2) the corrosive area where the metal ions go into solution and; 3) the passive 

zone where a solid oxide or hydroxide of metal is stable.

Pourbaix diagrams also include as the coordinates the E (electrode) potentials, 

which represents the oxidizing power of the environment, and the pH of the aqueous 

environment. Both of these factors greatly influence the corrosion behavior of metal 

as a function of the environment. Plotting out the equilibrium values of £  and the pH
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of corrosion reactions provides a measure of predictability for corrosion under given 

conditions. For example, the Pourbaix diagram illustrates the ranges of immunity, 

corrosion and passivation for copper in pure water at 25°C (Pourbaix 1966:389) 

(Figure 31).

In aqueous solutions, water purity plays a role in corrosion resistance 

experiments. Freshwater is less conductive than saltwater. In aerated natural waters 

low in anions and dissolved carbon dioxide, a protective film of cuprous oxide and 

cupric hydroxide forms on copper, thus retarding the rate of corrosion (Wilkins and 

Jenks 1948:63).

High purity water such as distilled or deionized water are slightly acidic and 

can attack metal (Evans 1948:4). Purity is measured in terms of electrical resistance, 

and in respect to having low concentrations of solids and gases (Swandby 1963:49). 

Solutions of distilled water may contain a high content of dissolved carbon dioxide, 

thus resulting in a more aggressive aqueous environment for copper and iron.

Deionized water, on the other hand, is much lower in carbon dioxide gas, so 

that the corrosiveness is determined by the amount of oxygen present (Butler and Ison 

1966:36). For this reason, deionized water is preferred for cuprous metal 

conservation as the amount of oxygen can be controlled, although it is still anodic.

Seawater, unlike fresh water, is corrosive because it is high in ionic 

conductivity (Florian 1987:69). Seawater is a complex mixture of dissolved salts, 

organic compounds and gasses, and contains about 70 elements, the major 

components being chloride, sodium, magnesium, potassium and calcium. Several
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Figure 31. Simplification of Pourbaix diagram for copper 

in pure water at 25°C (after Cronyn 1990:169).
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major factors contribute to the corrosive nature of seawater. They are: salinity, pH, 

dissolved gases, temperature, movement, electrical conductivity and biological 

organisms (fouling).

The first factor, salinity, is basically a measure of the total salt content of 

seawater (Weier 1973:133). The average salinity value for open ocean water is 35 

parts per thousand (ppt.), but may vary between 32 and 38 ppt. at different locations 

and depths (Porte 1967:2, Chandler 1985:38). Salinity rates are slightly higher for 

enclosed seas such as the Mediterranean, the area of this study, which is 38.6 ppt. 

(Florian 1987:4). Salinity rates can also vary due to currents and diurnal fluctuations, 

and is variable at the surface, but becomes more constant with increasing depth 

(Weier 1973:133).

Near the mouths of rivers or in estuarine areas, seawater is often diluted. 

While diluted, this water is actually more corrosive because it is less saturated with 

respect tto carbonate solubility so that a protective carbonate layer is less likely to 

form on the surface of a metal (Boyd and Fink 1979:7).

The pH of seawater is alkaline, ranging from 7.5 to 8.5 (Weier 1973:136).

The pH is largely determined by the presence of phosphates, borate, carbonates and 

silicates, and dissolved salts (Florian 1987:3), but varies slightly, depending on 

biological activity that consumes carbon dioxide (Boyd and Fink 1979:7). Generally, 

the alkaline nature of seawater itself is not corrosive, but in combination with other 

factors, it can contribute to corrosion activity.

Dissolved gases originate from the atmosphere, decomposition of organic
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material and biological activity. The two principal gasses are oxygen and carbon 

dioxide, and their solubility decreases with an increase in temperature and chloride 

levels (Florian 1987:4). The gas content is affected by evaporation, which at the 

sea’s surface, is mixed by water movement and wind (Weier 1973:134). Dissolved 

oxygen usually has a maximum value at or near the surface (Porte 1967:2).

While the rate of corrosion attack usually increases with an increase in 

oxygen, it has been found that copper artifacts recovered from shallow wreck sites 

often are less corroded than those found at deeper depths. This can be explained by 

the presence of sulphate-producing bacteria in shallower waters which can actually 

form a protective layer on the metal (North and Pearson 1987:82). Also, in shallower 

waters, the pH remains high so that a protective carbonate-type scale is likely to form 

(Boyd and Fink 1979:7). Closer to the surface, objects may show more corrosion 

products, but are actually less corroded (North and Pearson 1987:82).

Temperature also affects saltwater corrosion. An increase in temperature will 

affect the chemical composition and physical properties of seawater, thereby speeding 

up the corrosion process, particularly in the summer months in temperate climates. 

Overall, temperature is inextricably linked with other factors (Porte 1967:6).

Movement between seawater and a metal can also accelerate the corrosion 

process (Porte 1967:6). An increase in oxygen and water movement combined can 

remove a protective film (erosion-corrosion), thus stimulating the production of 

differential aeration cells (air bubbles) (Chandler 1985:48). The air bubbles can 

collapse and damage the protective film (Boyd and Fink 1979:6).



91

The electrical conductivity of seawater is another factor contributing to its 

corrosiveness, and is aided by the presence of chlorides and oxygen. Seawater that is 

rich in oxygen is strongly oxidizing while seawater that is low in oxygen is a reducing 

environment (Florian 1987:7). The electrochemical reaction of cupreous metals in 

seawater occurs in a series of steps. The initial reaction is the production of cuprous 

ions which then combine with the chlorides in the sea water to form cuprous chloride:

Cu° - e -  Cu+ (1)

Cu +  Cl' -► CuCl

Cuprous chlorides are unstable compounds such that, when exposed to

atmospheric oxygen, will corrode a copper or bronze object through a chemical

process known as "bronze disease" (Hamilton 1976:14) (Figure 32). The cuprous

chloride, combined with oxygen and seawater will hydrolyze to form hydrochloric

acid and basic cupric chloride (Oddy and Hughs 1970:188), as stated:

4CuCl +  4 H20 +  Oj -  CuCl2 • 3Cu (OH)2 +  2HC1 (2)
(cuprous chloride) (basic cupric chloride)

This hydrochloric acid then attacks the uncorroded metal to form more 

cuprous chloride (Hamilton 1976:14):

2 Cu +  2HC1 -► 2CuCl +  H2 t (3)

4 Cu +  02  +  4HC1 -  4CuCl +  2H20 

Cuprous chlorides do not always completely oxidize in metal artifacts due to 

the compactness and density of successive cuprite layers, which is why cuprous 

chlorides are often difficult to remove (Gettens 1951:70). Cuprous chlorides cause



Figure 32. Example of bronze disease causing deterioration in a copper 

alloy (after Cronyn 1990:227).
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partial or complete mineralization of an object (Hamilton 1976:14).

Marine-exposed cupreous artifacts also undergo conversion to cuprous and 

cupric sulphide through biological activity. The formation of sulphide corrosion 

products on copper objects is usually associated with anaerobic waters, where there is 

sand coverage or heavy sediment and sulphate-producing bacteria.

The corrosive influence of bacterial organisms was first examined by Garrett 

who postulated in 1891 that the corrosive action of water on lead could be attributed 

to the presence of ammonia, nitrates and nitrites produced by bacterial action. The 

nature of this type of corrosion is complex and often dependent on microbiological 

activity (Gerchakov and Sallman 1979:368). Bacteria will flourish in the presence of 

sugars, nutrients, non-organic salts and sulphates (Chandler 1985:88). Seawater, 

particularly estuarine water, contains sufficient bacteria to stimulate corrosion, and 

fouling increases with proximity to the shoreline and estuarine waters (Gerchakov and 

Sallman *1979:368).

The most common cause of bacterial corrosion of copper and its alloys is the 

sulphate-reducing bacteria, Desulfovibrio desulfuricans. which reduces inorganic 

sulphates to sulphides. These bacteria thrive in waterlogged coastal areas and harbors 

(Chandler 1985:90), and have been found on shipwreck sites where wooden hulls 

provide a supplementary food source for the sulphate-reducing bacteria (North and 

MacLeod 1987:76). For this type of corrosion to occur, the oxygen content of the 

water must be low. The depletion of oxygen may be due to pollution, increased 

microbiological activity, or burial in sand or sediment. Under these conditions, the



94

Eh (redox potential) falls below the hydrogen evolution potential. The main cathodic 

reaction in the corrosion process becomes:

2H+ +  2e- -  H2 (4)

Often this reaction occurs slowly, but the action of sulphate-reducing bacteria 

speeds this process up, since their metabolism reduces sulphate to sulphide ions 

(North and MacLeod 1987:75). Sulphate-reducing bacteria can also step up the 

corrosion process from enzyme production of the bacteria (Chandler 1985:89) and 

through the formation of acids which lower the pH (North and MacLeod 1987:75).

Sulphate-producing bacteria are not always corrosive. The sulphide ions 

produced by sulphate-reducing bacteria form sulphide precipitates with copper ions 

which are toxic to sulphate-reducing bacteria, so it is unlikely that attack at the 

cathode will occur. As the sulphide precipitates are released from the corroding 

metal, a protective film on the metal’s surface forms (North and MacLeod 1987:82). 

The sulphide layer does not adversely affect the metal, but can impart an unpleasing 

appearance in the form of black corrosion products (Hamilton 1976:14). If hydrogen 

sulfide is present, however, corrosion can take place, but to a limited degree 

(Robinson 1981:7). In examining copper-based artifacts recovered from sites along 

the Thames River in London, Duncan and Ganiaris (1987:109, 118) found that 

sulphide corrosion products formed by hydrogen sulphide were prone to change when 

exposed to high humidity.

The conditions at Tel Nami are ideal for this type of corrosion to occur, but 

only two objects from Area G, a piece of scrap metal and an oil lamp, exhibited black
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corrosion products. Future analysis may provide a more definitive explanation.

Forms of Corrosion

Once corrosion begins, it can take several forms. Of the many types of metal 

corrosion, six can be identified as occurring in metal artifacts. They are: 1) uniform 

surface corrosion; 2) galvanic corrosion; 3) localized corrosion; 4) corrosion fatigue;

5) stress corrosion cracking; and 6) de-alloying.

The first type, uniform surface corrosion, involves attack on the whole surface 

of the metal. It is uniform in the sense that all exposed areas are attacked at the same 

rate (Chandler 1985:52). Iron provides a good example, where rust covers an entire 

object. The result is a smooth, but etched surface with the color of freshly ground 

metal. Uniform corrosion was observed on many of the Tel Nami artifacts.

