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ABSTRACT 

 

Multilevel structural equation modeling (MSEM) has been widely used 

throughout the applied social and behavioral sciences. This dissertation revisited current 

issues in MSEM, including: the application of sampling weights and the test of 

measurement invariance.  

 The impact of using sampling weights on testing multilevel mediation effects in 

large-scale, complex survey data was evaluated in Study 1. This study compared design-

based, weighted design-based, model-based, and weighted model-based approaches in a 

noninformative sampling design. First, results showed that the model-based approaches 

produced unbiased indirect effect estimates and smaller standard errors. Second, 

ignoring sampling weights led to substantial bias in the design-based approaches. 

Finally, in the model-based approaches, weighted parameter estimates and standard 

errors differed moderately from unweighted results. The model-based approaches were 

thereby suggested for testing multilevel mediation effects in large-scale, complex survey 

data. In addition, researchers were always encouraged to apply sampling weights in 

analysis. The advantages of applying sampling weights in model-based approach were 

less obvious when cluster sizes were large, and particularly when ICC was small. 

The pursuit of evaluating various goodness-of-fit indices for testing measurement 

invariance has been a focus over the past decade. Study 2 expanded the investigation in 

MSEM. ICC and between-group difference accounted for a large proportion of variance 

in the model fit change. Among five model fit indices investigated in this study (i.e., 𝜒2, 
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CFI, RMSEA, SRMR, and TLI), ∆CFI and ∆SRMR in the level-specific approach had 

identical results to that of the standard approach. ∆SRMRB appeared to be the most 

sensitive to noninvariant factor loadings among all criteria. ∆SRMRB performed equally 

well in examining lack of intercept invariance when between-group difference was large. 

∆RMSEA was less sensitive. Fractional changes in ∆CFI and ∆TLI indicated that neither 

was sensitive regardless of the level-specific approach or the standard approach. ∆𝜒2 

was able to detect noninvariant intercepts when between-group difference was large, 

whereas only detected noninvariant factor loadings when both ICC and between-group 

difference were large. In conclusion, level-specific ∆SRMRB was suggested as a major 

index for examining between-level factor loading and intercept invariance in MSEM. 

∆𝜒2 can be a supplementary index. 
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CHAPTER I 

INTRODUCTION 

 

 Increasingly over the past two decades, applications of multilevel structural 

equation modeling (MSEM) have spread throughout the behavioral, educational, and 

social science research. Significant issues in techniques and applications of MSEM yet 

need our continuous attention, not only in substantive research but also in 

methodological area. This dissertation revisited two current issues in MSEM. One was 

the application of sampling weights in large-scale, complex data. The other was the 

goodness-of-fit indices for testing factorial invariance in multilevel data. Specifically, 

Study 1 aimed to assess the effects of using sampling weights on testing multilevel 

mediation effects in large-scale, complex survey data. Study 2 evaluated the 

performance of level-specific goodness-of-fit indices to test factorial invariance in 

MSEM. The two studies were two self-contained studies. Brief introductions about the 

two studies were presented below, respectively. 

 Study 1 addressed issues arising from special sampling designs used to collect 

large-scale, complex survey data (i.e., complex survey sampling). As is well known, 

conventional statistical methods assume the simple random sampling (SRS). Two 

properties of SRS are: 1) sampling units are independent from each other, and 2) each 

unit in the population has equal probabilities to be selected into the sample. 

Nevertheless, large-scale, complex survey data are typically collected via complex 

sampling designs, e.g., cluster sampling, multistage sampling, stratified sampling, 
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oversampling, and/or unequal probabilities of selection (Cochran, 1963; Longford, 1995; 

Snijders, 2012). The use of conventional statistical methods (e.g., t-test, ANOVA, and 

OLS regression) to analyze large-scale, complex survey data is seriously problematic 

due to the SRS violation. Therefore, taking into account sampling-related designs is 

important when analyzing large-scale, complex survey data. Substantive research has 

shown that ignoring the complex sample design would result in biased estimates and 

misleading inferences (e.g., Asparouhov, 2004; Pfeffermann, et al., 1998; Snijders, 

2012; Stapleton, 2002). 

 In large-scale, complex survey data, sampling weights are available to 

researchers who do secondary data analysis. Objectively, sampling weights are intended 

to adjust individual unit’s unequal probability of selection, to compensate for non-

response rate, and/or to serve for post-stratification adjustment. With adjustments based 

on sampling weights, the selected sample is representative of the population of interest. 

Several simulation studies (e.g., Asparouhov, 2004, 2005, 2006; Cai, 2013; Kaplan & 

Ferguson, 1999; Rabe-Hesketh & Skrondal, 2006; Stapleton, 2002, 2006) demonstrated 

that incorporating of sampling weights in estimation can produce unbiased parameter 

estimates and standard error estimates. In practice, however, sampling weights were not 

always included when large scale data were analyzed (e.g., Bodovski, et al., 2013; 

Georges, et al., 2012; Gravers & Wright, 2011; Matthews & Kizzie, 2010; Peugh, 2013; 

Wright, et al., 2014). Two possibilities explain researchers’ hesitation in using sampling 

weight when analyzing large-scale, complex survey data. First, the effects of sampling 

weights are not straightforward to researchers. In addition, there are various weighting 



 

3 

 

methods that can be used in analyzing large-scale, complex survey data and choosing the 

right weights is not an easy task. Second, a model-based approach, researchers believe, 

manages issues due to complex survey designs. However, this is not the case. The 

application of sampling weights remains an issue of significant concern to researchers 

using large-scale, complex survey data. 

 The abovementioned issues in analyzing large-scale, complex survey data need 

to be further investigated in new contexts. For example, though the importance of 

sampling weights has been highlighted in single-level analysis in literature, the role of 

sampling weights in MSEM is yet to be systematically explored. Further complicating 

matters, the pattern of sampling weights can be mixed in multilevel models. For 

example, the individual-level sampling weights are informative whereas the cluster-level 

sampling weights are noninformative, or vice versa. There are still arguments on how to 

include sampling weights in the estimation of multilevel models. To date, the effects of 

incorporating sampling weights on parameter estimates, standard errors estimates, and 

impact on power to detect multilevel mediation effects have not been addressed. In 

summary, the objective of Study 1 is to examine the effects of application of sampling 

weights on testing multilevel mediation effects in large-scale, complex survey data. 

 Study 2 is concerned with testing factorial invariance in multilevel data. In 

literature, testing measurement invariance has been intensively discussed in the context 

of single-level SEM regardless of in single-group CFA, multiple group CFA, multiple 

indicator multiple cause analysis (MIMIC), or restricted factor analysis (RFA) (Oort, 

1992, 1998). Nevertheless, testing measurement invariance in MSEM becomes more 
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complicated than in single-level SEM. Some studies have pointed out that invariance 

testing involves parameters at multilevel data levels (i.e., the within- and between-level 

models separately) (Jak, Oort, & Dolan, 2013; Kim, Kwok, & Yoon, 2012; Ryu, 2014b). 

Measurement invariance evaluation thereby needs further investigation given new 

contexts, substantively and methodologically.  

 Over the past decade, evaluating the performance of various goodness of fit 

indices has been a focus for measurement invariance testing (e.g., Chen, 2007; Cheung 

& Rensvold, 2002; Meade, Johnson, & Braddy, 2008). Through examining 20 goodness-

of-fit indices, Cheung and Rensvold (2002) reported that ΔCFI, ΔGamma Hat, and 

ΔMcDonald’s  Noncentrality Index (Mc NCI) outperformed other ΔGFIs. Chen (2007) 

expanded the investigation to noninvariant settings (e.g., noninvariance in factor loading, 

intercepts, and residual variances). It was concluded that ΔSRMR was more sensitive to 

detect noninvariance in factor loadings than in intercepts and residual variances, while 

ΔCFI and ΔRMSEA equally performed under similar conditions. Consistent with 

Cheung and Rensvold’s study, Meade, Johnson, and Braddy (2008) suggested to report 

ΔCFI and ΔMcDonald’s Noncentrality Index for measurement invariance testing. 

 To date, all goodness-of-fit indices discussed previously in measurement 

invariance literature have been examined in single-level SEM framework. The 

performance of those model-fit indices in MSEM needs reinvestigations. Ryu and West 

(2009) examined the sensitivity of goodness-of-fit indices to detect model 

misspecification in MSEM. They reported that two commonly used fit indices (i.e., 

RMSEA and CFI) failed to detect between-level model misspecification. Consistent with 
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Yuan and Bentler’s (2007) study, Ryu and West found that standard model fit indices 

(overall model fit) failed to capture misfit at the higher level model. The authors 

explained that because the cluster sizes were often larger than the number of clusters, the 

overall model fit was dominated by the within-level model. In a recent study by Hsu, 

Kwok, Lin and Acosta (2015), they found that CFI, TLI, and RMSEA were only 

sensitive to detect within-level model misspecification. In summary, standard goodness-

of-fit indices (i.e., general model fit indices) reflected the fit of the overall model, 

whereas misfits at the specific level model, especially higher level model, were hard to 

be detected.  

 Study 2 is concerned with the sensitivity of model fit statistic to the model 

misspecification due to measurement noninvariance in MSEM. As discussed above, 

standard goodness-of-fit indices (for the entire model) may fail to detect noninvariance 

in specific level models. Given that noninvariance can occur in the within-level model 

only, in the between-level model only, or in both levels, the performance of various 

goodness-of-fit indices needs to be further investigated. In summary, the objective of 

Study 2 is to examine the level-specific goodness-of-fit indices in testing factorial 

invariance in MSEM. Meanwhile, the level-specific model fit evaluation is compared to 

the standard model fit approach. 
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CHPATER II 

LITERATURE REVIEW 

 

 Social science, psychological, and educational researchers often encounter 

analysis of data of hierarchical structure. A common example in educational setting is 

given as follows. Students (level 1) are usually organized, or nested, in classrooms (level 

2). Consider that students in the same classroom have the same teacher, curriculum, and 

complete similar tasks and activities. In this scenario, students in the same classroom 

tend to be more like one another than others from different classrooms on many 

attributes (e.g., learning outcomes). Other examples included employee nested in the 

organizations, voters from the same neighborhoods, patients visiting the same clinics, 

and English language learners who take the ESL classes. In all examples above, issue of 

observation dependency is obvious. In other words, the variability is smaller due to the 

correlations among observations. When analyzing data collected from hierarchical 

clusters, the correlation among observations needs to be taken into account. Given 

conventional statistical methods usually assume observation independency (i.e., 

independent sample), they are not suitable for analyzing data of clustered structure. 

Previous studies showed that ignoring data dependency often resulted in biased estimates 

of standard errors (overestimation) and misleading inferences (Hox, 2010; Rabe-Hesketh 

& Skrondal, 2006; Raudenbush & Bryk, 2002; Skinner, 1989).  

 Multilevel structural equation modeling (MSEM) has been widely used for 

analyzing data of hierarchical structure since a decade. As a general analytic framework, 
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MSEM integrates both multilevel modeling (MLM) techniques and SEM techniques 

(Kline, 2011; Mehta & Neale, 2005; Muthén & Asparouhov, 2012). On one hand, with 

the MLM tradition, MSEM can model relationships within clusters, but also between 

clusters from partitioning the total observed variance into within-level and between-level 

components. On the other hand, with the SEM tradition, MSEM can model means and 

covariance structures among multivariate data (Mehta & Neale, 2005). In addition, as a 

latent variable technique, measurement errors can be estimated. Muthén (1994) 

discussed MSEM for hierarchical data, such as multilevel factor and path models. 

However, only in the past two decades have analytical and computational advancements 

made MSEM popular among more interdisciplinary studies. Nowadays, well developed 

SEM packages, e.g., LISREL (Jӧreskog & Sӧrbom, 1996), EQS (Benlter, 2004), AMOS 

(Arbuckle, 2006), and Mplus (Muthén & Muthén, 1998–2012) allow researchers to 

apply MSEM with flexibilities. 

 A good understanding of measurement models is fundamental to understand 

MSEM. In this dissertation, a brief review of single-level measurement models was 

introduced, followed by a discussion extended to multilevel measurement models. In 

single-level measurement models, for individual 𝑖the relationship between a common 

factor (𝜂𝑖) and the observed score (𝑦𝑖) is examined. The general equation is  

                                                      𝑦𝑖 = 𝜐 + Λ𝜂𝑖 + 𝜀𝑖,                                                    (1) 

where 𝜐 is the intercept vector;Λ is the factor loading matrix; and 𝜀𝑖 is the residual 

vector. As shown in the equation, a latent variable 𝜂𝑖 is specified, which represents the 
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latent construct. One of the important assumptions in measurement models is that 𝜂𝑖 and 

𝜀𝑖 are uncorrelated.  

 In multilevel setting, suppose that individuals (i = 1, …, N) are drawn from J 

clusters (j = 1, …, J). To illustrate a multilevel measurement model, the subscript j (i.e., 

cluster) is introduced into Equation (1). The multilevel factor models are expressed in 

two equations (Rabe-Hesketh, Skrondal, & Pickles, 2004)  

𝑦𝑖𝑗 = 𝜇𝑗 + Λ𝜂𝑖𝑗 + 𝜀𝑖𝑗,                                                (2) 

𝜇𝑗 = 𝜇 + Λ𝜂𝑗 + 𝜀𝑗,                                                     (3) 

where the latent factor means are treated as random effects varying across J clusters. The 

common factors (𝜂𝑖𝑗) and the unique factors (𝜀𝑖𝑗) are assumed uncorrelated. In the 

multilevel measurement models, the latent factor means (𝜂𝑖𝑗) are divided into a within-

level (i.e., Level 1) component and a between-level (i.e., Level 2) component, as shown 

by (Heck, 2001; Muthén, 1994) 

𝜂𝑖𝑗 = 𝛼 + 𝜂𝐵𝑗 + 𝜂𝑊𝑖𝑗,                                             (4) 

where 𝛼 is the grand mean of 𝜂𝑖𝑗. Latent random factors 𝜂𝐵𝑗 and 𝜂𝑊𝑖𝑗 represent 

between-cluster and within-cluster variation, respectively (Muthén, 1994). The 

expected values of 𝜂𝐵𝑗 and 𝜂𝑊𝑖𝑗 are zero. Similarly, the total factor variance can be 

decomposed into the between-cluster (𝜓𝐵) and within-cluster (𝜓𝑊) factor variance: 

𝑉(𝜂𝑖𝑗) = 𝜓𝑇 = 𝜓𝐵 + 𝜓𝑊,                                       (5) 
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where 𝜓𝑇 denotes the total factor variance. Likewise, the residual variance (𝜀𝑖𝑗) of the 

latent factor is decomposed into two components (i.e., Θ𝐵 and Θ𝑊 represent the 

between- and within- level residual variance, respectively) as  

𝑉(𝜀𝑖𝑗) = Θ𝐵 + Θ𝑊.                                                (6) 

Similarly, the covariance structure for 𝑦𝑖𝑗 in Equation (2) is then given as 

𝑉(𝑦𝑖𝑗) = Σ𝑇 = Σ𝐵 + Σ𝑊,                                       (7) 

where Σ𝑊 and Σ𝐵 refer to the within (level-1) and between (level-2) covariance matrix, 

respectively. Till this point, the covariance and mean structure for two-level factor 

models can be summarized as (Heck, 2001; Jak, Oort, & Dolan, 2014): 

Σ𝐵 = Λ𝐵𝜓𝐵Λ𝐵
′ + Θ𝐵,                                          (8) 

𝜇𝐵 = 𝜏𝐵 + Λ𝐵𝛼𝐵,                                                 (9) 

Σ𝑊 = Λ𝑊𝜓𝑊Λ𝑊
′ + Θ𝑊.                                     (10) 

Equation (8) and (10) describe the covariance structure between groups and within 

groups, respectively. In Equation 9, 𝛼𝐵 denotes common factor means at the between 

level. It should be noted that no mean structure at the within level is specified. It is 

because that individual scores are defined as cluster means plus individual deviations 

from the cluster means at the between-level. Therefore, the expected values of within-

level intercepts are zero and the overall mean equals𝜇𝐵. 

 In chapter II, the concepts of multilevel measurement models were presented. 

Two MSEM models were considered in this dissertation. One was a multilevel 

mediation model and the other was a multilevel measurement model. A more detailed 

review of each model was discussed in the following chapters. 
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CHAPTER III 

STUDY 1: THE EFFECTS OF SAMPLING WEIGHTS ON TESTING MULTILEVEL 

MEDIATION EFFECTS IN LARGE-SCALE, COMPLEX SURVEY DATA 

 

LARGE-SCALE, COMPLEX SURVEY DATA 

 Large-scale, complex survey data are usually large amount of data. National 

survey data and international assessment data are two major types. National survey data 

are collected by government agencies such as the National Center for Education 

Statistics (NCES). International large-scale assessments data (e.g., the Programme for 

International Student Assessment (PISA) are organized by international organizations, 

for example, the Organization for Economic Co-operation and Development (OECD). 

Regardless of national survey data or international assessment data, as it is known, they 

are large-scale, complex survey data based on complex sample designs. The complex 

sample designs include stratification, clustering, multi-stage sampling, and unequal 

probability of selection of observations, and/or nonresponse and post-stratification 

adjustment. 

 Complex sample designs, as described above, are special features of large-scale, 

complex survey data. On one hand, those techniques have been shown to increase 

efficiency in survey sampling, to save money and time. On the other hand, those survey 

techniques used make survey analyses complicate. Conventional statistical methods 

assume SRS, in which each observation unit is randomly selected from the population 

and selected with equal probability of selection. The use of complex survey sampling 
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results in unequal probabilities of selection and data non-independency issue. Under 

those circumstances, conventional statistical methods are no longer appropriate. Taking 

into account complex sample designs is necessary in the survey analysis of large-scale, 

complex survey data. 

 To address every effect of data characteristics on model estimation due to 

complex sample designs is difficult. In addition, the effect could be mixed. Such effects 

include stratification, clustering, unequal sampling, and finite population (Lumley, 

2004). In this study, two major issues of complex sample design were addressed, 

including: issues of data dependency and unequal probabilities of selection. In the next 

two sections, sampling weights were first presented which adjust unequal probabilities 

of selection. Second, design-based and model-based approaches were introduced which 

account for data dependency.  

 

SAMPLING WEIGHTS  

Sampling weights are available to researchers who do secondary data analysis of 

large-scale, complex survey data (e.g., national survey data and international assessment 

data). The incorporation of sampling weights in modeling data based on complex 

sampling designs has been highly recommended by researchers (e.g., Asparouhov, 2004, 

2005, 2006; Cai, 2013; Kaplan & Ferguson, 1999; Korn & Graubard, 1995; Lee et al., 

1989; Rabe-Hesketh & Skrondal, 2006; Skinner, 1989; Stapleton, 2002, 2006, 2012). 

Despite all these recommendations of using sampling weights, substantive researchers 

didn’t include sampling weights in analysis as a regular practice.  
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Sampling weights contain important information of unequal probability of selection 

adjustment, non-response adjustment, and/or post-stratification adjustment due to 

complex sampling designs. The incorporation of sampling weights in analysis functions 

as necessary adjustments in survey data estimation. In simple random sampling scheme, 

every element in the population has the same probability of being selected in the sample. 

However, based on complex sampling designs (e.g., proportional sampling), sample 

units do not have equal probability of selection included in the sample. Therefore, 

conventional statistics methods are not appropriate for analyzing complex survey data. 

Some simulation studies found that ignoring unequal probability of selection resulted in 

biased parameter estimate in single-level SEM and multiple regression analysis (Kaplan 

& Ferguson, 1999; Korn & Graubard, 1995; Lee et al., 1989), additionally, biased 

standard errors estimates in multilevel analysis (Asparouhov, 2004; Cai, 2013). 

Furthermore, the type of sampling design should be a concern for researchers, that 

is, whether the sampling design is informative or noninformative. According to Snijders 

(2012), informative design is defined that “the distribution of the residuals is affected by 

the sampling design” (p. 222). If the ways that units are selected with unequal 

probabilities of selection are related to variables that researchers are interested (e.g., 

oversampling a specific group and the grouping variable is the outcome variable), the 

sampling design is said to be informative. As evaluated in some simulations studies, it 

was important to include sampling weights in the estimation when sampling design is 

informative (e.g., Asparouhov, 2006; Cai, 2013; Grilli, et. al., 2004; Pfeffermann, 1993, 

1998; Snijders, 2012; Stapleton, 2002). Researcher reiterated the necessity of 
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incorporating this kind of sampling designs in modeling and it was pointed out that not 

only the parameter estimates but also standard errors of parameter estimates may be 

seriously biased in the informative sampling design if weights were not applied (e.g., 

Binder &Roberst, 2001; Cai, 2013; Jia et el., 2012; Preffermann, et al., 1998; Sugden & 

Smith, 1984). Muthén and Satorra (1995) proposed two approaches for alleviating the 

impact of informative designs in model estimations. One was to include the design 

weights. The other way was to include the design variables when specifying the model, 

thus the correlations of the design variables to the other variables were controlled in the 

hypothesized model. While researchers have limited information of the design variables 

in the large-scale, complex survey data, the application of sampling weights is a good 

alternative. When the sampling design is noninformative, which is defined that “the 

distribution of residuals is independent of the sampling design” (Snijders, 2012, p. 222), 

Korn and Graubard (1995) suggested to incorporate effective sampling weights or 

higher-level weights in the estimation. However, Snijders (2012) argued that the use of 

sampling weights was redundant given the sampling design was noninformative. 

Because there are still arguments on the application of sampling weights and also on the 

weighting method, further research is needed to investigate the impact of sampling 

weights under various situations. In the next section, two kinds of sampling weights 

were introduced. 

Types of Sampling Weights 

 Raw Weights. When data are collected with unequal probabilities of selection 

(e.g., proportional sampling), selection bias occurs. In this case, sample data need to be 
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weighted to adjust for selection bias. One frequently used sampling weights is raw 

weight which the summation adds up to the population size (i.e., N). Raw weights are 

commonly used in descriptive analyses (Kalton, 1989), which are defined as: 

∑ 𝜔𝑖
𝑛
𝑖=1 = 𝑁,                                                            (1) 

where 𝑤𝑖 =
1

𝑝𝑖
 and 𝑝𝑖 is each individual’s inclusion probability. Note that N is the 

population size rather than the sample size. Though parameter estimates are less affected 

by N, standard errors and fit statistics, particularly the maximum likelihood-ratio chi-

square statistic, are very sensitive to the N being used (Kaplan & Ferguson, 1999). 

Researchers had proposed other types of weighting methods. Potthoff, Woodbury and 

Manton (1992) described other two types of weights, that is, normalized weights (also 

called relative weights in some studies) and effective weights, which were discussed in 

the following sections. 

 Normalized Sampling Weights. Normalized sampling weights (also called 

relative weights, cf. Longford, 1995; Pothoff et al., 1992; Stapleton, 2002; Thomas & 

Heck, 2001) sum to the actual sample size n (rather than the population N), defined as: 

                                                              ∑ 𝜔𝑖
∗𝑛

𝑖=1 = 𝑛.                                                    (2) 

In the simplest case, if 𝑝𝑖 = n/N and 𝜔𝑖
∗ =

𝑛

𝑁
×

1

𝑝𝑖
= 

𝑛

𝑁
×

𝑁

𝑛
= 1, the sample weights sum 

to the sample size n (1 × n = n). Based on Equation 1-2, 
1

𝑝𝑖
 is the raw weight 𝑤𝑖, as 

defined previously in Equation (1). 
𝑛

𝑁
 can be viewed as the normalizing factor. Potthoff, 

Woodbury, and Manton (1992) described the procedures of normalization. That is, 
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rescale the raw weights to the normalized weights by scaling the raw weights by a 

constant λ, defined as: 

𝜆 =
𝑛

∑ 𝑤𝑖
𝑛
𝑖=1

= 
𝑛

𝑁
,                                                     (3) 

where 𝑤𝑖 is the raw weight for individual i. In other words, the normalized sampling 

weights can be obtained by multiplying the raw weights with the normalizing factor. 

 In a two-stage cluster sampling, i denotes the individual level unit and j notates 

the cluster level unit. 𝜔𝑖𝑗
∗ = 

𝑛𝑗

𝑛
×

𝑁𝑖

𝑁
×

1

𝑝𝑗𝑝𝑖|𝑗
 where𝑝𝑗 is the probability of a cluster being 

selected and 𝑝𝑖|𝑗 is the probability of an individual i included in that cluster j. 
𝑛𝑗

𝑛
 is the 

ratio of the number of selected clusters nj to the total number of clusters n in the 

population. 
𝑁𝑖

𝑁
 is the ratio of the number of observations Ni selected in cluster j to the 

total sample Nj of cluster j. 
𝑛𝑗

𝑛
×

𝑁𝑖

𝑁
 can be viewed as the normalizing factor. After the 

normalization process, 𝜔𝑖
∗ sums to the total sample size. A simple example below is 

given illustrating raw sample weight and normalized sampling weight based on one-

stage stratified sampling design. A balanced sample of ten is equally drawn with five 

from two subpopulations, such as 2,000 and 8,000 in each pool. The two subpopulations 

constitute the population of 10,000. The normalized sampling weights from the pool of 

2,000 and 8,000 are 0.4, and 1.6, respectively, whereas the raw sample weights are 400 

and 1600, respectively. Obviously, the normalized sampling weights sum up to 10 

(sample size) but the raw sample weights sum to 10,000 (the population size).  

 Because standard error estimates are sensitive to the n used, different types of 

sampling weights may result in huge difference. Some studies (e.g., Asparouhov, 2006; 
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Grilli&Pratesi, 2004; Kaplan & Ferguson, 1999; Pfeffermann, Skinner, Holmes, 

Goldstein, & Rasbash, 1998; Rabe-Hesketh & Skrondal, 2006; Stapleton, 2012) proved 

that applying raw weights tended to underestimate standard errors and inflate Type I 

errors. In statistical software, for example, SPSS, Mplus and LISREL, the normalized 

weighting method is implemented as the default. For example, it is set up by using the 

CLUSTER setting in Mplus and the CLUSTER command In LISREL. Effective weights 

have also been studied by some researchers (e.g., Pfeffermann, Skinner, et al., 1998; 

Stapleton, 2002) but they are out of scope of this dissertation and for details please read 

Stapleton’s (2002) study. 

Sampling Weights in Multilevel Analysis 

 As discussed previously, when sampling weights are informative, sampling 

weights should be included in analysis. In addition, normalizing scaling method is often 

recommended. However, the application of sampling weight in multilevel analysis is 

more complicated than in single-level analysis. In multilevel analysis, Asparouhov 

(2004) and Snijders (2012) suggested that when sampling weights at both the individual 

level and cluster level were noninformative, sampling weights were not needed in the 

analysis. In contrast, when both the individual-level and cluster-level sampling weights 

were informative, the application of sampling weights was necessary (Aaparouhov, 

2004). Pfeffermann, Skinner, et al. (1998) compared three methods of weights (i.e., raw 

weights, normalized weights, and effective weights) and concluded that the application 

of sampling weights resulted in unbiased estimates regardless of which method used. 

They recommended to use the normalized weights for which reflected the actual sample 
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size. Nevertheless, Korn and Graubard (1995) argued that effective weighting method 

(effective sampling weights) should be used at either level. 

 In addition to the arguments on weighting methods, further complicating matters 

was there were mixed patterns of sampling weights. That is, the cluster-level sampling 

weights were noninformative but the individual-level sampling weights were 

informative, and vice versa. In the case that only individual-level weights were 

informative, Pfeffermann, Skinner, et al. (1998) proposed that scaling the individual-

level sampling weights for each cluster using the effective weighting method (effective 

weights). They claimed that it produced unbiased estimates for both variance 

components. Arguably, Asparouhov (2004) suggested to scale the weights within each 

cluster using the normalized weighting method. When informative sampling weights 

were present at cluster level only, Asparouhov (2004) pointed out that a single-level 

weighted analysis produced unbiased results. The author explained that only the cluster 

level units with unequal probabilities of selection won’t affect the outcome variable at 

the individual level. Though there was no agreement on the choice of weighting method, 

one consensus was when the sampling weights at the individual level were informative, 

sampling weights should be scaled and included in the multilevel analysis.  