Galvanic corrosion takes place between two metals having different electrode 

potentials that are either in direct electrical contact or in close proximity in a 

conducive electrolyte (Hamilton 1976:8). A galvanic cell is formed with the less 

noble metal acting as the anode and corroding, while the more noble metal serves as 

the cathode and corrodes less (Robinson 1982:223).

In antiquity, copper was often alloyed with silver. Because silver is the more 

noble metal it is cathodic to the copper which acts as the anode. As a result, the 

copper plates out on the surface of the object, sometimes obliterating the silver 

(Dowman 1970:19). This was observed on a silver-copper alloy ring found in Area O 

at Tel Nami. The copper underneath the more noble silver had plated out onto the 

surface of the ring so that it had a splotched appearance. In archaeological materials,
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galvanic corrosion is also common in alloys such as tin-bronzes and iron (Plenderleith 

1941:808).

Corrosion also occurs in localized areas, and damage to these areas can be 

severe. Localized corrosion takes many forms, and its effects are also found on 

archaeological metals. This was the most common form of corrosion at Tel Nami, so 

it is of particular interest to examine the different types and their distinctions. A good 

definition of localized corrosion is where one part of a metal surface corrodes at a 

higher rate than the rest of the surface (Scully 1975:174). A rough surface, scratches
I

I or cut edges on a metal object provides anodic areas for local corrosion to take place 

(Leidheiser 1971:74).

Localized corrosion transpires in a concentration cell, which is an oxygen- 

deprived area on a metal’s surface. An example of this would be a sand deposit, and 

the corrosion taking place at this areas is known as a "deposit attack.” The area 

undemedth the deposit sets up a concentration cell and becomes anodic to the area 

exposed to free-flowing oxygen, as electrons flow through the metal to the surface 

outside the deposit. A cathodic reaction at the oxygen-exposed surface triggers 

oxygen reduction and the formation of hydroxyl ions. Pitting then results under the 

blocked area (Cushing 1959:118).

Pitting corrosion, another form of localized corrosion, is commonly found on 

archaeological metals and is often associated with the presence of concentration cells. 

Because extensive pitting has been observed on some of the bronzes recovered from

Tel Nami, this type of corrosion is of special interest. Pitting usually takes place

i



over a long period of time (Scully 1975:177), with the pits varying in size, depth and 

number. Characteristic features of pitting are a bumpy appearance, with the thickest 

corrosion sections covering the pits and perforated areas of the metal. Several objects 

recovered from Area O at Tel Nami were found in this condition.

Pitting is caused by the presence of cuprous chloride and is one of the most 

damaging types of corrosion to copper and bronze artifacts. Pitting occurs on all 

metal surfaces, but is found most often on passive alloys where the resistance of the 

protective film actually contains the attack in a localized area, rather than allowing it 

to spread. Pits can be initiated by impurities in the metal or by surface inclusions 

(Scully 1975:175), and is most likely to occur in an oxidizing environment where both 

oxygen and chlorides act as depolarizers, breaking down the protective oxide film at 

specific areas on the metal (Uhlig 1948:166).

Pitting corrosion was studied in 1926 by U.R. Evans, who demonstrated that 

pitting dbcurs by varying concentrations of oxygen on a metal's surface. A pit forms 

when the oxygen concentration is below that of the surrounding areas. Once pitting is 

initiated, its continuation is determined by reactions within the pit. May (1954:65-66) 

introduced the idea that pitting is essentially a cumulative action. Inside the pit, a 

small pocket of corrosive solution is trapped where a protective film is lacking. The 

metal inside the pocket acts as the anode, while to the areas surrounding the pocket 

act as cathodes.

Lucey (1967:176-179) proposes a slightly different mechanism to explain 

pitting corrosion whereby a pocket of cuprous chloride forms beneath a porous,
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electrically-conducting membrane. Copper dissolution then takes place by reaction 

with the anodic product beneath the membrane. Calcium carbonate is then deposited 

over the membrane as a result of a reaction between the chlorides with the cathodic 

product above the membrane (Figure 33).

Intergranular corrosion is another form of localized corrosion, and is 

associated with a difference in the corrosion potential of the grain boundary or the 

grain boundary region and the rest of the grain in the metal’s internal structure. In 

bronze, intergranular corrosion may be either incipient or selective, depending on the 

micro-environment the artifact and the internal structure of the metal. In incipient 

corrosion, the grains are attacked, while in selective corrosion, corrosion takes place 

at the grain boundaries (Young 1970:89).

The grain boundary region is anodic and the attack can be severe due to the 

large cathodic area surrounding it (Butler and Ison 1966:56). If the attack is severe, 

the metal will lack a metallic ring when struck, and if the metal is bent, cracks will 

then form in the attacked area (Copson 1963:18). The net result is a metal that has 

lost its strength and ductility.

The cracks themselves create another form of localized corrosion called 

crevice corrosion. Inside the crack, the metal’s surface is anodic to the external 

surface around the crack, which is cathodic (Chandler 1985:58). The cracks can be 

caused either by corrosion fatigue or stress corrosion cracking. Corrosion fatigue is 

the tendency for a metal or alloy to fracture under conditions of repeated stress at 

loads below its tensile strength and was first reported over 60 years ago where
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Figure 33. Diagrammatic representation of reactions and corrosion products 

involved in the pitting corrosion of copper, according to Lucey (from Leidheiser 

1971:100: reprinted by permission of the publisher, the Electrochemical Society, 

Inc.).
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concern arose over the deterioration of cables on the sea floor (Chandler 1985:76). 

Corrosion fatigue is brought about by periodic cyclic stress in a corrosive 

environment. For alloys, metal fatigue and corrosion together contribute to the 

eventual cracking of a metal. The cracks caused by corrosion fatigue occur across the 

grains or are transcrystalline (Cushing 1959:120) and can be found at the bottom of 

pits (Butler and Ison 1966:57).

Stress corrosion cracking, on the other hand, is brought about by steady pressure 

or static stress in a corrosive environment. These cracks are intercrystalline, and 

result from a combination of corrosion activity and tensile stress, in which small 

cracks extend outward, eventually leading to the mechanical failure of an alloy. The 

cracks develop at right angles to the applied stress, and copper alloys are particularly 

susceptible to this form of attack (Butler and Ison 1966:121). The metal at the root 

of the crack will eventually dissolve (Tylecote 1979:351).

Generally, stress corrosion cracking occurs under situations of localized attack 

rather than with uniform corrosion. Factors which play a role in this form of 

corrosion are environmental and the type of alloy involved (Chandler 1985:69).

Stress corrosion cracking may also result from the applied stress of cold-working 

which weakens the internal constituency of the metal (Tylecote 1979:366).

Interestingly, the oldest known example of stress corrosion cracking is found 

on a Mesopotamian bronze axe, the Hasanlu Axe, a leaded 10% tin bronze dated to 

the third millennium B.C. The cracking was probably caused by burial in wet soil, 

where the wedging action of the corrosion products provided a continual source of
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stress to the artifact (Nielson 1977:27).

Some bronze artifacts from Area O at Tel Nami had deep cracks which were 

probably induced in a similar manner. The pressure and weight of sand on top of the 

burials in combination with the presence of seawater may also have contributed to 

fatigue and the eventual cracking of some of the artifacts.

De-alloying, a sixth type of corrosion found in archeological metals, is the 

selective leaching of one metal in an alloy from another, leaving one metal in situ. 

There are several types of de-alloying, such as dezinctification where zinc leaches out 

from brass, graphitization, the de-alloying of iron from cast iron, and 

destannification, the leaching of tin from bronze. When de-alloying takes place, the 

alloy retains its original shape, and may appear undamaged, but its tensile strength 

and ductility are considerably reduced (Uhlig and Revie 1985:14).

Dezinctification is the most common form of de-alloying. In dezinctification, 

zinc coifodes preferentially, leaving a porous residue of copper and corrosion 

products (Uhlig and Revie 1985:14). Brasses of more than 15% zinc are susceptible 

to this form of corrosion and the tendency increases as the zinc content increases 

(Weisser 1975:207). The surface of a single-phase alpha brass containing 70% 

copper to 30% zinc loses the zinc, and the dissolution of the alloy is followed by a 

redeposition of the copper. As a result, the object appears to be copper-rich and 

porous. Since no brass objects are present in the Tel Nami collection, dezinctification 

is not a problem.

Of even greater interest is destannification, where tin leaches out of copper in
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a bronze alloy, leaving behind a copper-rich matrix (Nielson 1977:26). Gettens 

(1951:69) reports evidence of redeposited copper in the tiny pockets of an ancient 

Chinese vessel. Destannification is less common than dezinctification, and has 

received little mention in the literature. Tylecote (1979:351) states that 

destannification involves either preferential corrosion and deposition of copper 

products on the metal surface, or internal defects in the alloy. These areas are 

cathodic to the alloy, particularly in areas of high tin concentration. The metal 

underneath these areas is then attacked, and the tin goes into solution.

Corrosion Products

The corrosion process is accompanied by its residual affects in the form of 

corrosion products. The study of corrosion products has become of archaeological 

interest in recent years since their sampling can provide information about the 

technology and elemental composition of ancient metal objects. Copper and bronze 

show a treat variety in their corrosion products. They vary from thin, attractive 

blue-green patinas to thick, ugly crusts that can obliterate an object’s original surface. 

The Tel Nami bronzes exhibited a variety of corrosion products. Some of them were 

covered in thick, mineralized crusts, while others had only thin layers.

Corrosion products serve several functions. They can act as selective 

membranes for the passage of ions or electrons, conducting or resisting electricity. 

Corrosion products also prevent or encourage contact with corrosive agents (McKay 

and Worthington 1936:88). Under certain circumstances, copper and bronze objects 

are enhanced by a mineral corrosion product. The thin, fairly uniform aesthetically
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pleasing blue-green "patina" associated with ancient bronze exemplifies this. This 

type of patina is a stable corrosion product that protects the object against further 

corrosion.

The amount of time required for a patina to form depends on the atmosphere. 

The initial oxidizing process begins immediately on exposure to atmospheric oxygen. 

The first stage results in tarnishing of the copper or copper alloy, which occurs within 

a few weeks. For a fully developed patina to form takes approximately seven years 

(Cieslewicz and Schweitzer 1989:126). For a copper roof to turn green may take 50 

to 100 years (Walker 1980:278). Vernon and Whitby (1930:395) studied roofs of 

rural churches in England, and observed that patina formation goes through several 

stages, beginning with oxidation.

For metals to oxidize, they must be in contact with oxygen. The process is 

known as oxidation passivity (Organ 1976:243), where a protective film anodically. 

For passivation to occur, the film must be thermodynamically stable according to 

Pourbaix’s criteria. It must adhere to the surface of the metal and be mechanically 

stable so that it can resist any cracking or flaking (Chandler 1985:33). A metal such 

as copper acquires a film of solid reaction products through adsorption of oxygen or 

other gasses. The diffusion of oxygen through the film then is controlled by the 

thickness of the corrosion product (Stambolov 1969:9) (Figure 34).

Passive films were first studied by Evans, who in 1926, examined their 

relation to corrosion. Since that time, two major theories have been proposed to 

explain how passive films are formed. The first and more popular oxide-film theory
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Figure 34. Stratified growth of an oxide film on a metal surface (after Stambolov
4

1969:17).



maintains that a passive film is a diffusion barrier layer of reaction products which 

separate the metal from the environment, and which slow down the rate of reaction 

(Uhlig and Revie 1985:69).

The other theory, the adsorption theory, states that passive are covered by a 

chemisorbed film such as oxygen. The oxygen displaces water molecules on the 

surface and slows down the rate of anodic dissolution (Uhlig and Revie 1985:70).

Passive films are of a crystalline structure, and the orientation of the film's 

structure in relation to the internal crystalline structure of the metal will determine 

whether the film will be protective or not. If the metal atoms on the film’s plane 

match, then the film is protective (Stambolov 1969:14). If irregularities exist, then 

breaks in the film occur and the film is no longer protective in those areas of the 

breaks. Metal objects that have surface irregularities will also produce irregularities 

in a passive film so that its protective capabilities are reduced (McKay and 

Worthington 1936:94).

Passive films are also electrical semiconductors to some extent (Scully 

1975:116). As mentioned previously, crystal growth in metals rarely proceeds in a 

perfect manner, so that defects arise in the lattice structure. The defects become have 

negative and positive charges. The n, or negative conductors possess metal 

in excess, while the P, or positive conductors, have cation vacancies and conduct 

electricity through the movement of electron holes where electrons are missing.

These holes can move freely through the crystal in successive electron jumps 

(Morrison 1983:426) (Figure 35).
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The holes at the surface can cause corrosion by becoming concentrated at the 

point of having two holes on the back bond of a single surface atom. Two holes on 

the back bond indicate that no bonding electrons are left and the bond is broken, so 

that the positively-charged surface becomes highly susceptible to hydrolysis (Morrison 

1983:427).

Once corrosion begins, continuous corrosion products in stratified layers form. 

This is a complex process and not completely understood. Bands of metal corrosion 

have long intrigued scientists as to the nature of their formation and composition.

The first scientific investigation of corrosion layers was conducted in 1826 by J.

Davy, who tried to identify the chemical constituents of the corrosion products to the 

underlying metal. He also investigated the possible use of studying patinas to 

ascertain an object's authenticity (Lewin and Alexander 1967:201).

One of the first attempts to identify the minerals in corrosion products was by 

Austin Rogers, who in 1903 examined thousands of Chinese coins and compared them 

to Roman coins. Fink and Polushkin (1936) pioneered studies in establishing the 

relationship between corrosion and metal structure. They introduced the idea of 

corrosion products being banded structures. They also determined that the bands 

appeared in an order of the oldest being closest to the outside of the object, while the 

younger layers were closest to the metal surface. Fink and Polushkin also observed 

that different types of corrosion can exist on one object alone, specifically on cast 

bronzes.

One of the leading figures in studying the constituents of corrosion bands has
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been Rutherford Gettens. In 1951, he suggested that by studying the corrosion bands 

and mineral products of ancient bronzes, the mechanisms of corrosion might be better 

understood. In 1964, he produced a useful taxonomy of corrosion products found on 

copper, tin, lead, silver and iron that is still being used.

In bronze artifacts, layers of encrusted corrosion products develop as the 

products of the initial corrosion diffuse outward from the metal and fresh solution 

diffuses inward. A new supply of reactant makes its way to the fresh surface of the 

metal through the corrosion layers (McKay and Worthington 1936:93). As the 

corrosion process continues, a once ductile metal becomes weak and brittle (Organ 

1963a: 128), or the metal can become partially or completely mineralized.

Gettens (1951:70) initially introduced the idea that a solid metal crystal 

structure was invaded by an ion-bearing solution, but how the ions migrated into the 

solid structure was unexplainable at the time. The Liesegang phenomena may provide 

the cunfent explanation for this. It involves the slow interdiffusion of metallic 

constituents and salts present from the environment into the solid metal. This reaction 

or series of reactions may produce a periodic precipitation of insoluble corrosion 

products such as cuprite, or atacamite, which may be present in segregated or banded 

layers. These periodic liquid-solid reactions result in the stratification of corrosion 

products (Scott 1985:49). The mineral corrosion products have a greater volume than 

original metal, so that eventually, a thick, mineralized crust forms (Smith 1977:213).

In some artifacts, the original surface lies somewhere in between the corrosion 

layers (Robinson 1982:228). This was observed on several artifacts from Tel Nami.
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Gettens (1951:67) observed three zones of corrosion products on an ancient Chinese 

vessel. The first zone, the center, consisted of areas of uncorroded metal. The 

intermediate zone was partially mineralized, while the outer zone was completely 

mineralized. Both the intermediate and outer zones were layered within themselves.

Occasionally, thick corrosion layers form only at the crust/metal interface 

where the details of the original surface are preserved on the uppermost layers of the 

mineralized metal. Sometimes the method of manufacture is preserved in the 

mineralized microstructure of the metal (Robinson 1982:229). Because of this, 

applying conservation treatments that will not disturb this diagnostic information is 

important, as long as the corrosion products are not destructive to the object. In 

highly mineralized artifacts, the corrosion products are the only available information 

to determine the original elemental composition of an artifact (Fabrizi and Scott 

1987:131).

The rate at which corrosion products build up is determined by the rate at 

which water and oxygen can penetrate. For example, a chisel recovered from the 

arid site of Jericho appears to have developed a crusty mineralized layer which 

diffused inward one millimeter in 8000 years. For an unidentified bronze object 

recovered from a moist Roman-British site in England, a penetration of seven 

millimeters occurred in less than 2000 years (Organ 1970:77).

The more commonly encountered corrosion products found in copper and bronze 

artifacts are categorized by their mineral species. The first category includes the 

oxides cuprite and tenorite, both which are usually formed at the initial stage (Young
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1970:89). Cuprite, also known as red cuprous oxide, is a common oxidation product 

when copper reacts with air (Walker 1980:278). Many copper and bronze corroded 

artifacts consist of this compound, which is identified by its reddish color. Bronze 

converted internally to cuprite becomes brittle although the original shape of the 

object is retained (Gettens 1970:59).

Oxides are intermediate corrosion products in the conversion of metal to the 

fully oxidized salts (Gettens 1970:58). They are found between any original 

uncorroded metal and the outer layers (Walker 1980:278). Cuprite is usually seen as 

a distinct red layer underlying malachite and azurite layers, and was observed in 

several Tel Nami bronzes. Tenorite, black cupric oxide, is usually found as an 

intermediate layer between copper (or bronze) and malachite, but it does not appear to 

form a distinct thick layer (Gettens 1970:58).

The carbonate layers consist of malachite, azurite and chalconatronite (Lewin 

1973:65* Gettens 1963:89-90). The attractive green patina of malachite is a carbonate 

corrosion product, and usually has a compact structure (Stambolov 1969:101). The 

copper carbonates of malachite and azurite form as carbon dioxide slowly dissolves as 

carbonic acid to form these two basic salts. The initial product of carbonic acid 

attack is partially water soluble, which allows copper ions to be transported over the 

surface of the object, even into the surrounding soil. The soluble cupric compounds 

then slowly change into a colloidal gel with a banded structure, which is formed in 

blister-like concretions resembling botryoidal, grape-like clusters. Carbonated 

bronzes are mostly found in humid, closed areas such as burials. Although no
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corrosion products have been identified for the Tel Nami bronzes, it appears that 

some of the objects resemble this description.

Of these hydroxycarbonates, malachite forms a smooth, dark green compact 

layer on the surface of an object, though it is also seen as scattered, rounded masses 

or nodules found on the interior of bronze vessels (Gettens 1963:89), as observed on 

the interior of a juglet from Area O at Tel Nami.

Azurite is similar to malachite, but is blue in color. Like malachite, azurite 

forms a continuous compact layer, but is often observed as fine crystal aggregates 

scattered among patches of malachite. It is less stable than malachite and is usually 

found on the inside of hollow vessels from drier archaeological environments (Gettens 

1970:60).

Chalconatronite was originally found on copper and bronze objects recovered 

from Egypt, where in some areas of the country, an abundance of alkali carbonates 

are fount! in the soil that produce this corrosion product. It was first identified by 

Gettens and Frondel in 1955 (64) as a bluish-green chalky crust, and was determined 

to be a hydrous double carbonate of copper and sodium.

Corrosion products of chlorides are found in objects excavated from saline 

desert soils and from marine environments. The three most common products of 

chloride corrosion are atacamite, paratacamite, and nantokite. Long contact with 

sodium chloride results in the presence of atacamite (cupric chloride). On objects 

recovered from Egypt and Mesopotamia, atacamite appears as a sugary-looking

j coating of dark, sparkling green crystals. Atacamite is a non-protective corrosion
1
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layer, so that bronzes which become covered with this corrosion product develop 

fissures and become distorted (Walker 1980:278).

Paratacamite is a pale, powdery green product of atacamite. Lewin (1973:64) 

states that if the copper salt concentration in the environment is low, then only 

paratacamite will be found on the object, but if the chloride level is high, then 

atacamite will be present as well.

Nantokite, an unstable product, is another aggressive chloride corrosion 

product. It is also known as cuprous chloride. It appears as a whitish, waxy 

substance, aiid is the cause of bronze disease (Walker 1980:278). Nankotite absorbs 

water and oxidizes to green basic cupric chloride, then swells up in lumps (Gettens 

1970:61). Copper artifacts found on shipwrecks off the coast of Western Australia 

have been found to contain nantokite as one of the main corrosion products, along 

with atacamite and paratacamite (North and MacLeod 1987:81). These corrosion 

product^ have been found both on the surface and deep down in the crevices of the 

remaining metal of recovered artifacts (North 1987:232). It is highly likely that these 

corrosion products are present on the Tel Nami bronzes.