 

ANALYTICAL APPROACHES FOR ANALYZING COMPLEX SURVEY DATA

 Issues of data dependency should be a concern in analyzing data collected from 

complex sampling designs (e.g., cluster sampling or multi-stage sampling). Design-

based and model-based approaches are two popular alternatives for analyzing complex 
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survey data (Cai, 2013; Kalton, 1983; Snijders, 2012; Wu & Kwok, 2012). Meanwhile, 

incorporating sampling weights into multilevel analysis was also highly recommended 

for analyzing complex survey data (Asparouhov, 2006; Graubard & Korn, 1996; Grilli & 

Pratesi, 2004; Kovacevic & Rai, 2003; Pfeffermann et al., 1998). Both design- and 

model-based approach take the multilevel data structure of large-scale, complex survey 

data into account. Differently, the design-based approach specifies a single-level model 

while making appropriate standard error and fit statistics adjustment (e.g., a sandwich 

estimator) to account for data dependency. The model-based approach requires level-

specific models for each data level (i.e., multilevel models). From modeling random 

effects (e.g., random intercepts and/or slopes) that vary across clusters, in other words, 

partitioning the population variance into within- and between-level variance, the model-

based approach produces unbiased parameter estimates and standard error estimate. In 

summary, design-based approaches produce unbiased parameter estimates and correctly-

adjusted standard errors (Hahs-Vaughn, 2005; Stapleton, 2002). Nevertheless, the 

model-based approach has been shown as a promising approach given its flexibility for 

specifying multilevel models at different data levels, partitioning the total variance into 

within and between parts, and resulting in unbiased parameter and standard error 

estimates (Hox, 2010; Hox & Kreft, 1994; Kaplan & Elliott, 1997; Muthén, 1994; 

Muthén & Satorra, 1995; Stapleton, 2002). In the next section, the two approaches were 

discussed and the application of sampling weights in estimation was also presented. 
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Design-based Approaches 

The design-based analysis methods include a single-level model specification and 

appropriate standard errors and chi-square test statistics adjustments. In Mplus, MLR 

(maximum likelihood with robust standard errors and chi-square test statistics) 

estimation method is employed by using the TYPE = COMPLEX routine (default 

estimation method when observed dependent variables are all continuous). Standard 

errors are computed using a sandwich estimator, which are robust to non-normality of 

outcomes and observation independency. 

When samples are selected with unequal probabilities of selection, sampling weights 

contain important information of selection probabilities. The pseudo maximum 

likelihood (PML) method is used for estimation in the single level model with sampling 

weights incorporated. PML is now widely implemented in Mplus, SAS, and STATA and 

other commercial software packages for addressing unequal probabilities of selection. In 

the design-based approaches, researchers can specify the weights variable to allow for 

weights incorporation in estimation. The PML parameters of interest are obtained by 

maximizing the weighted likelihood function as given by: 

𝑙𝑛(𝜃) =  ∑ 𝜔𝑖 log 𝑓𝜃(𝑥𝑖)
𝑛
𝑖=1 ,                                     (4) 

where 𝜔𝑖 is the sampling weights and subscript i notates individual observations 1, … , 

n. 

 The robust sandwich estimator is used for standard error adjustment under model 

misspecification assumption (e.g., observation independence here). When x is IID 

random variable 𝑥1, … 𝑥𝑛, with parameter θ, the asymptotic variance is  
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                                                𝐽𝑛(𝜃𝑛)−1𝑉̂𝑛(𝜃𝑛)𝐽𝑛(𝜃𝑛)−1.                                                (5)                                                 

The weights can also be plugged in the “sandwich estimator”. For example, in a linear 

regression, when weights incorporated the variance is given by 

𝑉(𝐵̂) = (𝑋′𝑊𝑋)−1𝑉[∑ 𝑤𝑖𝑥𝑖
′(𝑦𝑖 − 𝑥𝑖

′𝐵̂)𝑖 ∈ 𝑠 ](𝑋′𝑊𝑋)−1,                           (6) 

where 𝑤𝑖 represents sampling weights and the subscript i runs from 1 to n for all 

observations in the sample. W is the weight matrix. The use of sandwich standard error 

estimator allows for necessary adjustments of standard error estimates, which is robust to 

data nonnormality and observation nonindependence. 

Model-based Approaches 

Compared to the design-based approach in which only a single level model is 

specified, the model-based approach allows researchers to model both within- and 

between-relations with models specified at each level. Particularly, researchers can study 

the effects of higher level variables on the outcome variables at individual level. In 

Mplus, using the TYPE = TWOLEVEL routine, a multilevel model with random effects 

(e.g., random intercepts and/or slopes) is estimated (Muthén & Muthén, 1998–2012). 

Similar to the design-based approach, MLR (maximum likelihood with robust standard 

errors and chi-square test statistics) and “sandwich estimator” are used for parameter and 

standard error estimation. Both design-based and model-based approaches produce 

unbiased standard error estimates. Differently, the model-based approach partitions the 

variance of the observed dependent variable into within-component and between-

component, while design-based approach makes adjustments to standard error estimates 

based on the sampling designs.   
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When sampling weights are applied in model estimation, the multilevel pseudo 

maximum likelihood (MPML) method is used. This estimation method can be used to 

estimate any general multilevel model (Asparouhov, 2004). Similar to maximum 

likelihood method, the MPML parameter estimates are obtained by maximizing the 

weighted likelihood function. Define θ1 and θ2 as the parameters for the individual and 

cluster level; wij and wj as the level 1 and level 2 weights. The weighted likelihood 

function is  

𝑙(𝜃1, 𝜃2) =  ∏ (∫(∏ 𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝜂𝑗 , 𝜃1)
𝑤𝑖𝑗𝑠1𝑗

𝑖 )𝜙(𝜂𝑗|𝑥𝑗 , 𝜃2)𝑑𝜂𝑗)
𝑤𝑗𝑠2𝑗

𝑗 ,              (7) 

where cluster j runs 1, … to M and individual iis 1, …, nj; s1j and s2j are level 1 and level 

2 weights scaling factors (Asparouhov, 2004). Standard errors are computed using the 

sandwich estimator. With sampling weights, the asymptotic covariance of the MPML 

estimates takes the form of                                       

(𝐿′′)−1 (∑ (𝑠2𝑗𝑤𝑗)
2
𝐿𝑗
′𝐿𝑗

′𝑇
𝑗 ) (𝐿′′)−1,                                   (8)    

in which 𝑙𝑗 = ∫(∏ 𝑓(𝑦𝑖𝑗, 𝑥𝑖𝑗 , 𝜂𝑗 , 𝜃1)
𝑤𝑖𝑗𝑠𝑖𝑗

𝑖 )𝜙(𝜂𝑗 , 𝑥𝑗 , 𝜃2)𝑑𝜂𝑗 . 𝐿
′and 𝐿′′refer to the first and 

second derivative of the log-likelihoods. wj is the weight of the top level unit and s2j is 

the level 2 weights scaling constant (Asparouhov, 2004).  

 Till this point, it was presented that design-based and model-based approach 

have employed different estimation methods in the application of sampling weights in 

estimation. The MPML estimation method required that information of sampling 

weights should be available at the individual level and cluster level. 
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MULTILEVEL MEDIATION MODELS 

 In a single-level simple mediation analysis, the mediation model is expressed as 

the following regression equations: 

𝑀𝑖 = 𝑖𝑀 +  𝑎𝑋𝑖 + 𝑒𝑀𝑖
,                                               (9) 

𝑌𝑖 = 𝑖𝑌 + 𝑐′𝑋𝑖 + 𝑏𝑀𝑖 + 𝑒𝑌𝑖
,                                     (10) 

where Y is the dependent variable, X is the independent variable, and M is the mediator 

(MacKinnon, 2008). The terms 𝑖𝑀 and 𝑖𝑌 denote intercepts; 𝑒𝑀𝑖
 and 𝑒𝑌𝑖

 represent 

residuals. Coefficient 𝑎 is the effect of X on M, coefficient 𝑐′ is the direct effect of X on 

Y, and coefficient 𝑏 describes the effect of M on Y while controlling for X. ab is termed 

as the indirect effect (i.e., X on Y through M). The total effect of X on Y equals to the 

indirect effect (i.e., ab) plus the direct effect (i.e., 𝑐′). 

 In educational and organization settings, researchers often encounter data of 

multilevel structure. For example, the dependent variable (Y) and the independent 

variable (X) are level-1 variables, but the mediator (M) is a level-2 variable. An 

empirical example is that X is the amount of homework a student does (level-1), Y is a 

student’s score on the exam (level-1), and M is a type of educational program that a 

classroom is assigned (level-2) to where the student attends. The mediation effect occur 

across levels. In this case, simple mediation model is no more appropriate but multilevel 

mediation analysis should be used. Bauer, Preacher, and Gill (2006) summarized 

previous studies (e.g., Kenny, Kashy, & Bolger, 1998; Krull & MacKinnon, 1999, 2001) 

and illustrated three types of multilevel mediation models, which were discussed as 

follows. 
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 In multilevel mediation models, i denotes individual and j represents clusters. In 

a “2 – 1 – 1” multilevel mediation model, X is a level-2 predictor. M and Y are level-1 

variable. The effect of M on Y can be a random effect, varying between level-2 units. 

The model equations are given by: 

                                         Level 1: Yij = β0j + β1jMij+ eij,                                     (11) 

                                          Level 2: β0j = γ00 + γ01Xj + U0j,                                    (12) 

                                                β1j= γ10 + U1j.                                                  (13) 

It should be noted that the effect of M on Y is estimated as random (U1j). However, this 

model can be specified as a fix effect of M on Y (exclude the term of U1j).  

 In a “1 – 1 – 1” multilevel mediation model, all three variables (X, M, and Y) are 

measured at level 1. All effects are allowed to vary across level-1 units. That is, the 

effect of both X on M (not shown in the equation) and M on Y can be random effects. 

The indirect effect of X on Y through M is also estimated as random. The model 

equations are given as follows: 

                                       Level 1: Yij = β0j + β1jXij + β2jMij+ eij,                            (14) 

                                         Level 2: β0j = γ00 + U0j,                                                    (15) 

                                                  β1j= γ10 + U1j,                                                     (16) 

                                                    β2j= γ20 + U2j.                                                     (17) 

Similarly, this model can have a fix effect of M on Y (exclude the term of U2j), a fix 

effect of X on Y (exclude the term of U1j), or a fix effect of X on M (not shown in the 

equation). When either one of two effects is estimated as fixed, no covariance term 

between the path coefficients of the two effects is needed. When both are estimated as 
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random, a covariance term needs to be included, for example, 𝜎̂𝑎𝑗𝑏𝑗
 represents the 

covariance between the two random effects (i.e., the effect of X on M and the effect of 

M on Y). 

 In a “2 – 2 – 1” multilevel mediation model, X and M are measured at level 2 and 

Y is a level-1 outcome. All effects (X on M, M on Y, and X on Y) are estimated as fix 

effects. The model equations include: 

                                      Level 1: Yij = β0j + eij,                                                           (18) 

                                      Level 2: β0j = γ00 + γ01Xj + γ02Mj + U0j.                                (19) 

In all three types of multilevel mediation models discussed above, the effect of X on M 

is not shown in the equations. In this study, a “2 – 1 – 1” multilevel mediation model 

was used with no random effect was specified, which was discussed in a later section. 

Testing Multilevel Mediation Effects 

In Preacher and Hayes (2008), the authors provided a thorough review on the 

theory of testing mediation effects. The formal definition of mediation was put forward 

by Baron and Kenny (1986) in a simple mediation model, which was expressed as the 

difference between the total effect and the direct effect of X on Y. Preacher and Hayes 

summarized five statistical approaches to assess mediation, including: Baron and 

Kenny’s (1986) casual steps strategy, partial correlation strategies, differences in 

coefficients strategies, nested model strategy, and product of coefficients strategies. 

Among them, three approaches (i.e., casual steps strategy, differences in coefficients 

strategies, and product of coefficients strategies) are used very often in mediation 

analysis. Preacher and Hayes (2008) described their pros and cons and suggested not to 
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use the partial correlation strategies and the nested model strategy. MacKinnon, 

Fairchild, and Fritz (2007) proposed that using the product of coefficients (i.e., 𝑎̂ × 𝑏̂) or 

difference in coefficients (i.e., 𝑐̂ − 𝑐̂′) yielded similar results for testing mediation 

effects. However, they also warned that the two methods were only exchangeable in 

some circumstances (e.g., single-mediator model) but not everywhere (e.g., multilevel 

models, logistic or probit regression, and survival analysis). In this study, the product of 

coefficients method was adopted. The standard error for the parameter estimated (i.e., 

𝑎̂*𝑏̂) is defined as (MacKinnon, 2008, p. 92):  

                                           𝑠𝑎̂𝑏̂ =  √𝑎̂2𝑠𝑏̂
2 +  𝑏̂2𝑠𝑎̂

2,                                           (20) 

where 𝑠𝑎̂ and 𝑠𝑏̂  are estimated standard errors for 𝑎̂ and 𝑏̂, respectively. 

The Sobel test (Sobel, 1982) is used to test for significance of the indirect effects, 

defined as: 

                                                𝑡 =  
𝑎̂𝑏̂

𝑠𝑎̂𝑏̂

,                                                              (21) 

in which a normal distribution  of t statistics is assumed. MacKinnon (2008, p. 94) 

suggested using the distribution of the product (i.e., 𝑎̂*𝑏̂) to test for significance if 

normality assumption is violated. Either in design-based or model-based approaches, 

testing mediation effects is specified in the same way in Mplus (e.g., by specifying a 

new parameter, that is, 𝑎̂*𝑏̂). 

In the discussion above, mediation effects were addressed in single-level models. 

In the following sections, testing mediation was discussed in multilevel mediation 

models. As Kenny et al. (2003), Bauer, Preacher, and Gil (2006), and Bullock et al. 
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(2010) demonstrated, if 𝑎̂ and 𝑏̂ slope were both random, that is, the two slopes varied 

across clusters, correlations between the two random coefficients also occurred at the 

higher level. The indirect effect was then expressed as: 

𝑎̂𝑏̂ +  𝜎̂𝑎𝑗,𝑏𝑗
,                                                   (22) 

where 𝜎̂𝑎𝑗𝑏𝑗
 represented the covariance between the two random effects in lower level 

multilevel mediation models (i.e., all variables were measured at low level – Level 1). 

Note that both 𝑎̂ and 𝑏̂ are random slope coefficients, varying across the higher level 

units. Similarly, with a covariance term the variance of the indirect effect is given as 

(Kenny et al., 2003): 

𝑎̂2𝜎𝑏𝑗

2 + 𝑏̂2𝜎𝑎𝑗

2 + 𝜎𝑎𝑗

2 𝜎𝑏𝑗

2 + 2𝑎̂𝑏̂𝜎𝑎𝑗,𝑏𝑗
+ 𝜎𝑎𝑗,𝑏𝑗

2 .                                   (23) 

 The Equations (22) and (23) are only applicable to 1→1→1 lower level multilevel 

mediation models in which random effects are assumed for both coefficients (see Bauer 

et al., 2006, pp. 143-144; Preacher & Selig, 2010). In upper level mediation (i.e., 

2→2→1) and lower level mediation (i.e., 2→1→1) models, no covariance term between 

slopes is needed because no concurrent random effects are assumed (Preacher & Selig, 

2010). In other words, only one random slope is modeled at a time (e.g., either 𝑎̂ or 𝑏̂, 

but not 𝑎̂ and 𝑏̂ simultaneously).   

 Up till now, I have summarized the theoretical framework of Study 1 including 

two kinds of weighting method, two analytical approaches to analyze complex survey 

data, and testing multilevel mediation models in the multilevel data. In the next, the 
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incorporation of sampling weights and how it affected estimates in multilevel mediation 

models was examined through a Monte Carlo simulation. 

Though in literature researchers have discussed the importance of incorporating 

sampling weights in single-level and multilevel analysis, the effects of using sampling 

weights in multilevel mediation models were still unknown. In other words, the impact 

of including sampling weights on estimating indirect effect parameters, standard errors, 

and testing mediation effects was to be examined. Taken all together, the purpose of this 

study was to examine the effect of sampling weights on estimating multilevel mediation 

models using four methods (i.e., unweighted design-based, design-based weighted, 

unweighted model-based, and model-based weighted). The results obtained from this 

study were twofold for researchers: 1) choosing between design- and model-based 

approaches, and 2) how to treat sampling weights in testing multilevel mediation effects 

in large-scale, complex survey data. 

 

METHOD 

 

 It was of interest to examine the impact of utilizing sampling weights on testing 

multilevel mediation effects in large-scale, complex survey data in MSEM framework. 

In this study, a simple two-level mediation model was chosen with a Level-2 predicator 

influencing a Level-1 mediator which in turn affected a Level-1 outcome. For example, a 

study by Schulting et al. (2005) using the ECLS-K data examined the effect of school-

based kindergarten transition policies and practices (a Level-2 predicator) on child 
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academic outcomes (a Level-1 outcome), as mediated by parent-initiated involvement in 

school (a Level-1 mediator). 

 The equations for the superpopulation model used for data generation were 

shown as follows: 

                                         Level 1: Yij = β0j + β1jMij+ eij,                                       (24) 

                                         Level 2: β0j = γ00 + γ01Xj + U0j,                                      (25) 

                                                        β1j= γ10,                                                             (26) 

where subscripts i and j referred to individuals and Level-2 units (e.g., clusters), 

respectively; γ00 was the ground mean (mean across all clusters); γ10 was  the fix effect 

for the mediator variable Mij; eij, and U0j were the Level-1 and Level-2 residuals (i.e., 

random effects), respectively. As also depicted in Figure 3.1, X was a level-2 predictor 

and the mediator M and the outcome variable Y were at level-1. In the two-level 

mediation model, the effect of X on Y (a between indirect effect) was of research 

interest. It was notable that in equations 24-26 the effect of mediator on outcome can be 

a random effect (i.e., a random slope term U1j in equation 26), but was treated as fixed 

effect in this study for simplicity. The results from this model without random slopes 

were applicable to other types of mediation models (see Preacher, Zhang, & Zyphur, 

2011). 

Data Generation and Analyses 

 The sampling scheme designed in this study was a one-stage stratified sampling, 

with disproportionate sampling of observations in different strata reflecting 

oversampling. Empirical samples with oversampling are common in large-scale,  
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FIGURE 1 Two-level Mediation Model. 

 

complex survey data, for example, the oversampled black and Hispanic persons in the 

1995-2004 National Health Interview Survey (National Center for Health Statistics, 

2000), the oversampled full-time females, Black non-Hispanics and Hispanics, 

Asian/Pacific Islanders in the National Study of Postsecondary Faculty (Selfa et al., 

1997), and the oversampled of Blacks, Hispanics, military, disadvantaged Whites in the 

National Longitudinal Survey of Youth, 1979 Cohort (Bureau of Labor Statistics, 2012), 

to name a few. 

To compute sampling weights, samples were manipulated to draw from several 

strata (not all) of different sizes according to: 1) the population included several strata. 

When the same number of observations drawn from strata of different sizes, unequal 

probabilities of selection incurred, 2) the design assumed that the population size and 
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strata sizes were known. Therefore, sampling weights can be calculated based on units’ 

inclusion probabilities.  

Three experimental factors that impacted on testing mediation effects in complex 

survey data were considered. Specifically, the impact of cluster sample sizes, the size of 

the intraclass correlation coefficient (ICC), and the effect size of the indirect effect were 

examined. In all, the simulation used a 2 (two levels of mediation effect) × 2 (two levels 

of ICCs) × 3 (three levels of cluster sizes) factorial design with a total of 12,000 

replications. The design factors were chosen based on studies on multilevel modeling, 

the application of sampling weights, and mediation effects (e.g., Hox & Maas, 2001; 

Kaplan & Ferguson, 1999; Kenny, Korchmaros, & Bolger, 2003; Krull & MacKinnon, 

2001; Stapleton, 2002). The details of these experimental conditions were as follows: 

Cluster Size: 10, 20, and 50, 

Effect Size of Mediation: low mediation (.09) and high mediation (.36), 

Level of ICC: ICC low or high (i.e., .1 or .5).  

The superpopulation constituted 100,000 observations and was expected to be a 

combination/mixture of two substrata of different sizes. For example, one stratum had 

30,000 observations while the other stratum included 70,000 cases.  

First, strata data were generated separately and every stratum constituted several 

clusters. The large stratum was expected to have more clusters/groups than the small 

stratum. Clustered data were structured in a two-level hierarchical manner (e.g., two-

level data with individuals nested within clusters). The cluster size was set to be a 

constant (i.e., 1000 observations per cluster). Note that the cluster size was pretty large 



 

31 

 

in this study because the next step was a disproportional sampling from the clusters. The 

substrata models were assumed to hold in each stratum as given in equations 23–25. The 

parameters in the substrata model were set as follows: 1) Path a (from X to M) was set 

equal to path b (from M to Y). They equaled to .6 and .3 for high and low mediation, 

respectively, 2) The population variance of X was fixed at 1; variances of M and Y were 

manipulated to obtain different ICC, that is, ICCM = ICCY = .1 or .5, 3) Intercepts were 

set to 0, and 4) The indirect effect from X to Y is a*b (i.e., a*b = 0.3 × 0.3 = 0.09 and 

a*b = 0.6 × 0.6 =0.36 for low and high mediation, respectively). The substrata data were 

generated using Mplus (Muthén & Muthén, 1998-2012) and then combined to form the 

superpopulation.  

Second, cluster samples were drawn from each of the two strata within their 

respective clusters. Note that a SRS of individual units in multilevel data destroyed the 

hierarchically structured data for multilevel modeling (Roberts & Fan, 2004; Wang, Xie, 

& Fisher, 2011), so it was manipulated that the disproportionate sampling of 

observations from different strata were drawn within the clusters. The number of 

observations from the small stratum was oversampled compared to the large stratum. 

The sampling procedures and sampling weights computations were conducted in SAS 

(SAS 9.3). Normalized sampling weights were calculated and attached to each 

observation in all data sets. Take an example, if 600 observations were drawn from 

stratum 1 which had 30,000 cases the normalized weight was.65. If 700 observations 

were drawn from stratum 2 which included 70,000 cases the normalized weight was 1.3. 
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Without applying sampling weights in estimation, stratum 1 was certainly 

overrepresented in the sample. 

Last, each simulated data set was then forwarded to Mplus to be analyzed using 

different methods, including: (a) unweighted design-based, (b) design-based weighted, 

(c) unweighted model-based, and (d) model-based weighted. Given that sampling 

weights can be incorporated in the estimation, the effects of sampling weights on testing 

mediation effects were evaluated from comparing weighted with unweighted analyses. 

Three outcomes including parameter estimates, sampling variability, and goodness-of-fit 

statistics were summarized to explore the impact of sampling weights in testing 

multilevel mediation effects. 

Note that the superpopulation was a mixture of two substrata, and the parameter 

values used to generate the substrata data were changed when the two strata merged 

together. Therefore, in the result section I won’t compare the results obtained from the 

simulation to the initial parameter values used for data generation. Rather, the results 

were compared to unbiased estimates of the superpopulation parameters which was a 

combination of the two strata. 

The results were summarized in terms of three criteria: 1) the accuracy for which 

the indirect effect was estimated, specifically, percent underestimation or overestimation 

was calculated representing the relative bias in parameter estimates (i.e., 100×(estimate 

average - population value)/population value), 2) the efficiency about the estimated 

indirect effect around the population indirect effect, particularly, the root mean squared 

error (RMSE) of the estimated indirect effect was computed, expressed as a function of 
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empirical standard deviation (ESD) and bias (i.e., RMSE = √𝐸𝑆𝐷2 + 𝐵𝐼𝐴𝑆2, Preacher, 

Zhang, & Zyphur, 2011), and 3) the adequacy (model adequacy) with respect to the 

effects of sampling weights on model fit indices including AIC, BIC, SABIC, CFI, 

RMSEA, and SRMR.  

 

RESULTS 

Accuracy: The Indirect Effect Parameter Estimates 

 Results of relative percentage bias were reported in Table 3.1. It can be seen that 

the model-based approaches greatly outperformed the design-based approaches, 

indicated by the fact that in all conditions (i.e., high mediation high ICC, high mediation 

low ICC, low mediation high ICC, and low mediation low ICC), the model-based 

approaches resulted in substantially smaller bias than that for the design-based 

approaches. This trend remained with the change of cluster sizes. The second finding 

was that ignoring sampling weights led to larger bias, as can be seen by comparing the 

weighted and unweighted results (design-based unweighted versus design-based 

weighted and model-based unweighted versus model-based weighted). With increasing 

cluster sizes, the pattern was consistent except for the conditions of cluster size at 20. 

When the indirect effect was small and ICC was high, the unweighted design-based 

approaches had the most and unacceptable bias. The model-based weighted approaches 

had smaller biases. To sum up, the model-based approach resulted in less bias with 

respect to the design-based approach. In addition, the application of sampling weights 

improved the indirect effect estimates. 
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TABLE 3.1 Percentage Relative Bias of the Indirect Effect Using Different Methods 

n DB DB+W MB MB+W 

High Mediation High ICC 

10 6.08 2.66 .31 .21 

20 6.08 3.62 .03 .39 

50 6.03 3.42 -.05 .00 

High Mediation Low ICC 

10 1.21 .98 .17 .03 

20 1.34 1.50 .22 .36 

50 1.11 1.11 -.06 -.03 

Low Mediation High ICC 

10 11.80 4.75 .57 .47 

20 11.80 5.08 .57 .75 

50 11.80 4.92 .19 .19 

Low Mediation Low ICC 

10 3.07 2.53 .33 .22 

20 3.20 3.20 .33 .56 

50 2.93 2.80 .00 .11 

 

Note.    n: cluster size.  

            DB: design-based unweighted.  

        DB+W: design-based weighted. 

        MB: model-based unweighted.  

        MB+W: model-based weighted. 

        ICC = Intra-class correlation. 
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Efficiency: Empirical Standard Deviation and RMSE of the Estimated Indirect Effect 

 According to a criterion reported in Preacher, Zhang, and Zyphur (2011), larger 

values of empirical standard deviation (ESD) indicated lower efficiency. As shown in 

Table 3.2, the model-based approaches exhibited higher efficiency than the design-based 

approaches with smaller ESDs, only except in high mediation low ICC and low 

mediation low ICC conditions. The results suggested that the model-based approaches 

produced smaller standard errors than the design-based approaches. Small changes were 

observed in ESDs when cluster sizes increased. The second finding was that the 

weighted conditions showed advantages over the unweighted analysis for the design-

based approaches. In contrast, the application of sampling weights in the model-based 

approaches was less efficient. In other words, no much difference was observed between 

unweighted and weighted model-based analyses. 

 Based on the RMSE results (see Table 3.3), the model-based approaches 

noticeably showed to be more efficient than the design-based approaches under all 

conditions with the smallest RMSE values. When cluster sizes increased, RMSEs 

decreased to some extent. The incorporation of sampling weights resulted in smaller 

RMSE values. In low mediation high ICC condition, unweighted design-based 

approaches tended to be the least efficient with the largest RMSE values. Decreased 

efficiency was noted for low mediation low ICC conditions at larger cluster sizes (e.g., 

over 20) in the model-based weighted analysis. In summary, in terms of efficiency the 

model-based approaches showed to be promising with smaller standard errors and 

RMSEA. 
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Adequacy 

 To simplify presentation, only results of high mediation low ICC condition and 

low mediation low ICC condition were presented (see Table 3.4 and Table 3.5) in terms 

of model adequacy (i.e., information criteria and goodness-of-fit indices). Though results 

of high ICC conditions were not summarized here, similar findings were obtained while 

comparing the design-based approach with the model-based approach, and comparing 

the weighted with the unweighted analysis. 

Given smaller information criteria (e.g., AIC, BIC, and SABIC) indicated better 

model fits, the model-based approaches appeared superior to the design-based 

approaches in high mediation low ICC condition (see Table 3.4). In addition, according 

to goodness-of-fit indices (e.g., RMSEA, CFI, TLI, and SRMR) the model-based 

approaches resulted in better mode fit. Furthermore, the application of sampling weights 

improved the model fits regardless of in the design-based approaches or the model-based 

approaches. Meanwhile, as the cluster sample sizes increased, some fit indices (e.g., 

AIC, BIC, SABIC, and chi-squares) increased.  

Similar trends were identified in low mediation low ICC condition (see Table 

3.5). According to fit indices including AIC, BIC, and SABIC, the model-based 

approaches were still better than the design-based approaches and the application of 

sampling weights resulted in better fits in both approaches. When cluster sizes increased, 

AIC, BIC, and SABIC turned larger while small changes in RMSEA, CFI, TLI, and 

SRMR were observed.  
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Summary of Results 

 The study had two objectives including the comparison between the design- and 

model-based approaches and the evaluation of the application of sampling weights in a 

noninformative design. The main findings from this simulation study were as follows in 

terms of accuracy, efficiency, and model adequacy: (a) The unweighted design-based 

approaches was the most biased method, resulting in relatively larger bias of the indirect 

effect estimates, less efficiency, and worse fit compared to the other three alternatives in 

any condition (i.e., weighted design-based, model-based, and weighted model-based). 