Sulphates, sulphides and nitrates are less common corrosion products found on 

ancient bronze. As mentioned previously, sulphates and sulphides are associated with 

sulphur-bearing waters or air-borne industrial pollutants, and are often black in 

appearance. In bronze, the presence of tin can create stannic oxide, which is found in 

the corrosion bands of bronze objects. Stannic oxide is usually found in high tin 

bronzes and has a whitish appearance, but can appear as green or bluish green due to
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the presence of copper salts. Stannic oxide is formed in situ* and has been found in 

layers of malachite on corroded bronzes (Walker 1980:279). Alkaline conditions 

provoke the release of hydrogen ions in stannic oxide, which produces stannic acid. 

The amount of stannic acid increases with respect to the copper constituent of the 

bronze, although the stannic acid maintains the original shape of the object since it 

does not leach out of the metal (Stambolov 1969:95).

Corrosion and the Micro-Environment at Tel Nami:

The Ecological Zones

The relationship between corrosion and the in-situ condition of artifacts is 

better understood when the ecological zones, micro-environment and soil conditions 

are defined (Rose 1975:165). By estimating how each of these factors contribute to 

the deterioration of an object, the conservator has a sounder knowledge of the overall 

deterioration processes. Tel Nami can be defined as a marine coastal environment 

with thrfce established ecological zones: 1) atmospheric or suppra-littoral zone; 2) 

splash or sub-littoral zone; 3) tidal or littoral zone.

The first zone, the atmospheric zone, is located above the high tide line, but is 

still influenced by ocean activity (Florian 1987:13). In this zone, sea spray settles on 

a metal’s surface. Saltwater deposition varies with wind and waves conditions, height 

above sea level and the degree of exposure (Boyd and Fink 1979:2). At Tel Nami, 

this zone includes Areas D, D-l and G on the tell. During antiquity, sea mist most 

likely settled on the surface of bronze objects. Following burial, the objects were 

exposed to more chlorides through accumulated salt residue on the soil surface which
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percolated downward into the soil matrix with seasonal rainfalls. The presence of 

coastal grasses, low bushes and wild lilies on the tell are indicative of the sandy and 

saline nature of the soil there.

The splash zone is the more aggressive zone for metal corrosion to occur.

The splash zone extends from the low tide line to the edge of the submerged 

continental shelf. The base of the tell, in areas D and G, are subject to splash zone 

activity. In this zone, seawater can corrode metals by removing a protective film by 

wave action or by air bubbles (Boyd and Fink 1979:2). Chloride compounds are 

produced as seawater evaporates, which affect metal corrosion (Florian, 1987).

The tidal zone includes the high tide to low tide mark, and is usually exposed 

to well-aerated seawater on a continual basis. At Tel Nami, this includes the tombolo 

between Area O and the tell, and Area O itself.

The Soil Matrix

While the marine zones establish atmospheric conditions for Tel Nami, the 

micro-environment is the primary setting where metal corrosion takes place. The 

micro-environment, as defined by Rose (1975:165) "is the specific environment in 

which the artifact is located." At Tel Nami, it is the surrounding soil matrix. The 

soil matrix at Tel Nami includes soils originating from offshore sand accumulation, 

mountain-derived alluvium and pedogenic processes which take place in situ and 

modify these various deposits.

The soil types of the archaeological sequences at Tel Nami are part of the 

coastal plain general profile, which is considered to be the Mediterranean climatic
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region of Israel (Dan and Koyumdjisky, 1963:12). Three main soil types arc found in 

this area: the sandy and calcareous-sandy soils, the terra rosa-rendzina group and the 

alluvial soils.

The first group, the sandy soils, form the predominant soil type at Tel Nami. 

Most of the sand comes from the Nile (Nir 1985:507). The transport and deposition 

of Nile sediments can be linked to two main current systems in the Mediterranean: the 

main surface current from the Eastern Mediterranean and the wave-induced longshore 

currents near the shoreline (Emery and Neev 1960:4). Sand is found at all areas of 

Tel Nami, but Area O consists mainly of sand and sandy soil.

The second group, the terra rosa soils, are incorporated in some of the sandy 

layers found in Area O. The terra rosas are derived from hard limestones of the 

Upper Cretaceous, are red to brownish red in color and are clayey in texture (Zohary 

1982:18). The red color is attributed to iron oxides in the soil. Their originate from 

alluvial4fans at the mouths of valleys draining into the Carmel hills (Vita-Finzi 

1978:83). Mixed in with terra rosa soil of the coastal plain is rendzina, which is a 

grey to brownish-grey soil derived from chalky and marly rocks and is also of 

transported origin (Zohary 1982:18).

The third group, the alluvial soils, are hydrogenic soils whose parent material 

is alluvial in origin, but their subsequent development occurred at the mouths of 

estuaries where fluvium from the mountains merged with marine deposits due to tidal 

action. The swamp deposits accumulated in a belt of coastal swamps during the 

beginning of the Holocene until about the end of the Early Bronze Age (Neev et al.
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1987:14). The upper soil profile in Area G is characterized by this soil type, as a 

dense, heavy clay. This type of soil is usually poorly drained and high in salt (Finkl 

1982:760). This clay is found at all areas of the site, but particularly in Area G on 

the tell.

The deposition of the tell’s layers developed over a bedrock of kurkar 

sandstone with the bottom-most stratum dating to the MB IIA period. This stratum is 

predominantly made up of sandy soil. The LB IIA and LB IIB periods comprise the 

remaining soil profile in Area G.

The most notable feature of the LB soil profile is the presence of the dense 

clay. The clay was probably transported to the tell from the swampy area in Nami 

East. It appears that the clay was used as a type of "cement," which was fortified by 

small stones, shells and pieces of pottery. A rampart on the northern side of the tell 

was built with this clay, as well as foundations for buildings. A hand trowel bounces 

back when it strikes this material, and it takes a sharp pick to penetrate it. One of the 

most difficult tasks is removing artifacts embedded in this matrix, particularly 

mineralized or brittle bronze objects.

While the dense clay material forms the bulk of the profile for the LB IIB 

phase, there is also a succession of layers of sandy clay, sandy pebbly clay and a final 

destruction layer filled with burnt soil, ash, mudbrick, and artifacts. The occupation 

layers are filled with bronze artifacts, animal bones, shell, jewelry, pottery and clay 

objects. The site may have been abandoned at the end of the LB IIB period as the 

destruction layer appears to be the final phase of any habitation.
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Area D~l, on the upper east side of the tell, is very similar in soil profile to 

Area G, except for some evidence of twentieth-century military testing. Area D, on 

the lower east side of the tell is made up of clay, sandy soil and sand.

Since Area O falls within the range of the tidal zone, it has been subjected to 

centuries of tidal inundation and sand deposition. Thus, the soil profile in Area O is 

very salty and sandy. A sketchy history of possible flooding from related 

river/estuarine activity may have affected the area in antiquity as well. That seawater 

inundation and flooding were concerns in antiquity is borne out by the presence of a 

stone sump system dated to the MB IIA period.

Soil Corrosion at Tel Nami

It is apparent that the soil profile Tel Nami is varied and complex, therefore it 

has posed a challenge to determine how the soil types and related factors have 

affected the degree and type of corrosion encountered in the bronze artifacts.

The corrosion process taking place in the soil matrix at Tel Nami is similar to 

aqueous corrosion since the electrolyte at the site is primarily seawater, although 

other factors play a role in the corrosion process. These include the electrical 

conductivity and resistivity of soil, soil type and porosity, temperature, and acidity or 

alkalinity (pH).

Electrical Conductivity

Soil is roughly composed of gases, minerals, organisms, water and air. The 

various mineral bases provide anodes and cathodes for ionization and electrolysis to 

take place (Dowman 1970:15). A metal object embedded in soil then behaves like an
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electrical conductor. The points of contact between the metal artifact and the soil 

particles are affected by particle size, water content and air supply (Stambolov 

1969:38). Electrical currents in soil may be generated between the metal and soil due 

to a difference in potential, or current may be generated between two metal objects in 

close proximity (Cushing 1959:115). The electrical conductivity of a soil is partly 

dependent on the soil's resistivity. Soil resistivity is a measure of how easily a soil 

will allow an electrical current to flow through it. Resistivity also measures how 

effectively a soil acts as an electrolyte (Escalante 1989:86).

In dry soils, resistivity is high, but in water-logged soils, such as those at Tel 

Nami, oxygen reduction at the cathode is negligible, making resistivity low 

(Stambolov 1969:40). The lower the resistivity of the soil, the better the soil will 

behave as an electrolyte to promote corrosion. In low resistive soils, the surface area 

of the anode is larger and the attack more general, but in highly-resistive soils, 

corrosidn is usually more localized (Escalante 1989:90). Logan (1948:450) also notes 

a correlation between low resistivity and a high proportion of salts, conditions which 

are applicable to Tel Nami.

Fluctuating wet and dry conditions in both sand and clay cause fluctuations in 

resistivity. In dry, semi-moist and well-aerated soils, the surface area on a metal 

becomes cathodic while the contact between the soil particle and the metal becomes 

anodic (Berger 1989:9). Daily or seasonal wet/dry conditions at Tel Nami probably 

contributed to fluctuations in resistivity over time at the site. Finld (1982:760) 

suggests that soils located near estuaries that are subject to tidal action show a great
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deal of variability in conductivity, particularly since the chloride content varies under 

these conditions. In Area O, the chloride content may increase from March to 

September, during the dryer months, while during the winter months, increased 

rainfall and possible flooding can lower the chloride content.

Soil Porosity

Soil porosity can affect the conductivity of soil as well, and is largely 

determined by the proportion of sand, silt and clay particles present. Porosity also 

influences the diffusion of water, soluble salts and gases in soil. Between clay and 

sand, the two predominant soil types at Tel Nami, clay has the finer particle size and 

minimum pore volume between particles, and tends to reduce the amount of available 

air and water. As water enters clay soil, it takes soluble substances into solution and 

ion exchange begins (Limbrey 1975:58). When wet, clay is especially a poor 

conductor of air. Water is adsorbed as a film on each clay particle, so that clay 

stores tfater which causes it to swell to a compact mass that makes it anaerobic and 

less corrosive (Stambolov 1969:31). As the soils swells, the pores close up and the 

rate of percolation decreases.

According to Stambolov (1969:39-40), the small particles found in clay occupy 

a large area of a metallic surface, thus multiplying the anodic sites. With the 

polarization of each anodic site, the amount of corresponding cathodic sites decreases, 

leading to a reduced current density. Stambolov (1969:39) reasons that this makes 

clay less corrosive than sand, since the large particles in sand decrease the anodic 

polarization.
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While Stambolov maintains that clay is less corrosive than sand, localized 

corrosion and deep pitting in bronzes can occur since the corrosion product is in a 

reduced state (Cushing 1959:114), which is more damaging than uniform corrosion. 

Poorly aerated clay soils are also more damaging if the soil contains sulfate-reducing 

bacteria or a high concentration of chlorides. For example, poorly drained adobe 

soils with a high chloride content in California have shown to be very corrosive 

(Uhlig and Revie 1985:179-180).

Bronze objects found embedded in the heavy clay at Tel Nami were found in 

various states of preservation. Two small spearheads from Area G differed in their in 

situ condition. One was mostly mineralized with a small amount of metal remaining, 

and covered in a thick crust of corrosion products. The other, a leaf-shaped 

spearhead, was found in excellent shape (Figure 36).

Since porosity allows the penetration of air and water, it is assumed that soil 

corrosion is more aggressive in well-aerated soils such as sand, since sand has larger 

particles. This allows for increased aeration and the distribution of moisture. From 

this, Stambolov (1969:40) concludes that sand is more corrosive than clay since the 

larger particles decrease anodic polarization.

On the other hand, the porosity of sand also allows fresh rainwater to rinse 

salt away. In a study conducted by the National Bureau of Standards along the beach 

at Cape May, New Jersey, steel piping showed good corrosion resistance due to the 

permeability of the sand which allowed the salts to be washed away during rainfall 

(Escalante 1989:88).
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A

B

Figure 36. Comparison of two spearheads recovered from the clay matrix in Area 

G. (A) is heavily corroded, while (B) is well preserved. Length of A: 7 cm. Length

of B: 10.8 cm.
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Objects found in brown sandy soil on the tell fared well. A piece of scrap 

metal in the shape of a "U” from Area G, along with two scrap pieces of a hand and 

foot from Area D -l, and a chisel from Area D were all found in excellent condition.

The sandy soil conditions at Area O also yielded artifacts in mostly good 

condition. There were some exceptions. For example, a burial in Square K~5, Locus 

135, excavated in 1989, was mostly composed of moist, dark sandy soil. The burial 

consists of gold earrings, pottery (in poor condition) and an ivory bead. The bronze 

artifacts, an unidentified object, possibly a mirror or knife sharpener, and a small 

mail armor scale plate had deteriorated to a mineralized and brittle state. A bronze 

ankle bracelet was also in brittle condition, with a partial metallic core. The only 

item found in good condition was a small knife with two rivets still in place.

Another example of poorly preserved bronze was found in Square M-6 Locus 

60, the location of a grave encircled by stones. Imported pottery and a bronze oil 

lamp that was badly corroded and pitted were found resting against the stones. The 

soil profile consisted of moist sandy clay where the artifacts were found, then sandy 

soil, topped with sand.

The hypothesis that sand is corrosive would be supported by the condition of 

the bronze artifacts found in these burials. Geilmann (1956:207) notes that bronzes 

recovered from sandy archaeological sites are often found in a state of deterioration. 

He attributes this to the porosity of sand and the heavy amounts of carbonate- 

containing water, derived from the sand, which dissolves copper.

On the other hand, many of the artifacts in Area O were found in excellent
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condition. Found in sand near the baulk from the comer of Square M-S L. 121, was 

a lead-filled bronze cow weight that was well-preserved except for a very tiny pit on 

the cow’s face.

Squares M-5/M-6, Locus 80, excavated in 1988, yielded a small bronze 

incense stand, made from a casting, and a hammered dish that was placed on top of 

it. The stand was found broken in-situ in sandy soil, although it was in very good 

condition under the corrosion layers. The dish, however was fragile. This grave 

area was a succession of moist grey sandy soil on the bottom, moist sand above that, 

where the stand was found, topped by a layer of dry sand and bone fragments, with a 

top layer of dry sand covering the burial.

Another grave to yield well-preserved artifacts was Square L-6, Locus 51, the 

"bathtub" grave (Figure 37). This grave was constructed with large sandstone rocks 

in an oval shape resembling a bathtub. The grave was filled with moist sandy clay 

and bone on the bottom, then a layer of soft mixed sandy soil, followed by sand filled 

with bone, then sand. Two bronze objects, an incense bowl and a spearhead, were 

found in excellent condition. The dish had a substantial metallic core with a pitted 

and fairly smooth surface. The spearhead, which is 36 cm long, was somewhat 

pitted, but otherwise had a very sound metallic core.

The burial in Square L-6, Locus 69, right beneath Locus 51 contained the 

most extensive collection of bronze offerings, and they varied in their in-situ 

condition (Figure 37). These artifacts were found in the northeast comer and west 

side of the burial. Both areas were composed of a brown sandy soil matrix. Heavy



Figure 37. Section of the grave plan in Area O.
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clay was used to fortify the sides of the grave, since it was found partially covering 

the artifacts that were lying along the edge of the grave. The clay may have washed 

down from the sides over time.

An incense stand with bowl (Figure 38) was found in the northeast comer of 

the grave. The stand was in excellent condition, covered with malachite and azurite 

corrosion products. The bowl, resting on the stand was bent, but intact and thin. A 

large oil lamp in fair condition was also found with a small bowl underneath.

Toward the west side of the grave a cluster of bronzes were found stacked, including: 

two highly corroded, pitted bowls, one round, the other flat-bottomed; a "beer" 

drinking set composed of a highly corroded, thin bowl and strainer; a very well- 

preserved bronze base-ring bowl that had a thick metallic core; and sandwiched in 

between was a bronze juglet and small oil lamp with a pinched spout, both in 

excellent condition with no cracking or pitting.

These artifacts were covered with clay and mixed sandy grave fill. Two 

bronze scepters also in very good condition were found alongside the femur bones, as 

well as another incense stand. Dowman (1970:31) states that bronze objects found 

near skeletons are more mineralized on the side which has touched the body. The 

corrosion would be induced from chlorides that are released from the body. This was 

difficult to prove from these burials.

The most unusual grave was a collar-rim jar burial that was found in Area O, 

Squares M-5/M-6, Locus 66 (Figure 39). This large pithos was found in-situ complete 

and crushed. The inside contained artifacts and human bone, and was filled with a
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Figure 38. In-situ condition of an incense stand from Area O
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Figure 39. Collar-rim jar burial in Area O
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brown sandy soil on the eastern side of the jar, and darker sandy clay, on the western 

side. A bronze spearhead (Figure 40) was found in very good condition. The 

spearhead is 19 cm long from tip to tip and is solid metal with striations on the top of 

the blade and a substantial hollow shaft. Pieces of decayed wood were found in the 

shaft. Analysis of the wood at the Texas A&M palynology lab was inconclusive due 

to the salt content and the wood’s decayed state.

Ceramic burials in a similar environment have been found at Dier-el-Balah, 

approximately 14 kilometers southwest of Gaza (Figure 4). Located beneath sand 

dunes was a cemetery containing 40 anthropoid clay coffins placed in tombs cut into 

the kurkar bedrock, plus some scattered burials among the coffins (Dothan 1979:1). 

The undisturbed coffins were packed with sand covering the skeletons and burial 

offerings which had sunk to the bottom. Judging from the photographs and recorded 

observations in Dothan’s published report, it appears that while several of the bronze 

objects\vere corroded and cracked, with some pieces of metal missing, the overall 

collection appeared to be good condition.

Temperature

The fourth factor, temperature, can promote corrosion as warm temperatures 

increase the chemical activity in soil (Dowman 1970:18). During the summer months 

at Tel Nami, the soil warms up since the weather along the coast is hot from late May 

to September. Escalante (1989:86), however, argues against the over-emphasis on 

temperature, since warmer temperatures can actually reduce oxygen solubility, 

reducing the rate of reaction at the cathode.



Figure 40. Well-preserved bronze spearhead from collar-rim jar burial in Area O.

Length: 19 cm.
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In Area O, dune coverage may insulate the buried artifacts from any 

temperature increase, yet before the dunes were deposited, temperature may have 

affected metal corrosion more directly. On the tell, the compactness of the heavy 

clay and surface vegetation also insulate the artifacts from the direct effects of warmer 

temperatures. During excavation, the soil is cooler going down the profile.

Soil pH

The fifth factor, soil pH can also affect metal corrosion. Soils, being chemical 

in nature, are classified either as acidic or basic. Basic soils are rich in oxides of 

iron, aluminum and calcium, and range in pH from 7 or higher, while acid soils are 

primarily made up of silicates where the pH range is below 7. Acidic soils with a 

low pH can be particularly aggressive if chlorides are present. Metallic salts are 

produced either through the acid environment itself or in conjunction with other forces 

(Cushing 1959:113).

Alkaline soils have a pH range from 7 and above and reduce bacterial activity 

(Scully 1975:137). Since the pH of a deposit indicates the concentration of hydrogen 

ions present, pH is important to consider in environments that are water-saturated.

The soil pH is actually the measuring the pH of the soil solution in water-logged 

soils. This produces a pH reading that is higher than the true pH of the soil (Limbrey 

1975:57).

Tylecote (1979:345) found that soil samples taken from sites around Great 

Britain showed a reasonable relationship between metal corrosion and soil pH. He 

concluded that acidic soils generally promote corrosion of archaeological metals, and
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that alkaline soils are benign, unless salts are present.

Alkaline soils, contrary to Tylecote, can be corrosive as acidic soils. Low pH 

soils usually affect metals that are classified as amphoteric, meaning metals that 

behave like non-metals in alkaline solutions. Under these conditions, they form part 

of a negative radicle of salt while hydrogen is given off (Dowman 1970:27). Tin is 

one such metal, so that in tin-bronzes, the tin will convert to soluble stannate products 

after a long period of time (Stambolov 1969:102). In soils where chlorides are 

abundant, hydrogen ions tend to displace the sodium, leaving an excess of carbonate 

and bicarbonate ions. This results in the pH being 9 or above. Samples taken from 

Area O indicated a range in pH from 8.7 to 9.2. The final destruction layer on the 

tell created alkaline soil conditions. A bronze oil lamp found in the temple area was 

located in a matrix of hard clay and sand, and the matrix was blacked from fire. The 

fragile oil lamp was encrusted in many layers of corrosion products, with a thin 

metallifc core remaining (Figure 41). Could fire have affected the corrosion process?

According to Limbrey (1975:322), when organic materials bum, the mineral 

components left in the soil remain as ash, which is composed of alkaline earths and 

metals. The carbon that is produced from fire adds hydrocarbons to the soil, although 

the carbon itself is inert. During the fire, there is a fluctuation in oxidation and 

reduction of the soil potential, and the heating produces iron compounds. While the 

alkalinity creates neutral conditions for metal objects, the presence of the iron 

compounds can produce a differential in potential, with the iron in the soil acting as

an anode.
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Figure 41. Heavily corroded oil lamp from Area G. Length: 15.5 cm. 