The application of sampling weights was one way that reduced estimation bias in the 

design-based approach; (b) The model-based approaches were preferred in testing 

multilevel mediation effects in large-scale, complex survey data relative to the design-

based approaches, because, as expected, the model-based approaches resulted in less 

bias, higher efficiency, and better model fit; (c) Differences between weighted and 

unweighted analyses revealed that the application of sampling weights brought 

advantages, even though it was less explicit in the model-based approach when cluster 

sizes were large, and particularly when ICC was small. Based on the above findings, 

recommendations and suggestions for practice were thereby given in the discussion 

section.  
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TABLE 3.2 Empirical Standard Deviation of the Estimate of the Indirect Effect Using 

Different Methods 

 

n DB DB+W MB MB+W 

High Mediation High ICC 

10 .053 .048 .030 .031 

20 .051 .046 .026 .025 

50 .050 .045 .020 .020 

High Mediation Low ICC 

10 .023 .024 .024 .025 

20 .017 .017 .018 .018 

50 .012 .012 .012 .012 

Low Mediation High ICC 

10 .025 .023 .016 .017 

20 .024 .022 .014 .014 

50 .024 .022 .013 .013 

Low Mediation Low ICC 

10 .008 .008 .008 .008 

20 .006 .006 .006 .006 

50 .005 .005 .004 .004 

 Note.   n: cluster size. 

            DB: design-based unweighted.  

        DB+W: design-based weighted. 

        MB: model-based unweighted.  

        MB+W: model-based weighted. 

        ICC = Intra-class correlation. 
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TABLE 3.3 Root Mean Square Error of the Estimate of the Indirect Effect Using 

Different Methods 

 

n DB DB+W MB MB+W 

High Mediation High ICC  

10 6.080 2.660 .311 .212 

20 6.080 3.620 .040 .391 

50 6.030 3.420 .054 .020 

High Mediation Low ICC  

10 1.210 .980 .172 .039 

20 1.340 1.500 .221 .360 

50 1.110 1.110 .061 .032 

Low Mediation High ICC  

10 11.800 4.750 .570 .470 

20 11.800 5.080 .570 .750 

50 11.800 4.920 .190 .190 

Low Mediation Low ICC  

10 3.070 2.530 .330 .220 

20 3.200 3.200 .330 .560 

50 2.930 2.800 .004 .110 

 Note.   n: cluster size.  

            DB: design-based unweighted.  

        DB+W: design-based weighted. 

        MB: model-based unweighted.  

        MB+W: model-based weighted. 

            ICC = Intra-class correlation. 
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TABLE 3.4. Maximum Likelihood Goodness-of-Fit Statistics for High Mediation Low ICC 

Fit Statistics 
Cluster Sizes  Cluster Sizes 

10 20 50  10 20 50 

  

 Design-based  Weighted design-based 

AIC 9062.31 18114.95 45278.24  9060.41 18113.81 45277.00 

BIC 9093.33 18150.13 45318.92  9091.43 18148.99 45317.68 

SABIC 9074.27 18131.06 45299.85  9072.37 18129.92 45298.61 

CHISQ 89.04 109.30 125.92  101.72 138.35 167.11 

RMSEA .255 .201 .138  .273 .225 .159 

CFI .827 .828 .831  .815 .810 .808 

TLI .482 .484 .492  .445 .423 .423 

SRMR .080 .080 .080  .081 .081 .081 

  

 Model-based  Weighted model-based 

AIC 8694.14 17273.73 42923.12  8688.08 17269.85 42918.40 

BIC 8735.50 17320.63 42977.36  8729.44 17316.76 42972.64 

SABIC 8710.09 17295.21 42951.94  8704.03 17291.34 42947.22 

CHISQ 3.65 3.26 3.54  3.08 2.44 2.61 

RMSEA .015 .009 .006  .013 .008 .004 

CFI .999 .999 1.000  .999 1.000 1.000 

TLI .998 .999 1.000  .999 1.000 1.000 

SRMR (within) .001 .000 .000  .001 .000 .000 

SRMR (between) .047 .031 .019  .050 .033 .020 

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; SABIC = sample-size adjusted BIC.  

CHISQ = chi-square; RMSEA = root mean squared error of approximation; CFI = comparative fit index; TLI = the Tucker-

Lewis index; SRMR = standardized root mean square residual. 
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TABLE 3.5 Maximum Likelihood Goodness-of-Fit Statistics for Low Mediation Low ICC 

Fit Statistics 
Cluster Sizes  Cluster Sizes 

10 20 50  10 20 50 

  

 Design-based  Weighted design-based 

AIC 5602.83 11197.09 27984.38  5600.70 11195.60 27982.17 

BIC 5633.86 11232.27 28025.06  5631.72 11230.78 28022.85 

SABIC 5614.80 11213.21 28005.99  5612.66 11211.72 28003.78 

CHISQ 14.42 16.89 18.99  16.60 20.54 24.01 

RMSEA .099 .077 .052  .107 .085 .059 

CFI .966 .978 .987  .958 .973 .985 

TLI .898 .933 .961  .875 .919 .956 

SRMR .045 .045 .045  .046 .045 .046 

  

 Model-based  Weighted model-based 

AIC 5480.44 10886.34 27030.23  5474.43 10882.46 27025.48 

BIC 5521.80 10933.24 27084.47  5515.79 10929.36 27079.72 

SABIC 5496.39 10907.82 27059.05  5490.37 10903.95 27054.30 

CHISQ 4.23 3.16 6.58  4.033 2.53 2.40 

RMSEA .017 .010 .006  .013 .008 .004 

CFI .995 .998 .998  .995 .998 .999 

TLI .992 .998 .995  .993 .999 1.000 

SRMR (within) .001 .000 .000  .002 .001 .000 

SRMR (between) .046 .031 .019  .047 .032 .020 

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; SABIC = sample-size adjusted BIC.  

CHISQ = chi-square; RMSEA = root mean squared error of approximation; CFI = comparative fit index; TLI = the Tucker-

Lewis index; SRMR = standardized root mean square residual.
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DISCUSSION 

Sampling weights have increasingly been applied when analyzing large-scale, 

complex data. However, there were still doubts in its use among applied researchers due 

to several reasons. First, multiple sampling weights were available in large-scale, 

complex survey data and choosing the appropriate sampling weights was complicated 

(e.g., weights at different levels in the data). Second, there were also several weighting 

methods (e.g., raw sampling weights, normalized sampling weights, and effective 

sampling weights). Several simulation studies addressed the scaling issue (c.f., 

Stapleton, 2002, 2006 for discussion on raw weights, relative weights, and effective 

weights). However, it was unclear which weighting method was appropriate given 

certain circumstances. Third, after researchers decided to use specific sampling weights, 

choosing the most appropriate analytical approach posed difficulties because different 

approaches may cause divergent results (e.g., the design-based versus model-based 

approaches).  

Findings from this study suggested that the model-based approaches were 

preferred to the design-based approaches and the application of sampling weight 

application was also recommended for testing mediation effects in large-scale, complex 

survey data. If researchers chose the design-based approaches, the application of 

sampling weights was necessary. The findings were consistent to previous simulation 

studies (see, e.g., Asparouhov, 2004; Pfeffermann, 1996). For larger cluster sizes (e.g., 

over 20), particularly when ICC was small (e.g., 0.1), the advantages of applying 

sampling weights were less obvious in the model-based approaches. These findings 
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provided useful suggestions to applied researchers who targeted large-scale, complex 

survey data analysis.  

As with most simulation studies, results were limited to the study design which 

needed further investigations. First, this study employed only a simple proportional 

sampling design and sampling weights reflected the probabilities of selection in different 

strata. In practice, unequal probabilities of selection can be very complicated (e.g., 

multistage sampling). In addition, sampling weights in large-scale, complex survey data 

can be used for multiple adjustments, for example, nonresponse and post-stratification 

adjustments. Therefore, further research was needed addressing the complexity of 

sampling schemes and various adjustments.  

A second limitation was that the superpopulation model used in this study was a 

lower level multilevel mediation model to study the impact of sampling weights in 

testing multilevel mediation effects. In practice, researchers may specify different types 

of multilevel mediation models. Therefore, caution should be taken generalizing 

potential effects of sampling weights on testing multilevel mediation effects. 

Nevertheless with these limitations, this study highlighted two important 

searches: 1) modeling large-scale, complex survey data under MSEM framework, 2) 

how sampling weights affected testing multilevel mediation effects in a noninformative 

sampling design. In literature, studied more addressed informative sampling designs. For 

example, Pfeffermann et al. (1998) focused on multilevel models in informative designs 

and Asparouhov (2005) also considered latent variable modeling in informative 

sampling designs. In conclusion, this study suggested to use a model-based approach 
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when testing multilevel mediation effects in large-scale, complex survey data, and the 

application of sampling weights was also encouraged.  
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CHAPTER IV 

STUDY 2: EVALUATION OF THE LEVEL-SPECIFIC GOODNESS-OF-FIT 

INDICES IN TESTING FACTORIAL INVARIANCE IN MULTILEVEL DATA 

 

MEASUREMENT INVARIANCE 

This literature review of testing factorial invariance in MSEM included: 1) the 

importance of testing measurement invariance, 2) statistical methods of testing 

measurement invariance (e.g., multiple-group CFA, MIMIC, or Bayesian SEM), 3) 

model fit evaluation in SEM, and 4) testing factorial invariance in multiple group 

multilevel factor analysis.  

Why Does Measurement Invariance Matter 

Measurement invariance (MI), as known as measurement equivalence, is 

theoretically defined that the conditional probability to attain an observed score is 

identical for individuals with given ability regardless of group membership 

(Mellenbergh, 1989; Millsap, 2011; Yoon & Millsap, 2007). In other words, when MI 

assumed, a measure assesses the same attribute in the same way across groups. 

Vandenberg & Lance (2000) described the context that “the term groups refers either to 

independent groups or to the same group measured longitudinally on multiple occasions” 

(p. 10). In Millsap (2011), it was emphasized that MI implied the important 

psychometric property of a measure (i.e., unbiased measurement).  

Measurement invariance (MI) was usually assumed rather than tested in some 

empirical studies. Researchers tended to simply assume MI before making group 



 

46 

 

comparisons. For example, a simple t-test assumes MI. In advanced analytic techniques, 

e.g., latent growth curve modeling, MI is also assumed. Nevertheless, measurement 

invariance can be violated due to many reasons and different settings. Specific examples 

include cross-cultural studies, in which group comparisons are made across countries or 

ethnic groups (e.g., Chen, 2008; Dolan et al., 2004; van de Vijver, 2009), longitudinal 

studies, in which multiple groups are compared across time points for possible changes 

(e.g., Pentz & Chou, 1994), focal studies on language acquisition, in which bilingual or 

multilingual students are compared to monolingual ones using the same measure (e.g., 

De Houwer et al., 2014). In all these cases, testing measurement invariance should be 

emphasized before comparing across groups. 

A significant amount of literature has demonstrated the importance of testing 

measurement invariance (e.g., Borsboom, 2006; Byrne & Watkins, 2003; Chen, 2007; 

Chen, Sousa, & West, 2005; Cheung & Rensvold, 2002; Horn & McArdle, 1992; 

Meredith, 1993; Millsap, 2011; Reise, Widaman, & Pugh, 1993; Schumitt & Kuljanin, 

2008; Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000; Widaman & 

Reise, 1997). Some studies evaluated the impact of noninvariance (e.g., lack of 

invariance and partial invariance). Specific examples included, just to name a few: 

Millsap and Kwok (2004) provided evidence of the impact of partial invariance on 

selection accuracy via a Monte Carol study; Chen (2008) examined the impact of lacking 

factor loading and intercept invariance on slope and factor mean comparisons in three 

simulations; Through an empirical example, Schimitt et al. (2011) investigated the 

impact of measurement noninvariance on construct correlations, mean differences, and 
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relations. Testing measurement invariance has been highlighted in methodological 

research. Nevertheless, testing measurement invariance should be further advocated to 

applied researchers.  

When testing measurement invariance (MI), a stepwise approach of examining 

four levels of MI, proposed by Widaman and Reise (1997) who synthesized prior 

research (e.g., Horn, McArdle, & Mason, 1983; Jöreskog, 1971; Jöreskog & Sörbom, 

1999; Meredith, 1964a, 1964b, 1993), has been well established in social science 

research. Widaman and Reise discussed four levels of measurement invariance, 

including: configural invariance, weak invariance, strong invariance, and strict 

invariance. Strictly, only when invariance at all levels is validated, measurement 

invariance is said to be fully fulfilled. However, though it is desirable, full invariance is 

not easy to be established in practice. Partial invariance is then proposed with mixed 

invariant and noninvariant parameters (some model parameters are invariant, but not all, 

see Byrne, Shavelson, & Muthén, 1989). Nevertheless, though partial invariance draws 

increasing attention (see Schumitt & Kuljanin’s (2008) review), the controversies and 

debates are still going on. One reason is that no established protocols in psychometrics 

on how to manage partial invariance have been proposed. In this dissertation, the 

approach of partial invariance was not discussed. 

Approaches of Testing Measurement Invariance 

Structural equation modeling (SEM), widely applied in the social science 

research, is frequently used for measurement invariance testing. Under a SEM 

framework, the multi-group confirmatory factor analysis (multi-group CFA) and 
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multiple-indicators multiple-causes (MIMIC, Jӧreskog & Goldberger, 1975) modeling 

are two popular alternatives. Arguably, CFA method is the most popular method in SEM 

literature. Virtually all studies reviewed by Vandenberg and Lance (2000) focused on 

CFA method. In another review by Schimitt and Kuljanin (2008), 85.23% of empirical 

studies (75 out of 88 reviewed articles) reported using CFA to examine measurement 

invariance. A literature search in PsycINFO (EBSCO) database involving quantitative 

and empirical studies published since 2000 was conducted. At least 1,000 peer reviewed 

articles reported using the CFA method, whereas 45 studies applied the MIMIC method, 

which evidenced the generality of the CFA method in substantive area. One reason of its 

popularity is that multi-group analysis is straightforward (i.e., separate models are 

specified for each group simultaneously).  

Though sometimes CFA and MIMIC methods are used alternatively they have 

some differences. Kim, Yoon and Lee (2012) pointed out that MIMIC assumes equal 

factor loadings and intercepts, so it was vulnerable to test weak invariance. In different 

factor models, CFA and MIMIC perform unequally in terms of power and accuracy. For 

example, in the first-order factor models, Hancock, Lawrence, and Nevitt (2000) 

reported very little difference between the two approaches under a balanced design. 

Multi-group CFA was yet concluded to be more preferable as sample sizes between 

groups became more disparate. In second-order factor models CFA models were 

recommended with less Type I error in a balance design (Zou, 2009). MIMIC method 

also has advantages. When the grouping variable is continuous, the MIMIC method is 

more efficient without having to creating many subgroups. When the research interests 
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are to test all levels of measurement invariance, multiple-group CFA is recommended 

with a step-by-step procedure.    

An alternative approach, Bayesian structural equation modeling (Bayesian SEM) 

to test measurement invariance draws attention with advancements in Bayesian analysis, 

e.g., the increasing computational availability of Markov chain Monte Carlo (MCMC) 

techniques. With unique strengths and accessible complex computation, Bayesian SEM 

has been applied in psychology and management research to test measurement 

invariance (e.g., Fong & Ho, 2013; Golay et al., 2012; Schoot, et al., 2013; Zyphur & 

Oswald, 2013). 

In nature, Bayesian SEM is still a confirmatory factor analysis in the SEM 

framework, whereas the implement of Bayesian estimation provides advantages over 

standard fitting of SEMs. Most popular software packages, e.g., LISREL (Jöreskog & 

Sörbom, 1999), EQS (Benlter, 2004), AMOS (Arbuckle, 2006), and Mplus (Muthén & 

Muthén, 1998-2012) provide estimation methods such as maximum likelihood (ML) and 

generalized least squares (GLS). The use of ML estimation in multi-group CFA or 

MIMIC modeling represents the approach of frequentist practice. As it is known, ML 

estimation is the most popular method in the current SEM literature. However, with 

advancements in computing power, the growth of Bayesian analysis has been a 

phenomena. Muthén and Asparouhov (2012) illustrated the flexibility of Bayesian 

approach Bayesian SEM compared to ML-based CFA or MIMIC modeling. Next a brief 

introduction of Bayesian SEM for testing measurement invariance was presented. 

 Using multiple group CFA to test measurement invariance, equal parameter 
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constraints are imposed (e.g., zero loadings for non-invariant items in single-group CFA 

and equal parameter constraints across groups either in factor loading, intercept, or in 

residual variance). Muthén and Asparouhov (2012) introduced the concept of 

“approximate measurement invariance”. In single-group CFA the non-invariant items 

are specified as zero mean with small variance. In multi-group CFA, equal parameter 

constraints across groups are also relaxed in the Bayesian approach (i.e., zero mean 

difference but with small variance). As pointed out by some studies (e.g., Cole, et al., 

2007; Kolenikov, 2011), too many parameter restrictions could easily lead to poor model 

fit and substantial bias in parameter estimates. Therefore, with relatively relaxed model 

constraints (e.g., approximate measurement invariance) the Bayesian approach shows to 

be less restrictive than the conventional CFA (e.g., equal constraints).  

 The disadvantages of the approximate measurement invariance are also brought 

into arguments. Jak (2014) illustrated some limitations of Bayesian SEM in a recent 

application. One issue was with respect to the specification of prior distribution because 

different priors resulted in divergent results. Muthén and Asparouhov (2012) 

recommended approximate invariance with zero-mean, small-variance priors, but the 

small-variance specification yet needs further evidence under various conditions (e.g., 

prior variance ranges from 0.01 to 0.1 in their study). In addition, the heavy 

computational loads of MCMC methods are also problematic. Jak (2014) reported 

nonconvergence problems when the number of groups was large (e.g., 156 groups). In 

conclusion, the BSEM approach is a new tool and useful, but further research is needed. 
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MODEL FIT EVALUATION IN SEM 

 When assessing overall fit of a SEM model, it is common that researchers use the 

likelihood ratio test (LR test) and alternative goodness-of-fit indices (GFIs). As it is 

known, the chi-square difference statistics is sensitive to sample size. Therefore, a 

variety of goodness-of-fit indices has been applied as model fit measures. Among them, 

CFI, RMSEA, SRMR, and TLI are the most commonly used indices reported by 

researchers in social science. Guidelines of cut-off criteria for those fit measures were 

proposed in Hu and Bentler (1999), which have been widely used in SEM literature.  

 When testing measurement invariance, some researchers applied the LR test in 

which the difference between the model chi-square statistics (Δ𝑋2) was computed. Other 

researchers estimated a series of nested models (i.e., the constrained models and the 

unconstrained models) and compared the GFIs of those models. For a constrained 

model, the between-group constraints were held equal across groups while an 

unconstrained model had all constraints freely estimated (no between-group constraints). 

In addition to Δ𝑋2, difference in goodness-of-fit difference statistics (ΔGFI) has also 

been used for testing measurement invariance. Some studies investigated the 

performance of various ΔGFI for testing measurement invariance (e.g., Chen, 2007; 

Cheung & Rensvold, 2002; Meade, Johnson, & Braddy, 2008). Those authors also 

presented cut-off points (critical values) for rejection of the null hypothesis of 

measurement invariance, which were summarized in Table 4.1. Some inconsistency 

among the recommendations of cutoff points (ΔGFI) was observed in these studies. For 

example, Cheung and Rensvold (2002) listed the first (or 99th) percentile values as the 
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critical values for ∆CFI, ∆Gamma-hat, and ∆McDonald’s Noncentrality Index, that 

is, .01, .001, and .02, respectively. Slightly differently, Chen (2007) proposed criteria 

including: ∆CFI of -.005, ∆RMSEA of .01, and ∆Gamma-hat of -.005, whereas Meade et 

al. (2008) proposed a general cutoff value of .002 for the ∆CFI and .008 for 

∆McDonald’s Noncentrality Index. Taken together, the discrepancy in the cutoff criteria 

in previous simulation yet needs further research.  

Over the last decade, the use of multilevel SEM has been rising across many 

disciplines. It is a question that whether the guidelines of single-level SEM model fit 

indices are still applicable to multilevel SEM models. Yuan and Bentler (2003, 2007) 

explored level-specific model fit evaluation (segregating approach) in multilevel SEM in 

which fit indices were obtained for each level (i.e., individual level and group level, 

respectively). Similarly, Ryu (2014a) and Ryu and West (2009) proposed the approach 

of level-specific model fit evaluation (partially-saturated approach). A consistent finding 

in those studies was that the standard model fit indices were measures of model fit for 

the overall model but may not be good for models at specific levels. Moreover, the 

standard model fit indices performed poorly to detect model misspecification at the 

higher model level.    

 In Hox’s (2010) multilevel analysis book, he proposed model fit evaluation for 

multilevel factor models. He introduced the notion of saturate models that “the saturated 

model estimates all covariance between all variables. It has no degrees of freedom, and 

always fits the data perfectly (p. 307)”. Based on this notion, model fit for the within-

level models can be obtained by specifying a saturated model for the between matrix. 
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TABLE 4.1 A Summary of Cut-off Values for Rejection of Measurement Invariance in Previous Studies 

Type Cheung & Rensvold 

(2002) 
α = .05, Chen (2007) α = .01, Chen (2007) 

Meade, Johnson, and 

Braddy (2008) 

ΔCFI change of ≤ -.01 change of ≤ -.005 change of ≤ -.005 change of ≤ -.002 

ΔRMSEA n.a. change of ≤ .010 change of ≤ .010 n.a. 

ΔGamma- hat change of ≤ -.001 change of ≤ -.005 change of ≤ -.005 change of ≤ -.005 

ΔMc NCI change of ≤ -.02 change of ≤ -.010 change of ≤ -.010 change of ≤ -.008 

Note. CFI = comparative fit index; RMSEA = root-mean-square error of approximation; Mc NCI = McDonald’s 

noncentrality index. 
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Similarly, with a saturated model specified for the within matrix, the fit represents the 

model fit at the between level. Following Hox’s idea, Ryu and West (2009) developed 

the level-specific model fit indices for the between- and within-level models, 

respectively, for multilevel SEMs. The proposed goodness-of-fit indices included level-

specific chi-square test statistics, level-specific CFIs, and level-specific RMSEAs (i.e., 

XB
2 , XW

2 , CFIB, CFIW, RMSEAB, and RMSEAW). Subscripts B and W denoted between-

level and within-level model, respectively. Notations from Ryu & West (2009) were 

used thereafter in this study. In the two-level analysis, Mplus (Muthén & Muthén, 1998-

2012) also provides SRMR at the between and within level separately (i.e., SRMR-

between and SRMR-within), but not for other indices (e.g., CFI, RMSEA, and TLI).  

According to Ryu and West’s (2009) simulation study, the level-specific model 

fit evaluation can be used to examine specific models at different levels separately. It 

performed equally well for detecting model misspecification at lower and higher level. 

In the next section, the level-specific model evaluation in MSEM was introduced. 

Level-Specific Model Evaluation in MSEM 

 As it is known, Mplus (Muthén & Muthén, 1998-2012) provides SRMR for the 

within-level model and for between-level model separately in Mplus output. 

Nevertheless, other common indices, such as CFI, TLI, and RMSEA, only have one 

general value for the entire model. In this dissertation, following Ryu and West’s (2009) 

study I explored the level-specific model fit indices in MSEM to test factorial 

invariance. As discussed previously, within-level model fit can be obtained by 

specifying a saturated between-level model. Similarly, between-level model fit can be 
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obtained by specifying a saturated within-level model. In Mplus, a saturated model can 

be specified by correlating all observed dependent variables with each other. In the 

following sections, level-specific fit indices were discussed. All the equations and 

notations in this section were taken from Ryu and West’s (2009) study if not specified. 

 Level-Specific Chi-Square Statistics. Level-specific chi-square statistics were 

first introduced because some other indices (e.g., CFI and RMSEA) were computed 

based on chi-square statistics. Given a saturated within-level model, the between-level 

chi-square test statistics are computed from 

𝑋𝐵
2 = 𝐹𝑀𝐿[∑ (𝜃), ∑ (𝜃𝑆)𝑊𝐵 ] − 𝐹𝑀𝐿[∑ (𝜃𝑆)𝐵 , ∑ (𝜃𝑆)𝑊 ],                (1) 

where Σ𝐵 is the between covariance structure. S denotes a saturated model. 𝜃 is a vector 

of model parameters. The lack of invariance at the between level is thus reflected by the 

discrepancy between ∑ (𝜃)𝐵 and ∑ (𝜃𝑆)𝐵 . The 𝑑𝑓𝐵 is the difference between the number 

of parameters in the saturated between-level model and the hypothesized between-level 

model. Similarly, the within-level chi-square test statistics are computed from 

𝑋𝑊
2 = 𝐹𝑀𝐿[∑ (𝜃)𝑊 , ∑ (𝜃𝑆)𝐵 ] − 𝐹𝑀𝐿[∑ (𝜃𝑆), ∑ (𝜃𝑆)𝐵𝑊 ].                 (2) 

The 𝑑𝑓𝑊 is the difference between the number of parameters in the saturated within-

level model and the hypothesized within-level model. The lack of invariance at the 

within level is indicated in the difference between ∑ (𝜃)𝑊  and ∑ (𝜃𝑆)𝑊 .                                                                           

 Level-Specific Goodness of Fit Indices. In the following section, level-specific 

goodness-of-fit indices for four indices were discussed, including: CFI, RMSEA, 

SRMR, and TLI. 
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1. CFI 

The comparative fit index (CFI) (Bentler, 1990) reflects the goodness of fit of the 

hypothesized model compared to an independence model. In the independence model, 

all the variances are freely estimated but all the covariances are constrained to be zero. 

In Mplus (Muthén & Muthén, 1998-2012), it is achieved by specifying all off-diagonal 

elements zero in the variance covariance matrix.  

To calculate the level-specific CFIs (i.e., CFIB and CFIW), the level-specific chi-

square statistics should be computed first. H denotes the hypothesized model and I 

represents the independence model. 𝑋𝐻,𝐵
2  can be obtained by specifying a hypothesized 

between-level model while specifying a saturated model at the within level. The 𝑑𝑓𝐻,𝐵 is 

the difference between the number of parameters in the hypothesized between-level 

model and the saturated between-level model. Similarly, 𝑋𝐼,𝐵
2  can be obtained by 

specifying an independence model at the between level and a saturated model at the 

within level. The 𝑑𝑓𝐼,𝐵 is the difference between the number of parameters in the 

independence between-level model and the saturated between-level model. Substitute 

the chi-square statistics and df into Equation (3), the 𝐶𝐹𝐼𝐵 for the between level model is 

given by 

𝐶𝐹𝐼𝐵 = (1 −
𝑀𝑎𝑥[(𝑋𝐻,𝐵

2 −𝑑𝑓𝐻,𝐵),0]

𝑀𝑎𝑥[(𝑋𝐼,𝐵
2 −𝑑𝑓𝐼,𝐵),0]

).                                        (3) 

Similarly, with a saturated model at the between level, an independence and a 

hypothesized model at the within level, respectively, the 𝐶𝐹𝐼𝑊 is given by 

𝐶𝐹𝐼𝑊 = (1 −
𝑀𝑎𝑥[(𝑋𝐻,𝑊

2 −𝑑𝑓𝐻,𝑊),0]

𝑀𝑎𝑥[(𝑋𝐼,𝑊
2 −𝑑𝑓𝐼,𝑊),0]

).                                       (4) 
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2. TLI  

Like CFI, TLI is used to compare the fit of the fitted model against an 

independence model that assumes that variables are uncorrelated. In this dissertation, I 

also included TLI (Tucker-Lewis index, Tucker & Lewis, 1973). On one hand, TLI is 

one commonly used index. It can be easily extracted from Mplus output. On the other 

hand, TLI compensates for model complexity (Brown, 2006). The complexity penalty in 

TLI is given by the chi-square to DF ratio, which is more sensitive to model parsimony 

than CFI (Kenny, 2008). 