Width: 15 cm.
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Tell Abu Hawam, a site north of Tel Nami on Haifa Bay, has conditions 

roughly similar to Tel Nami. Hamilton (1935:26) originally reported badly corroded 

bronze arrowheads found in a bed of ash and mixed debris in stratum III, the Iron IIA 

period. In Stratum IV, the Iron I period (Balensi 1985:68), Hamilton noted that 

destruction by fire had left a mixed layer of earth, ashes and crushed objects, and 

some bronzes found in this layer were also badly corroded. Stratum V, the LB 

period has five horizons separated by violent destructions, including fire (Balensi 

1985:67). A pair of bronze cymbals were found stuck together, one badly corroded, 

the other in fair condition (Hamilton 1935:60). Thus, it appears that while fire 

provided the immediate and obvious destructive forces, it also created long-term 

alkaline conditions which, combined with a heavy clay matrix, resulted in a more 

corrosive environment.

Summary

In conclusion, several trends emerge from examining the micro-environment at 

Tel Nami. First, as evidenced by the thick corrosion layers on many of the bronzes 

recovered from the site, it appears that corrosion at the site was slow and continuous, 

eventually reaching a state of equilibrium. The initial oxide layers may have formed 

either before or after burial.

Secondly, it appears that objects which ranged from .05 cm and above in 

thickness better survived the aggressive saline environment. The composition and 

thickness of the metal may have provided the protection necessary to survive under 

these conditions. As would be expected, objects that were thin were found in a
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mineralized state with little or no remaining metal.

Third, very evident was the comparable difference between objects that had 

been cold-worked and cast. Cast items such as the incense stands, some of the bowls, 

the scepters, and the cow weight were found in excellent condition with very little 

pitting, whereas cold-worked artifacts were less fortunate. A strainer belonging to a 

"beer" drinking set made of hammered bronze was found to be cracked and fragile 

(Figure 42).

Similar sets have been found in Egypt and at Megiddo, Beth Shean and other 

sites in Israel (Dothan 1979:20). The strainers were cold-worked, and the holes in 

the strainers may have been created by piercing from the concave side with a sharp 

instrument while the piece of sheet metal was hot (Dothan 1979:20). Rostoker 

(1986:94) however, suggests that making holes in ancient sheet metal 

was accomplished by a series of strikes with a hammer to form a dimple, which was 

then worked on both sides to produce a small hole that had little or no projection on 

the other side. It is possible that the holes created surface irregularities which 

prevented the even distribution of an initial oxide film, thus exposing the artifact to 

localized corrosion.

As mentioned previously, cold-working distorts the internal grains and causes 

slippage along the grain boundaries so that the metal becomes brittle. This makes it 

more susceptible to corrosion attack in a saltwater environment. Stambolov’s 

observations that crystals in the internal structure may act as semi-conductors in the 

presence of chlorides may very well prove valid for the cold-worked bronzes from



Figure 42. Strainer recovered from Area O. 10.5 cm across.
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Tel Nami. These observations also refute France-Lanord’s (1980:22) assertion that 

cold-worked bronzes are more corrosion resistant than cast bronzes. Also, the cast 

items at Tel Nami are of such high quality and craftsmanship that great care must 

have been taken in their manufacture. This would result in a finer, more homogenous 

internal metal structure more resistant to corrosion.

Fourth, while it appears that many types of corrosion occurred at Tel Nami, 

pitting and localized corrosion, plus fatigue and stress corrosion cracking were 

evident. Deep and extensive pitting was observed for objects recovered from Area O. 

This may be attributed to localized corrosion where concentration cells developed as 

sand particles blocked areas of a metal surface and set up oxygen-deprived, anodic 

areas.

Corrosion fatigue and stress corrosion cracking may have occurred as well, 

indicated by cracks, both large and small, as well as broken pieces of metal and bent 

and distorted objects. The fiat-bottomed and round-bottomed bowls from Locus 69 

are a prime example of this. Both were found stacked, and the fiat-bottomed bowl 

was warped and cracked, which proved to be a challenge in its reconstruction. Both 

bowls were pitted and cracked from the steady, static pressure of the weight of 

objects on top of them. Cyclic pressure from the weight of the soil bearing down on 

the objects, plus their internal structure may have caused metal fatigue. The round- 

bottomed bowl was internally weak, such that it broke in several pieces.

Fifth, in comparing the corrosivity of sand versus clay, no definite conclusion 

can be drawn, yet overall, Area O produced artifacts in better condition than those
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recovered from the tell. A study involving buried stainless steel pipes in clay, silt 

and loam by Ladpo et. al. (1967:105), revealed that clay was more corrosive than 

loam or silt. When .3 % sodium chloride was added, the clay and silt became very 

corrosive while the loam remained the same. Soil resistivity increased up to 55% for 

clay with additional water. These observations are contrary to Stambolov’s (1969:38, 

40) assertion that clay is less corrosive than sand.

At Nichoria, a site located in the southwest province of Messinia in the 

Peloponnese on mainland Greece, bronze objects embedded in clay were found in 

various states of preservation. Weisser (1978:264) concludes that the bronze objects 

found in poor condition were embedded in a more acidic and saline environment.

Uhlig and Reviews (1985:179) position that aerated soils such as sand may be 

less corrosive since objects can develop a protective crust may bear out for Area O. 

The water table is low in Area O, and artifacts buried there are subject to moist, 

saline cdhditions, therefore the most important factor bearing on this is oxygen 

availability. The excellent state of preservation for several of the artifacts in Area O 

might be attributed to the anaerobic conditions produced by the insular nature of the 

dunes covering the area.

The porosity of the sand would allow some circulation of air, but it would be 

limited enough to slow electrolysis. This would also explain the presence of thick 

corrosion crusts developing over a long period of time, since less oxygen availability 

would reduce the rate of corrosion. Sulphate-reducing bacteria may have been active 

at one time in Area O, but black corrosion products only appear on a few objects
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recovered from the site, mostly from Area G, where the soil is highly anerobic.

Overall, the presence of seawater at Tel Nami involved a complexity of factors 

that contributed to in situ corrosion. The end result was chloride contamination of the 

bronze artifacts. Thus, the conservation program was designed with this in mind.

The Conservation Program 

Methodology

As discussed, the corrosion layers of marine-exposed bronzes are chloride- 

contaminated when thick corrosion layers act as sponges, therefore making the 

corrosion products more deleterious to the artifact’s stability. Because of this 

consideration, the Tel Nami conservation program was designed to stabilize the 

bronze artifacts by removing harmful cuprous chlorides safely and effectively. There 

were a number of treatments to consider in order to accomplish this. The choice 

depended on weighing the advantages and disadvantages of each method.

Harmful, chloride-contaminated corrosion products can either be "stripped" 

away by chemical or electrochemical means. Both methods require that the artifact 

possess a solid metal core. Chemical stripping treatments were first proposed by 

Lucas in 1932 (88-108). Formic acid, citric acid, EDTA-tetra-sodium and sulfuric 

acid all remove cuprous compounds when made into dilute solutions containing water. 

Alkaline Rochelle salts and alkaline glycerol have been used to remove cupric 

compounds in copper and bronze objects.

While these treatments are often effective, Merck (1978:20) reports that many
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of these reagents can etch metal. Organ (1976:249) recommends using chemical 

treatments sparingly for removing thick corrosion crusts. For some of the heavily 

encrusted Tel Nami bronzes, a 5% solution of formic acid in boiling deionized water 

was applied as a preliminary cleaning. While it is a general rule of conservation that 

deteriorated metals should not be chemically cleaned, some of the highly mineralized 

and fragile objects recovered from Tel Nami would have been greatly damaged by 

mechanical cleaning, the preferred method in many cases, thus formic acid was 

applied sparingly.

A recent treatment suggested by MacLeod (1987:25-32) is the use of alkaline 

dithionite, which is a strong chemical reducing agent. MacLeod states that alkaline 

dithionite, when compared to other treatments, is more efficient in removing chloride 

ions in the shortest amount of time. Using this technique on several sets of Graeco- 

Roman coins, MacLeod found that alkaline dithionite had reduced the corrosion 

product^ so that they could be brushed off to a loose copper powder, revealing the 

original surface inscription. He concluded that alkaline dithionite can consolidate 

heavily corroded bronzes and "reform" the original surface. Alkaline dithionite is 

also inexpensive and simple to use.

Ganorkar et al. (1988:97) recommend the use of AMT, chemically known as 

5-amino-2-mercapto-l ,3,4-thiadiazole. When this organic compound was applied to 

some corroded copper coins, it was found that AMT both removed corrosion products 

and formed a protective polymeric complex on the coins’ surface.

Another agent used for cleaning is sodium hexametaphosphate, a sequestering
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agent that dissolves cupric salts more readily than cuprous salts (Organ 1963b: 109). 

Plenderleith and Werner (1988:255) recommend it for removing calcareous deposits 

and malachite corrosion products by soaking the bronze in a 5%  solution.

Plenderleith and Werner also state that sodium hexametaphosphate may be safely used 

for highly mineralized bronzes. Merck (1978:20) however, reports that it attacks 

metal. For this reason, sodium hexametaphosphate was not considered for the Tel 

Nami project.

Stripping by electrochemical means is accomplished through electrolytic 

reduction, which unlike chemical cleaning, does not etch metal. Hamilton (1976) has 

discussed electrolytic reduction extensively. Jedrzejewska (1963:135) has criticized 

this method, claiming that it destroys diagnostic information, plus plating out of the 

metal can occur. All chemical treatments, however, result in some copper plating of 

the object. It has been shown that electrolytic reduction is one of the best methods 

for removing harmful cuprous chlorides. Since electrolysis removes cuprous 

chlorides from salt-water contaminated metal objects (Hamilton 1976:31, 61), it was 

included as part of the conservation program. Only those bronzes with a sound metal 

core were considered for treatment.

If an object had decorative elements or a patina, it was treated with sodium 

sesquicarbonate rather than with electrolysis. In cases where a difficult calcareous 

deposit was present, electrolytic reduction was more useful in removing it. Also, 

three objects that had been chemically stripped previous to the author’s involvement 

were re-evaluated. Electrolysis removed a thick layer of PVA that had been
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previously applied to all three of these objects. Electrolysis also removed the 

discoloration caused by the previous chemical treatments.

Two small power supply units were purchased and modified for DC current at 

the Texas A&M University physics laboratory. An artifact was suspended from a 

brass rod with stainless steel, spring-loaded alligator clips, into a thick-walled plastic 

vat that contained an electrically conductive solution. The electrolyte used was a 5 % 

solution of sodium carbonate (NazCo,) in tap water. Sodium carbonate was chosen 

since was safer to handle than sodium hydroxide.

The set-up for electrolysis is similar to a simple electrolytic cell. The artifact 

serves as the cathode and a mild steel mesh screen placed in the vat acts as the anode. 

The mild steel mesh is connected to the positive terminal of the DC power supply by 

means of an insulated double-stranded copper wire, while another section of that wire 

connects the negative terminal of the power supply to the artifact to establish 

electrical contact (Figure 43). The power supply unit provides the energy to create 

oxidizing and reduction conditions by controlling the flow of electrons (Hamilton 

1976:30).

Once the power supply is activated, the positively-charged metallic copper ions 

in the corrosion compounds begin to reduce back to a metallic phase and the metal is 

deposited on the object (Kruger 1977:64). The reduction of copper corrosion film is 

a cathodic reaction whereby electrons must be supplied to initiate the process. The 

reduction reaction for a copper oxide layer is expressed as:

CujO +  H20  +  2e'-* 2Cu +20H* (5)



cathoda

pow ar supply

Figure 43. Diagram of electrolytic reduction set-up.
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The power supply provides the necessary reduction represented by:

Cu -► Cu+ +  e* (6)

The conversion of copper compounds to denser copper metal also increases the 

diffusion rate of the negatively-charged chloride ions which are drawn from the object 

and migrate out toward the positively-charged anode by electrolytic attraction 

(Hamilton 1976:30, North 1987:238).

The above process was controlled by setting the current density at .02 amps 

per square centimeter. The current density for each object was carefully checked on 

a daily, and sometimes hourly basis to prevent any possible damage to the artifact. 

Chloride levels were also monitored daily by the mercuric nitrate test and recorded 

(Figure 44).

When compared to their original condition, two artifacts appeared to benefit 

from electrolysis. These included a bronze spearhead from Area D (Figure 43), and 

a dagger from Area O with its tip bent back (Figure 46).

If corrosion products or the patina are to be retained, stabilization becomes 

more difficult. This can be accomplished by applying silver oxide paste to localized 

attacks of bronze disease on the object’s surface. The paste merely seals off the 

chlorides from the atmosphere (Hamilton 1976:60). Silver oxide is expensive, and it 

can darken with time (Weisser 1987:106). This treatment was not applied to the Tel 

Nami bronzes.

A more successful treatment involves adding alkaline agents to water such as 

sodium carbonate or sodium sesquicarbonate. Because cuprous chlorides are
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Figure 44. Graphs illustrating changes in chloride levels during electrolytic

reduction.
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Figure 45. Before (A) and after (B) electrolytic reduction of a bronze spearhead 

from Area D. Length: 16 cm.



B

Figure 46. Before (A) and after (B) electrolytic reduction of a bronze spearhead 

with bent tip from Area O, Length: 14 cm.
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insoluble, distilled or deionized water alone cannot remove them, but if an alkaline 

agent is added, then the harmful chlorides will diffuse out with time.

Weisser (1987:107) advocates the use of sodium carbonate in a series of 

carefully monitored 5% solutions. Patches of stable, but disfiguring black cupric 

oxide (tenorite) can appear when using this treatment, as well as the formation of 

chalconatronite, a blue-green precipitate resulting from the reaction of sodium 

carbonate with cuprous chloride (Weisser 1987:107-108).

The other treatment, sodium sesquicarbonate, was chosen for the Tel Nami 

program because it removes cuprous chlorides without damaging fragile objects that 

require minimal handling. Sodium carbonate and bicarbonate of soda, the two 

ingredients that comprise sodium sesquicarbonate, are both easy to obtain in Israel in 

large quantities at a reasonable cost.

The sodium sesquicarbonate treatment was first proposed by Scott (1926:36), 

then advocated by Oddy and Hughs (1970). The treatment works by neutralizing the 

hydrochloric acid produced by the cuprous chlorides in the object. Hydrochloric acid 

has the capacity to liberate hydrogen ions in solution and replace their own hydrogen 

in a metal. Alkalis such as sodium, will free hydroxyl (OH) ions in solution and 

neutralize the free hydrogen of the hydrochloric acid (Dowman 1970:11-12). The 

chlorides in the solution are then removed with each successive fresh bath of solution. 

Bronzes treated this way tend to remain stable over time (Weisser 1987:106).

The use of sodium sesquicarbonate has its drawbacks, including the length of 

time is takes to remove chlorides. Angelucci et al. (1978:153) discontinued their
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experiments with sodium sesquicaibonate after the twenty-eighth washing. Sodium 

sesquicarbonate, as a double carbonate, forms a complex ion with copper, therefore 

preferentially removing copper from the remaining metal. This is evident by the blue 

color of the solution suggesting that copper ions are going into solution. MacLeod 

reports that a 596 solution removes chloride ions at an initial rate of five times to that 

of a 1 % solution, yet the loss of copper is greater. In experimenting with copper 

sheathing tacks, MacLeod found that while 1007 mg of chloride were removed, over 

300 mg of copper were lost (1987:30). While these findings are instructive, the loss 

of copper is probably minimal when compared to the value of removing harmful 

chlorides.

Horie and Vint (1982:185) state that sodium sesquicaibonate produces changes 

in two ways. First, the surface seems to become more homogeneous and less porous 

after treatment. Then, after the copper corrosion products dissolve, copper salts are 

redepotfited as small crystals of sodium copper carbonate hydrate (synthetic 

chalconatronite), changing the patina from green to a blue-green color, similar to the 

reaction with sodium caibonate reported by Weisser (1987:107-108). While the 

patina can change color, often it is enhanced, becoming a more vivid blue-green.

No deleterious changes were observed for any of the Tel Nami bronzes, and 

further studies of chalconantronite on archaeological metals are necessary in order to 

determine its overall long-term effects (Weisser 1987:108). Also, prolonged soaking 

in sodium sesquicarbonate, for a year or more may be excessive and pose a problem 

for the safety of the artifact (Weisser 1975:210). None of the artifacts from the Tel
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Nami project required soaking for that long, nor would this treatment have been 

considered if this were the case. This is also a reminder that no treatment is ideal for 

stabilizing bronze, and that all established treatments should be used with great 

caution and careful monitoring.

The Tel Nami bronzes that were treated with sodium sesquicaibonate were 

highly mineralized and fragile, or had decorative elements or a desirable patina. The 

first baths consisted of 5%  solutions of sodium sesquicaibonate in tap water, with the 

final baths in deionized water. Chloride levels were checked and recorded once a 

week by means of the mercuric nitrate test. The baths were changed on a weekly 

basis. The length of treatment varied for each object, ranging from one to five 

months. All treatments were continued until the chloride levels peaked, then levelled 

out to 35 parts per million (ppm) or less.

It has been shown that the chloride concentration is linearly dependent on the 

square loot of the treatment time whereby the chloride levels can be plotted. The 

plots are characterized by a rise in chloride levels until a plateau is reached. As the 

baths are changed, the chlorides diffuse out at a slower rate until the gradient slopes 

downward with the eventual elimination of chlorides (Figure 47). The rate of 

chloride ion release is controlled by the rate of diffusion through the adherent cuprous 

oxide layer. This is in turn controlled by patina thickness and defects in the copper 

oxide film (MacLeod 1987:26-28).

Another treatment, the application of Benzotrialzole (BTA) was used in the Tel 

Nami conservation program, following several rinsings in deionized water and
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Figure 47. Graphs illustrating changes in chloride levels for the sodium 

sesquicarbonate treatment.
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degreasing in acetone. Benzotrialzole can be applied either through vacuum 

impregnation or by soaking the object in a bath of deionized water or methanol with 

BTA for several days. Solvent and deionized baths were used in the Tel Nami 

program.

Benzotrialzole, C<H5N3 (BTA), was first used by Madsen (1967:163-166) as a 

corrosion inhibitor for treating artifacts. Walker (1979) has since advocated its 

general use for archaeological conservation. The use of BTA is now standard 

practice in the treatment of cupreous metal objects. When BTA is in contact with a 

cupreous metal surface, it forms a thin, insoluble, chemically-bonded complex on the 

surface of the metal. Precipitation of this insoluble complex over the cuprous 

chloride forms a barrier against any moisture that could activate the cuprous chlorides 

responsible for bronze disease. Madsen (1985:19) states that the film formed by BTA 

is similar to the initial passivating film of copper alloys. The only drawback to BTA 

is a sus^jected toxicity (Oddy 1972:135). Because BTA has the potential for being a 

carcinogen, care should be taken in its handling by the use of gloves and goggles.

The final step in the stabilization process, following the BTA treatment and 

dehydration by a solvent, is applying a sealant For the Tel Nami bronzes, a 10% 

solution of Acryloid B-72 in acetone or toluene with the addition of BTA, was used. 

Also known as Paraloid B-72, this acrylic resin is a copolymer of ethyl methacrylate 

and methyl acrylate soluble in acetone and toluene (Singley 1988:90), and is available 

commercially as Krylon 1301 in a spray can.
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Reconstruction and Gap Filling

There is occasion to warrant some amount of reconstruction when it prevents 

further breakage or damage to an object. Reconstruction can also be instructional, so 

that an object may be better understood and recorded. For example, epoxy casts of 

artifacts are a form of reconstruction. Finally, reconstruction may be necessary to 

hold an object together for storage or display purposes (Cronyn 1990:90).

One of the basic tenets of conservation is the concept of reversibility. Any 

treatment applied should be reversible so that the option to retreat is always open 

(Hamilton 1976:2), however, this tenet cannot be adhered to in every instance.

For metals, Actyloid B-72, used as an adhesive is sometimes helpful, although 

it has been found that only epoxy resins have the necessary strength for gap filling 

requirements. While epoxies are not reversible, they can be softened with a solvent 

such as toluene.

Dayton (1987:44) reports good results from applying Araldite epoxy resin 

mixed with graphite powder to hairline cracks in a silver bracelet found on the Ulu 

Burun Shipwreck. This repair now supports the surface of the bracelet while giving it 

a consolidated appearance.

A similar approach was taken for a small strainer from Area O (Figure 48), 

and small knife (Figure 49) also from Area 0 , similar to one identified by Lakovidis 

(1982:215, Figure 10A) as Mycenaean. Two heavily corroded cracked or broken 

bowls were repaired with Devcon, an epoxy resin similar to Araldite (Figures 50 and 

51). The round-bottomed bowl, mentioned previously, had been in sixteen pieces.
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Figure 48. Before (A) and after (B) reconstruction of a bronze strainer

from Area O.