To obtain the level-specific TLIs, the chi-squares and dfs need to be calculated 

first. They can be obtained in the same way as in calculating level-specific CFIs shown 

in Equations (3) (4). The level-specific TLIs are given by  

𝑇𝐿𝐼𝐵 =

𝑋𝐼,𝐵
2

𝑑𝑓𝐼,𝐵
−

𝑋𝐻,𝐵
2

𝑑𝑓𝐻,𝐵

𝑋𝐼,𝐵
2

𝑑𝑓𝐼,𝐵
−1

,                                                  (5) 

𝑇𝐿𝐼𝑊 =

𝑋𝐼,𝑊
2

𝑑𝑓𝐼,𝑊
−

𝑋𝐻,𝑊
2

𝑑𝑓𝐻,𝑊

𝑋𝐼,𝑊
2

𝑑𝑓𝐼,𝑊
−1

.                                                (6)                   

3. RMSEA  

The root mean square error of approximation (RMSEA) (Steiger, 1990) is a 

measure of the lack of fit of the model to the population covariance matrix. Like TLI 

index, RMSEA is sensitive to model parsimony and its penalty for model complexity is 

the chi square to df ratio. RMSEA is currently one of the most popular index (the others 

include CFI and SRMR) in SEM literature.  
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The level-specific RMSEAs (RMSEAB and RMSEAW) can be computed based on 

corresponding chi-square test statistics and dfs derived from Equations 3-4. J and N 

denote the total number of clusters and cluster size, respectively. The Equations for 

RMSEAB and RMSEAW are 

𝑅𝑀𝑆𝐸𝐴𝐵 = √𝑀𝑎𝑥[(
𝑋𝐵

2−𝑑𝑓𝐵

𝑑𝑓𝐵(𝐽)
) , 0],                             (7) 

𝑅𝑀𝑆𝐸𝐴𝑊 = √𝑀𝑎𝑥[(
𝑋𝑊

2 −𝑑𝑓𝑊

𝑑𝑓𝑊(𝑁−𝐽)
) , 0].                          (8) 

When the level specific RMSEAs are negative, zero is reported instead (Hox, 2010).  

4. SRMR 

The standardized root mean square residual (SRMR) (Bentler, 1995; Muthén, 

2004) is a standardized measure of the difference between the observed covariance 

matrix and the model-implied covariance matrix. Mplus provides SRMRB and SRMRW 

for model at specific level, respectively. SRMRB is given by                              

𝑆𝑅𝑀𝑅𝐵 = √
2∑ ∑ 𝑟𝑖𝑗𝐵

2
𝑗𝑖

𝑝(𝑝+1)
,                                        (9) 

where p is the number of observed variables, p(p+1)/2 is the number of unique elements 

in the between-level residual covariance matrix with i rows and j columns. 𝑟𝑖𝑗𝐵 is a 

residual in a between-level residual covariance matrix (Σ̂𝑟𝑖𝑗𝐵) which is defined 

Σ̂𝑟𝑖𝑗𝐵 = ∑ (𝜃)𝐵 − ∑ (θ̂𝑆)𝐵 .                                     (10) 

The between-level residual covariance matrix is the difference between the estimated 

between-level covariance matrix and the saturated between-level covariance matrix 

while the within-level model is saturated. Similarly, with the saturated model at the 
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between level, SRMRW is given by                              

𝑆𝑅𝑀𝑅𝑊 = √
2∑ ∑ 𝑟𝑖𝑗𝑊

2
𝑗𝑖

𝑝(𝑝+1)
,                                     (11) 

where 𝑟𝑖𝑗𝑊 is a residual in a within-level residual covariance matrix (Σ̂𝑟𝑖𝑗𝑊) which is 

defined 

Σ̂𝑟𝑖𝑗𝑊 = ∑ (𝜃)𝑊 − ∑ (θ̂𝑆)𝑊 .                                      (12) 

The within-level residual covariance matrix is the difference between the estimated 

within-level covariance matrix and the saturated within-level covariance matrix while 

the between-level model is saturated. 

 

TESTING FACTORIAL INVARIANCE IN MSEM 

 In the single-level multiple-group CFA approach, four levels of measurement 

invariance (i.e., configural invariance, metric/weak invariance, scalar/strong invariance, 

and strict invariance) can be examined (see Widaman & Reise, 1997). For example, 

weak invariance presumes that factor loadings are equal across g (g = 1,...,G) groups.  

Λ1 = Λ2 = ⋯ = ΛG                                            (13) 

where Λ stands for the factor loading vector. Different levels of measurement invariance 

across groups can be tested in a hierarchical order as described below (from the least to 

the most restricted). First, configural invariance describes whether the measurement 

model holds across groups. Second, on the basis of configural invariance, weak 

invariance examines whether equality in factor loadings is further established across 

groups. Third, given that weak invariance holds, equality in intercepts across groups is 
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then constrained for testing strong invariance. Fourth, with established strong invariance, 

equality in unique variances across groups is further examined at the most restricted 

level, that is, strict invariance. In the next section, testing factorial invariance was 

reviewed in multilevel SEM models. 

 Within structural equation modeling, measurement invariance is known as 

factorial invariance framed in factor analytic terms (Byrne, Shavelson, & Muthén, 1989; 

Widaman et al., 2010; Widaman & Reise, 1997). Hereafter, factorial invariance was to 

be used in this study regarding invariance test in multilevel factor models. In the context 

of multilevel SEM, factorial invariance testing should be conducted both in the between-

level model and the within-level model given that noninvariance can occur in the within 

level model and/or in the between level model. In the following sections, testing factorial 

invariance was discussed in two scenarios, that is, when the grouping variable is at the 

between level and when the grouping variable is at the within level. 

Between-level Grouping Variable  

When the grouping variable is at the between level, multiple group multilevel 

confirmatory factor analysis (multiple group multilevel CFA) can be used for testing 

factorial invariance in multilevel data. The multilevel models are formulated as follows 

(Kim, Kwok, &Yoon, 2012; Muthén, 1994) 

𝑦𝑖𝑗𝑔 = 𝜐𝐵𝑔 + Λ𝐵𝑔𝜂𝐵𝑗𝑔 + 𝜀𝐵𝑗𝑔 + Λ𝑊𝑔𝜂𝑊𝑗𝑔 + 𝜀𝑊𝑗𝑔,             (14) 

𝑉(𝑦𝑖𝑗𝑔) = Σ𝐵𝑔 + Σ𝑊𝑔,                                                           (15) 

Σ𝐵𝑔 = Λ𝐵𝑔𝜓𝐵𝑔Λ𝐵𝑔
′ + Θ𝐵𝑔, and                                            (16) 

Σ𝑊𝑔 = Λ𝑊𝑔𝜓𝑊𝑔Λ𝑊𝑔
′ + Θ𝑊𝑔.                                               (17)                             
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In Equations (14) to (17), 𝑦𝑖𝑗𝑔 is the observed score of individual i (i = 1, …, N) nested 

within cluster j (j = 1, …, J) in group g (g = 1, …, G). The model parameters include 

intercept (𝜐), factor loading (Λ), latent factor (𝜂), and the unique factor (𝜀). 

 Conceptually, factorial invariance testing in multiple group multilevel CFA is 

comparable to that in multiple group single-level CFA. In other words, the Widaman and 

Reise’s (1997) approach can be readily adapted. Specifically, the identified four levels of 

factorial invariance in a hierarchical order are: 1) configural invariance, in which the 

pattern of factor loadings in both within- and between-level models is identical across 

groups, in other words, all groups can be fitted with the same multilevel factor models 

simultaneously, 2) weak factorial invariance, in which factor loadings of both within- 

and between-level models are invariant across groups (i.e., Λ𝐵𝑔 = Λ𝐵 and Λ𝑊𝑔 = Λ𝑊), 

3) strong factorial invariance, in which intercepts of between-level models are equal 

across groups, that is, 𝜐𝐵𝑔 = 𝜐𝐵, and 4) strict factorial invariance, in which equal unique 

factor variances of within- and between-level models are committed. It is given by Θ𝐵𝑔 

=Θ𝐵, and Θ𝑊𝑔=Θ𝑊 (Kim, Kwok, &Yoon, 2012; Widaman et al., 2010). 

Within-level Grouping Variable  

 Provided that a grouping variable is a level 1 variable, an approach of multiple 

group multilevel CFA to test multilevel factorial invariance is problematic. It is because 

the standard procedures of multiple group analysis (dividing individuals into groups 

according to group membership and conducting multiple group analysis separately but 

simultaneously) is troublesome given that data dependency cannot be accounted for. For 

example, individuals in the same clusters are divided into different groups according to 
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their group membership. In this process, the nested data structures are broken. It is 

difficult to maintain the features of multiple group analysis and multilevel analysis when 

the grouping variable is at the within level.  

 Ryu (2014b) proposed a two-step strategy (multilevel modeling and then 

multiple group multilevel analysis) to test multilevel factorial invariance. First, 

decompose the level-1 variables into within-cluster and between-level components, 

which is given by 𝑦𝑖𝑗 = 𝑦𝐵𝑗 + 𝑦𝑊𝑗. Ryu (2014b) pointed out that the decomposition 

within clusters should be preceded before assigning individuals to groups. In this way, 

the observation dependency is taken care of before using the multilevel modeling 

techniques. Second, testing multilevel factorial invariance between groups uses multiple 

group multilevel analysis techniques. Note that the data dependency has been adjusted 

through a two-step strategy before imposing constrains for testing different levels of 

invariance.  

 Kim, Kwok, and Yoon (2012) adhered to a single-level multiple group analysis 

approach while making necessary adjustment due to data dependency by adjusting the 

chi-square statistics and standard error estimates. It can be achieved by using the TYPE 

= COMPLEX routine in Mplus. They justified the procedures with two reasons: 1) some 

researchers (e.g., Muthén & Satorra, 1995; Wu & Kwok, 2012) demonstrated that 

design-based approach accounted for observation nonindependency in multilevel data, 

and 2) given a single-level model specification, the multiple group analysis can then be 

proceeded.  
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 Jak, Oort, and Dolan (2014) proposed the multilevel restricted factor analysis 

(multilevel RFA) which developed from single-level RFA (Oort, 1992, 1998). In this 

method, the grouping variables were correlated with the latent factors. Invariance was 

examined by testing the significance of the effect that the indicator regressed on the 

grouping variable.  

This dissertation focused on the scenario that the grouping variable was at the 

between level. In the current version of Mplus, it only has the feature of multiple group 

analysis of multilevel data when the grouping variable is at the cluster level.  

Significance of the Study 

The dissertation addressed a pressing issue — level-specific goodness-of-fit 

indices in evaluating factorial invariance in MSEM in comparable to the standard model 

fit indices (i.e., overall model fit indices in MSEM). The significance of the study was 

presented from two aspects as follows. 

 First, various goodness-of-fit indices to test measurement invariance have been 

extensively studied in single-level analysis (e.g., Chen, 2007; Cheung & Rensvold, 2002, 

Meade, Johnson, & Braddy, 2008), but not in MSEM. Given multilevel data are 

common in educational and psychological research, examining factorial invariance in 

multilevel setting is in need. Kim, Kwok, and Yoon (2012) studied the impact of a 

single-level analysis to examine factorial invariance in multilevel data. They found that 

if ignoring multilevel data structure when examining factorial invariance in multilevel 

data, increased Type I error was a serious problem. Moreover, Type I error became 

increasingly serious when ICC and cluster size were larger. Similarly, Pornprasertmanit, 
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Lee, and Preacher (2014) also warned researchers of potential bias such as low detection 

of model fit and biased standard errors regardless of in a disaggregated analysis or an 

aggregated analysis. To sum up, multiple group single-level analysis was not appropriate 

for examining factorial invariance in multilevel data.  

 Second, further complicating matters were, various goodness-of-fit indices may 

behaved differently in response to various degrees of noninvariance in multilevel models 

(e.g., noninvariance at the between level, the within level, or at both levels). My research 

question recognized the additional complications in model fit evolution in MSEM. 

Previous research demonstrated that overall model fit indices provided information of 

model fit for the entire model but may fail to capture misfits at specific data level, 

especially at the higher level in MSEM (e.g., Hox, 2010; Hsu, Kwok, Lin, & Acosta, 

2015; Ryu & West, 2009; Yuan & Bentler, 2007). For example, chi-square statistics 

indicated how the model-implied variance covariance structure fitted the observed 

variance covariance structure in an overall picture, but not within-level model and 

between-level model specifically. To conclude, overall fit indices didn’t reflect the lack 

of fit for specific level model. A small amount of noninvariance which occurs in the 

between-level model maybe overlay by the dominant invariance in the within-level 

model. Therefore, noninvariance at the between level may be more difficult to be 

detected and easily missed out. Any of these cases suggested a further need of examining 

factorial invariance at specific data level in MSEM. Yuan and Bentler (2007) and Ryu 

and West (2009) proposed model fit evaluation for each level of model separately in 

MSEM. To date, no study has yet explored their approaches for detecting model 
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misspecification due to factorial noninvariance and was thus the focus of the current 

study. 

In this study, the sensitivity of goodness-of-fit indices to lack of invariance were 

systematically studied using multiple group multilevel CFA. The performance of level-

specific model fit evaluation was also compared to the standard model fit evaluation. 

This study should be viewed a step forward in research of measurement invariance 

testing which extended to MSEM framework. 

 

METHOD 

A Monte Carlo study was conducted using Mplus 7.3 (Muthén & Muthén, 1998-

2012) and a free R package (Mplus automation, Hallquist & Wiley, 2013) to examine 

the level-specific model fit statistics for testing factorial invariance in multilevel data. 

Meanwhile, the level-specific model fit evaluation was compared to the standard 

approach. The multiple group multilevel modeling features in Mplus were used to 

generalize and analyze data. As described previously, this feature is only available when 

the grouping variable is at the cluster level. The experimental conditions that were 

manipulated in this study were justified from two perspectives: 1) factors that might 

affect the sensitivity of goodness-of-fit indices for factorial invariance testing in MSEM, 

2) factors that are characteristics of multilevel data structure (e.g., number of clusters, 

cluster sizes, and interclass correlation).  

Previous simulation studies on measurement invariance testing, studies on 

multilevel modeling, and studies on fit indices in MSEM were reviewed (e.g., Chen, 
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2007; Cheung & Rensvold, 2002; Hox & Mass, 2001; Hsu, Kwok, Lin, & Acosta, 2015; 

Kim, Kwok, & Yoon, 2012; Maas & Hox, 2005; Meade, Johnson, & Braddy, 2008; 

Millsap & Kwok, 2004; Ryu & West, 2009). The population model, study conditions, 

and data generation procedures, were detailed as follows. 

Population Model 

 One of the foci of this simulation study was to examine the sensitivity of 

goodness of fit indices (i.e., chi-square, CFI, TLI, RMSEA, and SRMR) for testing 

factorial invariance in multiple group multilevel CFA. For this purpose, data were 

generated based on a two-level factor model with a between-level grouping variable 

which was presented in Figure 4.1 for illustration. As shown in Figure 4.1, eight 

indicators loaded on one latent factor in the within- and between-level models, 

respectively. 

 Especially following Kim, Kwok, and Yoon’s (2012) study, the population 

parameters in their studies were adopted in this study. The factor loadings for the 

between-level model (B) and the within-level model (W) were given as: 

Λ𝐵 = Λ𝑊 = 

[
 
 
 
 
 
 
 
0.7
0.9
0.6
0.6
0.8
0.6
0.9
0.7]

 
 
 
 
 
 
 

. 

 

The between-level and within-level model had the same factor structure (eight indicators 

per one factor). In addition, the between-level factor loadings equaled the within-level 

factor loadings. The factor loadings were higher than those in Kim, Kwok, and Yoon’s  
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FIGURE 2 Two-level Measurement Model with One Factor and Eight Indicators 
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(2012) study. They ranged from 0.6 to 0.9 in this study while ranged from 0.3 to 0.9 in 

Kim, Kwok, and Yoon’s study. It was because that in this study two levels of between- 

group differences (small and large) were manipulated for different numbers of 

indicators. In Kim, Kwok, and Yoon’s (2012) study, the between-group difference was 

held constant for one factor loading between two groups, and was set to 0.5. 

 The other population parameter values were as follows. The within-level factor 

variance was 1.0. The between-level factor variances varied to create different levels of 

ICCs, which were detailed in a later section. The between-level factor mean was set to 

zero. The between-level intercepts were set to zero. When evaluating strict invariance 

(i.e., invariance in intercepts), the focal group had different intercept values (not zero), 

which was discussed in the next section. No within-level factor mean and intercepts are 

specified in the population model (see Heck, 2001; Muthén & Muthén, 1998); and 4) the 

residual variances of eight indicators equaled 0.25 at both the within level and the 

between level (Hox & Mass, 2001). That is, 

Θ𝐵 = Θ𝑊 = 

[
 
 
 
 
 
 
 
0.25
0
0
0
0
0
0
0

0
0.25
0
0
0
0
0
0

0
0

0.25
0
0
0
0
0

0
0
0

0.25
0
0
0
0

0
0
0
0

0.25
0
0
0

0
0
0
0
0

0.25
0
0

0
0
0
0
0
0

0.25
0

0
0
0
0
0
0
0

0.25]
 
 
 
 
 
 
 

 , 

which showed that the indicator unique variances were uncorrelated with each other 

(random measurement error assumption). 

 The focal group and the reference group had an identical two-level model 

structure. Nevertheless, to examine the sensitivity of goodness-of-fit indices to lack of 
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factorial invariance, two scenarios were created. In scenario 1, noninvariance at 

between-level factor loading was manipulated. Specifically, the between-level factor 

loadings in the focal group were higher than that for the reference group. In scenario 2, 

noninvariance at between-level intercepts was manipulated. That is, the focal group had 

higher between-level intercepts than the reference group. Meanwhile, the factor loadings 

were kept invariant across two groups. Taken together, metric invariance (equal factor 

loadings) and scalar invariance (equal intercepts) were tested respectively in the two 

scenarios. 

Study Conditions 

 In this study, total six experimental variables that may affect factorial invariance 

testing in multilevel SEMs were considered. They included two levels of location of 

noninvariance, five proportions of invariance, two levels of between-group differences, 

four levels of number of clusters, two levels of cluster size, and three levels of ICC. In 

all, the study design was a factorial design with 2 × [5 ×  2 × 4 × 2 × 3 ─ 24 

(noninvariant conditions)] = 2 × (240 ─ 24) = 384 cells. For each cell, 1,000 replications 

were generated, resulting in a total of 384,000 replications for all conditions. In the 

following sections, each experimental condition was presented with details.  

Location of Noninvariance. Two kinds of noninvariance have been commonly 

tested in empirical studies. One was noninvariance in factor loadings (metric invariance). 

The other was noninvariance in intercepts (scalar invariance). As discussed earlier, the 

purpose of this study was to examine the sensitivity of the goodness-of-fit indices for 

testing invariance in factor loadings and intercepts. Therefore, noninvariant factor 
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loadings and intercepts in the between-level model were generated along with invariant 

conditions for comparison. 

Number of Groups. Two groups were chosen in accord with other simulation 

studies on measurement invariance testing (e.g., Asparouhov & Muthén, 2012; Chen, 

2007; Cheung & Rensvold, 2002; Kim, Kwok, & Yoon, 2012).  

 Proportion of Noninvariance. In the two-level model, while the within-level 

model was held invariant across groups, different proportions of item noninvariance 

were simulated in the between-level model across groups. Chen (2007) investigated five 

conditions of noninvariance (i.e., 0%, 25%, 50%, 70%, or 100%) in factor loadings and 

intercepts. The sensitivity of goodness of fit indices was investigated in response to lack 

of invariance. French and Finch (2008) examined three conditions of noninvariance: a 

comparison condition (0% of noninvariance), a low contamination condition (17% of 

noninvariance), and a high contamination condition (34% of noninvariance). In this 

study, five conditions (i.e., 0%, 25%, 50%, 70%, or 100%) of lack of invariance were 

replicated in the between-level factor loadings and intercepts. The 100% invariance 

condition served as a comparison with all factor loadings or intercepts invariant across 

groups. The difference in factor loadings and intercepts conditions was discussed below 

with more details.  

 Levels of Invariance. As presented above, compared to the reference group the 

focal group had different factor loadings or intercepts in the between-level model. In 

scenario 1, in which factor loading invariance (metric invariance) was examined, the two 

groups differed in between-level factor loadings. For example, in the 50% invariance 
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conditions the reference group had higher factor loadings compared to the focal group as 

follows: 

 Reference Group: Λ𝐵 = Λ𝑊 = 

[
 
 
 
 
 
 
 
0.7
0.9
0.6
0.6
0.8
0.6
0.9
0.7]

 
 
 
 
 
 
 

 ,           Focal Group: Λ𝑊 = 

[
 
 
 
 
 
 
 
0.7
0.9
0.6
0.6
0.8
0.6
0.9
0.7]

 
 
 
 
 
 
 

 , Λ𝐵 = 

[
 
 
 
 
 
 
 
0.7
0.9
0.6
0.6
0.3
0.1
0.4
0.2]

 
 
 
 
 
 
 

. 

In this example, note that the reference group had the same factor loading for both the 

with-level and the between-level model. The within-level model was invariant between 

the focal and reference group. For the focal group, 50% factor loadings in the between-

level model were noninvariant with 0.5 between-group difference in factor loadings 

relative to the reference group. In scenario 2, difference in the between-level intercepts 

were manipulated. For example, for the 50% invariant intercept conditions, the reference 

group and the focal group differed in half of the total intercepts with 0.2 between-group 

difference, given as: 

Reference Group: ν𝐵 = 

[
 
 
 
 
 
 
 
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2]

 
 
 
 
 
 
 

,       Focal Group: ν𝐵 = 

[
 
 
 
 
 
 
 
0.2
0.2
0.2
0.2
0.0
0.0
0.0
0.0]

 
 
 
 
 
 
 

, 

in which all intercepts were 0.2 for the reference group while for the focal group four 

between-level intercepts were zero (50% noninvariant intercepts). 
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 Between-group Differences. When the reference and focal group differed in 

factor loading, two magnitudes of between-group difference were simulated. When 

between-group difference in between-level factor loadings was 05, it was considered as a 

large effect size (Kim, Kwok, & Yoon, 2012). The other was 0.2 which was considered 

as small between-group difference and represented a comparison (French and Finch, 

2008). Similarly, a difference of 0.2 or 0.5 in the between-level intercepts was simulated 

for the noninvariant intercepts (e.g., the intercept for reference group was set to 0.2, 

whereas intercept for the focal group was 0). Chen (2007) examined two patterns of 

invariance, including mixed and uniform, which only the uniform pattern was considered 

in this study. That is, the focal group always had higher factor loadings or intercepts than 

the reference group.   

Number of Clusters and Cluster Sizes. Following Kim, Kwok, & Yoon’s (2012) 

study, four conditions of the number of clusters (CN) were chosen (i.e., 30, 50, 80, and 

100). Two cluster sizes (CS) included 10 and 20.  

Intra-Class Correlation (ICC). ICC in this study meant the intraclass correlation 

(ICC) for the latent factor (c.f., Heck & Thomas, 2009). Three levels of ICC were 

manipulated in this study, which were consistent to some simulation studies in MSEM 

(e.g., Hox & Mass, 2001; Kim, Kwok, & Yoon, 2012; Wu & Kwok, 2012). The within-

level factor variance was fixed at 1. Three levels of latent factor ICC were created by 

varying the between-level factor variance. In specific, the high ICC (i.e., 𝜌 =  0.5), the 

medium ICC (i.e., 𝜌 =  0.2) and the small ICC (i.e., 𝜌 =  0.1) conditions had the 

between-level factor variance set to 1, 0.25, and 0.11, respectively. 
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Data Analysis 

 All simulated data sets were analyzed in Mplus 7.11 (Muthén & Muthén, 1998-

2012) with maximum likelihood estimation with robust standard errors (MLR). 

Invariance in two locations were examined including factor loadings and intercepts. 

First, factor loading invariance was examined, followed by test of intercept invariance. 

 In model 1 (M1), metric invariance models were specified with equal between-

level factor loadings across two groups while the within-level models were saturated. In 

contrast, in model 2 (M2), the constrained equal between-level factor loadings were 

released to be freely estimated in the focal group. Meanwhile, the within-level models 

were still saturated. In this way, level-specific model fit indices were obtained for 

between-level models of M1 and M2 when the within-level models were saturated. 

Model 3 (M3) and model 4 (M4) were specified in the similar way. However, both in 

M3 and M4, the within-level models were not saturated but specified identically to the 

between-level model. In model 3 (M3), equal between-level factor loadings constraints 

were imposed. In model 4 (M4), equal between-level factor loadings were set to be 

freely estimated in the focal group. Therefore, standard model fit indices (overall model 

fit) were obtained for M3 and M4.  

 When invariance in intercepts was examined, scalar invariance models had equal 

between-level intercepts across two groups while the within-level models were saturated. 

As a comparison, the model constraints were then freely estimated in the focal group 

while within-level models were still saturated. In this way, level-specific model fit 

indices were obtained for between-level models when the within-level models were 
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saturated. Standard model fit indices were obtained when equal between-level intercepts 

were imposed but the within-level models were not saturated. Next, the constrained 

equal between-level intercepts were freely estimated in the focal group. Again, the 

within-level models were not saturated. In this way, standard model fit indices (for the 

entire model) were derived.  

 The results for testing metric invariance and scalar invariance were presented 

separately (in two sections). First, means and standard deviations of level-specific model 

fit indices (i.e., 𝑋𝐵
2, CFIB, RMSEAB, TLIB, and SRMRB) and standard model fit indices 

(i.e., overall model fit indices including 𝑋2, CFI, RMSEA, TLI, and SRMRB) were 

summarized. Second, a separate five-way analysis of variance (ANOVA) was performed 

for each index to assess the effects of those study variables on changes of goodness-of-

fit indices. Last, the means and standard deviations of the ΔGFIs were summarized. For 

the level-specific approach, changes in five indices including Δ𝑋𝐵
2, ΔCFIB, ΔRMSEAB, 

ΔTLIB, and ΔSRMRB were listed. For the standard approach, the changes in five overall 

indices including Δ𝑋2, ΔCFI, ΔRMSEA, ΔTLI, and ΔSRMRB were presented.  

 

RESULTS 

 In the result section (either text or tables), results for the level-specific model fit 

evaluation approach and the standard model fit approach were reported separately. As 

described earlier, level-specific model fit evaluation approach produced within-level and 

between-level model fit indices separately. Given only between-level noninvariance was 

manipulated and examined in this study, model fits only for the between-level model 
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were reported. On the other hand, within-level models were saturated, resulting in 

perfect model fit. Therefore, results for the within-level models were not included in the 

result summary. For the standard model fit approach, SRMRW for the within-level model 

and SRMRB for the between-level model were both available in Mplus. To be compared 

to the level-specific model evaluation, SRMRB for the between-level model was reported 

in the standard approach and SRMRW were not included. The other model fit indices 

(𝑋2, CFI, RMSEA, and TLI) had general values for the entire model. In the following 

sections, results of testing metric invariance were presented first, following by results of 

testing scalar invariance. 

Testing Metric Invariance 

 Nonconvergence Problems. Overall, the level-specific fit evaluation approach 

had similar pattern in terms of model convergence compared to the standard model fit 

evaluation. Small variation in convergence rate was observed across different 

proportions of invariance conditions (i.e., 0% to 100%). In addition, different between-

group difference (i.e., 0.2 and 0.5) had little impact on the rate of convergence. For 

simplicity, detailed convergence rates were not reported for these two design conditions. 

 As shown in Table 4.2, for the small, medium, and large ICC levels the average 

convergent solutions were 99.02%, 99.47%, and 99.81%, respectively. For the large 

number of clusters conditions (e.g., 80 or 160), almost all models converged properly. 

More nonconverged solutions occurred when the number of clusters was small (e.g., 30) 

and ICC was also small (e.g., 0.1). To obtain a higher rate of convergent solutions, a 

large number of clusters was needed for testing metric invariance in MSEM, especially 
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when ICC was small. For testing metric invariance in the LR test, convergence problems 

were mainly issues in the unconstrained models. In other words, when equal constraints 

across groups were released (all equality constraints were freely estimated across 

groups), more convergence problems occurred. Given small percentages of 

nonconvergence out of all replications, nonconverged solutions were screened out and 

not included in the result summaries. In addition, a few replications (e.g., one or two out 

of 1,000 replications when the number of cluster was 30) with extreme chi-square 

statistics (e.g., above 2,000) and with negative TLI values were also deleted.   

 Improper Solutions. The majority Mplus warning messages in some replications 

indicated theta problems (negative residual variance estimates). Overall, ICC, number of 

clusters, and cluster sizes had impact on the average rate of problematic replications. 

Table 4.3 presented the average rates of problematic replications in terms of the three 

factors. 

 In total, 11.87% problematic replications (negative residual variance estimates) 

occurred. Only 1.48% problematic solutions were encountered in large ICC (e.g., 0.5 in 

this study) conditions. The rates were 8.96% and 25.16% in medium ICC conditions 

(e.g., 0.2 in this study) and small ICC conditions (e.g., 0.1 in this study), respectively. 

The number of problematic solutions decreased with increasing sample sizes (cluster 

size) as well as with increasing number of clusters. The results showed that higher ICC 

along with larger number of clusters and more observations per cluster resulted in less 

errors (i.e., negative residual variance). 