Figure 49. Small knife from Area O with repaired bottom sections. 

Length: 16.5 cm.



Figure 50. Before (A) and after (B) reconstruction of a cracked and 
broken bowl from Area O.



156

Figure 51. Before and after reconstruction of a bowl from Area O.

16 cm across.
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These repairs allowed for restoring their former shape.

Implications of the Study

Archaeological conservation not only performs the valuable service of 

stabilizing and preserving an artifact, it also can reveal important diagnostic 

information pertaining to ancient technology or even the intended function of an 

object. Jedrzejewska (1976) discovered engraved scale armor on the backside of a 

statue of Amon that was previously obscured by corrosion products. She also noted 

that the statue was made of composite parts. Interestingly, the hands and feet of this 

genre of composite New Kingdom statue resemble one hand and foot found at Tel 

Nami, probably scrap metal pieces (Artzy 1989:10) (Figure 52).

The conservation of the Tel Nami bronzes resulted in new information in some 

cases. Both mail armor scale plates were unidentifiable in situ, since they were badly 

corroded and broken in small pieces. One was found in Area G, on the top of the 

tell, and the other in Area 0, in a grave. After soaking them in sodium 

sesquicarbonate solution for approximately one week, Dr. Artzy and I noticed small 

holes appearing that were previously covered in corrosion products. It was then 

determined that these were mail armor scale plates. This discovery is exciting, for 

few examples exist from the archaeological record for the Late Bronze Age 

Mediterranean. Perhaps leather or metal passed through the holes to secure the mail 

piece to the armor breast or back plate (Figure 53).



Figure 52. Hand and foot scrap metal pieces from Area Dl. 

Length of hand: 3 cm. Length of foot: 1.8 cm.



Figure 53. Scale plate mail armor from Area O. Length: 6 cm.
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Another discovery was made following the cleaning of an unidentifiable object 

recovered from Area G. Due to its unusual shape, it was difficult to determine what 

the object was, particularly because it was obliterated by calcareous deposits. 

Following electrolysis, the details could be clearly seen on the artifact, indicating that 

it was a piece of scrap metal. This piece belongs to the lower half of a Cypriot 

tripod, as seen in Catling (1964:191) (Figure 54). This again fits the picture of a 

maritime scrap metal trade during the Late Bronze Age, and possibly evidence for 

metalworking in the temple area of Area G at Tel Nami (Artzy, personal 

communication).

*



Figure 54. Section from a Cypriot bronze tripod stand (after Catling 1964:191).
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CHAPTER IV 

CONCLUSION

The conservation of the Tel Nami bronzes has led to an investigation into the 

factors contributing to in-situ corrosion processes. It has been shown that the micro 

environment at Tel Nami, is complex, combining conditions found at both land and 

underwater sites.

As the artifacts themselves have been subjected to long periods of seawater 

inundation or zonal splash and sea spray activity, it would be expected that a 

substantial amount of deterioration would occur over time. Yet, this is largely not the 

case. Most of the bronze artifacts have been discovered in good condition. The 

conservation methods chosen for this program were based on twenty years of research 

and reported results in the field, along with the author’s own preparation and

experimentation. Removal of cuprous chloride was the main objective in designing a
«

treatment program.

From this investigation into the corrosion and conservation of ancient bronze, 

two conclusions can be drawn. First, the micro-environment at Tel Nami is corrosive 

to metal artifacts, due to the presence of chlorides. It was found that objects 

excavated from the dense clay matrix were consistently more corroded than artifacts 

recovered from the sandy matrix on the site, so that salt-saturated clay can be 

considered to be more corrosive than sand at a marine coastal site. The dense clay 

would be more anerobic, and this would harbor sulphate reducing bacteria.
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Secondly, it was found that cast objects suffered the least from corrosion, 

while artifacts that had been cold-worked were substantially more damaged by stress 

corrosion cracking and pitting. This is in agreement with Tylecote’s study where cast 

objects found in British sites were more corrosion-resistant (1979:345). This also 

bears out the observation that cold-working does reduce metal homogeneity and 

creates anodic stress area that increase the corrosion rate.

Archaeological conservation is a unique area within the field of conservation 

which has its own problems and considerations. Therefore, this study confirms my 

belief that archaeological conservation should be practiced by archaeologists who have 

been trained in conservation or by conservators who possess a strong background in 

archaeology and a history of technology.

Price (1984:1) states that conservation needs for an excavation should be 

anticipated during the initial stages of planning, with actual conservation beginning in 

the field. For these reasons, archaeological conservators are equipped to anticipate 

these needs, based on their experience and training. This would hopefully contribute 

to an ongoing improvement of conservation standards for excavated material, since 

the ultimate goal is to recover the maximum amount of information and preserve 

artifacts for future analysis.

Practicing archaeological conservation includes several aspects. The main 

consideration should always be preservation of the artifact, which overrides aesthetic 

considerations. For example, a patina may be sacrificed for the sake of chloride

removal.
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A second consideration is retaining the diagnostic attributes of the artifact. 

Based on the results from this conservation program, both electrolytic reduction and 

sodium sesquicarbonate treatments were valuable in revealing important diagnostic 

information about some of the objects under study. In the same vein, when objects 

were found with particular attributes, they were carefully treated to avoid changing or 

losing this information. For example, a spearhead from Area O was found with the 

tip purposely bent back. In this case, it is not the conservator’s job to change this, 

but rather record this information since it may relate to a recognized cultural practice. 

Burned ceramics also tell a story, and it would be unethical for the conservator to 

clean the blackened areas off.

Diagnostic attributes also extend to sometimes preserving corrosion crusts. 

Preparing samples from these crusts for analysis can be beneficial in understanding 

the type of corrosion involved. For example, there is some question as to whether 

sulphate-reducing bacteria is creating corrosive conditions at Tel Nami. Future 

analysis of corrosion crusts may shed some light on this possibility.

Some of the artifacts were heavily mineralized so that little could be done with 

them except treatment for chloride removal and epoxy repairs to protect them from 

further breakage. As mentioned previously, epoxy resins are not reversible. 

Reversibility is one of the tenets of conservation, however, experience from this study 

has shown that adhering to this ideal is not always possible. Pye and Cronyn 

(1987:355-356) state than even the simple cleaning of an object is an irreversible act. 

In truth, irreversibility is unavoidable in most cases.
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A final consideration worth mentioning is the importance of storage following 

the completion of any conservation treatment. Acid-free tissue paper, cotton bags and 

silica gel all contribute to deterring moisture which can activate corrosion. In Israel, 

the humidity can be relatively high near the coast, so that proper storage of metal 

objects is crucial to prevent further corrosion from taking place. The Tel Nami 

bronzes have been sealed in bags and stored in boxes in a cool, dry place. This 

hopefully will promote continued preservation.

In conclusion, the conservation of archaeological materials involves more than 

just laboratory procedure. Rather, it is a philosophy encompassing an understanding 

of the archaeological environment and the deterioration processes that affect material 

culture. Working in a foreign setting provides the opportunity to implement 

resourceful solutions both in the field and in the laboratory. It also creates a forum 

for sharing and exchanging ideas on an international level that leads to a greater 

understanding of the goals and objectives of archaeological conservation.
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Dear Georgia L Fox

Thank you for your letter attached.

The Oxford University Press title from which you wiah to reproduce material 
is out of print.

Unfortunately our out-of-print library Is being refurbished at present and ve 
are unable to check the sources of the material you require.

Please check if the credit line or list of acknowledgements in our book 
indicates that our figure/illustration was taken from another source. If this 
is the case please clear the permission with that source.

If it is clear that copyright is held by Oxford University Press you have our 
permission to use the material in the way you describe in your letter.

Please include a credit line in your publication citing the author/editor, 
title and year of the Oxford University Press publication which is the source 
of the material together with the copyright line and "by permission of 
Oxford University Press".

If you do have any questions or need further information please do not 
hesitate to get in touch.

Yours sincerely

pp Penny Eckley 

Reprint Rights Manager

Garls Davis, Nina de.
Private Tombs at Thebes: Scenes from 
Sane thefaan Tombs Voi iv '

G riff ith  In stitu te, Oxford U, Press, 1963 
Plate V I I I



189

T E XAS  A&V1 U N I V E R S I T Y
DEPARTMENT OF ANTHROPOLOGY

COLLEGE OF LIBERAL ARTS

February 14, 1991

Ms. Eileen Sullivan 
Photograph and Slide Library 
The Metropolitan Museum of Art 
Fifth Avenue at 82nd Street 
New York, NY 10028

Dear Ms. Sullivan:

In pusuant to our telephone conversation yesterday, I am enclosing 
a photocopy of the line drawing that I would like permission to use 
for my Masters Thesis here at Texas A&M on ancient metallurgy.

This illustration appears in Plate LII of Norman de Garis Davies 
Tomb of Sekh-mi-re. 1973 edition published by the Metropolitan
Museum of Art.

If you have any further questions, please feel free to call me at 
(409) 845-5143 or 693-5561. otherwise, I look forward to your 
reply. Thank you for your kind assistance.

Sincerely,

(Borgia L. Fox

Dear Georgina Fox,

Regarding the attached request for permission to 
use a line drauing in your Masters Thesis at 
Texas A&M on ancient metallurgy■ please go ahead 
citing the book reference as the source of the 
illustration.

Thank you.

Archaeology Conservation tth oology Folklore Geoarchaeology Nautical Archaeology
Nutritional Anthropology Paleoethnobotany Palynology Physical Anthropology Zooarchaeology
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Department of Anthropology 
Texas A&M University 
College Station, TX 77843

Dear Ms, Fox:

In accordance with your recent request we are pleased to grant 
permission to use the following figure in your forthcoming Masters 
Thesis:

Figure 4.2 from a book entitled THE CORROSION OF 
COPPER, TIN AND THEIR ALLOYS, Henry Leldhelser,Jr. 

Pg.100 (1971).

We request that you use the phrase "reprinted by permission 
of the publisher. The Electrochemical Society, Inc." In addition 
to the required references.

VHB/bb

Sincerely,

* / .  /O'l-*-'**'-*
V. H. Branneky 
Executive Secretary

10 SOUTH MAIN s t r e e t  PENNINGTON. NEW JERSEY  08534-2096 Telephone: 60S-737-1902
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^ay 1531

To: Georgia Fox

From: Maria Jacobsen

Re: Permission rights.

I hereby grant Georgia Fox permission to use the map from my 
article " Tel Nami: A Promising Bronze-Age Maritime Site," which 
appeared in the INA Newsletter, Vol. IS, No.2. The map appears 
on page 12 and can be used in her Masters Thesis.
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