 A further check with those problematic replications was conducted. It was found 
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that all negative residual variance estimates in those problematic replications were not 

statistically significantly different from zero. On the other hand, when the number of 

replications increased to 2,000 for conditions with problematic replications, no 

substantial changes in model fit indices were found. Therefore, the original results with 

1,000 replications were reported which included replications with negative residual 

variance estimates. In other words, replications exhibiting error messages of negative 

residual variance were not treated as improper solutions in this study. In the section of 

testing scalar invariance, replications with negative residual variance estimates are not 

excluded either, which was discussed in a later section. 

 Model Fit Indices. Results of the average GFIs (i.e., CFI, RMSEA, SRMR, and 

TLI) as well as chi-square statistics for testing between-level metric invariance were 

summarized in Table 4.4 along with standard deviations. Following Hu and Bentler’s 

(1999) recommendations, the following cutoff criteria for model fit were used, 

including: a) CFI equal or larger than .95, b) RMSEA equal or smaller than .08, c) 

SRMR equal or smaller than .08, and d) TLI equal or larger than .95. 

 As shown in Table 4.4, in the invariant conditions (100% invariance), the mean 

𝑋2 were 55.52 (SD = 13.23) and 96.04 (SD = 15.88) for the level-specific and standard 

approach, respectively. This evidence suggested between-level metric invariance as 

hypothesized (for 𝑋2 with df of 48 and 88, the critical value is 65.17 and 110.90, 

respectively). In the noninvariant conditions (0% to 75% invariance), means of 𝑋2
B 

were all above the critical value for the level-specific approach, indicating lack of 

invariance as hypothesized. However, it was noted that 𝑋2
B was not stable in response to 
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TABLE 4.2 Summary of Convergence Rates for Factor Loading Invariance Testing 

  
Level-specific approach 

 
Standard approach 

 CN/CS M1 M2  M3 M4 

Small ICC 30/10 97.24% 93.29%  96.23% 91.83% 

 30/20 99.60% 97.65%  99.64% 97.75% 

 50/10 99.80% 98.63%  99.71% 98.35% 

 50/20 99.98% 99.92%  100% 99.86% 

 80/10 99.97% 99.77%  100% 99.82% 

 80/20 100% 99.99%  100% 99.99% 

 160/10 99.99% 99.80%  100% 99.83% 

 160/20 100% 100%  100% 100% 

Average      99.02% 

       

Medium ICC 30/10 98.51% 95.06%  98.06% 94.87% 

 30/20 99.91% 99.03%  99.95% 99.11% 

 50/10 100% 99.43%  99.96% 99.45% 

 50/20 100% 99.94%  100% 99.95% 

 80/10 100% 99.96%  100% 99.95% 

 80/20 100% 100%  100% 100% 

 160/10 100% 99.96%  100% 99.95% 

 160/20 100% 100%  100% 99.99% 

Average      99.47% 

       

Large ICC 30/10 99.70% 98.24%  99.19% 98.33% 

 30/20 100% 99.69%  100% 99.55% 

 50/10 100% 99.64%  100% 99.69% 

 50/20 100% 99.95%  100% 99.95% 

 80/10 100% 99.94%  100% 99.99% 

 80/20 100% 100%  100% 100% 

 160/10 100% 99.94%  100% 99.99% 

 160/20 100% 100%  100% 100% 

Average      99.81% 

Note.  ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size. 

          M1 & M3: Metric invariance model 

          M2 & M4: Metric invariance unconstrained model 
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TABLE 4.3 Summary of Percentage of Problematic Replications for Factor Loading 

Invariance Testing 

  
Level-specific approach 

 
Standard approach 

 CN/CS M1 M2  M3 M4 

Small ICC 30/10 35.14% 67.67%  34.61% 66.51% 

 30/20 23.36% 62.68%  23.19% 62.39% 

 50/10 16.47% 54.29%  16.30% 53.97% 

 50/20 8.26% 41.68%  8.18% 41.63% 

 80/10 7.27% 36.90%  7.28% 36.90% 

 80/20 1.62% 23.76%  1.61% 23.73% 

 160/10 0.89% 14.14%  0.86% 14.28% 

 160/20 0.02% 9.82%  0.02% 9.81% 

Average      25.16% 

       

Medium ICC 30/10 8.69% 39.38%  8.67% 39.40% 

 30/20 2.64% 26.81%  2.68% 32.34% 

 50/10 1.10% 20.17%  1.01% 20.20% 

 50/20 0.19% 13.80%  0.18% 13.64% 

 80/10 0.12% 10.21%  0.10% 10.08% 

 80/20 0.00% 8.40%  0.01% 8.40% 

 160/10 0.00% 5.11%  0.00% 5.09% 

 160/20 0.00% 4.13%  0.00% 4.12% 

Average      8.96% 

       

Large ICC 30/10 0.17% 8.68%  0.08% 8.74% 

 30/20 0.06% 6.59%  0.01% 6.42% 

 50/10 0.00% 4.49%  0.00% 4.61% 

 50/20 0.00% 2.94%  0.00% 2.92% 

 80/10 0.00% 0.00%  0.00% 0.00% 

 80/20 0.00% 0.83%  0.00% 0.86% 

 160/10 0.00% 0.00%  0.00% 0.00% 

 160/20 0.00% 0.04%  0.00% 0.03% 

Average      1.48% 

Note.  ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size. 

          M1 & M3: Metric invariance model 

          M2 & M4: Metric invariance unconstrained model 
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different degree of invariance. The relation between the degree of invariance and chi-

square statistics was nonmonotonic. With respect to the standard approach, when 75% 

items factor loadings were invariant (25% factor loadings were noninvariant), 𝑋2 (i.e., M 

= 108.25, SD = 26.80) failed to reject the null hypothesis of invariance. As the 

invariance proportion increased from 0% to 50%, means of 𝑋2 were all above the critical 

value, indicating lack of invariance. However, the relation between the degree of 

invariance and chi-square statistics was nonmonotonic in the standard approach.  

 On average, the CFI values ranged from 0.997 to 0.999 with small SDs across 

different proportions of invariance (i.e., 0% to 100% invariance), indicating good model 

fit according to the suggested cutoff. Similarly, TLI ranged from 0.993 to 0.997 and 

from 0.996 to 0.998 for the level-specific and standard approach, respectively. Large 

CFI and TLI values (> 0.99) and negligible changes across different proportions of 

invariance suggested good model fit whereas some factor loadings were noninvariant 

across groups, either in the level-specific approach or in the standard approach. In 

conclusion, CFI and TLI were not sensitive indices for examining between-level factor 

loading invariance according to suggested cutoff criteria.  

 In the invariant conditions (100% invariance), RMSEA had smaller values than 

the suggested cutoff value of 0.08 regardless of level-specific approach or standard 

approach, which indicated metric invariance as expected. In the noninvariant conditions 

(0% to 75% invariance), means of RMSEA were smaller than the cutoff of 0.08 as well, 

indicating metric invariance. RMSEA decreased in a small degree as the degree of 

invariance increased. In conclusion, whether in the level-specific approach or standard 
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approach, RMSEA was unable to detect lack of invariance based on the traditional cutoff 

value of 0.08.  

 The intriguing finding for testing metric invariance was SRMRB in the level-

specific approach had identical results to SRMRB in the standard approach. The major 

reason was that SRMRB in the standard approach was also an index for the between-

level model only (Mplus provides SRMB for the between level model and SRMR for the 

within level mode separately). The results further showed that level-specific model fit 

index was promising for examining invariance in MSEM, which allowed for 

examination of invariance in models in models at specific data level. More importantly, 

the change of SRMR exhibited a decreasing trend when the degree of invariance 

increased. In other words, the relation between the degree of invariance (0% to 100% 

invariance) and SRMR values was monotonic. In addition, SRMR was sensitive to 

detect lack of metric invariance in the between-level models. For example, in the 

invariant conditions (100% invariance), the mean SRMR was 0.086 (SD = 0.042), which 

suggested marginally good model fit. In the noninvariant conditions (0% to 75% 

invariance), means of SRMR were all larger than 0.08, indicating noninvariant factor 

loadings. 

 To determine factors that affected changes in fit statistics, a five-way analysis of 

variance (ANOVA) was conducted for each fit index separately. Specifically, the effects 

of different proportion of invariance (INV), intraclass correlation (ICC), number of 

clusters (CN), cluster size (CS), and between-group difference (DIF) on the changes in 

five target fit indices were examined. The ANOVA results were presented in Table 4.5 
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and Table 4.6 for the level-specific approach and the standard approach, respectively. 

Eta-squared effects sizes (𝜂2) were calculated, which were given as the ratio of the type 

III sum of squares of each factor or interaction (SSbetween) to the corrected total sum of 

squares (SStotal without the intercept proportion). Eta-squared effects sizes (𝜂2) reflected 

the percentages of total variance explained by the above five factors and their 

interactions.  

 As shown in Table 4.5 for the level-specific approach, a good proportion of 

variance in all ΔGFIs (i.e., ΔCFIB, ΔRMSEAB, ΔSRMRB, and ΔTLIB) along with Δ𝜒𝐵
2 

was explained by between-group difference. In other words, the magnitude of between-

group difference had the largest effect on the changes of fit indices. Larger between-

group difference predicted greater changes in GFIs and 𝜒𝐵
2. ICC level was the second 

factor that affected changes in all fit indices with a large effect. The interaction of ICC 

and between-group difference had the third largest effect. As shown in Table 4.6, similar 

patterns were observed for the standard approach. To sum up, the changes of fit indices 

were affected substantially by between-group difference, ICC, and their interactions in 

both level-specific approach and the standard approach. The changes were less affected 

by the other factors including number of clusters, cluster size, and proportion of 

invariance. 

 Fit Indices Sensitivity in Metric Invariance Tests. As discussed previously, 

changes in fit indices were used to test metric invariance hypotheses, which were the 

differences between the fit of constrained models and unconstrained models. ΔGFIs (i.e., 



 

83 

 

TABLE 4.4 Means and SDs (in parenthesis) of Model Fit Indices for Metric Invariance Models 

Invariance 

(%) 

Level-specific Approach a  “Standard” Approach 

𝜒2(48)B CFIB RMSEAB SRMRB TLIB  𝜒2(88) CFI RMSEA SRMRB TLI 

            

0% 69.62 0.998 0.019 0.152 0.995  109.84 0.998 0.015 0.152 0.997 

 (25.94) (0.003) (0.014) (0.068) (0.007)  (27.15) (0.003) (0.011) (0.068) (0.004) 

25% 74.25 0.997 0.021 0.136 0.994  114.43 0.997 0.016 0.136 0.997 

 (35.42) (0.003) (0.015) (0.054) (0.008)  (35.65) (0.004) (0.012) (0.054) (0.006) 

50% 77.44 0.997 0.022 0.127 0.993  117.38 0.997 0.016 0.127 0.996 

 (41.90) (0.004) (0.016) (0.051) (0.009)  (41.41) (0.004) (0.012) (0.051) (0.005) 

75% 67.97 0.998 0.019 0.105 0.995  108.25 0.998 0.014 0.105 0.997 

 (25.83) (0.003) (0.014) (0.041) (0.007)  (26.80) (0.003) (0.011) (0.041) (0.004) 

100% 55.52 0.999 0.013 0.086 0.997  96.04 0.999 0.010 0.086 0.998 

 (13.23) (0.002) (0.013) (0.042) (0.005)  (15.88) (0.002) (0.010) (0.042) (0.003) 

    Note. a In the level-specific approach, the within-level model is saturated. 

              B denotes between-level. 

              CFI = comparative fit index; RMSEA = root-mean-square error of approximation; SRMR = standardized root mean    

              square residual; TLI = the Tucker-Lewis index. 
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TABLE 4.5 Eta-Squared Effect Size Estimates for Study Variables on the Change in Fit Indices (Level-specific Indices) 

Variables 
Level-specific Indices 

∆𝜒2(8)B ∆CFIB ∆RMSEAB ∆SRMRB ∆TLIB 

INV 0.97% 0.51% 0.75% 6.47% 0.42% 

ICC 11.26% 5.54% 10.65% 13.38% 4.67% 

CN 3.75% 0.10% 0.60% 0.02% 0.04% 

CS 0.10% 0.38% 0.11% 0.00% 0.18% 

DIF 11.08% 5.65% 12.36% 20.00% 4.92% 

INV * ICC 1.61% 0.84% 1.08% 3.54% 0.71% 

INV * CN 0.32% 0.02% 0.03% 0.12% 0.02% 

INV * CS 0.02% 0.03% 0.01% 0.00% 0.02% 

INV * DIF 0.52% 0.29% 0.24% 2.21% 0.24% 

ICC * CN 4.11% 0.10% 1.01% 0.14% 0.16% 

ICC * CS 0.05% 0.41% 0.20% 0.00% 0.37% 

ICC * DIF 9.04% 4.61% 5.70% 12.71% 3.55% 

CN * CS 0.06% 0.02% 0.00% 0.00% 0.00% 

CN * DIF 3.49% 0.02% 0.17% 0.30% 0.02% 

CS * DIF 0.10% 0.34% 0.10% 0.01% 0.31% 

INV * ICC * CN 0.50% 0.02% 0.04% 0.03% 0.02% 

INV * ICC * CS 0.01% 0.07% 0.02% 0.00% 0.06% 

INV * ICC * DIF 0.79% 0.41% 0.24% 1.31% 0.33% 

INV * CN * CS 0.00% 0.00% 0.00% 0.00% 0.00% 

INV * CN * DIF 0.15% 0.01% 0.00% 0.02% 0.01% 

INV * CS * DIF 0.01% 0.02% 0.00% 0.00% 0.01% 

ICC * CN * CS 0.01% 0.04% 0.09% 0.01% 0.05% 

ICC * CN * DIF 3.50% 0.01% 0.04% 0.06% 0.01% 

ICC * CS * DIF 0.04% 0.36% 0.14% 0.00% 0.28% 

 

(continued) 
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TABLE 4.5 (continued) 

Variables 
Level-specific Indices 

∆𝜒2(8)B ∆CFIB ∆RMSEAB ∆SRMRB ∆TLIB 

CN * CS * DIF 0.04% 0.00% 0.01% 0.00% 0.00% 

INV * ICC * CN * CS 0.01% 0.01% 0.00% 0.00% 0.01% 

INV * ICC * CN * DIF 0.26% 0.01% 0.02% 0.00% 0.01% 

INV * ICC * CS * DIF 0.00% 0.03% 0.00% 0.00% 0.02% 

INV * CN * CS * DIF 0.00% 0.00% 0.00% 0.01% 0.00% 

ICC * CN * CS * DIF 0.02% 0.00% 0.00% 0.00% 0.00% 

INV * ICC * CN * CS * DIF 0.00% 0.00% 0.00% 0.00% 0.00% 

Note: INV = Invariance proportion. ICC = Intra-class correlation. CN = Number of clusters. CS = Cluster size. DIF =      

          Between-group difference.  

               B denotes between-level model. 

          CFI = comparative fit index; RMSEA = root-mean-square error of approximation; SRMR = standardized root mean     

          square residual; TLI = the Tucker-Lewis index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

86 

 

TABLE 4.6 Eta-Squared Effect Size Estimates for Study Variables on the Change in Fit Indices (Standard Indices) 

Variables 
Standard Indices 

∆𝜒2(8) ∆CFI ∆RMSEA ∆SRMRB ∆TLI 

INV 1.06% 0.56% 0.84% 6.46% 0.54% 

ICC 12.06% 5.82% 11.78% 13.39% 5.54% 

CN 4.04% 0.24% 0.36% 0.02% 0.06% 

CS 0.11% 0.53% 0.18% 0.00% 0.46% 

DIF 12.29% 6.37% 13.69% 20.04% 6.45% 

INV * ICC 1.72% 0.92% 1.16% 3.54% 0.89% 

INV * CN 0.37% 0.03% 0.03% 0.12% 0.04% 

INV * CS 0.02% 0.03% 0.01% 0.00% 0.03% 

INV * DIF 0.55% 0.34% 0.28% 2.21% 0.30% 

ICC * CN 4.85% 0.10% 1.03% 0.13% 0.16% 

ICC * CS 0.06% 0.42% 0.19% 0.00% 0.41% 

ICC * DIF 10.13% 5.43% 7.31% 12.71% 4.81% 

CN * CS 0.07% 0.06% 0.02% 0.00% 0.02% 

CN * DIF 4.01% 0.02% 0.24% 0.30% 0.02% 

CS * DIF 0.11% 0.41% 0.10% 0.01% 0.43% 

INV * ICC * CN 0.56% 0.02% 0.04% 0.03% 0.03% 

INV * ICC * CS 0.01% 0.07% 0.02% 0.00% 0.07% 

INV * ICC * DIF 0.83% 0.45% 0.27% 1.31% 0.40% 

INV * CN * CS 0.01% 0.01% 0.00% 0.00% 0.01% 

INV * CN * DIF 0.17% 0.01% 0.01% 0.02% 0.01% 

INV * CS * DIF 0.01% 0.03% 0.01% 0.00% 0.02% 

ICC * CN * CS 0.01% 0.03% 0.08% 0.01% 0.04% 

ICC * CN * DIF 3.95% 0.01% 0.08% 0.06% 0.01% 

ICC * CS * DIF 0.04% 0.42% 0.17% 0.00% 0.37% 

 

(continued) 
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TABLE 4.6 (continued) 

Variables 
Standard Indices 

∆𝜒2(8) ∆CFI ∆RMSEA ∆SRMRB ∆TLI 

CN * CS * DIF 0.04% 0.00% 0.01% 0.00% 0.00% 

INV * ICC * CN * CS 0.01% 0.01% 0.00% 0.00% 0.01% 

INV * ICC * CN * DIF 0.29% 0.01% 0.02% 0.00% 0.01% 

INV * ICC * CS * DIF 0.01% 0.03% 0.00% 0.00% 0.03% 

INV * CN * CS * DIF 0.01% 0.00% 0.00% 0.00% 0.00% 

ICC * CN * CS * DIF 0.02% 0.00% 0.00% 0.00% 0.00% 

INV * ICC * CN * CS * DIF 0.00% 0.01% 0.00% 0.00% 0.01% 

Note: INV = Invariance proportion. ICC = Intra-class correlation. CN = Number of clusters. CS = Cluster size. DIF =    

         Between-group difference.  

              B denotes between-level model. 

         CFI = comparative fit index; RMSEA = root-mean-square error of approximation; SRMR = standardized root mean    

         square residual; TLI = the Tucker-Lewis index. 
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∆CFI, ∆RMSEA, ∆SRMR, and ∆TLI) along with ∆𝜒2were summarized in Table 4.7 to 

Table 4.14 in terms of different number of clusters and cluster sizes. Specifically, the 

effects of ICC, number of clusters, cluster size, proportion of factor loading invariance, 

and between-group difference on the change of model fit statistics were examined. In the 

next, changes in each fit index were discussed. 

 ΔX2. Small difference was observed comparing the level-specific approach with 

the standard approach. As factors identified in ANOVA, changes in ΔX2 appeared 

overall to depend on ICC, between-group difference, and number of clusters. The effects 

of cluster size and proportion of invariance were not substantial. First, ΔX2 tended to be 

larger in large ICC conditions relative to small ICC conditions. Second, the ΔX2 values 

increased as the magnitude of the between-group difference increased. Third, with larger 

number of clusters, ΔX2 became larger. In contrast, the changes due to different cluster 

size were small, which meant that the number of cluster has larger effect than the cluster 

size on changes of comparing the constrained models to the unconstrained models. Last, 

the changes of X2 showed no consistent pattern due to different proportions of 

invariance regardless of level-specific approach or standard approach. For example, in 

large ICC conditions, ΔX2 showed the least changes when 75% items were invariant 

(75% invariance), whereas ΔX2 showed the largest changes when 50% items were 

invariant (50% invariance).  

 In invariant conditions (i.e., 100% invariance), all ΔX2 were smaller than the 

critical value (i.e., χcritical
2  (0.05, 8) = 15.50), which indicated metric invariance. This 

evidence suggested that chi-square difference test performed well when all factor 
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loadings were invariant. In the noninvariant conditions (i.e., 0% to 75% invariance), the 

performance of ΔX2 was not stable. Only in large ICC (e.g., 0.5) and large between-

group difference (e.g., 0.5) conditions, ∆𝜒2 was larger than the critical value, regardless 

of the level-specific approach or the standard approach. The evidence showed that only 

in those settings, the chi-square difference test would be successful in detecting 

noninvariant factor loadings. However, in small ICC (e.g., 0.1) and small between-group 

difference (e.g., 0.2) conditions, the chi-square difference test may fail to detect 

noninvariant factor loadings, irrespective of the proportion of invariance (0% invariance 

to 75% invariance) (see Table 4.7 to Table 4.14). In medium ICC and small between-

group difference conditions, similar patterns were observed. To sum up, ICC had a 

substantial impact on the sensitivity of ∆𝜒2 for examining invariance in the between-

level factor loadings. When between-group difference was small, large ICC was needed 

to detect lack of factor loading invariance in the between-level model. In addition, both 

the number of clusters and cluster size should be large (e.g., CN = 80 and CS = 20). 

When between-group difference was large, large ICC was a sufficient condition to detect 

noninvariant between-level factor loadings regardless of the number of clusters and 

cluster size.  

 ΔCFI. The ΔCFIs values in the level-specific approach and in the standard 

approach were identical to each other. Consistent with findings of ANOVA, two factors 

(i.e., ICC and between-group difference) affects the changes in CFIs. The effects of 

other factors (e.g., proportion of invariance, number of cluster, and cluster size) were not 

obvious. Specifically, only in large ICC and large between-group difference conditions, 
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ΔCFI was larger than -0.002. Other than that, ΔCFI approximated zero (e.g., in small 

ICC and small between-group difference conditions).  

 In the invariant conditions, ΔCFIs were generally around 0.000, indicating metric 

invariance. In the noninvariant conditions, changes in CFI were not salient. For example, 

when ICC was small (0.1 in this study) and medium (0.2 in this study), ΔCFI was the 

smallest with a small range from -0.002 to 0.000. When ICC was large (0.5 in this study) 

and between-group difference was large (0.5 in this study), changes in CFI slightly 

increased. As is shown in Table 4.13, CFI varied from -0.009 to -0.005.  

 In conclusion, ΔCFI was not a sensitive index for examining invariance in factor 

loadings in MSEM, especially when ICC and between-group difference were small. 

ΔCFI tended to be larger when ICC and between-group difference increased. However, 

the pattern of changes was not consistent (from 0% to 75% invariance). For example, in 

large ICC conditions, when 50% of items were invariant, the changes were the largest, 

whereas the changes were the smallest when 75% of items were invariant. In summary, 

the sensitivity of ΔCFI to lack of between-level factor loading invariance was affected 

by ICC and between-group difference. The changes in CFI were generally not 

appreciable when comparing constrained model and unconstrained model, which 

indicated its lack of efficiency to detect between-level noninvariance in factor loadings. 

 ΔRMSEA. The ΔRMSEA had larger values comparing the level-specific 

approach with the standard approach. The larger ΔRMSEA values indicated larger 

model difference and showed to be more sensitive in response to noninvariance in 

between-level factor loadings. The factors affecting the changes in RMSEA included 
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ICC and between-group difference. When ICC and between-group difference increased, 

ΔRMSEA became larger.  

 In the invariant conditions (100% invariance), ΔRMSEAs were generally very 

small (e.g., around 0.000). In the noninvariant conditions (0% to 75% invariance), 

changes in RMSEA were more noticeable with increasing ICC and between-group 

difference. For example, when ICC and between-group difference were small, ΔRMSEA 

had small values around 0.000 irrespective of proportion of invariance, number of 

clusters, and cluster size. ΔRMSEA inflated with the increase in ICC and between-group 

difference. As shown in Table 4.10, when between-group difference was 0.5, changes in 

RMSEA ranged from 0.002 to 0.005 and from 0.017 to 0.026 for low ICC and high ICC, 

respectively, with respect to different degree of noninvariance (100 % to 25%). 

 In summary, ΔRMSEA appeared to be more sensitive when ICC and between-

group difference were large in response to the between-level factor loading 

noninvariance. The changes of RMSEA were not notably related to the number of 

cluster and cluster size. In addition, the effect of proportion of invariance on the changes 

in RMSEA was little. The pattern of changes in RMSEA due to different proportion of 

invariance was not consistent. In large ICC conditions, when 50% of items were 

invariant, the changes were the largest, whereas the changes were the smallest when 

75% of items were invariant. In general, some changes in RMSEA indicated the 

difference comparing the metric invariance constrained model to the unconstrained 

model, which to some extend suggested lack of invariance in between-level factor 
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loadings. The findings were applicable in large ICC along with large between-group 

difference conditions.  

 ΔSRMR. The changes in SRMR were the most striking results in this study. First, 

the ΔSRMRB values in the level-specific approach were found to be identical to 

ΔSRMRB in the standard approach. As discussed previously, ΔSRMRB in the standard 

approach was also a level-specific model fit index for the between-level model. The 

findings showed the advantage of using level-specific model fit index which listed the 

model fit of the within-level model and between-level model, respectively. Second, 

ΔSRMR tended to decrease monotonically as the proportion of invariance decreased. In 

other words, ΔSRMR exhibited larger values with respect to the increasing degree of 

noninvariance. Last, ICC and between-group difference affected the changes in SRMR. 

In addition, ΔSRMR was affected by the number of cluster and cluster size but the effect 

of cluster size was relatively small.  

 In the invariant conditions (100% invariance), though ΔSRMR was not zero but 

was the smallest across all conditions. In the noninvariant conditions, there was an 

apparent pattern that ΔSRMR tended to be smaller as the degree of invariance increased. 

For example, as shown in Table 4.14, when between-group difference was 0.5 and ICC 

was 0.5, changes in SRMR were 0.214, 0.161, 0.148, and 0.078, for 0% invariance, 25% 

invariance, 50% invariance, and 75% invariance, respectively. This finding meant that 

SRMR suggested worse fit when the degree of noninvariance increased. To summarize, 

the changes in SRMR were negatively correlated with all conditions (i.e., ICC, between-

group difference, cluster size, number of clusters, and the proportion of invariance). The 
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property demonstrated that ΔSRMR was a substantial sensitive index to examine 

invariance in the between-level factor loadings.  

 ΔTLI. Though not very differently, ΔTLI had larger values in the level-specific 

approach than in the standard approach. The changes in TLI were affected by ICC and 

between-group difference. In contrast, the number of cluster, cluster size, and proportion 

of invariance had smaller effects.  

 In the invariant conditions, ΔTLIs were generally around 0.000, which indicated 

metric invariance. In the noninvariant conditions, changes in TLI depended on ICC and 

between-group difference. When ICC and between-group difference were small, ΔTLI 

showed little changes comparing the metric invariance constrained model and the 

unconstrained model. The small changes showed that ΔTLI was not sensitive to detect 

noninvariant between-level factor loadings. When ICC and between-group difference 

were large, changes in TLI slightly increased. For example, as is shown in Table 4.13, in 

conditions of number of cluster of 160, cluster size of 10, and ICC of 0.5, changes in TLI 

varied from -0.020 to -0.011.  

 In summary, when ICC and between-group difference were large ΔTLI appeared 

to be more sensitive in response to the between-level factor loading noninvariance. The 

effect of different proportion of invariance on the changes in TLI was little. In addition, 

the pattern of changes in TLI due to different proportion of invariance was not 

monotonic. For example, in large ICC conditions, when 50% of items were invariant, the 

changes were the largest, whereas the changes were the smallest when 75% of items 

were invariant. 
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TABLE 4.7 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and between-

group differences (CN = 30 and CS = 10). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in factor loadings 

0.1             

 0% 14.52 -0.002 0.006 0.040 -0.003  15.33 -0.002 0.005 0.040 -0.002 

 25% 14.78 -0.002 0.006 0.037 -0.003  18.34 -0.003 0.005 0.037 -0.003 

 50% 12.94 -0.001 0.005 0.035 -0.002  13.34 -0.001 0.004 0.035 -0.002 

 75% 11.91 -0.001 0.004 0.032 -0.001  11.91 -0.001 0.003 0.031 -0.001 

 100% 11.74 -0.001 0.003 0.028 -0.001  12.39 -0.001 0.003 0.027 -0.001 

0.2             

 0% 16.86 -0.002 0.009 0.072 -0.004  18.57 -0.003 0.007 0.072 -0.003 

 25% 15.17 -0.002 0.007 0.059 -0.003  15.96 -0.002 0.006 0.059 -0.002 

 50% 13.72 -0.001 0.005 0.053 -0.002  15.05 -0.002 0.005 0.054 -0.002 

 75% 9.37 0.000 0.001 0.038 0.002  11.67 -0.001 0.002 0.038 -0.001 

 100% 6.39 0.000 -0.003 0.024 0.003  7.94 0.000 -0.001 0.024 0.001 

0.5             

 0% 28.11 -0.005 0.017 0.173 -0.011  28.19 -0.005 0.013 0.173 -0.006 

 25% 35.15 -0.007 0.021 0.130 -0.015  34.74 -0.007 0.016 0.129 -0.009 

 50% 42.76 -0.009 0.026 0.125 -0.020  41.39 -0.009 0.019 0.125 -0.011 

 75% 28.05 -0.005 0.016 0.069 -0.011  27.50 -0.005 0.012 0.069 -0.006 

 100% 8.80 0.000 -0.002 0.023 0.001  9.05 0.000 0.000 0.023 0.000 

  

 (continued) 
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TABLE 4.7 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in factor loadings 

0.1             

 0% 13.25 -0.001 0.005 0.032 -0.002  13.47 -0.001 0.004 0.032 -0.002 

 25% 12.33 -0.001 0.004 0.031 -0.001  13.38 -0.001 0.004 0.031 -0.002 

 50% 10.43 -0.001 0.003 0.030 0.000  11.23 -0.001 0.003 0.030 -0.001 

 75% 12.54 -0.001 0.004 0.028 -0.001  13.49 -0.001 0.003 0.028 -0.002 

0.2             

 0% 8.83 0.000 0.000 0.036 0.002  10.96 -0.001 0.002 0.035 -0.001 

 25% 6.83 0.000 -0.001 0.032 0.003  10.43 -0.001 0.001 0.032 0.000 

 50% 8.07 0.000 -0.002 0.029 0.002  7.61 0.000 0.000 0.029 0.001 

 75% 5.39 0.001 -0.003 0.026 0.004  7.92 0.000 0.000 0.026 0.001 

0.5             

 0% 11.00 -0.001 0.001 0.051 0.000  11.29 -0.001 0.002 0.051 -0.001 

 25% 13.75 -0.001 0.004 0.045 -0.002  13.84 -0.001 0.003 0.045 -0.001 

 50% 13.79 -0.001 0.004 0.038 -0.002  13.86 -0.001 0.004 0.038 -0.002 

 75% 12.01 -0.001 0.002 0.028 -0.001  12.09 -0.001 0.002 0.028 -0.001 

Note. CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: CFIB, III: RMSEAB, IV: SRMRB, V: TLIB. 

          i: ∆𝜒2(8),   ii:  CFI,   iii: RMSEA,   iv:  SRMRB, v: TLI. 
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TABLE 4.8 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and between-

group differences (CN = 30 and CS = 20). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in factor loadings 

0.1             

 0% 15.03 -0.001 0.005 0.039 -0.002  15.43 -0.001 0.004 0.039 -0.001 

 25% 14.74 -0.001 0.005 0.035 -0.002  14.16 -0.001 0.003 0.035 -0.001 

 50% 14.61 -0.001 0.004 0.032 -0.001  14.76 -0.001 0.003 0.032 -0.001 

 75% 9.45 0.000 0.002 0.028 0.001  11.60 0.000 0.002 0.028 0.000 

 100% 9.25 0.000 0.000 0.022 0.001  10.15 0.000 0.001 0.023 0.000 

0.2             

 0% 20.51 -0.002 0.009 0.076 -0.003  20.92 -0.002 0.007 0.076 -0.002 

 25% 17.28 -0.001 0.006 0.060 -0.002  17.16 -0.001 0.005 0.060 -0.001 

 50% 16.28 -0.001 0.005 0.054 -0.002  15.81 -0.001 0.004 0.054 -0.001 

 75% 11.08 0.000 0.001 0.040 0.000  11.70 0.000 0.002 0.040 0.000 

 100% 6.51 0.000 -0.003 0.026 0.001  7.41 0.000 -0.001 0.026 0.000 

0.5             

 0% 31.01 -0.003 0.014 0.179 -0.006  31.13 -0.003 0.011 0.179 -0.004 

 25% 40.18 -0.004 0.018 0.135 -0.009  39.31 -0.004 0.013 0.135 -0.005 

 50% 48.95 -0.005 0.022 0.129 -0.012  47.00 -0.005 0.016 0.129 -0.006 

 75% 30.49 -0.003 0.014 0.070 -0.006  29.77 -0.003 0.010 0.070 -0.003 

 100% 8.96 0.000 -0.001 0.021 0.001  9.02 0.000 0.000 0.021 0.000 

  

 (continued) 
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TABLE 4.8 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in factor loadings 

0.1             

 0% 10.69 0.000 0.002 0.027 0.000  12.96 -0.001 0.002 0.027 -0.001 

 25% 10.77 0.000 0.002 0.026 0.000  11.98 0.000 0.002 0.026 -0.001 

 50% 9.44 0.000 0.001 0.025 0.000  11.07 0.000 0.001 0.025 0.000 

 75% 9.62 0.000 0.001 0.024 0.000  10.61 0.000 0.001 0.024 0.000 

0.2             

 0% 8.56 0.000 -0.001 0.036 0.001  9.40 0.000 0.000 0.035 0.000 

 25% 8.39 0.000 -0.001 0.033 0.001  9.59 0.000 0.000 0.033 0.000 

 50% 7.44 0.000 -0.002 0.031 0.001  8.83 0.000 0.000 0.031 0.000 

 75% 7.31 0.000 -0.002 0.028 0.001  8.28 0.000 -0.001 0.028 0.000 

0.5             

 0% 11.65 -0.001 0.001 0.050 0.000  11.70 -0.001 0.001 0.050 0.000 

 25% 14.77 -0.001 0.004 0.044 -0.001  14.71 -0.001 0.003 0.044 -0.001 

 50% 14.68 -0.001 0.004 0.037 -0.001  14.59 -0.001 0.003 0.037 -0.001 

 75% 12.16 -0.001 0.002 0.026 -0.001  12.14 -0.001 0.002 0.026 -0.001 

Note. CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: CFIB, III: RMSEAB, IV: SRMRB, V: TLIB. 

          i: ∆𝜒2(8),    ii: CFI,   iii: RMSEA,   iv: SRMRB,  v: TLI. 
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TABLE 4.9 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and between-

group differences (CN = 50 and CS = 10). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in factor loadings 

0.1             

 0% 13.70 -0.001 0.005 0.036 -0.002  13.37 -0.001 0.003 0.036 -0.001 

 25% 12.57 -0.001 0.004 0.032 -0.001  12.80 -0.001 0.003 0.032 -0.001 

 50% 11.48 0.000 0.003 0.030 -0.001  12.40 -0.001 0.003 0.029 -0.001 

 75% 10.39 0.000 0.002 0.024 0.000  11.05 0.000 0.001 0.024 -0.001 

 100% 6.61 0.000 -0.002 0.019 0.001  6.70 0.000 -0.001 0.019 0.001 

0.2             

 0% 20.10 -0.002 0.010 0.077 -0.004  19.20 -0.002 0.007 0.076 -0.002 

 25% 17.48 -0.001 0.007 0.059 -0.003  16.43 -0.001 0.005 0.060 -0.002 

 50% 16.28 -0.001 0.006 0.054 -0.003  16.43 -0.001 0.005 0.054 -0.002 

 75% 11.49 -0.001 0.002 0.038 -0.001  12.26 -0.001 0.002 0.038 -0.001 

 100% 6.02 0.000 -0.003 0.023 0.002  6.58 0.000 -0.001 0.023 0.001 

0.5             

 0% 37.10 -0.005 0.021 0.188 -0.011  37.15 -0.005 0.015 0.188 -0.006 

 25% 50.92 -0.007 0.028 0.140 -0.016  50.09 -0.007 0.020 0.140 -0.009 

 50% 62.57 -0.009 0.033 0.132 -0.020  60.88 -0.008 0.024 0.132 -0.011 

 75% 39.48 -0.005 0.023 0.071 -0.011  38.76 -0.005 0.016 0.071 -0.006 

 100% 8.45 0.000 -0.001 0.017 0.000  8.48 0.000 0.000 0.017 0.000 

  

 (continued) 
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TABLE 4.9 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in factor loadings 

0.1             

 0% 9.70 0.000 0.001 0.024 0.000  8.62 0.000 0.001 0.024 0.000 

 25% 7.86 0.000 0.000 0.022 0.001  9.31 0.000 0.001 0.022 0.000 

 50% 8.24 0.000 0.000 0.021 0.001  8.81 0.000 0.000 0.021 0.000 

 75% 7.67 0.000 -0.001 0.019 0.001  8.46 0.000 0.000 0.020 0.000 

0.2             

 0% 7.74 0.000 -0.001 0.033 0.001  8.09 0.000 0.000 0.033 0.000 

 25% 7.99 0.000 -0.001 0.030 0.001  8.13 0.000 0.000 0.030 0.000 

 50% 7.72 0.000 -0.002 0.028 0.001  8.37 0.000 0.000 0.028 0.000 

 75% 7.31 0.000 -0.002 0.025 0.001  7.82 0.000 -0.001 0.025 0.000 

0.5             

 0% 12.41 -0.001 0.003 0.051 -0.001  12.42 -0.001 0.002 0.051 -0.001 

 25% 16.75 -0.001 0.007 0.044 -0.003  16.68 -0.001 0.005 0.044 -0.002 

 50% 16.53 -0.001 0.007 0.036 -0.003  16.45 -0.001 0.005 0.036 -0.002 

 75% 13.51 -0.001 0.004 0.023 -0.002  13.47 -0.001 0.003 0.023 -0.001 

Note. CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: CFIB, III: RMSEAB, IV: SRMRB, V: TLIB. 

          i: ∆𝜒2(8),   ii: CFI,   iii: RMSEA,   iv: SRMRB,   v: TLI. 
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TABLE 4.10 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 50 and CS = 20). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in factor loadings 

0.1             

 0% 14.63 0.000 0.005 0.040 -0.001  16.21 -0.001 0.004 0.040 -0.001 

 25% 13.57 0.000 0.003 0.034 -0.001  14.26 0.000 0.003 0.034 -0.001 

 50% 11.80 0.000 0.002 0.031 0.000  13.13 0.000 0.002 0.031 -0.001 

 75% 7.95 0.000 0.000 0.025 0.000  10.47 0.000 0.001 0.025 0.000 

 100% 4.49 0.000 -0.002 0.019 0.001  6.53 0.000 -0.001 0.019 0.000 

0.2             

 0% 23.54 -0.001 0.010 0.082 -0.003  23.95 -0.001 0.007 0.082 -0.002 

 25% 18.98 -0.001 0.007 0.063 -0.002  19.80 -0.001 0.005 0.063 -0.001 

 50% 19.47 -0.001 0.006 0.058 -0.002  19.60 -0.001 0.005 0.058 -0.001 

 75% 13.91 0.000 0.003 0.040 -0.001  14.13 0.000 0.002 0.040 -0.001 

 100% 7.00 0.000 -0.002 0.023 0.001  7.44 0.000 -0.001 0.023 0.000 

0.5             

 0% 44.24 -0.003 0.018 0.192 -0.007  43.38 -0.003 0.013 0.193 -0.004 

 25% 58.10 -0.004 0.023 0.144 -0.009  57.09 -0.004 0.016 0.144 -0.005 

 50% 71.51 -0.005 0.026 0.135 -0.012  69.43 -0.005 0.019 0.135 -0.006 

 75% 42.88 -0.003 0.017 0.071 -0.006  42.11 -0.003 0.013 0.071 -0.003 

 100% 8.69 0.000 0.000 0.016 0.000  8.71 0.000 0.000 0.016 0.000 

  

 (continued) 
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TABLE 4.10 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in factor loadings 

0.1             

 0% 8.75 0.000 0.000 0.025 0.000  9.28 0.000 0.001 0.025 0.000 

 25% 9.34 0.000 0.000 0.023 0.000  9.12 0.000 0.000 0.023 0.000 

 50% 6.21 0.000 -0.001 0.021 0.001  8.52 0.000 0.000 0.021 0.000 

 75% 6.14 0.000 -0.001 0.020 0.001  7.55 0.000 0.000 0.020 0.000 

0.2             

 0% 8.65 0.000 0.000 0.035 0.000  9.34 0.000 0.000 0.035 0.000 

 25% 7.76 0.000 0.000 0.032 0.001  9.15 0.000 0.000 0.032 0.000 

 50% 8.65 0.000 0.000 0.029 0.000  9.03 0.000 0.000 0.029 0.000 

 75% 8.06 0.000 -0.001 0.025 0.000  8.40 0.000 0.000 0.025 0.000 

0.5             

 0% 13.24 0.000 0.003 0.050 -0.001  13.21 0.000 0.002 0.050 -0.001 

 25% 17.88 -0.001 0.006 0.043 -0.002  17.77 -0.001 0.004 0.043 -0.001 

 50% 17.67 -0.001 0.006 0.034 -0.002  17.55 -0.001 0.004 0.034 -0.001 

 75% 13.86 0.000 0.003 0.021 -0.001  13.81 0.000 0.002 0.021 -0.001 

Note. CN: number of clusters.  

          CS: cluster size.  

                B denotes between-level. 

          I: ∆𝜒2(8)B, II: CFIB, III: RMSEAB, IV: SRMRB, V: TLIB. 

          i: ∆𝜒2(8),   ii:  CFI,   iii: RMSEA,   iv:  SRMRB, v: TLI. 
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TABLE 4.11 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 80 and CS = 10). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in factor loadings 

0.1             

 0% 14.68 -0.001 0.004 0.037 -0.002  14.15 0.000 0.003 0.036 -0.001 

 25% 11.75 0.000 0.003 0.031 -0.001  13.16 0.000 0.002 0.030 -0.001 

 50% 10.22 0.000 0.002 0.027 0.000  11.90 0.000 0.002 0.027 0.000 

 75% 10.08 0.000 0.001 0.021 0.000  9.85 0.000 0.001 0.021 0.000 

 100% 6.55 0.000 -0.002 0.016 0.001  7.24 0.000 -0.001 0.015 0.000 

0.2             

 0% 20.84 -0.001 0.010 0.080 -0.003  22.22 -0.001 0.007 0.081 -0.002 

 25% 19.68 -0.001 0.008 0.062 -0.003  19.68 -0.001 0.006 0.062 -0.002 

 50% 20.66 -0.001 0.008 0.056 -0.003  20.95 -0.001 0.006 0.056 -0.002 

 75% 15.22 -0.001 0.005 0.038 -0.002  15.37 -0.001 0.003 0.038 -0.001 

 100% 7.25 0.000 -0.001 0.021 0.001  7.49 0.000 -0.001 0.021 0.000 

0.5             

 0% 52.28 -0.004 0.024 0.196 -0.011  52.19 -0.004 0.018 0.196 -0.006 

 25% 74.68 -0.007 0.032 0.146 -0.016  73.59 -0.007 0.023 0.146 -0.009 

 50% 92.61 -0.009 0.037 0.136 -0.020  90.55 -0.008 0.027 0.136 -0.011 

 75% 56.10 -0.005 0.026 0.071 -0.011  55.32 -0.005 0.018 0.071 -0.006 

 100% 8.60 0.000 0.000 0.013 0.000  8.61 0.000 0.000 0.013 0.000 

  

 (continued) 
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TABLE 4.11 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in factor loadings 

0.1             

 0% 8.27 0.000 0.000 0.020 0.000  9.75 0.000 0.001 0.020 0.000 

 25% 7.03 0.000 -0.001 0.020 0.001  9.13 0.000 0.000 0.019 0.000 

 50% 6.97 0.000 -0.001 0.017 0.001  8.33 0.000 0.000 0.017 0.000 

 75% 6.20 0.000 -0.002 0.016 0.001  6.92 0.000 -0.001 0.016 0.000 

0.2             

 0% 8.84 0.000 0.000 0.033 0.000  9.04 0.000 0.000 0.033 0.000 

 25% 9.40 0.000 0.000 0.032 0.000  9.37 0.000 0.000 0.030 0.000 

 50% 9.08 0.000 0.000 0.027 0.000  9.36 0.000 0.000 0.026 0.000 

 75% 8.36 0.000 -0.001 0.023 0.000  8.62 0.000 0.000 0.023 0.000 

0.5             

 0% 14.70 -0.001 0.004 0.050 -0.001  14.66 -0.001 0.003 0.050 -0.001 

 25% 21.27 -0.001 0.009 0.045 -0.003  21.15 -0.001 0.006 0.042 -0.002 

 50% 21.19 -0.001 0.009 0.033 -0.003  21.07 -0.001 0.006 0.033 -0.002 

 75% 16.30 -0.001 0.006 0.019 -0.002  16.24 -0.001 0.004 0.019 -0.001 

Note. CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: CFIB, III: RMSEAB, IV: SRMRB, V: TLIB. 

          i: ∆𝜒2(8),   ii:  CFI,   iii: RMSEA,   iv:  SRMRB, v: TLI. 
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TABLE 4.12 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 80 and CS = 20). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in factor loadings 

0.1             

 0% 18.88 -0.001 0.005 0.041 -0.001  18.13 0.000 0.003 0.041 -0.001 

 25% 14.72 0.000 0.004 0.034 -0.001  14.34 0.000 0.002 0.034 0.000 

 50% 12.65 0.000 0.002 0.030 0.000  12.99 0.000 0.002 0.030 0.000 

 75% 8.56 0.000 0.000 0.023 0.000  9.94 0.000 0.001 0.023 0.000 

 100% 5.94 0.000 -0.002 0.017 0.000  6.58 0.000 -0.001 0.017 0.000 

0.2             

 0% 27.33 -0.001 0.010 0.083 -0.002  26.86 -0.001 0.007 0.083 -0.001 

 25% 24.92 -0.001 0.008 0.067 -0.002  25.08 -0.001 0.006 0.067 -0.001 

 50% 26.08 -0.001 0.008 0.061 -0.002  25.94 -0.001 0.006 0.061 -0.001 

 75% 18.05 -0.001 0.005 0.040 -0.001  18.07 0.000 0.003 0.040 -0.001 

 100% 7.87 0.000 -0.001 0.019 0.000  7.97 0.000 0.000 0.019 0.000 

0.5             

 0% 57.18 -0.002 0.018 0.187 -0.006  56.68 -0.002 0.013 0.187 -0.003 

 25% 86.63 -0.004 0.025 0.152 -0.009  85.36 -0.004 0.018 0.152 -0.005 

 50% 105.91 -0.005 0.029 0.141 -0.012  103.40 -0.005 0.021 0.141 -0.006 

 75% 61.69 -0.003 0.020 0.073 -0.006  60.77 -0.003 0.014 0.073 -0.003 

 100% 8.58 0.000 0.000 0.013 0.000  8.58 0.000 0.000 0.013 0.000 

  

 (continued) 
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TABLE 4.12 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in factor loadings 

0.1             

 0% 8.58 0.000 0.000 0.022 0.000  9.58 0.000 0.000 0.022 0.000 

 25% 7.31 0.000 -0.001 0.020 0.000  8.16 0.000 0.000 0.020 0.000 

 50% 7.15 0.000 -0.001 0.019 0.000  7.46 0.000 0.000 0.019 0.000 

 75% 5.87 0.000 -0.001 0.017 0.001  6.68 0.000 -0.001 0.017 0.000 

0.2             

 0% 10.53 0.000 0.001 0.035 0.000  10.73 0.000 0.001 0.035 0.000 

 25% 11.10 0.000 0.001 0.031 0.000  11.21 0.000 0.001 0.031 0.000 

 50% 10.69 0.000 0.001 0.027 0.000  10.76 0.000 0.001 0.027 0.000 

 75% 9.36 0.000 0.000 0.022 0.000  9.44 0.000 0.000 0.022 0.000 

0.5             

 0% 15.79 0.000 0.004 0.051 -0.001  15.73 0.000 0.003 0.051 0.000 

 25% 23.28 -0.001 0.008 0.044 -0.002  23.14 -0.001 0.005 0.044 -0.001 

 50% 22.97 -0.001 0.007 0.034 -0.002  22.82 -0.001 0.005 0.034 -0.001 

 75% 16.82 0.000 0.004 0.019 -0.001  16.75 0.000 0.003 0.019 -0.001 

Note. CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: CFIB, III: RMSEAB, IV: SRMRB, V: TLIB. 

          i: ∆𝜒2(8),   ii:  CFI,   iii: RMSEA,   iv:  SRMRB, v: TLI. 
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TABLE 4.13 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 160 and CS = 10). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in factor loadings 

0.1             

 0% 17.48 0.000 0.005 0.041 -0.001  17.58 0.000 0.003 0.041 -0.001 

 25% 14.30 0.000 0.004 0.033 -0.001  14.81 0.000 0.002 0.032 -0.001 

 50% 14.23 0.000 0.003 0.029 -0.001  14.48 0.000 0.002 0.029 0.000 

 75% 11.10 0.000 0.001 0.021 0.000  11.49 0.000 0.001 0.021 0.000 

 100% 5.85 0.000 -0.002 0.014 0.000  6.32 0.000 -0.001 0.014 0.000 

0.2             

 0% 32.74 -0.001 0.012 0.091 -0.003  32.60 -0.001 0.008 0.091 -0.002 

 25% 31.31 -0.001 0.011 0.070 -0.003  30.90 -0.001 0.008 0.070 -0.002 

 50% 35.28 -0.001 0.013 0.063 -0.003  35.07 -0.001 0.009 0.063 -0.002 

 75% 24.45 -0.001 0.008 0.040 -0.002  24.37 -0.001 0.006 0.040 -0.001 

 100% 7.54 0.000 -0.001 0.015 0.000  7.57 0.000 0.000 0.015 0.000 

0.5             

 0% 97.17 -0.005 0.028 0.211 -0.011  96.59 -0.005 0.021 0.211 -0.006 

 25% 138.45 -0.007 0.036 0.158 -0.016  136.88 -0.007 0.026 0.158 -0.009 

 50% 173.58 -0.009 0.041 0.145 -0.020  170.40 -0.008 0.030 0.145 -0.011 

 75% 102.58 -0.005 0.029 0.076 -0.011  101.49 -0.005 0.021 0.076 -0.006 

 100% 7.84 0.000 0.000 0.009 0.000  7.85 0.000 0.000 0.009 0.000 

  

 (continued) 
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TABLE 4.13 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in factor loadings 

0.1             

 0% 7.65 0.000 0.000 0.019 0.000  8.41 0.000 0.000 0.019 0.000 

 25% 7.58 0.000 -0.001 0.018 0.000  7.83 0.000 0.000 0.018 0.000 

 50% 6.63 0.000 -0.001 0.016 0.000  7.45 0.000 0.000 0.016 0.000 

 75% 6.75 0.000 -0.001 0.015 0.000  7.25 0.000 0.000 0.015 0.000 

0.2             

 0% 11.53 0.000 0.002 0.035 0.000  11.68 0.000 0.001 0.035 0.000 

 25% 12.44 0.000 0.002 0.029 -0.001  12.47 0.000 0.001 0.029 0.000 

 50% 12.10 0.000 0.002 0.024 -0.001  12.12 0.000 0.001 0.024 0.000 

 75% 10.36 0.000 0.001 0.018 0.000  10.39 0.000 0.001 0.019 0.000 

0.5             

 0% 20.46 -0.001 0.007 0.054 -0.002  20.41 -0.001 0.004 0.054 -0.001 

 25% 33.25 -0.001 0.012 0.046 -0.003  33.11 -0.001 0.009 0.046 -0.002 

 50% 33.36 -0.001 0.012 0.034 -0.003  33.23 -0.001 0.009 0.034 -0.002 

 75% 23.42 -0.001 0.008 0.017 -0.002  23.35 -0.001 0.006 0.017 -0.001 

Note. CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: CFIB, III: RMSEAB, IV: SRMRB, V: TLIB. 

          i: ∆𝜒2(8),   ii:  CFI,   iii: RMSEA,   iv:  SRMRB, v: TLI. 
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TABLE 4.14 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 160 and CS = 20). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in factor loadings 

0.1             

 0% 24.59 0.000 0.006 0.044 -0.001  24.14 0.000 0.004 0.044 -0.001 

 25% 18.68 0.000 0.004 0.034 -0.001  18.61 0.000 0.003 0.034 0.000 

 50% 17.52 0.000 0.003 0.030 -0.001  17.88 0.000 0.002 0.030 0.000 

 75% 13.54 0.000 0.002 0.022 0.000  13.66 0.000 0.001 0.022 0.000 

 100% 7.21 0.000 -0.001 0.013 0.000  7.33 0.000 0.000 0.013 0.000 

0.2             

 0% 45.73 -0.001 0.012 0.095 -0.002  45.81 -0.001 0.008 0.095 -0.001 

 25% 41.32 -0.001 0.010 0.074 -0.002  41.17 -0.001 0.007 0.074 -0.001 

 50% 43.68 -0.001 0.011 0.065 -0.002  43.43 -0.001 0.008 0.065 -0.001 

 75% 28.85 -0.001 0.007 0.040 -0.001  28.75 -0.001 0.005 0.040 -0.001 

 100% 7.98 0.000 0.000 0.013 0.000  8.00 0.000 0.000 0.013 0.000 

0.5             

 0% 119.60 -0.003 0.023 0.214 -0.007  118.58 -0.003 0.016 0.214 -0.004 

 25% 161.19 -0.004 0.028 0.161 -0.009  159.34 -0.004 0.020 0.161 -0.005 

 50% 198.48 -0.005 0.031 0.148 -0.011  194.62 -0.005 0.022 0.148 -0.006 

 75% 114.91 -0.003 0.022 0.078 -0.006  113.59 -0.003 0.016 0.078 -0.003 

 100% 8.24 0.000 0.000 0.009 0.000  8.24 0.000 0.000 0.009 0.000 

  

 (continued) 
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Table 4.14 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in factor loadings 

0.1             

 0% 9.06 0.000 0.000 0.020 0.000  8.68 0.000 0.000 0.020 0.000 

 25% 8.85 0.000 0.000 0.018 0.000  9.02 0.000 0.000 0.018 0.000 

 50% 8.43 0.000 0.000 0.016 0.000  8.82 0.000 0.000 0.016 0.000 

 75% 8.14 0.000 0.000 0.014 0.000  8.29 0.000 0.000 0.014 0.000 

0.2             

 0% 14.04 0.000 0.002 0.035 0.000  14.05 0.000 0.001 0.035 0.000 

 25% 14.37 0.000 0.002 0.029 0.000  14.37 0.000 0.001 0.029 0.000 

 50% 13.59 0.000 0.002 0.023 0.000  13.59 0.000 0.001 0.023 0.000 

 75% 11.32 0.000 0.001 0.017 0.000  11.33 0.000 0.001 0.017 0.000 

0.5             

 0% 22.44 0.000 0.005 0.054 -0.001  22.38 0.000 0.004 0.054 -0.001 

 25% 36.41 -0.001 0.009 0.046 -0.002  36.26 -0.001 0.006 0.046 -0.001 

 50% 36.55 -0.001 0.009 0.035 -0.002  36.40 -0.001 0.006 0.035 -0.001 

 75% 25.31 0.000 0.006 0.017 -0.001  25.24 0.000 0.004 0.017 -0.001 

Note. CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: CFIB, III: RMSEAB, IV: SRMRB, V: TLIB. 

          i: ∆𝜒2(8),   ii:  CFI,   iii: RMSEA,   iv:  SRMRB, v: TLI. 
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Testing Scalar Invariance 

 Nonconvergence Problems and Improper Solutions. Table 4.15 presented the 

convergence rates in terms of ICC, number of cluster, and cluster size for testing scalar 

invariance. As can be seen that only few replications had the convergence problems. The 

overall convergence rate was 99.91% in testing scalar invariance (intercept invariance). 

Given small percentages of lack of convergence, nonconverged solutions were excluded 

before summarizing results. Meanwhile, some replications converged but encountered 

potential theta problems (negative residual variance estimates). Nevertheless, those 

replications were included in the following analyses. As discussed previously in metric 

invariance testing, those replications were not excluded due to two reasons. First, 

negative residual variance estimates were not significantly different from zero in those 

replications. Second, after increasing replications from 1,000 to 2,000, model fit indices 

showed little difference. Therefore, the original results from 1,000 replications were 

reported only except nonconverged replications were screened out. Similar to the metric 

invariance test study, replications with extreme chi-square test statistics (e.g., above 

2,000) and negative TLI values were also deleted (e.g., one or two out of 1,000 

replications when the number of cluster was 30). 

 Model Fit Indices. The mean GFIs (i.e., CFI, RMSEA, SRMR, and TLI) as well 

as chi-square statistics with standard deviations were presented in Table 4.16. For 𝑋2 

with df of 48 and 88, the critical value is 65.17 and 110.90, respectively. As shown in 

Table 4.16, mean 𝑋2 was 69.80 (SD = 19.62) and 112.66 (SD = 16.98) for level-specific 

approach and standard approach, respectively. This finding showed that 𝑋2 overly  
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TABLE 4.15 Summary of Convergence Rates for Intercept Invariance Testing 

  
Level-specific approach 

 
Standard approach 

 CN/CS M1 M2  M3 M4 

Small ICC 30/10 98.71% 97.90%  98.59% 97.98% 

 30/20 99.88% 99.76%  99.89% 99.81% 

 50/10 99.94% 99.89%  99.88% 99.92% 

 50/20 100% 100%  100% 100% 

 80/10 100% 100%  100% 100% 

 80/20 100% 100%  100% 100% 

 160/10 100% 100%  100% 100% 

 160/20 100% 100%  100% 100% 

Average      99.75% 

       

Medium ICC 30/10 99.82% 99.76%  99.83% 99.69% 

 30/20 100% 99.99%  100% 100% 

 50/10 100% 100%  100% 100% 

 50/20 100% 100%  100% 100% 

 80/10 100% 100%  100% 100% 

 80/20 100% 100%  100% 100% 

 160/10 100% 100%  100% 100% 

 160/20 100% 100%  100% 100% 

Average      99.98% 

       

Large ICC 30/10 100% 100%  99.98% 100% 

 30/20 100% 100%  100% 100% 

 50/10 100% 100%  100% 100% 

 50/20 100% 100%  100% 100% 

 80/10 100% 100%  100% 100% 

 80/20 100% 100%  100% 100% 

 160/10 100% 100%  100% 100% 

 160/20 100% 100%  100% 100% 

Average      100% 

Note.  ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size. 

          M1 & M3: Metric invariance model 

          M2 & M4: Metric invariance unconstrained model 

 

 



 

112 

 

rejected intercept invariance in 100% invariance conditions. When in noninvariance 

conditions (0% to 75% invariance), 𝑋2correctly rejected the null hypothesis of intercept 

invariance. However, 𝑋2 was not stable in response to different degrees of intercept 

noninvariance. In other words, 𝑋2
B did not decrease as the degree of invariance 

increased regardless of the level-specific approach or the standard approach.  

 In the level specific approach, the average CFIB ranged from 0.995 to 0.999 with 

small SDs across different proportions of invariance (0% to 100% invariance), all 

suggesting good model fit. It was concluded that CFIB was not able to detect intercept 

noninvariance. Similarly, TLIB with a range of 0.993 to 0.998 indicated good fit. This 

finding showed that TLIB neither was sensitive to lack of intercept noninvariance. 

RMSEAB was not a good performing index either with all values small than the 

suggested cutoff of 0.08 though noninvariance was present. In 100% invariance 

conditions, RMSEAB was smaller than the cutoff, correctly indicating scalar invariance. 

In the standard approach, both CFI and TLI suggested good model fit irrespective of the 

proportion of invariance ranging from 0% to 100%. This results indicated that neither 

CFI nor TLI was sensitive to lack of intercept noninvariance. In invariant conditions, 

RMSEA indicated scalar invariance, whereas in noninvariant conditions, RMSEA failed 

to detect noninvariant intercepts.  

 SRMRB had identical results comparing level-specific approach and standard 

approach. SRMRB was able to detect noninvariance in between-level intercepts, as 

shown in Table 4.16 with all values larger than the suggested cutoff of 0.08. In 

conditions of 100% invariance, SRMRB was around the cutoff (i.e., 0.086). 
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 Next, a five-way analysis of variance (ANOVA) was conducted to examine the 

factors associated with changes in each fit index separately. The results were presented 

in Table 4.17 and Table 4.18 for the level-specific approach and the standard approach, 

respectively. Specifically, the factors were different proportions of invariance (INV), 

ICC, number of clusters (CN), cluster sizes (CS), and between-group difference (DIF). 

Eta-squared effects sizes (𝜂2) were used to quantify the effects. 

 For the level-specific approach, DIF was the most influential factor that affected 

the changes in all GFIs and X2.  𝜂2 were 34.68%, 39.97%, 43.06%, 22.05%, and 40.41% 

for ΔX2, ΔCFI, ΔRMSEA, ΔSRMR, and ΔTLI, respectively. Number of clusters had the 

second largest effect on the change of X2 (𝜂2 = 14.80%). Nevertheless, for other indices 

(i.e., ΔCFI, ΔRMSEA, ΔSRMR, and ΔTLI), ICC was the second influential factor. 

Similarly, for the standard approach DIF had the largest effect on the changes in the five 

indices investigated (i.e., ΔX2, ΔCFI, ΔRMSEA, ΔSRMR, and ΔTLI). The factor with 

the second largest effect was ICC. To summarize, between-group difference and ICC 

accounted for a large proportion of variance in the changes of fit indices investigated in 

this study. 

 Fit Indices Sensitivity in Scalar Invariance Tests. The changes in five fit indices 

investigated in this study (i.e., ΔX2,∆CFI, ∆RMSEA, ∆SRMR, and ∆TLI) were 

summarized in Table 4.18 to Table 4.25 in terms of different number of clusters and 

cluster sizes. As can be seen from the results, ΔGFIs and ΔX2 in response to lack of 

intercept invariance showed similar pattern to results of examining factor loading 

invariance in between-level models, which were detailed as follows. 
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TABLE 4.16 Means and SDs (in parenthesis) of Model Fit Indices for Scalar Invariance Models 

Invariance 

(%) 

Level-specific Approach a  “Standard” Approach 

𝜒2(48)B CFIB RMSEAB SRMRB TLIB  𝜒2(88) CFI RMSEA SRMRB TLI 

            

0% 94.31 0.997 0.023 0.106 0.993  140.07 0.996 0.017 0.106 0.996 

 (34.40) (0.003) (0.013) (0.054) (0.007)  (34.93) (0.004) (0.010) (0.054) (0.004) 

25% 115.46 0.995 0.029 0.100 0.990  160.97 0.995 0.022 0.100 0.995 

 (49.61) (0.004) (0.014) (0.049) (0.009)  (50.06) (0.004) (0.011) (0.049) (0.005) 

50% 117.44 0.995 0.030 0.093 0.990  162.81 0.995 0.022 0.093 0.994 

 (51.98) (0.004) (0.015) (0.045) (0.009)  (52.48) (0.005) (0.011) (0.045) (0.005) 

75% 96.75 0.996 0.024 0.088 0.993  142.48 0.996 0.018 0.088 0.996 

 (35.65) (0.004) (0.014) (0.043) (0.007)  (35.73) (0.004) (0.010) (0.043) (0.004) 

100% 69.80 0.999 0.012 0.086 0.998  112.66 0.998 0.010 0.086 0.998 

 (19.62) (0.002) (0.012) (0.043) (0.005)  (16.98) (0.003) (0.010) (0.043) (0.003) 

    Note. a In the level-specific approach, the within-level model is saturated. 

              B denotes between-level. 

              CFI = comparative fit index; RMSEA = root-mean-square error of approximation; SRMR = standardized root mean   

              square residual; TLI = the Tucker-Lewis index. 
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TABLE 4.17 Eta-Squared Effect Size Estimates for Study Variables on the Change in Fit Indices (Level-specific Indices) 

Variables 
Level-specific Indices 

∆𝜒2(8)B ∆CFIB ∆RMSEAB ∆SRMRB ∆TLIB 

INV 0.46% 0.78% 0.50% 5.48% 0.77% 

ICC 4.63% 5.44% 4.81% 12.96% 5.46% 

CN 14.80% 0.06% 2.65% 0.28% 0.01% 

CS 0.04% 4.33% 1.30% 0.00% 4.34% 

DIF 34.68% 39.97% 43.06% 22.05% 40.41% 

INV * ICC 0.75% 0.72% 1.04% 5.01% 0.75% 

INV * CN 0.19% 0.00% 0.02% 0.23% 0.00% 

INV * CS 0.01% 0.08% 0.00% 0.01% 0.08% 

INV * DIF 0.32% 0.63% 0.16% 8.13% 0.59% 

ICC * CN 1.60% 0.01% 0.06% 0.39% 0.01% 

ICC * CS 0.00% 0.64% 0.16% 0.02% 0.65% 

ICC * DIF 2.16% 2.70% 1.14% 9.95% 2.52% 

CN * CS 0.03% 0.02% 0.14% 0.01% 0.00% 

CN * DIF 12.27% 0.00% 0.60% 0.49% 0.01% 

CS * DIF 0.03% 4.01% 1.01% 0.00% 4.10% 

INV * ICC * CN 0.28% 0.00% 0.02% 0.20% 0.00% 

INV * ICC * CS 0.01% 0.04% 0.01% 0.02% 0.04% 

INV * ICC * DIF 0.35% 0.35% 0.30% 3.98% 0.33% 

INV * CN * CS 0.00% 0.00% 0.00% 0.01% 0.00% 

INV * CN * DIF 0.11% 0.00% 0.00% 0.25% 0.00% 

INV * CS * DIF 0.00% 0.07% 0.00% 0.00% 0.06% 

ICC * CN * CS 0.00% 0.00% 0.01% 0.00% 0.00% 

ICC * CN * DIF 0.76% 0.00% 0.01% 0.29% 0.01% 

ICC * CS * DIF 0.00% 0.32% 0.04% 0.01% 0.29% 

 

(continued) 
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TABLE 4.17 (continued) 

Variables 
Level-specific Indices 

∆𝜒2(8)B ∆CFIB ∆RMSEAB ∆SRMRB ∆TLIB 

CN * CS * DIF 0.01% 0.00% 0.03% 0.00% 0.00% 

INV * ICC * CN * CS 0.00% 0.00% 0.00% 0.00% 0.00% 

INV * ICC * CN * DIF 0.13% 0.00% 0.00% 0.12% 0.00% 

INV * ICC * CS * DIF 0.00% 0.02% 0.00% 0.01% 0.02% 

INV * CN * CS * DIF 0.00% 0.00% 0.00% 0.01% 0.00% 

ICC * CN * CS * DIF 0.00% 0.00% 0.01% 0.00% 0.01% 

INV * ICC * CN * CS * DIF 0.00% 0.00% 0.00% 0.00% 0.00% 

Note: INV = Invariance proportion. ICC = Intra-class correlation. CN = Number of clusters. CS = Cluster size. DIF =            

          Between-group difference.  

               B denotes between-level model. 

          CFI = comparative fit index; RMSEA = root-mean-square error of approximation; SRMR = standardized root mean   

          square residual; TLI = the Tucker-Lewis index. 
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TABLE 4.18 Eta-Squared Effect Size Estimates for Study Variables on the Change in Fit Indices (Standard Indices) 

Variables 
Standard Indices 

∆𝜒2(8) ∆CFI ∆RMSEA ∆SRMRB ∆TLI 

INV 0.48% 0.78% 0.51% 21.54% 0.11% 

ICC 4.34% 5.18% 4.43% 50.67% 0.77% 

CN 16.72% 0.11% 3.28% 1.12% 0.01% 

CS 0.22% 3.85% 0.72% 0.02% 0.57% 

DIF 35.53% 40.71% 44.58% 87.02% 6.13% 

INV * ICC 0.75% 0.72% 1.05% 19.60% 0.11% 

INV * CN 0.20% 0.00% 0.02% 0.93% 0.00% 

INV * CS 0.01% 0.07% 0.00% 0.04% 0.01% 

INV * DIF 0.33% 0.64% 0.17% 32.07% 0.09% 

ICC * CN 1.65% 0.04% 0.14% 1.53% 0.01% 

ICC * CS 0.02% 0.56% 0.12% 0.07% 0.08% 

ICC * DIF 2.36% 2.88% 1.35% 39.21% 0.40% 

CN * CS 0.16% 0.04% 0.06% 0.02% 0.00% 

CN * DIF 12.26% 0.01% 0.73% 1.96% 0.00% 

CS * DIF 0.01% 4.26% 1.23% 0.00% 0.65% 

INV * ICC * CN 0.28% 0.00% 0.02% 0.77% 0.00% 

INV * ICC * CS 0.01% 0.04% 0.01% 0.08% 0.01% 

INV * ICC * DIF 0.35% 0.35% 0.30% 15.66% 0.05% 

INV * CN * CS 0.01% 0.00% 0.00% 0.05% 0.00% 

INV * CN * DIF 0.11% 0.00% 0.00% 0.98% 0.00% 

INV * CS * DIF 0.00% 0.07% 0.00% 0.01% 0.01% 

ICC * CN * CS 0.05% 0.03% 0.10% 0.02% 0.01% 

ICC * CN * DIF 0.82% 0.04% 0.12% 1.14% 0.01% 

ICC * CS * DIF 0.02% 0.38% 0.10% 0.03% 0.05% 

      

(continued) 
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TABLE 4.18 (continued) 

Variables 
Standard Indices 

∆𝜒2(8) ∆CFI ∆RMSEA ∆SRMRB ∆TLI 

CN * CS * DIF 0.03% 0.01% 0.08% 0.02% 0.00% 

INV * ICC * CN * CS 0.00% 0.00% 0.00% 0.01% 0.00% 

INV * ICC * CN * DIF 0.13% 0.00% 0.00% 0.49% 0.00% 

INV * ICC * CS * DIF 0.00% 0.02% 0.00% 0.03% 0.00% 

INV * CN * CS * DIF 0.00% 0.00% 0.00% 0.03% 0.00% 

ICC * CN * CS * DIF 0.06% 0.04% 0.11% 0.02% 0.01% 

INV * ICC * CN * CS * DIF 0.00% 0.00% 0.00% 0.01% 0.00% 

Note: INV = Invariance proportion. ICC = Intra-class correlation. CN = Number of clusters. CS = Cluster size. DIF =       

          Between-group difference.  

               B denotes between-level model. 

          CFI = comparative fit index; RMSEA = root-mean-square error of approximation; SRMR = standardized root mean   

          square residual; TLI = the Tucker-Lewis index. 
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 Δ𝑋2. The ΔX2 values in the level-specific approach and in the standard approach 

were discussed together because the results were similar. As factors identified in 

ANOVA, the changes in X2were related to between-group difference, ICC and the 

number of clusters. ΔX2 tended to be larger when between-group difference increased. 

ΔX2 was greater if ICC was smaller, which was contrary to the results when examining 

factor loading invariance. When the number of clusters increased, the changes in X2 

were larger. 

 In the invariant conditions (100% invariance), all ΔX2values were below the 

critical value (χcritical
2  (0.05, 8) = 15.50), indicating scalar invariance. In the noninvariant 

conditions (0% to 75% invariance), when between-group difference was large, ΔX2was 

able to detect between-level noninvariant intercepts. When between-group difference 

was small, large number of clusters was required for ΔX2 to respond to lack of intercept 

invariance. It was noted that the changes in ΔX2were not consistent. For example, when 

50% of items were invariant (i.e., 50% invariance), ∆𝜒2 was the largest, whereas 

invariant items increased to 75% (i.e., 75% invariance), ∆𝜒2 was the smallest.  

 ΔCFI. Similarly, between-group difference and ICC affected the changes in CFI. 

However, the effect of number of clusters was negligible while the cluster sizes had 

some effects. There was no much difference comparing the level-specific approach with 

the standard approach. When between-group difference was small, changes in CFI 

approximated zero. With increasing between-group difference and the number of cluster, 

ΔCFI was larger. Changes in CFI were smaller given the increase in ICC. 
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 In the invariant conditions, ΔCFI was nearly all zero, which indicated intercept 

invariance. In the noninvariant conditions, when between-group difference was large, 

ΔCFI ranged from -0.010 to -0.002. When between-group difference was small, ΔCFI 

had a small range (e.g., -0.002 to -0.001). Nonmonotonic changes in CFI were observed 

with respect to different proportions of invariance. For example, when 50% of items 

were invariant (i.e., 50% invariance), ∆CFI was the largest, whereas invariant items 

increased to 75% (i.e., 75% invariance), ∆CFI was the smallest.  

 ΔRMSEA. The changes in RMSEA were relatively larger in the level-specific 

approach than in the standard approach (i.e., ∆RMSEAB > ∆RMSEA). This finding 

showed that ∆RMSEAB in level-specific approach was more sensitive to noninvariant 

intercepts than general ∆RMSEA for the whole model. The changes in RMSEA were 

largely affected by between-group difference and ICC. In addition, number of cluster 

and cluster size had some effects. Larger ΔRMSEA values in large between-group 

difference conditions indicated that ΔRMSEA was more sensitive to detect noninvariant 

intercepts compared to ΔRMSEA in small between-group difference conditions. While 

ICC increased, ΔRMSEA tinily deceased. ΔRMSEA in conditions of larger number of 

clusters and cluster sizes had mild increase than in small number of clusters and cluster 

sizes.   

 In the invariant conditions, ΔRMSEA was around zero, which indicated intercept 

invariance. In the noninvariant conditions, ΔRMSEA was larger when between-group 

difference was larger. The changes in RMSEA were not monotonic due to different 

proportions of invariance. For example, when 50% of items were invariant (i.e., 50% 
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invariance), ∆RMSEA was the largest, whereas invariant items raised to 75% (i.e., 75% 

invariance), ∆RMSEA was the smallest. On the other hand, the changes in RMSEA 

showed a similar pattern due to different proportions of invariance when ICC changed 

(small ICC to large ICC).   

 ΔSRMR. The changes in SRMRB showed a very regular pattern. First, ∆SRMRB 

in the level-specific approach was identical to ∆SRMRB in the standard approach. As 

explained previously, ∆SRMRB in the standard approach was also a fit index for the 

between-level model only. Second, ΔSRMRB exhibited an obviously monotonic change 

due to different degrees of invariance when between-group difference was large. 

Specifically, when the proportions of invariance increased, ∆SRMRB tended to be 

smaller. In other words, ∆SRMRB reflected the influence of the degree of noninvariance 

in a consistent way. Last, ICC influenced the changes in SRMRB along with the effects 

from the number of cluster and cluster size. 

 In the invariant conditions, ΔSRMRB was zero, indicating intercept invariance. In 

the noninvariant conditions, noticeably ΔSRMRB tended to be smaller as the degree of 

invariance increased, though this pattern was less apparent in small between-group 

difference conditions. For example, as shown in Table 4.25, when between-group 

difference was 0.5 and ICC was small, changes in SRMRB were 0.075, 0.051, 0.030, and 

0.004, respectively, when the proportions of invariance changed from 0% to 75%. This 

finding demonstrated that SRMRB was sensitive to lack of invariance in between-level 

intercepts. However, the changes was not that obvious when the between-group 
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difference was small. To summarize, in examining between-level intercept invariance, 

ΔSRMRB was noninvariance susceptible when between-group difference was large. 

 ΔTLI. In general, ΔTLI had larger values in the level-specific approach than in 

the standard approach. The changes in TLI were affected largely by between-group 

difference and ICC levels. 

 In the invariant conditions, ΔTLI was generally around 0.000. In the noninvariant 

conditions, changes in TLI appeared to depend on between-group difference. When 

between-group difference was large, ΔTLI showed more changes relative to small 

between-group conditions. Again, proportion of invariance affected ΔTLI neither 

consistently nor substantially. For example, in 50% invariance conditions, the changes 

were the largest, whereas in 75% invariance conditions, the changes were the smallest. 
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TABLE 4.19 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 30 and CS = 10). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in intercepts 

0.1             

 0% 33.60 -0.007 0.019 0.045 -0.013  33.88 -0.007 0.014 0.045 -0.007 

 25% 43.71 -0.010 0.025 0.029 -0.018  43.08 -0.010 0.018 0.029 -0.010 

 50% 44.23 -0.010 0.025 0.016 -0.019  42.73 -0.009 0.018 0.016 -0.010 

 75% 31.40 -0.006 0.017 0.005 -0.012  30.22 -0.006 0.012 0.005 -0.006 

 100% 6.42 0.000 -0.002 0.000 0.003  8.14 0.000 -0.001 0.000 0.000 

0.2             

 0% 25.87 -0.005 0.013 0.032 -0.008  26.01 -0.005 0.010 0.032 -0.005 

 25% 40.24 -0.009 0.023 0.022 -0.016  39.65 -0.008 0.017 0.022 -0.009 

 50% 42.66 -0.009 0.024 0.012 -0.018  42.61 -0.009 0.018 0.012 -0.010 

 75% 30.27 -0.006 0.016 0.004 -0.011  29.92 -0.006 0.012 0.004 -0.006 

 100% 8.53 0.000 -0.002 0.000 0.001  8.89 0.000 0.000 0.000 0.000 

0.5             

 0% 17.72 -0.002 0.007 0.007 -0.004  17.69 -0.002 0.005 0.007 -0.002 

 25% 37.67 -0.008 0.022 0.006 -0.014  37.24 -0.007 0.016 0.006 -0.008 

 50% 41.62 -0.009 0.024 0.004 -0.016  41.06 -0.008 0.017 0.004 -0.009 

 75% 29.48 -0.005 0.016 0.002 -0.010  29.15 -0.005 0.012 0.002 -0.006 

 100% 8.72 0.000 -0.002 0.001 0.001  8.81 0.000 0.000 0.001 0.000 

  

 (continued) 
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TABLE 4.19 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in intercepts 

0.1             

 0% 12.87 -0.001 0.003 0.001 -0.001  13.87 -0.002 0.003 0.001 -0.001 

 25% 14.58 -0.002 0.005 0.001 -0.002  15.10 -0.002 0.004 0.001 -0.002 

 50% 12.89 -0.001 0.004 0.001 -0.001  14.40 -0.002 0.004 0.001 -0.002 

 75% 10.07 -0.001 0.001 0.000 0.001  12.15 -0.001 0.002 0.000 -0.001 

0.2             

 0% 11.44 -0.001 0.001 0.003 0.000  11.73 -0.001 0.002 0.003 -0.001 

 25% 14.23 -0.002 0.004 0.002 -0.002  14.43 -0.002 0.003 0.002 -0.002 

 50% 14.38 -0.002 0.004 0.002 -0.002  14.63 -0.002 0.003 0.002 -0.002 

 75% 12.09 -0.001 0.002 0.001 -0.001  12.43 -0.001 0.002 0.001 -0.001 

0.5             

 0% 10.27 -0.001 0.000 0.001 0.000  10.34 -0.001 0.001 0.001 0.000 

 25% 13.77 -0.001 0.004 0.001 -0.002  13.78 -0.001 0.003 0.001 -0.001 

 50% 14.26 -0.002 0.004 0.001 -0.002  14.26 -0.002 0.003 0.001 -0.001 

 75% 12.21 -0.001 0.002 0.001 -0.001  12.24 -0.001 0.002 0.001 -0.001 

Note. ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: ΔCFIB, III: ΔRMSEAB, IV: ΔSRMRB, V: ΔTLIB. 

          i: ∆𝜒2(8),   ii:  ΔCFI,   iii: ΔRMSEA,   iv:  ΔSRMRB, v: ΔTLI. 
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TABLE 4.20 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 30 and CS = 20). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in intercepts 

0.1             

 0% 36.61 -0.004 0.015 0.052 -0.007  36.49 -0.004 0.011 0.052 -0.004 

 25% 45.28 -0.005 0.019 0.034 -0.009  44.79 -0.005 0.014 0.034 -0.005 

 50% 44.93 -0.005 0.018 0.017 -0.009  43.81 -0.005 0.013 0.017 -0.005 

 75% 31.98 -0.003 0.013 0.004 -0.006  31.83 -0.003 0.009 0.004 -0.003 

 100% 8.45 0.000 -0.001 0.000 0.001  8.23 0.000 -0.001 0.001 0.000 

0.2             

 0% 28.22 -0.003 0.011 0.033 -0.005  28.12 -0.003 0.008 0.033 -0.003 

 25% 42.20 -0.005 0.017 0.023 -0.009  41.76 -0.004 0.013 0.023 -0.005 

 50% 44.24 -0.005 0.018 0.010 -0.009  43.49 -0.005 0.013 0.010 -0.005 

 75% 30.98 -0.003 0.012 0.003 -0.006  30.51 -0.003 0.009 0.003 -0.003 

 100% 8.04 0.000 -0.001 0.001 0.001  8.22 0.000 -0.001 0.001 0.000 

0.5             

 0% 17.70 -0.001 0.005 0.007 -0.002  17.65 -0.001 0.004 0.007 -0.001 

 25% 38.93 -0.004 0.016 0.006 -0.007  38.45 -0.004 0.012 0.006 -0.004 

 50% 42.84 -0.005 0.018 0.004 -0.009  42.26 -0.004 0.013 0.004 -0.005 

 75% 30.02 -0.003 0.012 0.002 -0.005  29.69 -0.003 0.009 0.002 -0.003 

 100% 8.25 0.000 -0.001 0.000 0.001  8.33 0.000 0.000 0.000 0.000 

  

 (continued) 
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TABLE 4.20 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in intercepts 

0.1             

 0% 13.66 -0.001 0.003 0.003 -0.001  13.87 -0.001 0.002 0.003 -0.001 

 25% 16.45 -0.001 0.004 0.002 -0.002  15.63 -0.001 0.003 0.002 -0.001 

 50% 14.76 -0.001 0.003 0.001 -0.001  14.80 -0.001 0.003 0.001 -0.001 

 75% 13.15 -0.001 0.002 0.001 -0.001  12.76 -0.001 0.002 0.001 -0.001 

0.2             

 0% 11.72 -0.001 0.001 0.003 0.000  11.84 -0.001 0.001 0.003 0.000 

 25% 14.62 -0.001 0.003 0.002 -0.001  14.66 -0.001 0.003 0.002 -0.001 

 50% 14.48 -0.001 0.003 0.001 -0.001  14.51 -0.001 0.003 0.001 -0.001 

 75% 11.96 -0.001 0.001 0.001 0.000  12.03 -0.001 0.001 0.001 0.000 

0.5             

 0% 9.88 0.000 0.000 0.001 0.000  9.93 0.000 0.000 0.001 0.000 

 25% 13.69 -0.001 0.003 0.001 -0.001  13.69 -0.001 0.002 0.001 -0.001 

 50% 14.15 -0.001 0.003 0.001 -0.001  14.14 -0.001 0.003 0.001 -0.001 

 75% 11.95 -0.001 0.002 0.001 0.000  11.97 -0.001 0.001 0.001 0.000 

Note. ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: ΔCFIB, III: ΔRMSEAB, IV: ΔSRMRB, V: ΔTLIB. 

          i: ∆𝜒2(8),   ii:  ΔCFI,   iii: ΔRMSEA,   iv:  ΔSRMRB, v: ΔTLI. 
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TABLE 4.21 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 50 and CS = 10). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in intercepts 

0.1             

 0% 48.11 -0.007 0.024 0.055 -0.013  47.68 -0.007 0.018 0.055 -0.007 

 25% 63.65 -0.009 0.031 0.037 -0.019  62.83 -0.009 0.022 0.037 -0.010 

 50% 63.96 -0.009 0.031 0.020 -0.019  62.26 -0.009 0.022 0.020 -0.010 

 75% 44.47 -0.006 0.022 0.004 -0.012  43.15 -0.006 0.016 0.004 -0.006 

 100% 8.15 0.000 -0.001 0.000 0.001  8.48 0.000 0.000 0.000 0.000 

0.2             

 0% 37.58 -0.005 0.020 0.036 -0.010  37.34 -0.005 0.014 0.036 -0.005 

 25% 59.76 -0.009 0.030 0.025 -0.017  59.16 -0.008 0.021 0.025 -0.009 

 50% 62.39 -0.009 0.031 0.011 -0.018  61.64 -0.009 0.022 0.011 -0.010 

 75% 42.18 -0.006 0.022 0.002 -0.011  41.61 -0.005 0.016 0.002 -0.006 

 100% 8.31 0.000 -0.001 0.000 0.000  8.36 0.000 0.000 0.000 0.000 

0.5             

 0% 22.75 -0.002 0.011 0.007 -0.004  22.66 -0.002 0.008 0.007 -0.002 

 25% 54.74 -0.007 0.028 0.006 -0.014  54.27 -0.007 0.020 0.006 -0.008 

 50% 60.01 -0.008 0.030 0.003 -0.016  59.45 -0.008 0.021 0.003 -0.009 

 75% 40.68 -0.005 0.021 0.002 -0.010  40.36 -0.005 0.015 0.002 -0.005 

 100% 8.39 0.000 -0.001 0.000 0.000  8.42 0.000 0.000 0.000 0.000 

  

 (continued) 
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TABLE 4.21 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in intercepts 

0.1             

 0% 16.31 -0.001 0.006 0.002 -0.002  16.19 -0.001 0.004 0.002 -0.001 

 25% 19.32 -0.002 0.008 0.002 -0.003  19.04 -0.002 0.006 0.002 -0.002 

 50% 18.55 -0.002 0.007 0.001 -0.003  18.32 -0.002 0.005 0.001 -0.002 

 75% 11.23 -0.001 0.001 0.000 -0.001  11.35 -0.001 0.001 0.000 -0.001 

0.2             

 0% 13.56 -0.001 0.004 0.003 -0.001  13.55 -0.001 0.003 0.003 -0.001 

 25% 17.91 -0.002 0.007 0.002 -0.003  17.83 -0.001 0.005 0.002 -0.002 

 50% 17.54 -0.001 0.007 0.001 -0.003  17.46 -0.001 0.005 0.001 -0.002 

 75% 11.08 -0.001 0.001 0.000 -0.001  11.10 -0.001 0.001 0.000 0.000 

0.5             

 0% 10.81 0.000 0.001 0.001 -0.001  10.81 0.000 0.001 0.001 0.000 

 25% 16.46 -0.001 0.006 0.001 -0.002  16.42 -0.001 0.004 0.001 -0.001 

 50% 16.87 -0.001 0.006 0.001 -0.002  16.82 -0.001 0.005 0.001 -0.001 

 75% 11.02 0.000 0.001 0.000 -0.001  11.03 0.000 0.001 0.000 0.000 

Note. ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size.  

                B denotes between-level. 

          I: ∆𝜒2(8)B, II: ΔCFIB, III: ΔRMSEAB, IV: ΔSRMRB, V: ΔTLIB. 

          i: ∆𝜒2(8),   ii:  ΔCFI,   iii: ΔRMSEA,   iv:  ΔSRMRB, v: ΔTLI. 

 

 

 



 

129 

 

TABLE 4.22 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 50 and CS = 20). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in intercepts 

0.1             

 0% 54.59 -0.004 0.020 0.060 -0.008  54.23 -0.004 0.014 0.060 -0.004 

 25% 67.27 -0.005 0.023 0.040 -0.010  66.64 -0.005 0.017 0.040 -0.005 

 50% 66.68 -0.005 0.023 0.021 -0.010  65.43 -0.005 0.016 0.021 -0.005 

 75% 45.36 -0.003 0.017 0.004 -0.006  44.31 -0.003 0.012 0.004 -0.003 

 100% 8.00 0.000 -0.001 0.000 0.000  8.03 0.000 0.000 0.000 0.000 

0.2             

 0% 41.00 -0.003 0.015 0.037 -0.005  40.77 -0.003 0.011 0.037 -0.003 

 25% 62.42 -0.004 0.022 0.025 -0.009  61.92 -0.004 0.016 0.025 -0.005 

 50% 65.19 -0.005 0.023 0.011 -0.009  64.42 -0.005 0.016 0.011 -0.005 

 75% 43.55 -0.003 0.016 0.002 -0.006  43.07 -0.003 0.012 0.002 -0.003 

 100% 8.22 0.000 -0.001 0.000 0.000  8.26 0.000 0.000 0.000 0.000 

0.5             

 0% 23.40 -0.001 0.008 0.007 -0.002  23.32 -0.001 0.006 0.007 -0.001 

 25% 56.52 -0.004 0.020 0.006 -0.008  56.06 -0.004 0.015 0.006 -0.004 

 50% 62.76 -0.004 0.022 0.003 -0.009  62.20 -0.004 0.016 0.003 -0.005 

 75% 42.00 -0.003 0.016 0.002 -0.005  41.66 -0.003 0.011 0.002 -0.003 

 100% 8.25 0.000 -0.001 0.000 0.000  8.28 0.000 0.000 0.000 0.000 

  

 (continued) 
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TABLE 4.22 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in intercepts 

0.1             

 0% 17.16 -0.001 0.005 0.004 -0.001  17.09 -0.001 0.003 0.004 -0.001 

 25% 20.14 -0.001 0.006 0.003 -0.002  19.91 -0.001 0.005 0.003 -0.001 

 50% 19.01 -0.001 0.006 0.001 -0.002  18.83 -0.001 0.004 0.001 -0.001 

 75% 14.32 -0.001 0.003 0.001 -0.001  14.25 0.000 0.002 0.001 -0.001 

0.2             

 0% 14.29 0.000 0.003 0.003 -0.001  14.27 0.000 0.002 0.003 -0.001 

 25% 18.49 -0.001 0.006 0.002 -0.002  18.41 -0.001 0.004 0.002 -0.001 

 50% 18.30 -0.001 0.006 0.001 -0.002  18.21 -0.001 0.004 0.001 -0.001 

 75% 14.12 0.000 0.003 0.001 -0.001  14.09 0.000 0.002 0.001 -0.001 

0.5             

 0% 10.88 0.000 0.001 0.001 0.000  10.89 0.000 0.001 0.001 0.000 

 25% 16.73 -0.001 0.005 0.001 -0.001  16.68 -0.001 0.003 0.001 -0.001 

 50% 17.46 -0.001 0.005 0.001 -0.001  17.41 -0.001 0.004 0.001 -0.001 

 75% 13.81 0.000 0.003 0.000 -0.001  13.79 0.000 0.002 0.000 0.000 

Note. ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: ΔCFIB, III: ΔRMSEAB, IV: ΔSRMRB, V: ΔTLIB. 

          i: ∆𝜒2(8),   ii:  ΔCFI,   iii: ΔRMSEA,   iv:  ΔSRMRB, v: ΔTLI. 
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TABLE 4.23 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 80 and CS = 10). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in intercepts 

0.1             

 0% 70.60 -0.007 0.028 0.065 -0.014  70.32 -0.006 0.020 0.065 -0.007 

 25% 94.26 -0.009 0.034 0.044 -0.019  93.57 -0.009 0.025 0.044 -0.010 

 50% 94.24 -0.009 0.034 0.025 -0.019  92.56 -0.009 0.025 0.025 -0.010 

 75% 64.75 -0.006 0.026 0.005 -0.012  62.34 -0.006 0.018 0.005 -0.006 

 100% 8.10 0.000 -0.001 0.000 0.000  7.96 0.000 0.000 0.000 0.000 

0.2             

 0% 54.60 -0.005 0.023 0.041 -0.010  54.34 -0.005 0.017 0.040 -0.005 

 25% 88.93 -0.008 0.033 0.028 -0.017  88.34 -0.008 0.024 0.028 -0.009 

 50% 92.92 -0.009 0.034 0.012 -0.018  92.01 -0.009 0.025 0.012 -0.010 

 75% 61.23 -0.006 0.025 0.002 -0.011  60.65 -0.005 0.018 0.002 -0.006 

 100% 8.12 0.000 -0.001 0.000 0.000  8.15 0.000 0.000 0.000 0.000 

0.5             

 0% 30.80 -0.002 0.014 0.008 -0.004  30.70 -0.002 0.009 0.008 -0.002 

 25% 80.81 -0.007 0.031 0.007 -0.015  80.35 -0.007 0.022 0.007 -0.008 

 50% 89.73 -0.008 0.034 0.003 -0.016  89.17 -0.008 0.024 0.003 -0.009 

 75% 59.08 -0.005 0.025 0.002 -0.010  58.72 -0.005 0.018 0.002 -0.006 

 100% 8.15 0.000 -0.001 0.000 0.000  8.17 0.000 0.000 0.000 0.000 

  

 (continued) 

 

 



 

132 

 

TABLE 4.23 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in intercepts 

0.1             

 0% 19.87 -0.001 0.008 0.004 -0.002  19.83 -0.001 0.005 0.004 -0.001 

 25% 25.11 -0.002 0.011 0.003 -0.004  25.03 -0.002 0.007 0.003 -0.002 

 50% 24.43 -0.002 0.010 0.001 -0.003  24.38 -0.002 0.007 0.001 -0.002 

 75% 17.41 -0.001 0.006 0.000 -0.002  17.23 -0.001 0.004 0.000 -0.001 

0.2             

 0% 16.56 -0.001 0.005 0.003 -0.002  16.52 -0.001 0.004 0.003 -0.001 

 25% 23.31 -0.001 0.010 0.002 -0.003  23.22 -0.001 0.007 0.002 -0.002 

 50% 23.00 -0.001 0.010 0.001 -0.003  22.91 -0.001 0.006 0.001 -0.002 

 75% 17.01 -0.001 0.006 0.000 -0.002  16.95 -0.001 0.004 0.000 -0.001 

0.5             

 0% 11.99 0.000 0.002 0.001 -0.001  11.99 0.000 0.002 0.001 0.000 

 25% 20.91 -0.001 0.008 0.001 -0.002  20.86 -0.001 0.006 0.001 -0.001 

 50% 21.86 -0.001 0.009 0.000 -0.003  21.80 -0.001 0.006 0.000 -0.001 

 75% 16.59 -0.001 0.005 0.000 -0.002  16.55 -0.001 0.004 0.000 -0.001 

Note. ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: ΔCFIB, III: ΔRMSEAB, IV: ΔSRMRB, V: ΔTLIB. 

          i: ∆𝜒2(8),   ii:  ΔCFI,   iii: ΔRMSEA,   iv:  ΔSRMRB, v: ΔTLI. 
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TABLE 4.24 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 80 and CS = 20). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in intercepts 

0.1             

 0% 80.84 -0.004 0.022 0.066 -0.008  80.47 -0.004 0.016 0.066 -0.004 

 25% 100.04 -0.005 0.025 0.044 -0.010  99.45 -0.005 0.018 0.044 -0.005 

 50% 97.88 -0.005 0.025 0.023 -0.009  96.74 -0.005 0.018 0.023 -0.005 

 75% 66.34 -0.003 0.019 0.003 -0.006  65.27 -0.003 0.013 0.003 -0.003 

 100% 8.02 0.000 0.000 0.000 0.000  8.05 0.000 0.000 0.000 0.000 

0.2             

 0% 58.65 -0.003 0.017 0.040 -0.005  58.42 -0.003 0.012 0.040 -0.003 

 25% 91.94 -0.004 0.024 0.027 -0.009  91.47 -0.004 0.017 0.027 -0.005 

 50% 95.97 -0.005 0.025 0.011 -0.009  95.22 -0.004 0.018 0.011 -0.005 

 75% 63.61 -0.003 0.018 0.002 -0.006  63.11 -0.003 0.013 0.002 -0.003 

 100% 8.06 0.000 0.000 0.000 0.000  8.08 0.000 0.000 0.000 0.000 

0.5             

 0% 31.14 -0.001 0.010 0.007 -0.002  31.06 -0.001 0.007 0.007 -0.001 

 25% 82.79 -0.004 0.022 0.007 -0.007  82.36 -0.004 0.016 0.007 -0.004 

 50% 92.64 -0.004 0.024 0.003 -0.008  92.09 -0.004 0.017 0.003 -0.005 

 75% 61.58 -0.003 0.018 0.002 -0.005  61.24 -0.003 0.013 0.002 -0.003 

 100% 8.07 0.000 0.000 0.000 0.000  8.08 0.000 0.000 0.000 0.000 

  

 (continued) 
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TABLE 4.24 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in intercepts 

0.1             

 0% 21.89 -0.001 0.006 0.005 -0.001  21.80 -0.001 0.004 0.005 -0.001 

 25% 26.10 -0.001 0.008 0.003 -0.002  25.94 -0.001 0.005 0.003 -0.001 

 50% 24.46 -0.001 0.007 0.001 -0.002  24.30 -0.001 0.005 0.001 -0.001 

 75% 17.78 -0.001 0.004 0.000 -0.001  17.70 0.000 0.003 0.000 -0.001 

0.2             

 0% 17.10 0.000 0.004 0.003 -0.001  17.06 0.000 0.003 0.003 -0.001 

 25% 23.60 -0.001 0.007 0.002 -0.002  23.52 -0.001 0.005 0.002 -0.001 

 50% 23.29 -0.001 0.007 0.001 -0.002  23.21 -0.001 0.005 0.001 -0.001 

 75% 17.38 0.000 0.004 0.000 -0.001  17.34 0.000 0.003 0.000 -0.001 

0.5             

 0% 11.87 0.000 0.002 0.001 0.000  11.87 0.000 0.001 0.001 0.000 

 25% 21.01 -0.001 0.006 0.001 -0.001  20.97 -0.001 0.004 0.001 -0.001 

 50% 22.16 -0.001 0.006 0.000 -0.001  22.10 -0.001 0.004 0.000 -0.001 

 75% 17.03 0.000 0.004 0.000 -0.001  17.00 0.000 0.003 0.000 0.000 

Note. ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: ΔCFIB, III: ΔRMSEAB, IV: ΔSRMRB, V: ΔTLIB. 

          i: ∆𝜒2(8),   ii:  ΔCFI,   iii: ΔRMSEA,   iv:  ΔSRMRB, v: ΔTLI. 
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TABLE 4.25 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 160 and CS = 10). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in intercepts 

0.1             

 0% 131.14 -0.007 0.032 0.075 -0.014  130.76 -0.007 0.023 0.075 -0.007 

 25% 176.29 -0.009 0.038 0.051 -0.019  175.58 -0.009 0.027 0.051 -0.010 

 50% 174.97 -0.009 0.038 0.030 -0.018  173.33 -0.009 0.027 0.030 -0.010 

 75% 116.36 -0.006 0.029 0.004 -0.012  114.83 -0.006 0.021 0.004 -0.006 

 100% 7.93 0.000 0.000 0.000 0.000  7.93 0.000 0.000 0.000 0.000 

0.2             

 0% 98.58 -0.005 0.027 0.047 -0.010  98.34 -0.005 0.019 0.047 -0.005 

 25% 165.24 -0.008 0.037 0.033 -0.017  164.74 -0.008 0.026 0.032 -0.009 

 50% 173.82 -0.009 0.038 0.014 -0.018  172.88 -0.009 0.027 0.014 -0.010 

 75% 111.72 -0.006 0.029 0.001 -0.011  111.14 -0.005 0.021 0.001 -0.006 

 100% 7.92 0.000 0.000 0.000 0.000  7.92 0.000 0.000 0.000 0.000 

0.5             

 0% 52.07 -0.002 0.017 0.009 -0.005  51.98 -0.002 0.012 0.009 -0.002 

 25% 149.82 -0.007 0.035 0.007 -0.014  149.39 -0.007 0.025 0.007 -0.008 

 50% 168.23 -0.008 0.037 0.003 -0.016  167.68 -0.008 0.027 0.003 -0.009 

 75% 107.93 -0.005 0.028 0.002 -0.010  107.57 -0.005 0.020 0.002 -0.006 

 100% 7.91 0.000 0.000 0.000 0.000  7.91 0.000 0.000 0.000 0.000 

  

 (continued) 
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TABLE 4.25 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in intercepts 

0.1             

 0% 31.01 -0.001 0.007 0.005 -0.001  31.01 -0.001 0.007 0.005 -0.001 

 25% 40.66 -0.002 0.009 0.003 -0.002  40.66 -0.002 0.009 0.003 -0.002 

 50% 38.62 -0.002 0.009 0.001 -0.002  38.62 -0.002 0.009 0.001 -0.002 

 75% 25.94 -0.001 0.006 0.000 -0.001  25.94 -0.001 0.006 0.000 -0.001 

0.2             

 0% 24.17 -0.001 0.005 0.003 -0.001  24.17 -0.001 0.005 0.003 -0.001 

 25% 37.10 -0.001 0.009 0.002 -0.002  37.10 -0.001 0.009 0.002 -0.002 

 50% 36.89 -0.001 0.009 0.001 -0.002  36.89 -0.001 0.009 0.001 -0.002 

 75% 25.26 -0.001 0.005 0.000 -0.001  25.26 -0.001 0.005 0.000 -0.001 

0.5             

 0% 15.31 0.000 0.002 0.001 0.000  15.31 0.000 0.002 0.001 0.000 

 25% 32.64 -0.001 0.007 0.000 -0.001  32.64 -0.001 0.007 0.000 -0.001 

 50% 34.84 -0.001 0.008 0.000 -0.002  34.84 -0.001 0.008 0.000 -0.002 

 75% 24.50 -0.001 0.005 0.000 -0.001  24.50 -0.001 0.005 0.000 -0.001 

Note. ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: ΔCFIB, III: ΔRMSEAB, IV: ΔSRMRB, V: ΔTLIB. 

          i: ∆𝜒2(8),   ii:  ΔCFI,   iii: ΔRMSEA,   iv:  ΔSRMRB, v: ΔTLI. 
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TABLE 4.26 Changes in GFIs in Response to Different Levels of ICCs, Proportion of Factor Loading Invariance, and 

between-group differences (CN = 160 and CS = 20). 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.5 between-group difference in intercepts 

0.1             

 0% 152.23 -0.004 0.024 0.077 -0.008  151.94 -0.004 0.018 0.077 -0.004 

 25% 189.72 -0.005 0.028 0.052 -0.010  189.22 -0.005 0.020 0.052 -0.005 

 50% 184.53 -0.005 0.027 0.028 -0.009  183.42 -0.005 0.020 0.028 -0.005 

 75% 122.12 -0.003 0.021 0.003 -0.006  121.08 -0.003 0.015 0.003 -0.003 

 100% 8.16 0.000 0.000 0.000 0.000  8.18 0.000 0.000 0.000 0.000 

0.2             

 0% 108.43 -0.003 0.020 0.047 -0.005  108.23 -0.003 0.014 0.047 -0.003 

 25% 173.73 -0.004 0.026 0.033 -0.009  173.30 -0.004 0.019 0.032 -0.005 

 50% 181.33 -0.005 0.027 0.013 -0.009  180.52 -0.005 0.020 0.013 -0.005 

 75% 117.98 -0.003 0.021 0.001 -0.006  117.42 -0.003 0.015 0.001 -0.003 

 100% 8.18 0.000 0.000 0.000 0.000  8.19 0.000 0.000 0.000 0.000 

0.5             

 0% 54.15 -0.001 0.012 0.009 -0.002  54.06 -0.001 0.009 0.009 -0.001 

 25% 155.56 -0.004 0.025 0.008 -0.008  155.08 -0.004 0.018 0.008 -0.004 

 50% 174.80 -0.004 0.027 0.003 -0.008  174.18 -0.004 0.019 0.003 -0.005 

 75% 113.96 -0.003 0.020 0.002 -0.005  113.57 -0.003 0.015 0.002 -0.003 

 100% 8.19 0.000 0.000 0.000 0.000  8.20 0.000 0.000 0.000 0.000 

  

 (continued) 
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TABLE 4.26 (continued) 

ICC 
Invariance 

(%) 

Level-specific Indices  “Standard” Indices 

I II III IV V  i ii iii iv v 

0.2 between-group difference in intercepts 

0.1             

 0% 36.04 -0.001 0.008 0.005 -0.002  35.94 -0.001 0.006 0.005 -0.001 

 25% 44.02 -0.001 0.010 0.003 -0.002  43.86 -0.001 0.007 0.003 -0.001 

 50% 40.66 -0.001 0.009 0.001 -0.002  40.51 -0.001 0.007 0.001 -0.001 

 75% 27.69 -0.001 0.006 0.000 -0.001  27.59 -0.001 0.004 0.000 -0.001 

0.2             

 0% 26.46 -0.001 0.006 0.003 -0.001  26.42 0.000 0.004 0.003 -0.001 

 25% 39.13 -0.001 0.009 0.002 -0.002  39.05 -0.001 0.006 0.002 -0.001 

 50% 38.41 -0.001 0.009 0.001 -0.002  38.33 -0.001 0.006 0.001 -0.001 

 75% 26.88 -0.001 0.006 0.000 -0.001  26.83 0.000 0.004 0.000 -0.001 

0.5             

 0% 15.96 0.000 0.003 0.001 0.000  15.95 0.000 0.002 0.001 0.000 

 25% 33.88 -0.001 0.008 0.000 -0.001  33.83 -0.001 0.005 0.000 -0.001 

 50% 36.04 -0.001 0.008 0.000 -0.001  35.99 -0.001 0.006 0.000 -0.001 

 75% 26.04 -0.001 0.006 0.000 -0.001  26.00 0.000 0.004 0.000 -0.001 

Note. ICC = Intra-class correlation. 

          CN: number of clusters.  

          CS: cluster size.  

               B denotes between-level. 

          I: ∆𝜒2(8)B, II: ΔCFIB, III: ΔRMSEAB, IV: ΔSRMRB, V: ΔTLIB. 

          i: ∆𝜒2(8),   ii:  ΔCFI,   iii: ΔRMSEA,   iv:  ΔSRMRB, v: ΔTLI 
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DISCUSSION 

 

 This study investigated the sensitivity of various model fit indices commonly 

used in SEM with respect to testing factor loading and intercept invariance in MSEM. In 

specific, the effects of ICC, number of cluster, cluster size, between-group difference, 

and proportion of invariance on changes in model fit indices had been inspected, in 

which proportion of invariance was a focus. In comparison to invariant conditions, 

noninvariance was examined at the between-level factor loadings and intercepts (i.e., 

testing metric invariance and scalar invariance). Noninvariance was only considered in 

the between-level model in this study, and therefore fit indices for the between-level 

model were reported accordingly. Specific fit indices for the within-level model were not 

reported for a simple presentation. 

 The results of the present study suggested that ICC and between-group difference 

affected the changes of model fit indices in MSEM. When testing invariance in the 

factor loadings, larger ICC resulted in larger changes in the fit indices. The picture was 

different when testing invariance at the intercept level. Smaller changes were observed 

when ICC was larger. One similarity between testing invariance at the factor loading and 

the intercept level was that when between-group difference was larger the changes in fit 

indices tended to be larger. For example, if the reference group had larger factor 

loadings than that of the focal group, the changes in model fit indices appeared more 

obvious. In contrast, the changes in model fit indices were trivial given small between-

group difference. Number of cluster and cluster size played a role in the model fit 

changes. Larger number of cluster and cluster size resulted in fairly larger difference in 
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model fit. In summary, the sensitivity of model fit indices to lack of invariance in the 

between-level factor loadings and intercepts depended on the ICC levels and the 

magnitude of between-group difference in MSEM. Proportion of invariance was 

discussed next that affected changes of model fit indices. 

 Out of five model fit indices investigated in this study (Δ𝜒2, ΔCFI, ΔRMSEA, 

ΔSRMR, and ΔTLI), ΔSRMR had the most noticeable and monotonic change in 

response to different proportions of invariance. When the degree of noninvariance 

increased, ΔSRMR inflated, which indicated severer problem of noninvariance. This 

pattern was equally apparent for testing invariance in factor loadings and intercepts. The 

other four indices (i.e., Δ𝜒2, ΔCFI, ΔRMSEA, and ΔTLI) showed to be less sensitive to 

detect noninvariance. In response to lack of invariance, Δ𝜒2 varied with a wider range 

than ΔCFI, ΔRMSEA, and ΔTLI. Herein ΔCFI had the smallest changes in reaction to 

different degrees of invariance. ΔRMSEA tended to be fairly larger than ΔCFI with 

respect to difference degree of invariance. ΔTLI was in between ΔCFI and ΔRMSEA. 

Though having more variability, Δ𝜒2 did not change in a systematic way. That is, 

changes did not vary monotonically as the change in the degree of noninvariance. For 

example, larger degree of noninvariance didn’t cause larger changes in 𝜒2. For example, 

when half of the items were noninvariant (i.e., 50% invariance), the changes were the 

largest, whereas the changes were smaller when invariant items changed to 75%. In this 

aspect, the performance of ΔCFI, ΔRMSEA, and ΔTLI were similar to Δ𝜒2 in response 

to different proportions of invariance, regardless of examining invariance in factor 

loadings or intercepts. To summarize, ΔSRMRB was the only index that systematically 
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reflected poor fit with increment in the degree of noninvariance in the between-level 

factor loadings and intercepts. One possible reason was because the SRMR was solely 

based on residuals as opposed to the other indices which depended on 𝜒2. 

 While comparing the changes in fit indices, it was observed that ΔSRMR in the 

level-specific approach had identical results to results obtained in the standard approach. 

As discussed previously, SRMR in the standard approach was also a model specific fit 

index. Generally, changes in 𝜒2, RMSEA, CFI, and TLI appeared larger in the level-

specific approach compared to the standard approach. Larger changes were desired when 

comparing the constrained model to the unconstrained model, in which the changes 

evidenced potential noninvariant parameters across groups in multiple group analysis. 

This findings of the present study showed the advantage of level-specific model fit 

indices which were able to detect noninvariant parameters in the specific models (e.g., 

between-level model only). The level-specific model fit indices may provide important 

information that may be missed out using the standard approach. 

Limitations, Future Directions and Strengths 

 The present study had its own strengths but the conclusions drawn from this 

study were limited due to the design of this study. First, a limited number of design 

factors was included in this study. Actually the range of factor that may influence the 

change in fit indices in MSEM can be very large. These included, but were not limited 

to: sample size, cluster size, ICC, the number of indicators per factor, the number of 

factors, indicator reliability, the number of groups, unbalance versus balance design 

(e.g., group size), between-group difference, the type of model, severity of 
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misspecification (e.g., measurement noninvariance), pattern of invariance, and so on. 

However, it was unwieldy and irrational to include all potential conditions in one 

simulation. The current study was restricted to a subgroup of those factors. 

Consequently, findings from this study should not be generalized to all settings.  

 Second, noninvariance was only simulated in the between-level factor loadings 

and intercepts. Further studies were needed to compare the sensitivity of model fit 

indices to the between-level model misspecification (measurement invariance in this 

study) with that of the within-level model misspecification. In addition, higher level of 

invariance (e.g., residual invariance) can be of interest. Chen (2007) studied the lack of 

invariance in the residual level in single-level SEM. Further work was expected to study 

high level of invariance in MSEM. Third, in this study, the noninvariance was simulated 

across groups at the cluster level. More complicated situations such as the grouping 

variable was a within-level variable posed more challenges. Kim, Yoon, and Kwok 

(2012) and Ryu (2014b) explored the grouping variable at the within level. Future 

research was needed to extend in such settings.  

 Fourth, Cheung and Rensvold (2002), Chen (2007), and Meade, Johnson, Braddy 

(2008) proposed cutoff values of ΔGFIs for rejecting measurement invariance in single-

level analysis. The present study had not include discussion on cutoff criterion based on 

ΔGFIs. Future work was expected to include examination of cutoff values of ΔGFIs in 

MSEM. Fifth, this study only considered a simple one factor model with eight indicators 

and thus may not reflect realistically more complicated factor analyses wherein 

correlated factors and cross loadings may be of interest. The last limitation was 
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concerned with varying the proportions of invariance. This study considered five 

proportions of invariance (i.e., 0%, 25%, 50%, 75%, and 100%) and it was questioned 

what the trend of change would look like if more different proportions were considered 

(e.g., in a continuum). Future studies were needed for examining the change of fit 

indices (e.g., SRMR) in such scenario – whether the changes would still be monotonic.  

 Despite the abovementioned limitations, several strengths of the study can be 

noted. First, model fit in single-level SEM has been an active area in research for years 

and established rules have been disseminated such as Hu and Bentler (1999)’s cutoff 

criteria. However, it is important to determine whether findings from the single-level 

SEM literature can be generalized to MSEM settings. This study addressed this rising 

issue. Second, this study brought attention to the great complexity of testing factorial 

invariance in MSEM and had interesting findings to substantive researchers. Innovative 

methods of fit evaluation in MSEM need continue to be explored. 
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CHAPTER V 

CONCLUSIONS 

 

 With increasing interest in MSEM, substantively and methodologically, it was 

expected that future research would continue to expand from the single-level SEM 

context to the MSEM context. This dissertation addressed two current issues in the 

MSEM context and discussed them in two self-contained studies. Though they were two 

different studies, they were related in some aspects and general conclusions can be made 

for these two studies. First, both studies targeted the MSEM framework and explored the 

guidelines which have been well discussed and established in the single-level analysis 

but not multilevel analysis. Second, both studies showed the advantages of a model-

based approach in analyzing data of multilevel structure. The specification of multilevel 

models allowed for examining relations among variables at specific data level. 

Nevertheless, these two studies contributed to the MSEM literature in a distinctive way, 

which were summarized as follows. 

 Study 1 revisited the issue of application of sampling weights in large-scale, 

complex survey data. It targeted MSEM in investigating multilevel mediation. In 

examining multilevel mediation effects the weighted model-based approach was 

suggested for analyzing large-scale, complex survey data due to complex sampling 

designs. It brought attention to researchers using secondary data that the effect of 

sampling weights should be investigated and the application of sampling weights was 

encouraged. 
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 Study 2 provided advice to researchers engaged in examining factorial invariance 

in multilevel data. It targeted MSEM in examining multilevel factorial invariance in 

multilevel factor models. ΔSRMR along with Δ𝜒2 were recommended for detecting lack 

of invariance in factor loadings and intercepts in between-level models. Additionally, 

level-specific model fit evaluation was suggested for examining model misspecification 

due to measurement noninvariance in level-specific models in MSEM.  

 In conclusion, issues arising from using guidelines which were established in 

single-level SEM needed to be investigated in MSEM. Though due to the limitation of 

the study designs, this dissertation was a step forward in searching for guidelines in 

MSEM. Future research on MSEM model specification, MSEM modeling strategies, and 

model fit evaluation in MSEM were still needed. 
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